
1ALMA MATER STUDIORUM
UNIVERSITY OF BOLOGNA

ARCES - ADVANCED RESEARCH CENTRE ON ELECTRONIC SYSTEMS
FOR INFORMATION AND COMMUNICATION TECHNOLOGIES E. DE CASTRO

Semantic Service Architectures for Smart
Environments

Alfredo D’Elia

PhD Coordinator Supervisor

_______________ ________________

PHD. THESIS
January, 2009 – December, 2011

PHD PROGRAM IN INFORMATION TECHNOLOGY

Prof. Tullio Salmon Cinotti Prof. Claudio Fiegna

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AMS Tesi di Dottorato

https://core.ac.uk/display/11013953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

CYCLE XXIV – ING-INF/05

ABSTRACT
Many industries and academic institutions share the vision that an appropriate use of

information originated from the environment may add value to services in multiple domains

and may help humans in dealing with the growing information overload which often seems to

jeopardize our life.

It is also clear that information sharing and mutual understanding between software agents may

impact complex processes where many actors (humans and machines) are involved, leading to

relevant socioeconomic benefits.

Starting from these two input, architectural and technological solutions to enable “environment-

related cooperative digital services” are here explored.

The proposed analysis starts from the consideration that our environment is physical space and

here diversity is a major value. On the other side diversity is detrimental to common

technological solutions, and it is an obstacle to mutual understanding. An appropriate

environment abstraction and a shared information model are needed to provide the required

levels of interoperability in our heterogeneous habitat.

This thesis reviews several approaches to support environment related applications and intends

to demonstrate that smart-space-based, ontology-driven, information-sharing platforms may

become a flexible and powerful solution to support interoperable services in virtually any

domain and even in cross-domain scenarios. It also shows that semantic technologies can be

fruitfully applied not only to represent application domain knowledge. For example semantic

modeling of Human-Computer Interaction may support interaction interoperability and

transformation of interaction primitives into actions, and the thesis shows how smart-space-

based platforms driven by an interaction ontology may enable natural ad flexible ways of

accessing resources and services, e.g, with gestures. An ontology for computational flow

execution has also been built to represent abstract computation, with the goal of exploring new

ways of scheduling computation flows with smart-space-based semantic platforms.

 3

I – TABLE OF CONTENTS
SECTION 1 ... 6

OVERVIEW OF SMART ENVIRONMENTS: RELATED WORKS AND T ECHNOLOGIES 6

1.1. BASIC DEFINITIONS, OBJECTIVES AND PROBLEM STATEMENT.. 7
1.2. SOFTWARE ARCHITECTURES FOR SMART ENVIRONMENTS... 8

1.2.1. Sensors and physical layer.. 9
1.2.2. Information layer ... 11
1.2.3. Service layer... 13

SECTION 2 ...16

RELATED WORK ON CONTEXT PLATFORMS AND SEMANTIC WEB ... 16

2.1. MOBICOMP... 16
2.3. CONTEXT AWARE PLATFORM CAP... 18
2.4. SMART M3 ... 20

2.4.1. The big picture... 20
2.4.2. SSAP Protocol .. 22
2.4.3. Legacy devices ... 25

2.5. THE SEMANTIC WEB ... 27
2.5.1. XML.. 30
2.5.2. RDF and RDF Schema... 32
2.5.3. OWL and Ontologies... 33
2.5.5. Rules SWRL RIF.. 35

2.6. COMMON SEMANTIC FORMATS AND STANDARD.. 37
2.6.1. Dublin core .. 37
2.6.2. CIDOC CRM .. 38
2.6.3. SOUPA and CoBrA.. 39
2.6.4. DOLCE ... 41

SECTION 3...43

SEMANTIC MODELING OF RELEVANT NOT ABSTRACT CONTEXT ATTRIBUTES 43

3.1. INTRODUCTION... 43
3.2. SENSOR DATA .. 43
3.2.1. SENSOR DATA TOP DOWN.. 44
3.2.1. SENSOR DATA BOTTOM UP .. 46
3.3. SMARTIFICATION .. 47
3.4. CONTROL AND INTERACTION... 49

SECTION 4...53

SEMANTIC MODELING OF RELEVANT ABSTRACT CONTEXT ATTRIBUTES... 53

4.1 - DATA ACCESS CONTROL AND SYNCHRONIZATION.. 53
4.2 COMPUTATION .. 58
4.2.1. SEMANTIC MODEL AND CLOSURE... 60
4.6.2. FUNCTIONAL PARAMETERS AND HIGHER ORDER FUNCTIONS .. 62

SECTION 5... 66

ONGOING WORK AND CONCLUSIONS ... 66

REFERENCES... 69

 4

II. Introduction
My doctorate in information technologies was dedicated to the investigation of the smart
environments domain, with particular attention to software architectures for smart services
based on semantic technologies.
The results are solutions at different levels of abstraction, sometimes bound to specific
application scenarios and sometimes more general but always with the objective of generating
added value from the point of view of the perceived functional and non-functional service
qualities.
The experimental approaches based on semantic context platforms applied to relevant scenarios
reveal sometimes the potential to have an impact on the market, replacing localized approaches
based on proprietary standards and focused on a confined domain, with approaches oriented
towards synergic collaborations, interoperability, reuse and extendibility.
My contribution can be examined under different perspectives.
Semantic modeling of relevant context attributes was a key activity to share data in multi-agent
concurrent scenarios.
Semantic modeling of Human-Computer Interaction may support interaction interoperability
and transformation of interaction primitives into actions, and my contribution was to show how
smart-space-based platforms driven by an interaction ontology may enable natural ad flexible
ways of accessing resources and services, e.g. with gestures.
Semantic modeling of computational flows was done to represent abstract computation in terms
of a chain of function calls, with potential advantages similar to those provided by Haskell
Monads.
In general the above mentioned semantic models were conceived and implemented by
continuously checking the tradeoff between expressivity and computability, in order to always
provide an interoperable and machine understandable representation of information.

Beside semantic models for different conceptual areas another result of my work is the message
that semantic smart environments are fighting to become a reality, and not just a research
exercise. This message is based on the increasing maturity of two vectors: the application
scenarios and the platforms.

Indeed ontology driven interoperability platforms are already showing their value in several
european research contexts, such as, for example three ARTEMIS-JU projects, i.e. SOFIA,
CHIRON and IoE to name only those where I’m involved in.

SOFIA (Smart Environments for Intelligent Applications, http://www.sofia-project.eu/) is the
reference project for my entire work. It considers smart environments at different granularity
levels, and particularly it is focused on a common solution to support applications inside a car,
a building or city. Such common solution is a platform to share interoperable information in
smart environments applications. The platform is called IOP (Interoperability Platform) and it
implements the Smart Space concept. A Smart Space is a named information search domain,
where information describes the objects existing in the environment, including the environment
itself, together with their properties and the relations among them. Information may originate
from heterogeneous legacy and embedded devices or may be produced by appropriate
aggregators. The platform is very simple and it may be discovered and accessed as a Service
(e.g. a Web Service, an OSGi Service). Information is represented in an application independent
semantic format (RDF) and its interoperability and semantics are based on common ontologies.
The platform is agnostic with respect to ontology, programming language, service and

 5

communication levels. It is a very general platform that can be customized with specific
semantic models, including those developed in this Doctorate.

The project Chiron (Cyclic and person-centric Health management: Integrated appRoach for
hOme, mobile and clinical eNvironments, http://www.chiron-project.eu/) has the goal to create
an open tele-health platform for end-to-end health-care applications, and here SOFIA IOP is
reused as the core interoperability component at patient’s home.

The project” IoE” (Internet of Energy for Electric Mobility, http://www.artemis-ioe.eu/) has the
goal of Integrating Data and Energy networks to extend the smart grid to the electric vehicle
and its users. Here the relevant challenge is to extend the M2M service architecture adopted by
IoE with Smart Spaces hosted by Semantic Information Brokers, again reusing SOFIA IOP.

Applications are expected to appear also in other domains including cultural heritage, tourism
and agriculture. Not only the size of the application space increases, but also semantic platforms
based on smart spaces are getting more and more mature, with a thematic action line of the EIT
ICT LABS of the European Institute of Innovation & Technology dedicated to smart spaces
and related platforms (http://eit.ictlabs.eu/).

Smart environments have been studied in their whole and in their components during recent
years and they involve many branches of information technology and cognitive sciences. The
aim of this work is to build on semantic web formalisms, description logics and smart
environments and try to merge these sciences into software architectures and solutions which are
as general as possible to fit a wide range of relevant use-cases.

The first two sections describe the state of the art and related works in the field of smart
environments, context platforms and semantic web. Section three is a bout the semantic
modeling of simple context attributes like sensor data and introduces the concept of
smartification. Section four is about the semantic modeling of abstract context like the
description of access control rights to resources, and the semantic modeling of computation:
work that has been carried out during six month spent as a Nokia Intern in Helsinki. In Section
five a prototype of software architecture providing interesting capabilities for pervasive
computing is described and then conclusions are drawn.

 6

SECTION 1

OVERVIEW OF SMART ENVIRONMENTS:
RELATED WORKS AND TECHNOLOGIES

A smart environment is something we dreamt of since our first electronics lectures when we

were exposed to the incredible size of the embedded systems application space and to the exponential

progress rate of fundamental qualities of electronic systems.

To most of us happened at least one time to think about the reliability of some advanced

functionality, and naturally got used to it as a well established reality a short time after. In a similar way,

but on a more scientifically sound basis, at the beginning of the 90’s Mark Weiser envisioned a

new concept of human-computer interaction (HCI) where ubiquitous hidden machines

collaborate for end user satisfaction, sometimes even without explicit user request[1]. In

Weiser’s vision, besides being autonomous, the electronic ecosystem was “interconnected by wires or radio

waves and infrared”, and it was so pervasive to be unnoticed by anyone. The time demonstrated the

foundation of Weiser ideas: miniaturization followed and almost went beyond Moore’s law by increasing

performance and diminishing the recurring engineering costs of electronic devices. Low power

connectivity technologies become available also to tiny or resource constrained devices, everyday life

objects get more and more technologized, applications and services make use, when possible, of web

resources to become aware of the user profile attributes, including their habits and tastes. Currently, most of

the people are connected to the web through various devices (e.g. laptop, tablet PC, Smartphone) and with

different communication channels (e.g. Wi-Fi, HSPA, fiber), complex electronic devices are commonly

affordable and multiple vendors differentiate their products in the race to dominate their market area or to

hold their position. In this dynamic scenario research plays a fundamental role in the attempt to realize our

visions and progress towards our future. This thesis is about smart space based architectures supporting

environment related cooperative services. This topic involves multiple technologies and disciplines,

therefore in this first chapter I’ll describe the related work and the state-of-the-art of smart space related

technologies in order to create a base of knowledge to understand where we are and what we reasonably

expect to have in the near future i.e. the motivations originating our vision.

 7

1.1. Basic definitions, objectives and problem statement

Remembering that the target of an architecture for smart environment applications is its ability to

support configurable and context dependent services, the first concept to define in the present discussion is

the context.

Various definitions exist for the context but the most commonly used in recent years is the one

provided by Dey[2]: “any information that can be used to characterize the situation of entities (i.e., whether

a person, place or object) that are considered relevant to the interaction between a user and an application,

including the user and the application themselves”. Shortly context is everything of interest, considering

target scenario objectives; an application able to modify its behaviour depending from the context can be

called context-aware. Context awareness is a requisite for smart environments since a user expects a

“smart” environment to understand and take in consideration her identity, tastes, preferences, location,

profile, past choices etc.

Another implicit requirement that smart environments must satisfy is the interoperability of its

parts. The interoperability can be defined as the ability of different entities to understand each other, to

communicate and to cooperate for a common purpose. Since interoperability is a wide concept it can be

considered at different levels of abstraction: the interoperability at communication level regards the

possibility of the interoperable entities to communicate through one or more transport layers, the

interoperability at information level grants the ability of the different entities to understand the relative

information while the interoperability at service level is about the cooperation and coordination of different

services to obtain a common objective not possible by using only the available native functionalities.

Context awareness can be obtained by appropriate programming of fully interoperable entities that,

supposed aware of the context, are able to reason about it and work together to fulfill user requirements in a

context dependent way.

The objective of this thesis is to go into detail of context aware applications and their software

architectures, trying to use the previous and current research to perform a critical analysis of the state of the

art and to find and delineate possible paths the research and industry can follow to progress in this field.

 Other important concepts necessary to go further in our analysis and that I will shortly introduce are:

• the commonly used software infrastructures to provide context aware services in smart

environments

• the issues to be faced in order to obtain context awareness

• examples of context aware services which can be improved with the adoption of new or different

technologies inside the software infrastructure

 8

• the concept of “semantic” or machine interpretable information, and its potential if applied in

current software architectures.

1.2. Software architectures for smart environments
The context is a set of values characterizing the relevant entities (intended in the most general

sense). Context attributes may be constant (e.g. the name of a person), slowly variable (e.g. the day of the

week), or can sensibly change in a short time with variations that may be fundamental in the context

interpretation (e.g. hart rate). In every case context values must be inserted into a shared framework or

sensed by appropriate sensors able to share their data with all the interested entities. A software

infrastructure for smart environment must so comprehend a set of components for sensing data or for

inserting them into the system. Once raw information has been sensed is necessary to manage it in an

information layer and to make it available when needed. In Fig.1.1 is showed this general, technology

independent scenario from which a software architecture can be instantiated by choosing the HW/SW

components and the communication protocols inside and between layers.

Figure 1.1: principal actors in smart environments

 9

Sensors people and electronic devices produces raw or semi elaborated data which are sent

through the connectivity layer to the information world where an infrastructure of HW/SW entities

manages all the information. The data of the information world can be queried or augmented by the

services; applications act vertically on one or more layers to provide functionalities to the end user. In the

framework we have depicted many different architectural and technological choices can be made, we will

start by a short description of each layer and from the introduction of the context toolkit whose concepts are

present in the most common frameworks for context aware smart applications.

