
Alma Mater Studiorum - University of Bologna

DEIS - DEPARTMENT OF ELECTRONICS, COMPUTER SCIENCE AND SYSTEMS

PhD Course in Electronics, Computer Science and Telecommunications

CYCLE XXIV – Scientific-Disciplinary sector ING-INF /01

MULTI-PROCESSOR SYSTEMS-ON-CHIP

WITH CONFIGURABLE HARDWARE

ACCELERATION

Candidate:

DAVIDE ROSSI

PhD course coordinator: Advisor:

PROF. LUCA BENINI PROF. ROBERTO GUERRIERI

Co-Advisor:

 PROF. ELEONORA FRANCHI SCARSELLI

Final examination year : 2012

2

3

Keywords:

Multi-Processor Systems on Chip

Reconfigurable Computing

Structured ASIC

HW/SW Co-Design

Digital Signal Processing

4

5

List of Abbreviations

PDA Personal Digital Assistant

ASSP Application Specific Signal Processor

DSP Digital Signal Processor

ASIC Application Specific Integrated Circuit

FPGA Field Programmable Gate Array

IP Intellectual Property

CGRA Coarse Grain Reconfigurable Array

ALU Arithmetic Logic Unit

NRE Non Recurrent Engineering (Costs)

MPSoC Multi-Processor System-on-Chip

SIMD Single Instruction Multiple Data

VLIW Very Long Instruction Word

RTOS Real Time Operating System

RISC Reduced Instruction Set Computer

CPU Central Processing Unit

SRAM Static Random Access Memory

DFG Data Flow Graph

GPP General Purpose Processor

PE Processing Element

LUT Lookup Table

RC Reconfigurable Cell

PiCoGA Pipelined Configurable Gate Array

PAE Processing Array Element

FIFO First In First Out

MPI Message Passing Interface

CUDA Computer Unified Device Architecture

GP-GPU General-Purpose Graphic Processing Unit

PPE Power Processing Element

SPE Synergistic Processor Element

FLOPS Floating point Operations Per Second

RTL Register Transfer Level

VHDL VHSIC Hardware Description Language

6

VHSIC Very High Speed Integrated Circuits

MAC Multiply And Accumulate

ISA Instruction Set Architecture

NML Native Mapping Language

PN Petri Network

KPN Kahn Process Network

TCM Tightly Coupled Memory

DEB Data Exchange Buffer

CEB Configuration Exchange Buffer

XR Exchange Register

NoC Network on Chip

PLL Phase Locked Loop

GALS Globally Asynchronous Locally Synchronous

PCM Pre-fetch Configuration Manager

FFT Fast Fourier Transform

DCT Discrete Cosine Transform

CRC Cyclic Redundancy Check

GF Galois Field

ME Motion Estimation

MC Motion Compensation

FSM Finite State Machine

LAN Local Area Network

GPIO General Purpose Input Output

SAD Subtraction and Absolute Difference

RLC Reconfigurable Logic Cell

CT Computational Tile

IOT Input Output Tile

AG Address Generator

TTM Time To Market

TLM Transaction Level Model

CAVLC Context Adaptive Variable Length Coding

CABAC Context Adaptive Binary Arithmetic Coding

7

Contents

Introduction .. 15

1. Overview ... 19

1.1 State Of the Art .. 19

1.1.1 Application Specific Signal Processors ... 19

1.2 Reconfigurable Devices ... 24

1.2.1 Multi/Many Core Systems ... 33

1.3 Design and Specialization of Multi-Processor Systems-On-Chip 38

1.4 System-level design of Multi-Processor Systems-On-Chip....................... 39

1.4.1 Configurable Processor and Instruction Set Synthesis 41

1.4.2 Synthesis of instruction set on reconfigurable processors 43

1.5 Bridging the gap between MPSoC design and configurable hardware

specialization ... 44

2 The Morpheus Platform .. 47

2.1 Overview .. 47

2.2 Computational Model .. 48

2.3 Architecture ... 51

2.4 Implementation .. 54

2.5 Mapping of applications .. 57

2.5.1 Kernels Mapping Examples ... 58

2.5.2 Application Mapping Example .. 71

2.6 Performance Analysis .. 75

2.6.1 Characterization of the Morpheus performance................................. 76

2.6.2 Application-based analysis of the Morpheus platform 78

3 The Manyac Platform .. 84

3.1 Overview .. 84

3.2 Computational Model .. 86

8

3.3 Architecture .. 88

3.3.1 System level architecture ... 88

3.3.2 Computational Tile Architecture .. 90

3.4 Configurable Accelerators .. 91

3.4.1 Architecture .. 92

3.4.2 Implementation and Customization Strategies 94

3.5 Implementation Flow ... 97

3.5.1 The Griffy environment ... 98

3.6 Mapping of Applications on the Manyac Platform 101

3.6.1 Implementation of pipelined accelerators .. 102

3.6.2 Accelerator implementation examples ... 103

3.6.3 Application mapping example.. 114

3.7 Performance Analysis .. 119

3.8 Implementation results ... 123

4 Evaluation of multi-core platforms with configurable accelerators 129

4.1 Applications development cost .. 130

4.2 Performance ... 135

4.3 Cost of Manufacturing ... 141

5 Conclusion ... 149

6 Publications ... 151

7 References ... 152

9

List of Figures

Figure 1.1: Lucent Daytona Architecture. .. 20

Figure 1.2: C5 processor Architecture. .. 21

Figure 1.3: Viper Nexperia processor architecture. ... 22

Figure 1.3: ST Nomadik processor architecture. ... 22

Figure 1.5: TI OMAP processor architecture. .. 23

Figure 1.6: Programmable Active Memory (PAM) system. 24

Figure 1.7: Architecture of PRogrammable Instruction Set Computers (PRISC). ... 25

Figure 1.8: Architecture of the Garp reconfigurable processor. 26

Figure 1.3: The Molen polymorphic processor. .. 27

Figure 1.3: PiPeRench processing elements and interconnect. 29

Figure 1.11: Chess interleaved interconnection scheme. ... 30

Figure 1.11: Morphosys array architecture. ... 30

Figure 1.3: Architecture of the DREAM reconfigurable processor. 31

Figure 1.14: XPP-III reconfigurable array architecture. ... 32

Figure 1.15: Tile64 architecture. .. 34

Figure 1.16: PicoArray. .. 35

Figure 1.17: ASAP processor architecture and tile structure. 36

Figure 1.18: The Cell architecture. ... 37

Figure 1.19: NVIDIA Fermi device architecture. ... 38

Figure 2.1: View of the Morpheus application space. .. 47

Figure 2.2: Morpheus computational model. .. 49

Figure 2.3: Morpheus SoC Architecture. .. 51

Figure 2.4: Morpheus SoC Memory Hierarchy. .. 52

Figure 2.5: Morpheus Communication Infrastructure. ... 53

Figure 2.6: Morpheus Area by design object . Figure 2.7: Morpheus Area by

entity. ... 54

Figure 2.8: Morpheus Chip photograph. .. 55

Figure 2.9: Morpheus NoC topology. Figure 2.10: Morpheus NoC

Floorplanning. ... 56

Figure 2.11: DREAM implementation of the Rijndael algorithm. 59

Figure 2.12: a) LSFR circuits b) CRC circuit. .. 61

Figure 2.13: Edge detection implementation on DREAM. .. 63

Figure 2.14: Implementation of the binarization application on the eFPGA. 64

Figure 2.15: Implementation of an Ethernet MAC on Morpheus. 66

file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246173
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246174
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246175
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246176
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246177
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246178
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246179
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246180
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246181
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246182
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246183
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246184
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246185
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246186
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246187
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246188
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246189
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246190
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246191
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246192
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246193
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246194
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246195
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246196
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246197
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246197
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246198
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246199
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246199
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246200
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246201
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246202
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246203
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246204

10

Figure 2.16: Implementation of RGB2YUV on Morpheus. .. 67

Figure 2.17: Implementation of Motion Estimation on Morpheus. 69

Figure 2.18: Implementation of Motion Compensation on Morpheus. 70

Figure 2.19: Block scheme of the motion detection application............................... 72

Figure 2.20: Implementation of a motion detection video surveillance application on

the Morpheus platform. .. 74

Figure 2.21: Morpheus performance. Figure 2.22: Morpheus energy efficiency.

 .. 76

Figure 2.23: DREAM power consumption. Figure 2.24: Morpheus component

power. ... 77

Figure 2.25: Resources occupation of applications mapped on Morpheus. 79

Figure 2.26: Overhead introduced by on-chip and off-chip communication. 80

Figure 2.27: Power breakdown of applications implemented on the Morpheus

platform without frequency scaling (a) and with frequency scaling (b). 82

Figure 3.1: Overview of the Manyac architecture and physical structure. 85

Figure 3.2: Data-parallel and task-parallel execution models. 87

Figure 3.3: Parallel execution of work-items and pipelined execution of work-

groups within data parallel kernels. .. 88

Figure 3.4: Computational tile architecture. ... 90

Figure 3.5: Simplified view of the run-time programmable and via-programmable

gate array architectures. .. 93

Figure 3.6: Simplified view of the metal programmable gate array(a). 94

Figure 3.7: Via programmable datapath customization strategy. 95

Figure 3.8: Metal programmable gate array customization strategy. 96

Figure 3.9: Overview of the Manyac design flow. ... 98

Figure 3.10: Example of PDFG implemented utilizing the Griffy environment. 99

Figure 3.11: Flow diagram of residual data transform and quantization in a

H.264/AVC encoder. .. 104

Figure 3.12: Zigzag scan of blocks in H264/AVC. .. 105

Figure 3.13: Scanning order of residual blocks within a macroblock. 106

Figure 3.14: Scanning order of residual blocks within a macroblock. 107

Figure 3.15: Implementation strategies for the hardware accelerators of the

H264/AVC transform.. 108

Figure 3.16: Speed-ups of transform and quantization (plus non zero block detection

and zig-zag scan) kernels with respect to the software implementation. Data refer to

the elaboration of one macroblock. .. 111

file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246205
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246206
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246207
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246208
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246209
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246209
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246210
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246210
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246211
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246211
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246212
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246213
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246214
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246214
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246215
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246216
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246217
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246217
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246218
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246219
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246219
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246220
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246221
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246222
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246223
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246224
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246225
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246225
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246226
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246227
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246228
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246229
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246229
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246230
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246230
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246230

11

Figure 3.17: (a) Speed-ups/Kgate ratio of transform and quantization kernels. Data

are normalized with respect to the software implementation. (b) % of the overall

computation time involved in general-purpose processing. 112

Figure 3.18: Partitioning of the Motion Detection application over four

computational tiles of the Manyac platform utilizing a data parallel computational

model (left) and a task parallel computational model (right). 115

Figure 3.19: Temporal scheduling of work-groups and tasks on the Manyac

computational tiles (PE) when utilizing the data parallel computation model (left)

and the task parallel computation model (right). .. 115

Figure 3.20: Program memory (a) and area of hardware accelerators (b)

utilized for implementing the work-items and tasks for the motion detection

application. 118

Figure 3.21: Speedups of application implemented with hardware accelerators with

respect to the software sequential implementation. ... 120

Figure 3.22: Speed-ups of applications implemented on the Manyac platform when

varying the interleaving factor of elementary data chunks processing. 121

Figure 3.23: Speed-ups of applications implemented on the Manyac platform

without hardware accelerators (a) and with hardware accelerators (b). Speed-ups

are normalized with respect to the single processor implementation without and with

hardware acceleration, respectively. ... 122

Figure 3.24: Speed-ups of applications implemented on the Manyac platform

without hardware accelerators (a) and with hardware accelerators (b). Speed-ups

are normalized with respect to the single processor implementation without and with

hardware acceleration, respectively. ... 123

Figure 3.25: Area breakdown of the computational tile component by logic entity.

 ... 124

Figure 3.26: Layout view of a 4-tiles implementation of the Manyac Platform 125

Figure 3.27: % of the Manyac platform area utilized for configurable accelerators.

 ... 127

Figure 3.28: Power consumption of applications running on the Manyac platform.

Different configuration technologies are assumed as implementation platform for the

hardware accelerators. .. 128

Figure 4.1: Estimation of design effort required to implement selected applications

on different computational platforms. ... 134

Figure 4.2: Performance of Morpheus and other SoA devices. 136

Figure 4.3: Energy efficiency of Morpheus and other SoA devices. 137

Figure 4.4: Energy efficiency of applications implemented on the Manyac platform

considering the different configuration technologies. ... 138

file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246231
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246231
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246231
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246232
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246232
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246232
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246233
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246233
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246233
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246234
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246234
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246234
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246235
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246235
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246236
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246236
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246237
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246237
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246237
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246237
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246238
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246238
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246238
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246238
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246239
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246239
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246240
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246241
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246241
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246242
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246242
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246242
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246243
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246243
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246244
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246245
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246246
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246246

12

Figure 4.5: Area efficiency of applications implemented on the Manyac platform

considering the different configuration technologies. .. 139

Figure 4.6: Energy efficiency vs. Area Efficiency of computational devices for signal

processing. ... 140

Figure 4.7: Manufacturing cost of platform implementation utilizing the different

configurable gate arrays as hardware accelerators assuming 1 product (a), 5

product (b), and 10 product (c) realized utilizing the same architectural template. 145

Figure 4.8: Manufacturing cost of platform implementation utilizing the different

configurable gate arrays in different technology nodes. (a) A market volume of

5.000 pieces is assumed for 1 product. (b) A market volume of 50.000 pieces is

assumed for 5 products with the same architecture template. (c), and 10 product (c)

(b) A market volume of 250.000 pieces is assumed for 5 products with the same

architecture template. .. 147

file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246247
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246247
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246248
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246248
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246249
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246249
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246249
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246250
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246250
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246250
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246250
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246250
file:///D:/Documents%20and%20Settings/Administrator/Desktop/TESI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc319246250

13

List Of Tables

Table 2.1: Morpheus chip characteristics. ... 55

Table 2.1: Details of the NoC implementation. .. 57

Table 2.3: Profiling and partitioning of the motion detection application. 72

Table 2.4: Applications selected for the evaluation of the Morpheus Platform. 78

Table 2.5: Reconfiguration latencies of applications implemented on the Morpheus

platform (clock cycles). .. 81

Table 2.6: Power consumption of applications implemented on the Morpheus

platform.. 83

Table 2.1: Manyac Platform Main Configuration Parameters. 98

Table 3.2: Implementation of the H264 transform. ... 109

Table 3.3: Implementation of quantization, zig-zag-scan, and non-zero detection

blocks algorithms. .. 110

Table 3.4: Implementation results of motion detection video surveillance application

accelerators. .. 114

Table 3.5: Manyac platform implementation results. .. 124

Table 3.6: Implementation Results of Customizable Hardware Accelerators. 126

Table 4.1: Function point analysis parameters. ... 131

Table 4.2: Estimation of design effort of applications implemented on the Morpheus

platform.. 132

Table 4.3: Parameters of the Manufacturing Cost Model. 143

file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638306
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638307
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638308
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638309
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638310
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638310
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638311
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638311
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638312
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638313
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638314
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638314
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638315
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638315
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638316
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638317
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638318
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638319
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638319
file:///D:/Documents%20and%20Settings/Administrator/Desktop/REVIEW_JARI/THESIS_DAVIDE_ROSSI_paged.docx%23_Toc318638320

14

15

Introduction

During the last few years, the markets for mobile phones, PDAs, portable

console, network routers and other specialized high-performance electronic

devices have raised explosively. Many of these devices perform

computationally demanding signal processing algorithms that are even

increasing with the evolution of the applications standards. Moreover, the

portability requirements of these devices are growing as well, putting other

severe constraints on the energy efficiency demands of such signal processing

systems. From the commercial point of view, some major semiconductor

industries have proposed many digital signal processors for embedded or

portable computing in last few years.

Most of these devices belong to the category of Application Specific Signal

Processor (ASSP). They are able to match the computational and energy

requirements of the applications thanks to exploitation of powerful Digital

Signal Processors (DSP) and hardwired application specific accelerators,

usually managed by a standard controller core supporting operating systems

in order to ease programmability. Though they form a very large slice of the

signal processing market, these devices are not always suited to following the

evolution of application standards due to the specificity of their accelerators,

so that every time a new standard is deployed, a new device needs to be

redesigned. The need for devising specific accelerators for each kernel

reduces the possibility of using existing IPs, forcing a large portion of the

system to be re-designed and re-verified every time a new application is

developed. Moreover, long design and verification times caused may

dramatically reduce the market volumes attainable by a given product. A

second implication is connected with non-recurrent engineering costs, usually

affecting all advanced technologies in general and ASSPs in particular,

making production viable only for extremely large market volumes.

One possible solution to extend the life f a product by increasing its flexibility

lies in reconfigurable computing. Reconfigurable computing means the

capability of a device to exploit spatial computation typical of ASIC design,

while maintaining programmability typical of general-purpose processors,

16

thanks to programmable computational elements cooperating through a

configurable interconnect. The main representatives of this class of devices

are FPGA devices [7][8]. In several fields of embedded signal processing

reconfigurable devices are regarded with interest for their capability to

provide ASIC-oriented performance figures while retaining the capability of

on-the-fly upgrades of the application portfolio. On the other hand, FPGAs

are not suitable to many application domains, due to their inherently

redundant structure. As reported in [13], around 90% of the area of

commercial FPGAs is occupied by interconnect lines and configuration

storage. This leads to significant overheads in area, power and computation

throughput that can be inconvenient in some fields and downright

unaffordable for battery-operated or portable applications. Another issue

closely related to the exploitation of FPGAs is programming productivity:

hardware related languages are intrinsically more complex and difficult to use

with respect to software oriented imperative languages such as C or C++

regardless of the background of the user. While it is possible to rely on pre-

packaged libraries and IPs for standard computation kernels, the development

and debugging of the top-level wrapping and synchronization stage of the

application becomes a significant slowing factor in the application

development time.

Where the application environment allows that, it is possible to trade part of

the flexibility offered by Field Programmable Gate Arrays (FPGA) designing

computing engines based on coarser computation blocks and simplified

interconnect patterns. Coarse-Grained Reconfigurable Architectures (CGRA)

are a class of run-time programmable signal processors composed by regular

arrays of 4- to 32-bit computation units, typically Arithmetic Logical Units

(ALUs) with reduced instruction set in place of standard Look-Up Tales

(LUTs). The years 2000-2005 have demonstrated an impressive emergence of

CGRA IP solutions covering different flavors of hardware configurability.

Each of these companies has boosted the reduction of time to market and of

NRE costs as major strong points. On the other hand, the acceptance of these

solutions in the signal processing market has been rather slow. The reason for

this is probably two-fold: first, CGRAs represent a delicate trade-off between

being general purpose and having to make severe assumptions on the

application range, so that the user is often struggling to match his applications

17

specs with the resources offered by the architecture. On the other hand,

innovative computation patterns inevitably require specific mapping tools and

expertise. Predictably, application developers are reluctant in investing in

expertise that is specific only to a given architectural solution and/or

computation domain.

A novel computation pattern that has enjoyed lately a moderate success is that

of processor arrays, and more in general of Multi/Many Processor Systems

and Multi-Processors Systems on Chip (MPSoC). Processor arrays could be

described as the “upper bound” of CGRAs, in the sense that they represent

reconfigurable architectures of maximum granularity. On the other hand, the

exploitation of the processor concept allows for easier application mapping. In

most cases computation parallelism is exploited at thread level, rather than at

instruction level, which is definitely friendlier from the user/toolset point of

view. Even from the interconnect perspective, the exploitation of threads

mapped on a processor network allows to capitalize on renowned and

established legacy.

More generally, the standard concept of System-on-Chip is slowly but

steadily migrating towards Multi-Processor Systems-On-Chip. Once again,

the immediate drawback is its redundancy, and the complexity of

synchronization of both data and configuration flows in case of complex

applications. Moreover, processor-oriented computation obviously cannot

match the flexibility of FPGAs in case of bit-oriented computation nor the

density of CGRAs in case of massively parallel SIMD computation. From the

evaluations above it appears that a Multi-Processor approach brings

significant benefits in terms of user friendliness and programmability offering

a standardized way to handle thread concurrency and data/control flow

synchronization. On the other hand, sheer computational density can be

obtained only with the massive parallelism of ASIC or configurable hardware

accelerators, but that hardware needs to be matched by the features of the

application. Although these devices have been very successful, especially for

portable applications, where low power and high performance are essential

specifications, they remain very domain specific. Indeed, as technology nodes

scale, a clear trend in this category of devices is to substitute bus hierarchies

with Networks-on-Chip and augment the number of programmable cores,

while reducing the number of ASIC accelerators with the ambition of

18

widening the application domain. Still, massive highly parallel computation

kernels, and bit-level manipulations remain critical aspects that can only be

managed with specific ASIC acceleration.

As mentioned above, rapid low-cost design, low production cost, low energy

consumption, and high performance are becoming key factors in the

embedded electronic market. The approach proposed in this thesis to match

all these requirements, is to derive application-specific standard products from

customizable multi-core platforms. The software programmability based on

multiple processor engines addresses flexibility, although it is not always able

to match applications constraints. For this, flexible specialization of

processors [5] can be a way to evolve during the life cycle of a product

through incremental enhancement of pre-existing engines. In the context of

this thesis flexibility of customization can either be provided by run-time

configurable (re-configurable) technologies, or design-time configurable

technologies, for example based on structured-ASIC solutions such as via-

programmable or metal-programmable gate array.

In this scenario, high-level design methodologies are required to support the

user in this specialization task, in order to provide easy exploration of the

hardware/software co-implementation of applications over the target platform.

A specific target of this thesis is to evaluate the application space of multi-

processor systems with configurable hardware accelerations, analyzing trade-

offs between programming productivity, performance and flexibility of the

mapping of applications over multiple cores platforms and the partitioning of

kernels between software and different kinds of configuration technologies.

Moreover, the analysis will move through the different kinds of configuration

technology utilized, being either run-time configurable or based on structured-

ASIC technologies analyzing their benefits and overheads in terms of area,

power, and manufacture costs.

19

Chapter 1

1. Overview

The ever increasing requirements of embedded applications push designers to

realize electronics systems matching, on one hand performance and energy

efficiency, on the other hand fast development time and cost, as well as

flexibility and re-usability of the realized platforms. This section, starting

from an overview of the solutions proposed over the last few years both in

terms of architecture/devices and design/methodology, present the approaches

described in this thesis, analyzing the motivations on introducing multi-core

platform with configurable hardware acceleration.

1.1 State Of the Art

1.1.1 Application Specific Signal Processors

The term Application Specific Signal Processor (ASSP) implies some kind of

hardware specialization of a general-purpose processor that is enabled in this

way to match the performance (and energy) requirement of an application, or

more in general, of a class of applications sharing similar features. ASSPs

have demonstrated during last few years as the most effective way to match

the embedded application constraints while guaranteeing to the final customer

the user-friendliness typical of general purpose processors due to software

abstraction layers that abstracting the utilization of the hardware accelerators.

For several applications, especially in the wireless baseband processing, very

long instruction word (VLIW) processors were developed to provide high

levels of parallelism along with programmability. Other approaches lead to

the development of application specific ICs to gain performance during

execution of most critical kernels. In these cases, the architecture of such

20

systems often correspond to the blocks diagram of the application for which

they were designed, leading to a heterogeneous structure based on multiple

processing cores. From the programming point of view these devices achieve

their goal levering to the general-purposeness of the standard processor that

manage the system, handling control and synchronization of applications with

the support of real-time operating systems (RTOS) to ease programmability.

On the other hand, the final user is not required to handle execution of the

application specific computation intensive kernels of the applications, as they

are developed by the hardware providers and encapsulated into pre-packaged

software libraries.

One of the firsts MPSoCs with application specific hardware accelerators is

the Lucent Daytona [1], shown in Figure 1.1. The main purpose of the

Daytona processor is the elaboration of signal processing algorithms typical

of wireless base stations, where the identical program-flow is executed for

many data channels. Following the specific target of the wireless application,

Daytona was realized as symmetric multi-processor architecture with local

caches, connected to the external memory interface trough a high-speed bus.

The processor architecture is based on the SPARC V8 core, enhanced with

application specific functional units to improve efficiency on wireless

communication algorithms, such as 16x32 multiplications, division step, and

vector coprocessor.

Remaining in the wireless application field, the C5 processor [2] is an

embedded processor for packet processing in networks. The C5 architecture

Figure 1.1: Lucent Daytona Architecture.

21

encapsulates a reduced instruction set computer (RISC) managing the system,

and several other specialized units connected through a three-layer bus.

Packets are handled by 16 channel processors grouped as 4 clusters of 4

processors each. The C5 processor architecture is shown in Figure 1.2.

The processors presented up to now feature homogeneous architectures with

dedicated vector units, matching parallelism of wireless application for which

they were designed. Contrarily, most recent ASSPs, especially dedicated to

multimedia or mobile applications, usually feature similar structures that we

can describe as hierarchical heterogeneous MPSoC. One standard processor,

drives a multi-layer bus hierarchy comprising IO peripherals, on-chip

memory, programmable DSP engines, and a set of specific ASIC accelerators

for the computation of the most intensive kernels. The more restrictive are the

energy and performance requirements of applications, the more specific are

the accelerators.

A further example in the field of multimedia is represented by the Philips

Viper Nexperia [3], shown in Figure 1.3. The Viper processor includes two

CPUs: a MIPS and a Trimedia. The MIPS acts as manager hosting an

operating system, while the Trimedia acts as a signal processing co-processor.

The communication is handled by a multi-layer bus, which connect the two

processors to the external memory controller and several other ASICs that

Figure 1.2: C5 processor Architecture.

22

perform computations such as color space conversion and scaling. The Viper

processor allows different mappings of physical memory to address space in

order to better match the requirements of the different portions of application

executed.

Moving to the mobile area, representative examples in the field of cell phone

processing are those of Texas Instruments OMAP [4] and STMicroelectronics

Nomadik [5]. The OMAP processor has several implementations. The OMAP

5912 (Figure 1.5) has two CPUs, an ARM9 and a TMS320C55x, where the

ARM acts as master processor, while the DSP acts as a coprocessor for

execution of several signal processing applications. On ST Nomadik (Figure

Figure 1.4: ST Nomadik processor architecture.

Figure 1.3: Viper Nexperia processor architecture.

23

1.4), the master processor hosting the operating system is an ARM9. On the

contrary the audio and video acceleration units are applications specific

accelerators based on the MMDSP+ DSP core. The video accelerator is a

heterogeneous multi-core, including the MMDSP+ and application specific

accelerators for several important stages of video processing, while the audio

processor only leverages on the DSP due to lower computational requirements

of audio applications.

Figure 1.5: TI OMAP processor architecture.

24

1.2 Reconfigurable Devices

Reconfigurable computing is intended to fill the gap between hardware and

software by achieving better performance than software, and maintaining a

higher level of flexibility thanks to the programmability of its computational

elements. Reconfigurable devices, including field-programmable gate arrays

(FPGAs), are usually composed of an array of computational elements whose

functionality is determined through a set of configuration bits stored in

dedicated SRAM distributed among the device. These logic elements are

connected together through a set of programmable routing resources. In this

way, arbitrary digital circuits can be implemented on the reconfigurable

hardware by mapping the logic functions, and using the configurable routing

to connect the blocks together to form the required circuit. From the

commercial point of view, the most common class of reconfigurable devices

is that of FPGA. The two major enterprises producing FPGAs are Altera [7]

and Xilinx [8]. The success of FPGA devices is mainly related to their

flexibility and ability of upgrading their application portfolio after the

fabrication.

