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Abstract



Diseases due to mutations in mitochondrial DNA gl represent the most common
form of metabolic disorders, including cancer, aghlghted in the last years.
Approximately 300 mtDNA alterations have been idead as the genetic cause of
mitochondrial diseases and one-third of theseadltars are located in the coding genes
for OXPHOS proteins. Despite progress in identifara of their molecular
mechanisms, little has been done with regard tahitbepy. Recently, a particular gene
therapy approach, namely allotopic expression, lsn proposed and optimized,
although the results obtained are rather contrealels fact, this approach consists in
synthesis of a wild-type version of mutated OXPH@®tein in the cytosolic
compartment and in its import into mitochondriat the available evidence is based
only on the partial phenotype rescue and not on damonstration of effective
incorporation of the functional protein into regpory complexes. In the present study,
we took advantage of a previously analyzed cell ehdokaring the m.3571insC
mutation iINMTND1 gene for the ND1 subunit of respiratory chain ctaxp. This
frame-shift mutation induces in fact translation aftruncated ND1 protein then
degraded, causing complex | disassembly, and ferréason not in competition with
that allotopically expressed. We show here thadt@tic ND1 protein is correctly
imported into mitochondria and incorporated in céempl, promoting its proper
assembly and rescue of its function. This redidined us to further confirm what we
have previously demonstrated about the role of ¢exnpin tumorigenesis process.
Injection of the allotopic clone in nude mice shawedeed that the rescue of complex |
assembly and function increases tumor growth, imdustabilization of HIF&, the
master regulator of tumoral progression, and camsatty its downstream gene

expression activation.
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MITOCHONDRIA

Mitochondria are eukaryotic subcellular organeNgsich play a crucial role in the
energetic balance of the cell, since oxidative phosylation takes place in these
compartments. This implies that mitochondria hawa&itical position between energy
uptake (food uptake and metabolism) and energyyatamh, and as a consequence,
they are involved in many other cellular procesds thermogenesis, apoptosis, oxygen
reactive species production and calcium homeostasis

Mitochondria show a complex double-membrane orgdina, where the outer
membrane (OM) bounds the organelle, whereas trexr imembrane (IM) separates the
matrix space from the intermembrane space. Theslbfganized in distinct structures,
the peripheral inner membrane and thistae, defined by several lines of evidence as
the active site of oxidative phosphorylation (Reret al., 1983; D'Herde et al., 2001;
Vogel et al.,, 2006), separated from peripheral inmembrane by narrow tubular
structure calledristae junctions (Perkins et al., 2001; Frey et al., 2000).

In the cytosol, mitochondria form a highly dynanrgticulum, whose morphology
depends on the cell types and context, and is @ltleet constant fusion/fission of both
OM and IM (Chen et al., 2004, 2005; Liu et al., 200rhe ultrastructure and reticulum
organization are determined by mitochondria-shapprgteins that regulate the
equilibrium between fusion and fission process (CHeet al., 2003).

A peculiar feature of mitochondria is the presewihin the matrix of multiple copies
of its own DNA, which encodes a small number oftgirts that, with together those
nucleus-coded ones, are essential for the energetation (Anderson et al. 1981). In
fact, mitochondrial function relies on the coordeaxpression of two different genetic
systems, the mitochondrial and the nuclear gendroegver, it's the latter to encode
the majority of proteins necessary to the organglgsiology, including those
fundamental to expression and maintenance of thechondrial DNA (mtDNA).

A growing interest in mitochondria has been showmeicent years, due to implication
of the mitochondrial dysfunction implication in ham disorders. Many rare genetic
pathologies are indeed caused by mutations inreitiichondrial DNA and nuclear
genes that encode for mitochondrial proteins. Mitydrial dysfunctions have been

implicated also in more common human diseases, nikerodegenerative diseases,



cancers, diabetes and the natural process of ag&egani et al., 1997; Wallace 2005;
Mao and Holt, 2009; Trifunovic, 2006).

The mitochondria ultrastructure

Mitochondria are double-membrane organelles; the i®Kighly permeable because it
contains many pores for small molecules, whereashthis impermeable to most small
molecules and ions. This property is required tontain an electrochemical gradient
between the matrix and the intermembrane spacé@Niscet al., 2002). The IM folds
into membrane inter-digitations, callestistae (Frey and Mannella, 2000), which
increase their surface area and mass (Fig.1l) antctchwhepresent a distinct
element/compartment extending into the mitochomdniarior like tubules or lamellae,
and not as an unfolded membrane of the IM, asalhjtbelieved. The inner boundary
membranes and the cristae are joined by a limitedber of discrete sites called cristae
junctions, which typically have a consistent diaenaif 15-20 nm, but may be altered
by matrix volume and respiratory activity (Freyakt 2002; Frey and Mannella, 2000;
Mannella et al., 1994; Mannella et al., 1997).d¢ lbeen estimated that three quarters of
the IM mass are proteins, and many of these ardeipgo of the oxidative
phosphorylation (OXPHOS) system.

The matrix, interior of IM, is composed of a géddisubstance, which contains enzymes
of the tricarboxylic acid (TCA) cycle or the Krebgcle (Krebs and Johnson, 1937) and
B-oxidation. These oxidation-reduction reactions amergy transfer processes make

mitochondria the powerhouses of eukaryotic cellaghnd Holt, 2009).
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Figura 1. Mitochondria ultrastructure. (a) Computer model mitochondrion section of chic
cerebellum from segmented 3D tomograms. Model shalvsristae in yellow, the inner membra
boundary in light blue and the outer membrane ik 8éue. (b) A single sectic through 3D tomogram ¢
the mitochondrion used toaate model in (¢ From Frey and Mannella, 2000.



Mitochondrion matrix activity: p-oxidation and tricarboxylic acid cycle

Two of the most important metabolic pathways talkeeg in the mitochondrial matrix.
Glucose, fatty acids and amino acids are the thuwbstrates that an organism can use to
maintain energy homeostasis, not only for energwpdpction but also for
(macro)molecules biosynthesis. In particular, wiymcose supply becomes limited
(during fasting, for example), fatty acid degradatassumes a fundamental importance
for the most of tissues. After a first hydrolysisdndothelium-bound lipases, the uptake
by plasmatic membrane proteins and the conversicacyl-CoAs, the further step of
the fatty acids catabolism is the mitochondriakyfaacids p-oxidation (FAO). The
mitochondrial membrane is impermeable to acyl-CdAs;this reason, acyl-CoAs use
the carnitine shuttle (CPT) for their import intotachondria (Fig.2). CPT1 converts an
acyl-CoA in acylcarnitine, which is translocatedass the mitochondrial membrane by
carnitine acylcarnitine translocase (CACT), exchiaga free carnitine molecule from
the inside. CPT2, located at the inner membrarmmnieerts acylcarnitines into their
CoA esters, which can undergo FAO (van der Leiplet2000; Ramsay et al., 2001;
Bonnefont et al., 2004). Once inside the mitoch@ndacyl-CoAs are cleaved into
acetyl-CoA units via the classic series of the feazyme reactions callgidoxidation
(Fig.2). The pathway is a cyclic process in whickl4CoAs are shortened, whereby the
two carboxy-terminal carbon atoms are releasecceylaCoA units each time a cycle
is fully completed. First, an acyl-CoA-ester is geétogenated to yield a trans-2-enoyl-
CoA. This is followed by hydration of the doublenolband in the third step the resulting
L-3-hydroxy-acyl-CoA is dehydrogenated to 3-ketgdaCoA. Finally, thiolytic
cleavage of the 3-keto-acyl-CoA produces a twaaarchain-shortened acyl-CoA plus
acetyl-CoA. Each cycle yields an acyl-CoA shortebgdwo carbon atoms, an acetyl-
CoA, and one nicotinamide adenine dinucleotide (MADand one flavin adenine
dinucleotide (FADH2) as electron carriers (or redgequivalents). The resulting acyl-
CoAs enters another cycle of FAO whereas the @edarriers deliver the electrons to
the electron transport chain and the acetyl-CoAaaer the tricarboxylic acids (TCA)
cycle, also known as the citric acid cycle or threlt§ cycle (Krebs and Johnson, 1937).
Indeed, the conversion of reducing power provided clarboxylic acids into the
respiratory chain-usable reduced coenzymes NADH BADH, constitutes a main

function of TCA cycle. The TCA also plays a centrale in an endless series of



metabolic pathways, in particular thanks to transation reactions; moreover, several
major anaplerotic pathways require the TCA cycleakdown of acetyl-CoA and the

multistep interconversion of carbon skeletons.

Fatty acid carnitine

OCTNS call membranes

carnitine

Acylcarnitine

Acyl-Cof

carnitine
CPT1 I + mitachondrial outer membrans

"4 mitachondrial inner mambrane "1

carnitine

Acyl-CoA Acylcarnitine

<18 1B
C16 G161
C1a C1401

I-CoA Enoyl-CofAA ————— Enayl-Cof ------m-----

C12:-1 3-cis Dcl C12:1 2-trans

3-hydroxyacyl-ColA 3-hydroxyacyl-CoA

M/SCHAD
3-ketoacyl-CoA, ——» acyl-CoA + acetvl—CaA; 3-ketoacyl-CoA
" (TP ) )

Figura 2. Mitochondrial-oxidation in human. After transport across thespla membrane, fatty acids
are activated to acyl-CoAs at the cytosolic sitBTC converts the acyl-CoA into an acylcarnitinejolih

is subsequently transported across the mitochdndnembrane by CACT. CPT2 converts the
acylcarnitine back into an acyl-CoA. Long chain la€pAs are metabolised by the membrane bound
enzymes, very long chain acyl-CoA dehydrogenaseQAM) and mitochondrial trifunctional protein
(MTP), which has hydratase, long chain hydroxydegA dehydrogenase (LCHAD) and thiolase
activity. Short and medium chain acyl-CoAs are foelised in the mitochondrial matrix by medium
chain acyl-CoAdehydrogenase (MCAD), short chainl|-&xyA dehydrogenase (SCAD), crotonase,
medium and short chain hydroxyacyl-CoA dehydrogen@4/SCHAD) and medium chain 3-ketoacyl-
CoA thiolase (MCKAT). The oxidation of unsaturatedty acids such asoleic acid requires the actfon o
an isomerase [dodecenoyl-CoA delta isomerase (DCI)B denotes an acyl-CoA with a chain length of
18 carbon atoms, and so forfrom Houten and Wanders, 2010.
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More important, it is also the third step in carpdtate catabolism, after conversion of
glycolysis-produced pyruvate in acetyl-CoA, and tf@lowing step in protein
catabolism after cleavage of amino acids and camwein acetyl-CoA. The TCA cycle,
that comprises eight reactions resulting in thegpessive oxidative decarboxylation of
acetyl CoA (Fig. 3), begins with the transfer ofotearbon acetyl group from acetyl-
CoA to the four-carbon acceptor compound (oxal@degtto form the six-carbon
compound citrate. The citrate then entrys into eseof chemical transformations,
losing two carboxylic groups as GAnost of energy made available by the oxidative
steps is transferred to other metabolic proces$Gb# (or ATP) or as energy-rich
electrons to NAD generating NADH (for each acetyl group that eritethe TCA
cycle, three molecules of NADH are produced) an8A®H to generate FADH The
generated NADH may later on donate its electronthéorespiratory chain complex to
drive ATP synthesis, whereas FABRHis covalently attached to succinate
dehydrogenase, an enzyme functioning both in tha &ad the mitochondrial electron
transport chain. FADE therefore, facilitates electrons transfer to ayeme Q, which is
the final acceptor of the reaction catalyzed bydhecinate ubiquinone oxidoreductase
complex, also acting as an intermediate in thetreledransport chain. At the end of
each TCA cycle, the four-carbon oxaloacetate has bbegenerated to continue the

cycle.
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Figure 3. The TCA cycle and related enzymes. A: the TCA cyekes place in the mitochondrial
matrix (A), where its enzyme components are paasd series of metabolons directly feeding reduced
equivalent to the respirasome insert within theootibndrial membrane further used to generate ATP by
the ATPasome. B: the reactions catalyzed by theraeW CA cycle enzyme components, featuring the
sites of production of reduced equivalent (boteed) and including the short-circuit within thgcte by

the transamination reaction catalyzed by the asfmdamino transferase. 1,pyruvate dehydrogenase; 2,
citrate synthase;3, aconitase; 4, isocitrate delgatrase; 5, ketoglutarate dehydrogenase; 6, silicciny
CoA synthase; 7, succinate dehydrogenase; 8, Asea®, malate dehydrogenase; 10, aspartate amino
transferase. ANT, adenine nucleotide translocatar;inner membrane; RC, respiratory chain. From
Briere JJ et al., 2006.
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The mitochondrial membrane oxidative phosphorylation

