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Abstract

This work investigates the slamming phenomenon experienced during the water

entry of deformable bodies. Wedges are chosen as reference geometry due to their

similarity to a generic hull section. Hull slamming is a phenomenon occurring when

a ship re-enters the water after having been partially or completely lifted out the

water. There are three more cases commonly defined as slamming in marine appli-

cations: bow-flare, wet-deck and green water slamming. These are all special cases

of the general topic of water entry of a body. While the analysis of rigid struc-

tures entering the water has been extensively studied in the past and there are

analytical solutions capable of correctly predicting the hydrodynamic pressure dis-

tribution and the overall impact dynamics, the effect of the structural deformation

on the structural force is still a challenging problem to be solved. In fact, in case

of water impact of deformable bodies, the dynamic deflection could interact with

the fluid flow, changing the hydrodynamic load. This work investigates the hull-

slamming problem by experiments and numerical simulations of the water entry

of elastic wedges impacting on an initially calm surface. The effect of asymmetry

due to horizontal velocity component or initial tilt angle on the impact dynamics

is also studied. The objective of this work is to determine an accurate model to

predict the overall dynamics of the wedge and its deformations. More than 1200

experiments were conducted by varying wedge structural stiffness, deadrise angle,

impact velocity and mass. On interest are the overall impact dynamics and the

local structural deformation of the panels composing the wedge. Alongside with

the experimental analysis, numerical simulations based on a coupled Smoothed

Particle Hydrodynamics (SPH) and FEM method are developed. Ranges of appli-

cability of a simplified model neglecting the air are found. The experimental results

provide evidence of the mutual interaction between hydrodynamic load and struc-

tural deformation. It is found a simple criterion for the onset of fluid structure

interaction (FSI), giving reliable information on the cases where FSI should been

taken into account.
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Chapter 1

Introduction

The hull slamming problem is of particular interest for shipbuilding industries

due to the high impact load that is generated by the impact of a body on an

incompressible fluid. When a vessel sails in rough seas, its forefoot can rise above

the water surface. As the vessel re-enters the water, impulsive pressures are im-

parted to the hull structure due to the relative motion of the sea and ship. In these

cases the hull literally slams into the water surface. The duration of the slamming

event is in the order of milliseconds. These loads might damage the entire ship or,

because of their short duration, excite dynamic response of the local structure of

the hull and cause the structure to vibrate. This work focuses on hull slamming;

however, there are three more phenomena that are defined as slamming in marine

applications: (i) the impact of the bow on water induced by the ship motions in

waves, (ii) the horizontal impact of steep waves or breaking waves on the ship hull

and (iii) the water impact induced by water run-up and green water on the deck.

1.1 Theoretical studies

The first analytical solution to solve the impact dynamics of rigid bodies enter-

ing the water was presented by Von Karman [1], who developed a formula capable

to predict the maximum force acting on a rigid body entering the water, in order

to make a stress analysis on the members connecting the fuselage with the floats

of a seaplane. As example, to study the water entry of a rigid wedge, Von Karman

considered a wedge of unit thickness, mass M , and deadrise angle β entering the

water with initial velocity V0. Von Karman’s work is based on some simplification,

Hydroelastic impacts of deformable wedges 1
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i.e.: (i) the flow is inviscid and irrotational, (ii) surface tension, gravity and struc-

tural elasticity effects are neglected, (iii) no air is entrapped between the structure

and the fluid. In this method, as the body hits the water it is assumed that the

mass of a half disk of water of radius r is moving with the wedge (as shown in

figure 1.1), resulting in an added mass m = π
2ρr

2 = π
2ρ

ξ2

tan2(β)
γ2, where γ is a co-

efficient accounting for the water pile up at the intersection with the free surface

that varies with the deadrise angle. The value of γ can be evaluated as suggested

in [2], for example. In this model, velocity and acceleration of the body are given

by:

ξ̇ =
V0

1 + π
2ρ

γ2ξ2

Mtan2(β)

; ξ̈ =
πργ2

MV0tan2(β)
ξξ̇3 (1.1.1)

In von Karman’s model (Eq.1.1.1), the impact force reaches its maximum value

F ∗ =

(
5

6

)3 V 2
0

tan(β)

√
2π

5
ρMγ2 (1.1.2)

when the velocity is

ξ̇∗ =
5

6
V0 (1.1.3)

the penetration depth is

ξ∗ =

√
2M

5πργ2
tan(β) (1.1.4)

and the time is

t∗ =
16

15

ξ∗

V0
(1.1.5)

Figure 1.1: Von Karman’s momentum approach. Where β is the deadrise angle, ξ

the penetration depth, r the wetted distance from the wedge edge. The cross-hatched

region represents a half disk of water of radius r moving with the wedge.
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Theoretical studies Section 1.1

Eq. 1.1.2 shows that the maximum force increases with the square of the velocity

and the square root of the mass of the wedge. F ∗ is inversely proportional to

tan(β) so that it decreases as β increases and it becomes infinite as the deadrise

angle tends to zero. When β becomes small, r becomes very large, the added mass

becomes infinite and the wedge stops instantly. Eq. 1.1.3 shows that the velocity is

5/6 times the initial velocity when the force reaches its maximum. Eq. 1.1.4 shows

that the penetration depth at that particular instant is proportional to the square

root of the mass and to tan(β) ( tan(β) = 0 implies no penetration). Combining

Eqs. 1.1.4 and 1.1.5 gives

t∗ =
16

15

tan(β)

V0

√
2M

5πργ2
(1.1.6)

This shows that the force reaches its maximum at a time that is inversely propor-

tional to the initial velocity and increases with tan(β). Figure 1.2 shows the overall

acceleration and velocity of a wedge of 20 Kg per unit with entering the water at

4 m/s for various deadrise angles. It is shown that decreasing the deadrise angle

from 30◦ to 5◦ leads to an increase of the maximum acceleration and a reduction

of the characteristic time t∗.

Figure 1.2: Von Karman solution. Acceleration and Velocity of a wedge varying the

deadrise angle β. Total wedge mass: 20 kg per unit width.

Wagner [3] later extended Von Karman’s method to predict the pressure dis-

tribution at the fluid/structure interface during the impact. In this model, the
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pressure along the wedge is given by:

p(x)

ρ
= ξ̈
√
r2 − x2 +

π

2

ξ̇2r

tan(β)
√
r2 − x2

− 1

2

ξ̇2x2

r2 − x2
(1.1.7)

Equation 1.1.7 shows that the pressure becomes infinite when β tends to zero

and there is a singularity near the end when x tends to r. The maximum impact

pressure pmax is obtained by defining dp/dc = 0 and assuming the acceleration of

the body ξ̈ to be negligible. This gives

pmax =
1

2
ρV 2

[
1 +

π2

4
cot2β

]
(1.1.8)

which occurs at the location

x = L

[
1− 4tan2β

π2

] 1
2

(1.1.9)

since pmax occurs some time t after the instant of impact t0, V is used in equation

1.1.8 since it might not be the impact velocity V0. At the keel of the wedge, x = 0.

From eq. 1.1.7, the impact pressure at that point is

pkeel =
1

2
ρ V 2 π cot(β) + ξ̈ ρ L (1.1.10)

if ξ̈ can be neglected,

pkeel =
1

2
ρ V 2 π cot(β) (1.1.11)

These analytical models were developed for the analysis of the water entry of

rigid bodies and are not capable of accounting for hydroelastic effects, since the

changes of the fluid motion due to the structural deformation are not accounted.

Thus, Wagner’s and Von Karman’s solutions will be used to validate the SPH

model in the case of slamming of rigid bodies, while the validated numerical model

will be used to study the water entry of elastic wedges, since hydroelastic effects

might appear.

Since Wagner developed the first analytical solution to evaluate the pressure

during water-entry problems, much effort has been devoted to slamming problems,

resulting in an impressive amount of papers: more than 200 papers were listed in

the Ship Structure Committee report SSC-385 [4].

In the literature are presented many analytical methods that extend Wagner’s

method to different shapes (e.g. [5, 2]) and most of them are very effective when
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dealing with the water entry of simple-shaped structures impacting the surface

with pure vertical velocity. However, these analytical models are limited to the

analysis of simple geometries impacting onto a free and initially calm surface. Yet-

tou [6] developed an analytical solution to symmetrical water impact problems,

showing a very good agreement between experimental results and analytical solu-

tions of the water entry of rigid wedges. Some of these solutions are even capable

of accounting for oblique impacts (e.g. [7–13]). It is reported in the literature that

there are particular conditions (entry velocity, deadrise angle and tilt angle) where

the fluid detaches from the wedge apex (i.e. the keel) introducing difficulties in

evaluating the pressure at the interface by analytical formulations. Xu [14] defined

two types of asymmetric impact. Type A flow is the one when there is small asym-

metry and the flow moves outward along the contour on both sides of the vertex.

Type B flow occurs when there is large asymmetry and the flow detaches from the

body contour at the vertex on one side. Chekin [15] concluded that there was only

one unique combination of wedge angle and impact angle from which no separa-

tion of flow from the vertex would occur. For a given wedge and wedge orientation,

any other impact angle would force separation. Defining U0 the horizontal velocity

and W0 the vertical velocity, the ratio U0
W0

at which the flow separation appears is

less for bodies of larger deadrise angles. For small asymmetry impacts, the cavity

flow during the water-entry is limited to a very small region. Furthermore, the

flow that separates from the apex quickly re-attaches to the wedge. A symmetric

body impacting with horizontal velocity will produce a flow similar to asymmetric

impact with only vertical velocity when rotation about the x-axis is not allowed.