The first example of reconfigurable system dates back to 1986. The

Programmable Active Memory (PAM) system [9] was composed of a host

processor connected to a Xilinx XC3090 device through two unidirectional

links Figure 1.6. The main competences of the host processor within the

system were the uploading of the configuration bitstream of the FPGA and the

execution of non-critical portions of software applications. The reconfigurable

Figure 1.6: Programmable Active Memory (PAM) system.

25

devices could act as both a stand-alone component or as a system coprocessor,

communicating with the host, a local memory or external devices through

dedicated data channels. The system was demonstrated to be able to achieve

10 to 1000 speedups on over 10 applications, with respect to the equivalent

software implementations.

Razdan and Smith presented a more processor-centric utilization of

reconfigurable hardware with the PRISC architecture in 1994 [10]. The

PRISC approach formalized the concept of instruction set metamorphosis or

adaptive instruction set. This computational paradigm exploits the

reconfigurable device as an application specific hardware-programmable

functional unit (PFU) rather than a coprocessor, interfaced to the register file

of a RISC processor, as shown in Figure 1.7. As the integration of an external

functional unit has a direct impact on the processor micro-architecture, a

dedicated compilation flow was realized to preserve the coherency of the

executed applications. The PRISC compilation flow assisted the user in the

extraction and synthesis of Execute PFU instructions (i.e., instruction

executed on the PFU) generating both the hardware and software images from

the high level application source code and profiling information.

Figure 1.7: Architecture of PRogrammable Instruction Set Computers (PRISC).

26

One of the most important milestones of reconfigurable computing is the

GARP processor, developed at the University of California, Berkeley [11].

GARP couples a MIPS processor with a reconfigurable device organized as a

datapath as shown in Figure 1.8. Due to the datapath structure, differently

from the previously described architectures based on standard FPGAs, the

speed of the clock remains constant for an implementation and doesn’t require

to be adjusted by an array configuration. In addition, the GARP architecture

introduces a caching mechanism in order to speed-up the programming of the

reconfigurable data-path, being able to update the array configuration in five

clock cycles. The main peculiarity of the GARP approach concerns the

applications compilation and synthesis flow. Data flow graphs (DFGs) are

automatically extracted from the inner loops of applications; utilizing

predication in order to eliminate the need for conditional branches. This way

Figure 1.8: Architecture of the Garp reconfigurable processor.

27

it allows to find the optimal granularity of the kernels mapped on the

datapath.

The MOLEN polymorphic processor [12] couples a general-purpose

processor with a reconfigurable co-processor enhanced with hardware

facilities for synchronization and arbitration as shown in Figure 1.9. The main

peculiarity of Molen concerns the formalization of the programming model

utilized for the implementation of applications on the system, known as the

Molen Paradigm [13]. The Molen programming paradigm targets parallel and

concurrent hardware execution of single threaded applications. It defines a set

of instructions (polymorphic instruction set architecture) that focus on the

consistency between functions executed on software and functions executed

on the reconfigurable device. The interesting feature of this programming

model is that it can be extended to reconfigurable processors whose

reconfigurable engine is seen as a co-processor of the general purpose core.

The Molen processor was implemented onto a Xilinx FPGA chip, utilizing the

PowerPC embedded in the FPGA as General-Purpose Processor (GPP).

In some cases embedded FPGAs can be utilized as on-chip reconfigurable

engines. This kind of devices, differently from those described above are

Figure 1.9: The Molen polymorphic processor.

28

realized with general-purpose CMOS processes, so that they can be integrated

as IPs within a more complex System On A Chip. The main target of eFPGAs

within more complex systems is the implementation of all those applications

which can benefit from bit-level synthesis optimization, usually unsuitable for

GPPs. In addition they can possibly be utilized to implement configurable IO

peripherals. One example of this category of devices is the Flexeos core

developed by Abound Logic [15].

All the reconfigurable architecture presented up to now, feature a general-

purpose processor coupled with a fine grain reconfigurable device. Although

this kind of devices are characterized by a very good flexibility as they are

theoretically capable to implement any kind of logic function, FPGAs early

appeared as too big, slow, and power hungry if compared to most of portable

application requirements and ASIC-based solutions. The full flexibility

offered by the bit-level programmability introduces too much overhead,

especially due to the SRAMs utilized to store the configuration bitstream, and

redundant interconnect. For many application domains it is possible to trade

part of the flexibility offered by fine grained architectures by increasing the

granularity of the basic processing elements (PEs) to 4-, 8-, 16- or 32-bit

while reducing the overall number of basic elements, thus reducing the impact

of interconnect over the overall chip areas. This approach is intended to

provide the double advantage of reducing the overhead of both routing and

configuration storage, and achieve higher operating frequencies due to the

hardwired implementation of standard computational blocks such as adders or

multipliers. This class of devices is known as Coarse Grain Reconfigurable

Architecture (CGRA). Many CGRAs have been proposed from both academia

and industry in order to increase the ratio between the granularity of the basic

element and the programmable interconnects. In such devices, the

computational capability of the basic logic cell raises from the LUT

complexity to complete arithmetic logic units (ALUs), while the flexibility of

the interconnect drops, for example supporting only the connection of nearest

rows or among nearest-neighbors.

29

PiPeRench [16], is one of the first and most important CGRAs that appears in

literature. The device, introduced as accelerator for multimedia applications,

provides reconfigurable pipeline stages named stripes. PipeRench consist of

28 horizontal stripes of 32 processing elements composed of register and 4-bit

ALUs, implemented as 3-bit LUTs. Each stripe provides facilities for partial

dynamic pipeline reconfiguration and automatic scheduling of configuration

and data streams. On the other hand, a hierarchical interconnect infrastructure

enables communication among processing elements within a stripe (horizontal

interconnect) and communication among stripes (vertical interconnect), as

shown in Figure 1.10.

MorphoSys [17] is composed of a MIPS-like “TinyRISC” processor with

extended configurable instruction set. From the architectural point of view the

reconfigurable device is a mesh connected 8x8 reconfigurable array, featuring

a frame buffer for intermediate data storage, a context memory for enhanced

re-configuration, and a DMA controller (Figure 2.11). The reconfigurable

array is divided into four quadrants, each one being composed of 4 by 4 16-bit

reconfigurable cells (RCs) each. Each RC features an ALU, a multiplier, a

shifter, a register file, and a 32-bit context configuration register. The

interconnect network hierarchy is formed of 3 layers: four nearest-neighbor

ports, interleaved links, and inter-quadrant buses spanning the whole array.

Figure 1.10: PiPeRench processing elements and interconnect.

30

The CHESS [18] array features a chessboard-like structure where rows of

ALU and switchbox are alternated as shown in Figure 1.12. Memory

requirements of applications are supported by the Embedded RAM areas of

the array. In fact, switchboxes can be converted to 16 words by 4 bit RAMs if

needed or to a 4-input, 4-output LUT. The interconnect fabrics of CHESS is

composed of 4-bit buses of different length. There are 16 buses in each row

Figure 1.12: Morphosys array architecture.

Figure 1.11: Chess interleaved interconnection scheme.

31

and column, with interleaved interconnections of length 1, 2, 4, 8 16. In order

to avoid routing congestion, the array also features embedded 256 bytes-size

SRAM blocks. The output data of an ALU can feed the configuration input of

another ALU. This way it is possible to change its functionality at run-time

without uploading the configuration.

The DREAM [19] reconfigurable processor is a mid-grain computation

intensive reconfigurable processor mainly targeting signal processing

applications featuring iterative computations and irregular data width (Figure

1.13). A RISC processor manages execution of accelerated kernels and

reconfiguration. The computational core of the device is the PiCoGA-III [20]

(Pipelined Configurable Gate Array) reconfigurable datapath, featuring a

matrix of reconfigurable logic cells with 4-bit functionalities and support for

multi-context. The local storage consists of a multi-bank memory coupled

with the datapath, which provide high bandwidth toward the PiCoGA-III

inputs and outputs.

Figure 1.13: Architecture of the DREAM reconfigurable processor.

32

XPP-III [21] is a coarse-grain configurable processor, mainly targeting

streaming applications with regular data width and significant computational

densities. As shown in Figure 1.14 XPP-III is composed of an array of 16-bit

Processing Array Elements (PAEs) and two general-purpose processors

(FNC-PAEs) suitable for execution of control-oriented portions of

applications. The array features a set of processing (ALU-PAEs) and IO/data

storage elements (RAM-PAEs) communicating through a matrix of

configurable data channels. Communication with the external world is

supported by asynchronous FIFOs, according with its streaming

computational models.

Another device proposed in the field of reconfigurable computing is that of

BUTTER, developed at Tampere University of Technology [22]. The

BUTTER reconfigurable array, mainly targeting FPGA implementations,

maintain a structure similar to XPP, provides additional features such sub-

word, and floating point capabilities with the ambition of widening its

application spectrum. A recent evolution of such architecture is CREMA [23],

a coarse grain reconfigurable array with mapping adaptiveness, which allow

the designer specify the application characteristics and generate a coarse-grain

reconfigurable array optimized for those requirements.

Figure 1.14: XPP-III reconfigurable array architecture.

33

1.2.1 Multi/Many Core Systems

A new class of devices which is emerging in last few years is that of

homogeneous multi-many core systems. These devices, rather than exploiting

instruction level parallelism or data- level parallelism typical of the previously

described approaches leverage to thread level parallelism in order to obtain

high performance and high programming legacy typical of software-

programmable platforms. The main advantages of this approach with respect

to the presented devices are flexibility and programmability. In fact, processor

based systems are intrinsically more flexible than ASSPs and easier to

program than reconfigurable processors due to high level programming

languages (C, C++) and well known programming models (MPI, OpenMP).

These devices are usually composed of several general purpose processors (or

functional units) arranged as an array or as hierarchical clusters of processors.

Communication and memory architecture is also one of more differentiating

points among proposed approaches, usually strictly connected with their

programming paradigm. Message passing programming models, such as MPI

[24], match distributed memory architectures, where connections among

processors are usually implemented by a mesh-topology network-on-chip.

Within this computational paradigm each processor executes its own task with

data and code separate to each other, while synchronization and data

communication among cores is achieved by sending messages by addressing a

specific core within the system. On the other hand, shared memory

programming models, such as OpenMP [25] usually match architectures

composed of processor clusters. This computational model leads to exploit

parallelism in a homogeneous way, where each task executes the same

instructions on a different data-set. More recently, appeared programming

models that allow handling mapping of ultra-highly parallel applications on

hierarchical architectures of processor clusters. For example the CUDA

(Compute Unified Device Architecture) [26] environment was developed by

NVIDIA for efficient programming of General-Purpose Graphic Processing

Unites (GP-GPU). A standardized evolution of CUDA exploited during last

few years is OpenCL [27], which added support for programming of

heterogeneous platforms composed of both ultra highly parallel devices, such

34

as GPUs and other compute devices by supporting both homogeneous data-

level parallelism and heterogeneous task-level parallelism.
TILE64 [28] is an array of processors developed by Tilera for advanced

networking applications and digital video processing, as well as general-

purpose applications. The architecture is based on the RAW processor

develop by Massachusetts institute of technology (MIT). Each processor can

be programmed utilizing high level languages such as C, or C++ and support

execution of operating system. As shown in Figure 1.15, its silicon structure is

composed of 64 identical programmable tiles, regularly replicated over the die

surface. Each tile includes an 8-pipeline stage MIPS-like processor, tightly

coupled with a 4-pipeline stages floating point unit, and a 32-Kbyte data

cache and 96 Kbytes of software-managed instruction cache, while

communication is achieved through a mesh topology network-on-chip

implemented by four routers available within each tile. Two routers are static

(routes specified at compile time) and two are dynamic (routes specified at

runtime). Each tile only connects to its four neighbors, while communication

wires are registered at the input of each tile. This means that the length of the

longest wire in the system is no greater than the length or width of a tile, thus

ensuring high clock rates, and the continued scalability of the architecture.

Figure 1.15: Tile64 architecture.

35

The picoArray [29] is a multi-core digital signal processor, integrating

hundreds of individual DSP cores within a single die. A picoArray device is

composed of 308 processing elements linked together by the picoBus

interconnect, as shown in Figure 1.16. The basic cores of the array are three-

way Very Long Instruction Word (VLIW) RISC 16-bit processors, each one

coupled with local memory. The picoArray core is coupled with a series of

coprocessors, such as external interfaces toward eternal devices, and memory

interfaces, which can be either asynchronous or synchronous. Each processor

is coded independently either in C or assembly languages and can

communicate over an any-to-any interconnect mesh. The processor array is

integrated with a set of 14 application-specific co-processors called function

accelerator units, for a total of 322 processors. The communication

infrastructure is composed of a square mesh of 32-bit communications links,

which incorporates switch matrix elements at the junctions between its

horizontal and vertical lines. The configuration of routing path among

processors is computed at compilation time, thus allowing a good

predictability of the performance, that making the platform suitable for

execution of real-time applications.

Figure 1.16: PicoArray.

36

The ASAP [30] multi-core system is a computational platform composed of

an array of 164 16-bit RISC processors supporting dynamic voltage and

frequency scaling, plus three application specific units and three 16-Kb shared

memory banks. The ASAP processor is suited for execution of DSP

processing as well as wireless and multimedia, and, more in general for all

those applications whose block diagrams can be efficiently mapped onto an

chain of basic computation blocks. Each tile of the array includes an in-order,

single-issue, six-stage RISC processor programmable in both C and assembly

executing over 60 basic instructions. In addition, in order to enable dynamic

voltage and frequency scaling, the tile includes a local oscillator and three

local power domains, allowing the processor to switch to each other

depending on the required operating frequency. This technique allows to trade

the power consumption of tile of the array with the computational

requirements of the related application task, thus achieving high energy

efficiency rates. The communication scheme is implemented according to the

nearest neighbor policy. Connections are circuit-switched and statically

configured, and can be pipelined at each tile to achieve full-rate

communication over long distances, or un-pipelined if the distance is short or

the source clock’s frequency is low.

Figure 1.17: ASAP processor architecture and tile structure.

37

A new computational paradigm coming from the field of graphical processing

or desktop computer is that of the Cell processor and GP-GPUs.

As shown in Figure 1.18, the Cell processor [31] is composed of a power

processing element (PPE) supporting universal virtual memory and

concurrent double threads which host an operating system, and a set of eight

processing elements known as synergistic processing elements (SPE). SPEs

are SIMD processing cores aimed at high throughput data processing. They

feature a RISC command structure, 128 general-purpose registers of 128 bit,

and 256K bytes local storage. The PPE, SPEs, and I/O interfaces are

connected by the element interconnect bus, which is built from four 16-B-

wide rings. Two rings run clockwise, and the other two run counterclockwise.

Each ring can handle up to three non-overlapping data transfers at a time

which leads to a 25.6 Gbit/s transmission capacity. The peak computing rate

reaches 204.8 GFLOPS.

On the other hand, GP-GPUs [32] provide tremendous computing power of

up to 1,3 TFLOPS. As shown in Figure 1.19, GP-GPUs are characterized by a

hierarchical architecture composed of an array of Streaming Multiprocessors

(SMs) each one featuring up to 32 Streaming Processors, a shared memory,

register file and schedulers for handling automatic synchronization of data-

parallel threads. A key factor that gained the evolution of such kind of

Figure 1.18: The Cell architecture.

38

architectures is given by the relatively easy to use programming models such

as CUDA that allows to exploit data level parallelism, partitioning the

applications in thousands of data-parallel threads.

1.3 Design and Specialization of Multi-Processor

Systems-On-Chip

Besides the architecture of the proposed computing systems for embedded

applications, recent years have seen the growth of strategies at different levels

of implementation in order to reduce design effort and related non-recurring

engineering costs. These design methodology, which specifically targets

design of multi-processor systems on chip, can be applied either at system-

level, by directly mapping the platform described with a high level

specification, or utilizing a hierarchical approach based on platform based

design paradigm. In this last scenario, a common multi-core platform

specifies the architectural template at the basis of the system, while the

customization of the platform is achieved by tuning the platform parameters

according to high-level specifications. On the other hand, the application-

specific customization of a platform can be achieved by specializing the

processor cores utilizing synthesis of accelerators from high-level languages.

Figure 1.19: NVIDIA Fermi device architecture.

39

Moreover, the general concept of processor extensions can be directly applied

to the programming of the presented reconfigurable processors, where such

instruction extensions are mapped on the reconfigurable engines instead of

silicon-based structures.

1.4 System-level design of Multi-Processor

Systems-On-Chip

The utilization of a Register Transfer Level (RTL) description language as a

starting point for complex System-on-Chip design methodologies form a

bottleneck. Such methodologies were effective in the past, when systems were

based on one single processor or on one processor plus a set of coprocessors.

On the other hand, the applications and platforms used in many of today’s

system designs are based on heterogeneous Multi-Processor System-On-Chip

(MPSoCs). Although the RTL system specification has the advantage that the

state-of-the-art synthesis tools can use it as an input for its automatic

implementation, it is a common thinking that a system should be specified at a

higher level of abstraction due to the complexity of today’s systems [33].

However, increasing the abstraction level of the system description opens a

gap between the specification and the related hardware implementation.

Indeed, the RTL system specification is very detailed and close to an

implementation, which allows an automated synthesis path from the RTL to

the physical implementation. In order to address this issue, during last few

years several architectural synthesis flows have been proposed, aimed at the

automatic generation of the RTL description of the system starting from high

level specifications.

The Compaan design flow [34] uses Kahn Process Networks KPNs as an

application model for the automated mapping of applications targeting the

FPGA implementations. A KPN specification is automatically derived from a

sequential program written in Matlab [35][36] and implemented as a network

of dedicated hardware cores on an FPGA [37]. Eclipse [38] defines a scalable

architecture template for the design of stream-oriented MPSoCs using KPN

model of computation to specify and map data-dependent applications.

Jerraya et al. propose a design flow that utilizes a high-level parallel

40

programming model to abstract hardware/software interfaces in the case of

heterogeneous MPSoC design [39][40]. Companies such as Xilinx and Altera

provide approaches and design tools that attempt to facilitate the efficient

implementations of processor-based systems on FPGAs. These tools are the

Embedded Development Kit [41] for Xilinx chips and the System On a

Programmable Chip (SoPC) builder [42] for Altera devices. More recently,

synthesis flows have been proposed in order to implement applications

described utilizing ultra-parallel programming languages typical of GPUs

such as CUDA and OpenCL onto FPGA devices [43][44]. These flows take

advantage of the common models of computations utilized by these

programming languages to ease the parallel mapping of applications on

FPGAs.

Although the automatic synthesis of architectures is an attractive way for

reducing design costs of complex systems-on-chip, most of these techniques

only target FPGA prototyping. Moreover, the automatic architectural

optimization of these platforms often targets the implementation of specific

applications, still being implemented in most cases with general-purpose

components. The implementation of such automatically generated

architectures is neither general-purpose nor application-specific. For this

reason, neither performance nor market volumes expected by such platforms

justify deployment of silicon products based on such design flows.

A step toward a more hardware-centric design methodology, which still

allows abstracting the designer for a pure RTL description of the architecture,

is that of platform-/component-based design [45][46]. The platform based

design paradigm is an attempt of simplifying the system-level design problem

by removing one degree of freedom. In platform-based design, the allocation

the target system platform consisting of computation and communication

components is assumed to be fixed, or at least significantly constrained. Thus,

the constraints at the input of the design process consist of a fixed template

with a given number of parameters. Such a predefined and predetermined

implementation scheme eases the reuse of common design patterns, across the

different design instances. Moreover, such an approach allows IP-designers to

focus the effort of few configurable blocks, whose RTL implementation can

be optimized regarding the physical implementation, exploiting in this way

the IP reuse as much as possible. Platform-based design divides system design

41

into two phases. First, a platform is designed for a class of applications. Then,

the platform is adapted for the particular product in that application space.

MPSoCs are ideally suited to be used as platforms. CPUs can be used as a

way to customize systems in a variety of ways. The platform-based design

tends to be software driven, as much of the product customization currently

comes from software. Once again, this has the advantage of widening the

application domain of a platform, but still, this is often not sufficient to match

the strict performance and energy requirements of modern applications. One

common way to improve performance of a general-purpose system, is that of

configuring and extending processors in order to specialize their functionality

for a specific application domain.

1.4.1 Configurable Processor and Instruction Set

Synthesis

Instruction sets that are designed for specific applications or domain are

commonly used in many embedded systems [47]. As described in the

previous sections, the design of customized processors usually requires a

relevant amount of work but can result in huge power and area savings. The

customization of a processor refers to the tools that generate a RTL

description of the processor based on a set of requirements given by the user.

Configurable processors are divided into two categories. Those that are based

on a pre-existing architecture are enhanced with extensions driven by

specifications based on parameter selection and structural choices provided by

a processor configuration tool. In other cases, configurable processors create a

new instruction set architecture as specified by the user through a more

formalized architectural definition language. The configuration of a processor

can be of two types:

 Structural configuration of the processor. This implies the presence or

absence of a set of interfaces or components associated to the

processor. These might include system bus interfaces, local memory

interfaces, external memory interfaces or external coprocessor

interfaces. The width of the interface and the communication protocols

may also be configurable or selectable. Other parametric structural

choices may imply the inclusion of special functional units such as

42

multipliers, dividers, multiply and accumulate (MAC) units, floating

point units and shifters. Additional structural parameters may include

the presence of on-chip debug, trace JTAG, the register file size,

timers, exception vectors, and multi-context register file.

 Extension of the processor instruction set. This implies the integration

of the processor ISA with extra instructions, which are mapped

directly into the datapath of the processor. The instructions are usually

decoded by the processor in the standard way and may even be

automatically recognized by the compiler or manually invoked within

the processor code. The instruction extensions are usually included in

some kind of architectural description language or may be defined by

a combination of HDL code and templates for instruction formats,

encoding, and semantics.

The architectural optimization of a processor is done by designing or refining

the microarchitectural features from high level specifications such as

performance or power. This is often performed in conjunction with

configurable extensible processors or coprocessors. The optimization flow can

either be automated or not, but it is always supported by tools working at

various levels of abstraction and sophistication.

The MIMOLA system [48] is one of the first appeared CPU design tool that

perform both the architectural optimization (i.e., automatic selection of

architectural parameters) and configuration. ASIP Meister [49] is a

configuration system that generates processors featuring Harvard architecture.

The Synopsys Processor Designer [50] uses the LISA language to describe

processors starting from a combination of structural and behavioral features of

the desired architecture. From the same description of the architecture, a set of

tools associated with the environment enable the generation of both

synthesizable RTL code and a compiler for the generated processor. The

Tensilica Xtensa processor [50] is a commercial configurable processor that

allows the users to configure a wide range of processor parameters, such as

the instruction set, feature of the caches, and presence of I/O interfaces. The

Toshiba MeP core is a configurable processor optimized for media processing

and streaming.

The synthesis of instruction set is a form of architectural optimization that

concentrates on instructions. Several commercial approaches that generate

application specific instruction set processors or coprocessors from scratch

exist. These start with either application source code, such as Synfora PICO

[51], based on research from HP or compiled binary code Critical Blue

43

Cascade [52] and generate a custom highly application-tuned coprocessor.

Other commercially affirmed high-level synthesis approaches are the Catapult

C [53], which provides synthesis of accelerators starting from a C-level

description of an algorithm and permits selection of many synthesis

parameters such as pipelining and unfolding. PowerOpt [54] is a high-level

synthesis flow that permits the generation of power-optimized hardware

accelerators starting from high-level languages such as C, C++ or SystemC.

Some of these tools integrate both the processor configuration and the

synthesis of the instruction set extension. The XPRES [55] tool from

Tensilica [35] combines the notations of configurable processor, instruction

set extensions, and automated synthesis. The processor synthesis flow starts

from the user application code and ends up with a configured instruction-

extended processor tuned to the particular application. XPRES utilizes

optimization and design space exploration techniques that allow the user to

select the proper combination of performance improvement, area increase,

and energy reduction in order to meet the applications constraints. The

STxP70 processor from STMicroelectronics is a configurable and extensible

processor for embedded applications that allows the user to handle processor

configuration, instruction set extension and automated synthesis of extra

instructions into a unified environment. Selection of architectural and micro-

architectural parameters and the related generation of RTL are achieved

through the graphical user interface. Moreover, the processor is integrated

with a set of configurable peripherals and interconnect (i.e., DMAs, Bus) that

allow its integration on a complete, configurable sub-system.

1.4.2 Synthesis of instruction set on reconfigurable

processors

The general concept of synthesis of instructions set can be naturally applied to

reconfigurable processor, leading to the described paradigm of the instruction

set metamorphosis. Differently from the synthesis of instruction set extension

applied to processors, the implementation of reconfigurable processors

instructions is constrained by the specific architecture of the target

reconfigurable engine, mainly consisting of the granularity of processing

elements, flexibility of the interconnect, and the utilization of either a tightly

coupled functional unit approach or a co-processor approach. Milestones of

the research on the field of reconfigurable processors, like the GARP

processor, and other commercial state-of-the-art reconfigurable processors

proposed C-based design environments envisioning the possibility to offer the

44

end-user the capability of automatic partitioning, and then to co-compile the

same source code over both the processor core and the reconfigurable logic.

The Nimble compiler [56], targeting the Garp processor, is one of the first

tools that tried to automatically move critical kernels from the processor core

to the reconfigurable hardware accelerator, selected from the basic blocks of

the compiled applications inner loops. Another example is that of PipeRench.

It is configured utilizing a single-assignment language with C operators

(called DIL, Dataflow Intermediate Language) that is a C-based proprietary

language.

Moving the focus on coarse grain reconfigurable processors, direct mapping is

probably the most used method, where operators are mapped to the

programmable elements that compound the device without a real logic

synthesis step. PACT XPP and MorphoSys are effective examples of such an

approach. Although they provide a tentative virtualization of the mapping

layer using C-based high-level compiler flows [57][58], for the full

exploitation of the architecture capabilities assembly-like languages are

needed for both of those. PACT XPP is programmed through the Native

Machine Language (NML), a structural event-based netlist description

language. The MorphoSys architecture is provided with a SUIF-based

compiler for the host processor, while the partitioning between hardware and

software is performed manually by the programmer. The MorphoASM, a

structural assembly-like language, is used to configure each programmable

element according to the required functionality. The CREMA architecture is

equipped with the Firetool (FIeld programming and REconfiguration

management Tool). With Firetool the designer can specify a set of

reconfiguration patterns used in the application. The tool generates a VHDL

package based on a fixed template, where all the parameters are set

accordingly to the specifications, and a set of C header files to manage via

software the runtime reconfiguration.

1.5 Bridging the gap between MPSoC design and

configurable hardware specialization

The NRE costs associated with the design of complex systems are growing

rapidly. More precisely, the design and verification of complex Systems On

Chip, and the production of masks and exposure systems are major

bottlenecks for the development of such chips. The main goal of the

45

electronics embedded systems is that of balance the development time and

cost, and the production cost with their performance and functionality. As we

saw in the previous sections, during the recent past many approaches have

been proposed to fill the gaps between the increasing NRE costs of electronics

system design and the matching of the requirements of modern applications.