The mitochondrial IM hosts the five protein commexof oxidative phosphorylation
(OXPHOS): complex | (NADH dehydrogenase or NADHmuohone oxidoreductase),
complex Il (succinate dehydrogenase or succinatguuione oxidoreductase), complex
Il (the bcl complex or ubiquinone:cytochrome c doteductase), complex IV
(cytochrome c oxidase, ciclooxygenase or reducedochyome c: oxygen
oxidoreductase) and complex V (ATP synthase). Aaldlitlly, OXPHOS system also
involves two electron transport carriers: ubiquiear coenzyme Q10 and cytochrome
c. The electron transport chain is coupledthe generation of a proton gradient
across the inner mitochondrial membrane, whish further used by the fifth
enzymatic complex (F O F 1 -ATP synthase), totlsgsize ATP from ADP and
inorganic phosphate (Saraste, 1999) (Fig. 4).

Complex | (NADH dehydrogenase) is the largest oé tlespiratory complexes,
comprising forty-five subunits, of which seven amgochondrially encoded (Carroll et
al., 2002). The enzyme contains multiple prosthgtmups, one flavomononucleotide
(FMN) and eight iron-sulphur clusters (Carroll etl., 2006). Complex | transfers
electrons from NADH to ubiquinone (CoQ), generatiigquinol (CoQH2), with the
translocation of four protons across the inner nramd into the intermembrane space
(Nicholls and Ferguson, 2002). Ubiquinol is alsodarced by complex Il (succinate
dehydrogenase), which oxidases succinate to fumanahe Krebs cycle, and donates
electrons to the respiratory chain, as writteavab Complex Il is the only respiratory
enzyme completely encoded by the nucleus (Rust#ah. ,€2002), comprising a catalytic
subunit, succinate dehydrogenase, and two memistamenits, anchoring the complex
into the mitochondrial IM (Capaldi et al., 197Electrons from succinate are donated
to the covalently bound FAD of succinate dehydra@gen reducing it to FADH2. The
electrons are further transported via a numberasi/sulphur clusters to CoQ, reducing
it to CoQH2 (Lancaster and Kroger, 2000; Saras#891L A third source transferring
electrons to generate ubiquinol is the glycerolh®gphate dehydrogenase enzyme.
Ubiquinol donates its two electrons consecutivelgamplex Il (ubiquinol cytochrome
c oxidoreductase) (Walker et al., 1992). One ebecis transferred to cytochrome c via
the Rieske iron-sulphur protein, while the secanttansferred back to the matrix side,

to cytochrome b of complex lll. Cytochrome b iseatd accept two electrons, which, in
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turn, are donated to ubiquinone at the matrix sgdnerating ubiquinol. Due to the
recycling of ubiquinone this process is also teriedQ-cycle (Darrouzet et al., 2001).
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Figure 4. Representation of the mitochondrial respiratory ithaomplexes and the oxidative
phosphorylation system. The four complexes of thepiratory chain and the ATP synthase are
schematized and the electron/proton pathways aloese complexes are indicated. From Lemarie and

Grimm, 2011.
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Complex lll, the middle segment of the respiratomain, transfers two electrons from
CoQH2 to cytochrome c, which then shuttles thetedas to complex IV (cytochrome ¢
oxidase). Complex Ill couples electron transferthe translocation of two protons
across the IM. This complex has only one mtDNA-@®tbsubunit, cytochrome b; the
other 10 subunits are nucleous-encoded, and dtdeasf these has been reported to be
essential for the complex assembly (Berry et &IQ02 Yu et al., 1998; Zeviani et al.,
2003). Cytochrome c is a water-soluble protein tllanates electrons on the
cytoplasmic side of the mitochondrial IM to compld¥. This is the terminal
component of the respiratory chain, composed ofsdBunits, of which three are
encoded by the mtDNA. Complex IV catalyzes the gfan of electrons from the
reduced cytochrome c pool to molecular oxygen, ceatpit to water. In this step, four
electrons have to be donated from complex IV to tmaecules of oxygen, without
generating any reactive oxygen species. This iseaetl by complex IV storing the
four electrons on haem and copper atoms, befoeasiglg them only in the presence of
two molecules of oxygen and four protons at therinaide of the mitochondrial IM.
During this reaction four protons are translocaerwbss the mitochondrial IM from the
matrix side to the intermembrane space (SchultzGivah, 2001).

The energy released by the flow of electrons thinotlge respiratory chain is used to
pump protons through the mitochondrial inner meméray complexes |, I, and IV.
This electrochemical gradient is finally utilizeg the ATP synthase (A~ -ATPase) to
generate ATP (Saraste, 1999). This complex is tiparas implied by the
nomenclature, composed of a membrane-bound poitigh and a large extra-
membranous portion (F that protrudes into the matrix space. &hd K are linked
together by two stalks (Capaldi and Aggeker, 20@)mplex V has two subunits
encoded by mtDNA (ATPase6 and ATPase8), that take tp the membrane-bound
portion (k) of the complex, and about 13 other subunits @eddy nDNA (Abrahams
et al., 1994). Protons from the intermembrane esmater complex V through the F
complex leading to subunit rotation within the cdexp The energy from this rotation is
then used for ATP synthesis, which takes placéénR complex (Schultz and Chan,
2001). The ATP synthesized in the mitochondrialrimas transported across the inner
mitochondrial membrane in exchange with cytosoli©OPA through the adenine
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nucleotide translocator (ANT), an energetically darable reaction driven by the
voltage gradient across the IM (Saraste, 1999).

The knowledge about the overall organization of five respiratory complexes is
changed in the last decade. In fact, a fluid-stabelel, based on the idea that complexes
are freely diffuse in the IM and that electron sfen is based on random collision of
single complexes, has been replaced by a solid-statdel, which propose a stable
interaction between OXPHOS complexes within ergtitiemed supercomplexes. This
model is now supported by a wide range of expertaidmdings that demonstrated a
strict association between the respiratory comggeremitochondria of yeast, plants
and mammals (Schagger and Pfeiffer 2000; Krausd, ét004; Schafer et al., 2006).
The supramolecular organization of the OXPHOS syste considered to be of great
functional importance. Formation of supercomplegks/s a role in the assembly and
stability of the complexes, suggesting that theestpmplexes are the functional state of
the respiratory chain (Vonck et al., 2009). Respmasupercomplexes may (i) allow
enhanced electron transfer rates by electron cliagnéi) represent regulatory units of
respiration, (iii) determine the ultrastructuretioé inner mitochondrial membrane, (iv)
increase the stability of OXPHOS complexes, andif¢gyease the protein insertion
capacity of the mitochondrial IM. Several experitambservations confirm one or the
other roles of the OXPHOS supercomplexes (Boekdrah,007).

Mitochondrial DNA

Mitochondria contain the only extranuclear sourcBNA in animal cells (Nass, 1966).
MtDNA is a circular, double-stranded, 16569 basé& paolecule of DNA which
encodes 37 genes, including 13 essential polypeptfdr the OXPHOS system, 2
ribosomal RNAs (12S and 16S) and 22 tRNAs (Anderspbal, 1981) (Fig. 5). The
remaining proteins required for mitochondrial mele&m and maintenance are
synthesized in the cytosol and are specificallgdted, sorted and imported to their
correct mitochondrial location (Mokranjac and Neuwpe€005). The mitochondrial
genome has unique characteristics which distingitiflom the nuclear genome; it is

strictly maternally inherited and there are sevhtaldred to several thousand of copies
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within a single cell. The number of copies preseies between different cell types
depending on the energy demand within the tissagl6f and Turnbull, 2005). There
are no introns and the genes have either noneergrfew non-coding bases between
them and in most cases termination codons are redept, but are created post-
transcriptionally by polyadenylation (Anderson &t 4981). There are only two non-
coding regions in the mtDNA and they contain madghe known regulatory functions.
The major one is the 1 kb displacement D-loop, attarized by the presence of a triple
strand structure, due to association of the neviréhid in this region (Fernandez-Silva
et al., 2003). The D-loop contains the origin obtdand DNA replication (OH) and is
also the site of transcription from opposing heawg light strand promoters (Clayton,
2000; Scarpulla, 2008). The second non-coding regi@bout 30 nucleotides long and
contains the origin of L-strand replication (OL)hi3 region is located in a cluster of
five tRNA genes around two thirds of the mtDNA lémfyrom the OH (Anderson et al.,
1981; Fernandez-Silva et al., 2003).

The physiological polyploidy of the mitochondriabrgpme gives rise to a peculiar
genetic inheritance which is dominated by the phegma of homo- and heteroplasmy,
the latter being the coexistence in one cell of tw@ven more different mitochondrial
genotypes. It is generally accepted that as mutstimay arise in one copy of the
MtDNA, they may hence be selected against or sbifincrease the mutation load
within a cell until detrimental effects take overaopathological phenotype sets in. This
threshold level may vary according to the mutatiype; it has been shown in
neurodegenerative diseases that the penetrante severity of a condition may well
depend on the heteroplasmy level in the individ@arelli et al., 2002; Laloi-Michelin
et al., 2009); it has also been demonstrated lieatiutmorigenic potential associated to a
particular mitochondrial mutation reveals itseltyoat a exact mutation load ( Gasparre
et al, 2011; Park et al., 2009).

MtDNA shows a higher mutation rate than nuclear DMachman et al., 1996;
Schriner et al., 2000) and that is due to a nundbexlements, among which (i) the
proximity to reactive oxygen species productioresit(ii) the lack of protective
histones, (iii) the highly compact structure whikttks buffering sequences such as
introns and (iv) a less efficient DNA repairing €ymst

18



Another particular feature of mtDNA is the strichtarnal inheritance: mtDNAs can
only evolve by the sequential accumulation of matet along radiating maternal
lineages. For this reason, if an mtDNA mutatiorsesithat is beneficial in a particular
environment, it and its descendants will increasiaquency in that environment. This
results in the generation of a group of related NADhaplotypes (haplogroups)
concentrated in a particular geographical regidre iuman mtDNA sequence is highly
variable, and approximately one-fourth to one-thofl mtDNA polypeptide and
structural RNA sequence variants appear to be ifumedty important; natural selection
then enriches for the regionally appropriate couplefficiency and thus mtDNA
haplogroup (Mishmar et al., 2003; Wallace et 002 Ruiz-Pesini et al., 2004; Ruiz-
Pesini and Wallace, 2006).
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MITOCHONDRIAL DISEASES

Mitochondrial diseases can be caused by mutationsiitochondrial DNA and by
mutations in nuclear DNA.