In [7], Judge at al performed experiments on wedges where asymmetry and ho-

rizontal impact velocity are present and compared the results with an analytical

solution, showing good agreement for low angles of asymmetry and small ratios of

horizontal to vertical impact velocity.

Some models are even capable of accounting for the hydroelastic coupling [16–

20]. However, in order to fully describe impact forces and resulting structural re-

sponse, other different phenomenon (like entrapped air, hydroelastic interaction,

compressibility effects, and non-linear free surface mechanics) must be considered.

It is the lack of understanding with regard to these phenomenon that presents
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the largest need for further investigation. There is, therefore, a dire need to de-

velop accurate prediction methods for hydrodynamic loads in order to reduce the

probability of structural failure.

1.2 Hydroelasticity during slamming

The forward speed of a vessel has a significant effect upon the severity of slam-

ming and it is recognized that slamming is the primary reason for voluntary speed

reduction for ships sailing in rough seas [21]. To correctly predict the slamming

load is becoming more important as the marine technology advances, since the ves-

sels speed is continuously increasing due to the introduction of lighter structures

and faster propellers. As the sailing speed increases, so does the hydrodynamic

force caused by the impact of a surface wave on the hull. As a consequence, the

structural deformations might be larger.

While structural analysis of sailing yachts has relied for years on a static or

quasi-static approach, there is an increasing necessity for trying to evaluate dy-

namic loads and their effect in a more precise way [22]. For design purposes, the

tendency has always been to represent these loads by an equivalent static pressure

uniformly distributed over the panels. When the duration of the pressure pulse is

considerably longer than the natural period of the panels, this pressure can simply

be taken as the spatial average of the real hydrodynamic load. Alternatively, if the

panel is expected to show a non negligible dynamic response, the equivalent pres-

sure would be defined as that pressure which, if applied to the panel, will result in

the same deformation and same maximum stress produced by the actual loading.

Hydrodynamic impact loading cannot be modeled as a quasi-static phenomenon

as wave bending. It is an impulsive phenomenon involving high pressures acting

over a body surface during very short time periods relative to the natural rate

of response of the structure. It is the lack of understanding with regard to the

chain of events occurring during the impulse time that presents the greatest prob-

lem. Furthermore, impulse loading can involve complex mathematics dealing with

three-dimensional fluid modeling. The formulas for this type of model at present

can be solved by making assumptions about the temporal and spatial distribution

of forces, and it is these assumptions that may introduce inaccuracies.
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Water impacts of elastic bodies might highly differ from the impact of rigid

bodies. In fact, during the water entry of elastic bodies, the fluid motion might

interact with the structural deformation, phenomena known as hydroelasticity1.

Furthermore, during the impact of flat-bottom or low deadrise angles2 air can be

trapped between the structure and the fluid. In the next sections it will be de-

scribed the air entrapment phenomena, the hydroelastic effects, and the analytical

and numerical methods to study the water entry of rigid and flexible wedges.

Due to the mutual interaction between the fluid motion and the structural

deformation, the hydrodynamic loads that elastic bodies are subjected during the

water entry might differ from the loads acting on rigid bodies[24]. The concept

is that the impact pressure is related to the movement of the impact region with

respect to the water [25]. In particular, as mentioned in [19], the evolution of

the wetted body area in time is an important characteristic of the impact, which

strongly affects the magnitude of the loads. Elastic structures with low deadrise

angles are the most subjected to changes in the impact dynamics respect to rigid

structures, since a small deflection of the structure might result in a big difference

of the wetted surface and consequently the hydrodynamic load. Such problems are

still difficult to analyze and compute.

Carcaterra and Ciappi [26] studied the water entry problem of elastic wedges

simplifying the deformable wedge as two rigid plates connected by a rotational

spring of constant stiffness. They show how the hydrodynamic force is affected by

the deformation of the wedge. It was found that during the initial phase of the

impact the deadrise angle decreases due to the structural deformation. When the

deadrise angle becomes smaller, the wetted surface is increased and an increment

of the hydrodynamic load, with respect to the rigid wedge case, is observed. When

the wetted front crosses the center of gravity line, an opposite moment contribution

arises that tends to contrast the deadrise decrement. Alternate closing and opening

1By definition, hydroelasticity of marine structures is the branch of science concerned with

the motion and distortion of deformable bodies responding to environmental excitations in the

sea [23].
2The deadrise angle is defined as the angle between the tangent at the impact surface of a

falling body and the horizontal line of the fluid which the body strikes; a flat bottom has a zero

deadrise angle.
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of the wedge was predicted. They showed that this phenomenon could be observed

only if the natural period of oscillations is small compared to the characteristic

time of application of the hydrodynamic force. They observed that the mass of

the plates composing the wedges has an influence on the stresses at the beginning

of the impact, when the inertia induces the deadrise angle to decrease, even if the

hydrodynamic load itself is pushing the wedge to close and increase its deadrise

angle. A similar effect was experimentally found by Arai and Miyanki [27].

Hydroelasticity is the dynamic interaction between water and a structure

(sometimes called fluid-structure interaction). Water entry is only one example of

it. Faltinsen in his review [28] on hydroelastic slamming show that the structural

engineers often use an equivalent design pressure that has no physical meaning,

even if it can predict the same maximum strain in the structure reached during

the dynamic event. The equivalent pressure load would be an order of magnitude

smaller than the maximum physical pressure. Kapsenberg [29] reported that, in

case of hydroelastic phenomena, the magnitude of the deformation of an elastic

body might be lower than the one expected from classical beam theory and ne-

glecting hydroelastic effects can, in the extreme case, result in an over-prediction

of the deformation (and hence the stress) by a factor of 10. Furthermore, in case of

small deadrise angles, compressibility and air cushions will occur during slamming

and local hydroelastic effects have to be considered.

Several scientists [27–37] investigated the water impact of elastic structures,

showing that the hydroelastic effects are governed by deadrise angle, panels thick-

ness and impact velocity. Hydroelasticity is a challenging problem to be solved

analytically due to the difficulties in coupling the fluid motion and the elastic

deformation and a reliable numerical solution is particularly needed due to its

flexibility of treating complex shapes and coupling between deforming bodies and

fluid motion. Hirdaris [38] suggests that particle-based methods, as other numeri-

cal methods, are expected to become increasingly used in the future, but currently

suffers of lack of computational efficiency.

In the literature there are many attempts of numerical solutions of water-

entry problems. Many of these are very effective when dealing with the water

entry of complex geometries, sometimes even considering oblique impacts (e.g. [7]),
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but mainly focusing on rigid structures. To study more realistic situations, many

numerical methods capable of coupling the fluid dynamics with the structural

response have been used [16, 17, 20, 33, 39]. Korobkin [19] developed a method

to study hydroelastic impacts of deformable wedges directly coupling Wagner’s

theory for fluid flow and a finite element representation of the structure, showing

good results for moderate impact velocity and low to moderate deadrise angles.

The computational time increases with the number of structural modes considered;

this makes it feasible to be applied only to low impact loads, where a low number

of modes is necessary.

Seddon and Moatmedi [40] review the literature on the water entry problems for

aerospace structures from 1929 to 2003 and show that very few efforts were made to

develop solutions for non-vertical impacts, three-dimensional bodies, or deformable

bodies. The majority of the work on these problems is experimental. They suggest

that Smoothed Particle Hydrodynamics (SPH) can possibly be a tool to study

these problems, but that a large amount of work is required to validate such

models. One of SPH’s major advantages is the ease of treating fluids presenting a

free surface, together with the possibility to interact with FEM models, while its

major limitation is the very expensive computational time due to the high number

of particles needed to model the fluid, which limits its application to relatively

small two dimensional models [41–44]. As an example, in [43] 21 millions particles

are needed to obtain results similar to Wagner’s solution for the water entry of a

rigid wedges. Anghileri et al. [45] used the SPH method to study the water entry

of a rigid cylinder and a rigid wedge, showing a good approximation of the impact

force.

Shao [46] performed a sensitivity analysis by refining the particle spacing. It

was found that the spatial resolution can have a relatively large influence on the

flow in the water splash-up region (the water entry produces a water jet piling

up the wedge panels during impact, see e.g. [47]), but it has less influence on the

falling velocity of the object and the fluid forces. The finer the particle resolution

is, the better the detailed flow structures can be resolved, but at the cost of more

computational time. For the pressure evaluation at the fluid/structure interface,

many articles show results that are inaccurate and lack details, to the point that
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this technique cannot be considered to be fully suitable for this purpose [42–44]. In

general, the pressure values suffer noise due to numerical fluctuations. An averaging

therapy on the pressure field has been recently proposed in the literature (see

i.e. [48]). Molteni [49] proposed the introduction of a proper diffusive term in the

continuity equation to increase the smoothness and the accuracy of pressure profile.