Considering the design time and costs, the deployment of platform-based

design provides an effective solution that leverages on the semiconductor

manufacturing. A common platform can be manufactured in the large

volumes that are required to make chip manufacturing economically viable.

Concurrently, it can be specialized for use in a number of products, each of

which is sold in smaller volumes. Moreover, the development of standard-

based systems encourages the utilization of platform based design

methodologies. The standard creates a large market with common

characteristics as well as the need for product designers to differentiate their

products within the scope of the standard. In this scenario, in order to achieve

high performance, a platform vendor may allow a customer to specialize the

platform in ways that require new sets of masks, but this negates many of the

benefits of platform-based design, due to the still unsolved problem of the

manufacturing costs.

One possible solution for successfully extending the application spaces of

platform-based MPSoC while exploiting the efficiency of application-specific

hardware is that of utilizing reconfigurable logic or structured ASIC solutions

as hardware accelerators. In this scenario, the software programmability of

processors addresses flexibility, while energy efficiency and performance are

addressed by the adoption of powerful configurable or reconfigurable

hardware accelerators. The design and programming of such kind of a

platform should be supported with design frameworks that assist the user in

the customization of the platforms, by providing integrated hardware/software

co-design environments that allow the user the implementation of the

accelerator engines, and the evaluation of the performance improvement due

to software-to-hardware migration starting from the early phases of the

development of an application.

The main objective of this thesis is to evaluate the design space of multi-core

platform equipped with application specific accelerators realized utilizing

design-time configurable and reconfigurable solutions. The evaluation will

46

flow through the development of two different computational platforms. The

Morpheus platform is a heavily heterogeneous multi-core reconfigurable DSP,

whose heterogeneity lies in the different flavours and granularities of

reconfigurable engines utilized as computational cores. The ManyAC

platform is a regular and homogeneous multi-core system specifically

addressing high performance, low manufacturing costs, and low time to-

market. The main peculiarity of the Manyac platform is that of supporting

three kinds of implementation technologies for customization: run-time

configurable technology, via-programmable technology and metal-

programmable technology. These technologies present different trade-offs

between performance, energy efficiency and manufacturing costs, which will

be analyzed in the course of this thesis. The thesis is organized as follows.

Chapter 3 provides a detailed description of the Morpheus platform, analyzing

its programming model, architecture, implementation and providing examples

of applications mapping. Chapter 4 describes the Manyac platform, in terms

of programming model, architecture, customization technologies and trade-

offs that came out from the mapping of applications on the platform

depending on architectural choices and the chosen configuration technology.

Chapter 5 provides a quantitative evaluation of the developed platforms, with

comparison to other state of the art devices, mainly focusing on the

applications development time, performance, energy efficiency and

manufacturing costs. Finally, Chapter 6 provides final considerations about

multi-processor systems with configurable hardware acceleration.

47

Chapter 2

2 The Morpheus Platform

2.1 Overview

The Morpheus platform can be described as a coarse-grained, heterogeneous

MPSoC, which maintains the structure typical of commercial ASSPs, and

replaces the application-specific hardware accelerators with a heterogeneous

set of reconfigurable engines in order to match the application computational

requirements. It is composed of 4 main loosely coupled blocks, each one

representing a subsystem featuring local memory and independent, software-

programmable clock domain. An ARM9 processor core represents the user

interface toward the system ensuring programming legacy typical of software

programmable processors. The other computation units in the system are

wrapped as auxiliary processor cores, and comprise a 16-bit CGRA (The Pact

XPP-III [21]), which is suitable for arithmetic computation such as FFT,

DCT, and real time image processing, an embedded FPGA (eFPGA) device

Figure 2.1: View of the Morpheus application space.

48

(the Abound Logic Flexeos core [15]), which can easily handle bit level

computation, and a mixed-grain 4-bit reconfigurable datapath (the DREAM

reconfigurable processor [19]) which is suitable for a larger set of

applications, from error correction coding and CRC to processing of binarized

images. The natural application environment for each computation unit is

shown in Figure 2.1.

2.2 Computational Model

The computational model of Morpheus is based on the Molen paradigm [14].

The whole architecture is considered as a single virtual processor, where

reconfigurable accelerators are functional units providing a virtually infinite

instruction set. Tasks (i.e., application kernels) running on the reconfigurable

units or on the ARM itself should be seen as instructions of the virtual

processor. The configuration bitstream of the reconfigurable engines represent

the virtual instructions micro-code, with the added value of being statically or

dynamically reprogrammable. According to this paradigm, increasing the

granularity of operators from ALU-like instructions to tasks running on

reconfigurable engines, the granularity of the operands is forced to increase

accordingly. Operands cannot be any more scalar C-type data but become

structured data chunks, referenced through their addressing pattern, be it

simple (a share of the addressing space) or complex (vectorized and/or

circular addressing based on multi-dimensional step/stride/mask parameters).

Operands can also be of unknown or virtually infinite length, thus introducing

the concept of stream-based computation. From the architectural point of view

the Morpheus handling of operands can be described at two levels: Macro-

Operand is the granularity handled by extension instructions, x controlled by

the end user through the ARM program written in C. Macro-operands can be

data streams, image frames, network packets or different types of data chunks

whose nature and size depends largely on the application. Micro-Operands are

the native types used in the description of the extension instruction, and tend

to comply with the native data-types of the specific reconfigurable engines

49

entry language. Micro-operands will only be handled when programming the

extensions.

As the Morpheus platform is required to process data-streams under given real

time constraints the work of user at system level is to schedule tasks in order

to optimize the partitioning of the applications computational demands over

the available hardware units. The aim of the mapping task should be that of

building a balanced pipelined flow in order to induce as few stalls as possible

in the data flow in order to sustain the required run-time specifications. The

computation should be partitioned on the 3 different reconfigurable engines

and the ARM core as much as possible in a balanced way. Figure 2.2 provides

a generic example of application mapping, utilizing only two reconfigurable

engines for simplicity. It appears evident how the overall performance will be

constrained by the slowest stage, where a stage can be either computation or

data transfer. The timing budget of each stage is flexible, and can be refined

by the user, much depending on the features of his application. The interface

between the user and all hardware facilities is the main processor core.

Hardware resources are triggered and explicitly synchronized by software

routines running on the ARM. In order to preserve data dependencies in the

data flow without having to constrain too much size and nature of each

application kernel the computation flow can be modeled according to two

different design description formalisms: Petri Nets (PN) and Kahn Process

Figure 2.2: Morpheus computational model.

50

Network (KPN)[59]. In the first case the above described synchronization is

made explicit, and each computation node is triggered by a specific set of

events. In the second case synchronization is implicit, by means of FIFO

buffers that decouple the different stages of computation/data transfer.

Generally speaking, the XPP array appears suited to a KPN-oriented flow, as

its inputs are organized with a streaming protocol. Unlike XPP, DREAM is a

computation intensive engine: input data are iteratively processed inside the

reconfigurable engine's local memory. Finally M2K is an eFPGA device

programmed in HDL, so that any computation running on it can be modeled

according to either formalism. A KPN can be described as a sub-net of a

larger PN, while the contrary is not possible: if the target application fits well

to the KPN formalism, it appears relatively easy to map it on XPP and eFPGA

exploring the local IO buffers as FIFOs, while if the application should

exploit DREAM the pattern will have to be extended to a PN with

XPP/eFPGA implementing a sub-net organized as KPN. In other cases, a

streaming approach cannot be applied as different reconfigurable engine

operation may be required to run iteratively on the local buffers to describe a

given computation kernel, thus a full PN approach must be applied. The rules

of a generic PN can be briefly described as follows: A given node can

compute (trigger) when all preceding nodes have concluded computation and

all successive nodes have read results of the previous computation. In the

context of Morpheus these rules can be rewritten as follows. A given

computation can be triggered on a given reconfigurable engine when:

 The Bit-stream for the application was successfully loaded

 All input data chunks have been successfully uploaded to the

reconfigurable engine local buffers

 All output data chunks that would be rewritten by the current iteration

have been successfully copied from the reconfigurable engine local

buffers to their respective destinations

In the case of PN, ARM is required to verify the PN consistency and produce

the preceding/successive tokens triggering computation stages. Of course, if

data-chunks are large enough, this monitoring will not be required very often.

Each reconfigurable engine computation round is applied to a finite input data

chunk, and will create an output data chunk. In order to ensure maximum

51

parallelism, during the reconfigurable engine computation round N the

following input chunks N+1, N+2,... should be loaded, filling all available

space in the local buffers but ensuring not to cover unprocessed chunks.

Similarly, previous available output chunks . . . , N-2, N-1 should be

concurrently downloaded ensuring not to access chunks not yet processed.

This mechanism is defined ping-pong buffering, and is utilized to provide a

sort of processor controlled coarse grained FIFO access.

2.3 Architecture

Figure 2.3 shows the system architecture of the Morpheus platform. As

mentioned before, the SoC is built around three heterogeneous, reconfigurable

engines which target three different computation styles. These IPs were

selected due to their complementary capabilities, introduced in the system as

RTL entities and finally implemented and integrated in the design as mix of

custom and synthesizable standard cell based macros. An ARM 926EJ-S

RISC processor, equipped with 16K I-cache and D-cache, plus 16K software-

Figure 2.3: Morpheus SoC Architecture.

Main Bus (Synchronization / Control)

On-Chip

Conf.

Memory

On-Chip

Conf.

Memory

On-Chip

Data

Memory

On-Chip

Data

Memory

Configuration Bus

External Configuration Bus

DNA
Network

Manager

DNA
Network

Manager

DREAM
Processing Engine

DEBXR

CEB

DREAM
Processing Engine

DEBXR

CEB

External

Memory

Controller

External

Memory

Controller

NoC

External

SRAM

External

SRAM

PCM
Config.

Manager

PCM
Config.

Manager

Main

DMA

Main

DMA

M

S

S M

S

Conf.

DMA

Conf.

DMA

M

M

Peripheral BusPeripheral Bus

AMBA

Bridge

AMBA

Bridge

AMBA

Bridge
Bootup

ROM

Bootup

ROM
UARTUART TIMERTIMER ICIC

eFPGA
Processing Engine

DEBXR

GP-I/O Loader

XPP-III
Processing Engine

DEBXR

CEB

XPP-III
Processing Engine

DEBXR

CEB

ARM926-EJS

ITCM DTCM

ARM926-EJS

ITCM DTCM

Fig. 1. SoC architecture

52

managed D- and I- Tightly Coupled Memories (TCM) and a standard set of

peripherals connected through a specific AMBA-APB peripheral bus acts as

system supervisor.

ARM manages all communication, synchronization, and reconfiguration of

the SoC by means of a dedicated “Main” AMBA-AHB bus. All computation,

communication and configuration resources in the system are controlled by

set of control registers mapped on this bus. The bus is hence critical, but since

it carries only control information at computation time, bandwidth is not

considered a significant issue. For debugging purposes, the main bus is also

capable of accessing all data-storage resources in the system but this feature is

not utilized in normal computation.

The SoC memory architecture is organized on three levels of hierarchy, that

can in turn be logically divided into a data layer and a configuration layer

(Figure 2.4). ARM TCM, and the local buffers of the reconfigurable engines

represent the first level of memory hierarchy, local to each functional unit. A

second level is composed of 512KB of on-chip SRAM, which is

conventionally split into 256 KB data memory and 256 KB configuration

memory. The third and last level is represented by the external off-chip

memory, which stores both configuration and data. Data are exchanged

between each reconfigurable engine and the ARM domain by means of a set

of Data Exchange Buffers (DEBs). DEBs are dual port, dual clock memory

banks that act as local data storage for reconfigurable engines as well as

Figure 2.4: Morpheus SoC Memory Hierarchy.

External

SRAM

External

SRAM

Configuration

Memory

Configuration

Memory

Main

Memory

Main

Memory

A

R

M

I

T

C

M

D

R

E

A

M

C

E

B

E

F

P

G

A

C

M

E

M

E

F

P

G

A

C

M

E

M

A

R

M

D

T

C

M

X

P

P

D

E

B

X

P

P

D

E

B

D

R

E

A

M

D

E

B

D

R

E

A

M

D

E

B

E

F

P

G

A

D

E

B

E

F

P

G

A

D

E

B

X

P

P

C

E

B

III Level

II Level

I Level

Configuration

Layer

Data

Layer

53

providing safe clock domain crossing. DEBs are seen by ARM and NoC as a

single and coherent addressing space. On the other hand, a reconfigurable

engine can only address/access data in the local DEBs and has no other

visibility of the external world. Data dependencies and computation

synchronization between the reconfigurable engines and the ARM domain are

resolved by software via a set of exchange registers (XR) mapped in the DEB

addressing space. Depending on the nature of the reconfigurable engine and

of the features of the application kernels deployed, DEBs can be configured

by ARM as FIFOs or Random Access Memories (RAM). Configuration bits

are transferred similarly through dedicated Configuration Exchange Buffers

(CEBs).

The Morpheus data communication infrastructure is based on a 64-bit, 8-node

STNoC [61] included in the design as an RTL IP. The NoC is composed of

three basic blocks: the router, the network interface and the physical link.

Connections between NoC routers define the topology of the NoC (Figure

2.5). The NoC connects up the computational resources of the SoC (XPP-III,

DREAM, eFPGA, ARM) and to the available data storage elements (main

memory, configuration memory, external memory). Chip level transactions

are handled by a set of two-port DMA engines, each local to a given Network

Interface. One port drives the initiator port of the network interface while the

secondary port is connected to the reconfigurable engines local buffers. NoC

Figure 2.5: Morpheus Communication Infrastructure.

ARM test
Interface

MAIN

MEM
NI Target

NI Initiator

CONF.

MEM
NI Target

NI Initiator

EXT.

MEM
NI Target

NI Initiator

NI Initiator

DREAM

DEBs

PACT

IN

DEB

PACT

OUT

DEB

eFPGA

DEB
NI Target

NI Target

NI Target

NI Target
NI Target

NI Master

NI Target

NI Initiator

NI Target

NI Master

HRE-NI

MAIN MEM

Conf Port

HRE-NI

CONF MEM

Conf Port

HRE-NI

EXT MEM

Conf Port

HRE-NI

PICOGA

Conf Port

TARGET-NI

PACT-IN

Conf Port

HRE-NI

PACT-OUT

Conf Port

HRE-NI

eFPGA

Conf Port

NoC Configuration BusDNA
Network

Manager

ARM

ARM test
Interface

MAIN

MEM
NI Target

NI Initiator

CONF.

MEM
NI Target

NI Initiator

EXT.

MEM
NI Target

NI Initiator

NI Initiator

DREAM

DEBs

PACT

IN

DEB

PACT

OUT

DEB

eFPGA

DEB
NI Target

NI Target

NI Target

NI TargetNI Target

NI Target

NI Target

NI Target
NI Target

NI Master

NI Target

NI Initiator

NI Target

NI Master

HRE-NI

MAIN MEM

Conf Port

HRE-NI

MAIN MEM

Conf Port

HRE-NI

CONF MEM

Conf Port

HRE-NI

CONF MEM

Conf Port

HRE-NI

EXT MEM

Conf Port

HRE-NI

EXT MEM

Conf Port

HRE-NI

PICOGA

Conf Port

HRE-NI

PICOGA

Conf Port

TARGET-NI

PACT-IN

Conf Port

TARGET-NI

PACT-IN

Conf Port

HRE-NI

PACT-OUT

Conf Port

HRE-NI

PACT-OUT

Conf Port

HRE-NI

eFPGA

Conf Port

HRE-NI

eFPGA

Conf Port

NoC Configuration BusNoC Configuration BusDNA
Network

Manager

DNA
Network

Manager

ARM

54

DMAs are programmed, triggered by ARM via the Main AMBA-AHB bus,

and consequently generate traffic on the NoC channels.

Morpheus fully supports dynamic reconfiguration, so that each reconfigurable

engine can be reconfigured while the others are computing. With the

exception of the eFPGA, reconfigurable engines are also multi-context,

meaning that configuration bitstreams can be cached into internal

configuration memory and the engines are capable to switch their

functionality in one clock cycle. Configuration bit-streams flow through an

independent AMBA-AHB “configuration bus”.

The reconfigurable engines are encapsulated in independent clock islands,

dynamically controlled via software. Frequency synthesis for the three islands

is performed by three separate PLLs. This solution has the advantage of

allowing fine grain selection of operating frequencies for each of the three

computational engines, enabling the user to carefully tune the optimal power

versus performance trade-off for each application. The drawback of this

solution is that each PLL frequency re-setting requires a 400us locking time,

but given the long configuration time of each reconfigurable engine this

overhead proves insignificant.

2.4 Implementation

The Morpheus SoC is composed of a mixture of custom-designed digital

macros (PiCoGA and eFPGA), embedded SRAM memories and standard cell

regions, partitioned as described in Figure 2.6. The main characteristics of the

Morpheus chip are reported in Table 2.1, while a photograph of the Morpheus

chip is shown in Figure 2.8.

Figure 2.6: Morpheus Area by design object . Figure 2.7: Morpheus Area by entity.

55

Figure 2.8: Morpheus Chip photograph.

XPP-III

DREAM

e
F
P
G
A

PCM

ARM

C.

M
E
M

M.

M
E
M

xpp

pll

efpga pll

system pll

dream pll

XPP-III

DREAM

e
F
P
G
A

PCM

ARM

C.

M
E
M

M.

M
E
M

xpp

pll

efpga pll

system pll

dream pll

Process Technology 90 nm CMOS90GP Process, 7-metal layers

Power Supply 1,0V for core, 3,3 for I/0

Area 110 mm
2

Transistor Count 44M Logic, 1,1Mbyte SRAM

Pinout 256, 163 I/O

Operating Frequency ARM, BUS, NoC: 250 MHz

XPP : 0 - 160 MHz

DREAM : 0 - 200 MHz

eFPGA : 0-140 MHz

Power Consumption Static Power : 235 mW

ARM + NoC : 600 mW @ full speed

XPP : 1200 mW @ full occupation - full speed

DREAM : 420 mW @ full occupation - full speed

eFPGA : 112 mW @ full occupation - full speed

Table 2.1: Morpheus chip characteristics.

56

The three reconfigurable engines were designed separately, and re-utilized as

hard macro-blocks to partition and better organize the physical design effort

[63]. The reconfigurable engines are located on three different clock islands

and positioned at the chip corners to ease global routing. The XPP-III macro

is flipped horizontally so as to better match the input/output ports with NoC

topology; it is placed on the bottom-right side of the chip. The DREAM

macro is placed top right, the eFPGA in the top left corner of the die, while

the ARM processor macro, working at the system clock frequency is placed in

the middle of the chip. The PLLs are placed on the four boundaries of the die

in order to avoid coupling noise among their analog supplies. Figure 2.7

shows the amount of area occupied by the entities composing the Morpheus

platform.

The NoC implementation was realized following the same hierarchical

approach of the whole design: the router was implemented separately and

included in the course of design as a custom macro during top level

implementation. The sites of the routers in the final design were carefully

selected in order to constraint the place & route tools for placing the network

interfaces cells, and as far as possible to balance the NoC physical link

routing, avoiding congestion areas and unduly long wires. Figure 2.9

describes the logical connections between NoC nodes which define the chip

layout topology while Figure 2.10 shows the floorplanning of the NoC

components. Implementation details of the whole communication

infrastructure are reported in Table 2.2.

Considering the clocking scheme, each reconfigurable engine features two

Figure 2.9: Morpheus NoC topology. Figure 2.10: Morpheus NoC Floorplanning.

arm node

dream node

ext mem node

efpga

node

xpp-in node

xpp out node

conf mem

node

main mem

node

arm node

dream node

ext mem node

efpga

node

xpp-in node

xpp out node

conf mem

node

main mem

node

57

clock inputs. One global clock is used to feed the system-side of the

synchronization barriers (DEBs, CEBs and XRs) and was properly balanced

in order to compensate for insertion delays by the internal clocks. Each

reconfigurable engine can be clocked either by the global system clock, or by

its private clock, programmed by the ARM setting PLL division factors on

specific memory-mapped registers. This mechanism allows one to exploit

Globally Asynchronous Locally Synchronous techniques by enabling

dynamic frequency scaling on the three auxiliary cores.

2.5 Mapping of applications

The aim of the mapping task on the Morpheus platform should be that of

maximizing parallelism and the concurrent execution of computations and

data transfers [67]. When possible, it is desirable to partition an application

among all available computational cores. In other cases, application kernels

can be mapped on a single core. In order to manage the specificity of the

reconfigurable engines while preserving a homogeneous interface, the

Morpheus mapping strategy enforces a strict separation between management

of data flow, synchronization, and control performed by the ARM processor,

Entity # of Instances Std Cells count

[Kgates]

Routers 16 292

NoC Initiator NIs 7 202

NoC Target NIs 7 113

AHB to NoC bridges 6 265

NoC to AHB bridges 6 260

DMAs 6 434

DNA 1 65

Other (Bus, mpmc…) 571

Total 2202

Table 2.2: Details of the NoC implementation.

58

and execution of computational kernels performed by the reconfigurable

engines. The mapping of accelerations on the reconfigurable engines is library

oriented: the user is required to develop it himself using the proprietary tools

of the reconfigurable engines and generate the configuration bitstream for the

required kernels. The analysis, profiling, and implementation of kernels are

supported by specific proprietary tools and languages for the reconfigurable

engines (respectively NML [64] for XPP, Griffy-C [65] for DREAM, and

VHDL for the eFPGA). On the other hand, application partitioning is

performed at compilation time, and driven by an accurate analysis of kernels.

This choice is usually driven by the matching between kernels to be

implemented and architectural features of the reconfigurable engines. As the

Morpheus platform is composed of three granularities of reconfigurable

fabrics, a first rough analysis considers both the average data size and

complexity of the kernel to be implemented. In addition, other factors could

impact the mapping of kernels. The Instruction Level Parallelism (ILP) can

play a crucial role in this context. For example, even for 8-bit operand widths,

XPP can be the most suitable engine if the applications allow its SIMD

capabilities to be fully exploited. On the other hand, bit-level optimizations

could be beneficial to achieve better performance when arithmetic

optimization involves constants or Data Flow Graphs (DFGs) with feedback

arcs, especially if look-ahead technique can be applied. In this case DREAM

or eFPGA would be a better choice. In the following, this section describes

examples of various signal processing kernels implemented on the

reconfigurable engines and the example of an entire application being

partitioned among the computational cores.

2.5.1 Kernels Mapping Examples

AES/Rijndael

The Rijndael algorithm [69] is a symmetric key cipher implementing a

substitution-permutation network, selected by the National Institute of

Standard Technology (NIST) to implement the Advanced Encryption

59

Standard (AES) in 2001. The size of both ciphered block and key, as well as

the number of iterations (rounds), depends on the security level required.

The encryption process starts by arranging the block in a matrix form termed

State. The AES encryption process is performed by the iteration of 4 routines

on the State Columns: SubBytes, ShiftRows, MixColumns, AddRoundKey.

The number of iterations depends on the key width and ranges from 10 to 14.

Basically, AES is mostly defined by operations on Galois Field arithmetic

GF(28). The AES/Rijndael algorithm requires to implement three operations

on GF: the sum, the multiplication by constant amount, and the inverse

multiplicative. While the sum and the multiplication with constant amount can

be written with standard operators (XORs, ANDs and shifts), the inverse

multiplicative requires to be implemented over the Galois Field GF(28).

Operations over GF(28) can be re-written over the composite field GF((24)2).

Thanks to this property the inverse multiplicative can be mapped on two

elementary GF(24) operations natively available on the PiCoGA-III RLCs

[70] . SubBytes operation elaborates byte-by-byte the input block, without

correlation among processed bytes (Figure 2.11). For that reason, the byte-

level permutation can be anticipated before SubBytes, thus making possible to

Figure 2.11: DREAM implementation of the Rijndael algorithm.

60

use the modulo addressing provided by the DREAM address generators to

implement the ShiftRows stage. In addition, utilizing different memory banks

for storing the different rows of the State matrix, PiCoGA is able to load a

new State column for each cycle.

The rotation applied by ShiftRows is handled by changing the starting address

of each bank, while the different number of columns is handled by setting the

address generator end-of-count. The organization by column allows the

packing of the MixColumns function in the same PiCoGA operations.

Figure 2.11 shows the corresponding implementation scheme. The four

operations are mapped in a single PGAOP utilizing 15 rows of the datapath.

The PGAOP computes AddRoundKey, SubBytes and MixColumns on the

four current bytes, leaving the addressing engine to handle the ShiftRows for

both block and key access. A different set of buffers is used to store PGAOP

results, since it is not possible to read-and write a memory bank in the same

cycle. This implementation requires 4 PGAOP call in order to accomplish one

AES/Rijndael Round, after that we need to re-configure the interconnect

cross-bar in order to swap the used I/O buffers.

CRC-32

Cyclic Redundancy Check (CRC) is an error detection coding utilized in

many telecommunication protocols such as Ethernet, SONET and Bluetooth

in order to verify the consistency of transmitted data. The mathematical

background of the CRC algorithm is represented by Linear Feedback Shift

registers (LFSR), widely used circuits in modern multimedia and

communication devices thanks to their statistical properties. For instance, they

are utilized for scrambling purpose in 802.11 (WiFi), 802.15.4 (ZigBee),

802.16 (WiMax) and Digital Audio/Video Broadcasting (DAB/DVB)

standards. Furthermore, GSM telephones, Bluetooth devices, and almost all

commercially produced DVD-Video discs utilize LFSR as stream cheaper.

The serial block diagramof a LFSR is reported in Figure 2.12a, while its

utilization as CRC encoder is shown in Figure 2.12b. The CRC input bits are

combined with bits flowing in the feedback loop. In this case, as well as for

most of the real LFSR applications, we consider feedback loops defined over

61

an the Galois Field GF(2). This means that the additions necessary in the loop

are defined in GF(2) and thus implemented with exclusive-ORs. For that, the

DREAM implementation massively uses the 10-bit XOR operation which can

be mapped on a single PiCoGA RLC. Furthermore, in order to exploit

pipelining on PiCoGA as much as possible, solutions which are not requiring

pipeline stalls during the processing flow have been evaluated. The approach

proposed by J.H. Derby in [73] was selected. This method allows to

parallelizing CRC/LFSR computation without increasing the complexity of

the feedback loop. In fact, LFSR can be modeled in a matrix form, where the

parallelization is mostly done through matrix exponentiation. Thanks to this

property, it is possible to find a transformation, which allows keeping the

resulting matrix in a “simple” form. Working on a “transformed” field

CRC/LFSR space, we need to call an anti transformation block on the output

stage of the CRC. The 32-bit CRC application has thus been partitioned on

two PiCoGA operations: the first one implements the transformed status

update, while the second one implements the anti-transformation block of the

CRC output sequence [72]. The main benefit of this approach is that

increasing the available resources allows greater look-ahead factors, hence the

number of bits processed per cycle. On the other hand, this partitioning does

not decrease performance because the output sequence transformation is

required only at the end of the message and it does not break the pipeline

Figure 2.12: a) LSFR circuits b) CRC circuit.