MtDNA mutations causing diseases were first regbite1988 (Wallace et al., 1988;
Holt et al., 1988) and since then more than 30BqgEnic mMtDNA mutations have been
described. MtDNA genetics is very complex becauseatations in different
mitochondrial genes can give similar phenotypestatians in the same gene can give
different phenotypes, and the same mtDNA mutattatiféerent levels of heteroplasmy
can result in very different phenotypes.

Clinically relevant mtDNA variants fall into threelasses: (i) recent deleterious
mutations resulting in maternally transmittededise, (ii) ancient adaptive variants that
predispose individuals to disease in different emments, and (iii) the age-related
accumulation of somatic mtDNA mutations that derdunction and provide the aging
clock (Wallace, 2005). Diseases due to rearrangemertations and base substitution
mutations belong to the first class and they ineluthaternally inherited Type I
diabetes; deafness chronic progressive externdghalphoplegia (CPEO), Kearns—Sayre
syndrome (KSS) associated with ophthalmoplegissipt@nd mitochondrial myopathy
with ragged red fibers (RRF®lita et al., 1989; Wallace et al., 2001; Wallaoel & ott,
2002; Wallace, 2005); the Pearson marrow/pancrgadreme (Kapsa et al., 1994);
LHON (Wallace et al., 1988); Leigh syndrome (Holt &.,1990); mitochondrial
myopathy (Andreu et al., 1998,1999a,b); MERRF (Al et al., 1988b; Shoffner et
al., 1990); MELAS (Goto et al., 1990); encephalopathy; Alzheimer’s disease (AD)
and Parkinson’s disease (PD) (Shoffner et al., 18®®isnutdinova et al., 2008). The
second class (ii) of variants depends on the ah@daptive haplogroups which still
influence individual predisposition to a wide spectrof common diseases today. To
make some examples, the first evidence that mtDNAolgeoups could modify disease
predisposition was the discovery that Europeandugplp J increases penetrance of the
milder LHON mutations (Brown et al., 1995, 1997020 Torroni et al., 1997; Ghelli et
al., 2009). On the other hand, it has also beerodstrated that haplogroup J correlates
also with longevity in Europeans (lvanova et 898; De Benedictis et al., 1999; Rose

et al., 2001) but also with a more rapid AIDS pesgion (Hendrickson et al., 2008). In
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addition, mtDNA haplogroups have also been comelawvith athletic performance,
which is consistent with different mtDNA haplogr@upaving different mitochondrial
ATP production competence, due to differential dmgpefficiency (Scott et al., 2005,
2009).

About the third variant class (iii), mutations ihet mtDNA have been observed to
accumulate with age in a variety of postmitotssties in a wide range of species and in
a spectrum of complex age-related diseases (Walk@@5c). Increasing the mtDNA
mutation rate in mice increases their aging rat#yfiovic et al., 2004; Kujoth et al.,
2005), while decreasing the somatic mtDNA mutatiate by introducing catalase into
the mitochondrial matrix extends mouse life spach(er et al., 2005). Therefore, the
accumulation of somatic mtDNA mutations providesagimg clock that helps defining
an animal’s life span and contributes to the delayeset and progressive course of
complex diseases (Wallace, 2005c). Cancer is blsont only) an age-related disease,
and both somatic and germline mtDNA mutations haeen reported in cancers
including renal adenocarcinoma, colon cancer caksd and neck tumors, astrocytic
tumors, thyroid tumors, breast tumors, prostateorsietc. (Wallace, 2005a; Brandon
et al., 2006) (see “Mitochondrial metabolic dysfioe and cancer” paragraph).
Besides, mitochondrial ROS production appears toabeimportant component of
carcinogenesis (Petros et al., 2005; Ishikawa. e2@08).

Mutations in nDNA-encoded OXPHOS genes have alssbimked to a variety of
multisystem disorders ranging from lethal childhdaggh syndrome to predisposition
to depression. Mutations in the structural subunits€Complexes | and Il and in a
Complex IV assembly factor, SURF1 (Zhu et al., I9&caccio and Wallace, 2004),
can cause severe OXPHOS defects and result inethal Ichildhood disease, Leigh
syndrome. Mutations in the nDNA POLG or Twinkle ibake are associated with
multiple mtDNA deletions and have been linked téoaamal dominant or autosomal
recessive progressive external ophthalmoplegia JPPOLG mutations can cause a
broad spectrum of diseases from mild myopathyttwleAlpers syndrome (Spelbrink et
al., 2001; Van Goethem et al., 2001). Some ANTlegemtations can inactivate the
protein and result in autosomal recessive myopatigycardiomyopathy associated with
multiple mtDNA deletions without PEO (Palmieri dt, 2005). However, other ANT1

missense mutations act as dominants and causeom#bsgominant PEO, associated
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with the accumulation of multiple mtDNA deletiortsaukonen et al., 2000). Mutations
in deoxyguanosine kinase and mitochondrial thynadikinase 2 cause mMtDNA
depletion (Mandel et al., 2001; Saada et al., 20@hyl mutations in succinyl-CoA
synthase subunit SUCLA2 cause mild methylmalonicida@, Leigh-like
encephalomyopathy, dystonia, and deafness in iassoc with mtDNA depletion
(Carrozzo et al.,, 2007). Mutations in the egilcc thymidine phosphorylase cause
mitochondrial neurogastrointestinal encephalomylopat{Nishino et al., 1999)
associated with mtDNA deletions and depletion. Mates in the gene encoding the
mitochondrial fusion protein OPA1 cause autosonoahihant optic atrophy (Delettre et
al., 2000), while mutations in mitofusin2 resultthre peripheral neuropathy, Charcot-
Marie-Tooth 2 (Zuchner et al., 2004). Mitochondr@ikeases can also result from
defects in the genes for mitochondrial metaboliotgins. For example, defects in
coenzyme Q10 metabolism and various Krebs cycdgma genes have been reported
(Wallace et al., 2007b, 2010).
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MITOCHONDRIAL METABOLIC DYSFUNCTION AND CANCER

Defects in mitochondrial function have long beerspmected to contribute to the
development and possibly progression of cancet9B80, Otto Warburg proposed that
cancer was caused by defects in OXPHOS or regpirati the mitochondria, forcing
cells to shift to energy generation process througcolysis, despite aerobic
conditions. After several decades of research egldb what is defined “Warburg
effect” in tumor, during the past few years it &rig reconsidered but it continues to be
a subject of even more increasing interest in aanegearch. In fact, it is becoming
clear that it plays an important role in tumor elepment by remodeling the metabolic
profile of tumor cells, which allows cell survivahder adverse conditions. Since the
description of the Warburg effect, several studies/e shown that cancer cell
mitochondria are small, possess few cristae, hasleaeacteristic shape and size and an
altered membrane, but only in last decade mutatiorgene encoding mitochondrial
proteins were demonstrated to be directly involwvedtumorigenesis. Like in the
neurodegenerative diseases, both nDNA and mtDNAatioms have been found
implicated in human cancer. In particular, thregoghondrial enzymatic functions,
between TCA and OXPHQOS, are affected by nucleae gemations and are involved in

tumorigenesis process of different tumors.

Nuclear genes involved in mitochondrial defectsin cancer

Mitochondrial succinate-coenzyme Q oxidoreductaseamnplex Il of the respiratory
chain catalyzes the conversion of succinate to fateain the TCA cycle and
simultaneously transfers electrons from succinatedenzyme Q. It is comprised of
four nuclear-encoded subunits, SDHA, SDHB, SDHC &bdHD (Fig. 6), whose both
germinal and somatic loss-of-function mutationsenbgen described and appreciated in
paragangliomas (PCC), in renal cell carcinomas (R@% in pancreatic cell cancers
(PCC) (Baysal et al. 2000; Housley et al., 201@kBits et al., 2008; van Nederveen et
al., 2007). It was also found that mutations in SDKDHB and SDHD are correlated

with the rare development of a combination of hR®&d GIST (gastrointestinal stromal
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tumor), defined as Carney-Stratakis syndrome, aitidl the non-familial Carney triad,
characterized by the presence of extra-adrenalgpagiomas, GIST and pulmonary
chondromas (Stratakis and Carney, 2009).

Loss-of-function germline mutations in another TCOAuclear-encoded enzyme,
fumarate hydratase (FH), which catalyzes the rédersconversion of fumarate to
malate, predispose to hereditary leiomyomatosis esrdhl cell cancer (HLRCC),
inherited leiomyomas (generally benign tumors & $imooth muscle), and renal (type
Il papillary and collecting duct) carcinoma (Laueonet al., 2001; Tomlinson et al.,
2002). There is evidence suggesting that FH mutatimay also be involved in the
pathogenesis of breast, bladder, and testiculaydigecell) cancers (Carvajal-Carmona
et al., 2006; Lehtonen et al., 2006). Similar toH5iD hPGL, enzymatic activity of FH
is absent in HLRCC tumors and loss of the wild-tgfiele is observed in the majority
of tumors (Tomlinson et al., 2002).

Somatic mutations in isocitrate dehydrogenase (IDM)ich catalyzes the oxidative
decarboxylation of isocitrate t@-ketoglutarate in TCA cycle, have been identifiad i
gliomas and acute myelogenous leukemia (AML)( GQbaebal., 2010; Parsons et al.,
2008; Bleeker et al., 2009; Yan et al, 2009). WFit¢ and SDH mutations are typically
loss-of-function, and for this reason their genekelved tumor suppressors, some IDH
mutations lead to a gain of a new NADPH-dependeketoglutarate-reductase activity
with production of a less known metabolite, 2-hydiglutarate (2HG), significantly
accumulated in glioma cells and blood of AML patseand defined “oncometabolite”,
to portray its potential oncogenic contribution (Qaet al., 2009; Frezza et al., 2010).
In all these three genetic-metabolic events, thaetging mechanism of tumorigenesis
involves the accumulation of metabolites that cgrmecogenic signal. Even though the
role of 2HG is still unclear, succinate and fumaraccumulation, observed in the
tumors with mutations in SDH and FH respectivelgs tbeen linked to the tumoral
progression by hypoxia inducible factor (HIF) aatien. HIF is known to orchestrate
the metabolic and genetic reprogramming requiredsustain tumor cell growth,
vascularization and proliferation. The molecularklibetween TCA dysfunction and
HIF activation was initially proposed by Selak awworkers (Selak et al. 2005), but
subsequently followed and proved by several otlesearch groups (Gottlieb and
Tomlinson, 2005; Isaacs et al., 2005; Pollard e28I05; Hewitson et al., 2007; Porcelli
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et al., 2010). In summary, in normoxic conditionlFi prolyl 4-hydroxylase, master
regulator of HIF stability, hydroxylates two praéimesidues on the oxygen-dependent
degradation domain of Hlkdl targeting it to the ubiquitin-proteasome degrexat
machinery. This hydroxylation requires oxygen arkktoglutarate and produce carbon
dioxide and succinate. For this reason, the sutzimecumulation in SDH-deficient cell
tumors impairs PHDs activity and leads to HiFdtabilization also under normoxic
conditions, a phenomenon that has been definedsaadphypoxia (Gottlieb and
Tomlinson, 2005). Also fumarate has been demomstrad be a potent inhibitor of
PDHs (Isaacs et al., 2005). Furthermore, otherhapucal studies showed that PHD
activity is competitively inhibited by succinate @rmarate and, therefore, the ratio
between a-ketoglutarate and succinate (or fumarate) ratheasntthe absolute
concentrations of these metabolites dictates PHivityc (MacKenzie et al., 2007,
Porcelli et al., 2010). However, the activity ohet enzymes could be affected by the
TCA cycle intermediates accumulation like th&etoglutarate-dependent dioxygenases
(Schofield and Ratcliffe, 2004) or the histone démkase JMJID3 (Cervera et al.,
2009), carrying to speculate about the mitochontiitaytosol and mitochondria to-
nucleus signalings of succinate and fumarate, witb power to regulate gene
expression.