1.2.1. Sensors and physical layer
A deep analysis of sensors in smart environments is not needed in this discussion so I’ll only

mention some of the most important research topics which are internal to the sensor field:

1. communication technologies between sensors (e.g. Bluetooth, Zig-Bee,

Simplicity, etc)

2. efficient information representation(e.g. binary XML[3], or proprietary formats

and protocols)

3. reduce energy consumption, for example by reducing observation frequency or

turning off unused sensors depending from the application requirements and

current status

4. topology adaptation with not fixed sensors

5. …

It is important to analyze the binding between the sensing layer and the quality of the service

provided, putting them in relationship with previous considerations about context and interoperability.

Context attributes can be either observed by sensors or introduced by humans manually or from

an informative system, the recent advances in miniaturization and sensor networks allowed pervasive

environmental sensors, but these are often not inserted in a standard framework and their usage is often not

configurable for different scenarios. What happens is that proprietary solutions works only with a

predefined number of modes, sensor data are interoperable with devices and software from the same

vendor or from its partners in the given project. When there is the attempt to generalize the usage of sensors

in a multi-industry not fully a priory defined scenario, there are problems of interoperability at all levels.

Moreover the localized applications, correctly working in the target scenarios, are difficult to be ported to

new ones and this is in clear opposition with the dynamicity an rapidity of development of environmental

intelligence, because every time the interoperability has to be obtained again from scratch. In Oldes [4] a

project regarding the monitoring of biomedical parameters, multiple sensors from different vendors where

used. There where multiple protocols to be adapted and the representation of data was often optimized for

communication, but was not interoperable at information level and so, when the data where put together, an

 10

additional effort for converting all to a common language was needed. Another problem was that even if

this effort allows before or later to reach the application objectives, again the data are not in a standard or

conventionally determined format and so, if extensions or interaction with external services are needed,

new effort has to be provided in order to make their data interoperable. Another example can be that of a

large business building where different companies provide the management of different kind of sensors

(e.g. presence, temperature, humidity, luminosity, etc). Often is difficult and very expensive to make the

different management software interoperate, or this interoperability is not wanted at all by the management

software creators for preserving their market area. What is important to be demonstrated by the new

research trend based on interoperability is that sensors data, like many other information sets, can be

inserted and managed in a common framework interoperable at information level. This innovation will

change in some case the current model of business where single systems are delegated to single companies

closed software infrastructures, but the changes allows more functionalities, services and efficiency. The

reusability and the new potential will probably increase the productivity by reducing the costs and finally

leading to Win-Win collaboration strategies between different business companies. A simple demonstration

of this can be discussed trying to make hypothesis and to reason about the just mentioned example of the

building. In a large building for business activity probably security software exists using cameras to track

people and know presence information at any time in the different spaces. At the same time modern

illumination systems use presence information to reduce illumination energy consumption in environments

where there is no one. The two systems use the same type of information, provided by different sensors but

are not able to cooperate and so happen that the sensors are replicated. Often cameras are not installed

everywhere because of costs, while illumination presence sensors are based on cheap technologies (e.g.

infrared sensors) which are put everywhere; compared to cameras they loose the images(not needed for

illumination) but keep the presence information. The cooperation of the two apparatus could provide a

more precise security system, informed also of the presence in environments where camera are not installed

and a cheaper illumination because where camera sense presence there is not the need of infrared sensors.

The data of different management systems can also be merged to obtain new more useful

information: often temperature sensors are connected in direct feedback with acclimatizers, but the

temperature perceived by humans depends also on humidity. If the humidity and temperature informations

are considered available from a system aimedation to provide more comfort, is possible to use

environmental actuators to control perceived temperature instead of simply temperature. Illumination,

climatization and surveillance systems are able to provide an even more comfortable environment if they

know how many people are in a certain environment, and for this purpose information about presence,

from the security or illumination systems can be used. If an office in a large building will be not used for

one day i.e. because the tenant is hill, there is no need for illumination or heating, but to provide this service

 11

interoperability with data regarding the tenants status is necessary. More similar examples can be found in

this scenario and new ones are identifiable in different scenarios; Fig. 1.2 resumes these concepts showing a

comparison between the majority of current systems(closed applications) and the ones based on the context

intended as a whole. It is worthwhile how, besides the previously stated advantages, coordination and

cooperation between different solutions are possible in the new framework in a controlled way by using the

knowledge base as an information exchange point. The different management software doesn’t need to be

developed by the same teams and doesn’t need exchange of code, but the only effort to create

communication between totally independent systems has to be given only in their interface with the

knowledge base(i.e. a standard portable interface). During this work I’ll represent and make interoperable

many kinds of information from different sources by using methodologies born for this purpose many years

ago but still not so much applied by research or in commercial systems: those of the Semantic Web[5]. All

of these information constitutes the interoperable context (or knowledge base) available to the software

agents aimed to provide services or to increase the knowledge base itself.

Figure 1.2:Typical management systems (left) versus a possible context aware solution

1.2.2. Information layer
The information layer has the objective to manage information and fulfills a certain set of

requirements in order to be the center of a smart environment. The possible requirements a scenario needs

to be respected by its information layer obviously depends from the scenario itself, but considering

 12

common situations is possible to list the most relevant features of the information layer software

management

• Connectivity: more protocols are available to interact with the knowledge base, more devices

are capable of sharing their context and taking advantage of the information on the context

infrastructure. A unique protocol is feasible but it should be as simple as possible because

devices not natively supporting it must be always adapted to the information layer.

• Information representation: The information should be represented in a way that allows

machine interpretability or continuous work must be done by developers to provide the

meaning of the stored data to applications. Semantic technologies for data representation help

in achieving this result as it will be discussed in section 2

• Performance: A context platform should perform its primitives as fast as possible in order to

satisfy requirements of a larger amount of scenarios e.g. in telemedicine where sensor

observations are often fast in order to provide more information about user health.

Performance is a wide argument when dealing with smart environments and should be

considered under different metrics[6] e.g. access in RW mode, loading a context made up of

many data to initialize the system, degradation in condition of high traffic etc.

• Subscription notification: a common pattern in smart environment is the reaction to particular

contexts. When a certain situation happens, expressed as a function of available context

attributes, software agents perform the relative tasks. Subscription notification mechanisms

natively supported by the context platform avoid continuous polling of context data

diminishing the global traffic of data.

• Portability: a context platform which runs on many Operating systems and Hardware

architectures allow more flexible smart environment construction

• Distribution: in a distributed context platform the information is not on a single physical

location, but can be considered as a whole. In general this is an advantage, but its

management is complex.

• Discovery: is important that applications are able to discover context repositories in order to

interact with them in evolving smart environments.

• Persistency and reliability: the data should persist also to system failures and information

should be always reliable

• Security and privacy: in certain scenarios is fundamental to avoid system intrusions,

malevolent data corruption, or privacy breaches.

In the following I’ll consider some context platform encountered during my PHD and I’ll underline the

most important differences considering the list above. A better understanding of context platforms and the

 13

capacity to measure them basing on objective parameters, in order to be able to do the best system choice

respect to the application requirements, can be seen as one of the most important outcomes of my PHD.

1.2.3. Service layer
Services are here intended as software entities with access to the information world in

order to satisfy user needs. Lot o work has been done to provide an advanced service layer and

many technologies exist to access and manage services. REST (REpresentational State

Transfer)[7] is a set of principles defining how to address and use resources with simple HTTP.

XML RPC (Remote Procedure call)[8] is a protocol to execute remote call to local services by

using the internet. CORBA (Common Object Request Broker Architecture)[9] is a standardized

mechanism for the realization of distributed service oriented Systems.

Many other relevant technologies could be cited, among which one of the most

important and used is that of web services based on service registry, a markup for service

definition language and a protocol to interact with service. UDDI, WSDL and SOAP[10] are the

technologies trough which these kind of web services are published, discovered, described and

utilized in a transparent way by end users. UDDI (Universal Description Discovery and

Integration) [11] is a service registry i.e. an informative system providing access to web services

offered by business companies. WSDL (Web Service Definition Language) is an XML based

markup language to describe web services. The existence of a standard and a machine readable

format for web service definition is very important for disseminating services by making simpler

their usage through automatic code generators like [12]. In order code generators to simplify

access to the web services is necessary not only to describe the web service, but also to have a

standard way of accessing to their functionalities, to make code generators able to create stubs

hiding all the low level details of service access to developers . In this respect the SOAP (Simple

Object Access Protocol) protocol has the role of defining how messages should be exchanged

between client and server with simple XML based messages.

Also the service layer is affected by the Semantic Web. Substitutes and evolutions of

UDDI or WSDL have been proposed like for example a SUDDI module in [13]. The SAWSDL

(Semantic Annotations for WSDL) [14] is currently a W3C recommendation. The service layer

is not in the scope of this thesis, which is more focused on the information layer and on

architectural solutions for making the device ecosystem possible, so I’ll not go into further detail

with services and their related technologies.

 14

1.3. Context representation

One of the important issues to be faced in the information layer of context aware

applications which need to be discussed in this work is that of context representation. Context

representation may also be used as a way to categorize context aware systems; many approaches

exist in literature. What emerges is that different approaches are preferable for different

applications needs. Key-Value pairs are simple to be used and viewed and are good for service

frameworks like [15] where the description of services is made through a set of capabilities

which can be supported or not. Object oriented models for context representation are more

complex, but when set up they can exploit features like encapsulation, reusability and

inheritance. When using object oriented context representation the access to the context is

provided through object interfaces, like also the possibility to perform context processing. When

the information we want to represent is a profile like CCPP (Composite Capabilities Preferences

Profile) and UAPROF (User Advanced Profile) for device profile and preferences, the markup

scheme based model are a good choice. The markup models uses hierarchical data structures

made up of markup tags, attributes, values and content; scheme languages like XML-schema

and Relax NG are used to create schema definition for validation. Logic based models are

formal models of context representation made-up of concepts, facts, expressions and rules.

These models allow for inference, in order to derive facts not explicitly stated by reasoning on

the formal properties of the logic considered. One of the newest context representation

approaches is based on formal domain descriptions called ontologies. Ontologies are made up of

Classes, properties, instances and statements; in most cases ontologies are based on an

underlying description logic which offers sufficient formal properties to make reasoning like in

logic based models. Since ontologies are also the semantic web way of representing a domain

description, ontology based models for context representation will be the principal case of study

in this work.

Depending from context representation techniques, the level of interoperability

provided by a context framework drastically changes. If the naming convention used to

represent context is totally free, the alignment needed to attain mutual understanding of

independently developed software components could be an onerous operation from the

developer’s perspective. Hereinafter I’ll focus on a context platform with a RDF based knowledge base:

this context representation technique which is in strict relationship with the ontology based context

 15

modeling introduced above. RDF is made up of triples corresponding to logical facts, also if RDF doesn’t

requires the formal rigor of logic models and so reasoning capability is limited. An RDF knowledge base

always corresponds to an oriented labeled graph favoring the application of techniques and software

component based on graphs like graph databases[16] and specific strategies for querying[17] and

indexing[18]. RDF is also one of the firsts and more stable components of the semantic web pyramid, so

applications based on RDF can be also considered under an ontological or a semantic web based

perspective.

 16

SECTION 2

RELATED WORK ON CONTEXT PLATFORMS AND
SEMANTIC WEB

Context platforms are middleware solutions to manage the context i.e. the relevant information

necessary to provide smart services. These solutions are under constant development both from the point of

view of the functionalities provided and of the performance. Here I shortly describe two context

management systems encountered and used for smart applications of different nature. Then I’ll go into

detail when describing smart M3 that will be the reference context platform in this work.

2.1. Mobicomp

Mobicomp[19] is a context platform for context aware applications developed at the university

of Kent for supporting applications related to cultural heritage and archeological sites. It consist of a

constext store that is suppossed accessible and by software modules accessing to it in order to utilize a

shared knowledge base.

Figure 2.1: Mobicomp software architecture

 17

Figure 2.1[20] shows the software architecture: software the agents which only puts information

on the context service are called trackers, their counterpart, whose aim is only to read information from the

shared knowledge base are the listeners, while a software agent able both to read and write to the store is

called aggregator. Trackers are typically used to insert raw data from sensors on the store, listeners can

make use of subscriptions in order to be notified of relevant context changes while aggregators are used in

applications which need both to read and write o the store. The information is represent edas tuples of five

elements: subject, predicate, object, privacy and source The context modeling approach is simple and

expressive: information is intended as a set of triples related to “entities” an abstraction univocally identified

by an ID. By knowing the ID and the properties of them is possible to construct also complex applications

in which sensors and other trackers put new properties or updated their values with newly observed values

while listeners use the information to allow context aware application logic. Sometimes, the application

logic needs from the context store high level information that is not observable by sensors and that could be

onerous to calculate on the run every time is needed. Aggregators solve this problem by performing the

calculation of the high level context attribute and storing it in order to be used by all the listeners that need

it. In a certain way these kind of aggregators can be seen as a kind of sensors and sometimes substitute

them, so they also can be called virtual sensors.

Figure 2.2: Mobicomp based smart space application

 18

In Fig.2.2[21] is represented the information flow of part of the work presented for the final event

of the EPOCH network of excellence [22] in 2008. As is possible to observe from the figure there are

different kind of information source i.e. Semacode identification data, and camera events. This information

is represented as a set of statements related to a certain set of entities decided by developers, according to

the Mobicomp philosophy. Once all the software elements works following the programmers conventions

it could be said that the context is really shared and the context aware applications can work properly. End

users where provided by wearable ad hoc device performing pedestrian tracking basing on accelerometers

and gyroscope values. The worn device also had a touch screen display, a GIS model of the museum,

accelerometers and gyroscope for pedestrian tracking and to allow assisted navigation. Descriptions of the

artwork resides on a different location and are retrievable by user devices knowing their ID. In the final

applicationit was possible to provide the description of the piece of art whose semacode is read by the user,

to assist navigation towards an artwork indicated by the user and, in general, to increase culture visibility

through the help of electronic. In the described application the museum has become a smart environment in

which multi source sensor data where fused to give advanced functionality; the constantly growing

localization error, typical of pedestrian tracking made up with accelerometers, was reduced by the short

range identification techniques, in fact since the semacode (but also RFID if needed) were readable only

near the identifier location, the instant in which they are red correspond to the moment in which the user is

in the precise location in which the semacode has been mapped; thank to this in this application has been

possible an interesting data fusion allowing to use in symbiosis the pedestrian tracking with correction

made up through the reading of identification codes. As I will deepen later, many step forward can be done

starting from this situation and we will see that many of them imply the change of the philosophy with

which the context is represented and structured. What we have described is in fact a system developed with

internal protocols for communication and user defined context definition. Extensions or delegation of part

of this work to third parties is difficult because is necessary to clearly explain the role of all the entities

(usually human unreadable UUID and their properties, for which the semantic resides in the naming

convention).