62

evolution during the status update operation. The status update operation has

been generated for different values of M, finding that PiCoGA is able to

elaborate up to 128 bits per cycle utilizing all the 24 rows of the array. On the

other side the occupation of the output update operation is 10 rows.

Edge detection

The edge detection is a morphological operator widely used in image

processing, particularly on motion detection algorithms [71].

Mathematically, it is based on the Sobel Convolution, a discrete

differentiation operator computing an approximation of the image intensity

function gradient. At each point in the image, the Sobel operator outputs the

corresponding gradient vector. From a practical point of view, the Sobel

operator is based on the convolution of the image with an integer, hi-pass

filter in both horizontal and vertical directions. The following formula shows

the mathematical formulation of the operator:

Being E(x,y) the pixel under elaboration, p(h, k) the pixel in the 3x3 matrix

centered in (x,y), and K the Sobel matrix, for horizontal and vertical edge

detection, defined as:

The resulting gradient is defined as:

In some cases, as in that of edge detection, the scope of the application is not

to detect the magnitude, but the presence of a gradient. For that many motion

63

detection algorithms work on binarized images allowing an easier detection of

the edges, thus detection of external agents in the scenario. This feature can be

exploited on the DREAM architecture. In fact, inverse-binarized edge

detection can be represented as:

 =

Since each pixel can be represented by 1 bit, the result of horizontal and

vertical Sobel convolution is in the range of [-4, +4] requiring 4 bits.

Moreover, it should be noted that given Eh and Ev components, IB(x,y) will

be 1 if and only if all the bits of Eh and Ev are zeros, making possible to

implement this computation by an 8-input NOR, thus utilizing 2 PiCoGA

RLCs per pixel (Figure 2.13). In this case, since each pixel is represented by1

bit, we elaborate 3 * 32 =96 pixels per PiCoGA operation, packing 32 pixels

in a single 32-bit memory word stored in the local buffer. The processing is

based on this simple operation repeated many times for all the pixels in a

frame. It is thus possible to operate concurrently one or more pixels at time

unrolling the inner loop of the computation flow. Considering that this

operation takes data from three adjacent rows, we use a simple 3-way

interleaving scheme in which each row is associated to a specific buffer by the

rule buffer_index = #row mod 3. Rows are stored contiguously in each buffer,

and the PiCoGA can read one row chunk per cycle. The address generators

Figure 2.13: Edge detection implementation on DREAM.

64

are programmed accordingly with the above described access pattern, while

programmable matrix is used to switch from one row chunk to another.

Boundary effects due to the chunking are handled internally to PiCoGA that

can hold the pixels required for the different for the different column

elaboration in its internal register, thus avoiding data re-read. The occupation

of this operation on PiCoGA is 21 rows and the complete convolution is

performed processing the source image with the same PGAOP for both

horizontal and vertical edge detection.

Binarization

The binarization or thresholding is a image processing method of image

segmentation. From a grayscale image, thresholding can be used to create

binary images. During the binarization process, individual pixels in an image

are marked as object pixels if their value is greater than some threshold value

and as background pixels otherwise. It is utilized in image processing, such as

in printers, in order to transform grayscale images to a black and white before

printing them on a paper. From the mathematical point of view it is composed

by a comparison between each pixel belonging to the target image and a fixed

Figure 2.14: Implementation of the binarization application on the eFPGA.

65

threshold and a further packaging of the comparison results to 32-bit words.

Figure 2.14 shows the implementation of a binarization application on the

eFPGA architecture. This application takes benefit from the flexible nature of

the eFPGA, utilizing the whole bandwidth of its input buffer, configured for

this specific application as FIFOs. 16 8-bit pixels, organized as 4 32-bit

words, are concurrently read from the input FIFOs and processed by the logic

implemented on the eFPGA core. A finite state machine (FSM) implemented

on the eFPGA core detects the presence of data on the input buffers

generating the pop signal accordingly. The logic mapped on the core performs

16 concurrent comparisons between the input pixels and the chosen threshold,

which is stored in a general purpose register accessed by the ARM processor

through the local buffer interface, and connected to the FPGA core I/O. As the

number of concurrent processed pixels is 16, while the output binarized image

needs to be formatted as 32-bit words the FSM is also responsible for

packaging the binarized image storing intermediate results in a register and

shifting the binarized vector when necessary. The packaged data is then

pushed to the output buffer, configured for this application as output FIFO.

Ethernet

Ethernet protocols refer to the family of local-area network (LAN) covered by

the IEEE 802.3 standard. It is a widely utilized communication protocol,

almost in every personal computer we can find an Ethernet peripheral. This

section describes the implementation of a 10/100 Ethernet Media Access

Controller (MAC) on the eFPGA device, showing its capabilities as

configurable I/O peripheral.

The main purpose of the MAC is to connect an Ethernet PHY, placed on the

circuit board, to the ARM side of the Morpheus system allowing the chip to

communicate with the external world utilizing an Ethernet protocol as shown

in Figure 2.15 [75].

The MAC core is mainly composed of four blocks: a management module

responsible for the configuration of the communication with the PHY, a

control module in charge of data flow control, a transmission and a reception

module. These modules implement the communication protocol toward the

66

PHY. Indeed, the I/O signals of the five modules are connected to the eFPGA

interface, and then out of the Morpheus chip thanks to the GPIOs exported to

the chip pad frame. On the other side of the MAC, the described modules

control through a host interface the data and control ports of the local buffers,

configured in this application as random access memories.

As the Ethernet packets are 36 bits wide, buffers 0 and 1 are utilized to store

the received packets, while buffers 2 and 3 are utilized for transmission.

Notifications of transmitted/received packets are performed by the ARM

processor using an interrupt interface and memory mapped control registers

accessible through the main bus.

RGB2YUV conversion

RGB2YUV conversion is an image processing algorithm, which converts

pixel data between the common RGB and the YUV color representation,

Figure 2.15: Implementation of an Ethernet MAC on Morpheus.

67

which is utilized in standard definition television formats such as PAL or

NTSC. This luminance component is calculated as:

Y= 0.299*R+0.587*G+0.114*B

As this basic formula contains fractional arithmetic, which is not natively

supported by the Morpheus reconfigurable engines, a modified variant

following the ITU-R BT 601 standard [68] has been implemented, consisting

of integer additions and multiplications as well as shift and rounding

operations. Regarding the data format, one RGB pixel is represented as a 32-

bit word, which contains 3x10 bits for the color components and two empty

bits. This requires additional shift and logical operations for the isolation of

the color components before processing. Consequently, the operation

granularity of the application varies between 32 and 10 bits, which is

beneficial for the comparatively large data word width of the XPP. Figure

2.16 shows the corresponding implementation scheme. As the calculations are

performed per pixel, image data can be fetched in a streaming fashion without

requiring extra buffering or specific memory access patterns. The application

Figure 2.16: Implementation of RGB2YUV on Morpheus.

Frame-
Buffer

(External
RAM)

Frame-
Buffer

(External
RAM) ARMARM

FNC-PAE0:
Control XPP

FNC-PAE0:
Control XPP

DEB In 0,1
RGB

DEB In 0,1
RGB

DEB Out 0,1
Grayscale

DEB Out 0,1
Grayscale

XPP ArrayXPP Array

UnpackUnpack

** ** **

++ PackPack

68

is implemented using the XPP’s Native Mapping Language (NML). The

different arithmetic operations are mapped to NML primitives, which are

connected via their inputs and outputs. These primitives are then translated to

the array objects, which are automatically placed and routed by the XPP tools.

Due to the limited complexity of the application, an automated pipeline

balancing by the tools was feasible, which results in a perfect pipeline without

internal stalls. During pipeline execution, each pixel is read from two parallel

incoming FIFOs, processed, packed into a 32-bit output word, and finally

output via two outgoing FIFOs. The complete pipeline achieves a throughput

of one pixel per clock cycle and has an overall latency of 10 clock cycles,

which offers sufficient processing performance for the targeted application

domain. The application execution is controlled by one functional processing

unit, which initiates the configuration of the XPP array, starts the array

execution, and stops the XPP as soon as stopped by the ARM. Data transport

for this application is implemented via parallel NoC transfers to and from off-

chip memory, which are programmed and controlled externally by the ARM.

The XPP’s internal 4D address generators are not required in this application.

Motion Estimation

Motion Estimation (ME) detects motion between a reference frame and its

preceding and succeeding frames within a movie sequence. The algorithm is

based on block matching using the subtraction and absolute difference (SAD)

as the decision criterion: the blocks are subtracted pixel-wise and the

differences are accumulated for each possible block matching in a given

search area. Finally, the matching with the smallest SAD is selected as it

shows the best resemblance of reference and search block.

The algorithm is extremely computation intensive, which is due to the large

amount of subtractions and accumulations per block matching and the

exhaustive search approach that delivers the best results in terms of quality

when compared to other block matching techniques such a three step search.

For this application, the data word width is 10 bits per pixel, which are packed

in larger data words of 16 bits. The image blocks are fetched in a regular

69

order, which allows predictable memory access patterns and the composition

of a gapless pixel stream that matches with the XPP’s streaming concept.

Following a specific optimization approach [74], three instead of two different

image streams need to be fetched from off-chip memory, and a reordering of

pixel data from a row-wise to a column-wise pixel representation is required.

For this task, the implementation benefits from the XPP’s 4D DMA address

generators, which directly enable block based memory access patterns and a

reordering of pixel data. As shown in Figure 2.17, the implementation is split

into different parts: first data is fetched from all four incoming DEBs and is

buffered into the XPP’s internal and configuration memory, which has been

partly converted into an additional data buffer for this application. Next, the

4D DMA convert the pixel streams and feed them into the XPP array, which

performs the calculation of SADs that are then passed to the FNC-PAEs.

These units select the best matches, which are finally written to MORPHEUS’

on-chip memory via the XPP’s crossbars and the outgoing DEBs. This

concept fully exploits the XPP’s capabilities as it utilizes all available

computation, memory and data transport modules. The block matching part is

also implemented using NML code. However, due its computation complexity

and the corresponding large amount of processing elements, an automated

Figure 2.17: Implementation of Motion Estimation on Morpheus.

XPP Array:
Calculate

SADs

XPP Array:
Calculate

SADs

4D DMA4D DMA

DEB In 2,3
Reference

DEB In 2,3
Reference

Frame-
Buffer

(External
RAM)

Frame-
Buffer

(External
RAM)

On-chip
memory

On-chip
memory

DEB Out 0,1
Motion vectors

DEB Out 0,1
Motion vectors

DEB In 0,1
Search

DEB In 0,1
Search

X-RAMX-RAM CEBCEB

FNC-PAE1:
Select

best match

FNC-PAE1:
Select

best match

FNC-PAE0:
Control XPP

FNC-PAE0:
Control XPP

ARMARM

4D DMA4D DMA

70

placement and routing was not feasible. Instead, the application has been

manually optimized and placed in order to achieve a successful

implementation. The FNC-PAE code is implemented as C functions, which

also contain the crossbar and array configuration code. Because of the

bidirectional execution of the ME, the XPP requires one internal

reconfiguration during application execution in order to reinitialize all

processing elements. Finally, the 4D DMA engines are controlled by the

external ARM processor, which is necessary for the synchronization between

on- and off-reconfigurable engine data transfers. External control is again

performed by the ARM processor, which triggers and stops the XPP

execution and loads the configuration data into the configuration memory.

Motion Compensation

The Motion Compensation (MC) is utilized to remove the detected motion in

order to improve the image quality for the final noise reduction step. This is

achieved by assembling a compensated image out of image blocks from the

two search images. For this task, the MC module mainly executes

comparisons, which validate the SAD with different thresholds and check the

Figure 2.18: Implementation of Motion Compensation on Morpheus.

Frame-
Buffer

(External
RAM)

Frame-
Buffer

(External
RAM)

ARM:
Select SAD +
Addr. Gen.

ARM:
Select SAD +
Addr. Gen.

On-chip
memory

On-chip
memory

DEB In 2,3
Reference

DEB In 2,3
Reference

DEB Out 0-3
Compensated

DEB Out 0-3
Compensated

DEB In 0,1
SAD + Search

DEB In 0,1
SAD + Search

SADs

Address

CEBCEB

4D DMA4D DMA

XPP Array:
Build

compensated

XPP Array:
Build

compensated

4D DMA4D DMA

X-RAMX-RAM

FNC-PAE0:
Check SAD

FNC-PAE0:
Check SAD

71

compensated image stream for consistency. Depending on the particular best

match for each block, the result image consists of image content from the

preceding and succeeding images, which results in non-predictable memory

access patterns that cannot be pipelined efficiently. This is even aggravated by

the motion vectors, which produce unaligned random block offsets inside the

off-chip memory. Due to these random memory accesses and the

comparatively large data word width of 32 bits per pixel, the application is

considered memory-intensive. For the implementation, shown in Figure 2.18,

the application is again split into different parts, which are executed by

different components. The selection of the matching direction and the off-chip

memory address calculation are performed by the ARM, which also initializes

the NoC-based data transfers from off-chip memory to the XPP’s incoming

DEBs and controls the XPP’s internal address generators. The SAD is time-

multiplexed with the pixel data and is transferred to one FNC-PAE element,

which performs the threshold checks. Finally, the image assembly is executed

on the XPP processing array. Similar to the RGB2YUV implementation, the

array code is automatically balanced, placed and routed by the XPP tools.

Reconfiguration control is implemented on the ARM, which starts and stops

the XPP via the second FNC-PAE element.

2.5.2 Application Mapping Example

Video Surveillance Motion Detection Application

This section describes the implementation on Morpheus of a video motion

detection application used in security and surveillance systems. The aim of

the proposed algorithm is to detect the presence of external objects on a video

transmitted by a camera framing a fixed background.

72

As shown in Figure 2.19, the application is composed of a few main kernels.

For each video frame the first algorithmic stage performs the subtraction and

absolute value between the current and the background image. The resulting

maximum value is extracted and used to calculate the threshold for

binarization. Three spatial operators then process the binarized image. Erosion

and dilatation implement the opening kernel which de-noise the binarized

image, while the edge detection implemented through a bi-dimensional Sobel

convolution algorithm, creates the external object boundary. If an external

object is detected, the final merge kernel returns the highlighting of that object

on the original frame.

Table 2.3 shows the profiling on an ARM 926 EJ-S processor of the proposed

application and the kernel mapping on the reconfigurable cores. From such

Kernel ARM Computation Mapping

Sub/Abs/Max 3% 8-bit Arith. XPP-III

Binarization 2% Asymm. bit level eFPGA

Opening 39% Symm. bit. level DREAM

Edge Detection 55% Symm. bit level DREAM

Final merge 1% 8-bit Arith. ARM

Table 2.3: Profiling and partitioning of the motion detection application.

Figure 2.19: Block scheme of the motion detection application.

73

kernels, data/instruction level parallelism is then extracted and exploited on

the chosen configurable fabric. The first stage of the application (SUB, ABS,

MAX) is composed of strongly arithmetic operations on 8-bit operands. For

this reason, the algorithm is suitable for mapping on the XPP processor,

whose implementation can be parallelized up to four times exploiting the

XPP-III SIMD capabilities. Similarly, the binarization stage can be efficiently

implemented on the eFPGA, being mainly composed of comparisons and

packaging, easily fitting the eFPGA device. The core of the computation is

implemented by three morphological operators (EROSION, DILATATION,

EDGE DETECTION) working on binarized images. The computation is thus

composed of a many iterations of these operators on the same data-set. Thus,

such an image can be stored in the DREAM local buffers and iteratively

processed by the datapath. Moreover, these kernels, which have a native

nature of 8-bitwidth arithmetic, can be implemented using bitwise operators

thanks to the elaboration on the binarized image, perfectly matching the mid-

grain nature of the PiCoGA datapath. Finally, the last merging stage again

involves 8-bit arithmetic. Mapping on XPP could be an option, but that would

require significant NoC transfers, and some time-multiplexing over the XPP

array. In addition, being the last stage in the computation, it requires data

packaging for which a RISC processor is more suited. Since the stage is not

overly critical, it can be performed on ARM without affecting overall

performance.

In order to determine the most suitable balance between computation

throughput and data transfer, granularity was determined as 80x60 8-bit pixel

image chunks, for which an optimized ANSI-C reference software solution

[71] implemented on the ARM 9 processor has a cost of 715 cycles/pixel. A

4-stage coarse grain pipeline managed by the ARM processor through specific

synchronization events processes the image chunks. More precisely, the

completion of a transfer stage is notified by the communication DMAs, while

the completion of a computation stage is notified by the reconfigurable

engines through the exchange registers. If the local buffers of the

reconfigurable engines are utilized in FIFO mode, computation is transparent

and the communication engine notifies the conclusion of a given stage. This is

the case with SAD and binarization in this example. If the reconfigurable

engines DEBs are programmed in RAM mode, as occurs with

74

erosion/dilatation and edge detection, the reconfigurable engine notifies itself

the conclusion.

Figure 2.20 describes the implementation of the motion detection application

on Morpheus. The kernels partitioned are distributed so as to build a balanced

streaming pipeline through the NoC over the various different reconfigurable

engines. At the first pipeline stage the reference image and the background

image are loaded onto the main on-chip memory. During the second stage,

image chunks are processed as a streaming pipe which flows through XPP

and the eFPGA, performing sequentially SAD and binarization, and are

finally stored on DREAM DEBs. In the third pipeline stage DREAM

processes the binarized image chunks, internally iterating erosion, dilatation,

Sobel vertical and Sobel horizontal operations. In the last stage the ARM

processor merges the reference image with the results of overall computation

and stores the final image in the external memory. Configuration management

is not necessary for this application, since all the configuration bitstream can

be loaded off-line on reconfigurable devices. XPP and eFPGA maintain the

same configuration during execution of this whole application, while the

DREAM processor can exploit its reconfiguration capabilities, loading each

of the four kernel bitstreams onto one configuration context.

Figure 2.20: Implementation of a motion detection video surveillance application on the

Morpheus platform.

EXTERNAL

SRAM

SAD/

MAX
BINARIZATIONMAIN

MEM

XPP-III

74Mbit/s

74Mbit/s

74Mbit/s

eFPGA

OPENINGEDGE

DETECTION

DREAM

ARM

synchronization events

74 Mbit/s 74 Mbit/s

9,25 Mbit/s

FINAL

MERGE

DREAM DEBs

Chip boundary

MAX

74 Mbit/s

75

Considering a CCTV 640x480, 30 Frames/second, grayscale video, with 8-bit

pixels, the real time bandwidth is 9.2 Mpixel/s (74 Mbit/s). Assuming

partitioning as described, the critical kernel remains Opening/Edge Detection,

which is performed on the DREAM processor at a computational cost of 1.27

cycles/pixel, thus leading to a real-time frequency for the reconfigurable core

of 12 MHz. Considering the other computation cores, PACT can perform

Subs/Abs/Max kernel @ 0.25 cycle/pixel, while the eFPGA can perform the

Binarization kernel @ 0.125 cycle/pixel. Since the two kernels belong to the

same pipeline stage, the real-time frequencies for the two devices are

respectively 5 and 2.5 MHz. With the described frequency configuration,

measurement on the Morpheus test chip showed a power consumption of 600

mW. On the other hand, when working at the maximum computational power,

it is possible to process videos coming from up to 7 cameras. The bottleneck

in such a case is represented by the external memory controller which is

capable of providing 1.6 Gbit/s bandwidth. Removing this limiting factor

(accesses to external memory) and using maximum computational power,

Morpheus would be capable of processing videos from up to 16 cameras

concurrently while consuming a measured power of 1.45W.

2.6 Performance Analysis

This section analyzes main features of the Morpheus platform through a

quantitative analysis of application implementations on the 90nm chip

prototype. In the first part, a theoretical analysis of the Morpheus platform is

provided, based on the characterization of the chip performance and power

consumption performed utilizing ad-hoc test vectors appositely realized to

stress different parts of the device with well-defined computational loads. The

second part of this section gives a detailed view of the Morpheus platform

overheads, bottlenecks and benefits through the implementation of kernels

implemented on the device.

76

2.6.1 Characterization of the Morpheus performance

In order to evaluate the Morpheus performance from a theoretical standpoint,

the granularity of operations has been classified increasing their granularity,

and the affinity of each reconfigurable device composing the system has been

analyzed according to this classification. The operations classification starts

from logic operation of different output width (1,4), arithmetic operation

(sum, sub, shift, comparison.) of increasing operand width (4,8,16,32) up to

multiplications with 16 and 32 bits wide operands. Figure 2.21 shows the

related performance delivered by each reconfigurable engine. As the most

limiting factor of fine-grain devices is routing, the performance of the eFPGA

reconfigurable engine was estimated synthesizing logic and arithmetic blocks

of different granularities utilizing its proprietary tools. On the other hand,

performance of the coarser reconfigurable engines, less sensitive to routing

congestion, was approximated to the number of logic and arithmetic blocks of

different granularities that can be implemented only considering the available

computing elements.

On the other hand, if we consider power as evaluation metrics, the main

contributions consists of the working frequency of each clock island, the

number of resources utilized (PAE for XPP, RLC for DREAM, LUT for

eFPGA), the routing path, as well as the number of concurrent accesses to

memory banks or FIFOs. For this reason a characterization of the Morpheus

power consumption has been performed by running ad-hoc test vectors which

utilize a pre defined number of resources of each reconfigurable engine.

Figure 2.21: Morpheus performance. Figure 2.22: Morpheus energy efficiency.

1,E-02

1,E-01

1,E+00

1,E+01

1,E+02

1,E+03

1-bit

LOGIC

4-bit

LOGIC

4-bit

ARITH

8-bit

ARITH

16-bit

ARITH

32-bit

ARITH

16-bit

MUL

32-bit

MUL

Operations Granularity

T
h

e
o

re
ti

c
a
l

P
e
rf

o
rm

a
n

c
e

[G
O

P
S

]

eFPGA

DREAM

XPP

ARM 9

1,E-05

1,E-04

1,E-03

1,E-02

1,E-01

1,E+00

1,E+01

1-bit

LOGIC

4-bit

LOGIC

4-bit

ARITH

8-bit

ARITH

16-bit

ARITH

32-bit

ARITH

16-bit

MUL

32-bit

MUL

Operation Granularity

E
n

e
r
g

y
 E

ff
ic

ie
n

c
y

[G
O

P
S

/m
W

]

eFPGA

DREAM

XPP

ARM 9

77

As a proof of concept, Figure 2.23 shows measurement on the DREAM

processor when running in idle mode (RISC processor only), when using half

of the available rows fetching data from its internal register, when using all

the PiCoGA rows, and when using all 24 rows while accessing all I/O

memory banks. These experimental results, which can be extended to the

other reconfigurable devices of the system, show significant dependence

between the power consumption and the quantity of reconfigurable resources

utilized by the devices composing the system.

Figure 2.24 reports dynamic power measurements performed running the

power characterization test vectors on the Morpheus prototype. More

precisely, the ARM clock island power was measured turning off the clocks

of all reconfigurable engines in the system, and programming all DMAs of the

system in order to iteratively perform transfers among all the NoC nodes. This

number considers power consumed by the ARM, DMAs, the whole NoC, and

all the storage elements connected to the NoC. Figures relative to the

reconfigurable engines were calculated running the test vectors on the target

reconfigurable engines and subtracting from the measured values the idle

power consumed by the ARM clock island. In both ARM and reconfigurable

engines power calculations the leakage power was considered as an offset

subtracted from the measured values. Figure 2.22 show the energy efficiency

of the Morpheus platform for the different size and nature of the operations,

calculated as the theoretical performance normalized to the power density

(mW/MHz) of each reconfigurable engine.

Figure 2.23: DREAM power consumption. Figure 2.24: Morpheus component power.

0

50

100

150

200

250

300

350

400

450

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

Frequency [MHz]

D
y
n

a
m

ic
 p

o
w

e
r

[m
W

]

idle

PiCoGA (half rows)

PiCoGA (all rows)

PiCoGA (all rows + all debs)

78

2.6.2 Application-based analysis of the Morpheus

platform

This section describes the performance delivered by the Morpheus platform

when running a set of application kernels implemented on the Morpheus test

chip. The aim of this section is to evaluate the Morpheus capabilities in

different application domains analyzing major causes of degradation, with

respect to the presented theoretical performance when running real-life

applications described in the previous section (Table 2.4).

Occupation of reconfigurable engine resources

The under-utilization of resources is a major cause of overheads in any kind

of reconfigurable device. This is usually due to design trade-offs between

generality and mapping efficiency, which usually lead to non-optimal

matching between device resources and computational patterns of

applications. This phenomenon is negligible in applications where inner loops

can be parallelized to saturate device resources. In other cases, resource

occupation is a major constraint that limits the exploitation of parallelism.

Application Application field Target

RGB2YUV Imaging/Video 2048x1536, 10-bit/pixel, 30 fps

Edge Detection Imaging 640x480, Grayscale, 30 fps

Binarization Imaging 640x480, Grayscale, 30 fps

AES/Rijndael Cryptography 802.16

CRC Telecom Ethernet 10/100 Mbps

Motion Estimation HD Video 2048x1536, 10-bit/pixel, 30 fps

Motion Compens. HD Video 2048x1536, 10-bit/pixel, 30 fps

Ethernet MAC Telecom Ethernet 10/100 Mbps

Table 2.4: Applications selected for the evaluation of the Morpheus Platform.

79

Figure 2.25 shows resource occupation of each application implemented,

reported as a percentage of both logic resources and local I/O resources.

Results show that CRC employs all 24 PiCoGA rows thanks to the unfolding

technique applied to the algorithm. In contrast, since MC is acutely memory-

intensive, it saturates the input and output resources of the XPP array, and

thus under-utilizes the array-processing elements. Ethernet and RGB2YUV

require less than half of the logic resources, while in the other cases utilization

of logic resources is more balanced, falling between 60% and 100%. The

under-utilization of logic resources is the first factor, which prevents

Morpheus to achieve theoretical results. The other factors are reported in the

following.

Communication and Memory infrastructure

Considering the Morpheus platform from a system level perspective, we

analyzed the overheads caused by the on-chip and off-chip communication

infrastructure. For this purpose we run the selected applications initializing

their input frames within different levels of the Morpheus memory hierarchy.

The experiment was performed considering three different scenarios. In the

first one, utilized as reference, input data chunks are initially stored in the

reconfigurable engines’ local buffers and are output to local buffers after the

Figure 2.25: Resources occupation of applications mapped on Morpheus.

80

elaboration. In the second one, input data chunks are stored in the system on-

chip memory, highlighting overheads caused by conflicts on the on-chip

network and memory. In the third one, data chunks are stored in the external

memory, thus highlighting overheads caused by congestions and latencies

introduced by the off-chip memory accesses.

Figure 1.26 shows results of the described scenarios implementations. Data

are normalized with respect to the first scenario. The overheads introduced by

the on-chip communication network is nearly null, meaning that, is able to

sustain the bandwidth of almost all selected applications. In the specific case

of the XPP processor, the first two scenarios are necessarily equivalent as they

fetch data from FIFOs directly connected to the network on chip. On the other

hand, the third column shows that degradation of performance due to access

to external memory occurs in most cases. The only applications not matching

real-time requirements due to bottlenecks in the off-chip communication

infrastructure are ME and MC. In these two cases, the large size of processed

images leads to additional swapping between on- and off-chip memory. This

swapping breaks the XPP pipeline evolution preventing the device to exploit

its full computational power thus leading to a further performance degradation

with respect to Figure 2.26.