In addition, somatic and germinal mutations in NIM1B, subunit of respiratory
complex I, are linked to Hurthle cell tumors of ttigroid (Maximo et al., 2008), and
its down-regulation or loss of its expression has begorted in renal cell carcinomas
(RCC) and colorectal carcinoma (Maximo et al.,20Bong et al., 2007; Kalakonda et
al., 2007).

Then, mutations in gene of the polymerase-gammalL@CQgene, the only DNA
polymerase known to function in human mitochondwas mutated in 63% of breast
tumors (Singh et al., 2009a; Chan and Copeland9;20bng et al., 2008) inducing a
depletion of MmtDNA, decreased mitochondrial acyividecreased mitochondrial
membrane potential, increased levels of reactiwgen species and increased matrigel
invasion (Singh et al. 2009a,b).

Altogether, these findings suggest a role for OXPHYSfunction in cancers and in

promoting tumorigenicity.
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Mitochondrial genesinvolved in defective OXPHOS n cancer

Mitochondrial DNA mutations have been increasinglgntified in various types of
cancer (Polyak et al., 1998; Fliss et al., 2000hunber of mtDNA rearrangements and
amplifications have been reported in acute myeleidkémia (Boultwood et al., 1996)
and point mutations in human colorectal cancersdélblyak et al., 1998), esophageal,
ovarian, thyroid, head, neck, lung, bladder, reaalj breast cancer cells (Fliss et al.,
2000; Brandon et al., 2006; Chatterjee et al., 2@bkdara et al., 2005).

Mutations in mtDNA have been described in tRNASNAR protein encoding regions,
and important feature, in D-loop region, the singtentrol region of mtDNA for
replication and transcription of its OXPHOS genkhitations in the D-loop region
result in altered binding affinities of the nucl@aoteins involved in mtDNA replication
and transcription leading to the depletion of mtDbl#atent (Clayton, 2000). Decreased
MtDNA level has been reported in breast (Tsend. e2@06), renal (Selvanayagam and
Rajaraman, 1996), hepatocellular (Lee et al., 2005;et al., 2004), gastric (Wu et al.,
2005), liver (Yin et al., 2004), and prostate tusm@oro et al., 2008). Depletion of
MtDNA is also supported by a decrease in OXPHOB8I¢ew renal tumors (Simonnet et
al., 2002). Therefore, it has been demonstratedréduiuced mtDNA leads to increased
invasiveness and aggressive disease (Simonnef 20@2; Mambo et al., 2005).

Since the mitochondrial mutations affect the sysithef peptides that are important
components of various respiratory chain complettespltimate outcome is likely to be
defective OXPHOS. MtDNA-derived subunits of resporg chain complex | (7/45
subunits: NADH dehydrogenase subunits ND1 to NDé ED4L), 111 (1/11subunits:
cytochrome b) and IV (3/13 subunits, cytochromeidase subunits COXI to Ill) have

been found altered in various types of cancersnda et al., 2006; Lu et al., 2009)
(Fig. 6).
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Figure 6. The four complexes of the respiratory chain arees@tized and the various mutations found
in cancer cells that impact complex subunits arsbmbly factors are highlighted: ND1-6 and ND4L
(nicotinamide adenine dinucleotide, NADH, dehydmage subunits 1-6 and 4L); SDHA-D (succinate
dehydrogenase subunits A—-D), SDHAF2 (SDH assengaltof 2); cytochrome b; COXI-III (cytochrome
¢ oxidase subunits I-IIl). From Lemarie and Grin2@11.
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An important question was if these mutations act aassignificant cause of
tumourigenesis or if they merely constitute a sffect of tumour development. Only
recently different groups have supported the Iia@dd of a causative effect on tumour
progression. In thyroid cancer cell lines (Mmero et al., 2005), renal (Gasparre
et al., 2008) and thyroid oncocytomas (Gasparral.et2007) for example, mtDNA
mutations in the complex | subunits ND1, ND2 and 4NB were shown to be
associated with complex | deficiency and enhancetif@ration. Therefore, human
cells bearing a ND5 mutation were associated witthr@p in oxygen consumption,
increased ROS production, potentiated glucose dkmy and enhanced tumour
growth (Park et al., 2009). MtDNA mutations of tbemplex IV subunit COXI were
found in 11 to 12% of all prostate cancer patieateened in one study and associated
with a complete loss of the COXI protein in tumotissues and an increased tumour
growth rate (Petros et al., 2005). It was shown thatations in mtDNA of complex |
(ND1) and lll (cytochrome b) led to a considerallecrease of both enzymatic
activities and to ROS overproduction in thyroid asaoma (Bonora et al., 2006). In
accordance, another study established that the It&tion confers a high metastatic
potential to its transmitochondrial cybrid and vessociated with a profound complex |
deficiency and an overproduction of ROS (Ishikawa dat, 2008). The
transmitochondrial cybrid cell model, in which nutmndria from tumour cells are
transferred into cells devoid of their own mtDNAJows to study mitochondrial
mutations independently of their nuclear DNA. Aretiresult obtained through a
cybrid model for the relevance of mtDNA mutations ¢ancer progression, was
provided by a mutant form of ATP6 (one of the twtDiNA-coded subunits of ATP
synthase), that showed the positive contributiothef ATP6 mutant to tumour growth
in mice through a decreased respiration rate, aehigroliferation in culture and a
significant resistance to apoptosis (Shidara e2@05).

To summarize, it seems that mitochondrial mutatineslinked to the tumoral progress
by determining several effects, like (i) the desee@f one or more respiratory chain
complex activities, (ii) an impaired electron fluborag the respiratory chain associated
with a reduced oxygen consumption, (iii) an insee@ the electron leakage outside the
affected respiratory chain leading to an incredsbeebasal ROS production and to the

subsequent alterations of mtDNA, (iv) a global stsice to apoptotic processes
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(Kwong et al., 2007) and finally (v) an enhancedlifaration and growth, instigating
the development of tumour formation (Lu et al., 200

To conclude, it appears clear that, among the cexnpktivities affected by both
nuclear and even more mitochondrial mutations, demp activity certainly holds a
central position, having its subunits genes thddsgy mutational rate of mtDNA (Fig.
7): in particular, ND1 gene is indeed a hotspotsimmatic changes with a ratio of over
3, meaning that mutations occur in this gene a¢guiency more than three times higher
than expected on the basis of the gene lengthr&dearch group showed and explained
the involvement and effects of MTND1 truncating mutationn vivo in oncocytic
tumors and also in the only existing cell modellgfroid oncocytoma, demonstrating as
the strong energetic impairment observed to becéssad to this mutation was due to
the complex | disassembly (Gasparre et al., 2000822010, 2011).
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Figure 7. Frequency ratio of mtDNA mutations occurring in teic-coding genes. (A) Soma

changes. (B) Potentially pathogenic changes asgbeeidby PolyPhen. Different shadescolour indicate
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overall number of mutations) over the percen of mtDNA occupied by the gene. Genes with val
below 0.7 have been arbitrarilyfined as “preserved from the occurrence of mutations’enehs gene

with values above 1.5 habeen dfined as “mutational hotspotdrom Gasparre et aBiochim Biophys

Acta.2011.
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COMPLEX | : STRUCTURE, ASSEMBLY AND FUNCTION

Complex 1, NADH:ubiquinone oxidoreductase, is thargest membrane protein
assembly known and has a central role in energgymtion by the mitochondrial
respiratory chain, providing about 40% of the premootive force required for the
synthesis of ATP. Eukaryotic complex | is locatedhe mitochondrial inner membrane
and protrudes into the matrix to form an L-shapedcsure (Fig. 8). This structure
consists of a hydrophilic peripheral arm with a toghobic membrane arm lying
perpendicular to it (Friedrich and Bottcher, 200B)e L-shaped structure is conserved
from NDH-1 in Escherichia coli, which is a homolog of eukaryotic complex |
(Guenebaut V, et al., 1998; Sazanov LA et al., 2008 bovine heart complex |
(Friedrich and Bottcher, 2004). Over the yearsemsive analyses of the intact complex
and various subcomplexes from bovine heart mitodharhave played an important
role in defining its subunit composition, espegidly Walker and colleagues. In fact,
they have resolved the intact complex I, with nyildhaotropic detergents, into four
subcomplexes,al I, Iy and k (Carroll et al., 2002, 2003; Sazanov et al 2000Qkir
separation has been carried out by three indepéenmdethods (1D SDS-PAGE, 2D
IEF/SDS-PAGE, and reversed-phase HPLC) and substegnalysis of the individual
subunits has been done by mass fingerprinting aassmspectrometry (Carroll et al.,
2003). Subcomplexal consisted of the hydrophilic peripheral arm plwstpof the
hydrophobic membrane arm, as subcompl@xcbntained the main part of the
membrane arm. However, some subunits have not foeen in either & or I and
have been together considered as subcompjaxter slightly different conditionsg |
dissociated to produce subcompl@xépresenting the hydrophilic or peripheral arm.
The further crystal structure defining of the hymhidic domain of complex | in the
bacteriumThermus thermophilus has allowed to make clear the relative positidnhe

8 subunits that compose the peripheral arm of cexpl(Sazanov et al., 2006). It
consists of 2 functional modules, an electron inpotlule (N module) and an electron
output module (Q module), and comprises all redctwa cofactors (Fig. 9). The N
module contains an NADH oxidation site with an FMhblecule as the primary
electron acceptor, while the Q module contains iguibone reduction site. Electrons

from the oxidation of NADH are transferred via FMINd a series of Fe-S clusters to
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ubiquinone. The membrane arm or the proton traasitme module (P module) contains
the 3 subunits, ND2, ND4 and ND5. They are highlgrophobic proteins, containing

around 15 transmembrane stretches, and are astybe subunits presumably

involved in proton-pumping activity (Mathiesen ét, 2002). However, how electron

transfer is coupled to proton translocation, eithyerdirect association through protein
binding sites or indirectly through conformatiordlanges of the enzyme, remained
obscure because of the lack of a high quality 3edisional structure of complex |

(Belevich et al., 2006; Faxen et al., 2005).
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Figure 8. Subunit composition of mammalian complex |. Sulmirtiave been grouped by the
subcomplex they have been identified in, after demp fractionation according to Walker and co-
workers (Carroll et al., 2003). The human subumitmenclature is shown in dark blue, the bovineiane
light blue. Subunits depicted with a * have beeporéed harbouring pathogenic mutations causing
complex | deficiency. From Janssen et al., 2006.
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Figure 9. Schematic graph of functional structure of mamnmatitochondrial complex |. The matrix
arm and the membrane arm form an L-shaped stryoiitie an angle of 100°. It is composed of three
conserved functional modules: the NADH dehydrogenamdule (N module), the electron transfer
module (Q module) and the proton translocation el module). The positions of 14 core subunits
are indicated, all of which are highly conserveshirprokaryotes to eukaryotdsrom Mimaki M et al.,
2011

More recently, the X-ray structures of the membrdamain of complex | front.coli

at a resolution of 3.9 A and of the entire comgléom T. thermophilus at a resolution
of 4.5 A were solved (Efremov et al.,2010). Thesdifigs defined the positions of all
of the subunits and revealed the long horizontaklical structure of the membrane
domain of complex I, suggesting that the confororal changes at the interface of the
matrix and membrane domains may drive the long dpaghic a-helices in a piston-
like motion, thereby leading to proton translocatitn addition, the low resolution X-
ray structure of mitochondrial complex | from thex@bic yeastarrowia lipolytica was
also reported (Hunte et al., 2010). The arrangemkfunctional modules suggested the
conformational coupling of redox chemistry with fmo pumping. A long helical
element in the NuoL/ND5 subunit stretches acrossniatrix face of the membrane
domain of complex | and is suggested to be critfoaltransducing conformational
energy to proton-pumping elements in the distal m®df the membrane arm.