They showed that this corrective method does not alter the match of the numerical

solution with the analytical one. However, no fluid/structure interaction problems

are treated in their study. Kapsenberg [50] reported that SPH is a very robust

method and impressive results are obtained for very violent phenomena. However,

work on verification of the results (convergence with respect to particle size and

time step) is not yet at the level of the normal CFD. Kapsenberg also reports

that the main problems related to the SPH method are wave propagation and a

robust treatment of the fluid/structure interface, while computer requirements are

an order higher than for normal CFD methods.

Alongside with hydroelasticity, during the water entry of flat-bottom structure

with relatively high velocity, air can be trapped in between the fluid and the

structure. The next section describes this phenomenon.

1.3 Air cushioning effect in water entry

Trapping of air in the fluid during the water impacts is common in case of

impact of flat-bottom structures [51]. In [52] the two-dimensional impact tests of

a rigid flat-bottom model indicates that the maximum impact pressure is nowhere

near the theoretical infinitely large hydrodynamic pressure or near the theoretical

acoustic pressure. With the assumption that no air is trapped in the fluid during

the slamming event of a flat structure, an approximate value of the maximum

impact pressure is [53]:

pmax = ρcV0 (1.3.1)

where p is the pressure, ρ is the fluid density, c is the speed of sound in the fluid, and

V0 is the impact velocity. However, evidence resulting from investigation reveals

that the impact of flat structures is cushioned by the presence of trapped air

between the falling body and the water. If all the air is forced to escape during a

flat-bottom drop, it is necessary that the air velocity is infinite just before impact
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occurs. It is consequently necessary that some air is trapped between the water

and the structure: as the body approaches the surface of the water and the air

cannot escape fast enough, the pressure deforms the surface of the water before

contact is made. Then, a large air bubble is trapped under the body. This causes the

impact pressure to be reduced. This event is maximum for a flat-bottom structure,

but this effect appears (with lower magnitude) for low deadrise angles (up to

about 10◦). The cushioning effect of the compressible air trapped between the

impact body and the water surface reduces the impact pressure to about one-

tenth of the acoustic pressure. Evidence resulting from Chuang [25] investigation

supports the thesis that Wagner’s hydrodynamic impact theory does not apply to

the impact of wedge-shaped bodies with small deadrise angles. This is because, as

for a flat-bottom impact, the cushioning effect of trapped air must be taken into

account. Furthermore, Chuang experiments showed that a deformable body affords

considerable relief from the impact load. Since it is quite possible that a certain

amount of air is trapped also during the impact of a wedge-shaped body with

very small deadrise angle β, experiments (described in chapter 2) were designed

in order not to include this effect.

1.4 Experimental studies

As reported in [50], an enormous amount of work has been devoted to a proper

measurement and prediction of the peak value of the impact pressure. For the

analysis of the global response of a hull, this value has no consequences since

the duration of the peak is very short, therefore, it contains very little impulse,

while the hull girder is excited with a force of relatively long duration owing to

the relatively low speed at which this pressure pulse travels over the hull. The

short-duration slamming peak is only important for very special applications like

structures made of flexible panels and very stiff supports.

Most of the experimental studies found in the literature deal with the inves-

tigation of the water entry of rigid bodies. The major attention is given to the

evaluation of the impact dynamics and the pressure at the fluid/structure inter-

face (e.g. [45]). As an example, Engle [54] studied the water entry of rigid wedges

measuring the pressure at the fluid/structure interface. Results based on peak
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pressures at different impact velocities compared well with Wagner’s and Chuang

[25] theories. These methods can predict the impact dynamics of rigid bodies, but

are not accurate when the structure is deforming under the hydrodynamic force

due to hydroelastic effects. Some authors attempted to experimentally investigate

the parameters affecting hydroelasticity during slamming. Bereznitski [31] studied

the effect of hydroelasticity as a function of different parameters: stiffness of the

structure, presence of entrapped air between the structure and the water surface,

and penetration of water at different deadrise angles. It was found that the ratio

between the impact duration and the period of first mode of vibration of dry struc-

ture is the key factor in taking the decision when the solution of the structural

response should include hydroelastic effects. Similar results were reported by other

scientists [32–35].

Faltinsen [28, 30] showed that, due to hydroelasticity, cavitation may occur

since pressures becomes negative relative to atmospheric pressure during the sec-

ond half of the first wet natural oscillation period; ventilation might also appear,

i.e. air can be caught in an air pocket in the water leading the air flow to inter-

act with the water flow. Recently Huera and Huarte [55] experimentally studied

the hydrodynamic load on panels entering the water at speeds higher than 5 m/s

and low deadrise angles, showing that for angles lower than 5◦ air entrapment is

important and asymptotic solutions tend to overestimate the hydrodynamic loads.

At present, experiments show that there are particular conditions where hy-

droelastic, air entrapment, cavitation and ventilation phenomena might occur dur-

ing slamming. However, a reliable tool to predict the occurrence and the magnitude

of such phenomena is missing.

1.5 Scope of present investigation

This study presents an extended experimental campaign on the water entry

of deformable wedges. Experiments investigate the water-entry of composite and

aluminium flexible wedges varying thickness, deadrise angle and impact velocity.

Results of the impact-induced accelerations are compared with analytical solu-

tions for rigid structures: assuming that the wedge is rigid, the impact dynamic can

be evaluated by Von Karman’s approach, while the pressure distribution along the
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edge can be determined using Wagner’s formula. The evaluated pressure can be

used to calculate the stresses in the panels provided that deflections remain small

and do not induce changes in the fluid flow. Instead, this study examines cases

where the deformation of the wedge is very large. This affects the fluid flow and

consequently the pressure distribution along the edge, introducing hydroelastic

effects.

The second and the third chapter describe the experiments conducted on the

water entry of deformable wedges. The impact-induced acceleration is recorded

by an accelerometer while strain gauges located at various locations on the wedge

measure the overall local deformation.

Alongside with the experimental campaign, numerical simulations are devel-

oped by a coupled SPH / FEM numerical model and the computed structural

deformations are compared with the experimental results. The numerical model

is presented in the fourth chapter and above. First, it is presented the validation

of the coupled FEM/SPH model by analyzing its capability to correctly repro-

duce the pressure waves propagation and the overall fluid motion. Second, it is

investigated the water-entry problems of rigid bodies, whose results are compared

with Von Karman and Wagner’s analytical solutions, showing that SPH is actu-

ally capable of correctly simulating the impact dynamics. However, the accuracy

of the solution in terms of pressure at the fluid-structure interface was found to be

highly influenced by various parameters like: element size, artificial bulk viscosity

and non-reflecting boundary conditions. Once the solution method has been vali-

dated, the research moves to the investigation of hydroelastic effects on the impact

dynamics and the structural deformation during the impact of deformable bodies.

At last, numerical results are compared with experiments about water-entry of

elastic wedges of varying thickness, deadrise angle and impact velocity.

The experimental results show that the relative importance of hydroelasticity

is strictly related to the ratio between the time necessary for the structure to

get completely wet during the water entry (also called wetting time) and the

natural period of the structure. The numerical simulations reveal that SPH is

actually capable of correctly replicating the structural deformations even for low

mesh refinement. On the other hand a low refinement gives a poor approximation
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pressure field all over the fluid/structure interface. However, this lack of accuracy

seems to have negligible effect on the structural deformation.

Being able to model the fluid with a low mesh refinement means lower compu-

tational time which is, from the practical point of view, the most delicate point for

the applicability of the SPH technique to full-scale three-dimensional simulations,

which is a necessary step to be achieved in order to be able to use this method in

the design purposes.
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Experimental set-up

As shown in the previous sections, hydroelasticity in water-entry problems has

been studied by many authors, both by experimental campaigns and by numerical

simulations (e.g. [28, 32, 34, 35, 56]). However, their interest mostly focused on the

analysis of the pressure at the fluid/structure interface rather than the structural

deformation itself. Furthermore, all the structures used in the experiments are

stiff and present very little structural deformation. The hydroelastic effects are

consequently low.

Therefore, an experimental apparatus was designed to perform slamming tests

of wedges of various stiffness and to compare them with the theoretical results

shown in the previous sections and numerical simulations. The time history of the

hydrodynamic force applied on the wedge and the strains at several locations on

the panel are measured. The design of machine and specimens was chosen in order

not to present air trapping effects, as described in section 1.3.

2.1 Description of models and tests

A drop weight machine with a maximum drop height of 4.5 m was specially

designed and built at the DIEM laboratories. The machine is composed by an

aluminium frame 2 m long, 1.8 m wide and 6 m high, holding two prismatic rails

guiding an aluminium sledge. The rails have a maximum vertical run of 4.0 m so

that the wedge can fall from variable heights leading to different entry velocities.

Teflon insets minimize the friction between the sledge and the prismatic rails. The

sledge can hold wedges up to 350 mm long (per side) and 800 mm wide. The
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falling body hits the fluid at the center of a tank 1.2 meters wide, 1.8 meters long

and 1.1 m deep. The tank was filled with water only up to 0.6 m to prevent the

water waves generated during the impact to overflow. Figure 2.1 shows a picture

of the drop weight machine seen from inside the tank, while Figure 2.2 shows the

aluminium sledge. The drop heights, which are defined as the distance between

the keel and the water surface, ranged from 0.5 m to 3 m at 0.25 m increments.

Figure 2.1: Picture of the drop weight machine seen from the bottom of the water

tank.