Figure 2.26: Overhead introduced by on-chip and off-chip communication.

81

On-the-fly Reconfiguration

When it is not possible to fit a complete kernel into a target reconfigurable

engine, or when it is required to time-multiplex more than one application, it

became necessary to utilize on-the-fly reconfiguration. In these cases,

additional reconfiguration latencies have to be paid in order to re-program

reconfigurable engines being involved by this process. In some cases this

reconfiguration latency can be hidden by processing data on one

reconfigurable engine while the other is being reconfigured, or, in the case of

DREAM, utilizing its multi-context capabilities. The reconfiguration latency

depends on the reconfigurable engine utilized, the size of the reconfiguration

bitstreams for the implemented application, and the configuration memory

hierarchy level utilized to store configuration bitstreams. Table 2.5

summarizes reconfiguration times of the selected applications, assuming the

configuration bitstream is stored at different levels of the configuration

memory hierarchy. Configuration time is the same for all applications

implemented on the eFPGA, as the eFPGA bitstream does not depend on the

number of resources utilized. On the contrary, the DREAM configuration

time is a function of the number of utilized PiCoGA rows, as well as the size

of the program and data memories of the RISC processor. Benefits of the

Application

Off-Chip

Mem.

On-Chip

Conf. Mem.

Local Conf.

Mem.

Context

Mem.

RGB2YUV 171491 128652 ~1000 n.a.

Edge Detection 23441 8107 441 1

Binarization 44820 14940 n.a. n.a.

AES 17090 5906 315 1

CRC 34239 7619 714 1

ME 523955 n.a. ~1000 n.a.

MC 312459 n.a. ~1000 n.a.

Ethernet 44820 14940 n.a. n.a.

*Data reported in Off-Chip Mem. and On-Chip Mem. consider a transfer efficiency of 0.3

Transfers/Cycle assuming an average traffic rate on the configuration bus.

Table 2.5: Reconfiguration latencies of applications implemented on the Morpheus platform

(clock cycles).

82

DREAM’s multi-context capabilities are exploited in the CRC application.

Indeed, the first CRC operation saturates the array resources. Thus, without

multi-context support, the second operation that is necessary to accomplish

the CRC would require a reconfiguration penalty equal to 714 clock cycles

per message. In comparison to the other two reconfigurable engines, the XPP

configuration times are significantly larger, which is explained by its large

size. Similar to the eFPGA, the local configuration time is identical for all

configurations and is estimated to be approximately 1000 clock cycles. The

configuration times of the off-chip memory variant show significant

differences between the three XPP configurations, which are related to the

different sizes of the bitstreams. In combination with the ARM program code,

the ME and MC bitstream sizes also prohibited a configuration from on-chip

memory as the overall amount of the prototype’s on-chip memory has been

exceeded. When processing small or medium-sized images, these large

bitstreams with their comparatively long configuration times result in a

measurable configuration overhead. However, for the targeted class of high-

resolution image processing, the configuration overhead can be disregarded.

Frequancy Scaling

In order to demonstrate benefits of frequency scaling within the Morpheus

platform, we analyzed its impact on the power consumption when running the

presented applications. Most of standards, which implement the described

algorithms, do not require the whole Morpheus computational power. In such

cases it is possible to tune the frequency of the four clock domains of the

platform in order to achieve the lowest possible power consumption for the

given application requirement. To perform the analysis we utilized the

requirements reported in Table 2.4, and we scaled the frequency of each clock

domain (i.e., ARM+NOC, XPP, DREAM, eFPGA) involved in the

(a) (b)

Figure 2.27: Power breakdown of applications implemented on the Morpheus platform

without frequency scaling (a) and with frequency scaling (b).

83

computation according to these constraints. Results are reported in Table 2.6.

The frequency scaling allows reducing the power consumption by factors that

span from 1.9x to 4.9x, depending on the application. It should be noticed

that, differently from the other cases, during execution of ME and MC the

bottlenecks resides in communications, thus avoiding the down-clocking of

the system clock domain which became the major source of power

consumption for these applications. Figure 2.27a shows the power breakdown

of the applications running on the Morpheus platform. Benefits of frequency

scaling are exposed in Figure 2.27b that shows a reduction in the contribution

of dynamic power on the overall power consumption from 82% to 34%.

 RGB2

YCC

Edge

Detection

Binariz. AES CRC ME MC Ethernet

MAC

XPP freq. 5 MHz GATED GATED GATED GATED 5 MHz 5 MHz GATED

DREAM freq. GATED 5 MHz GATED 40 MHz 10 MHz GATED GATED GATED

eFPGA freq. GATED GATED 10 MHz GATED GATED GATED GATED 50 MHz

System freq. 40 MHz 5 MHz 5 MHz 5 MHz 20 MHz 250 MHz 250 MHz 10 MHz

Power

(no FS)

1835 mW 1278 mW 966 mW 1186 mW 1278 mW 2273 mW 1887 mW 947 mW

Power

(FS)

379 mW 258 mW 254 mW 304 mW 307 mW 998 mW 985 mW 291 mW

Table 2.6: Power consumption of applications implemented on the Morpheus platform.

84

Chapter 3

3 The Manyac Platform

3.1 Overview

Manyac is a modular and customizable multi-core platform aimed at the

execution of all those signal processing algorithms whose parallelism can be

exploited at thread-level or at data-/instruction-level.

The Manyac platform addresses fast development of multi-core systems for

applications requiring high performance and energy efficiency, especially for

all those subjects on rapid evolution during the typical life of a product. For

this purpose, a high-level design environment allows the user to explore the

design space of the platform, customizing its architectural parameters, in

order to match the applications specifications. Whenever the exploitation of

thread-level parallelism given by the multi-processor approach is not

sufficient to match the applications requirements, a second hardware/software

development tool enables fast design of custom pipelined hardware

accelerators and their automated implementation on configurable areas of the

platform. This approach allows one to select the architectural parameters

during the design of the platform, and sustain its time life by re-designing or

evolving the application specific accelerators implemented on the

configurable areas.

From the structural point of view, the Manyac approach exploits regularity at

both architectural and layout level in order to address low development and

manufacturing costs and time to market. One specific target of the

architecture is to focus the effort of users on small silicon areas in order to

keep design and verification costs as small as possible. For this reason, as

shown in Figure 3.1, the regularity of the platform is achieved at the

architectural level by the replication of two basic entities: the IO tile, and the

computational tile. The implementation of both entities is based on design-

85

time configurable, parametric IP components, whose customization within the

platform do not require to the final user specific knowledge of hardware

description languages. On the other hand, the application specific areas,

designed starting from a C-level description language, are considered from

both architectural and structural point of view as “pluggable”, stand-alone

components, allowing their customization regardless of the specific

architecture implementation. The aim of the flow is the generation of a hard

macro IP, and its integration in a more complex System-On-Chip or its

implementation as a stand-alone component.

A specific peculiarity of the Manyac platform is that of supporting three

different kinds of customization technologies for the implementation of the

application-specific accelerators, which represent different trade-offs between

the performance of the platform and its flexibility. Those are a run-time

configurable gate array, a via-programmable gate-array and a metal-

programmable gate array.

Figure 3.1: Overview of the Manyac architecture and physical structure.

86

3.2 Computational Model

The Manyac computational model leads to the exploitation of both thread-

level and instruction-/data- level parallelism from a wide class of signal

processing applications. For this reason the Manyac platform supports two

different execution models: a data parallel model and a task parallel model

(Figure 3.2).

The data-parallel execution model can be exploited in all those application

whose parallelism can be explicitly described utilizing the OpenCL data-

parallel programming model [27]. When a data parallel kernel is submitted for

execution, an index space is defined. Each instance of the kernel executes a

point in this index space, which is called work-item. Each work-item executes

the same code, but the specific execution pathway through the code and the

processed data can vary per work-item. Work-items are organized into work-

groups, which provide a coarse-grained decomposition of the index space.

Synchronization between work-items in a single work-group is done using a

work-group barrier. All the work-items of a work-group must execute the

barrier before any are allowed to continue execution beyond the barrier.

Work-items executing a kernel can access three separate memory regions. The

global memory permits read/write access to all work-items in all work-groups.

The local memory is utilized to allocate variables that are shared by all work-

items within a work-group. The private memory defines the region of memory

private to a work-item.

87

Whenever applications or portions of applications do not show this kind of

explicit parallelism, a task parallel model can be utilized for execution. Within

the task parallel execution model, a single instance of a kernel is executed

independently of any index space. In this case, tasks, whose allocation is

selected at compilation time, execute on different computational tiles, while

the consistency of processed data is guaranteed by specific synchronization

events handled by software.

Both data-parallel kernels and tasks can handle the execution of hardware

functions in order to take advantage of data and instruction level parallelism

provided by the application specific accelerators. For many applications,

especially when dealing with hardware accelerators, memory transfers utilize

a relevant portion of the whole computation time. In order to hide memory

transfer latencies it is often desirable to overlap data transfer and computation

phases in a pipelined stream. In this scenario, a hardware/software

partitioning of kernels can be utilized in order to balance as much as possible

the area of hardware accelerators with the throughput achievable by this

pipeline. This is achieved, on the Manyac platform, utilizing the index space

decomposition provided by the OpenCL programming model as shown in

Figure 3.3. Work-items execute concurrently on different computational tiles,

Figure 3.2: Data-parallel and task-parallel execution models.

88

while work-groups execute in a pipeline fashion, whose computation stages

are achieved with throughput-balanced sequences of software and hardware

accelerated functions.

3.3 Architecture

As shown in Figure 3.1, the Manyac architecture is composed of a scalable

cluster of computational elements called computational tiles connected

together by an on-cluster communication interconnect sharing data through a

multi-bank, distributed local memory.

3.3.1 System level architecture

At cluster level, a RISC processor implemented within the IO tile is

responsible for executing sequential code of applications, configuring and

launching parallel and hardware-accelerated kernels, as well as handling

synchronization among cores.

Figure 3.3: Parallel execution of work-items and pipelined execution of work-groups within

data parallel kernels.

89

The global synchronization mechanism is achieved through a set of

distributed, memory mapped synchronization registers. When parallel threads

running on CT controllers reach a synchronization barrier, they set a bit of

their local synchronization register and stop their execution waiting for an

acknowledgment by the cluster controller. The cluster controller collects all

synchronization requests, and acknowledges the execution to the CT

controllers as soon as all threads within a work-item reach the barrier. A

dedicated hardware mechanism was realized to improve the synchronization

during the execution of data parallel kernels. On the other hand, custom

synchronization mechanisms can be implemented by software utilizing

memory mapped registers accessible by the cluster controller in order to

improve flexibility.

The communication infrastructure of the platform is based on a ring topology

state of the art Network-on-Chip (NoC): the STNoC [61]. The regular

geometries of the chosen topology allow to hard-wire each node of the NoC

within a computational tile accordingly with the Manyac implementation

philosophy. A peculiar feature of the STNoC exploited in the architecture is

that of programmable addressing spaces and routing paths. Depending on the

number of computational tiles implemented on the architecture, this feature

allows configuring routing paths and addressing spaces accordingly,

preserving the regularity of the computational tile component down to layout,

as well as the scalability of the platform.

According with the Manyac computation model, each thread running on a CT

controller must be able to access its private memory space, a local memory

space, and a global memory space. The private memory space is implemented

by the tightly coupled memories of the CT controllers, as well as by the

computational tile’s local buffers. The local memory hierarchy level is

implemented by a set of multi-bank single-port memories connected to the

NoC within each computational tile. Finally, the global memory space is

implemented at system level outside of the multi-core cluster

90

3.3.2 Computational Tile Architecture

The computational tile architecture is shown in Figure 3.4 Each computational

tile provides the software programmability by the presence of a GP processor,

while exploiting benefits of the application specific customization through a

set of programmable hardware facilities.

In order to take advantage of the high parallelism typical of hardware

accelerators, it is necessary to provide a data communication mechanism

capable to sustain the available computation bandwidth. For this reason, each

computational tile is equipped with a set of buffers that feed the hardware

accelerators with highly-parallel data. In order to minimize the overheads

caused by memory transfers, the buffers can be concurrently accessed at both

system side and hardware accelerators side, thus allowing a user to create a

pipelined exchange of data-chunks from/to hardware accelerators by

overlapping upload, download and computation phases as shown in Figure

3.3.

A second key factor to consider when handling with hardwired acceleration

unit, especially when implemented on structured ASIC platforms, is that of

flexibility. In order to achieve high computational densities, one key target of

Figure 3.4: Computational tile architecture.

91

the proposed methodology is to implement computation patterns of kernels

within the hardware accelerators, while leaving the software programmable

components to handle data feed, addressing and specialization of hardware

functions. In order to improve the hardware/software cooperation, a specific

multi-ported register file was included as local data repository, whose specific

purpose is that of exchange data between successive issues of hardware

accelerated functions and software instructions executed on the processor. As

hardware accelerators feature function-specific latencies, a hardware register

locking logic was added to sustain access consistency, generating stalls to

preserve the correct program flow. Moreover, the programmable address

generators (AG) connected to all local buffers provide two-dimensional and

circular addressing capabilities typical of many signal processing applications.

Finally, a programmable matrix coupled with a cache, able to store up to 64

configurations, allows connecting all the available buffers or registers to each

input or output of the hardware accelerators. A specific added value of the

programmable matrix is that of implementing complex addressing patterns not

provided by the AGs, such as transpositions or zig-zag scans, by calling

successive hardware accelerated functions with different matrix

configurations.

On the system side, local buffers can be accessed by both the processor, being

mapped on its private addressing space, and a programmable direct memory

access controller (DMA) providing asynchronous, bi-dimensional memory

accesses to the shared and global memory space.

3.4 Configurable Accelerators

As described in previous sections, each computational tile is equipped with a

set of customizable hardware accelerators, which specialize the platform,

whose flexibility depends on the specific kind of customization adopted. The

configuration technology used as the silicon platform for the implementation

of application specific accelerators are a run-time programmable gate array, a

via-programmable gate array, and a metal-programmable gate array.

92

3.4.1 Architecture

In order to improve the flexibility and portability of the approach the gate

arrays coupled with each computational tile were specifically designed to be

plugged to the system as stand-alone components. For this purpose, they

integrate the datapath, which implements the computations, a dedicated

interface toward the system, which handles control, and synchronization

toward the system and a control unit, which schedules the execution of the

pipelined dataflow.

From the architectural point of view, the datapaths are composed of 24 rows,

each implementing a possible stage of a customized pipeline. The run-time

programmable and via programmable gate array feature a fixed template

structure composed of an array of Reconfigurable Logic Cells, as shown in

Figure 3.5. Each row is composed of 16 RLCs and a configurable horizontal

interconnect channel. Each RLC includes a 4-bit ALU, that allows to

efficiently implement 4-bitwise arithmetic/logic operations, and a 64-bit look-

up table in order to handle small hash-tables and irregular operations hardly

describable in C and that traditionally benefit from bit-level synthesis. Each

RLC is capable of holding an internal state (e.g. the result of an

accumulation), and provides fast carry chain propagation through a datapath

row. On the other hand, in the metal programmable gate array, the equivalent

logic and arithmetic functionalities are implemented as a set of VHDL

functions automatically instantiated by customization the flow, which

implement a separate datapath for each hardware accelerated operation

(Figure 3.6). This VHDL netlist is further synthesized on a library of metal-

programmable cells.

93

In order to improve the working frequency, the gate array supports the direct

implementation of Pipelined Data-Flow Graphs (PDFGs), avoiding the signals

which control the pipelined execution of the datapath to be shared with the

computations. The main role of the control unit is to handle the pipeline

evolution, while eliminating unnecessary dynamic power consumption. For

this reason it handles the execution of accelerated operations mapped on the

datapath, activating each row according to the scheduled execution flow and

gating the clock of all those rows not involved in the computation.

In order to enable the easy integration and efficient management of the

pipelined datapath, it is equipped with a dedicated control interface. The main

role of the interface is to translate and synchronize the subsystem signals

addressing the pipelined datapath. Utilizing this approach just a few system-

side control signals are necessary to handle the configuration and execution

toward the datapath, while all timetables and relative stalls are handled

internally on the interface. This way, it decreases the external systems'

computational load necessary to manage timings and exceptions related to

datapath signals.

Figure 3.5: Simplified view of the run-time programmable and via-programmable gate array

architectures.

94

3.4.2 Implementation and Customization Strategies

From the implementation point of view, most peculiar differences between the

three approaches reside in their physical structure and customization

philosophy, being achieved by configuration of SRAM cells, configuration of

input signals utilizing the VIA4 layer, and synthesis and place & route over a

library metal-programmable gate array cells. The layout structure of both run-

time and via programmable gate arrays macro is fixed, this meaning that the

placement of cells and the routing paths are frozen and they can’t be changed

for customization. All possible functionalities are already available inside the

RLC, and the required behavior can be obtained by either driving a

multiplexer or programming a LUT. In both cases, the configuration can

therefore be achieved by forcing 0/1 to specific input signals. An important

aspect to consider is that of the approaches utilized to realize the skeleton

template of the realized gate arrays. Each approach exploits a different trade-

off between aspects related with fixed costs (Design, Verification) which have

an impact on TTM, and aspects connected with manufacturing costs (area)

and performance (application throughput, power consumption). In order to

make effective performance of the more flexible solutions (run-time and via

configurable), advanced implementation approaches were utilized. For this

reason, within the run-time programmable datapath, the implementation of the

Figure 3.6: Simplified view of the metal programmable gate array(a).

95

RLCs and of the control unit was realized utilizing a full-custom design

approach. Contrarily, the via-programmable gate array RLCs were realized by

synthesizing their architecture over a standard cell library, while place and

route was performed manually. In both cases, the datapath implementations

take advantage of the regularity of the approach as each RLC is replicated

over the 24x16 array, and instances of the control unit replicated per row.

Considering the customization, the run-time configurable gate array, is

programmed through a set of configuration SRAM cells which allow to

specifying the functionalities implemented by each RLC and the related

configurable interconnections. Within the via programmable gate array, the

layout is arranged in advance in order to draw configuration input signals in

M3 so run under both ground and power M4 nets, thus obtaining the

customization by placing the VIA4 on specific places. Similarly, for routing

resources all possible configurable paths are already available on the skeleton

layout, designed in M3/M4 and disconnected by default. Then the enabling of

a specific path only requires the placement of a single VIA4 in the inserction

of lines as shown in Figure 3.7.

On the contrary, the approach utilized for the metal programmable gate array

is quite different, leading to achieve regularity at the silicon level rather than

at architectural/circuit level. The customization process starts from a high

level model of the macro that could be afterwards mapped on a configurable

Figure 3.7: Via programmable datapath customization strategy.

96

library based on a gate-array structure. This model is automatically built using

VHDL language, starting from a top structural block and then instantiating

behavioural sub-blocks which link some base functions gathered in a separate

library. These base functions represent atomic operators such as

adder/comparator/multiplier that can be brought back to the available

operators inside the reconfigurable and via-programmable gate arrays

operational units. Because of the pipelined structure of the mapped

architecture, a separate library contains the VHDL model of the control unit.

Routing is not represented by VHDL blocks, but it is transposed by logically

connecting correct blocks together via specific signals. Thus, we can consider

customization as achieved at two levels as shown in Figure 3.8. On the first

level logic the logic functionality of each cell is achieved by utilizing only

M1, VIA1 and M2, which realize the metal programmable library. On the

second step, the implementation of the datapath entities, which realize the

equivalent RLC operators, is achieved utilizing the remaining metal layers

(M2 to M5). For this reason, the overheads of the metal programmable gate

array with respect to the standard cell based approach only reside in the

regular implementation of the metal programmable cells.

Figure 3.8: Metal programmable gate array customization strategy.

97

3.5 Implementation Flow

The Manyac framework consists of an integrated hardware/software

environment that assists the user in the implementation of signal processing

applications on the described multi-core platform. A Global view of the

Manyac framework is shown in Figure 3.9. The framework is logically

divided in four layers tightly integrated to each other, allowing the final user

to explore, for a given application, many platform implementations at

different levels of abstraction. Those are the software layer, a transaction level

modeling (TLM) layer, a register transfer level (RTL) layer and a physical

layer.

Within the software layer, a dedicated compilation flow allows to partition the

application extracting the host code that runs on the cluster controller and

kernels running on each instance of the CT controller, according with the

OpenCL programming model. The compiler extracts from the source code the

definitions of the host functions (defined as standard C functions) and kernels

(defined with the _kernel function qualifiers). Moreover, it allocates variables

defined within kernels on the proper memory region, depending on the

address space qualifier specified during their declaration (_global for global

variables, _local for local variables, _private for private variables). Allocation

of work-items and work groups, even if explicitly assigned during the

definition of kernel functions calls, is handled at run-time, as well as the

management of memory transfers and hardware accelerated functions. The

TLM model of the platform enables one to explore applications described

with OpenCL from a high-level standpoint, and to select the architectural

parameters of the platform, which are reported in Table 3.1, in order to match

the applications constraints with and without hardware acceleration. With

respect to a cycle accurate model, which describes all low-level details of the

communication protocol, the TLM model achieves higher performance in

terms of instructions per second, while it is still able to highlight congestion

situations due to multiple concurrent accesses on the same bus or memory.

Contrarily, the RTL model is used for cycle accurate simulations, for the

validation of the application implementations and as an entry point for the

physical implementation process. Once the architectural parameters of a

98

platform's implementation are selected, two separate place & route flows are

performed separately for the IOT and CT. Many instances of the CT are

further regularly replicated over the cluster and are merged together with the

IOT, leading to the implementation of a customized multi-core hard macro IP.

3.5.1 The Griffy environment

The main target of the Griffy environment is the design space exploration and

implementation of the application-specific hardware accelerators which form

the customization of each computational tile. This environment was initially

developed to configure a run-time programmable gate array [65] and recently

extended to configure the via-programmable gate array and lightly-pipelined

synthesizable RTL code.

The language used to implement pipelined hardware accelerators on the gate

array is called Griffy-C. Griffy-C is based on a restricted subset of ANSI C

syntax enhanced with some extensions to handle variable resizing and register

allocation. Differences with other approaches reside primarily in the fact that

Figure 3.9: Overview of the Manyac design flow.

Parameter

Supported Values

Number of computational tiles

2,4,6,8

Network on chip data width 32,64,128,256

Computational tile local data width 32, 64, 128, 256

CT local memory size 2K,4K,8K,16K,32K,

64K CT program and data memory size 2K,4K,8K,16K,32K

Number of computational tile PGA

buffers*

2,4,8,16

Number of computational tile PGA

registers*

2,4,8,16,24

PGA buffers and registers width 8, 16, 32

* Number of buffers + Number of Register cannot exceed 32

Table 3.1: Manyac Platform Main Configuration Parameters.

99

Griffy is aimed at the extraction of a Pipelined Data Flow Graphs (PDFGs)

from standard C to be mapped over a datapath pipelined by explicit stage

enable signals. Griffy-C is used as a friendly format in order to configure

customizable macros using hand-written behavioral descriptions of DFGs.

Restrictions essentially refer to supported operators (only operators that are

significant and can benefit from hardware implementation are supported) and

semantic rules introduced to simplify the mapping into the datapath. Three

basic hypotheses are assumed. (1) No control flow statements are supported,

as the embedded control unit manages the pipeline evolution (DFG-based

description). Only conditional assignments are supported and are

implemented on standard multiplexers. (2) Each variable is assigned only

once, avoiding hardware connection ambiguity (single assignment). (3) Only

single operator expressions are allowed (manual dismantling). Besides

standard C operators, special intrinsic functions are provided in the Griffy-C

environment in order to allow the user to instantiate non-standard operations,

such as for example the multiplier module.

The Griffy environment permits a graphical visualization of the realized

PDFGs, which highlights data dependencies between nodes and the pipeline

stages computed by the compiler as well as the parameters which describes

the timing behavior of the developed accelerator: latency and issue delay. An

example of PDFG dump of an adder tree is given in Figure 3.10.

Figure 3.10: Example of PDFG implemented utilizing the Griffy environment.

Figure 10. Example of Pipelined Data Flow Graph dump

100

Moreover, the environment provides a cycle-accurate simulator which enable

easy exploration of the hardware/software co-design space. The simulator

models the sub-system composed of the processor, the subsystem which

implements the interface toward the datapath (buffers, matrix interconnect,

and address generators) and the datapath, too. This way it guarantees the

consistency of both functionality and cycle count with the hardware of the

realized customizations in a user-friendly hardware/software co-design

environment.

The customized datapaths designed and validated utilizing the cycle accurate

simulator can be further exported as a functional emulation library.

Differently to the stand-alone cycle accurate model, the key target of the

functional emulation libraries is that of integration with the system-level TLM

simulator. Although this model does not guarantee the cycle-accurate count, it

provides the highest simulation performance (i.e., instructions/second) as well

as guarantees the consistency of provided results. For these reasons, the

functional emulation libraries form, together with the system-level simulation

model, an essential step for both validation and further exploration of the

hardware/software design space at a higher level of abstraction.

The implementation of design-dependent customizations for the provided

silicon structures are performed by multi-target design flows, which integrate

custom tools specifically designed to generate the a general-purpose bitstream

for the configuration of the run-time and via programmable gate arrays, and

the equivalent VHDL netlist for the implementation over the metal

programmable gate array. The “general-purpose” description of the

functionality is further processed by three design-specific tools aimed at the

generation of the configuration bitstream for the run-time configurable gate

array, the VIA4 customization layer for the via-programmable gate array and

the metal-programmable gate array layout. For what concerns the via-

programmable and the metal-programmable flow, a specific target is that of

providing to the user a way to generate a customized, fully-verified layout,

ready for integration as hard IP macros into standard digital design flow. For

this reason, the proposed flows include a mix of design-specific tools and

commercial tools, integrated within a .csh environment, which allow the user

to generate the customized macros by executing just one command. Given the

structure of the via-programmable gate array, most of verification are already

101

performed on the skeleton template of the gate array. For this reason, the

overall customization and verification process is very fast and takes less than

24 hours on a standard quad-core server. On the other hand, the customization

flow for metal-programmable gate array performs synthesis, place&route over

the metal-programmable library. For this reason, its execution time depends

on the complexity of the implemented accelerators and cannot be estimated

with accuracy.

3.6 Mapping of Applications on the Manyac

Platform

The aim of the application mapping on the Manyac platform is that of

exploiting thread/task level parallelism through an appropriate mapping on the

computing elements of the platform and data/instruction level parallelism by

implementing configurable hardware accelerators.

Considering the high level partitioning of an application, the data parallel

model best fits all those applications executing the same code over large data

sets, such as image processing. On the other hand, the task parallel model

better fits all those computations characterized by the execution of many

successive kernels which process relatively small amount of data. In other

cases, such as video processing both models can be utilized, and an accurate

analysis of the application parameters can be helpful whenever data-locality

or parallelism is the best way to match the application computational patterns.