Bovine and human mitochondrial complex | consisébfdifferent subunits, nuclear-
and mitochondrial-DNA coded, with a total molecweeight of ~980 kDa (Carroll et
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al., 2003, 2006). Generally, the NDU prefix (frorADH dehydrogenase ubiquinone)
Is used to distinguish the nuclear-encoded subdiruta those mitochondrial-encoded
ones, for which the ND prefix (from NADH dehydrogee) is used. Seven subunits,
ND1-ND6 and ND4L, are encoded by mitochondrial DM@ are homologs of the 7
membrane subunits in bacterial NDH-1, forming thajon part of the membrane
domain (Janssen and al. 2006; Hirst et al. 200Bg MtDNA-encoded subunits are
thought to be involved in proton translocation amiquinone binding (P module, Fig.
9), as their bacterial homologs have these funst{danssen and al. 2006; Friedrich and
Bottcher, 2004). The remaining 38 subunits are @addy nuclear DNA and imported
into the mitochondria (Hirst et al. 2003; Stojankavst al., 2003; Hoogenraad et al.,
2002). Seven of the nDNA-encoded subunits, NDUFWDUFV2, NDUFSI1,
NDUFS2, NDUFS3, NDUFS7 and NDUFS8, represent tbare’ subunits” in the
peripheral arm of complex |, catalyzing the oxidatiof NADH and electron transfer
(Janssen and al. 2006; Lazarou et al. 2009). Thd#ule, responsible for the oxidation
of NADH, includes at a minimum the NDUFV1, NDUFVBANDUFS1 subunits. The
Q module, responsible for the electron transfeulimuinone, includes at a minimum
the NDUFS2, NDUFS3, NDUFS7 and NDUFS8 subunits @fag al., 2007) (Fig. 9).
The remaining 31 nDNA-encoded subunits are refetoess “supernumerary” subunits
because they have no counterparts in NDH-1(Caebllal., 2006). Most of the
supernumerary subunits are not involved in enzyaraiivity, and their actual function
is still unknown. It has been proposed that theaeykic supernumerary subunits assist
in the biogenesis of the complex and support riscatral stability (Carroll et I., 2003,
Friedrich and Bottcher, 2004).

The assembly of a so large protein complex was dstrated to be a very complicated
process, especially due to its dual genomic contaold to the numerous subunits. The
nDNA-encoded subunits must assemble in coordinatidim the hydrophobic mtDNA-
encoded subunits to form the properly functioningtume complex; however, the
assembly pathway is still not completely understgodiumber of model systems have
been employed to study the assembly of the eukargotmplex, in various organisms
such as the green al@hlamydomonas reinhardtii, the fungudNeurospora crassa, the
nematodeCaenorhabditis elegans, and cultured mammalian cell lines. In particular,

assembly studies in rodent and human ND-subuniamiwell lines have demonstrated
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that subassemblies of nDNA-encoded subunits coeldidomed in the absence of
mtDNA-encoded subunits (Bourges et al. 2004; Piogaral., 2004). Cells lacking
mMtDNA, which lose all of the mtDNA-encoded subunitsaintain the levels of some
NDNA-encoded subunits of the peripheral subcompleat consists of, at least,
NDUFS2, NDUFS3 and NDUFS8 (Bourges et al. 2004)eréfore, it has been
suggested that the presence of the mtDNA-encodbdngs is not required for the
formation of the peripheral arm subcomplex (Potkirial., 2004). However, the entry
points of the mtDNA-encoded subunits in the assgrpbbcess and their roles in the
stability of the complex had remained elusive. Récesearch using several mouse cell
lines deficient for ND4, ND6, and a combination dd®and ND5 proposed five entry
points of the mtDNA-encoded subunits in the compleassembly process (Perales-
Clemente et al., 2010). This study defined a firstygooint for ND1 in the ~400 kDa-
subcomplex and a second entry point for ND2, NDd@ &4L in the ~460 kDa-
subcomplex. Subsequently, ND4, ND6 and ND5 appeatée incorporated into
complex in order at a third, fourth and fifth enpgint, respectively. Others interesting
studies on Chinese hamster cells clarified thetfan®of some subunits in the assembly
process (Scheffler et al., 2004), as that of NDUPAddava et al., 2002). The insertion
and stabilization of NDUFAL in the mitochondrialner membrane were shown to
require mtDNA-encoded subunits, in particular, N&#d ND6 (Yadava et al., 2004).
NDUFAL1 is also unstable in the absence of other brame domain subunits like
NDUFB11 (Scheffler et al., 2004). Chinese hamsteplilasts also revealed that the
stability of the peripheral arm subunits NDUFS1327, 8 and NDUFV1 and NDUFV2
were unaffected by the absence of NDUFAL, althohglo-complex | was not
assembled (Scheffler et al., 2004). These data sugiggt the peripheral arm can be
assembled in the absence of the membrane armasitailits assembly ilN. crassa
(Tuschen et al., 1990). NDUFA1 was also suggesiddrim an assembly intermediate
consisting of mtDNA- and nDNA-encoded subunits tmderve as a membrane anchor
to which membrane subunits are attached during mpassembly (Yadava et al.,
2004). Furthermore, recent bioinformatic analyséshe co-evolution of complex |
subunits coupled with yeast two-hybrid studies ade@ the interaction of human
NDUFA1l with ND1 and ND4, and the interaction of haimmNDUFC2 with ND4
(Gershoni et al., 2010). The findings reinforce thmportant role of NDUFAL in
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forming an assembly intermediate composed of mtCA-nDNA-encoded subunits.
The direct physical interaction between NDUFC2 Bii#l indicates that these subunits
may be incorporated into the membrane arm toge8iace ND1, ND4 and NDUFA1
are essential for the assembly of the membraneooomplex |, NDUFC2 may be also
important for the assembly process. Other supermampesubunits have also been
proposed to assist in complex | biogenesis and @tipps structural stability, as
NDUFS5, NDUFB7 and NDUFA8 (Szklarczyk et al., 201Besides, the assembly
process of a such large number of subunit intontlaéure holo-complex | involves a
number of assembly factors. These assembly faateraot part of the final structure of
the holo-enzyme, but they are involved in biogehgsbcess and are found in some
complex | intermediates, indicating their functionscomplex | assembly/stability.

To summarize research findings about the biogenesisomplex | in mammals,
Mimaki and colleagues recently (2011) proposed dhsembly model illustrated in
figure 10. In the early assembly stage, the cobeisiis NDUFS2 and NDUFS3 form a
small hydrophilic assembly complex, which furth&pands by the incorporation of the
other hydrophilic subunits, like NDUFS7, NDUFS8ddater, possibly NDUFA9. This
peripheral complex is anchored to the membranenbyassembly factors Ndufaf3 and
Ndufaf4 (Saada et al., 2009). The complex combwi#is a small membrane complex
containing the mtDNA-encoded ND1 subunit, for whi€&20orf7 is involved in
assembly or stability (Sugiana et al., 2008), tonf@ ~400-kDa assembly intermediate
(Lazarou et al.,2007). This ~400-kDa complex incogpes with a ~460-kDa membrane
complex containing ND3, ND6, ND2, ND4L and NDUFB6 form a ~650-kDa
complex under the presence of the assembly faabNdufafl, Ecsit and ACAD9
(Sugiana et al., 2008). With the association oftla@omembrane complex containing
ND4, ND5 and possibly NDUFC2, an ~830 kDa assenibtgrmediate is formed
(Gershoni et al., 2010). The assembly factor Ni@ufaassociated with this ~830 kDa-
complex and would be required in the late stag€loAssembly (Hoefs et al., 2009).
Meanwhile, a hydrophilic complex, the NADH: dehygemase module, is built with
some nDNA-encoded subunits that are directly orr@atly involved in binding and
oxidizing NADH. With the addition of the NADH:dehgagenase module and the

remaining subunits, the mature holo-complex | iseasbled. In this complicated and
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elaborate assembly process, more assembly facitdrsunknown functions including
Ind1, MidA, FOXRED1 and undiscovered proteins arelved.

NDUFS2, 3
NADH: dehydrogenase module
/ NDUFV1 NDUFS1
NDUFVZ NDUFS4
NDUFSZ, 3 NDUFV3 NDUFS6
_ NDUFST, 8 ) NDUFA12
( NDUFS2, 3
NDUFS7, 8
Matrix NDUFAS

NDA1

Intermembrane

Space ;lf)o‘to kDa 5:
: FC2.
NDUFS2,3  _.o0n -ss0kpa  NOUFCZ ppp e Complex |
NDUFS7.8 o0 NDaE. :g&%ﬁ- All ND subunits ~9880 kDa
NDUFAZ N gt NDUFAT, 2, 6, 10.
NDUFB6 NDUFBS,
NDUFA13.

Figure 10. The assembly model of human complex | biogenesis.iffitial core subunits NDUFS2 and
NDUFS3 form a small hydrophilic assembly complexjiah further expands by the incorporation of
hydrophilic subunits such as NDUFS7, NDUFS8 andrldDUFA9. This peripheral complex, together
with a small membrane complex containing mtDNA-atexb subunit ND1, forms a ~400 kDa assembly
2intermediate. This ~400 kDa complex incorporatéth \a ~460 kDa membrane complex containing
ND3, ND6, ND2, ND4L and NDUFB6 to form a ~650 kDanaplex. With the association of another
membrane complex having ND4, ND5 and probably NDPF&n ~830 kDa assembly intermediate is
formed. Meanwhile, a hydrophilic complex, NADH: gelnogenase module (N module) is assembled by
some nDNA-encoded subunits directly or indirectlydlved in binding and oxidizing NADH. With the
addition of the N module and remaining subunitgiisas the intermembrane space subunits NDUFA8
and NDUFS5), mature complex | is assembled. The sobunits are colored with red, the rest of nDNA-
encoded subunits are colored with blue. The mtDMAegled-subunits are in green. From Mimaki et al.,
2011.
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Mitochondrial diseases encompass a large assembiagmical disorders, commonly
involving tissues with high energy requirements;hstetina, brain, heart, muscle liver
and endocrine system. Moreover mitochondrial dysfons also contribute directly or
indirectly to the aging process and tumor formatidpproximately 300 mtDNA
alterations have been identified as the genetiseaf mitochondrial diseases and one-
third of these alterations are located in the cgpdgenes for OXPHOS proteins.
Although the understanding of the pathogenesis damondrial disorders has
improved considerably in last decade, the mosipgigimting area is the lack of efficient
treatments for the patients. Indeed, they are tsglted with vitamins and cofactors
mixture, which are harmless but largely inadequate inefficient (DiMauro and
Mancuso, 2007).