Figure 2.2: Picture of the sledge

Impact acceleration was measured by a V-Link Microsrain wireless accelerom-

eter (±100g) located on the tip of the wedge. All reported accelerations are refer-
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enced to 0 g for the free-falling phase. The sampling frequency has been set to its

maximum of 4 kHz. Entering velocity was also recorded by a laser sensor (µε ILS

1402) recording the sledge position over 350 mm of ride at a frequency of 1.5 kHz.

The entry velocity is obtained by the numerical differentiation of the position. The

maximum impact height is 4 m, corresponding to a maximum impact velocity of

8.8 m/s. This maximum impact velocity cannot be reached during experiments

due to the large wedge dimensions offering a high air resistance. Friction on the

prismatic rails was found to be negligible compared to the air resistance.

One of the main requirements was to be able to easily test a high number of

wedges with different stiffness and deadrise angle without having a large number

of specimens. Thus, wedges were designed to be composed by two panels (Fig. 2.3)

joined together on one side (keel) by a mechanism capable to change the deadrise

angle smoothly from 0◦ to 50◦. The impact angles were measured at rest with a

digital level providing 0.1◦ resolution. Figure 2.4 shows a conceptual sketch of the

wedge.

In nautical applications, composite hulls are usually made by panels whose

edges are clamped to the main frame (a sketch of this configuration can be seen

Figure 2.3: Picture of two composite panels of different width: 250 mm and 150 mm.
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in figure 2.5). Locking all the edges of the panel has the effect of increasing the

first natural frequency. However, in the literature [28, 30–35] it was found that

hydroelastic effects increase while increasing the entry velocity and decreasing the

ratio between the wetting time and the first natural frequency. This means that

hydroelasticity is most prone to appear for structures having longer natural period.

Consequently hydroelastic effects appear at lower impact velocity in case of flexible

structures than for stiff structures. From the experimental point of view there are

two main advantages when using wedges with a longer first natural period:

• experiments can be conduced at lower velocities

• deformations are larger and consequently easier to measure

For these reasons, wedges are designed as two panels rigidly connected only at the

keel edge. All the others edges are free to deform.

2.2 Specimens

In the literature [28] it is shown that hydroelasticity is influenced by the ratio

between the wetting time and the panel’s lower natural frequency. To investigate

this phenomena, different stiffness to area density ratios are needed. Thus, alu-

minium (A), E-glass (mat) / vinylester (V) and E-Glass (woven) / epoxy (W)

panels of various thickness (2 mm and 4 mm) were used. All wedges are made by

two panels 300 mm long, while two different width of 150 mm and 250 mm were

used. Aluminium and Composite panels material properties are listed in table 2.1.

Figure 2.4: Conceptual scheme of the wedge used for experiments. L = panel length.

β = deadrise angle. Dashed line: undeformed panels, solid line: expected deformation

during impact.
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Figure 2.5: Sketch of a wedge clamped on two sides. Dashed line: initial configuration,

solid line: expected deformation during impact.

Composite panels were produced by VARTM by infusion of vinylester resin on

E-Glass fibre mat, while the E-glass (woven 0◦/90◦) / epoxy panels were produced

in autoclave.

Table 2.1: Plates material properties.

Material Abbr. E1 = E2 [GPa] ν12 ρ[kg/m3]

6068 T6 A 68 GPa 0.32 2700

E-Glass (mat)/Vinylester V 20.4 GPa 0.28 2050

E-Glass (woven)/Epoxy W 30.3 GPa 0.28 2015

All panels were equipped with two strain gauges per side, located at 25 mm

and 120 mm from the reinforced tip, as shown in Figure 2.3. The reinforced tip is

27 mm long and is used to connect the two panels to the aluminium sledge.

The position of the strain gauges was chosen on the basis of a dry modal

analysis: they were placed far from the nodes (referred to the deformation) of the

first three mode shapes, whose frequencies are listed in Table 2.2. Note that the

nodal position referred to the strains are not the same one of the modal shapes,

as visible in Figure 2.6.
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Figure 2.6: Nodal mode shapes of a dry panel (left) and relative deformation (right).

The comparison of the two graphs shows that the position of the nodes is different.

The location of the strain gauges was chosen as 25 mm and 120 mm from the wedge

tip.

Table 2.2: First three dry natural frequencies of the panels used for experiments.

Abbr. Material Thickness ω1, ω2, ω3 [Hz]

A2 Aluminium 2 mm 18.01 112.89 316.12

A4 Aluminium 4 mm 36.03 225.79 632.24

V2 Fibreglass 2.0 mm 9.77 61.22 171.44

V4 Fibreglass 4.0 mm 19.73 123.67 346.29

W2 Fibreglass 2.2 mm 19.69 123.40 345.54

W4 Fibreglass 4.4 mm 37.80 236.94 663.44
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Experimental Results

For each configuration of material, plate thickness, impact height and deadrise

angle, experiments were repeated three times to guarantee the accuracy of the

measures and to verify the repeatability of the tests. A total of more than 1200

experiments have been conducted, only a few of these results are presented in the

main text. Further results are listed in the Appendix. Figures 3.1 and 3.2 show the

results of a composite wedge (W2) with deadrise angle of 30◦ for various impact

velocities. The experimental results of the three tests show high repeatability both

in terms of acceleration and stresses over time. The scatter on the maximum

acceleration recorded during the three repetitions is below ±g for all the impact

cases.

Figure 3.1: Example of a composite (W2) wedge, 2mm thick, β = 30◦, V0 = 2.77 m/s

(left) and 6.28 m/s (right). Strain recorded at 25 mm (top) and 120 mm (bottom) from

the wedge tip.

Figures 3.3 and 3.4 show the comparison of the acceleration between Von
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Figure 3.2: Repeatability of the water impacts of a wedge (W2) with deadrise angle

β = 30◦ entering the water at various impact velocities.

Karman’s solution and the three repeated tests for a composite wedge (W2) of

β = 20◦ and β = 30◦ entering the water at different velocities. Results show that in

all cases Von Karman’s formula is capable of predicting the maximum acceleration

(thus the maximum impact force), although the time the maximum acceleration

is reached is not the same one. In fact, while in Von Karman’s model (as shown in

section 1.1) the maximum force is reached at a time t∗ = 16
15

tan(β)
V0

√
2M

5πργ2
, during

experiments the maximum impact force is rather reached always at the same time.

Figure 3.5 shows the comparison between the analytical prediction of the time t∗

and the experimental results for composite wedges (W2) with deadrise angle of

30◦ (left) and 20◦ (right).
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Figure 3.3: Comparison between Von Karman solution (dashed line) and recorded

accelerations (solid lines) during the water impacts of a wedge (W2) with deadrise

angle β = 30◦ entering the water from various impact height (from left to right, top to

bottom : 50 cm, 75 cm, 100 cm, 125 cm, 150 cm, 175 cm, 200 cm, 225 cm).
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Figure 3.4: Comparison between Von Karman (dashed line) solution and recorded

accelerations (solid lines) during the water impacts of a wedge (W2) with deadrise

angle β = 20◦ entering the water from various impact height (from left to right, top to

bottom : 50 cm, 75 cm, 100 cm, 125 cm, 150 cm, 175 cm, 200 cm, 225 cm).

Figure 3.5: Comparison between the predicted time t∗ and the experimental one for

a composite wedges (W2) with deadrise angle of 30◦ (left) and 20◦ (right)
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Note that the maximum sampling frequency during experiments is 4 kHz, i.e

the time history has a definition of 0.25 ms. This definition corresponds to the

maximum error on the evaluation of the beginning of the impact and of the instant

of maximum acceleration. Consequently, the evaluation of t∗ can be affected by

an error of ±0.5 ms, which is evident in Figure 3.5.

Figure 3.6: Experimental recorded acceleration and strains. Aluminium panel (A2),

β = 35◦, V0 = 2.7 m/s. Note that the acceleration (top) is smooth and the two strains

(center and bottom) have the same shape and phase. The higher strain is recorded by

the strain gauge close to the wedge tip (center).

Wedges of different stiffness to area mass ratio show different behavior in terms

of deformations over time. Figure 3.6 shows the results of an aluminium wedge (A2)

with deadrise angle of 35◦ entering the water at 2.7 m/s; the signals of the two

strain gauges show smooth shape and their trend is similar, suggesting that the

first mode of vibration dominates the structural deformation. A different behavior

is recorded in the case of a composite wedge (W2) with deadrise angle of 20◦

impacting at 3 m/s (Figure 3.7), where the deformation recorded by the strain

gauges located at the center of the plate follows the overall trend recorded by the

first strain gauge but marked oscillations appears, suggesting that more than one
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Figure 3.7: Experimental recorded acceleration and strains. Composite panel (W2),

β = 20◦, V0 = 3 m/s. In this case the acceleration (top) show high oscillations (com-

pared to Von Karman solution, dashed line) and the strains (center and bottom) do

not present the same behavior and have very different amplitude.

mode shape is excited. Furthermore, it was observed that the maximum strain

is not always recorded by the strain gauge located at 25 mm from the wedge

tip, but for the most severe impacts (higher velocity and lower deadrise angle) the

maximum value is recorded by the strain gauge located at 120 mm from the wedge

tip.