The implementation of applications on the Manyac platform leads to the

exploitation of the best trade-off between two leading factors. The first one is

represented by the balancing between the amount of configurable area utilized

for the implementation of the accelerators and the required performance. The

second is comprised of the architectural parameters of the platform. As we

will see in the course of this section, the more the hardware accelerator power

is exploited, the more performance becomes sensitive to the architectural

parameters of the platform, such as the amount of local memory, or the width

of the network-on-chip. In the following, a series of application

implementations will be explained highlighting the trade-offs discussed.

102

3.6.1 Implementation of pipelined accelerators

The design of application specific accelerator is often a critical task that aims

at the exploitation of data-level parallelism and instruction-level parallelism

of the target applications. Data-level parallelism is usually exploited in all

those kernels whose code is identically executed for many sets of data,

utilizing, in the easiest case the Single Instruction Multiple Data (SIMD)

execution. In other cases, such parallelism is not explicitly described in the

application kernels, but mathematical transformations, such as the look-ahead

technique can be applied in order to exploit the data-level parallelism. In both

cases, the data-level parallelism is exploited replicating the hardware

resources necessary to accomplish the computation by a specific unfolding

level, which represents the number of parallel instances of the application-

specific basic unit. Contrarily, the exploitation of instruction-level parallelism

leads to an accurate analysis of data dependencies among instructions

executed within a kernel. The instruction level parallelism of an application

can be efficiently described utilizing the DFG formalization. DFGs can either

be pipelined (PDFG) as those generated by the Griffy design flow or not. In

the second case, the time required to accomplish the computation of a DFG is

given by the sum of the computation time of all the operators present on the

longest DFG path. This implies that the working frequency of the accelerator

is limited by the overall depth of the DFGs implementing the application-

specific accelerators causing a low computation throughput. When dealing

with PDFG the throughput of the computation depends on the longest pipeline

stage within the graph, generally leading to higher computation throughputs.

On the other hand, PDFGs introduce other parameters that can affect the

performance of the overall computation, if not appropriately taken into

account during the design of the accelerators: the latency and the issue delay.

The latency represents the number of cycles which elapse between the

accelerated function call and the first output data is available, and depends on

the depth of the PDFG pipeline. The issue delay represents the minimum

number of clock cycles between two successive hardware accelerated

functions fetch, and it usually depends on the balance of the PDFG. Although

the issue delay of PDFGs can be usually reduced to one, by inserting retiming

stages (i.e. pipeline registers) on the graph, the latency remains as an

103

irremovable constraints of accelerators implemented with the Griffy flow, as

the DFG pipelining is automatically extracted from the source code describing

the graph. When the granularity of the pipelined accelerators is sufficiently

large, and the pipelining structure of the accelerators is exploited by

processing a sufficiently large data chunk, the latency becomes negligible

with respect to the throughput of the computation. Coarser accelerators imply

a larger area, and less flexibility, as the functionalities hardwired within the

accelerators can only be utilized by a few kernels. Contrarily, reducing the

granularity of the accelerators increases their flexibility, as the same micro-

kernel can be utilized in more processing steps, for example alternating

hardware-accelerated and software functions within a loop. In this case, the

latency of the accelerator could become a limiting factor in the overall

application throughput, requiring to unfold the loop to avoid stalls. The loop

unfolding is a technique commonly used to hide the latencies of multi-cycle

functions, but unrolling loops causes the growth of program memory

requirements. The implementation of pipelined hardware accelerators plays

on delicate trade-offs among performance, the amount of customizable area,

and the amount of program memory required to accomplish a computation.

Next section provides a quantitative example of this trade-off through the

implementation of significant kernels extracted from the H.264 standard.

3.6.2 Accelerator implementation examples

H.264/AVC macroblock residual transform and quantization

The transform and quantization of the H.264/AVC process the residual data

coming from the difference of reference images before the entropy coding

performed utilizing CAVLC or CABAC encoder, depending on the utilized

standard profile. Each macroblock is organized as one 4x4 matrix of 4x4

blocks containing the luminance residual data (Y) and two 2x2 arrays of 4x4

blocks containing the chrominance data (Cb and Cr, respectively). A 4×4

integer transform is applied to the residual data from either intra or inter

prediction procedures. If the macroblock is encoded utilizing the 16x16 intra

prediction the DC components of the luminance and chrominance blocks are

104

transformed again utilizing a 4x4 or 2x2 Hadamard transform, respectively.

The transformed samples within each block are further quantized and zig-

zagged. The quantized blocks are finally re-ordered and transmitted to the

entropy encoder. The H.264/AVC encoder uses three different transforms.

The forward 4×4 integer transform is performed for all macroblock modes on

the 4x4 blocks. The integer transform first operates on each 4×4 block X and

produces a 4×4 block Y as follows:

Where:

The DC coefficients of 4x4 luminance blocks are further transformed utilizing

a 4x4 Hadamard transform:

where:

The DC coefficients of all chrominance blocks, are transformed utilizing the

2x2 Hadamard transform:

Figure 3.11: Flow diagram of residual data transform and quantization in a H.264/AVC

encoder.

105

where:

The H.264/AVC standard adopts two different quantization procedures for

residual data from 4 × 4 integer transform and DC coefficients from 4 × 4 or 2

× 2 Hadamard transform. Each 4 × 4 block Y can is individually quantized as

follows:

where Yij is a coefficient of the transform described above, Qstep is a

quantization step size, Zij is a quantized coefficient, and PFij is a scaling

factor from the transform stage. In H.264/AVC, 52 Qsteps are stored in a table

indexed by a quantization parameter (QP) (0–51). In order to avoid division

operations, the above equation can be simplified as follows

Figure 3.12: Zigzag scan of blocks in H264/AVC.

106

where

And

The above equations can be further simplified in integer arithmetic as follows:

A zig-zag for the 2x2 or 4x4 is further performed for each blocks within a

macroblock, together with the checks of blocks featuring all samples equal to

zero. Figure 3.12 provide an example of zig-zag scan for 4x4 blocks. All the

blocks within a macroblock are finally transmitted to the entropy encoder

according with the ordering described in Figure 3.13.

The implementation of the H264/AVC transform and quantization on the

Manyac platform allow to describe trade-offs among area of accelerators,

performance and flexibility exploited utilizing different implementation

strategies.

Figure 3.13: Scanning order of residual blocks within a macroblock.

107

As we saw in the previously in this section, the H264 utilizes three forward

transforms: the forward integer transform for the 4x4 residual blocks, the

Hadamard transform for the 4x4 luminance DC residual blocks and the

Hadamard transform for the 2x2 chrominance residual blocks. The memory

organization of the residual blocks coming from the previous H.264 step (i.e.

calculation of residual between the reference and the estimated macroblock) is

structured as an array of 16 4x4 luminance residual blocks, and two arrays of

4 4x4 chrominance residual blocks. Considering the computational tile

configuration, the instruction-level parallelism can be massively exploited in

this application by processing each row of the 4x4 residual blocks at once.

The memory organization of each macroblock within the computational tile

buffers is reported in Figure 3.14. The size of samples is 16 bits, then the

optimal width and number of buffers results in 8x16bits, partitioned as 4 input

buffers (BUF0, BUF1, BUF2, BUF3) and 4 output buffers (BUF4, BUF5,

BUF6, BUF7).

The first approach for implementing hardware accelerators for the H264/AVC

transform kernels consists of designing a custom pipelined hardware

accelerator for each one of the described transforms. For each transform, the

accelerator performs a unidimensional transform applied to each row, the

transposition of the intermediate matrix, and a second unidimensional

transform applied to each row of the transposed matrix. The number of

Figure 3.14: Scanning order of residual blocks within a macroblock.

108

accelerated functions included into each computation loop is equal to the

number of rows to process for each component. The block diagram on the left

of Figure 3.15 shows the described approach for the implementation of the

accelerator for the forward integer transform. Utilizing the proposed

approach, the overall H264 transform computation can be achieved in three

steps. The first processing step consists of the transform of the luma and

chrominance blocks resulting in the transformed blocks stored in the output

buffers according to the same data organization described for the input

buffers. The second processing step transforms the DC components of the

transformed luminance blocks. To complete this process, the 16 DC

components of the luminance blocks need to be extracted from the output

buffers and temporary stored in the register file. This operation can be

achieved by programming the address generators with a vectorized addressing

pattern, utilizing 16 matrix configurations in order to fill the register file. The

extracted dc block is further processed by the luminance DC accelerator and

stored on the output buffer. Utilizing the same approach, the DC components

of the chrominance block are finally extracted and stored on the output buffer.

Figure 3.15: Implementation strategies for the hardware accelerators of the H264/AVC

transform.

109

In order to increase the re-use of the hardware blocks, while reducing the area

of the accelerators, it is possible to partition the accelerators in a few smaller

kernels, still being able to cover the whole computation, but with more

processing computation loops. For example, the transposition of 4x4 blocks

can be implemented separately from the 1D transforms, as shown by the

central block diagram of Figure 3.15. Moreover, all the transforms feature

similar computation patterns, that could lead to a single, programmable

hardware accelerator that performs all transforms, being customized by a

configuration bits stored on the register file by the processor. This approach

requires two hardware accelerators and 9 computation loops (three for each

transform), as intermediate data needs to be stored on the local buffers before

and after the transposition.

A further decomposition of the hardware accelerators can be achieved by

reducing the amount of operations implemented in hardware. This approach

results in a hardware/software computation, where common patterns of the 1D

transform stages are executed by the hardware blocks, and the processor

executes the peculiar rounding operation required by each processing step, as

shown on the right block diagram of Figure 3.15. It still requires 9

computation loops, but only one hardware accelerator, which performs a

portion of the 1D transform, common to all computations. Moreover, the

matrix transposition can be performed in a fully flexible way without the need

of hardware accelerators. More precisely, it is performed by storing the

intermediate results of the row processing of each 4x4 transform on the

register file, and utilizing the programmable matrix to address the samples

IMPLEMENTATION Software

Hardware/

software

Flexible

hardware

Custom

hardware

NUMBER

OF CLOCK

CYCLES

 AC 4606 1207 439 164

LUMA DC 305 182 62 77

CHROMA DC 47 48 49 58

OVERALL 4958 1437 550 299

PMEMORY BYTES 1216 5408 2104 1916

DMEM BYTES 832 32 36 44

BUFFERS BYTES 0 1632 1632 1632

ACCELERATORS KGATES 0 7 29 44

Table 3.2: Implementation of the H264 transform.

110

according to the required addressing pattern. Results of the implementation of

the hardware accelerators are exposed in Table 3.2, reporting the number of

cycles, the area of the hardware accelerators, the program and data memory

bytes and the bytes of buffers required for each of the proposed

implementations.

The same analysis has been performed for the implementation of the second

kernel, which can be divided into 3 sub-kernels that are quantization,

detection of non-zero blocks and zig-zag scan. The structure of the

quantization allows easy exploitation of data parallelism, as the same

operations are performed over the blocks within each macroblock. On the

other hand, the implementation of “programmable” hardware accelerators for

this kernel is mandatory, as the multiplication coefficients utilized by the

quantization process differs per macroblock components (CHROMA AC,

CHROMA DC, LUMA AC, LUMA DC) and per macroblock, depending on

the quantization parameter. The other kernels composing the computation are

the detection of non-zero blocks and the zig-zag scan. The detection of non-

 Software

Hardware/

software

Flexible

hardware

Custom

hardware

NUMBER

OF CLOCK

CYCLES

 Q LUMA AC 4096 1427 122 122

Q CHROMA AC 261 117 38 38

Q LUMA DC 2088 728 77 77

Q CHROMA DC 522 74 31 31

NZ LUMA AC 176 158 158 95

NZ CHROMA AC 12 13 13 10

NZ LUMA DC 88 72 72 50

NZ CHROMA DC 24 33 33 17

ZZ LUMA AC 1008 201 201 97

ZZ CHROMA AC 67 17 17 48

ZZ LUMA DC 536 97 97 6

ZZ CHROMA DC 134 13 13 40

OVERALL 9012 2950 872 632

PMEM BYTES

1784 3328 2312 2036

DMEM BYTES 7632 1324 1312 1308

BUFFER BYTES 0 1696 1696 1696

ACCELERATORS KGATES 0 12 28 48

Table 3.3: Implementation of quantization, zig-zag-scan, and non-zero detection blocks

algorithms.

111

zero blocks benefits from the data-level parallelism, mainly consisting of

comparisons of all the samples within a block performed by rows. The results

of the computation for each macroblock is then temporary stored in the

register file and finally arranged in the output buffers. Finally, the blocks are

zig-zag scanned.

Trade-offs between flexibility and performance mainly reside in this

application in the implementation of the zig-zag scan and the quantization.

The zig-zag scan can be implemented, similarly to the matrix transposition,

either with a dedicated hardware accelerator (4 cycles per block), or utilizing

the register file and the programmable matrix (8 cycles per block). Contrarily,

the quantization can be either implemented as a monolithic hardware

accelerator implementing the whole computation or as a two-step hardware

accelerator interleaved with software functions. In this last case first hardware

function implements the absolute value and the sign extraction of four

samples, a software function implements the multiplication with the

quantization multiplication factors (MF) and the second hardware operation

performs the output rounding as well as the sign insertion. Implementation

results of the different algorithm portions are summarized in Table 3.3

together with the resources utilized.

Figure 3.16: Speed-ups of transform and quantization (plus non zero block detection and zig-

zag scan) kernels with respect to the software implementation. Data refer to the

elaboration of one macroblock.

112

Figure 3.16 put in relation the different implementations of the realized

hardware accelerated functions in terms of speed-ups with respect to the

software solution. Obviously, the approach providing the best performance for

both transform and quantization is the custom hardware implementation, as

each accelerator targets the specific kernel, and the related data needs to be

processed by the accelerators only once for each computation step.

Nevertheless, analyzing data reported in the tables it is possible to notice that

utilization of pipelined hardware accelerators is useful especially when large

data chunks require to be processed as in the case of AC transforms or

quantization (28x and 33x respectively) while other cases, such as transform

of DC components or detection of non-zero blocks achieve smaller speed-ups,

or no speed-ups at all. In these pathological cases, the time spent for

configuration of the address generators, the programmable matrix, and the

latency of the accelerators almost reach the time required for the software

elaboration, hiding benefits of pipelined hardware processing. Thus, the

situation can only improve by processing more than one macroblock at time,

which requires larger size of the buffers, or exploiting the data-level

parallelism, for example processing two or more blocks concurrently.

In order to explore the proposed trade-off between specialization and general

purposeness from a quantitative point of view, the area efficiency and the

flexibility of the proposed solutions have been analyzed. Figure 3.17 shows

the speed-ups achieved normalized by the area of the resources utilized for

 (a) (b)

Figure 3.17: (a) Speed-ups/Kgate ratio of transform and quantization kernels. Data are

normalized with respect to the software implementation. (b) % of the overall

computation time involved in general-purpose processing.

113

each implementation. Each proposed implementation targets a specific

utilization of the data memory, program memory and buffers that have to be

considered in this analysis as well as the area of the hardware accelerators.

For this reason, the hardware resources considered in this analysis include, in

addition to the area of the hardware accelerators, the overall amount of the

platform resources involved in the computation by the different

implementation (i.e., the processor, the utilization of program and data

memory, and the utilization of buffers). For instance, the software

implementation of the quantization utilizes lookup tables with replicates of

the multiplication factors over the blocks to avoid indexes calculation, while

the hardware implementations only utilize a small portion of such tables,

resulting in a smaller utilization of the program memory resource in the

hardware implementations with respect to the software implementation.

Another example is that of the hardware/software implementations, where the

need of unrolling the loops to avoid stalls (described previously in this

section) forces a large utilization of program memory, with respect to a pure

hardware implementation. Results of Figure 3.17a show that in general

hardware solutions provide a better silicon utilization. Thus, the area spent for

realizing the application specialization is well spent even considering the

overheads introduced by the metal programmable approach utilized for the

proposed analysis. Of course, the more customized solution results in a less

flexible implementation. The flexibility of the different implementations are

shown in Figure 3.17b, which report the amount of the overall computation

time involving general purpose computations (i.e. processor instructions).

This time is 100% when dealing with a fully flexible processor, while it

decreases while handling with specialized units down to 10% in the case of

the transform.

The results evidence that, for the analyzed kernels, the utilization of

specialized accelerators coupled to the general purpose processor can improve

the performance up to 20x and area efficiency of the overall computational

structure up to 10x with respect to the software solution. On the other hand,

when dealing with complete applications, other factors can impact these

choices, such as the actual requirements of the application, the overall number

of functions to implement and the impact of each function on the overall

computation time. For this reason, implementation of less specialized and

114

more flexible accelerators could be a preferable choice to improve the

accelerator reuse over a larger set of functions, while the utilization of

homogeneous multithreading could allow one to further improve performance

to meet the required target.

3.6.3 Application mapping example

Video Surveillance Motion Detection Application

This section discusses the implementation of the motion detection application

described in the previous chapter on the Manyac platform. The last section

focused on the trade-offs exploited by the implementation of the hardware

accelerators. Contrarily, this section focuses on the high-level partitioning of

the application, analyzing the benefits and overheads in the utilization of data-

parallel or task parallel computational model. In order to focus on the

computational model, we assume in this context to fix the number of

computational tiles to four.

The partitioning of the application among the available computational units

starts from the profiling of the separate kernels that implement the

application. Table 3.4 shows the main features of the implementations of the

application kernels accelerated with metal programmable arrays using the

KERNEL THROUGHPUT

[CYCLES/PIXEL]

AREA OF

ACCELERATORS

[KGATES]

PMEM

UTILIZATION

[BYTES]

SUB/ABS 0,11 7 256

MAX 0,09 11 156

BINARIZATION 0,45 7 484

EROSION 0,42 4 828

DILATATION 0,42 4 828

EDGE DETECTION 0,43 20 828

FINAL MERGE 0,17 8 178

Table 3.4: Implementation results of motion detection video surveillance application

accelerators.

115

Griffy environment. These features are the throughput in terms of

cycles/pixel, the area of the metal-programmable area utilized for

implementing the accelerators and the number of required program memory

bytes.

Concerning the computational model, two solutions are possible that are

explained in Figure 3.18. The utilization of a data-parallel model leads to

homogeneous execution of the application among the 4 available cores. In this

scenario, each core executes sequentially the kernels composing the

application, but processes different data. This computational model explicitly

exploits the spatial parallelism provided by the application, which executes

Figure 3.19: Temporal scheduling of work-groups and tasks on the Manyac computational

tiles (PE) when utilizing the data parallel computation model (left) and the

task parallel computation model (right).

Figure 3.18: Partitioning of the Motion Detection application over four computational tiles

of the Manyac platform utilizing a data parallel computational model (left)

and a task parallel computational model (right).

116

the same computation on the different portions of the source image. On the

other hand, when utilizing the task-level parallelism, the kernels composing

the application have to be partitioned among the available cores. Each task,

which executes sequentially one or more basic kernels, is allocated to a

specific computational tile. Utilizing this computational model, the

parallelism is achieved in a heterogeneous way, where the different tasks

allocated to the computational tiles compute different portions of the source

image, scheduled by synchronization events explicitly handled within the host

program.

Figure 3.19 shows the temporal scheduling of the image portions execution,

when the data parallel and the task parallel programming models are utilized.

When utilizing the data parallel programming model, the index-space

decomposition provided by OpenCL provides a subdivision between work-

items that are executed concurrently on the available processing elements of

the platform, and work-groups that execute sequentially. The execution time

of each work-item executing on each computational tile (or each work-group

executing on the platform) can be calculated as:

Where the #kernels is the number of kernels executed by each work-item (6 in

this case) and they are those reported in Figure 3.19. The overall computation

throughput can be calculated as:

Each work-group executes concurrently 4 work-items. Considering the

kernels composing the motion detection application, the computation time per

pixel is equal to 2,09 cycles, thus the throughput achieved by the platform for

this application is 1,91 pixel/cycle for an overall speed-up of 1365x with

respect to the sequential software implementation.

Contrarily, the execution time for each task executed on the platform can be

calculated as:

117

Where #kernels is the number of kernels executed by each task, and they are

sub/abs/max and binarization for the task A, erosion for the task B, dilatation

for the task C, and edge detection and merging for the task D. In other words,

when adopting a heterogeneous computation model, the overall computation

time is constrained by the slowest stage of the pipeline implemented through

the synchronization events. The overall throughput is calculated in this case

as:

as the computation chain produces one block for each stage of the software

pipeline. In this scenario, the slowest stage is that of task A, whose

computation time per pixel is equal to 1,53 cycles leading to a throughput of

0,65 pixels/cycle resulting in a speed-up of 464x with respect to the sequential

software implementation.

Besides the throughput the trade-off between data parallel and task parallel

computation involves different utilization of resources. These are the area of

the hardware accelerators and the utilization of program memory. When

utilizing the data parallel programming model, the program memory within

each computational tile should be able to contain the code of all the

application kernels. Contrarily, with the task parallel programming model

only the program required to execute the kernels allocated to each task needs

to be stored on the related computational tile. The same discussion can be

afforded for what concerns the hardware accelerators, that require to be

implemented for each computational tile when utilizing a data parallel

computation model, while they can be equally partitioned among the

computational tile areas when utilizing the task parallel model.

118

Figure 3.20 summarizes the resource occupation of work items, when

utilizing the data parallel programming model, and of each task utilized with

the task-parallel implementation. The program memory of each task and work

item is composed of the code required for the related kernels plus an “offset”

which includes the initialization code, and the runtime libraries required to

handle the DMA channels, hardware accelerators and OpenCL primitives.

The results show that the data parallel computation, even providing a greater

throughput requires more than double program memory and four times the

area necessary to implement the hardware accelerators, with respect to the

task parallel computation.

The analysis performed on the motion detection application evidences the

benefits and overheads of the task-parallel and data parallel computational

models, but assumed the cost of memory transfer completely overlapped to

the computation, and no synchronization overhead. Next section introduces

problems related with the overheads introduced by synchronization and data

transfers; assuming that the computation/data transfers overlapping is not

possible. The impact of these overheads on the performance is analyzed when

modifying architectural parameters of the platform.

 (a) (b)

Figure 3.20: Program memory (a) and area of hardware accelerators (b) utilized for

implementing the work-items and tasks for the motion detection application.

119

3.7 Performance Analysis

In order to evaluate the performance of the proposed platform from a

quantitative standpoint, we discuss now the implementation results of signal

processing applications on the Manyac platform. The applications selected for

the experiments are the edge detection (part of the motion detection

application), two granularities of FFT (64, 1024), the H264 discrete cosine

transform and quantization described previously, and the YCC2RGB color

space conversion. A specific target of the proposed analysis is the

understanding of the performance sensitivity with respect to the architectural

parameters of the platform, and the main differences between multi-processor

acceleration and acceleration based on multiple application specific hardware.

The parameters chosen as most representative for the Manyac platform have

been identified as:

 Hardware accelerators

 Size of buffers

 Number of cores

 Width of the NoC

In order make the discussion more general and independent of the specific

trade-offs applicable to complete applications when choosing a task-parallel

computational model, weeassume in this analysis the utilization of the data-

parallel programming model applied to kernels instead of complete

applications. As we saw in the previous sections, the presence of hardware

accelerators is the first main factor that impacts the performance of a given

implementation of an application. Depending on the features of the

application and the granularity of the accelerators it is possible to speed-up a

kernel by up to three magnitude orders. Figure 3.21 shows the speed-ups

achieved by the hardware accelerated implementation of the applications,

calculated considering a single processor equipped with a set of hardware

accelerators. Speed-ups reported in Figure 3.21 refer to the implementation of

an “elementary” data chunk for each application which are an 80x60 binarized

120

image for the edge detection, a macroblock for the H264 DCT and

quantization, a 1024 pixel image chunk for the YCC2RGB.

The dependency between the features of the applications and speed-up can be

approximated as two-sided. The first feature that affects the performance is

strictly related with the exploitation of the instruction-level parallelism, and

concerns the computational density of the applications, defined as the number

of operations per bit. This means that applications requiring more operations

on the same data set would reach higher performance when implemented with

hardware accelerators. This case is well represented by the two granularities

of FFT implemented, showing that the 1024-point FFT reach higher speed-

ups than the 128-point FFT, only due to its higher computational density (that

scales according to the number of points).

The second point concerns the granularity of the operands. Given a fixed

bandwidth toward the hardware accelerators, the smaller the operands, the

more data-level parallelism can be exploited. The application that shows main

benefits from this point of view is the edge detection, which computes on

binarized images, thus being able to process an enormous number of parallel

pixels concurrently. On the other hand, the H264 transform and quantization

Figure 3.21: Speedups of application implemented with hardware accelerators with respect

to the software sequential implementation.

121

feature relatively small computational densities and 16-bit operands width,

thus limiting their speed-ups to ~20x.

Moving the architectural analysis to the computational tile parameters, we

evaluated the impact of increasing the size of the local buffers, which impacts

the interleaving factors with which data chunks can be processed by the

hardware accelerators. This technique allows to exploit the pipelined behavior

of the hardware accelerators over larger data chunks thus amortizing the time

spent for control, configuration of the address generators and the

configuration matrix, and the setup of the hardware accelerators. Figure 3.22

shows the trend of the platform performance when increasing the interleaving

factor, for a fixed NoC width (in this case 128). The reported curves are

normalized to the speed-ups of applications processing a single data chunk.

Speed-ups are calculated with respect to the sequential software

implementation. The curves show a saturating trend whose saturation point

depends on the computational density and the size of the basic data chunk

processed by each application. The saturation is caused by the global

communication that emerges as main bottleneck when the exploitation of

hardware accelerators reduces the computation components of the algorithms.

Moving to the system-level, we analyze as the first parameter the number of

cores composing the platform. In particular, the speed-ups of the selected

applications have been analyzed on both a multi core platform and a hardware

Figure 3.22: Speed-ups of applications implemented on the Manyac platform when varying

the interleaving factor of elementary data chunks processing.

122

accelerated multi core platform. Figure 3.23 shows results of the analysis,

performed on 2, 4, 6, 8 processors, keeping the interleaving factor to 1 and the

NoC width to 64-bits. Results related to the parallel software implementations

of the applications are reported in Figure 3.23a, as they are very close to the

ideal results (speed-up equal to the number of cores). This happens because

the most of the overall applications time remains related to the computation,

while only a small part of the time is spent for data transfers (which represents

the portion of time not reducible with parallelism). On the other hand, when

handling with a multi-core platform with distributed hardware accelerators,

the computational portion of the application is already reduced by the

hardware accelerators, and the data transfer time remains as a major

contribution, not eliminable with further parallelism exploitation. Still,

applications with higher computational densities show more benefits from the

thread-level parallelization, due to the higher ratio between time utilized for

computation and time utilized for transfers.

The time required for data transfer can only be reduced by properly sizing the

width of the network-on-chip. Figure 3.24 shows the implementation of the

applications with different sizes of the NoC, while maintaining the number of

processors fixed to 8 and the interleaving factor to 1. It is interesting to notice

how, differently from the multi-processor software implementation showing a

saturating trend, speed-ups of the multi-accelerated platform linearly raise

together with the NoC data width. This means that when utilizing powerful

Figure 3.23: Speed-ups of applications implemented on the Manyac platform without

hardware accelerators (a) and with hardware accelerators (b). Speed-ups are

normalized with respect to the single processor implementation without and with

hardware acceleration, respectively.