2.3. Context aware platform CAP
The context aware platform or CAP [22][23] has been realized by telecom italia lab, TLab to

efficiently manage user data in order to offer advanced services. One of the most important motivations of

its creation is the need to manage a large amount of data and events in a single framework. As previously

mentioned, in fact, the increasing number available sensor data and the details about users (e.g. personal

profiles, preferences, etc), constitutes a so large evolving knowledge base that is difficult to manage

 19

efficiently. The high level software infrastructure of a CAP based context aware application is showed in

FIG. 2.3.

Figure 2.3: Big picture of TLab context aware platform based applications

User equipment and , in general, all the smart devices able to contribute and/or use

context, run applications able to communicate with the Context Broker. The context that is

inserted to the shared platform is sent to the Context Cache in order to be retrievable by

interested agents. The Context Providers are able to perform processing to obtain abstract

context like for example a integrated location based on multiple data sources(e.g. GPS, Cellular

cell seen by the device, WiFi, …) so that when complex attributes are requested by applications,

the broker asks to the right provider to use its resources to calculate it. All the communications

are transported through a proprietary XML based protocol named ContextML[24] which is able

to carry context attributes in the form of one or more context scopes Elements. A context scope

may be atomic or complex: while atomic context scopes are the elementary context element

which can be understood by the architecture, the complex scopes are composed of one or many

atomic scopes. In this architecture the semantics and machine interpretability of context is

higher than in Mobicomp because there has been an effort to formalize context and to represent

it in a standard way. The standardization of context is done at infrastructure level and not by the

single application developers, so the level of interoperability is higher. The naming convention

is not free because there exist a clear vocabulary to express context and this favorites the

development of context aware applications which are now based on a complete domain

description. Problem arises when new functionalities are needed based on context attributes still

 20

not formalized in form of scopes or of their composition. If extensions or evolutions of current

services require new scopes, there could be a considerable effort to modify the existing

ConteXtML version and the related software modules in a coherent way. When new conteXtML

versions are going to be released it should be reasonable but not trivial to guarantee at the same

time simplicity in the parsing and backward compatibility. But the real obstacle to the

realization of smart environment seen as an ecosystem of interactive devices is the monolithic

approach. The context representation and interpretation are conventions internal to the business

company which owns context platform and provides the context aware services. The ubiquitous

computing vision doesn’t clash in principle with this model, but as we will see when dealing

with the smart-M3 context platform a collaborative multi-industrial scenario with machine

interpretable context definition and with interoperable modularized components is currently

more concrete. Despite the validity and power of context platform like the CAP, it will be not

the reference platform of this work because it is aimed mostly at mobile services and not to a

pervasive smart environment scenario.

2.4. Smart M3

The smart M3 context platform perfectly suits the role of being the context store in a

pervasive smart environment and to provide semantics to information, context reactivity, and a

multiparty business model. The development of a context platform like Smart M3 has been the

objective of the FP7 ARTEMIS project SOFIA[25] lead by Nokia which started in 2008 and

ended in 2011. The opportunity to participate to this important European project allowed me to

have close contact with semantic smart environments related technologies and with many

industrial and academic partners interested in the development of vertical applications from raw

sensor data observation to complex service erogation.

2.4.1. The big picture

Fig 2.4. represents SOFIA general vision of context aware smart environment. The

SOFIA specific technologies are mapped to the previously defined general layers of a context

aware applications showing that the attention is focused on the transport layer and on the

information layer.

 21

Figure 2.4: Smart environments in SOFIA vision

The KPs (Knowledge Processors) are generic software programs able to communicate

using the information transport protocol called SSAP (Smart Space Access Protocol). The SIB

(Semantic Information Broker) is the context platform internally exposing data through

Semantic WEB representation techniques. The SIB is a specification more than a specific

software solution, augmenting the level of generality without loosing contact with the SOFA

vision we can say that a SIB is any hardware/software component able to properly manage and

respond to SSAP requests. The semantic web (indicated in the figure with a miniature of the

well known pyramid) plays a crucial role in the vision it provides ., in fact, a way through which

representing data in the sharing knowledge base. Domain ontologies, realized through semantic

web standards(i.e. OWL sublanguages), are a way to share a common terminology and domain

vision between the active software agents. The service layer, bases its view of the context on

raw and abstract data provided respectively by sensors and aggregators. Also for the service

layer is very important a formal base built upon ontologies. Context reasoners are able to

perform their task tanks to consistency and the time needed to perform a query is always finite if

the underlying description logic is decidable. Also rule engines can be built on a ontology based

view of context an well know existing solutions like Jess[26] can be applied to derive abstract

context interpretations, to apply services compose them or to manage a proper service

orchestration in order to better suite user requirements. From a more direct perspective the SIB

(or sib aggregation) is the center where all the interested software agents (KPs) Store or query

 22

information to perform their tasks, KP concurrency should be properly managed in order to

avoid synchronization problems and by allowing transactional services.

2.4.2. SSAP Protocol
SSAP is the key integration point in the smart m3 software architecture, its is the

protocol used to carry context data between the devices and the central knowledge base. Fig.

2.5. shows the graphical representation of an XML-schema designed to describe SSAP protocol.

SSAP primitives are implemented by libraries called KPI (KP Interface) which are written for

many programming languages like C[27], C#[28], Java[29], and others . If necessary new

programming languages can be supported by the implementation of new KPI. The existence and

the usability of KPIs is very important to hide from developers the low level details of protocol

implementation.

 23

Figure 2.5: SSAP XML Schema graphical representation

The XML schema in the figure as been obtained from the analysis of a complete set of

valid SSAP messages and then refined by hand to obtain a better match. In (a) the composition

of a general SSAP message is showed. In particular each SSAP message is composed by an

heading part and a set of parameters. In the heading part are elements and attributes stating the

 24

nature of the message (i.e. message_type and transaction_tipe) and details regarding the KP (i.e.

node_id)and the SIB (i.e. space_id)receiver. The transaction_id element specifies an incremental

integer counting how many access have been done to the SIB by a certain KP. In (b) the

parameter element is expanded to show the possible valid parameters which can follow the

heading part: the node list element may contain literals or URI representing graph nodes. The

SPARQL query is a string while the response is an XML document compliant with the W3C

recommended XML format for query response[30]. The triple list element contains the set of

triples to be inserted or removed in write mode while in query mode it contains the triple

patterns used to perform queries on the shared graph. The possible SSAP messages can be

classified in three main categories:

• Messages to specify that a KP wants to start or end interaction with the SIB. The

primitives under this category are the JOIN and the LEAVE. Each KP can perform other

operations only after Joining the SIB, the LEAVE primitive states that the KP has

ended its interaction with the SIB, so, to perform other operations, is necessary to send

a new JOIN message.

• Messages to access to the graph in read or write mode. The primitives to modify the

content of the KB are INSERT, REMOVE and UPDATE. The former two respectively

allows a KP to insert or remove triples from the store while the UPDATE primitive

performs two consecutive remove and insert operations by a single primitive in which

is possible to specify both the set of triples to be removed and that to be inserted. The

triples can be specified in many different formalism for flexibility reasons: while the

triples XML element is restricted to the RDF-M3 way of representing triples, all triples

syntaxes are theorically valid from the schema and in particular the W3C recommended

XML-RDF based syntax. Also if all triples specification syntaxes are possible, different

SIB versions may support one or more of them, so the SIB profile concept and its

interactions with the KPI libraries becomes very important.

• Messages related to the subscription/notification mechanism. Subscriptions specifies

through triple patterns the intention of a KP to be notified of certain events at

information level by the SIB. Notifications are messages sent by the SIB to subscribed

KPs and specifying which triples has been added or removed from sub-graphs

matching the patterns. Subscriptions are very important to improve smart environment

capabilities by adding context reactivity without continuous polling on the knowledge

base and so with a sensible traffic reduction.

 25

2.4.3. Legacy devices
When the SOFIA project started and the smart M3 concepts where introduced there

was a clear idea of not making a system totally new that was not able to be deployed effectively

on market, nor to lose the impact on research with an effort not directed toward innovation. The

real objective was to put the basis of an evolutionary revolution built on existing technologies,

deployable on existing devices and appliances, but at the same time ready to be used in

completely new applications. To perform this task the methods to interface the existing legacy

devices to the new conception semantic knowledge base need to be simple and deployable on a

wide range of devices, in particular that with limited resources. Fig 2.6. [31] shows how

different kind of devices can be properly made part of a smart space. The adapters KP have been

conceived to fill the gap between existing legacy devices and the information world. They send

to the Knowledge base all the relevant information regarding the device status and they query

for the external data to which the device is interested in order to better adapt its behavior to the

evolving context. As previously stated KPs definition is very general: they are programs of

whatever nature able to communicate with a SIB through SSAP protocol. The KP are

technology independent and also their platform or the language in which there are implemented

are a free choice. An adapter KP transforms the original internal conventions in ontology based

ones and this operation make the exchanged information universally interpretable by software

agent based on the same ontology. For the adapter Kps always two interfaces can be taken in

consideration: the legacy interface is responsible for taking the raw data while the smart space

interface aligns the information to the ontological reference and send them to the shared KB. For

programmable devices, see (a) in figure, is possible to write the adapter KP on the device itself

by transforming it in what we can call a “Smart Object” (SO). For many reasons is not always

possible to change the way a legacy device behave and is necessary to run the adapter KP on a

different host which is interconnected both to the device and to the smart M3 infrastructure. The

situation represented in (b) happens, for example, when we want to “adapt” a proprietary sensor

network. In this case the legacy should be able to share their context with the central Knowledge

base, but at the same time is not possible to change the proprietary software and protocols. The

simplest solution is so to run the adapter on the SIB host: from the legacy perspective nothing

changes and the adapter is simply an application requesting its data, however, from the

knowledge base perspective the chain legacy-adapter is effective and so the legacy has become a

smart object. Solution (b) can be applied when the not programmable legacy has a stable

connection with the SIB host and cannot be applied in mobile scenarios like that involving

wearable sensors. The solution (c), has been successfully applied and demonstrated in [32], it

 26

uses as host for the adapter KP in a programmable wearable device like for example a smart-

phone. The legacy interface is based on the existing protocols supported by the legacy (e.g.

Bluetooth or Zig- Bee) while the smart space interface has the additional task of discovering the

smart space infrastructure in order to communicate the data in all the places visited by the

adapter host holder. Situation d has been identified and described during this PHD. It is a

particular kind of smart object typical of modularized hardware architectures: from an high level

perspective we see a smart object communicating with a knowledge base ontology referenced

data, but going into the details of the smart object only one module is programmable and can be

the host of the adapter KP. Other modules of the smart object are not programmable and

reasonably provide data in proprietary protocols pushed toward optimizing. To expand the

SOFIA benefits in term of application development time, reusability and uniform programming

approach also to this kind of legacy device the low level adapters (indicated with the yellow D

letter in Figure) have been introduced into the scenario. These modules have still not a definitive

specification because they are not part of the original vision, but they solve a specific need. The

aim of the low level adapters is to have reusable code in the Adapter KP running on the

programmable module of the modular legacy architecture. Usually, all KPs are reusable and also

adapter KPs because their legacy interface is defined by the existing stable legacy device, while

their smart space interface is reusable thanks to the stable ontology reference. This doesn’t apply

to the modular smart object because the nature of a modular device is to have the possibility to

interchange modules with different features but offering the same functionalities. A clear

example is that of a smart object which needs gesture recognition from an internal not

programmable module. This not programmable gesture recognition board, in origin is interfaced

with the programmable module with a certain protocol and conventions. From these conventions

and protocols depend the adapter KP legacy interface for which we want an high level of re-

usability. If we want to exchange the original gesture recognition module with another one, the

adapter KP (or better its legacy interface) has to be rewritten from scratch. The low level

adapters are an attempt to solve this problem by defining the low level semantic and access

methods. Also for low level two interfaces are defined, the Adapter KP interface is stable and

provides ontology referenced attributes from a static interface of access methods. The external

module interface is aimed to the interaction with the specific module. Considering the

adaptation to a smart environment of a modular programmable device, low level adapters, in my

vision, could be the only pieces of software to be modified in case of internal module

substitution by keeping the core logic of the adapter unchanged and simplifying the whole

development process.

 27

Figure 2.6: Different ways of adapting legacy devices to a smart M3 based software infrastructure

2.5. The Semantic Web

The semantic WEB activity is a collaborative movement promoted by the World Wide

Web Consortium (W3C) to migrate from the current WEB of text to a WEB where information

is accessible by software agents. Starting from the concept of semantic network defined since

the sixties (e.g. [33] where multiple resources are connected with univocally defined properties,

the semantic WEB term was coined by Tim Berners lee in [34] as a natural evolution (and not

revolution) of the current WEB. Currently all the information accessible in the Web is in the

form of static or dynamic web pages written with markup to show them in browsers. The HTML

language provides a way to present a web page to the user, but does not allow, in principle, to

make the meaning of content of the page accessible to software agents. This problem is faced

through the use of search engines basing their behaviour on meta-information present in the web

pages and on their textual content to run proprietary algorithms which find and rank results in

 28

response on a textual user input. Search engines can be seen as the glue of the web but their

behaviour is not the best possible one, actually most of web search engines are based on

keywords, and is the user who have to use them properly and to correlate the results in search

sessions to retrieve the resources to which is interested. Is unthinkable to delegate a software

agent to solve this task because relatively simple objectives like “finding the work of art of

Leonardo da Vinci” can be done with different search procedures, with different use of

keywords and with navigation in the result pages. The results given by the most powerful search

engines, even Google, are full of not pertinent sites and duplicated or similar answers. When

this phenomena is less evident is often because workaround on results allow to hide unwanted

items, but the problem is at the root and so in the key word based search. In the Semantic Web

vision Resources are linked through semantically defined properties, so, it would be very simple

to ask to a software agent to search for the resources linked with the resource “Leonardo da

Vinci” through the property http://purl.org/dc/elements/1.1/creator.