The effect of hydroelasticity can be better appreciated in the next graphs:

Figures 3.8 and 3.11 show the recorded strains for a composite wedges (V2 andW2)

with given deadrise angle presented as function of the drop height, while Figure

3.10 shows the recorded strains for an aluminium wedge 2 mm thick presented as

function of the deadrise angle for a given impact velocity. The Figures show the

transition from a single-mode dominated deformation in case of high deadrise angle

(sharp wedge) and low impact velocity, to a multiple-mode dominated deformation

when the structure flattens and the impact velocity increases. In fact, the overall

strain presents a smooth (almost sinusoidal) shape in case of large deadrise angles
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Figure 3.8: Experimental recorded strains for variable drop heights. Composite panel

(V2), 2 mm thick. β = 10◦ (top, left), β = 15◦ (top, right), β = 20◦ (bottom, left),

β = 25◦ m/s (bottom, right).

Figure 3.9: Experimental recorded strains for variable drop heights. Composite panel

(V2), 2 mm thick. β = 20◦ (left), β = 30◦ (right).

and low impact velocities, while oscillations appear increasing the impact velocity

and reducing the deadrise angle.

During all the impact tests, the structural deformation initially assumes neg-
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Figure 3.10: Experimental recorded strains for variable deadrise angle. Auminium

Panel (A2), 2 mm thick. V0 = 3 m/s (top, left), V0 = 4.2 m/s (top, right), V0 = 5.2

m/s (bottom, left), V0 = 6 m/s (bottom, right).

Figure 3.11: Experimental recorded strains for variable drop heights. Composite panel

(W2), 2 mm thick. β = 20◦ (left), β = 30◦ (right)

ative values. This negative deformation is opposite to the one generated by the

impact pressure and is due to the inertia of the panels that are being decelerated

during the impact. The higher accelerations are reached close to the beginning of

the impact and rapidly decrease. Thus, as the wedge enters the water, the defor-
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mation due to the hydrodynamic pressure exceeds the deformation due to inertia,

leading the strains to assume positive values.

It was shown by Faltinsen [57] that hydroelasticity for the local slamming-

induced stresses increases with decreasing deadrise angle β and increasing the

impact velocity V . Following a similar approach, it was defined a parameter R as:

R =
tan(β)

γV0

h

L2

√
EM

ρ
, (3.0.1)

which is similar to the one proposed by Faltinsen but it shows also the effect of

the length L, thickness h, density of the material ρ, modulus of elasticity E and

total mass M of the wedge1.

Figure 3.12: Nondimensional recorded maximum strain εm, presented as a function

of a parameter R. Where EI is the bending stiffness, za is the thickness and L is the

panel length.

Figure 3.12 shows the nondimensional recorded maximum strain εmEItan(β)
zaV 2ρL2 , as

suggested in [57], as function of the parameter R. Results of various wedges are

presented for variable impact velocity, deadrise angle and material (blue marks:

aluminium, red marks: composite (V4) 4mm thick, black marks: composite (W2)

2mm thick). It was found that hydroelastic effects (for the particular geometry

studied) become important when the parameter R is lower than 10. In fact, in the

1The total mass of the wedge is an important parameter to consider since the mass of the

sledge is higher than the panel’s mass.
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range of 0 < R < 10 the maximum strain is not proportional to V 2, as in quasi-

steady-pressure loading, but decreases as the parameter R decreases. These results

are similar to the one found by Faltinsen [28], whose model however bases on the

assumption of constant impact velocity and was not supported by experimental

results.
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Smoothed Particle Hydrodynamics (SPH)

A coupled FEM and SPH formulation available in the commercial FE code LS-

Dyna was used to model the water entry of elastic wedges. In the following it is

shown how the fluid is modeled and the validation of the SPH method to correctly

study water entry problems. First, the SPH model is validated and optimized by

comparison with analytical and numerical examples of simple problems. Then, the

optimized model is used to study water impacts of elastic structures, comparing

the numerical results with experiments. Simulations were carried out with the

commercial explicit nonlinear code LS-Dyna.

4.1 Equation of state

To model the fluid, an equation of state (EOS) needs to be defined in LS-Dyna.

In the literature the most used EOS is the Gruneisen model [58–60], which follows

the formula:

p =
ρC2µ

[
1 +

(
1− γ0

2

)
µ− a

2µ
2
][

1− (S1 − 1)µ− S2 µ2

µ+1 − S3
µ3

(µ+1)2

]2 + (γ0 + aµ)E (4.1.1)

Where µ = η − 1 (η is the ratio between initial an final density), C is the bulk

speed of sound, ρ is the density of the fluid. There are many combinations for the

constant that satisfy the water behavior. In this work we used the values presented

in table 4.1; values are taken from the literature [60].

By lowering the value of C it is possible to reduce the bulk speed of sound. A

reduction in the pressure waves speed leads to an increase of the minimum timestep
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Table 4.1: Gruneisen model constants for water.

C [m/s] S1 S2 S3 ρ [kg/m3] γ a E

1480 2.56 1.986 1.2268 1000 0.5 0 0

needed for the solution and the consequent reduction of the computational time.

Furthermore the travelling pressure waves take longer to reach the boundaries and

get back to the impactor, it is consequently possible to build a model where there

are no reflected pressure waves along the entire solution time. A common value

used in the literature for the waves speed is 80 m/s. The main disadvantage of this

trick is that, in case of slamming event, the quality of the impact dynamics get

worse in terms of smoothness of acceleration and of the pressure distribution at

the fluid/structure interface. As example, Figure 4.1 shows the the acceleration of

a wedge entering the water at 4 m/s varying the bulk speed of sound (1480 m/s,

1000 m/s and 80 m/s).

Figure 4.1: Acceleration response of a wedge entering the water varying the bulk

speed of sound.

To avoid this loss of quality it is necessary to increment the number of elements,

increasing the computational time. For these reasons we preferred to use the real

pressure wave speed of 1480 m/s.

4.2 Validation of the numerical model

The so called Dam-break problem is often used in the literature as benchmark

test to evaluate SPH accuracy. It consists in a two dimensional simulation of a

water tank where a boundary is removed instantaneously to let the water to cover

a larger tank ([48, 61–64]). Figure 4.2 shows the geometry, where W = 5.4 m,

L = 2 m and H = 1 m. The fluid is modeled by 180000 particles and only the

gravitational force is applied. Figure 4.3 shows the position of the front wave during

time. Results about the water shape and the position of the surge front are in good

agreement with those presented in the literature [48, 61–64]. However, while SPH

seems to give accurate results for particles velocity and water flow, it seems not to
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Figure 4.2: Dam-break geometry. The blue region is the fluid, initially at rest, whose

right boundary is suddently removed to let the water occupy a larger tank. H = initial

water depth, L = initial water length, W = water tank length once the boundary is

removed.

Figure 4.3: Numerical solution of the surge front position vs. time.

correctly account for the pressure field. In fact, as other numerical methods, SPH

suffers noise in the pressure evaluation due to numerical fluctuations, leading to a

poor definition of the pressure at the fluid/structure interface. This behavior is well

known in the literature [65] and much effort is being spent on it. The most used

technique to suppress these pressure fluctuations is the introduction of an artificial

viscosity. Most of the work found in the literature focuses on the suppression of

pressure oscillations in gases and solids ([66–68]). To take into account the artificial

viscosity [65, 69], an artificial viscous pressure term q is added such that the
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pressure p of the ith particle is computed as:

pi = pi + q (4.2.1)

where

q = β · ρ · hi · ε̇2kk − α · c0 · ε̇kk (4.2.2)

where hi is the minimum distance between the particles, α and β are the linear and

quadratic coefficients and ε̇ is the strain rate. For gases the linear and quadratic

terms are usually in the range α = 1.0 ÷ 4.0 and β = 1.5 ÷ 2.0, while for solids

α = 0.06 and β = 1.5. To study the influence of the artificial viscosity term for

liquids, numerical results have been compared with an analytical solution.

The example considers a water column suddenly subjected to a uniform pres-

sure load equal to 10 kPa on the free surface. An analytical solution to this prob-

lem is found assuming that it is governed by the one dimensional wave equation.

Boundaries are fixed. Figure 4.4 shows the Lagrange diagram, which is divided in

five regions, namely 0, I, II, III and IV. In region 0 and IV the pressure is null, in

region I and III the pressure equals the applied pulse and in region II the pressure

is twice the applied pulse. The related stress history at the top, bottom and middle

of the water column is presented in Figure 4.5. At the top, the pressure remains

constant and obviously equals the applied pressure (black line). At the bottom

(red line), pressure is zero until the first pressure wave reaches the boundary at

time 1/2t, when the wave is entirely reflected and the pressure becomes twice the

incident pulse. Once the reflected wave reaches the top, at the time t, a second

pressure wave of intensity equal to the applied pressure, but negative, is generated.

This second wave reaches the bottom at time 3/2t, it entirely reflects and the pres-

sure at the bottom returns to zero. At the middle the pressure (blue line) turns

from zero to the applied pressure at time t/4, when the first wave pass through;

the reflected wave arrives at time 3t/4, switching the pressure to twice the applied

pulse. The second (negative) wave arrives at 5t/4, lowering the pressure again to

the applied pressure, and the second reflected wave brings the pressure again to

zero at time 7t/4. In an ideal fluid this scheme continues infinitely with a period

of 2t.