123

hardware accelerators, if we want to achieve a further performance

improvement through parallelism we need to guarantee to the accelerators an

adequate bandwidth being able to sustain their throughput.

From the above described analysis, we can state that the speed-ups of parallel

applications can be achieved acting on many parameters of the platform, and

the choice of each one affects the global performance. Thus the mapping of

applications on a multi-accelerated platform cannot disregard system-level

aspects. In particular, all the elements analyzed in the last sections, such as the

choice of the right granularities of accelerators, the choice of the data- or task-

parallel computational model and the selection of appropriate architectural

parameters concur to the matching of the performance and power constraints

of signal processing applications. The effectiveness of the utilization of

hardware accelerators or thread level parallelism for improve performance

must be carefully balanced with these parameters which form the main design

choices for the described architecture.

3.8 Implementation results

This section describes the implementation of the Manyac platform in

CMOS65 STMicroelectronics technology. As described previously in this

chapter, the platform mainly consists of two components: the IO tile and the

Figure 3.24: Speed-ups of applications implemented on the Manyac platform without

hardware accelerators (a) and with hardware accelerators (b). Speed-ups are

normalized with respect to the single processor implementation without and with

hardware acceleration, respectively.

124

computational tile, this last replicated over the silicon area of the platform. On

the other hand, the customized macros implementing the metal-

programmable, via-programmable, or run-time programmable accelerators are

separate, components, pluggable at design time. For this reason we first

analyze the implementation of a typical platform without customization, and

then we analyze the impact of its customization with different technologies.

Results of the implementation of the Manyac in CMOS65 STMicroelectronics

technology are shown in Table 3.5, which refers to the platform components

without customization. The computational tile area with the reported

configuration is equal to 1 mm
2
, partitioned and shown in Figure 3.25. It is

Figure 3.25: Area breakdown of the computational tile component by logic entity.

CMOS65 Implementation of the Manyac platform

CMOS65LP Manyac platform implementation
Number of Computational Tiles: 4

Network on chip and CT local bus data width: 64bit

CT local, data and program memory size: 4K+4K+4K

PGA Buffers: 4x1024x32-bit + 16 registers

Area: Computational Tile 1 mm
2
 , IO Tile 0,5 mm

2

Maximum Frequency: 200MHz (WC-125°C-0,9V)

Power consumption: 86 mW@200MHz (TYP-25°C-1,0V)

Table 3.5: Manyac platform implementation results.

125

interesting to notice how a relevant portion of the computational tile area is

utilized for communication (DMA+NoC+Bus) and local storage (Memories +

PGA interface), emerged in the analysis of the last section as the most

important factors in the exploitation of powerful hardware accelerators. The

platform is capable to achieve a maximum working frequency of 200 MHz

estimated in worst case commercial conditions, with an average power

consumption of 86 mW. The power consumption is estimated utilizing the

Synopsys PrimePower® tool, assuming a switching activity of 20%. Results

reported in Table 3.5 are accomplished with the architectural parameters

selected for the implementation. The layout view of a 4-tiles implementation

of the Manyac platform is provided in Figure 3.26.

Figure 3.26: Layout view of a 4-tiles implementation of the Manyac Platform

126

Moving the focus on the customizable areas of the platform, in order to

evaluate the performance of the different configuration technologies, the

accelerators realized to accelerate the applications described in the previous

section have been implemented on the different gate-arrays. As each

customization technology is based on a different kind of structured-silicon

solution, each one introduces some overhead in terms of maximum frequency,

area and power with respect to the case of standard-cell based ASIC approach.

The goal of the proposed analysis is to quantify the gap in terms of power and

area with respect to the ASIC approach, utilized in this context as reference.

Table 3.6 summarizes the results of the implementation of the YCC2RGB,

H264 DCT, FFT and edge detection the proposed configurable gate arrays in

CMOS065 technology, resuming the number of lithography masks required

for the customization of each technology. Considering the working frequency,

estimated referring to the worst case commercial conditions (wc, 125°C, 1V),

it is possible to notice that it does not depend on the application mapped on

each instance of the gate array, but only on the chosen configuration

technology. This is achieved through the pipelined structure of the

accelerators implemented utilizing the Griffy flow, which avoids the kernel

mapping on hardware to be a bottleneck for the system, thus leading to a high

performance predictability. The run-time programmable and the via-

programmable gate arrays can reach a frequency of 200 MHz. Although an

overhead in performance would be expected by the run-time programmable

gate array, the full custom design approach utilized for its design fills the gap

between the run-time programmable and the via-programmable solution. On

the other hand, the metal programmable gate array can reach the target

frequency of 200 MHz, as well as the standard cell-based ASIC

 RUN TIME

CONFIGURABLE

GATE ARRAY

VIA

CONFIGURABLE

GATE ARRAY

METAL

CONFIGURABLE

GATE ARRAY

ASIC

FREQ. [MHz] 200 200 250 250

AREA [mm
2
] 7,6 3 0,3 0,2

POWER [mW] 66,8 38,3 0,75 0,55

CUSTOMIZATION LAYERS 0 1 9 33

Table 3.6: Implementation Results of Customizable Hardware Accelerators.

127

implementation. It should be noticed that both metal programmable and ASIC

solutions would reach even higher frequency, but their implementations were

constrained at the maximum frequency achieved by the rest of the system.

The utilization of configurable technologies as application specific

acceleration within MPSoCs introduces an increment of the die area which

depends on the level of flexibility (i.e., number of masks for customization)

allowed by the different customization technologies. For this reason, amount

of area utilized for the implementation of configurable hardware accelerators

when utilizing the different customization technologies has been analyzed.

Results of Figure 3.27 show the percentage of the Manyac platform area

utilized for the implementation of accelerators. Data are reported per

application. For comparison, results of the run-time and via-programmable

gate array are scaled to the actual number of rows utilized by each

application. Results show how the heavily structured architecture of those two

solutions, which form the basis for their higher flexibility, causes relevant

overheads in area with respect to the fully programmable area of the platform.

On the other hand, the metal-programmable solution relies on a synthesis-

based design flow, which eliminates all the structural overheads of the other

two solutions (at the cost of flexibility). This solution shows an overhead with

respect to the related ASIC implementation, which is less than 1.5x.

The power consumption of the different gate array implementations is

estimated with Synopsys PowerCompiler® assuming a switching activity of

20% at the nominal commercial condition (nom, 25°C, 1,2V). The run-time

programmable and via-programmable gate array implementations are based

Figure 3.27: % of the Manyac platform area utilized for configurable accelerators.

128

on a fixed array structure. As the considered applications utilize only a subset

of the array, while the rest is clock-gated, the power results are calculated

scaling the dynamic power according to the actual number of rows utilized by

each implementation. Figure 3.28 shows the average power consumption of

the platform equipped with the proposed gate array implementations when

running the chosen applications. The results highlight that, despite the full-

custom implementation utilized for the run-time programmable and the

optimized implementation of the via-programmable gate array, the gap in

power with respect to the standard-cell based approach falls from about 70x

of via-programmable solutions to 120x of the run time programmable

solutions.

Results of the proposed implementations show how the performance of the

accelerators implemented on the proposed configurable datapaths are only

minimally affected by the chosen customization technology. Utilizing the

proposed implementation flow, considering the standard-cell based approach

as reference, the overhead of via- and run time-programmable datapaths is

20%, while the overhead of the metal-programmable solution is nearly null.

The most overhead paid by the configurable solutions (especially the run time

configurable and via-configurable datapath) resides in the power and area,

mainly caused by the structured architecture of the two solutions which allow

their customization without masks post-fabrication or with the fabrication of

only one lithography mask.

Figure 3.28: Power consumption of applications running on the Manyac platform.

Different configuration technologies are assumed as implementation

platform for the hardware accelerators.

129

Chapter 4

4 Evaluation of multi-core

platforms with configurable

accelerators

This chapter describes the evaluation of the proposed platforms with respect

to the other platforms representing the state of the art of embedded computing

for signal processing.

The evaluation first goes through the analysis of the application development

time for different computational platforms. In this context, the models and

languages utilized for the programming and customization of the described

platforms will be analyzed. Then, the programming productivity of the

different platforms will be estimated on the basis of a commonly used cost

model.

The second evaluation considers the most commonly utilized metrics for

evaluating computing platforms for embedded computing, the performance,

energy efficiency, and area efficiency.

Finally, as the proposed platform spaces the different trade-offs between

flexibility (i.e., number of masks for customization), and efficiency

(frequency, area, power), the cost of manufacturing of the different solutions

will be analyzed, highlighting benefits and drawbacks of each solution

according to the products market volumes, and giving a perspective based on

the scaling of the CMOS technologies.

130

4.1 Applications development cost

The aim of this section is to evaluate the aspect related to the cost of the

applications development on multi-processor system on chip, and the related

implementation of application specific or reconfigurable acceleration.

When dealing with multi-core systems the first step in the application

development consists of the partitioning of the target application among the

computational cores of the platform that can be either homogeneous or

heterogeneous. When programing a heterogeneous MPSoC, and the number

of cores composing the system is relatively low (i.e., up to 4) this partitioning

can be performed manually, and handled with commonly used programming

languages, such as C or C++.

This is the case of most ASSPs described in Section 1, that utilize a

controlling core plus a set of application specific hardware accelerators or

powerful DSPs. The choice of such kind of programming languages has the

advantage of offering a very high programming legacy due to their large

utilization in many kinds of domains. On the other hand, these languages do

not provide natural statements to provide synchronization or, more in general,

to handle parallelism. The lacks of theses languages are often compensated in

such kind of devices by the utilization of pre-packaged libraries provided by

the devices vendors for standard kernels, that drastically reduces the

development time of the final users which only perform the wrapping between

the application kernels. This is the programming style of Morpheus, where the

ARM processor programmed with the C language provide synchronization

and control of the reconfigurable engines, while the programs running on each

reconfigurable engine are developed independently, packaged in a

configuration bitstream and loaded at run-time by the ARM processor.

Even if this kind of programming can be acceptable when we deal with a

relatively small number of processors, the manual partitioning and

synchronization of applications cannot be handled manually when dealing

with a large number of processors working concurrently. Programming

languages for parallel systems (MPI, OpenMP, CUDA, OpenCL) are usually

based on the C or C++ language, extended with application programming

interfaces (APIs), or pre-processor directives that provide support for

synchronization, explicit description of parallelism, handling of memory

space allocation and vectorized data transfers. In particular, the OpenCL

programming model utilized for the Manyac platform has the advantage of

supporting a heterogeneous set of devices, either characterized by high data-

131

level parallelism (for which a data parallel programming model is provided)

or task level parallelism.

The second step in the application development consisting of application

development on multi-core (re)configurable processors is performed

partitioning the computational workload between software and configurable

hardware. Although many high level synthesis tools have been proposed,

from the practical point of view, the most common methodologies for the

design of hardware on both silicon and FPGAs are still based on the register

transfer level (RTL) description, created by hand utilizing, for example the

VHSIC Hardware Description Language (VHDL). Such task leads, in the

proposed platforms at the programming of the configurable engines of

Morpheus utilizing the reconfigurable engines proprietary tools, and the

designing of hardware accelerators utilizing the Griffy flow of the Manyac

platform.

The proposed evaluation should then take into account an estimation of both

management of thread/task-level parallelism, synchronization and wrapping

of an application and the implementation of the application specific

accelerators on run-time configurable fabrics, or application specific circuits.

The evaluation of the programming productivity is a very important problem

that has been the object of studies over the last 30 years. Although software

productivity estimations and evaluation methodologies are currently under

investigation, some of those have already been ported to the field of the

hardware description languages [76]. As the implementations of applications

described in the context of this work are handled with a heterogeneous set of

software programmable processors and run/design-time configurable

components, a heterogeneous set of languages was analyzed. In order to

Language

Average Source

Statements per FP

Productivity Average

per Staff Month

C 128 9 FP

ASM 213 5 FP

VHDL 19 18 FP

Table 4.1: Function point analysis parameters.

132

evaluate the development productivity of applications on the different

platforms a well-known technique, which provides ready to use data for many

programming languages has been utilized: the Function Point Analysis (FPA)

[77].

Table 4.1 summarizes the parameters necessary for performing the analysis,

referred to the languages utilized to program the evaluated platforms. In order

to evaluate the programming productivity of the proposed platforms, we

approximated the wrapping/synchronization stage of the application to be

implemented utilizing the C language even if actually realized with extensions

of the C language (i.e., OpenCL). Thus, according to the model, the advantage

in the utilization of these languages consists of the fewer number of

statements utilized to achieve the same.

On the other hand, the implementation of the accelerators, or the

programming of the reconfigurable engines has been performed utilizing

VHDL, Griffy-C or NML depending on the application. Griffy [65] and NML

[64] show similarities with intermediate representations (IR) utilized by most

compilers to produce assembly code. In fact, modern compilers utilize high-

level intermediate representations, often based on Static Single Assignments

TABLE

Application
ARM
[C]

DREAM
[C]

XPP
[C]

DREAM
[Griffy-C]

XPP
[NML]

eFPGA
[VHDL]

RGB2YUV 1,3 0 0,5 0 5,6 0

Edge Detection 1,6 2,5 0 13,2 0 0

Binarization 1,6 0 0 0 0 14,9

AES 1,9 8,8 0 9,8 0 0

CRC 2,3 1,9 0 26,9 0 0

ME 5,0 0 2,6 0 60,0* 0

MC 7,0 0 8,6 0 25,0 0

Ethernet 1,2 0 0 0 0 39,5

*Manual optimization and placement required

Table 4.2: Estimation of design effort of applications implemented on the Morpheus

platform.

133

(SSA) to implement more efficient optimization steps [78][79][80]. For that,

we consider ASM as a reference for NML and Griffy FPA. In order to

perform the FPA on the selected test cases, we inspected the source codes of

the applications implemented on the described platforms, the pure software

implementation and the FPGA implementations. Then, we utilized the

parameters reported in Table 4.1 to perform the design effort estimation,

starting from the number of statements extrapolated from the application

source codes. Table 4.2 reports the resulting data, expressed in person day.

According to the estimations, implementation of kernels utilizing the

reconfigurable engines proprietary languages requires much of the design

effort, while the control and synchronization tasks implemented on the ARM

processor only require a minor effort. In addition, the VHDL implementations

on the eFPGA core require a development time considerably higher that the

other applications. In Figure 4.1, design efforts of applications implemented

utilizing the different languages have been compared with the C language

ARM implementations of the same algorithms and with the VHDL

implementations.

134

 The results shows that the FPGA implementations of the proposed

applications require a design effort 42% to 76% larger compared to the

Morpheus implementation. On the other hand as expected, the C

implementations require smaller efforts. Nevertheless, it should be noticed

that manual optimizations typical of signal processing algorithm

implementations on embedded processors and DSPs (e.g., assembly coding of

critical kernels) were not performed in this context. Although the absolute

number of person days seems to be under-estimated, results of the analysis are

in line with our practical experience from the qualitative point of view, giving

a good view of development time ratios among different implementations.

Figure 4.1: Estimation of design effort required to implement selected applications on

different computational platforms.

135

4.2 Performance

This section provides a quantitative evaluation of the performance of the

proposed platforms. The main metrics adopted for the evaluation of the

performance considered in this context are those most commonly utilized for

embedded applications. The first one consists of the computation capabilities,

expressed in this context as Giga Operations Per Second (GOPS), where an

operation is considered in this context as an equivalent RISC operation. The

second metric consists of the energy efficiency, represented by the number of

GOPS delivered by a device per each watt consumed. Please note that the

GOPS/W metric is equivalent to Op/nJ (number of equivalent RISC

operations per nano-Joule), which is an expression of energy. The third

metrics considered in this context is the computational density of devices,

expressed as GOPS/mm
2
. As the digital signal processors proposed in this

thesis were benchmarked with a slightly different set of applications, the

performance of the two devices will be first evaluated separately, then results

will be generalized.

136

Figure 4.2 reports the performance of applications utilized for benchmarking

the Morpheus platform. The performance of the Morpheus platform was

compared with the devices that represent its design space boundary: GPPs,

FPGAs, and ASSPs. As the performance reported by most of referenced

works refers to application bandwidths, all the data were re-processed, and

annotated in terms of equivalent Giga Operations Per Second (GOPS).

Morpheus’ performance is half way between GPPs and FPGAs/ASSPs

spanning from 1.25 GOPS of Binarization to15 GOPS of Edge Detection. As

expected, in terms of absolute performance, the Morpheus platform cannot

challenge either ASSP or FPGA implementations. In the first case, this is due

to specific optimization of the hardware implementations realized to match

the application requirements; in the second case it is due to the huge amount

of logic and I/O resources available on modern FPGA devices by which they

widely surpass the capabilities of Morpheus, ASSPs considered in this

context, and GPPs. Considering the analysis performed in Section 3 the main

limitation of the Morpheus platform with respect to FPGA devices can be

Figure 4.2: Performance of Morpheus and other SoA devices.

* For comparison data are scaled to 90 nm technology assuming a 1/λ reduction in delay.
**Reported data refer to Intel Core 2 DUO E6400 for the M.E. M.C and RGB2YUV applications, Intel Core 2

DUO C6600 for the others.

137

determined in the external bandwidth, that causes slight performance

degradation that limits its computational throughput.

The situation reverses when energy is introduced as the criterion of

comparison. As shown in Figure 4.3, the energy efficiency of applications

implemented on Morpheus span between 2 GOPS/W of RGB2YUV and 50

GOPS/W of Edge Detection. In this scenario, ASSPs represent the upper

limit, due to the high efficiency of their hardwired accelerators. By contrast,

both embedded and mainstream GPPs are inefficient in terms of energy. The

first, even if consuming a relatively small power are not able to deliver high

performance due to their software sequential execution and small working

frequency. On the contrary, the seconds are able to reach extremely high

operating frequency. This feature allows mainstream processors to achieve

higher performance, but on the other hand causes high power consumption

resulting in poor energy efficiency. Considering the energy efficiency, the

Morpheus platform is able to reach, and in some cases exceed FPGA

performance. Even if mitigated by the frequency scaling, the degradation of

performance caused by the external memory accesses has an impact on its

Figure 4.3: Energy efficiency of Morpheus and other SoA devices.

* For comparison data are scaled to 90 nm technology assuming a 1/λ2 reduction in power.

138

energy efficiency due to the power offsets as described in Section 3. A higher

external memory bandwidth would allow the Morpheus platform to reduce the

throughput gap with respect to FPGAs, and widely overcome the FPGA

performance in terms of energy efficiency.

As the Manyac platform does not rely on a prototype implementation, but

only on estimations based on its physical implementation, the performance of

the platform has been normalized by the power consumption of the platform

and by the area of the platform for the different configuration approaches

utilized. The architectural parameters of the Manyac platform are assumed to

be fixed to those utilized for its physical implementation as described in

Section 4. Figure 4.4 shows the energy efficiency of the Manyac platform

when running the analyzed signal processing applications. As the accelerators

implemented utilizing the run-time programmable, via-programmable, and the

metal-programmable arrays feature the same computational model the curves

related to all applications feature a common trend. Energy efficiency of the

platform with run-time programmable gate array falls between 6,5 GOPS/W

and 420 GOPS/W. The energy efficiency of the platform with via-

Figure 4.4: Energy efficiency of applications implemented on the Manyac platform

considering the different configuration technologies.

139

programmable gate array falls between 8,4 GOPS/W and 608 GOPS/W.

Finally, the energy efficiency of the platform equipped with metal

programmable gate array falls between 24 GOPS/W and 1765 GOPS/W. The

energy efficiency delivered by the applications are very different. This mainly

depends on the computational complexity of the applications as well as the

granularity of the operators. The definition of “operation” as equivalent RISC

operation, favor those applications featuring bit-level granularity.

The evaluation of the area efficiency of the platforms equipped with the three

different kinds of configurable accelerators is shown in Figure 4.5. The area

efficiency of the platform equipped with run-time configurable gate array falls

between 0,06 and 4,6. The area efficiency of the platform equipped with via

programmable gate array falls between 0,13 and 10, while the area efficiency

of the platform equipped with metal-programmable gate array falls between

0,6 and 46. It is possible to notice that the curves follow the same trend as the

area efficiency, but they raise more rapidly than the power efficiency curves,

Figure 4.5: Area efficiency of applications implemented on the Manyac platform considering

the different configuration technologies.

140

meaning that the area form an overhead bigger than the power for the

analyzed technologies.

Figure 4.6 shows a graphic viewof the computational platforms discussed in

this thesis in terms of area efficiency and energy efficiency. Although the

positioning of each device in the graph should be considered as purely

qualitative, as both energy efficiency and area efficiency are affected by

“noise” caused by many factors, it gives a good view of the

flexibility/efficiency trade-off in the field of computing devices. In this

scenario, the most efficient devices are positioned on the top-right of the

graph, while the efficiency decreases towards the bottom-left area.

Considering the Morpheus platform and the Manyac platform equipped with

run-time configurable hardware accelerators, it is possible to notice that the

Manyac platform provides slightly better efficiency both considering energy

and area. The main cause of this difference consists of the full-custom

technique with manual optimization utilized for the implementation of run-

time configurable gate array of the Manyac platform, and on the external

memory access of the Morpheus platform that limits the computational power

of its reconfigurable engines. On the other hand, the Manyac platform with

the via-programmable and especially metal-programmable gate arrays provide

Figure 4.6: Energy efficiency vs. Area Efficiency of computational devices for signal

processing.

141

better performance in terms of both energy and area efficiency. More in

general, the most flexible devices such as processors are positioned on the

bottom-left area of the graph due to their general-purposity and intrinsic

overheads in the execution of signal processing applications. On the other

hand, the most specialized devices such as ASICs/ASSPs are those providing

better performance, due to the high computational power of their accelerators,

but also due to their high efficiency achieved by application-specific

optimization performed at all levels of design.

4.3 Cost of Manufacturing

This section analyzes the cost of manufacturing of the different

implementations of the proposed platform that utilize the three analyzed

configuration technologies: run-time programmable, via-programmable and

metal-programmable. In order to perform the analysis we consider three

instances of the Manyac platform with equivalent computation capabilities,

whose accelerators are implemented with the three different configuration

technologies.

The cost of manufacturing of integrated circuit technologies are often

categorized into fixed costs and variable costs. Fixed costs are those costs that

are independent on the number of pieces realized for a given IC, while

variable costs are those which depend on the number of pieces realized for a

given IC implementation, in other words on the market volume of a product.

Fixed costs of IC manufacturing are includes the cost of the masks realized to

print each layer of the IC on the silicon wafer. On the other hand, variable

costs are mainly dominated by the costs of lithography, by means of costs of

“printing” the realized masks on the silicon wafers. In order to perform an

analysis of costs of the proposed technologies we utilize the cost of ownership

model proposed by Paramanik et. al. [81].

142

Reticle Strategy

In order to describe the utilized mask cost model, we first provide a brief

description of the reticle strategy adopted in the IC manufacturing. A reticle is

printed on each silicon wafer, which is utilized to alienate the masks over the

wafer surface. Each field of the reticle contains one or more dies, and all dies

in a reticle are printed at the same time. In this context, our first assumption is

to utilize the reticle strategy believed to achieve the highest printing

throughput: the single-layer reticle on a large field (SRL-L). In this scenario,

the overall number of fields within a reticle (i.e., number of exposures per

wafer) is calculated as:

Assuming shape of the die as square, the overall number of dies within a

wafer can be estimated as:

Where d is the wafer diameter, Sfield is the area of the field, and Sdie is the area

of the die.

Cost of Masks

In order to analyze the cost of the overall mask set of a given technology, we

consider a subdivision into three main categories of masks, which depends on

the technology utilized for printing each masks sub-set:

 very critical layers (e.g., 193 nm)

 critical layers (e.g., 248 nm)

 non critical layers (e.g., I-line)

143

According with the utilized model, the overall mask cost is calculated as:

Where cm,vc, cm,c, cm,nc, is the cost of very critical, critical and non-critical

masks, and nm,vc, nm,c, nm,nc, is the number of very critical, critical and non-

critical masks, respectively.

Pramanik et.al. estimated the cost of 90nm mask at the introduction year.

According with our SRL-L assumption, which leads to a field size of

25x25mm
2
 the mask costs per layer are 112.000$, 28.000$, 10.000$ for very

critical, critical, non-critical masks, respectively. In order to scale the cost of

masks for the more recent technology nodes, we utilized the following

assumptions: (a) mask cost doubles at the introduction year of every

technology node, (b) mask cost decreases by 20% every year, (c) the

introduction year of 90nm technology node is 2003. The assumptions give

mask cost in 2011 as:

Where i is 2, 3, 4, 5 for 65nm, 45nm, 32nm, 22nm, respectively and Costmask,90

is the 90nm technology node initial mask cost. The overall number of mask

layers are predicted from ITRS 2007, while we assume the portion of very

Technology node 65nm 45nm 32nm 22nm

Mask cost per layer (very critical)[$] 37,580 75,161 150,323 300,647

Mask cost per layer (critical)[$] 9,395 18,790 37,580 75,161

Mask cost per layer (non critical)[$] 3,355 6,710 13,421 26,843

Number of layers (very critical) 11 11 12 13

Number of layers (critical) 11 12 12 13

Number of layers (non critical) 11 12 13 13

Cost of exposure (very critical)[$] 2,8 3,44 4,22 4,48

Cost of exposure (critical)[$] 1,57 2,06 2,53 2,68

Cost of exposure (non critical)[$] 0,56 0,69 0,84 0,89

Yield 90% 80% 70% 60%

Table 4.3: Parameters of the Manufacturing Cost Model.

144

critical, critical and non-critical layers is equal. Table 4.3 show the calculated

mask set costs and the related number of masks.

Cost of Lithography

The overall cost of lithography is proportional to the number of wafers

developed nw and to the cost of lithography of a single wafer. Considering a

single wafer, the lithography cost depends on the cost of a single exposure

(Ce), the number of exposures per wafer (ne) (i.e., number of fields within a

wafer), and the number of mask layers (nm). The lithography cost for

producing a wafer can be calculated as:

The cost of a single exposure for the 90nm technology node is assumed to as

2.5$, 1.5$, 0.5$ for very critical, critical, and noncritical layers, respectively,

based on the Parmanik estimation [81]. In order to estimate the cost of

lithography for the technology generations, we scaled the 90nm cost of

exposure, according with lithography tool cost. The cost of lithography tool is

assumed as 40M$, 49M$, 52M$ for 45nm, 32nm, 22nm, respectively. The

cost of 65nm lithography tool is estimated from curve-fitting.

Analysis of overall manufacturing costs

Finally, the overall cost of manufacturing consists of the overall cost of the

maskset required and the overall lithography cost, which depends on the

number of processed wafers. The cost of manufacturing for n dies can be

calculated as:

Where Y is the lithography yield.

In order to analyze manufacturing cost of the platform we assume the

application specific accelerators of different implementations of the platform

145

 (a)

(b)

(c)

Figure 4.7: Manufacturing cost of platform implementation utilizing the different configurable

gate arrays as hardware accelerators assuming 1 product (a), 5 product (b), and

10 product (c) realized utilizing the same architectural template.