The property used herein is part of the Dublin core initiative [35] and is so universally

known. In order the example to work also “Leonardo da Vinci” must be a univocally determined

resource, and not simply a string; as we will see the concept of identifying each relevant

resource with a URI (Universal Resource Identifier) is one of the key features of the Semantic

Web. An example of semantic Web engine related with arts won the Semantic Web context in

2006[36]

Search engines are only a clear example of a well known web application that can be

improved by a different organization of web resources), but are not the only example and,

moreover, there are totally new applications that can be built in a new web and that can

positively impact the market and the user satisfaction. The Semantic web initiative is one of the

most import undergoing projects to the establishment of a framework suitable for smart

environments and context aware services. Here I’ll describe not going into too much detail, the

affirmed Semantic Web technologies the ones that are still under discussion or under

construction, and some example of their applications in research. The semantic WEB activity is

often represented in a layerd graph similar to that reported in Fig 2.7.

 29

Figure 2.7 Semantic Web stack

The reason why the graph is similar to a pyramid is very important: since when it was

conceived when the Semantic Web was so distant from the affirmed Web of that time, that its

development could have required also many decades, and its deployment over a consolidated but

different version were very improbable without a proper strategy. The idea was:

• to build the new web starting from standard technologies, i.e. XML and Unicode, not

implying any interference with the existing and florid web. This is the evolutionary

revolution introduced before, in fact XML and its derived standards were just

omnipresent in the web.

• To make it step by step in a way that for each step was possible for the community to

begin to “feel” the added values and so to have the will to use the new standards until

the critical mass for that step finished.

As is possible to see in the semantic web pyramid there are a lot of technologies,

currently the level of ontologies is stable, or at least clear recommendation exists for it, the RIF

(rule interchange format) dialects have been released for rule representation and translation, but

still there is ongoing effort in the integration between the rule layer and the ontology

layer[37],[38]. The other steps towards the completion of the Semantic Web project are still

under construction and will probably require many years.

 30

2.5.1. XML

XML (Extensible Markup Language) is the first and simple step toward machine

understandability of information. Through a nested structure of tags and attributes it is possible

to build a tree based model of information. The syntactic rules of XML are very simple: there

are no reserved tags and there is free naming of Elements. An xml document consists of a

declaration line opening tags, closing tags, attributes and text. The xml elements begins with the

opening tag (delimited by “<” and “>”)and end with the corresponding closing tag (delimited by

“</” and “>”). Each XML Element may contain other elements (i.e. nested elements or

children), attributes or text. In each XML document there is only one root element which

contains all the information of the document in the form of children, text or attributes. The

attributes are name-value couple specified in the opening tags after the name of the relative

element. The attribute name is followed by the equal sign and the attribute value either between

single or double quotes. The attribute with name “xmlns:prefix” is special because it allows to

specify namespaces with visibility in the element in which it has been declared and in its

children. A namespace declaration assigns a prefix to the value of the attribute in a way that

inside the element is possible to use the prefix followed by “:” as a shortcut. The namespace

with no prefix is called default namespace: each element that have an ancestor which have

specified the default namespace will belong to that namespace. Elements must be properly

nested and so if tag1 is opened before tag2, then tag2 must be closed before tag1. With these

basic and other less relevant rules XML documents correspond to trees where the root

corresponds to the first element that is opened, the branches correspond to nesting elements or

specifying attributes and the leaves are the values of the attributes or the text contained in the

XML elements (Fig 2.8.).

 31

Figure 2.8 Example of XML Elements and their corresponding tree

 An XML parser is a software written to read and partially manage the information

contained in XML documents. Many approach are possible to parse an XML document: but

typically SAX parsers and Dom models are used. It is commonly said that XML has very

limited semantics, this happens manly for two reasons:

• Since the name of the elements are freely decided by software

developers, there is no way these names can be understood by software agents without

human intervention.

• There is no implicit meaning in the nesting of tags. [39]. Tag can be

nested for many reasons so to specify different kinds of semantic relationships between

parents and children. One can nest a full name and city to specify that the person with

that name was born or is located or loves that city. At the same time is perfectly valid to

nest a city name and a full person name to specify the same things.

XML is machine readable and so is very powerful with respect to plain text, the use of

schema definition languages like DTD[40], XML schema and Relax NG [41] allows to reduce

XML natural freedom and to create sublanguages valid in the context of specific application.

Schema definition languages also make possible to build protocols between applications, to

validate generic XML documents against the schema and, consequently to collaborate between

distinct gruops with the schema acting as a reference point for information representation or

transport. Despite the good features introduced by XML, the problem of the lack of semantic is

crucial when we aim to autonomous semantic agents. Since the issues described before are

structural and depend by XML itself (we can say that the biggest problem is the fact that the arcs

 32

connecting the nodes in the XML tree are not labeled), the Semantic web builds over the layer of

machine readability a layer that can be though as the first step towards semantic

understandability: that of the Resource Description Framework (RDF).

2.5.2. RDF and RDF Schema
RDF perfecltly addresses the semantic issues introduced for XML. First of all RDF

introduces the concepts of URIs to identify resources, the naming convention is still free, but the

names created are unique and there is no possibility of misunderstanding same names given with

a different meaning by independent developers. Applications built over the same set of URI will

interoperate. With the introduction of URIs there is an advantage also versus schema definition

languages because the scope of URIs is global while that of schema definition languages is local

unless a namespaces is given for that schema. The other issue present in XML and solved by

RDF is that of the meaning of the nesting. In RDF is not important the syntactical form with

which the nodes are connected together, but the only important thing is that the information is

specified in the form of triples <subject, predicate, object > or < s, p, o > where the subject is

and the predicate must be identified by URIs while the object may be a URI or also a literal

value of any of the basic types. This information organization results in a directed labeled graph,

a more powerful model than the XML three. The great advantage is the obligation to identify the

property with a URI to clearly and univocally determine the semantic relationship between the

subject and the object. This identification was totally absent in XML where there was only a

syntactic nesting between parents and children. As previously introduced RDF is not properly a

language, but represents an information model independent from the specific syntax used to

serialize it. For this reason many syntaxes exists for RDF like Turtle, Notation 3 and RDF-

M3[43]. According to the semantic web stack showed in Fig 2.7. the syntax to be used for RDF

in the semantic web and that is recommended by the same W3C is based on XML itself and is

called RDF/XML based syntax for RDFHuman readability is low but at the same time the level

of machine interpretability is high because all resources and their relationships are univocally

identified. The directed labeled graph implied by an RDF model corresponds to the model of

information of semantic networks but in principle every construct is feasible with given

resources, what is used as predicate in a statement can be the subject of another, properties

naturally functional like the one between a person and her fiscal code are not enforceable

because too much freedom is given. RDF gives the right means to obtain semantics in

application, but too much freedom is given to developers in order to allow automatic reasoning

and inference. Inference is fundamental when not all the statements in an knowledge base are

 33

supposed to be knew and when we want software agents to use information about the domain to

have a smarter behaviour. RDF Schema partially addresses the need for a terminological and

conceptual basis in domain definition. In RDF Schema are added the concepts of Classes and

Properties: the subject or the object of a statement must not be properties which instead are used

to connect the former two. Properties are also provided with domain and range definition. The

domain referred to a certain Property is a Class or Class expression in term of union intersection

and other set operators, defining from which set of entities a statement containing that Property

may start. Analogously the range of a Property defines, through set operators on defined

Classes, the superset of all the objects for that properties. An example of still primitive inference

that is possible to obtain with RDF Schema is the grant that subjects of statements with a

property that has Domain in class A, must belong to A, also if this assertion is not explicitly

stated in the knowledge base. The objectives of the Semantic Web in terms of reasoning and use

of domain structure in the process of inference are more advanced than the simple example just

exposed, but more rigor is necessary in order to allow this. The ontologies and the OWL

sublanguages have been thought to give a powerful instrument with basis in the logic theory to

define the concepts an the properties of a certain domain.

2.5.3. OWL and Ontologies

OWL (Web Ontology Language) is built on RDF and RDF Schema as they are built on

XML, according to the semantic Web big picture. It is not a syntactic, but a conceptual

relationship which binds RDF with OWL, in fact many syntaxes exist to define an Ontology. An

Ontology can be roughly defined as the specification of a conceptualization and it represents the

terminological and structural definition of a domain of interest. In general terms the software

agents aware of the ontology (or ontologies) they are using may perform inference and will

create statements without breaking the domain consistency. OWL allows to define not only

Classes, Properties, their domain and their range, but also other important features like Property

cardinality, functionality, transitivity, chains and so on.

As previously mentioned the reasoning capability provided by OWL depends from the

formal theory of logic and, precisely from description logic [42].A reasoning procedure is a

computationally complex task for which one of the most important metrics is the decidability. A

logic (and so a subset of ontologies) is decidable if each possible reasoning procedure will end

in a finite time. Too much freedom in domain definition language means no deductive power or

impossibility to construct the basis data structures needed to perform reasoning. This is the

 34

problem of all that languages seen until know. Too much freedom is given in XML, but also in

RDF and RDF Schema to grant decidability in a generic Ontological definition. At the same

time more powerful constructs we use in our OWL domain definition, more complex is the

algorithm to be performed by reasoners to arrive to a conclusion, the limit of this computational

time is infinite and so undecidability. Since the OWL definition, but also in recent times, a big

effort has been done to research which constructs in class and properties definition can be used

to grant decidability and also to limit the worst case of computational time to not exponential

trends. This effort resulted in a set of OWL sublanguages with different features, to be used

depending from the application requirements. Chronologically at the beginning three OWL sub-

languages have been defined:

• OWL-lite

• OWL-DL

• OWL-full

OWL-lite is the simplest OWL sublanguage, it has been defined to grant to its users

decidability of the resulting description logic and fast query execution. An OWL-lite ontology is

similar to an RDF-Schema knowledge base, but is possible to use restricted cardinality

constraint (the max Cardinality allowed is 1) functional properties and a few other constructs

which, reducing modeler freedom with language constraint, allow tableau algorithms[44] to be

run for the inference process and for the consistency checking in a finite time. When the logic

underlined by an ontology is decidable it belongs to the description logics sub-set. The logic

underlined by an OWL-lite ontology is called SHIF, where S stays for basic logic operators like

the existential and universal qualifiers; H indicates that is possible to define a hierarchy of

Properties where the sub-property implies the super-property; I stays for Inverse and so tell us

that inverse properties may be defined; F (functional) indicates that cardinality restriction for

functional properties (max cardinality=1) can be defined. OWL-DL ontologies contains many

more constructs and arbitrary cardinality in domain description, all the language rules grant

decidability and a greater inference potential, but the resulting logic is more complex than that

of an OWL-lite ontology and so the time needed to compute is major. The Logic of an OWL-DL

ontology is called SHOIN where O (one of) indicates that concepts may be defined by the

enumeration of its members while N means that property with arbitrary minimum and maximum

cardinality can be defined. The arbitrary cardinality is not the most advanced that can be used

because even in OWL-DL is not possible to have the so called ”qualified cardinality” which

make possible to define cardinality distinguishing by Class. In example while in OWL-DL is

possible to state that an individual belonging to the Person Class has at max two parents,

 35

qualified cardinality allows to specify that the property “has Parent” has max cardinality 1 from

the subclass of Person Man and 1from Woman.

OWL-full is an ontology definition language syntactically equal to OWL DL, i.e. the

allowed constructs are the same, but with more freedom given in the statement creation. As

previously mentioned, the lack of structural requirements in domain definition results in less

mathematical rigor and for this reason OWL Full is not decidable belonging to a superset of

description logics called first order logics. The most important difference between OWL Full

and its decidable sublanguages is the clear distinction between classes and individuals. In OWL-

DL and OWL-lite, the subjects and the objects of the statements can be only individuals

belonging to some defined Class while in OWL-full also classes themselves can be used.

After the definition of the former three OWL sub-languages the research arrived to a

new sublanguage OWL-2. OWL-2 is a subset of OWL-DL and is decidable which means that

the effort has been given toward the way of decidability. More advanced constructs are available

and the preserved decidability may be exploited on a more expressive description logic. It

underlines a complex description logic known as SROIQ[45], where the R(Role chain) indicates

that is possible to define chains of properties i.e. the chain <p1,p2,p3> is declared, then a

software agent may infer the triple <z, p3,s> from the triples <f, p1, s> and <f, p2, z> ;the Q

indicates that is possible to make use of the qualified cardinality constraints which have been

previously introduced. All of the OWL 2 semantic results in finite but very long worst case

computational times, so also for this ontology language a sub-division exists resulting in the so

known OWL 2 profiles. In many advanced tools like [46] and [47], is possible to choose one of

the former OWL sublanguages or OWL2 profiles, to build an ontology being supported by

different graphical views and serialization options.