In last years a gene therapy was proposed anditrieidro as a potential therapeutic
option, namely allotopic expression. The term iatks the nuclear expression of the
corrected wild-type mtDNA subunit engineered fotaohondrial import, which once
transferred within mitochondria may compete witl ttative mutant mtDNA subunit to
complement the biochemical defect (Gray et al.,6)9%his strategy has been applied,
for example, to the LHON and NARP mutationst vitro studies have in fact reported
the successful complementation of the OXPHOS plypeotn transmitochondrial
cytoplasm hybrid (cybrid) cell lines (Manfredi ek,a2002; Guy et al., 2002), but
subsequent studies compromised these results (GssieCJ et al., 2003; Perales-
Clemente E et al., 2011), due to the lack of cotivigp evidence showing that the
mitochondrial defect complementation was reallyie@odbd by allotopic expression.
Perales-Clemente and co-workers demonstrated inhiaw an apparent functional
complementation can also depend on selection ofrt@vt mtDNA genomes. Our
research group has previously characterized cylwetl models harboring the
homoplasmic disruptive m.3571insTND1 mutation typical of oncocytic tumors,
showing that it provokes complex | disassemilblyitro (Bonora et al., 2006), and
vivo (Porcelli et al., 2010). We also demonstrated toabplex | disassembly induced
an increased-ketoglutarate/succinate ratio, due to inhibitidnNAADH oxidation to
NAD+, which ultimately leads to chronic HIkldegradation (pseudonormoxia) and to
a reduced tumorigenic potential in two differenpdyg of cancer, such as osteosarcoma

and thyroid carcinoma. The m.3571ins{TND1 mutation exhibits a threshold effect on
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tumor development, because reduction of tumorigenssdisplayed only when the
mutation load is above a well defined value. Thésdings allowed us to define
MTND1 gene as a novel type of tumor-implicated gene,athby us the double-edged
oncojanus (Gasparre et al., 2011). Indeed, whe® fhiBsCMTND1 mutation load is
below the threshold, we demonstrate that complexalssembled, HIFlis stabilized
andin vivo tumor growth of osteosarcoma and thyroid carcin@smacreased. We show
in this way the pivotal role of complex | duringntor onset in at least two tumor
models.

We believe that the rescue of complex | assembty fanction in our homoplasmic
cybrid model, by allotopic expression of the wiyjghé ND1 protein, can be considered
indisputable. That because m.3571iNgKTND1 mutation causes the translation of a
truncated ND1 subunit, then degraded, and forrégmson unable to compete with the
nuclear-coded one, so avoiding ambiguous resuksidBs, we took advantage by a
previously optimized combination of methods for tHetection of low levels of
m.3571insC MTND1, to ascertain the mutation reversion, thus allgwins

to discriminate false positives allotopic clonesnfrrevertants. Achieving this goal
would allow us to obtain two important results, rdynto make finally feasible and
reproducible the allotopic expression technique &ad to further confirm our previous

results on complex | implication in tumorigenesiegess.
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Materials and methods
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Cdll cultures and growth conditions

Cybrids OS-93 bearing the m.3571insCMiAND1 gene (93% of mutation load) were
generated from human osteosarcoma 143B.TK cells @edliously characterized
(Porcelli et al., 2010). 0S-88" cell clone was obtained after stable transfectib®S-
93 with recoded ND1 construct. A previously chasaeed (Porcelli et al.,, 2010)
parental control cybrid (CC), homoplasmic wild-tyfm the m.3571insC, was also
used. OSC-93 and OSC3 were derived from xenografts after in vivo injectiof
0S-93 and 0S-9%*' cells, respectively. All cell lines were grown Dulbecco's
modified Eagle's medium (DMEM) with 10% FBS, 2 miholL-glutamine, 100
units/mL penicillin, 100ug/mL streptomycin, 0.1 mg/mL bromodeoxyuridine, &
pug/mL uridine. Cultures were grown in a humidifietubator at 37° C with 5% GO

All cell lines were authenticated by mtDNA genotygi Occurrence of the m.3571insC
mutation and accurate quantification of heteropladevels as previously described
(Kurelac et al., 2010) were verified before ancratixplant as well as before each in

vitro experiment.

ND1 construct and clone stable generation

Human mitochondriaTND1 gene was nucleus-recoded and engineered in p3XFLAG
CMV-14 vector in the Laboratorio di Genetica Med{&ant'Orsola Hospital, Bologna).
Recoded ND1 construct was transfected in OS-93linelland transfection was carried
out with Lipofectamine2000 (Invitrogen, Milan, Kal following manufacturer’s
instructions.

After 24h, cells were incubated in a medium contgrthe 500ug/ml G418 antibiotic
and ten cell clones were isolated. These clones weubated in glucose-free DMEM
supplemented with 5 mmol/L galactose, 5 mmol/L Naipate, and 10% FBS
(DMEM-galactose) for 24h, in order to select onpde cells able to use oxidative
phosphorylation through the restore of complex deasbly and function. Under this

condition, two cell clones were isolated, namely@3°*®and 0S-93°*€,
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Cdll viability measurements

Cells (3x10) were seeded into 24-well plates and, after 24s)dncubated in DMEM-

galactose. Cell viability was determined by theodohetric sulforodhamine B (SRB)

assay, following the manufacturer’'s conditions.eByi, at the end of incubation time,
cells were fixed with 50% trichloroacetic acid (TC#r 1 hour at 4°C, washed 5 times
with H,O and finally dried for 1 hour at room temperatiells were then stained with
SRB 0.4% diluted in 1% acetic acid for 30 min abmotemperature, washed 4 times
with 1% acetic acid, and disrupted with 10 mM TH&! pH 9.8. The absorbance of
SRB was detected with Victor3 plate reader (PeBdmer) at the wavelength of 560

nm.

D SPAGE and Western blotting

Digitonin-isolated mitocondria were prepared fromx 8.C cells and resuspended in
PBS containing 2% DDM. After 15 min of incubation ice, the sample was
centrifuged for 30 min at 13 000 g (4°C) and thpesnatant was mixed with an equal
volume of tricine sample buffer containing 2% (v2dmercaptoethanol. The mixture
was kept at room temperature for 60 min. Proteihu@ protein/lane) was separated on
10% polyacrylamide gel and transferred on nitratede membrane (Bio-Rad) that
were subsequently incubated with primary antiboglirast ND1 (1:1000, a gift from A.

Lombes, Unite de Recherche INSERM 153, Hospitalad8alpetriere, Paris, France),
NDUFV1 (1:1000, Sigma-Aldrich) and VDAC (1:1000, d¥ision, Mountain View,

CA, USA). Peroxidase-conjugated anti-rabbit IgGecandary antibodies were used
(1:2000, Jackson Immunoreaserch). Chemiluminescsigoals were measured with a

Kodak molecular imaging apparatus (Kodak, Rochebbgr USA).
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2D Blue Native-SDS PAGE and western blotting

Strips from the first dimension Blue Native eleginoresis were used for 2D-SDS
electrophoresis as reported in (Calvaruso et althbtls 2008). Western blotting

analysis was performed as above.

Clear Native Electrophoresis (CNE) and in gel activity assay

Digitonin-isolated mitochondria were solubilizeding 0.4% (w/v) n-dodecy$-D-
maltoside (DDM) and 100ug of proteins were sepdratn 5-13% gradient
polyacrylamide gel (Wittig et al., 2006). Comple¥dA was determined by incubating
the gel with 2 mM Tris-Cl (pH 7.4), 0.15 mM NADHpd 2.5 mg/ml MTT at room
temperature for 1 h. The reaction was stopped B0& methanol and 10% acetic acid,
and the gel was analyzed with a Kodak molecularginta apparatus (Kodak,
Rochester, NY, USA).

ATP synthesis measurement

The measurements of mitochondrial ATP synthesisewd&wsne in cells grown in
DMEM-glucose according to Manfredi et al. 2002bthaininor modifications. Briefly,
after trypsinization, cells were resuspended (74i0) in buffer A [10 mM KCI, 25
mM Tris-HCI, 2 mM EDTA, 0.1% bovine serum albumirf mM potassium phosphate,
0.1 mM MgCh (pH 7.4)], kept for 15 minutes at room temperatared then incubated
with 50 pg/mL digitonin for 1 min. After centrifugation, theells pellet was
resuspended in buffer A and aliquots were takeméasure ATP synthesis, protein
content, and citrate synthase activity. Aliquotscells were incubated with 5 mM
malate plus 5 mM pyruvate (complex I-driven sulieBnin the presence or absence of
10 pg/mL oligomycin, or with 10 mM succinate pluspg/mL rotenone (complex II-
driven substrate). The reaction was started bytiaddof 0.2 mM ADP in the presence
of luciferine/luciferase, as detailed by the Sigmddrich kit manufacturer’s
instructions, and chemiluminescence was determameda function of time with a

luminometer. After addition of 10 mM oligomycin,efchemiluminescence signal was
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calibrated with an internal ATP standard. The HtATP synthesis was expressed as a
ratio of citrate synthase activity (Trounce et dl996). Protein concentration was
determined according to Bradford (Bradford, 1996).

In vivo studies

Cells (3x16) were suspended in 0.2ml sterile PBS and injestgidicutaneously in
immunodeficient 4-7 week-old athymic Crl:CDFbxn1™™ mouse strain (referred to
asnude mice, purchased from Charles River, Italy). Exmemts were authorized by the
Institutional Review Board of the University of Bgina and performed according to
Italian and European guidelines. Individually taggérgin female mice (5-15 per
experimental group) were used. Tumor growth wassaesl with a caliper; volume was
calculated asqv(a*b)]*/6, where a=maximal tumor diameter, and b=tumomeier
perpendicular to aLungs were stained with black India ink and fixed Fekete's
solution to better outline metastases, which wérentcounted using a dissecting

microscope.

I mmunohistochemistry

Immunohistochemical staining (IHC) was performedoanaffinized xenograft sections,
which were dewaxed, rehydrated, and retrieved usifigs-EDTA pH 9.0 solution (20
min at 98°C). Endogenous peroxidise activity wagrghed with a methanol{B,
1,5% solution.

Primary antibodies against MTND6 complex | subyititrogen, Milan, Italy) and
HIF1la (Upstate Biotech, Billerica, MA, USA) were incubdtovernight and processed
with a non-biotin-amplified sytem (NovoLink, Milanjtaly) according to the
manifacturer’s instructions. The reaction was depetl with 3-3’-diaminobenzidine
tetrahydrochloride/kD, solution.Sections were counterstained with hematpxl

dehydrated and mounted in Bio-Mount (Bio-Opticalawj Italy).
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7CA metabolites extraction and measurement

Metabolites a-KG and SA were extracted from tumors (35nig)cold methanol
/chloroform/water in a ratio of 2:1:0.7 in preserafe *C, succinic acid as internal
standard. Sample was maintained on ice for Snortexed twice and centrifuged for
5min at 3000rpm at 4°C. To the upper phase, chtonafvater in a ratio 1:1 was added
and sample was vortexed and centrifuged for 5mB080rpm at 4°C. The upper phase
was separated from the lower organic phase andhiyogd. Samples were then

analyzed by mass spectrometry.