The travelling wave theoretically switches the pressure value instantaneously

without transitions. This behavior is difficult to reproduce numerically, since there
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Figure 4.4: Left: sketch of the water column loaded at the free surface by a constant

pressure. Center and right: Lagrange diagram. Analytical solution for the reflection of

a pressure wave during time.

Figure 4.5: Analytical solution of the pressure due to a wave propagation at the top

(blue line), middle (green line) and bottom (red line) of a water column.

is a transition between two different pressure regions which produces oscillations in

the solution. This is known as Gibb’s phenomenon and it occurs for most numerical

methods unless some particular steps are taken to avoid it. These oscillations

cannot be eliminated, but refining the particle size can reduce their duration and

amplitude. Figure 4.6 shows the numerical results varying the linear bulk viscosity

coefficient α of Eq. 4.2.2 (the quadratic term was found to have negligible effects)

for a water column with particle spacing of 1 mm. Artificial damping is effective

for values as low as 0.2, and numerical fluctuations are entirely smoothed out for

values of α greater than 0.5. On one hand we have seen that the introduction

of the artificial viscosity term lowers the pressure oscillations, while on the other

hand, in case of slamming problems, the impact dynamics is negatively affected:

the higher the viscosity term, the higher the fluid resistance. Figure 4.7 shows
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Figure 4.6: Numerical pressure fluctuation reduction varying the linear artificial vis-

cosity coefficient. Blue line: Top, Green line: middle, Red line: bottom of the water

column.

Figure 4.7: Displacement and velocity during slamming of a rigid wedge entering the

water with an initial velocity of 4 m/s varying the Bulk artificial viscosity term α.

the displacement and velocity during a slamming event of a rigid wedge with a

deadrise angle of 30◦ entering the water with an initial velocity of 4 m/s varying

the bulk artificial viscosity term. The results show that the wedge decelerates more

rapidly while the viscosity term increases, showing that α needs to be chosen as

low as possible. For all the examples studied during this work α has been chosen
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to be lower than 0.2.

4.3 Non Reflecting Boundaries

In case of impacts on wide water surfaces, these can be considered as infinite

since there are no reflected pressure waves travelling back to the impacting body.

On the contrary, numerical solutions are necessarily affected by these reflected

pressure waves, since to reduce the computational time it is necessary to limit the

fluid domain. One of the most used technique to suppress the reflected pressure

waves is to lower the speed of sound in the fluid (usually it is lowered from 1480

m/s to 80 m/s). As shown in section 4.1, lowering the pressure waves speed permits

to eliminate the reflected waves from the solution. However, since it is not always

allowable to lower the sound speed, other techniques have to be used. In [70] Gong

et al. proposed an improved boundary treatment capable to suppress the pressure

waves reflection. They modelled the fluid with its real properties except for the

last particles close to the boundary limits, whose sound speed has been reduced.

This method presents the advantage of modeling the right fluid behavior together

with the capability of entirely suppress the reflected pressure waves. Figure 4.8

Figure 4.8: Position of a pressure wave generated by the water entry of a cylinder

before and after it reaches the boundaries: Non-reflecting boundaries (left, the wave is

absorbed) vs. rigid boundaries (right, the wave is reflected).

shows the effect of the non reflecting boundaries in the case of a wave generated
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by the water entry of a cylinder: the pictures on top show a cylindrical pressure

wave moving from the top to the bottom that, after 2 ms, is reflected in the case

of rigid boundaries (on the right), while the non-reflecting boundaries (on the left)

entirely absorbed it.

4.4 Comparison with analytical models

The optimized SPH model is now used to study the water entry of rigid wedges

and its results will be compared with the analytical models presented in section

1.1. The numerical model bases on the following main assumptions:

1. the fluid free surface is initially at rest;

2. air is not included in the model. Air cushioning and air entrapment are

consequently neglected;

3. the wedge is assumed infinite along the z-axis (3D boundary effects are not

included);

4. the problem is symmetrical with respect to the zy plane (y is the gravity

direction).

Figure 4.9 shows the SPH numerical results of the impact dynamics for rigid wedges

of variable deadrise angle entering the water at 4 m/s. The numerical results show

a good agreement with Von Karman’s Solution (Figure 1.2) and Equations 1.1.2-

1.1.6. The difference between the analytical an the numerical maximum impact

force is always lower than 5% while the difference between the time the force peak

is reached is lower than 15%.

Figure 4.10 shows the comparison of the pressure along the wedge between

Wagner’s solution and the numerical results for a wedge entering the water at 4

m/s with a deadrise angle of 30◦ and a mass per unit width of 500 kg/m. SPH

results were found to fit very well with Wagner’s solution all over the time domain

except for the very initial contact time, since there are too few elements in contact

to show a smooth pressure distribution at the interface. The maximum pressure

value is reached at the beginning of the impact, and is constant for a given entry

velocity and deadrise angle, while mass is affecting only the impact dynamics.
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Figure 4.9: Acceleration and Velocity of a wedge varying the deadrise angle β. Total

wedge mass: 20 kg per unit width. SPH simulations with rigid wedges.

Figure 4.10: Pressure in time at the fluid/structure interface for a wedge of 500

kg/m, deadrise angle 30◦ and initial velocity V0 = 4 m/s. Blue line: Wagner analytical

solution. Red line: numerical results.

These results validate the SPH method and reveal that it is actually capable of

predicting the impact dynamics and the pressure at the fluid/structure interface

of rigid bodies entering the water. Thus, the SPH method will now be used for the
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analysis of water impacts of asymmetric structures and elastic structures, where

analytical solutions are not available.
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Water entry of asymmetric wedges

This chapter describes the effect of asymmetry on the impact dynamics and on

the hydrodynamic pressure at the fluid/structure interface. Wedges are impacting

with combined vertical and horizontal velocities and are not symmetric due to an

initial tilt angle. As mentioned in the introduction, this kind of impacts might

introduce ventilation in the fluid flow [7] due to fluid detachment at the wedge tip.

A sketch of the problem is shown in Figure 5.1: a wedge with deadrise angle β is

impacting the water at the velocity V0 and is rotated by a tilt angle βtilt in respect

to the water surface. The wedge is free to move horizontally and rotate during the

Figure 5.1: Sketch of the asymmetric wedge entering the water.

water entry. Both wedge’s sides are 0.3 m long and the total mass equals 100 Kg

per unit width. In all the numerical solutions the fluid is modeled by 320000 parti-

cles equally spaced (with diameter of 0.25 mm) covering a region 0.8 m wide and

0.2 m deep. The wedge is rigid and is composed by 100 elements per side, leading
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to an average of 4 SPH particles that get in contact with a single element in the

wet region. The numerical results are recorded every 0.05 ms, for a total solution

time of 30 ms.

5.1 Asymmetric wedges with pure vertical velocity

This section firstly proposes a simple adaption of Von Karman’s formula to

investigate the impact dynamics of asymmetric wedges. Later, the hydrodynamic

pressure evaluated numerically will be compared with the Wagner’s solution.

5.1.1 Impact dynamics of asymmetric wedges

The impact dynamics of the asymmetric wedge can be approximated by Von

Karman’s formula previous a correction of the added mass term: the flat disk

approximation in case of asymmetric impact can be evaluated by:

m = ρ
π

2

[
1

2

(
ξ

tan(β0 + βtilt)
+

ξ

tan(β0 − βtilt)

)]2
γ2. (5.1.1)

This way, Von Karman’s model for asymmetric impacts is given by equation 1.1.1,

where the term tan(β) is substituted by:

tan(β) = 2
tan(β0 + βtilt) · tan(β0 − βtilt)
tan(β0 + βtilt) + tan(β0 − βtilt)

(5.1.2)

The introduction of this term is necessary to better predict the added mass in the

asymmetric condition. The comparison between analytical and numerical results

shows good match until the maximum acceleration is reached, to later assume a

slightly different behavior, probably due to the tilt motion that is not accounted in

the analytical model (the analytical solution tends to overestimate the acceleration

after the maximum value is reached). As title of example, figures 5.2 to 5.5 show the

comparison between the numerical results and the analytical solutions for wedges

with various tilt angles and entry velocities.

In the next section it will be investigated if Wagner’s method is capable to

predict the hydrodynamic pressure also in case of asymmetric impacts. Although

Von Karman’s method is found to match pretty well with the numerical results

(at least until the maximum impact force is reached), in the next section the
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Figure 5.2: Impact dynamics of an asymmetric wedge entering the water at 6 m/s.

Deadrise angle β = 25◦, tilt angle 5◦.

Figure 5.3: Impact dynamics of an asymmetric wedge entering the water at 8 m/s.

Deadrise angle β = 25◦, tilt angle 5◦.

Figure 5.4: Impact dynamics of an asymmetric wedge entering the water at 4 m/s.

Deadrise angle β = 25◦, tilt angle 15◦.
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Figure 5.5: Impact dynamics of an asymmetric wedge entering the water at 6 m/s.

Deadrise angle β = 25◦, tilt angle 15◦.

numerically evaluated impact dynamics will be used for the solution of Wagner’s

formula.