2.5.5. Rules SWRL RIF
The final relatively stable layer of the semantic web stack is the rule layer. The need for

rules lays in the intrinsic complexity of description logics. As we have seen, adding syntactic

sugar, and so expressive power, to a description logic results in a growing worst case response

time until the undecidability. In frequent applicative tasks, we need software agents able to

perform a more powerful reasoning than that possible with simple ontological reasoning. For

humans it could seem obvious that if the available credit is less than the price to be paid, then a

transaction cannot be done, but this and other kind of relationships between concepts are very

difficult or impossible to be represented in decidable description logics. Rules are a very

expressive system to express if-then statements. Their integration in an ontology is also simple

 36

to be understood and there are approaches built to automatically derive rules from ontological

assertions[48]. While in normal rule based framework variables, local constants and the

supported operators are used, in a semantic web context the constants and the variables are part

of the ontology and the operators are that supported by the semantic rule language used. Despite

both the objectives and the motivation are clear, the integration of rule based logic and

description logics is not trivial at all and research is investigating in subsets of rules called

“safe” that make possible decidable reasoning if integrated in a description logic. Other works

like [49] investigates on the theory and on valid transformations of description logics like the

rolification to try to express as much as possible of an ontological knowledge base in the form

of rules. Different rule languages have been created with the possibility to incorporate semantic

annotation and to be attached to an ontology like RuleML and SWRL[50]. The SWRL

(Semantic Web Rule Language) is very interesting for its property of being built over OWL

always following the mentioned semantic web layered approach. An SWRL rule can be

represented is made up of an antecedent and a consequent. The antecedent or left part or body of

the rule is formed by one or more conditions (atoms) connected by conjunctive or disjunctive

operators; the consequent (or right part or head) of the rule is a set of statements that must be

true if the conditions are true. The use of SWRL is not simple for smart environment based

applications and is impossible in conjunction with an ontological reasoner. An ontological

reasoner (based on description logics) requires an ontology to be decidable in order to start its

computation, but since SWRL is built using OWL full and so on an undecidable basis, each

ontology containing SWRL rules, and so importing the SWRL ontology, results undecidable and

so not suitable for ontology based reasoning. Two axiomatic statements of description logics,

and precisely the open world assumption and the lack of the Unique name assumption are in

contrast with what usually happens in rule based systems and are other issues in the integration

of the ontologies with rules. The open world assumption states that the what is stated is only part

of the available knowledge and that therefore there may be something unknown. If we state for

example that a property has exact cardinality equal to four and we declare only three statements

using that property for a single subject, the resulting ontology is still valid because the fourth

statement may be unknown and may be delegated, to knowledge updates or to the reasoning

process, the task of identifying it. In classical rule based systems stands the closed world

assumption. The Unique name assumption, typical of rule based systems states that two entities

with different identifiers are different entities. In OWL the OWL:sameAs construct is used to

assign the same identity to individuals with different URIs and this is in clear discordance with

the unique name assumption. Once the different approaches in logical definition taken by

 37

description logics and rule based systems will be aligned in a single uniform and more powerful

knowledge base, systems designer will have another powerful instrument for domain

description, suitable for machine interpretability, automatic rule based and ontology based

automated reasoning and for global interoperability.

2.6. Common semantic formats and standard

The semantic Web project had and have an important impact on the way developers

represent and use information. During years many semantic formalism have been created for

different conceptual areas, sometimes becoming de-facto standards and in other remaining

recommendation still not spread at global level.

2.6.1. Dublin core
Dublin core is a metadata system made to describe a wide range of digital information

accessible through web. The Dublin Core Metadata Initiative started its work after a meeting

occurred in a conference in Ohio in 1995, between editors, personnel related with cultural

heritage and technical experts of the internet. The conclusion was that a set of standard

instruments to describe digital resources was needed to avoid interoperability problems. One of

the possible simple mistakes that is common for automatic agents is to confuse an original

resource with its surrogates, lets say the original Monnalisa that is conserved in Louvre and one

of its digital copies. This can have consequences because the author of the original is different

from the authors of the copies and copyright issues must be avoided. Applications are not a

priori able to distinguish between resources and the effort of providing metadata with this

purpose will be nullified, in a global perspective, if the metadata are not interoperable. The

Semantic Web, and in particular RDF solves this task by providing simple properties to be

associated to web resources in order to characterize them and, for example, to make possible to

distinguish between an original and its copies. RDF uses URIs for defining properties, so, using

the dublin core components (i.e. standardized RDF properties) there are not language issues and

software developers with knowledge of the standard are always able to correctly add and read

basilar meta-information about digital resources. In Fig. 2.9. the Dublin core elements are

shown. There exist various element classifications but the one distinguishing between content,

intellectual properties and identification is the most frequently used. The Dublin Core elements

related to content describes information related to what the digital resource represents. The

intellectual properties elements clearly define who owns the right for that resource. The

 38

Identification Dublin Core Elements are used to specify information about the resource, in

contrast with the content elements. Also if limited in number the Dublin core elements use is

widespread because the usefulness of having a common machine interpretable base for

describing digital resources is enormous. Moreover as for many other semantic web related

standards, the usage is proportional to benefits and once a critical mass of developer make

programs using Dublin Core the others are incentivized in order to follow the trend. The Dublin

core initiative also thought to those applicative domains where more detail is needed in resource

description. The Dublin Core metadata have been approved as an ISO standard (ISO

15836:2003), its extensions and specific profiles are still under development while the affirmed

elements constitutes one the first cases in which the semantic web benefits are so evident to

exponentially grow in a few years.

Figure 2.9 Dublin Core elements

2.6.2. CIDOC CRM
The CIDOC CRM (Conceptual Refernce Model) [51] is a standard at ontological level

for he definition of cultural heritage resources. It is more expressive than Dublin Core because

OWL DL is used to define a formal ontology in which the resources are instances of Classes

and connected trough properties. The primary role of the CRM is to enable information

exchange and integration between heterogeneous sources of cultural heritage information. When

considering information sources related to the cultural heritage domain is common to be in front

of a plethora of different information systems with different access methods and information

representation. The cultural heritage documentation is an important process to increase the

visibility of the art in business applications. A shared understating of cultural heritage

 39

information is a key in the definition of accessible informative systems. The need of a formal

description through ontologies resides in the need for a guide and good practice of conceptual

modeling related to the world of the arts. After more than a decade of work by the CIDOC

Documentation Standards Working Group it is now an ISO standard (ISO 21127:2006). The

CIDOC CRM can be used also to model other domains not strictly related to the arts in [52] for

example it is applied to linguistic to solve the so called exhibition problem, depending from the

difference in ordinary linguistic communication between asserting a fact, and exhibiting the

same fact. Fig. 2.10. is a screenshot of part of the CIDOC CRM taxonomy, in total there are

more than hundred classes and a similar number of properties to be properly used in conceptual

modeling. The adaptation of the cultural heritage documentation world to such comprehensive

model is a process that requires years and education [53] but as happened with other semantic

web related technologies, when a critical mass of users and application will put in evidence the

benefits of interoperability, its usage will become natural as today are Exceland databases.

Figure 2.10: Part of the CIDOC CRM taxonomy

2.6.3. SOUPA and CoBrA
SOUPA (Standard Ontology for Ubiquitous and Pervasive Applications)[54] is an

ontology built for supporting with semantics the pervasive computing in smart environments.

Fig. 2.11. taken from [55] shows a modular conceptual structure in which the core part

comprehend fundamental concepts for smart environments like Events, location, temporal

 40

relationships and persons. The SOUPA extensions are more application specific and, according

to the modular approach taken, always imports, directly or indirectly, some of the modules

contained in the core. The SOUPA ontology has been used as conceptual framework for

pervasive computing applications related to the CoBrA architecture [56] . The CoBrA software

architectures and motivations are very similar to those of which I speak in this thesis, but while

the CoBrA project ended in 2004, here the technologies used are more consolidated, the research

obtained new results in term of description logics and language definition and the business

companies are interested to invest in the area of pervasive computing as put in evidence by the

existence of European Projects centered on Ontologies and related hardware software

infrastructures. Fig. 2.12. from [57] shows a conceptual and software architecture similar to that

described for the SOFIA project. The Context Broker centralize all the information and has

internal modules for enriching the knowledge through reasoning, rules, external sources and

policies. Sensors, software agents, and appliances make use of the information on the store and,

integrated together make possible the realization of smart pervasive scenarios.

Figure 2.11: SOUPA ontology

 41

Figure 2.12: CoBrA smart space vision

2.6.4. DOLCE
Dolce ((Descriptive Ontology for Linguistic and Cognitive

Engineering) [58] is an upper level ontology developed in the context of the WonderWeb

project [59] . An upper ontology, also known as foundational ontology has the aim to

identificate the meaning of formal relationships in order to be the basis for the construction of

domain ontology. The domain ontology are usually built as result of a bottom up analysis which

put in evidence the minimal terminology necessary for a certain community to support specific

application requirements. The realization of dolce, like that of other upper ontologies like

SUMO (Suggested Upper Merged Ontology) is a delicate task where the concepts and their

relationship must be modeled depending from cognitive theory and with knowledge of the

philosophical literature. In DOLCE for example there is a clear distinction between endurants

and perdurants depending from the behaviour in time. Endurants are entities which exist in time,

and exist in their totality while the level of existence in time of perdurants changes. It may be

said for clarifying that while the endurants simply exist, the perdurants happen and so exist in

different way during time. According to this distinction the objects in a smart environment

should be modeled as subclasses of endurants because they are pure or elaborate matter while

events are subclasses of perdurants. Other not trivial definitions preset in DOLCE and relevant

for smart spaces are that of qualities and quality regions. Qualities are features we can perceive

or measure like colors and sizes. They are not intended in the general way, but are specific of the

entities we are taking in consideration. Two different rooms have different qualities representing

their lengths. To each quality corresponds a value that is a different instance in the ontology and

 42

belongs to the quale OWL class. A quale specifies the position of a certain quality in the

measure domain, if two rooms have the same numerical length it means that two room instances

exists, with two different instances for their length quality and with two different quale

instances, which have the same numerical value. This definitions have been used when defining

a top down foundational ontology for smart spaces based on Dolce, in particular when

representing sensor data. Fig. 2.13. represents part of the Dolce taxonomy and shows the

semantic collocation of some of the previously mentioned concepts.

Figure 2.13 Taxonomy of DOLCE basic categories from Gangemi et al. http://www.loa-
cnr.it/Papers/DOLCE-EKAW.pdf p.4

 43

SECTION 3

SEMANTIC MODELING OF RELEVANT NOT
ABSTRACT CONTEXT ATTRIBUTES

3.1. Introduction
After an introduction about state of the art, related works and existing research from

different smart environment and semantic web based perspectives, I’ll speak about original

works and results that have been produced during my PHD. Hereinafter the discussion will be

more technical because the motivations i.e. interoperability, innovation, portability and in

general, the impression of smartness given through abstraction and service orchestration, that

continue all to remain valid, have been fully introduced. I’ll start with the semantic modeling of

elementary relevant context attributes, to arrive in the end of this section and in the next one to

discuss about the semantic modeling of complex context attributes and some software solution

for service discovery, distribution of computation.

3.2. Sensor Data
It is possible to find numerous approaches to sensor data semantic specification. In each

case the level of detail changes depending from the specific application requirements of the

semantic modeler. To properly deal with this argument is necessary at least to mention and

briefly examine two of these solutions that have been used in the SOFIA project: one is based on

a top down approach relied on the DOLCE upper ontology, and one is built bottom up for major

 44

usability and faster implementation. The bottom up approaches, also if not based on an upper

ontology, can be aligned in a second time through the ontology merging and ontology alignment

processes.

3.2.1. Sensor Data Top Down

Starting from the DOLCE conceptualization the objects are endurants provided with

Characteristics. Sensors provides measures as result of their observations, but at the same time

these results have to be semantically connected with the measured perdurants. Applications, in

fact, are usually aware of the resource URI and want to perform graph based navigation through

queries in order to know the current values of the perdurants characteristics. Fig. 3.1. shows a

first attempt mapping of these concepts in an minimal sensor data ontology:

Figure 3.1: First attempt of semantic model for sensor data

 45

In the figure we want to attach observations of different nature, e.g. temperature and

humidity from different sensors, to a certain physical object, e.g. a room. Basically this model

does not include the concept of Data. The value is attached to the Temperature instance

(implicitly we assume that a Temperature instance is a piece of data describing temperature). In

this case, Temp_inst_1(b) is not generically temperature, but the specific temperature of a

physical object (e.g., a room). However it might be useful and correct to maintain an explicit

notion of Data distinguished from the notion of a Temperature or Humidity instance. There is in

fact a distinction between a temperature data (measured or somehow calculated) and the

temperature of an object. The temperature of a Room may be the result of the mean operator

applied to different available temperature data. It looks like both Data and Temperature are

needed in order to distinguish the observations, more similar to perdurants (i.e. events), from the

characteristics.

Figure 3.2: Sensor data semantic model after top down analysis

In Fig. 3.2. is shown the final model used in SOFIA Core ontology to describe sensor

data at low level of abstraction. Here the Data Class has been defined as a subclass of

SOFIA:Characteristics which, in its turn, is linked to the Dolce upper ontology. The

Temperature Data, provided by the sensor, is linked through the has_Measurand property to the

instance of the measured Characteristic of the Physical Object instance. It is important to notice

that the semantics of the characteristic, i.e. the fact that is a temperature, resides in the specific

subclass of Characteristic that is used to instantiate the characteristic itself. This will be the

principal difference with the bottom up approach that has been developed independently.

 46

3.2.1. Sensor Data Bottom Up

The bottom up approach consists of analyzing the domain and the specific purposes ,i.e.

that of associating different kind of measures to objects by distinguishing between observations

and characteristic, and mapping them to an ontology without taking too much care of

philosophical validity of the result. In general this approach presents issues of extendibility and

interoperability: if it is too much application specific. It may happen, in fact, that different

applications which at the beginning are not supposed to collaborate, need a different level of

detail in domain description. If in a phase successive to ontology creation it is needed

collaboration and data sharing between two independently developed bottom up ontologies a

mapping may not be possible because of too much difference in the level of detail and generality

with which the two domains have been previously conceptualized. Fig. 3.3. shows the part of the

bottom–up sensor data ontology corresponding with that analyzed before for the top down

approach.

Figure 3.3: Sensors data semantic model after bottom up approach

 First of all there is no mapping with the DOLCE Ontology (also if it could be determined). The

sensor data Class has been created as a subclass of the generic Data Class. Observations are

instances of Sensor Data and are provided by sensors while Data are relative to objects and are

 47

associated to them by using the related_to relationship between sensor data and objects. The

Measurand class is the class of all the general physical entities that can be measured. It is very

different from the previously mentioned subclasses of Sofia:Characteristics, because while

characteristics are specific to the measured object, the Measurand are intended in the more

general sense. In the previous model two different sensor creates two different instances of the

temperature subclass of Sofia:Characteristic while in this model create two sensor data with the

same measurand. The semantics of the measure is in the instance of the Measurand class that is

associated to the Data while the semantic of the measure association is identified by the

related_to property. Despite the risks the bottom up ontology is simpler to be built and used and,

if thought with good extendibility criteria it has good reusability. In the SOFIA project both

bottom up and Top down ontologies have been used with success in collaborative multi-industry

scenarios, the top down approach is preferable for compatibility reasons, but the effort necessary

to produce coherent top-down ontologies has not to be underestimated. Sometimes also

philosophy cannot help by giving a uniform and shared view of all the domain aspects and with

also not so elevate levels of arbitrariness in taxonomy definition, bottom up approaches are

preferable.