Electron microscopy (EM)

Xenograft biopsies were immediately collected anocessed, as previously reported
(Ambrosini-Spaltro et al., 2006). Sectiongui) were stained with 1% toluidine blue
for morphology control and EM area selection. Té@ctions were observed with JEM-
1011 Transmission Electron Microscope (Jeol, LEYr each xenograft at least two

different areas were analyzed to rule out intratuh@terogeneity.

Pimonidazole staining

Animals were injected intraperitoneally with 60mgy/kimonidazole (Hypoxyprobe-1
Plus Kit, HPI, Burlington, MA) 3h prior to sacric Xenografts were snap-frozen and
cut in 1Qum slices. Tissues were fixed for 20min with coletaoe, kept for 1h with
PBS containing 5% FBS and incubated for 1h with G=NTAb1 antibody (1:10).
Fluorescence was visualized with a digital imagisgstem using an inverted
epifluorescence microscope with 63X/1.4 oil objeeti(Nikon Eclipse Ti-U, Nikon,
Japan) at 488nm. Images were captured with a backinated Photometrics Cascade
CCD camera system (Roper Scientific, Tucson, AZ,AUSNnd elaborated with
Metamorph acquisition/analysis software (Univetsaging Corp., Downingtown, PA,
USA).
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Fluorescent PCR

Fluorescent PCR reaction was performesihg AmpliTag Gold polymerase (Applied
Biosystems, Foster City, CA, USA) with a fluoresitgnabelled forward primer
(Kurelac et al, 2011). PCR products were loadead @30 DNA Analyzer together
with GeneScan 500 Liz Size Standard following thanofacturer’s instructions.
Analysis was performed by GeneMapper v.3.5 and peaimeters were evaluated by

Peak Scanner (Applied Biosystems, Foster City, G3A).

Denaturing High Performance Liquid Chromatography

WAVE 208 Nucleic Acid Fragment Analysis System {I$genomic, Omaha, NE) was
applied for the mutant load evaluation with DHPIRCR reaction was performed with
AmpliTaq gold polymerase (Applied Biosystems, Fos@bty, CA, USA) using a
forward and reverse primers and the amplificatiovdpct was separated using 61C1

separation temperature (Kurelac et al, 2011).

RNA extraction and Real Time analysis

RNA was extracted from snap-frozen tissues with &fyePlus Mini kit (Qiagen,
Milan, Italy) and cDNA was prepared using Supendctil Reverse Transcriptase
(Invitrogen, Milan, Italy) following manufacturergistructions. Expression @LUT-1,
VEGF-A andLDHA was analyzed with Real Time PCR using Sybr Gréemistry and
7500 Fast Real Time System (Applied Biosystemgragiously described (Gasparre et
al, 2011).

Satistics

SigmasStat 3.5 software was used for statisticalyarsaapplying Student’s t-test unless

otherwise indicated.
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Allotopic MTND1 expression strategy

Human mitochondriaITND1 gene was nucleus-recoded and engineered in p3XFLAG
CMV-14 vector in the Laboratorio di Genetica Med{&ant'Orsola Hospital, Bologna).
To optimize the efficiency of allotopic expressitine ND1 mRNA was targeted to the
mitochondrial surface, thus ensuring tight couplingtween both translation and
translocation processes of the highly hydrophobicresponding polypeptide. To
achieve that, the engineerd®1 gene was combined with tles-acting elements of the
COX10 gene, which ensures the efficient sorting of tHRNAs to the mitochondrial
surface (Sylvestre J. et al., 2003; Bonnet C..e2807; Bonnet C. et al., 2008). Hence,
the MTS (mitochondrial targeting sequence) and COX1UTR (untranslated region)
were added in frame at the N- and C-terminal of phatein, respectively (Fig.11).

Moreover, a FLAG epitope was appended at the Chterim

5
S

p3XFLAG-CMV-14

COXTOMTg

Figure11l. Schematic ND1 construct.
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Allotopic ND1 expression restores the energetic efficiency in cells bearing
m.3571insC ND1 mutation

The ND1 construct was transfected in OS-93 osteossza cybrid line, bearing
homoplasmic m.3571ins@GITND1 mutation. This frame-shift mutation causes the
translation of a truncated ND1 protein, which idbseguently degraded and induces
complex | disassembly. Therefore, due to the |dakespiratory chain complex I, OS-93
cell line is characterized by a severe energetgairment (Porcelli AM et al., 2010).
After transfection, ten stable cell lines were @&et by antibiotic selection and then
incubated in a glucose-free medium containing ga&s; in order to select those cells
with an efficient oxidative phosphorylation, resulf from successful restoration of

complex | function/assembly. Two cell clones, 0383 and 0S-953°*¢

, were
significantly more viable in galactose medium tl@8-93, suggesting their capacity to
rely solely on oxidative phosphorylation for enengyduction (Fig. 12). Conversely,
we previously demonstrated that OS-93 cells ardlent® grow in galactose medium,
(Porcelli AM et al. 2010).

The precis?MTND1 mutation load was measured by fluorescent PCReldarl. et al.,
2011), in collaboration with the Laboratorio di @&&na Medica. Thé/TND1 mutation
was virtually homoplasmic in 0S-93 and 0S'93®, whereas the 0S-9%3"C clone
was a revertant (Fig.13), and therefore it waswdead by further analysisMoreover,
by sequencing the whole gene, clone was repeatamifirmed not to accumulate
additionalMTND1 mutations that may complement the m.3571insCxanglevia the
recovery of the reading frame.

In order to verify that ND1 protein was translataad imported into mitochondria,
Western blot analysis was performed on control (Q0%$-93 and 0S-98* cybrid
clones. The ND1 protein was detected in the mitadnal fraction from CC and OS-
93" only (Fig.14A), clearly indicating successful atiptc expressionMoreover, to
assess whether the complex | assembly was resiore@S-93"°* cybrid clone,
mitochondria were separated by 2D BN/SDS PAGEh&rrprocessed by western blot
and incubated with antibody against ND1 (Fig. 14BYl the nuclear subunit NDUFV1
(Fig. 14C). Both subunits were detected in 08293n the fully assembled complex .
The complex | function was then determined by thgel activity (IGA) assay. As

shown in Fig. 14D, the complex | IGA was fully restd upon ND1 allotopic
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expression. Finally, the rate of rotenone-sensitAV€P synthesis was markedly
increased in 0S-98%, clearly indicating that complex | function was reeced
(Fig.15). Conversely, no difference in complex fiven synthesis was observed,

suggesting that the effect of allotopic expressias specific for complex | (Fig.15).
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Figura 12. Viability in galactose medium. The cell lines were incubated in DMEM containigggactose
for indicated times and viability was determined®i¢B assay. Data represents the media + SEM (n=4)
and statistics was defined by STUDENT t-test (p5R,0
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Figura 13. ND1 mutation heteroplasmy level measured by DHRQE fluorescent PCR.
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Figura 14. Complex | subunits content and in-gel activity (IGA) of isolated mitochondria fractions. A)
Western blot for ND1 protein in CC (cybrid controlpS-93 and 0S-98". VDAC was used as a

mitochondrial loading control. Western blot anadysf complex | assembly using ND1 (B) and NDUFV1

(C) antibodies, respectively. D) Complex | IGA@g®n CC, 0S-93 and 0S 93,
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Figura 15. Mitochondrial ATP synthesis by complex | (upper) and by complex Il (bottom) swa
determined in digitonin-permeabilized cells in gnese of pyruvate/malate and succinate, respectively
Rates, normalized by citrate synthase (CS) actofityorresponding sample, are mean4) + SD.

ND1 allotopic expression rescues tumorigenic potential of OS-93 cell line

We previously demonstrated that m.3571ifdCND1 in OS-93 cells hampers tumor
growthin vivo due to the complex | disassembly and consequdntoHdestabilization
(Gasparre et al., 2011).

To assess if then vivo tumorigenic potential of OS-93 cells was rescuedNiy1
allotopic expression and complex | assembly/fumctecovery, we injected OS-93 and
05-93"! in nude mice. 0S-93™-derived tumors grew significantly larger than O%-9
derived ones (Fig. 16A).

No other mutation was detected in xenografts umeeequencing the whole mtDNA
apart from m.3571insGMTND1. Complex | IGA was detected only in xenografts
derived from OS-F¥* cells but not in 0S-93 derived tumor. These resalearly
demonstrate that complex | assembly and functierrequired to increase tumorigenic

potentialin vivo.
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Complex | recovery by ND1 allotopic expression hampers oncocytic

transformation

The m.3571insCMTNDL1 is a hallmark of oncocytic lesions together wiimitar
truncating mutations mainly occurring in homoplas(Bpnora et al., 2007; Porcelli et
al., 2010). We demonstrated that this mutation uffisent to induce oncocytic
transformation when above threshold (disassembdeaptex 1), but not when below
threshold (complex | is properly assembled and ableope with tumor energetic
requirements) (Gasparre et al., 2011).

Then we verified whether an inactive and disassethlsbmplex | was required for
oncocytic transformation. Indeed, electron micrgscanalysis showed increased
mitochondria number and swollen morphology (Fig.@i)xenograft of OS-93, that is
typical of an oncocytic look. These data therefooafirmed that the presence of a

functioning complex | hampers oncocytic transforiorat
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Figura 16. A. Tumor growthgenerated by injection of (-93 and OS-9¥* in nude mice. Data a
means of two experimeneachwith 5 animals £ SEM; *, P<0,01. EEomplex | IGA on 0S-93 and OS-
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Figura 17. Electron microscopy on xenografts after explafd3. and (11) indicate mou-xenograft
number Oncocytic phenotype is apparin OS93(4) tumor by increased mitochondria number, s
mitochondria morphology and disorganized cri (arrows indicate some exampl. That set up is not
present in allotopic tumors, whose C-93'°Y(11) is a representative case.
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Hifle-stabilization isinvolved in incresead tumor growth

In order to assess whether the increase of tumudgeotential of OS-9%* in vivo
requires HIF& stabilization tumor growth, immunohistochemistry analysis was
performed on xenografts. Staining of MTND6 complesubunit and HIFd was
positive only in 0S-9%-derived tumors, whereas it was negative in OS-&3+dd
one (Fig. 18A) indicating a strong association lesw HIFL and MTND6 expression
(Fig.18B). As we previously showed, Hikldestabilization due to the complex |
disassembly, is associated to an imbalance of @A @-ketoglutarate dKG) and
succinate intermediates (Porcelli et al., 2010sgaare et al., 2011). This imbalance
favours accumulation of the first one, thus inciegsthe ratio aKG/succinate,
promoting HIFb-hydroxilation by PHD and consequently causing gtsteosomic
degradation. To verify whether this imbalance wagerted by ND1 in vivo allotopic
expression, thenKG/SA ratio was determined aftemetabolites extraction from
xenografts and measurement by mass spectrome{i@/SA ratio was significantly
higher in 0S-93 xenograft compared to O$%3ones (Fig. 18C), demonstrating that
the balance of these TCA cycle metabolites dependproper activity of complex I.
Besides, to evaluate whether HéFktabilization in OS-9%* tumors could have
induced some functional consequences on downstgeamm expression, the expression
of its responsive genes was determined. An incteaspression of glucose transporter-
1 (GLUT1), vascular endothelial growth factor NEGFA) and lactate dehydrogenase
A (LDHA) was detected in these tumors only (Fig.19A). Mesez, staining with
hypoxic marker pimonidazole (Chen Y. et al., 208/8)wed some greater hypoxic areas
in 0S93-derived small tumor in comparison to th&9@"™' derived larger ones
(Fig.19B), highlighting that HIFd stabilization was prevented in complex | deficient
tumors, despite to a real hypoxic condition.
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Biochemical effect of ND1 allotopic expression isalso preserved in ex vivo cell lines