5.1.2 Hydrodynamic pressure

Wagner’s method is now used to evaluate the pressure at the interface in the

case of asymmetric impacts. The analytical formulation considers the wedge to

have no tilt motion and pure vertical velocity; the impact time histories (displace-

ment, velocity and acceleration) are taken from the numerical solution and are

evaluated at the wedge tip. The wedge is considered to have constant deadrise

angle equal to β0 − βtilt on the left side and β0 + βtilt on the right side.

Figures 5.6 and 5.7 show the pressure at the fluid/structure interface of a wedge

with deadrise angle β = 25◦ entering the water with a tilt angle of 5◦ and initial

velocity of 6 m/s and 8 m/s.

Figures 5.8 to 5.10 show the pressure at the fluid/structure interface of a wedge

with deadrise angle β = 25◦ entering the water with a tilt angle of 15◦ and initial

velocity of 2 m/s, 4 m/s and 6 m/s. In all cases the hydrodynamic pressure on

the side with lower deadrise angle compares well with Wagner’s method both

in terms of maximum impact pressure and overall pressure distribution on the

wedge. On the face with higher deadrise angle the numerical results present slightly

higher values than the one predicted by Wagner’s method. It is possible that

the hydrodynamic load is increased on this side due to the tilt motion during
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Figure 5.6: Asymmetric wedge entering the water at 6 m/s. Deadrise angle β = 25◦,

tilt angle 5◦.

the impact. However, the magnitude of the pressure is always lower than on the

other side. Thus, the face supporting the higher hydrodynamic load is always the

one with lower deadrise angle. The difference between the numerically and the

analytically evaluated pressure increases during the impact and is caused by the

variation of the deadrise angle due to the tilt motion (e.g. see figures 5.8 to 5.10).

However, due to the inertia of the wedge, the maximum impact pressure has been

reached when the tilt motion of the wedge is still negligible.

Once one face is completely wet (e.g at ≈ 15 ms in figure 5.6 and ≈ 11 ms in

figure 5.7) the pressure distribution does not follows its classical shape any more:

the maximum pressure is now located at the keel (on the left side), while the right

face of the wedge is now carrying a higher hydrodynamic load, which, however, is

lower than the maximum load experienced by the left side.

These results show that an eventual asymmetry during the water impact does

not have remarkable effect on the impact dynamics, on the maximum impact force,

or on the overall hydrodynamic pressure. This means that the experimental results
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Figure 5.7: Asymmetric wedge entering the water at 8 m/s. Deadrise angle β = 25◦,

tilt angle 5◦.

obtained for the water entry of symmetric wedges can be generalized to the water

entry of asymmetric wedges as well.

The next section presents some numerical solutions for asymmetric wedges

entering the water with combined vertical and horizontal velocity to investigate if

there is an influence of the horizontal component on the hydrodynamic pressure.
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Figure 5.8: Asymmetric wedge entering the water at 2 m/s. Deadrise angle β = 25◦,

tilt angle 15◦.

Figure 5.9: Asymmetric wedge entering the water at 4 m/s. Deadrise angle β = 25◦,

tilt angle 15◦.
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Figure 5.10: Asymmetric wedge entering the water at 6 m/s. Deadrise angle β = 25◦,

tilt angle 15◦.
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5.2 Asymmetric wedges with horizontal velocity component

In this section, asymmetric wedges with combined vertical and horizontal im-

pact velocity are presented. The objective is to evaluate the effect of the horizontal

component on the hydrodynamic pressure. The problem is the same one presented

in figure 5.1 but an horizontal component of the velocity is added. The horizon-

tal velocity is in the same direction of the tilt angle (left direction in figure 5.1).

As done in the previous analysis, in the analytical model the wedge is not tilting

during the impact. The penetration is evaluated as the vertical displacement of

the wedge tip, while different instantaneous velocities need to be be considered

for the left and the right faces: the vertical impact velocity must be scaled by

the parameters cos(arctan Vx
Vy

) on the right side (opposite to the direction of the

horizontal velocity component) and 1
cos(arctan Vx

Vy
)
on the left side.

Figure 5.11 shows the comparison of the numerical and analytical results of

a wedge with deadrise angle of 25◦ and tilt angle of 15◦ entering the water with

vertical velocity vy = 4 m/s and horizontal velocity vx = 2 m/s.

Figure 5.11: Asymmetric wedge entering the water at 4 m/s (y) + 2 m/s (x). Deadrise

angle β = 25◦, tilt angle 15◦.

Figure 5.12 shows a wedge with deadrise angle of 25◦ and tilt angle of 5◦
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entering the water with vertical velocity vy = 6 m/s and horizontal velocity vx =

1 m/s.

Figure 5.12: Asymmetric wedge entering the water at 6 m/s (y) + 1 m/s (x). Deadrise

angle β = 25◦, tilt angle 15◦.

Figure 5.13 shows a wedge with deadrise angle of 25◦ and tilt angle of 5◦

entering the water with vertical velocity vy = 4 m/s and horizontal velocity vx =

4 m/s. In the case shown in figure 5.13, due to the pretty high horizontal velocity

component, the fluid detached from wedge tip, as visible in Figure 5.14. Since

air is not considered in the numerical model, the numerical solution might not

represent the real behavior of the fluid. Although, results show that even if there

is a region where the pressure drops to zero, the maximum pressure compares well

with Wagner’s model, even if the overall shape changed: the maximum pressure

on the right face is now located where the fluid reattaches to the wedge rather

than in the fluid jet.
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Figure 5.13: Asymmetric wedge entering the water at 4 m/s (y) + 4 m/s (x). Deadrise

angle β = 25◦, tilt angle 5◦.

Figure 5.14: Asymmetric wedge entering the water with combined horizontal (4 m/s)

and vertical (4 m/s) velocity. Deadrise angle β = 25◦, tilt angle 5◦. The horizontal

component of the velocity is on the left direction.
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5.3 Notes on the water entry of rigid bodies

It has been shown in the last two chapters that the SPH method is capable of

predicting the hydrodynamic pressure during the water entry of rigid bodies, as

shown by the comparison with the analytical solutions. An eventual asymmetry

(in terms of initial tilt angle or horizontal velocity component) is not affecting the

maximum hydrodynamic load and the impact dynamics can still be predicted by

analytical formulations with good approximation. An eventual detachment of the

fluid at the wedge tip was found to have negligible effects on the maximum hydro-

dynamic load, even if it might variate the overall pressure shape. The maximum

load is always carried by the side with lower deadrise angle and the impact loads

can be easily referred to a symmetric impact case. Thus, in the following, the ef-

fect of hydroelasticity on the impact dynamics will be studied only on symmetric

impacts.
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Numerical simulations of deformable wedges

In the previous chapters it was found that SPH is capable of modeling the

impact dynamic and the pressure at the fluid/structure interface during the water

entry of rigid wedges. In the following sections elastic structures are considered. In

these cases the structural deformation might change the fluid motion introducing

the so-called hydroelastic effects, leading the impact dynamics to differ from the

analytical solution.

This section presents a parametric analysis of hydroelastic impacts of elas-

tic wedges entering the water varying wedge flexural stiffness, impact velocity,

deadrise angle and SPH particles size. Wedges are modeled as an ideally elastic

aluminium (E=80 GPa, ν=0.3, ρ=2700 kg/m3), or as an ideally elastic fibreglass

mat composite (E1=E2=20 GPa, ν=0.3, ρ=2050 kg/m3). To compare wedges of

different thickness, an added mass is applied to the tip of the wedge to reach a

total mass of 20 kg per unit width in all analysis, which, following Faltinsen [28], is

not affecting the hydroelastic behavior. Faltinsen demonstrated that hydroelastic

effects are important when

tan(β) < 0.25 V

√
ρL3

EI
(6.0.1)

showing that the occurrence of hydroelastic effects depends on: impact velocity,

deadrise angle and structural stiffness to area mass ratio. In particular, the higher

the impact velocity V , the lower the deadrise angle β and the higher the structure

natural period T1 is, the more important the hydroelastic effects are. To investigate

the effect of hydroelasticity on the impact dynamics, wedges of different thickness

were implemented: 2 mm and 4 mm, both for aluminium and fibreglass composite
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wedges. This way different bending stiffness to area mass ratios are considered.

The effect of impact velocity has been also investigated.

In all the numerical simulations only one half of the wedge and the fluid is

modeled due to symmetry. Constraints are applied to the wedge tip: only the

vertical translation is released. The wedge’s side is 0.3 m long and the total mass

equals 20 Kg per unit width. The fluid is modeled by 160000 particles equally

spaced (with diameter of 0.25 mm) covering a region 0.4 m wide and 0.2 m deep.

The wedge is composed by 100 elements per side, leading to an average of 4 SPH

particles that get in contact with a single element in the wet region. The numerical

results are recorded every 0.05 ms, for a total solution time of 60 ms.

6.1 Hydroelasticity

Figures 6.1 and 6.2 show two examples of the water entry of elastic wedges.

Initially (up to 2.5 ms in these cases) the deformation of the wedge is low, so

that it behaves like a rigid wedge. Then, the deformation of the wedge becomes

important (≈ 5 ms) resulting into a mutual interaction between the fluid motion

and the structural deformation. In this initial time of the impact the wedge is

deforming downward due to its inertia. The wedge eventually reaches its maximum

deformation (≈ 7.5 ms) and starts bending in the other direction (at ≈ 10 ms

the wedge is in its neutral position). At this point, three events could happen:

1. The entire wet part of the wedge (the part already touched by the water)

stays in contact with the water, and no air is entrapped in between the solid

and the fluid. The fluid/structure interaction continues and the vibrations

are damped by the fluid.