3.3. Smartification
The smartification [60] is a new concept patented by the University of Bologna during

the SOFIA project[61] . After some experience in smart environment application programming

it has become evident that a repetitive task was always necessary in order to provide an initial

correspondence between what is present in the physical World and the information in the digital

world. Relevant Context attributes like the available sensors, and actuators, the physical

environments, the topology of the smart environment and so on, where to be inserted in the

smart space in order to initialize the basic software modules which, in a second phase feed high

level services and complex applications. With reference to 3.2.2. before a sensor measurement

can be associated to a room is necessary to instantiate the Room, the sensor, its sensor data and

the facts that the sensor data is related_to the room. In pedestrian assisted navigation is

necessary to inform the smart environment of all the rooms and corridors, of their dimensions

and of their relative location in order to start a GIS based graphical assistant. In Smart

Collaborative scenarios it is common to see voting systems to be realized with RFID or Near

Field Communication Techniques, but is necessary an initialization phase to inform the systems

of the voter identities and of their association with a certain RFID code. In all these cases and in

many others the initialization phase can be performed by directly inserting the information in the

 48

system at the beginning, but this approach is suitable for demonstration and prototypes where

the information is a priory known. The real need is that of a class of devices and services able to

initialize the smart environment through the use of standard technologies and possibly with a

natural user interaction, in order to simplify the work of smart environment management. This

concept have been called Smartification. One of the key concept of smartification is the

identification i.e. a correspondence between a standard identification technique like RFID or QR

code and the detection of a unique URI of the digital smart space that is detected by the physical

ID read. Fig. 3.4. shows the classes and example of instances in the identification ontology. It is

a bottom up ontology perfectly integrated with the sensor data ontology. A subclass of Data, i.e.

Identification_Data, has been defined, the value of the identifier, from whatever technology is

connected to this instance as a literal. To interpret the semantics of the identification value, i.e.

the identification technology, the value of the property has_Identification_type is used. The

instances of the class Identification_Type are all the identification technologies supported.

Thanks to this semantic model is possible to identify physical objects with different technologies

at the same time: the software delegated to find the instance connected to a certain ID, must only

know the identification technology that provided the literal value and will be able to query the

knowledge base in order to properly perform the identification task.

Figure 3.4: Semantic model for identification in smart environments

 49

In developed scenarios different kind of identification technology where used to

identify objects and rooms. Handheld devices provided by camera where able to recognize their

location or to identify objects through QR code while resource constrained devices used RFID.

In a complex maintenance scenario a maintenance operator starting from the human readable

identifier of a room(e.g. room 4.2), was able to be guided from the hall of the building through

the fault location using path solving [62] and then, by simply approaching to the room identifier

was able to verify its location and to see it on a GIS model of the building. A prototypal

smartificator device has been realized [63] to show how smartification process can be

performed with low cost devices and by using natural interaction and a simple led based user

interface.

3.4. Control and interaction
Human computer Interaction is a relevant science in pervasive computing because is

one of the most important components providing the illusion of environmental smartness and

contributes in hiding electronics. When building a semantic model for describing interaction, the

most relevant scenario is that of a controller which have to give commands to some actuator by

using a multimodal interface. The ontology represented in Fig. 3.5. has been realized to perform

this task.

 50

Figure 3.5: Semantic model for controlling an appliance. The instances of Gesture Command and Action
Command are the interfaces for controlling the actuators

the grey nodes are instances of the Classes represented by ellipsis. The arcs represent

OWL Properties with arrows pointing towards the statement objects. The properties of the

represented model allow high level functionalities with a relatively simple semantic model. The

scenario is that of a controller (not represented in figure) which may provide commands to an

instance of Object.i.e. an actuator. The Actuator is smartified by providing its URI, its

command_Interfaces (in figure an interface for actions and one for gestures are represented), one

or more mappings between natural user interaction and the relative action to be performed. The

software running on the actuator is supposed to be subscribed to its interfaces by being notified

of every new command. When a command arrives the action is performed and then the

command is deleted by giving the opportunity to receive new commands. The control is

multimodal because, depending from the interface used, different ways of accessing the actuator

are available. If the controller knows the specific commands of the actuator it is possible to use

the action interface by writing action commands in the SIB. This modality is typical of

controllers provided by GUI on which the end user may choose the action to be performed, e.g.

by a touch screen. If instead the controller is provided by a gesture recognition module, it may

use Gesture Commands or can previously query the Gesture Interface in order to understand the

 51

mapping between gestures and actions, and then generate actions. Modifications to the Gesture

Interface correspond to a reconfiguration of the gestural profile and so to the gesture-action

correspondence. Finally smart objects may store internal semantic structure equal to the gestural

interface sub-graph. In this way the mapping between gestures and actions is resolved in the

controller code to obtain personalization. We worked also on similar semantic structures with

controller implemented as Smartphone applications. The advantages are

• Ability to reconfigure

• Possibility to personalize the interaction

• Multimodality, i.e. gestures recognized by proper algorithms or touch screen

• Possibility to add new interactions, e.g. voice commands

• Exploration of a new market in which users are able to download software able

to command her smart appliances

.

With the same objectives and similar results another interesting model based on events has been

used for gestural interaction in the SOFA project. The model is based on [64] and is described in

Fig. 3.6. where are also put in evidence the relationships between the appliance and the

identification technologies.

Figure 3.6. Semantic model for interaction used in SOFIA project

The main differences with the model previously described are the presence in the smart space of

an instance relative to the controller (i.e. core:SmartObject_XYZ) and the

 52

semint:canBetransformedTo property which plays the role of the previously mentioned Gesture

Profile, by providing reconfigurability, mapping the interaction primitives like gestures to

events. The software of the actuator has no more a direct explicit interface, but checks for events

generated by controllers connected to actuator itself. To demonstrate the validity of this model

also in a multiplayer context, where the actuator is a game application, a Connect 4 prototype

have been realized and played in the context of a University course related to smart M3 [65] .

 53

SECTION 4

SEMANTIC MODELING OF RELEVANT
ABSTRACT CONTEXT ATTRIBUTES

4.1 - Data access control and synchronization

We have seen as a Smart Environment is often a multi-agent system in which concurrent

software agents access in R/W mode to a shared Knowledge base in order to adapt their behaviour to the

situation they observe. If a context platform doesn’t natively support transactions and blocking operations

there may happen synchronization issues on shared pieces of information. The problem has many

implications and is related with the history of computing theory as diffusely explained in [66]. Access

control and process synchronization in digital systems has been deeply explored since the origin of

computer science at all levels of abstraction of conventional computer architectures [67] [68]. Also in

operative and informative systems the possible alternatives of controlling access to resources , and so also

to allow transactional behaviour, have been deeply explored. The discretionary models (DAC) [69] use a

matrix relating access rights to the possible combinations of subjects and objects. The Bell La Padula [70]

model adds a mandatory check to partially solve the problem of trojan horses. Lattice based access control

(LBAC) allows the use of security labels organized in a lattice to enforce policies like the Chinese wall

[71]. The study performed in this PHD has been focused on the definition of a simple extension of the

semantic graph to obtain a powerful method to grant exclusive access to a small set of triples in an RDF

 54

store. Besides proposing a solution, a lightweight implementation on the Smart M3 semantic platform has

been coded and tested in a real use case. We started from the situation presented in Fig. 4.1.

Figure 4.1: Starting (left) and ending (right) situation of the semantic graph generating conflicts in
concurrent scenarios.

The right part of the figure represents a corrective intervention request relative to a certain fault

that as been sent for approval to n different maintenance operators. The request is computed by

maintenance operator devices resulting in a final graphical form which asks if the request is accepted or not.

The wanted behaviour is that is the request is accepted by an operator, i.e. Operator_4, the initial graph is

transformed to that represented on the right of Fig. 4.1. The graph transformations fire a set of subscriptions

which result in the notification of the other operators that the intervention has been accepted and that is not

possible to accept it anymore. When trying to implement this on the smart M3 architecture, since

transactional primitives are not available, there is the possibility that synchronization issues arise. The

possible applications behaviour are represented, for a more general situation in Fig. 4.2.

 55

Figure 3.2: Sequence diagram of three possible evolutions of a concurrent scenario.

 all KPs are supposed to be subscribed to the triple pattern <s1,p1,*>. and when notified they may insert

<s2,p2,o2> (in the maintenance scenario it is the Performed_by operation) which in turn may notify other

KPs.

Three different situations are shown. In (a), there is no access control enforced: KP1 is the only one process

reacting to the notification; as no other process makes operations in the critical time, the overall behavior is

correct but it is not safe. In fact, if two KPs perform the same operation during the critical time,

unpredictable results may occur, as shown in (b) where KP1 and KP2, both receive a notification, but only

one KP should perform the update. Fig. 4.2. (c) shows the behavior with access control in place: before

updating the SIB, KP1 locks property p2 and, when the concurrent process KP2 tries the same operation, it

receives a Protection Fault due to the attempt to access to a locked pattern. Should KP2 try to do its sub-

graph update without a prior protect request, it would still receive an access denied answer. KP1 releases its

exclusive access right to the shared resource after receiving the notification of successful completion of the

requested triple pattern update. The proposed solution is based on Fig. 4.3. and consists in adding at

information level triples specifying the access control Rights. The protection entities P are connected to the

node to which are attached the access control policies. The information owner and the properties for which

the policies stand are specified through the AR_Owner and the AR_Target Properties.

 56

Figure 4.3: Semantic model for specifying access control at triple level.

When implementing the access control model on the Smart M3 platform it has been decided to

limit the impact the SSAP protocol and on performances. The first objective has been achieved in a natural

way because the model simply pretends the use of normal RDF triples and so is natively transported by

SSAP. To limit the impact on performances it has been decided to avoid any query on the information store

in order to enforce the access control policies. This has been obtained by basing the algorithm on a dynamic

table called Lock Cache Table (LCT). The use of the LCT allowed to perform all the necessary access

control checks on the incoming messages, but also all the updates of the LCT itself, on the simple checking

the triples against the content of the table. The results obtained are shown in Fig. 4.4. where is possible to

notice how the correlation between the time needed for a single insertion and the number of active triple

pattern is minimal. The chart shows that even for insertion with a relatively high number of triples, hence

involving many comparisons and accesses to the LCT, the total impact on performance with one thousand

protections is a little percentage of the best case with no protections.

 57

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200

Active protections

T
im

e
In

se
rt

 (
m

s)

Insert_one_triple Insert_fifty_triples

Figure 4.4: performance of insert operation of one (blue) or fifty (violet) triples with growing number of
active protections. Each point is the mean of one hundred tests.

An extension of the work published is currently under study to allow more policies with minimal impact

and maintaining the global approach. The new proposal is represented in Fig. 4.6. where (a) is the extended

and modified semantic model while (b) is the corresponding LCT. The main additional features that are

possible with this new model could be:

• Protection in read mode or read/write mode.

• Protection of a single triple; in the old model, in fact, is only possible to protect pattern like <s,p,*>

which corresponds to a potentially infinite set of triples.

• Possibility to specify the protection entity attached to the object of the triple, feature that is very

useful when dealing with symmetric properties. In the old model is possible for the agent A to

avoid that B states <A, met, B> , but it could be problematic to do the same for <B, met, A>, that

from a semantic point of view is the same. The direction field of the extended LCT is present for

this reason.

• Possibility to specify a set of allowed software agents for each protection descriptor.

 58

Figure 4.5: Proposed extension of the semantic model for access control (a) and LCT (b)

4.2 Computation

This sub-section is about the work I have done during the six months spent in Helsinki

as a Nokia intern. The objective was to investigate the semantic representation of computational

flow and the possibility to delocalize computation by having an infrastructure able to delegate

functions or pieces of algorithms to external executors. The impact of this kind of research can

be very high if efficient ways of moving computation are found, particularly in mobile scenarios

where the usage of computational resources influences the device reactivity and the battery life.

An important related work is that of Marko A. Rodriguez [72] [73] who approached the

problem by modeling a semantic network starting from the low level details of the

microprocessor hardware. In my case another important reference were the Haskell monads [74]

and the possibility to perform speculative execution like for example with the java.concurrent

package[75]. In practice the complete objective was to realize a semantic model, and possibly a

 59

demonstrator, supporting execution portability, like in Rodriguez work; at a functional level of

abstraction, like is possible to do with Haskell monads; and trying to support speculative

execution and parallelism.

To perform this task, after studying the initial material and the Haskell programming

language, I have made additional research in flow based computing and hardware architectures,

graphical models of computation, and hardware architectures for parallel and concurrent

execution e.g. [76], [77]. My idea was that functional programs may be graphically represented

in a dataflow fashion way to be then executed as we like by apposite executor modules, so

exploiting parallelism and/or providing speculative execution and /or optimizing other execution

metrics. Found the right graphical representation it is possible to check if a corresponding

ontology can be built and then, given the ontology, and so the semantic representation of

functional computation, building a prototype of executor would have been the minor problem.

To make an important test (also if not exhaustive) of the validity of the mapping to Haskell I

studied the State Monad and I tried to apply the graphical model, and so the ontology I invented

to that. Hereinafter I will give a brief description of the practical work done.

Figure 4.6: Example of software architecture and information flow in a distributed computation scenario.

Fig. 4.6. shows the high level software architecture and the information flow of the

realized prototype. A caller sends to the SIB the semantic representation of a chain of functions.

Then the Execution Manager module, that was subscribed to this kind of information, creates a

 60

Chain executor thread which, in its turn generates as much Function Executor Threads as

necessary. Each Thread passes to the successive the minimal information required in order to

make it able to understand what to do. The Chain executor needs only the URI of the Functional

Chain, then it has to find the inputs the outputs, the single functions that are part of the chain and

organize them. Each function executor needs the URI of the function to perform and that of the

input and output parameters. When function executors are able to compute, i.e. when all the

input are available, they execute their functionality and write back the results on the SIB with

statements related to the URIs to which the caller is subscribed in order to obtain the final

results. It should be clear that the execution is out of order: each module that can compute

executes and writes back on the SIB independently from the others, so at this level of abstraction

the execution is speculative.