To point out and further verify ND1 allotopic expston effect, additional analysis has
been made also ix vivo cell lines. Cell lines were isolated from singkry small OS-
93 derived xenograft, namely OSC-93(4), and frone flour largest OS-9%8*
xenografts, namely OSC-¥3(11), (12), (17) and (19). It was verified by F-P@fat
they were not revertants and then they were bioataiy analyzed. During incubation
in galactose medium, the cell viability was sigraftly lower for OSC-93(4) compared
to OSC-98PY(11), (12), (17) and (19) (Fig. 20A), whereas westelot experiments
showed ND1 protein presence only in mitochondniattion of OSC-9%¥(11), (12),
(17), (19) (Fig. 20B). Unfortunately, cyclic heaptasmy level measuring by F-PCR
showed that OSC-88'(17) and (19) was turned into revertants, probahlg to a
mutation shift versus wild type occurred during ggbwth in medium culture. For this
reason, they were not considered for further amalylmnstead, OSC-93(4), OSC-
93"P%(11) and OSC-9¥*(12) cell lines were analyzed by 2D BN/SDS PAGE agd
IGA experiments to verify that ND1 allotopic pratevas correctly inserted in complex
l. Figure 21 shows that complex | was assembled ative in OSC-9%*(11) and
0SC-93P%(12) but not in OSC-93(4), demonstrating that alit expression was

maintained also in ex-vivo cell lines.
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In the present study we achieved two importantgaalrelation to the applied strategy
and to the experimental results. Allotopic expm@sstrategy was improved and further
optimized in last decade with the aim to perfectpassible gene therapy for
mitochondrial diseases by biochemical defect complgation. Despite this strategy
has been successfully demonstrated in yeast, inmadian mitochondria results are
very controversial. In fact, available evidencéased only on partial phenotype rescue,
and not on the demonstrated incorporation of atfanal protein into respiratory
complexes. Indeed, this apparent functional cometgation has been shown also
depend on selection of revertant mtDNA genomesafPgiClemente et al., 2010).
Among all, the main critical issue for the allotogitrategy is certainly the difficult and
inefficient mitochondrial import of such highly hyabhobic proteins (Oca-Cossio J. et
al., 2003).

In this study, we undertook a different approactsatve the issue of feasibility of the
allotopic strategy for gene therapy of mtDNA muias and to assess its efficiency in
truly complementing the biochemical dysfunction. Wek advantage of the previously
characterized cybrid cell models harboring the hplagmic disruptive m.3571insC
MTND21 mutation shown to induce complex | disassennbljitro andin vivo (Gasparre
at al., 2011). In order to complement the homoplasm3571insC, causing translation
of truncated protein thereafter degraded, we ret®iEND1 for cytosolic translation
(nND1) by adapting codon usage wmevitro site-directed mutagenesis. The eukaryotic
expression construct was generated with the aifadiitate nND1 mRNA targeting to
the external mitochondrial membrane according tari& and co-workers (Bonnet et
al.,, 2007). The 5’UTR containing a MTS of nucleasxded COX10 mitochondrial
subunit of complex IV was cloned upstream of anérame with nND1, while 3’'UTR
of COX10 was cloned downstream. Previously usedoveavith a built-in MTS, in
fact, are not suitable as they are designed forixnabluble, not for membrane
embedded proteins. After transfection of the camstin our cybrid model OS-93,
knocked for ND1, and after following selection aftually positive clones by antibiotic
and by galactose medium, we addressed the issgenetic revertants. Sensitivity of
Sanger sequencing was not sufficient to excludeléwels of wild-type mtDNA copies,
as the threshold for phenotypic effect of disruptnautations has been shown by us to

be quite high (Gasparre et al., 2011). Therefarette first time we here implemented
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a previously optimized combination of methods fbe tdetection of low levels of
m.3571insC (Kurelac I. et al., 2011), an analyls& has lacked so far, in the attempt to
ascertain the mutation reversion (Perales-Clemental., 2010). We obtained the
precise load of mutant mtDNA by fluorescent PCR eonfirmed it by denaturing high
performance liquid chromatography in the selectiedhas, discriminating a revertant
one (not further considered) and a positive allmatame. First, we detected correct
synthesis and import to mitochondria of nNND1 pnotexclusively in allotopic positive
clone 0S-98°! by Western blot analysis on mitochondrial fracfioising a specific
ND1 antibody. Moreover, in order to verify that thé& D1 subunit was assembled
within complex |, we performed a two-dimensional@&INative SDS-PAGE followed
by western blotting and specific immunodetection cafmplex | subunits. nND1
immunoreactivity was associated with the fully askked complex | in the positive
control (CC), whereas no immunoreactivity was obserin OS-93; finally, the anti-
ND1 in the OS-9%* showed the presence of the subunit in the fullyeasbled
complex. Further confirmation of the recovery ofmmex | assembly came from the
incubation with the anti-NDUFV1 nuclear subunitibatly, which immunoreactivity
was associated with the fully assembled complexthe positive control whereas in the
0S-93 the NDUFV1 subunit was present in the monamierm and in the small
subcomplex, but not in the fully assembled complexinally, NDUFV1 in 0S-953°*
was present in the monomeric form, in the subcorpled also in the fully assembled
complex. Moreover, complex | IGA band, detectedlgsigely in CC and in 0S-9%8",
but not in OS-93, proved that NND1 restored noy @amplex | assembly, but also its
enzymatic activity and this was further confirmgdnbeasurement of rotenone-sensitive
ATP synthesis.

These results provide solid evidence that allot@xgression of ND1 led to its import
within mitochondria and, more importantly, allowéal re-expression of assembled
complex |, which could not occur with the nativetant ND1 subunit, being truncated,
degraded and for this reason not expressed. Fustieedny sequencing the whole gene,
cell lines were repeatedly confirmed not to accwtauladditionaMTND1 mutations
that may complement the m.3571insC e.g. via thevexy of the reading frame.
Moreover, the necessary exclusion that the re-adseihcomplex | might have occurred

because of low, under the detection-level amouhteeertant wild-type mtDNA was
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reasonably achieved by the implemented sensitipeoagh for heteroplasmy detection
(Kurelac | et al., 2011).

These results offer promising expectations becatisally demonstrating without
ambiguity that allotopic strategy is feasible arféaive in correcting the OXPHOS
defects due to mtDNA mutations, they representsa §tep for a future clinical trial in
patients. Furthermore, despite the limited efficierof mitochondrial import of the
allotopically expressed protein, low levels of mefgasmy are known to be sufficient to
complement the OXPHOS deficiency due to mutant mA{Rark and Larsson, 2011);
thus, easily accessible tissues, as it is the éasexample, for retinal ganglion cells in
Leber’'s Hereditary Optic Neuropathy (LHON), are guutally suitable to the allotopic
strategy using safe and efficient vectors.

The second important goal of the present studgsifiom the results of 0S-93 and OS-
93""! cell lines injection in nude mice. We have presigudemonstrated that
m.3571insC, following a threshold effect, hampargivo tumor growth of cancer cells.
Indeed, we identified a precise threshold for sonthation, sufficient to increase the
KG/SA ratio, thus inducing HIRildestabilization, and ultimately triggering growt
arrest. We previously provided the proof of prieipegarding the antitumorigenic
effect of a mtDNA truncating mutation by using auique cell model (Porcelli et al.,
2010) and then experimentally reinforced that thloweinjection of highly isogenic
clones OSC-78 and OSC-83, carrying a mutation loaldw and above threshold,
respectively. In agreement with our previous obatons in patients with oncocytic
tumors (Porcelli et al., 2010), tumor xenograftargg a mutation above threshold
displayed pseudo-normoxia, showing Hifdestabilization despite being truly hypoxic.
We have shown that this mechanism, tightly linkedhe o-KG/SA imbalance as it
occurs in SDH and FH mutated tumors but in oppdditection, may be sufficient to
drive the tumor into a "blind alley" due to bothspaatory impairment and lack of
HIFlo-dependent glycolysis induction (Gasparre et a0l11b). Accumulation of
NADH and inhibition ofa-ketoglutarate dehydrogenase are likely the mastigible
mechanisms for the-KG/SA ratio increase as a consequence of compigsaksembly.
This imbalance in the TCA cycle intermediates megyde either boost the PHD affinity
for molecular oxygen or diminish the availability the main allosteric inhibitor of
PHD, that is SA, thus determining Hiktlestabilization even during hypoxia.
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The most important consideration come from the ngfroassociation between
homoplasmic disassembling mtDNA mutations, such tles m.3571insC by us
investigated in the present study, and the mostlyign oncocytic tumor phenotype.
Patients with oncocytic tumors (epithelial derivéaimors) rarely present highly
aggressive, metastatic cancers; in the majoritgases, these tumors are surgically
removed because of hindrance at the site of oaucereOur findings provide an
explanation for this clinical observation throughlFix destabilization, strictly
correlated to complex | disassembly and, in tuatklof activation of downstream
pathways activation implicated in glycolytic metéboshift (Warburg effect) and
angiogenesis. Our studies in mice have shown tipain trespassing the threshold, the
mutation is sufficient to trigger oncocytic transfation even in a nonepithelial cancer,
highlighting the importance of homoplasmy of dmive mtDNA mutation as
prognostic markers.

Obtaining an allotopic positive clone, in which galex | assembly and function were
restored by complementation of m.3571insC with wviyjde NnND1 expression, has
given us the unique opportunity to further confitmse important previous results. We
expected to observe the rescue of tumorigenic piatenof OS-93 cell line after
expression of NND1 protein, as a consequence oplexm re-assembly and function.
Accordingly, injection of two cell lines 0S-93 a@-93"*in nude mice displayed the
rescue of tumor growth for the allotopic one onily, which complex | was fully
assembled and active, as confirmed also by th&sBldssay on xenografts. Moreover,
electron microscopy did not show oncocytic phenety;m 0OS-93'—derived
xenografts, confirming that functioning complex drhpers oncocytic transformation.
As expected, HIFd was shown stabilized by IHC in 0S™3-derived xenografts, and
this was confirmed also by a loweKG/SA ratio and by down-regulation of its
responsive genes (LDHA, VEGF, GLUT1). In additiome showed that allotopic
expression of ND1 was preserved also in cell lisegated from OS-9%-derived
xenografts, such as its incorporation in a funétigrcomplex I.

Taken together, these results provide unambiguondsather evidence about the role
of complex | in the tumorigenesis process, duddalose relation with HIF, which is
considered one of the master regulators of the boktaadaptation needed for cancer

cells to progress to malignancy. Furthermore, a ifeportant implications stem from
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these results, concerning some possible clinicaliegiions, arising, for example, from
the translation of a genetic into a metabolic sbifthe a-KG/SA ratio towarda-KG,
which supports the use of cell-permealold&KG derivatives in anticancer therapy
(MacKenzie et al., 2007). Other strategies may mgei on induction of complex |
disassembly in patients not harboring mtDNA mutadiodegradation of assembly
factors, or even modulation of mitochondrial bioggs to induce both the mutation and
its accumulation. Moreover, induction of oncocyti@nsformation could be envisioned
as an approach to reduce tumor growth and abajigreasive and metastatic potential.
Our hope is that the results achieved in this stuoiy allotopic strategy and ita vivo
applications, can open new effective perspectiveslioical therapy of deseases caused

by mtDNA mutations, both degenerative deseasesuandrs.
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