146

realized with run-time programmable, via-programmable, metal-

programmable, and ASIC gate arrays, respectively. Considering fixed costs,

each of the proposed technology requires a different number of masks to

modify the application specific acceleration of the platform. For each

implementation of the platform, the realization of a first product require the

overall mask set, while the realization of a second product require a number

of masks that depends on the configuration approach utilized, so that more

flexible is the solution the lower is the mask cost. Considering the

lithography, the overall cost depends on throughput, thus on how many dies

fit a wafer, so that the smaller solution provides lower volume costs.

Figure 4.7 shows the results of the analysis, where the number of different

products realized through customization for each implementation is 1 (a), 5

(b), 10 (c). The results shows that the proposed customization technologies

demonstrate cost-effective even for relatively small number of customization.

Figure 4.7a shows the cost of production of one product, utilized as reference.

In this case it is evident that the manufacturing fixed cost of all the proposed

solutions are equal as a complete set of masks has to be realized in all cases.

On the other hand the CMOS implementations takes benefits on volumes due

to the smaller area of the related implementation. Moving the focus on Figure

4.7b it is possible to notice that when moving to 5 products realized utilizing

the proposed approach, the metal-programmable customization appears as the

most appealing for the low market, while is surpassed by the ASIC

customization for volumes over 250.000 pieces per product. Finally,

analyzing Figure 4.7c, which refer to the realization of 10 products, the

situation changes again. In this scenario the via-programmable solution

appears the most suitable solution for low market volumes, while is being

surpassed by the metal- programmable customization for volumes higher than

20.000 pieces per product. In this scenario the ASIC implementation appears

convenient only for extremely high volumes. On the other hand, considering

the 65nm technology node, the run- time programmable solution appears

appealing only for very low market volumes, or for a very high number of

customization.

147

 (a)

(b)

Figure 4.8: Manufacturing cost of platform implementation utilizing the different configurable

gate arrays in different technology nodes. (a) A market volume of 5.000 pieces is

assumed for 1 product. (b) A market volume of 50.000 pieces is assumed for 5

products with the same architecture template. (c), and 10 product (c) (b) A

market volume of 250.000 pieces is assumed for 5 products with the same

architecture template.

148

Perspectives

In order to analyze perspectives of configurable and reconfigurable solutions,

we consider now the cost of products manufacturing for more recent

technology nodes, according to the model described previously in this section.

In this context we assume the area of the dies to scale according to the half-

pitch of each technology node, and the parametric yield affecting the different

technologies to scale according with the 65nm learning curve [82]. We

considered three different scenarios. Figure 4.8a shows the manufacturing

cost for realizing 5.000 pieces of one product. Figure 4.8b shows the

manufacturing cost for realizing 50.000 pieces of 5 products. Figure 5.8c

shows the manufacturing cost for realizing 250.000 of 10 products. Data are

normalized to the manufacturing cost of the 90nm technology node. In

general, results show that the spread between the different customization

technologies caused by their area overhead with respect to the ASIC

implementation is expected to drop. This effect is mainly caused by the

continuous rise of the mask costs that, especially during the first years of

production for each technology node remain prohibitively high. On the other

hand, the variable cost associated with lithography, even if affected by

parametric yield are expected to be mitigated by the larger lithography

throughput achieved by realizing smaller die sizes. Considering the proposed

customization strategies, it appears evident how more flexible solutions are

expected to be appealing for even larger market volumes. In particular,

considering the run-time programmable approach, results show that even if at

the moment they do not appear convenient for the mid and large scale

production, it can be expected that they will become an appealing and cost-

effective solution for the future of signal processing systems.

149

Chapter 5

5 Conclusion

In this thesis, a computational paradigm based on the cooperation between

multi-core computing and configurable hardware acceleration has been

presented, utilizing different run-time programmable and silicon-structured

configuration technologies for the specialization of the platform. This

computational paradigm first implies a partitioning of the applications among

the available computational cores, being either homogeneous or

heterogeneous, and the successive migration of kernels from the software

programmable processors of the platform to the customizable hardware

accelerators. The performance achieved by such kind of computational

platforms depends on a careful balance between the portions of applications

being executed on hardware and software, but also on an accurate selection of

the architectural parameters of the platform, as such kind of solution is much

more sensitive to such parameters than the software-based solutions. For this

reason, such kind of computational platform needs to be accompanied with

design environments that allow the user to evaluate the trade-off spectrum

among the parameters mentioned above.

In the first part of the thesis a reconfigurable digital signal processor with a

heterogeneous set of computing units, featuring different computational

paradigms and granularities has been presented. An accurate analysis of the

platform performed through the implementation of signal processing

applications has been performed. The analysis evidenced that the Morpheus

platform is able to match computational requirements of most of applications.

The input/output bandwidth of the platform and reconfiguration latencies

emerged as main bottlenecks. If not properly managed they can cause relevant

performance degradation with respect to the ideal case of reconfigurable

engines that exploits all their computational power. The mapping of

applications on the most suitable reconfigurable engine plays a crucial role in

the performance achieved by the platform. On the other hand, the intrinsic

150

heterogeneity of the devices require to the final user the knowledge of

different kind of programming and hardware description language.

A second approach aimed at the exploitation of parallelism at both thread-

level and data-instruction level has been further presented. The Manyac

platform joins the benefits and flexibility typical of software-programmable

multi-processor systems with the performance and energy efficiency typical

of hardware-based platforms. A peculiarity of such a platform is that of being

customizable with three kinds of configuration technologies: run-time

programmable, via-programmable and metal-programmable. An analysis of

the Manyac platform proved that the choice of the configuration technology

only minimally influences performance, which is rather much more sensitive

to the trade-offs between implementation strategies of the hardware

accelerators and to the architectural parameters of the platform. On the other

hand, this choice has a large impact on the power consumption and area of the

platform.

The proposed solutions have been finally evaluated from the quantitative

point of view and compared against the state of the art in terms of

programmability, area/energy efficiency and cost of manufacturing. Although

utilization of run time-configurable logic provides ASIC-like performance, it

pays most of its overheads in terms of power and area. Considering the power,

this means that utilization of reconfigurable logic is likely unsuitable for

applications with high portability requirements. On the other hand, the area

overheads of reconfigurable technology have a direct impact on the

manufacturing cost. The analysis shows that even if at the moment it does not

appear convenient for mid and large scale product volumes it is possible to

expect that they may be appealing and cost-effective solutions in the future

technology nodes. In the mean time, the utilization of structured solutions (i.e.

via- and metal-programmable) as silicon platforms for hardware accelerators

in multi-processor systems provide highly efficient figures (almost ASIC-

like), and a huge reduction of manufacturing costs even when spread over a

small number of products based on the customization of the same platform.

151

6 Publications

The following papers have been co-authored and are accepted for publication:

D. Rossi, F. Campi, A. Deledda, S. Spolzino, S. Pucillo, “A Heterogeneous

Digital Signal Processor Implementation for Dynamically Reconfigurable

Computing”, Custom Integrated Circuit Conference (CICC), 2009.

D. Rossi, F. Campi, A. Deledda, C. Mucci, S. Pucillo, S. Whitty, R. Ernst, S.

Chevobbe, S. Guyetant, M. Kühnle, M. Hübner, J. Becker and W. Putzke-

Roeming, “A Multi-Core Signal Processor for Heterogeneous Reconfigurable

Computing”, International Symposium on System-on-Chip (SOC), 2009.

F. Campi, R. König, M. Dreschmann, M. Neukirchner, D. Picard, M. Jüttner,

E. Schüler, A. Deledda, D. Rossi, A. Pasini, M. Hübner, J. Becker, R.

Guerrieri, “RTL-to-Layout Implementation of an Embedded Coarse Grained

Architecture for Dynamically Reconfigurable Computing in Systems-on-

Chip”, International Symposium on System-on-Chip (SoC), 2009.

D. Rossi, F. Campi, S. Spolzino, S. Pucillo, R. Guerrieri, ”A Heterogeneous

Digital Signal Processor for Dynamically Reconfigurable Computing”, IEEE

Journal of Solid-State Circuits (JSSC), 2010.

A. Grasset, P. Millet, P. Bonnot, S. Yehia, W. Putzke-Roeming, F. Campi, A.

Rosti, M. Huebner, N. S. Voros, D. Rossi, "The MORPHEUS Heterogeneous

Dynamically Reconfigurable Platform", International Journal of Parallel

Programming (IJPP), 2011.

D. Rossi, C. Mucci, F. Campi, S. Spolzino, L. Vanzolini, H. Sahlbach, S.

Whitty, R. Ernst, W. Putzke-Röming, and R. Guerrieri, “Application Space

Exploration of a Heterogeneous Run Time Configurable Digital Signal

Processor”, IEEE Transactions on Very Large Scale Integration (TVLSI)

Systems, 2012.

152

7 References

[1] B. Ackland, A. Anesko, D. Brinthaupt, S. J. Daubert, A. Kalavade, J. Knobloch,

E. Micca, M. Moturi, C. J. Nicol, J. H. O’Neill, J. Othmer, E. Sackinger, K. J.

Singh, J. Sweet, C. J. Terman, and J. Williams, “A single-chip, 1.6-billion, 16-b

MAC/s multiprocessor DSP”, IEEE J. Solid-State Circuits, vol. 35, no. 3, pp.

412–424, Mar. 2000.

[2] C-5 Network Processor Architecture Guide, C-Port Corp., North Andover, MA,

May 31, 2001. [Online]. Available: http://www.freescale.com.

[3] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A multiprocessor SOC for

advanced set-top box and digital TV systems,” IEEE Des. Test. Comput., vol. 18,

no. 5, pp. 21–31, Sep./Oct. 2001.

[4] OMAP5912 Multimedia Processor Device Overview and Architecture Reference

Guide, Texas Instruments Inc., Dallas, TX, Mar. 2004. [Online]. Available:

http://www.ti.com.

[5] A. Artieri, V. D’Alto, R. Chesson, M. Hopkins, and M. C. Rossi, Nomadik—

Open Multimedia Platform for Next Generation Mobile Devices, 2003. technical

article TA305. [Online]. Available: www.st.com.

[6] R.W. Hartenstein, “A Decade of Reconfigurable Computing: a Visionary

Retrospective”, Proceedings of the conference on Design, automation and test in

Europe, 2001, pp. 642-649.

[7] www.altera.com

[8] www.xilinx.com

[9] W. S. Carter, K. Duong, R. H. Freeman, H. C. Hsieh, J. Y. Ja, J. E. Mahoney, L.

T. go and S. L. Sze, “A user programmable reconfigurable logic array", IEEE

1986 Custom Integrated Circuits Conference, pp. 233 , 1986.

[10] R. Razdan; M.D. Smith A High-Performance Microarchitecture with

Hardware-Programmable Functional Units, Proceedings of IEEE MICRO, Nov.

1994.

[11] T.J. Callahan, J.R. Hauser, J. Wawrzynek, “The Garp architecture and C

compiler", IEEE Computer, April 2000.

[12] S. Vassiliadis, S. Wong, S. Gaydadjiev, K. Bertels, G. Kuzmanov, E.M.

Panainte, “The MOLEN Polymorphic Processor”, IEEE Transactions on

Computers, Nov. 2004.

[13] R.W.Hartenstein, “Reconfigurable Computing Architectures and

Methodologies for System-on-Chip”, International Symposium on Systems-On-

Chip, 2001.

http://www.st.com/
http://www.altera.com/
http://www.xilinx.com/

153

[14] S. Vassiliadis, G. Gaydadjiev, K. Bertels, and E. Moscu Panainte, “The

Molen Programming Paradigm”, Proceedings of the Third Int’l Workshop

Systems, Architectures, Modeling, and Simulation, pp. 1-7, July 2003.

[15] www.aboundlogic.com

[16] S . C. Goldstein et al.: PipeRench: A Coprocessor for Streaming Multimedia

Acceleration; Proc. ISCA.99, Atlanta, May 2-4, 1999.

[17] H. Singh, et al.: Morphosys: An Integrated Re-configurable Architecture,

Proceedings of the dAT0 RTO Symp. on S stem Concepts and Inteiration,

Monterey, CA, USA, April 20-22, 1968.

[18] A. Marshall et al.:. “A Reconfigurable Arithmetic Array for Multimedia

Applications”, Proc. ACM/SIGbA FPGA'99, Monterey, Feb. 21-23, 1999.

[19] F. Campi, A. Deledda, M. Pizzotti, L. Ciccarelli, C. Mucci, A. Lodi, L.

Vanzolini, A. Vitkovski, "A dynamically adaptive DSP for heterogeneous

reconfigurable platforms", IEEE International Conference on Design Automation

and Test in Europe (DATE’07), Apr. 2007, pp. 1-6.

[20] A. Lodi, A. Cappelli, M. Bocchi, C. Mucci, M. Innocenti, C. D. Bartolomeis,

L. Ciccarelli, R. Giansante, A. Deledda, F. Campi, M. Toma, and R. Guerrieri,

“XiSystem: a XiRisc-based SoC with reconfigurable IO module”, IEEE Journal

of Solid-State Circuits, vol. 41, no. 1, pp. 85–96, Jan. 2006.

[21] M. Vorbach, J. Becker, “Reconfigurable Processor Architectures for Mobile

Phones”, Proceedings of the IEEE Parallel and Distributed Processing

Symposium, April 2003, pp. 6.

[22] C.Brunelli, F.Garzia, D.Rossi, J.Nurmi, “A coarse-grain reconfigurable

architecture for multimedia applications supporting subword and floating-point

calculations”, Elsevier Journal of System Architecture, Vol. 56 , Issue 1, Jan

2010, pp. 38-47.

[23] F. Garzia, W. Hussain, J. Nurmi: CREMA: A coarse-grain reconfigurable

array with mapping adaptiveness. FPL 2009, 708-712.

[24] G, William, Lusk. Ewing, S. Anthony, “Using MPI: portable parallel

programming with the message-passing interface”, Cambridge, MA, USA: MIT

Press Scientific And Engineering Computation Series, 1994.

[25] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J. McDonald,

“Parallel Programming in OpenMP”, Morgan Kaufmann, 2000.

[26] T. R. Halfhill, “Parallel Processing with CUDA,” Microprocessor Report,

Jan. 2008.

[27] OpenCL Specification v1.0r48, Khronos Group, Oct. 2009 [Online],

Available: http://www.khronos.org/registry/cl/

[28] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,

M. Reif, L. Bao, J. Brown, M. Mattina, C.C. Miao, C. Ramey, D. Wentzlaff, W.

Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, J.

Zook, “TILE64 processor: A 64-core SoC with mesh interconnect”, IEEE

International Solid-State Circuits Conference (ISSCC’08), Feb. 2008, pp. 88-89.

http://www.aboundlogic.com/
http://www.khronos.org/registry/cl/

154

[29] A. Duller, G. Panesar, and D. Towner, “Parallel Processing — the picoChip

way!”, Communicating Processing Architectures, 2003, pp. 125–138.

[30] D.N. Truong, W.H. Cheng, T. Mohsenin, Yu Zhiyi, A.T. Jacobson, G.

Landge, M.J. Meeuwsen, C. Watnik, A.T. Tran, X. Zhibin, E.W. Work, J.W.

Webb, P.V. Mejia, B.M. Baas, “A 167-Processor Computational Platform in 65

nm CMOS”, IEEE Journal of Solid-State Circuits, vol. 44, no. 4, April 2009, pp.

1130-1144.

[31] D. Pham, S. Asano, M. Bolliger, M.N. Day, H.P. Hofstee, C. Johns, J. Kahle,

A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M.

Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, K.

Yazawa, "The Design and Implementation of a First-Generation CELL

Processor", IEEE Journal of Solid-State Circuits, vol. 41, no. 1, January 2006,

pp. 179-196.

[32] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym, "NVIDIA Tesla: A

Unified Graphics and Computing Architecture", IEEE Micro, vol. 28, no. 2,

Mar./Apr. 2008, pp. 39-55.

[33] H. Nikolov, T. Stefanov, E. Deprettere, “Systematic and automated multi-

processor system design, programming, and implementation”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits, 27(3), pp 542 -

555, March 2008.

[34] T. Stefanov et al., “System design using Kahn process networks: The

Compaan/Laura approach”, in Proc. DATE, Feb. 2004, pp. 340–345.

[35] A. Turjan et al., “Translating affine nested-loop programs to process

networks,” in Proc. CASES, Sep. 2004, pp. 220–229.

[36] B. Kienhuis et al., “Compaan: Deriving process networks from Matlab for

embedded signal processing architectures,” in Proc. CODES, May 2000, pp. 13–

17.

[37] C. Zissulescu, T. Stefanov, B. Kienhuis, and E. Deprettere, “LAURA: Leiden

architecture research and exploration tool,” in Proc. FPL, Sep. 2003, pp. 911–

920.

[38] M. J. Rutten et al., “A heterogeneous multiprocessor architecture for flexible

media processing,” IEEE Des. Test Comput., vol. 19, no. 4, pp. 39–50, Jul./Aug.

2002.

[39] D. Lyonnard et al., “Automatic generation of application-specific

architectures for heterogeneous multiprocessor system-on-chip”, in Proc. DAC,

Jun. 2001, pp. 518–523.

[40] L. Gauthier, S. Yoo, and A. Jerraya, “Automatic generation and targeting of

application specific operating systems and embedded systems software”, IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 11, pp. 1293–

1301, Nov. 2001.

[41] Xilinx, Inc., Xilinx Platform Studio and the Embedded Development Kit.

EDK version 8.1i edition. [Online]. Available:

www.xilinx.com/ise/embedded_design_prod/platform_studio.htm

http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm

155

[42] Altera, Inc., (2005, Dec.). Quartus II Handbook Volume 4: SOPC Builder.

[Online]. Available: www.altera.com/literature/quartus2/lit-qts-sopc.jsp

[43] A. Papakonstantinou, K. Gururaj, J.A. Stratton, D. Chen, J. Cong, W.-M.W.

Hwu, “FCUDA: Enabling efficient compilation of CUDA kernels onto FPGAs”,

Symposium on Application Specific Processors, 2009, pp. 35 - 42.

[44] http://www.altera.com/literature/wp/wp-01173-opencl.pdf

[45] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, A. Sangiovanni-

Vincentelli, “System-Level Design: Orthogonalization of Concerns and

Platform-Based Design”, IEEE Transactions on Computer-Aided Design of

integrated Circuits, Vol.19, n. 12, Dec. 2000, pp. 1523-1543.

[46] E.A. Lee, A. Sangiovanni-Vincentelli, “Component-based design for the

future, Design”, Automation & Test in Europe Conference & Exhibition

(DATE), 2011, pp 1 - 5.

[47] P. Ienne and R. Leupers, Eds., Customizable Embedded Processors. San

Francisco, CA: Morgan Kaufmann, 2006.

[48] P. Marwedel, “The MIMOLA design system: Tools for the design of digital

processors,” in Proc. 21st Des. Autom. Conf., 1984, pp. 587–593.

[49] S. Kobayashi, K. Mita, Y. Takeuchi, and M. Imai, “Rapid prototyping of

JPEG encoder using the ASIP development system: PEAS-III,” in Proc. IEEE

Int. Conf. Acoust., Speech, Signal Process., Apr. 2003, vol. 2, pp. 485–488.

[50] A. Hoffman, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen, A.

Wieferink, and H. Meyr, “A novel methodology for the design of application-

specific instruction-set processors (ASIPs) using a machine description

language,” IEEE Trans. Comput.-Aided Desgn Integr. Circuits Syst., vol. 20, no.

11, pp. 1338–1354, Nov. 2001.

[51] C. Rowen, Engineering the Complex SoC: Fast, Flexible Design With

Configurable Processors. Upper Saddle River, NJ: Prentice-Hall, 2004.

[52] R. Taylor and P. Morgan, “Using coprocessor synthesis to accelerate

embedded software,” in Proc. Embedded Syst. Conf., 2005.

[53] http://www.mentor.com/esl/catapult/overview/

[54] http://www.chipvision.com/products/index.php

[55] D. Goodwin and D. Petkov, “Automatic generation of application specific

processors,” in Proc. CASES, 2003, pp. 137–147.

[56] D. Burger, T. Austin The SimpleScalar Tool Set, Version 2.0,

www.simplescalar.com

[57] M. Weinhardt and W. Luk Pipeline Vectorization, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Feb. 2001, pp. 234-

248.

[58] B. Mei, S. Vernalde, D. Verkest, H. De Man, R. Lauwereins DRESC: A

Retargetable Compiler for Coarse-Grained Reconfigurable Architecture,

International Conference on Field Programmable Technology, Dec. 2002.

http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp
http://www.altera.com/literature/wp/wp-01173-opencl.pdf
http://www.mentor.com/esl/catapult/overview/
http://www.chipvision.com/products/index.php
http://www.simplescalar.com/

156

[59] D. Rossi, F. Campi, A. Deledda, C. Mucci, S. Pucillo, S. Whitty, R. Ernst, S.

Chevobbe, S. Guyetant, M. Kühnle, M. Hübner, J. Becker, W. Putzke-Roeming

"A Multi-Core Signal Processor for Heterogeneous Reconfigurable Computing",

IEEE International Symposium on System-on-Chip (SoC’09), Oct. 2009, pp. 106-

109.

[60] M. Kuehnle, “An Interconnect Strategy for a Heterogeneus, reconfigurable

SoC”, IEEE Design & Test of Computers, 2008.

[61] M.Coppola et al, “Spidergron: a novel on-chip communication network”,

IEEE SOC 2004.

[62] A. Deledda, C. Mucci , A. Vitkovski , P. Bonnot, A. Grasset, P. Millet, M.

Kuehnle, F. Ries, M. Huebner, J. Becker, M. Coppola, L. Pieralisi, R. Locatelli,

G. Maruccia., F. Campi, T. DeMarco, "Design of a HW/SW Communication

Infrastructure for a heterogeneous reconfigurable processor", IEEE International

Conference on Design, Automation, and Test in Europe (DATE‘08), 2008, pp.

1352-1357.

[63] F. Campi, R. König, M. Dreschmann, M. Neukirchner, D. Picard, M.

Jüttner, E. Schüler, A. Deledda, D. Rossi, A.Pasini, M. Hübner J. Becker, R.

Guerrieri, "RTL-to-Layout Implementation of an Embedded Coarse Grained

Architecture for Dynamically Reconfigurable Computing in Systems-on-Chip",

IEEE International Symposium on System-on-Chip (SoC’09), Oct. 2009.

[64] J. M. P. Cardoso, M. Weinhardt, “Fast and Guaranteed C Compilation onto

the PACT-XPP Reconfigurable Computing Platform”, Proceedings of the 10 th

Annual IEEE Symposium on Field-Programmable Custom Computing

Machines, Jan. 2003, pp. 291 – 292.

[65] C. Mucci, C. Chiesa, A. Lodi, M. Toma, F. Campi, "A C-based Algorithm

Development Flow for a Reconfigurable Processor Architecture", Proceedings

on the IEEE Symposium on System on Chip (SoC2003), Tampere (Finland),

Nov. 2003.

[66] A. Grasset, P. Millet, P. Bonnot, S. Yehia, W. Putzke-Roeming, F. Campi, A.

Rosti, M. Huebner, N. Voros, D. Rossi, H. Sahlbach, R. Ernst, “The

MORPHEUS Heterogeneous Dynamically Reconfigurable Platform”,

International Journal of Parallel Programming, Feb. 2011, Vol. 39, pp 328-356.

[67] U. Pross,S. Goller, E. Markert, M. Juttner, J. Langer, U. Heinkel, J.

Knablein, A. Schneider, “Demonstration of an in-band reconfiguration data

distribution and network node reconfiguration”, IEEE International Conference

on Design Automation and Test in Europe (DATE’08), Mar. 2008, pp. 1444-

1449.

[68] http://www.itu.int

[69] NIST Specification for the ADVANCED ENCRYPTION STANDARD

(AES), FIPS PUBS 197, November 26, 2001.

[70] C. Mucci, L. Vanzolini, A. Lodi, A. Deledda, R. Guerrieri, F. Campi, M.

Toma, “Implementation of AES/Rijndael on a dynamically reconfigurable

http://www.itu.int/

157

architecture”, IEEE International Conference on Design, Automation and Test in

Europe (DATE’07), Apr. 2007, pp. 1–6.

[71] C. Mucci, L. Vanzolini, F. Campi, G. Gaillat, A. Deledda, ”Intelligent

cameras and embedded reconfigurable computing: a case-study on motion

detection”, IEEE International Symposium on System on Chip, Oct. 2007, pp.1-4.

[72] C. Mucci, L. Vanzolini, I. Mirimin, D. Gazzola, A. Deledda, S. Goller, J.

Knaeblein, A. Schneider, L. Ciccarelli, F. Campi, “Implementation of Parallel

LFSR-based Applications on an Adaptive DSP featuring a Pipelined

Configurable Gate Array”, IEEE International Conference on Design

Automation and Test in Europe, Mar. 2008, pp. 1444-1449.

[73] J.H. Derby, “High-speed CRC computation using state-space

transformations”, Global Telecommunications Conference, vol.1, Nov. 2001, pp.

166 – 170.

[74] S. Whitty, H. Sahlbach, R. Ernst ,W. Putzke-Roming , “Mapping of a film

grain removal algorithm to a heterogeneous reconfigurable architecture”, IEEE

International Conference on Design, Automation and Test in Europe (DATE’09),

Apr. 2009, pp. 27-32.

[75] E. Markert, E. Billich, C. Tischendorf, U. Pross, T. Leibelt, U. Heinkel, J.

Kna blein, A. Schneider, “An in-band reconfigurable network node based on a

heterogeneous platform”, Conference on Design and Architectures for Signal

and Image Processing (DASIP), 2010, pp. 15 - 20.

[76] W. Fornaciari, F. Salice, U. Bondi, and E. Magini, “Development cost and

size estimation starting from high-level specifications”, Proceedings of the ninth

international symposium on Hardware/software codesign, 2001, pp. 86–91.

[77] http://www.spr.com/programming-languages-table.html

[78] J. Merrill, “GENERIC and GIMPLE: A New Tree Representation for Entire

Functions”, Proceedings of the GCC Developers Summit, pp. 171-180, May 25-

27, 2003.

[79] R. Leupers, “Compiler Design Issues for Embedded Processors”, IEEE

Design & Test of Computers, July–August 2002, pp. 51-58.

[80] http://impact.crhc.illinois.edu/index.php

[81] D. Pramanik, H. H. Kamberian, C. J. Progler, M. Sanie and D. Pinto, “Cost

Effective Strategies for ASIC Masks”, Proc. SPIE Cost and Performance in

Integrated Circuit Creation, Vol. 5043, 2003, pp. 142–152.

[82] R. Scott Mackay, H. Kamberian, Y. Zhang, “Methods to reduce lithography

costs with reticle engineering”, Microelectronic Engineering,

Volume 83, Issues 4–9, April–September 2006, pp. 914-918.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Markert,%20E..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Billich,%20E..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Tischendorf,%20C..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Pross,%20U..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Leibelt,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Heinkel,%20U..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Kna.AND..HSH.x0308;blein,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Schneider,%20A..QT.&newsearch=partialPref
http://www.spr.com/programming-languages-table.html
http://impact.crhc.illinois.edu/index.php
http://www.sciencedirect.com/science/journal/01679317/83/4