4.2.1. Semantic Model and Closure

We called “Closure” a concept corresponding to a functionality, its inputs and its

outputs. A closure can be drawn as a box with slots called ports. The port is the instrument by

which values are associated to the function as input or output. The Ports are associated to a

parameter that is the container of a value or of a reference to it. The ports are also provided by a

name whose function is to allow the correct reconstruction of the closure when it is queried from

the SIB. A closure with valid inputs is ready to run in the sense that the functionality

corresponding to the closure itself can be executed on the inputs to obtain the outputs. The first

closure realized performed the functionality of summing two integers. So it was provided by two

input ports (In1 and In2) and one output port (Out). The parameters without a value are

conventionally called invalid, the value can be calculated by other closures in the same chain of

functions or by external processes, whoever, when writing the value on the triple store, has also

to take care of deleting the invalidity statement and putting a validity one for the parameter. In

general a closure sent to the RDF store with at least one invalid parameter, corresponds to a

waiting thread, when all the inputs will be valid the thread will run its functionality and will

write the values on the corresponding output parameters. An invalid parameter can be

connected to the input port of a closure and also to the output port of another. In this way a

connection between the two closures is realized, i.e. a functional chain, and when the closure

 61

with the parameter as output will write it, then the other one with the valid input will be possibly

ready to run to bring on the computation. A simple example is showed below:

String[] inputs = new String[2];
String[] inputsRef = new String[2];
String[] outputsRef = new String[1];
inputs = new String[2];
Vector<String[]> VecInputs = new Vector<String[]>();
Vector<String> InReferences = new Vector<String>();
String[] inValues = {"1", "2", "3"};
VecInputs.add(inValues);
outputsRef = new String[1];
outputsRef[0] = "a";
addVecFunctionCall(OntologyVocabulary.AddVectorIntClosure,
VecInputs,InReferences, null, null, null, outputsRef);
inputs[0] = null;
inputs[1] = "2";
inputsRef[0] = "a";
inputsRef[1] = null;
outputsRef = new String[1];
outputsRef[0] = "b";
addFunctionCall(OntologyVocabulary.AddIntClosure, inputs,inputsRef,
outputsRef);

 Vector<Vector<String>>triples= serializeTriples();

The code corresponds to the creation of a closure chain made up of two closures: one

adds all the elements of the input vector and one simply sums two integers. The output of the

first one is called “a” that is the same reference given for the first input port of the second

closure, so there will be a single parameter “a” initially without value that will be written by the

first closure by allowing the second one to execute. In Fig. 4.7. it is represented schematically

what happens in the RDF store: in blue the single parameters, in orange the Vector-parameters

with dimension inside, in red what is calculated at execution time.

Figure 4.7: Graphical representation of the semantic graph of a simple closure chain

In the execution phase a graph made up of several triples representing in detail the

computation is received by the SIB and the execution manager, that recognizes the closure

chains, starts a chain executor. The chain executor discovers that there are two functions inside

the chain and starts two function executors. One of the two begins to execute soon, the other one

 62

has an invalid input parameter and waits. At a certain point the first executor calculates the

results (i.e. a=6) and writes it back in the SIB by also updating the validity information of the

parameter; now the second function executor discovers the availability of the new input, it

queries for it and finally executes calculating the value and writing it back into the SIB. The

caller, subscribed to the value of the parameter named “b”, is now able to know it.

4.6.2. Functional Parameters and Higher Order Functions
As previously mentioned an important, also if not definitive test, of general

applicability of the model to a functional program is that involving mechanisms similar to that

applied by the Haskell execution framework to monads. Restricting the analysis to the state

monads the most important thing that is necessary to emulate is the currying and binding

mechanism[78] which relies on possibility to call Higher Order Function (HOF) i.e. functions

with other functions as input as the Haskell Map function [79]. In the following example we

demonstrate the applicability of the semantic model created to the Map function in order to

demonstrate its generality.

 FunctionalChain fc = new FunctionalChain();
 String[] inputs;
 String[] inputsRef;
 Vector<String[]> VecInputs = new Vector<String[]>();
 Vector<String> InReferences;
 String[] outputsRef;

 inputs = new String[2];
 inputsRef = new String[2];
 outputsRef = new String[1];
 inputs[0] = "3";
 inputs[1] = null;
 inputsRef[0] = null;
 inputsRef[1] = "in";
 outputsRef[0] = "f_x";
 fc.addFunctionCall(OntologyVocabulary.AddIntClosure, inputs,inputsRef,
 outputsRef);
 inputs = new String[2];
 inputsRef = new String[2];
 outputsRef = new String[1];
 inputs[0] = null;
 inputs[1] = "4";
 inputsRef[0] = "f_x";
 inputsRef[1] = null;
 outputsRef[0] = "f_y";
 fc.addFunctionCall(OntologyVocabulary.SubIntClosure, inputs,inputsRef,
 outputsRef);
 FunctionalParameter fp = new FunctionalParameter();
 fp.setContent(fc);
 FunctionalParameter[] forInitialize = new FunctionalParameter[1];
 forInitialize[0] = fp;
 String[] inValues = {"1", "2", "3"};
 VecInputs.add(inValues);
 VectorParameter outParameter = new VectorParameter();

 63

 outParameter.setRandomURI();
 //connectionTable.add
 outParameter.setValid(false);
 VectorParameter[] mapoutputs = new VectorParameter[1];
 mapoutputs[0] = outParameter;
 addFunctionalFunctionCall(OntologyVocabulary.MapClosure, VecInputs, null,
 mapoutputs,null, null ,null,forInitialize , null);
 Vector<SingleParameter> outs =
 AtomicFunctions.lastElement().getVectorialOutputPorts()[0].getSignal().
 getContent();
 for (int i = 0; i < outs.size();i++)
 {
 connectionTable.put(outs.elementAt(i).getURI(), ("mapout_" + i));
 }

The code verbosity is mostly due to the prototypal level of the implemented software

and to the fact that, in theory, this kind of code should not be written or read by humans, but

automatically generated from an apposite framework. In Fig. 4.8. is represented the situation at

information level: what is red or surrounded by red is not initially written into the SIB and in

particular is written by the function executor of the map method and its sub threads. The green

parameter and ports correspond to the flow of information of functional parameters. The

functional chain input of the Map method has one input and one output, these parameters are not

needed in the representation since they lack for the intrinsic nature of the map method. To

clarify this we remember that the map method has as input, by definition, a function of one

parameter i.e. a closure in which one input parameter is invalid. The map operation has as input

an array and a function and gives as output an array containing the result of the application of

the input function to each of the values inside the input vector. To represent and do this in our

framework there are various possible way with pros and cons, but some consideration can be

done. Each HOF has as input one or more functions and does something with them, the input

functions are so used in two different ways during the process: at the beginning they are simply

an input without any objective, and later their functionality has to be applied in some way. We

call these two phases representational phase and executable phase after expansion. In the case of

the map the execution correspond to the application of function to the right input and targeted to

the right output. This objective can be done for example by repeating the functionality

embedded in the functional parameter for all the input and putting the result in the right slots of

the output vector. It is also possible to run in parallel the functionality on the various inputs by

exploiting the parallelism implicit in the map operation. The solution that has been implemented

currently is different to demonstrate that not only closure can be reconstructed by queries, but

also user defined chain of function which becomes de-facto first class entities in our framework.

When the function executor understand that it has to perform a map operation the input

functional chain is reconstructed and then replicated as many times as the dimension of the input

 64

vector. At this point for each replica the input and the output references are correctly bound (red

arrows) and the obtained executable closure chains are simply sent again to the SIB firing three

times the execution manager. Performances are not obviously the objective of this

implementation because, as previously explained, the final scenario is quite different from the

current execution environment and now the most important task is to understand what is

possible to do with computation semantically represented to proceed in another moment to the

refinement and optimization.

Figure 4.8: Graphical representation of the semantic graph of an HOF in red the executable phase after
expansion.

To resume this section, in the six moths spent in Nokia research center, an ontology for

computation has been realized starting from considerations about functional programming,

dataflow architectures, and graphical framework for the representation of computation. The

resulting model is sufficiently versatile because, being able to perform HOF, it is also suitable

for currying and so to himitate the very general Haskell state monad and its binding mechanism.

The most important features and consideration to be done reguarding this work, that has been

filed as US patent [80] are:

 65

• Possibility to semantically represent and transport computational flow information in the

general form of a functional chain.

• Formal demonstration still lacks, but there are high probability that the model has the

same level of generality of Haskell.

• Management of HOF.

• Ability to perform execution with different strategies depending from available

resources.

• Speculative execution.

• The generality of the model is theorically applicable to different level of abstraction and

in different frameworks: from web service based computation, to mobile scenarios with

distributed computation, to parallel dsp programming and, a possible difficult but

challenging task is to port the methodology to reconfigurable Hardware in order to

exploit the innumerable execution units and their reconfigurability.

 66

SECTION 5.

ONGOING WORK AND CONCLUSIONS

This section briefly describes work that is still progressing and that for this reason

could not be properly characterized with the same level of detail of the other arguments, but that

is important to mention. Also if my work has been mainly focused in the research, modeling and

testing of more or less expressive semantic formalisms applied to an extremely heterogeneous

scenario. I had also the opportunity to work and make architectural choices in an important

activity that is still progressing: a multi smart space software architecture

Figure 4.1: High level view of the Multi SIB software architecture for supporting discovery, remote smart
spaces and logical aggregation of physically distinct smart spaces.

Figure 5.1 shows the HW/SW infrastructure of a platform for smart environments

involving multiple SIBs. During the SOFIA project the demonstrators and the reference

 67

architecture often involved one SIB leaving the multi smart space scenario with distributed

knowledge as a future objective. In the last period of my PHD I helped in defining the software

architecture and the behaviour of some of the represented modules, that, in their whole

constitutes a Multi-SIB infrastructure. The most important features provided by the platform are

• Discovery mechanism through a web service: the KPs does not need anymore to know

exactly the connection details of the SIB they want to interact with, but they simply need

to know its features, which are semantically represented in the SIB profile definition. In

this way the KPs can be coded in a more generic way an can be independent from the

specific smart environment in which they run. With the discovery capability a KP can for

example choose to connect to a SIB supporting a precise query language, providing a

definite quality of service, or for which a certain additive functionality is present thanks

to additive plug-ins or experimental software modules

• Remote connection: the KPs are able to discover and join SIB also if their IP is not

directly reachable from their sub-network. This situation happens for example in a

medical scenario where the KP of the doctor runs in the hospital and wants to join the

SIB of a patient which instead runs on her mobile device. The fact that the SIB on the

mobile device is connected to the internet through a proxy or a radio base station make

impossible for the doctor KP to directly connect to it through TCP. The software and

semantic artifacts represented in Fig 5.1., in particular the mapping SIB, the remote

virtual manager, the virtual SIB Process KP and the instances in the semantic graph,

allow to reach the patient SIB in an indirect way. The virtual SIB Process, in fact, take

the responsibility of being, for the doctor KP as a real reachable SIB. It forwards the

SSAP requests it receives in first instance to the mapping SIB and then to the patient

SIB, by the help of the virtual manager KP running on the patient device. The virtual SIB

process take also care of the SIB responses, which arrive to the mapping SIB, by sending

them back to the doctor in a transparent way. The role of the instances in the mapping

SIB is to allow the core services running on the platform to route the information to the

correct host.

• SIB logical aggregation: the same mechanism used for SIB virtualization can be used

with not much modifications and with a simple extension of the ontology in the mapping

SIB, i.e. the addition of the V-SIB instances and of the part_of property, to create virtual

SIB process which don’t emulate a single SIB, but the union of the content of multiple

SIBs. This is typically useful when multiple SIBs are necessary to cover a wide area that

should be considered in its whole by applications. The additional overhead is loaded on

 68

the Virtual SIB process which have to construct the tree of SIBs constituting the

aggregation, separately forward the requests and, finally aggregate the responses.

This software architecture have a big potential considering all the possible use cases in

which can be applied, but has still to be well characterized from a performance point of view.

The subscriptions in aggregated scenarios generate a complex set of events to be managed and

present a not negligible overhead, but are a powerful instrument in slowly variable scenarios,

because they provide totally new functionalities

5.1. Conclusions

In the framework of pervasive computing and semantic smart environments many

challenges exist and research is still working hard on different levels of abstraction. The work

carried out during this PHD has been mainly focused on the semantic description of relevant

context attributes of different nature: starting from sensor data and identification to arrive to

very abstract context like access control, and computational flow. For every modeled contextual

domain many choices where available, the possible solutions have been analyzed, compared and

then validated with demonstrative software or with the realization of hardware prototypes. The

SOFIA project, providing the Smart M3 semantic context platform and many collaborators from

different countries, has been a perfect framework to develop new methodologies and criteria of

software programming. The semantic Web technologies have revealed, as expected, optimal

features of reusability, extendibility and in particular, have given the instruments to make

possible real multi-industry-academic scenarios. The experience matured during the project

allowed me to start from a knowledge on the theory of semantic web technologies and to arrive

to implement or project software architectures and semantic web services in a natural way. The

good practices and the lessons learned will be for sure an important added value in my culture,

if, as it seems, the trend followed by industry and research, brings toward a world of services

characterized by distribution of information and computation, context awareness and machine

interpretability through the use of semantics.

 69

 References

[1] M. Weiser, “The Computer for the 21st Century”, Scientific American, September 1991.

[2] A. K. Dey, “Understanding and using context”, in Personal and Ubiquitous Computing, 5(1):4-7,
 2001.

[3] R. J. Bayardo, D. Gruhl, V. Josifovski, and J. Myllymaki, “An Evaluation of Binary XML
 Encoding Optimizations for fast Stream based XML Processing”, in Proc. Int. World Wide Web
 Conf., pages 345–354. ACM Press, 2004. ISBN 1-58113-844-X. doi:
 http://doi.acm.org/10.1145/988672.988719.

[4] Oldes Project: http://www.oldes.eu/.

[5] Semantic web: http://www.w3.org/2001/sw/.

[6] K. Rohloff, et al. ,”An Evaluation of Triple-Store Technologies for Large Data Stores”, In: On
 the Move to Meaningful Internet Systems 2007: OTM 200 Workshops, LNCS vol. 4806/2007,
 pp 1105-1114.

[7] X. Shi, “Sharing service semantics using SOAP-based and REST Web services”. IT
 Professional, 8 (2). 18 - 24.

[8] M. Allman, “An evaluation of XML-RPC”, ACM SIGMETRICS Performance Evaluation
 Review, vol. 30, no. 4, p. 2 - 11, March 2003.

[9] S. Vinoski, “CORBA: Integrating Divrse Applications Within Distributed Heterogeneous
 Environments” IEEE Communications Magazine, vol 14, February 1997.

[10] SOAP Tutorial: http://tele1.dee.fct.unl.pt/rit2_2009_2010/teo/soap.tutorial.pdf.

[11] UDDI: http://en.wikipedia.org/wiki/UDDI.

[12] Web Tools: http://wiki.eclipse.org/Category:Eclipse_Web_Tools_Platform_Project.

[13] Q. Wang,et all, “Semantic Web Services based Data Exchange for Distributed and
 Heterogeneous Systems”, in Enterprise interoperability III, ISBN 978-1-84800-221-0, DOI
 10.1007/978-1-84800-221-0_25.

[14] J. Kopeck´y, T. Vitvar, C. Bournez, J. Farrell, “Semantic Annotations for WSDL and XML
 Schema”, IEEE Internet Computing, 11(6):60–67, 2007.

 70

[15] Jini Technology: http://www.jini.org/.

[16] Allegro graph: http://www.franz.com/agraph/allegrograph/.

[17] H. He, A. K. Singh, “Graphs-at-a-time: Query Language and Access Methods for Graph
 Databases”, Proc. of SIGMOD, 2008.

[18] J. Cheng, Y. Ke, W. Ng, and A. Lu, “Fg-index: towards verification-free query processing on
 graph databases”, In Proc. of SIGMOD, pages 857 - 868, 2007.

[19] N. Ryan, G.Raffa, P. Mohr, D. Manzaroli, L. Roffia, M. Pettinari, L. Sklenar, L. Stefano, and T.S.
 Cinotti. “On the Integration of Location Based Systems in Tourism and Cultural Heritage”, in D.
 Pletincx, editor, EPOCH Workshop (Brussels, Belgium, November 2006)., November 2007.

[20] N. Ryan, P. Mohr, D. Manzaroli, G. Mantovani, S. Bartolini , A. D’Elia, M. Pettinari, L. Roffia, L.Sklenar, F.
 Garzotto, T. Salmon Cinotti (2008), "Interoperable multimedia mobile services in cultural heritage site", in
 EPOCH Conference on Open Digital Cultural Heritage Systems, Rome, 2008, edited by David Arnold,
 Franco Niccolucci, Daniel Pletinckx, Luc Van Gool..

[21] EPOCH project: http://www.epoch-net.org/.

[22] N. Baker, M. Zafar, B. Moltchanov, M. Knappmeyer, “Context-Aware Systems and
 Implications for Future Internet”. In Future Internet conference and technical workshops, Prague,
 Czech Republic, May 2009.

[23] L. Roffia, L. Lamorte, G. Zamagni, S. Bartolini, A. D’Elia, F. Spadini, D. Manzaroli, C. A. Licciardi, T.
 Salmon Cinotti, “Personalized Context Based Services for Dynamic User Groups”, 2nd International
 Workshop on Social Aspects of Ubiquitous Computing Environments (SAUCE2009, held in
 conjunction with the 5th IEEE International Conference on wireless and mobile computing, networking and
 communication (Marrakech, Morocco, October 12-14, 2009).

[24] conteXtML: http://www.cs.kent.ac.uk/projects/mobicomp/fnc/ConteXtML.html .

[25] SOFIA Project: http://www.sofia-project.eu/.

[26] Friedman-Hill E. “Jess In Action: Rule-Based Systems in Java”, Manning Publications Co.;
 CT: 2003.

[27] C KPI: http://sourceforge.net/projects/kpilow/.

[28] C# KPI: http://sourceforge.net/projects/m3-csharp-kpi/develop.

[29] Java KPI: http://sourceforge.net/projects/smartm3-javakpi/.

[30] SPARQL: http://www.w3.org/TR/rdf-sparql-XMLres/.

[31] S. Bartolini, B. Milosevic, A. D'Elia, E. Farella, L. Benini. T. Salmon Cinotti (2011)
 “Reconfigurable Natural Interaction in Smart Environments: Approach and Prototype
 Implementation” Personal and Ubiquitous Computing Journal, Sep 2011, Springer-Verlag
 London Limited 2011, DOI 10.1007/s00779-011-0454-5.

[32] F. Vergari, S. Bartolini, F. Spadini, A. D'Elia, G. Zamagni, L. Roffia, and T. S. Cinotti, "A
 Smart Space Application to Dynamically Relate Medical and Environmental Information", in
 Design, Automation & Test in Europe (DATE 2010). Dresden, Germany: Kathy Preas. KP
 Publications, 2010, pp. 1542-1547.

 71

[33] A. M. Collins, M.R. Quillian (1969). "Retrieval time from semantic memory", Journal of verbal
 learning and verbal behavior 8 (2): 240–247. doi:10.1016/S0022-5371(69)80069-1.

[34] T. Berners-Lee, J. Hendler. O. Lassila "The Semantic Web". Scientific American Magazine.
 (May 17, 2001).

[35] Dublin Core: http://dublincore.org/.

[36] E-Culture Demonstrator: http://challenge.semanticweb.org/.

[37] R. Rosati, ”Integrating ontologies and rules: Semantic and computational issues”, in: P.
 Barahona, F. Bry, E. Franconi, N. Henze, U. Sattler (Eds.), Reasoning Web, LNCS, vol.
 4126, Springer (2006), pp. 128–151.

[38] A. Krisnadhi, F. Maier, P. Hitzler, “OWL and Rules”, In: A. Polleres, C. d’Amato, M. Arenas,
 S. Handschuh,P. Kroner, S. Ossowski, P. Patel-Schneider, (eds.) Reasoning Web 2011. LNCS,
 vol. 6848, pp. 382–415. Springer, Heidelberg (2011).

[39] G. Antoniou and F. van Harmelen, “A Semantic Web Primer”, Cambridge MA:MIT 2004.

[40] DTD: http://it.wikipedia.org/wiki/Document_Type_Definition.

[41] J. Clark, M. Murata, “RELAX NG specification” (EDS). 2001. Available at
 http://www.oasis-open.org/committees/relax-ng/spec-20011203.html.

[42] I. Horrocks, O. Kutz, U. Sattler, “The Irresistible SRIQ”. In Proc. of OWL: Experiences and
 Directions, 2005.

[43] J. Honkola, H. Laine, R. Brown, and O. Tyrkk¨o, “Smart-M3 information sharing
 platform,” in The 1st Int’l Workshop on Semantic Interoperability for Smart Spaces (SISS 2010)
 in conjunction with IEEE ISCC 2010, Jun. 2010.

[44] F. Baader, U. Sattler, ””An Overview of Tableau Algorithms for Description Logics”, Studia
 Logica 69(1), 5–40 2001.

[45] I. Horrocks, O. Kutz, U. Sattler, The even more irresistible SROIQ, in: Proceedings of the KR
 2006, Lake District, UK, 2006.

[46] Protegè: http://protege.stanford.edu/.

[47] Toolbraid composer: http://www.topquadrant.com/products/TB_Composer.html.

[48] F.A. Lisi, “Building Rules on Top of Ontologies for the Semantic Web with Inductive Logic
 Programming”, Theory and Practice of Logic Programming, 8(03):271–300, 2008.

[49] F. Maier, A.A. Krisnadhi, M. Krotzsch, and P. Hitzler, “A better uncle for OWL: Nominal
 schemas for integrating rules and ontologies”, In Proceed-ings of the 20th International World
 Wide Web Conference, 2011.

[50] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, (May 2004),
 “SWRL: A semantic web rule language combiningOWL and RuleML”, available from
 http://www.w3.org/Submission/2004/SUBMSWRL-20040521.

[51] CIDOC crm: http://www.cidoc-crm.org/.

 72

[52] E. Oyvind, “The Exhibition Problem, A Real-life Example with a Suggested Solution”, In
 Literary and Linguistic Computing, Vol. 23, No. 1, 2008.

[53] GIOCA course: http://corsi.unibo.it/gioca/Pages/default.aspx.

[54] H. Chen et al., "SOUPA: Standard Ontology for Ubiquitous and Pervasive Applications",
 InProceedings, International Conference on Mobile and Ubiquitous Systems: Networking
 and Services, August 2004.

[55] CoBrA web site: http://ebiquity.umbc.edu/resource/html/id/75/An-Intelligent-Broker-for-
 Pervasive-Context-Aware-Systems.

[56] H. Chen et al., "Intelligent Agents Meet the Semantic Web in Smart Spaces", IEEE Internet
 Computing, November 2004.

[57] CoBrA http://cobra.umbc.edu/about.h.tml

[58] A. Gangemi et al., “Sweetening Ontologies with DOLCE,” Proc. 13th Int’l Conf. Knowledge
 Eng. and Knowledge Management (EKAW 02), Springer-Verlag, New York, 2002.

[59] Wonder Web project: http://wonderweb.semanticweb.org/deliverables/D17.shtml.

[60] A. Franchi, L. Di Stefano, T. S. Cinotti. (2010), “Mobile Visual Search using mart M3”, IEEE
 symposium on Computers and Communications - First International Workshop on Semantic
 Interoperability for Smart Spaces (SISS 2010). Riccione - Italy. June 22, 2010. (pp. 1065 -
 1070). ISBN: 978-1-4244-7754-8.

[61] S. Bartolini, L. Roffia, T. S. Cinotti, D. Manzaroli, F. Spadini, A. D'Elia, F. Vergari, G.
 Zamagni, L. D. Stefano, A. Franchi, E. Farella, P. Zappi, A. Costanzo, and E. Montanari,
 "Creazione automatica di ambienti intelligenti” University of Bologna, Patent n.
 BO201A000117," 2010.

[62] D. Manzaroli, P. Lacchè, M. Pettinari, L. Roffia, A. D'Elia, and T. S. Cinotti (2008)
 "Enhancing Social Life with Path Solvers: Rendez-vous without Constraints on Meeting Place
 and Time," in 4th IEEE International Conference on Wireless and Mobile Computing,
 Networking and Communications (WiMob 2008), Workshop on Social Aspects of Ubiquitous
 Computing Environments (SAUCE). Avignon, France, 2008, pp. 490–495.

[63] S. Bartolini, B. Milosevic, A. D'Elia, E. Farella, L. Benini. T. Salmon Cinotti (2011)
 “Reconfigurable Natural Interaction in Smart Environments: Approach and Prototype
 Implementation” Personal and Ubiquitous Computing Journal, Sep 2011, Springer-Verlag
 London Limited 2011, DOI 10.1007/s00779-011-0454-5.

[64] Niezen G, Van der Vlist B, Hu J, Feijs L (2010), “From events to goals: supporting
 semantic interaction in smart environments”, in: The IEEE symposium on computers and
 communications, pp 1029–1034.

[65] Smart M3 Lab: http://www.moodle.unibo.it/course/view.php?id=399.

[66] D’Elia, J.Honkola, D.Manzaroli, T.Salmon Cinotti (2011), “Access Control at Triple Level:
 Specification and Enforcement of a Simple RDF Model to Support Concurrent Applications in Smart
 Environments”, Proceedings of the 4th Conference on Smart Spaces, (Springer, LNCS6869), St.
 Petersburg, 22-23 August, 2011 (ruSMART 2011) , pp. 63-74.

[67] E.W. Dijkstra, “Solution of a problem in concurrent programming control”, In: Communications of the
 ACM, vol. 8, issue 9 (1965).

 73

[68] E.W. Dijkstra, E.W.: “Co-operating sequential processes”, In: F. Genuys, editor, Programming
 Languages, pp. 43-112 (1968).

[69] B.W. Lampson, “Protection”, In: Proc. Princeton Symposium on Information Sciences and
 Systems, Princeton University, pp. 437-443 (1971). Reprinted in: Operating Systems Review, vol. 8, no. 1,
 pp. 18-24, (1974).

[70] D.E. Bell, L. J. LaPadula, “Secure Computer Systems: Mathematical Founda-tions and Model”, in:
 National Technical Information Service, Spring (1973) .

[71] R. Sandhu, “Lattice-based access control models”, In: IEEE Computer, vol. 26, issue 11, pp.9-19 (1993).

[72] M. A. Rodriguez, J. Shinavier, “The RDF Virtual Machine”. CoRR, abs/0802.3492, 2008.

[73] M. A. Rodriguez, J. Bollen, “Modeling Computations in a Semantic Network”, CoRR,
 abs/0706.0022, 2007.

[74] P. Wadler, “Comprehending monads”, In 1990 ACM Conference on Lisp and Functional
 Programming. ACM Press, New York, NY, USA, 61{78).

[75] Java concurrent: http://www.vogella.de/articles/JavaConcurrency/article.html#futures.

[76] W. R. Sutherland, “On-line Graphical Specification of Computer Procedures” IT PhD Thesis.
 Lincoln Labs Report TR-405. 1966.][MORRISON, J. P. 1994. Flow-Based Programming:
 A New Approach to Application Development. van Nostrand Reinhold, New York, NY.

[77] R. Ebner, A. Pfaffinger, “Higher Level Programming and Efficient Automatic Parallelization: A
 functional Data Flow Approach with FASAN”, in Proceedings of the ParCo97 Parallel
 Computing Conference, 16-19 September 1997, Bonn Bad-Godesberg, Elsevier Science
 Publishers, Amsterdam, 1998.

[78] Currying: http://en.wikipedia.org/wiki/Currying.

[79] Haskell Map: http://zvon.org/other/haskell/Outputprelude/map_f.html.

[80] A. D’Elia, J. Honkola, V. Luukkala, S. Boldyrev, “Method and Apparatus for computational
 flow execution” PAtent June 28, 2011, Serial No. 13/171,065.