2. Along the wet part of the wedge the fluid tends to move away from the

wedge, then pressure becomes negative and cavitation occurs, as shown in

Figure 6.1.

3. The wedge detaches from the fluid and some air enters from the side. The air

is eventually trapped in between the wedge and the fluid and an air cushion

is generated, as shown in Figure 6.2. In this case the interaction between the

air flow and the fluid flow has to be taken into account.
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Figure 6.1: Wedge deformation over time. 10◦ deadrise angle, 4 mm thick, 4 m/s

initial velocity.

Figure 6.2: Wedge deformation over time. 10◦ deadrise angle, 2 mm thick, 4 m/s

initial velocity.

6.2 Influence of the structural deformation

on the hydrodynamic pressure

As shown, the structural deformation might change the fluid motion. As a con-

sequence, the pressure at the interface will differ from the rigid case. An example of

the effect of the structural deformation on the impact pressure in the case no fluid

detaches from the wedge and no air is trapped in the fluid during the impact is

presented in Figure 6.3. The plots show the comparison of the pressures over time
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Figure 6.3: Impact pressure along the wedge over time. Deadrise angle 30◦, mass

20 Kg/m,. Comparison between rigid wedge (blue line) and elastic wedge (black line,

Aluminium wedge 2mm thick). results are similar at the beginning of the impact but

diverges rapidly after 10 ms.
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of a rigid wedge vs. an elastic wedge (aliminium 2 mm thick) with deadrise angle

of 30◦ and total mass of 20 kg/m entering the water at 4 m/s. It is found that

the two solutions show extremely similar results at the beginning of the impact

(until about 15 ms), when the impact pressure is higher. Pressures are similar until

the panel has reached its maximum negative (leaded by the inertia) deformation.

Once the wedge starts to deform in the opposite direction, the pressure eventually

reduce to a lower value compared to the rigid case. Note that at this stage the

impact force is already in its descending phase and the maximum impact force

has already been reached. At the time the hydrodynamic pressure diverges, the

Figure 6.4: Adimensional impulse over time for various deadrise angles and impact

velocities: 2, 4, 6 and 8 m/s (left to right, top to bottom).

impulse applied to the wedge is more than the 50% of the maximum impulse that

would apply to a rigid wedge during the water entry. Figure 6.4 shows the adimen-

sionalized impulse over time for various deadrise angles and impact velocities. Note

that for this case and for all the other cases that will be shown in the following,

the impulse exchanged at this stage is in the order of 55-60% of its maximum.

Other examples are presented in the following. They all show similar behavior

to the example presented above: Pressure follows Wagner’s formula until the 50-

60% of the impulse load, to later diverge due to fluid detachment. Figure 6.5
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shows the comparison of the impact pressure between a rigid wedge and deformable

wedges with deadrise angle of 30◦ entering the water at 4 m/s. Figure 6.6 shows the

relative deformation of the wedges during the impact referred to the undeformed

shape.

Figure 6.5: Pressure at the fluid/structure interface during the impact of a rigid wedge

(blue line), a deformable aluminium wedge (red line) and a deformable composite wedge

(black line) entering the water at 4 m/s. Deadrise angle 30◦.

58 Esame finale anno 2012 - Ciclo XXIV Panciroli Riccardo



Influence of the structural deformation
on the hydrodynamic pressure Section 6.2

Figure 6.6: Deformation of the aluminium (A) and composite (V) wedge during the

impact.

Figure 6.7 shows the comparison of the impact pressure of wedges with deadrise

angle of 30◦ entering the water at 2 m/s. Figure 6.8 shows the deformation of the

wedges during the impact.

Figure 6.7: Pressure at the fluid/structure interface during the impact of wedges

entering the water at 2 m/s. Deadrise angle 30◦.
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Figure 6.8: Deformation of the wedges during the impact. V0 = 2m/s, β = 30◦.

Figure 6.9 shows the comparison of the impact pressure of wedges with deadrise

angle of 30◦ entering the water at 6 m/s. Aluminium and composite wedges are

shown. In all cases the impact pressure can be predicted with good approximation

until 6.5 ms of impact. After this time, the wedge detaches from the fluid and

the pressure at the interface assumes complicate shapes. Figure 6.10 shows the

deformation of the wedges during the impact.
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Figure 6.9: Pressure at the fluid/structure interface during the impact of a wedges

entering the water at 6 m/s. Deadrise angle 30◦.

Figure 6.10: Deformation of the wedges during the impact. V0 = 6m/s, β = 30◦.

Figure 6.11 shows the comparison of the impact pressure of an aluminium

wedge with deadrise angle of 20◦ entering the water at 6 m/s.

Figure 6.12 shows the comparison of the impact pressure of an aluminium

wedge with deadrise angle of 10◦ entering the water at 3 m/s.

Figure 6.13 shows the comparison of the impact pressure of an aluminium
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Figure 6.11: Pressure at the fluid/structure interface during the impact of an alu-

minium wedges entering the water at 6 m/s. Deadrise angle 20◦.

Figure 6.12: Pressure at the fluid/structure interface during the impact of an alu-

minium wedges entering the water at 3 m/s. Deadrise angle 10◦.
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wedge with deadrise angle of 10◦ entering the water at 4 m/s.

Figure 6.13: Pressure at the fluid/structure interface during the impact of an alu-

minium wedges entering the water at 4 m/s. Deadrise angle 10◦.

Figure 6.14: Pressure at the fluid/structure interface during the impact of a rigid

wedge (blue line), a deformable aluminium wedge (red line) and a deformable composite

(W2) wedge (black line) entering the water at 6 m/s. Deadrise angle 30◦.
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Figure 6.15: Deformation of the composite wedge (W2) impact ing at 6 m/s. Note

that due to the severe impact the wedge is highly distorted.

Figure 6.16: Deformation in time of a composite wedge (W2) entering the water at

6 m/s. The time step of the plots is the same one of figures 6.14 and 6.15. Note that,

due to the high structural deformation, after 10 ms the wedge is wetted by the jet flow,

leading to the high differences between the theoretical pressure for rigid wedges and

the simulated one.

6.3 Impact dynamics

This section presents a parametric study on the influence of the hydroelastic

effects on the impact dynamics. Figures 6.17, 6.18 and 6.19 show a parametric
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study varying the particle size of the numerical solutions of aluminium wedges 2

mm thick with deadrise angle of 10◦, 20◦, and 30◦ respectively, entering the water

at 4 m/s. Since only vertical impacts are considered, one half of the wedge and

water are modeled splitting the structure on its symmetry axis. Wedges side length

is 300 mm while the fluid domain has been modeled as a tank 800 mm width and

600 mm height. Three particles sizes have been chosen for the simulations: 1 mm

(Fine model, 480,000 particles), 2.5 mm (Medium model, 192,000 particles) and

5 mm (Rough model, 48,000 particles). The computation takes about 12 hours to

run in the case of fine model and only about 0.5 hour for the rough model. Results

show that the particle size is only slightly affecting the impact dynamics (velocity

and acceleration are evaluated at the wedge tip). While velocity and displacement

are computed correctly, the acceleration presents fluctuations increasing with the

particle size, especially in the early stage of the impact. These fluctuations increase

with the deadrise angle. This behavior is due to the lower number of particles

getting in contact with the wedge while rising the deadrise angle. As expected

from Faltinsen’s [28] observations, results show that the impact dynamics differ

from the rigid case for all the deadrise angles investigated. Figures 6.17 to 6.19

show that the impact dynamics of the elastic wedges initially follows the rigid

solution, to later show a response influenced by the first natural frequency of the

structure, visible in the oscillations of acceleration and velocity.

Figure 6.17: Acceleration and Velocity of a wedge varying the particle refinement.

Total wedge mass: 20 kg per unit width. Deadrise angle 10◦

Figure 6.20 shows the comparison of the impact dynamic of elastic and rigid
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Figure 6.18: Acceleration and Velocity of a wedge varying the particle refinement.

Total wedge mass: 20 kg per unit width. Deadrise angle 20◦

Figure 6.19: Acceleration and Velocity of a wedge varying the particle refinement.

Total wedge mass: 20 kg per unit width. Deadrise angle 30◦

4 mm thick aluminium wedges with various deadrise angles entering the water at

4 m/s. As before, results are in accordance with Faltinsen’s observations: hydroe-

lasticity highly affects the impacts of wedges with deadrise angle from 5◦ to 20◦,

while the 30◦ behavior is close to the rigid case and very small hydroelastic effects

appear. Figure 6.21 shows the same example but at an initial entry velocity of

2 m/s. As for the cases presented before it was found that in the cases of 20◦

and 30◦ deadrise angles hydroelasticity is very low affecting the dynamic response

and behave like the rigid cases. Figures 6.22 and 6.23 shows the comparison for

given deadrise angle and impact velocity varying the plate stiffness. The results

are as expected: the hydroelastic effect lowers increasing deadrise angle and plate
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stiffness, while increases with the impact velocity. Further results about the im-

portance of hydroelasticity on the structural deformation are presented in the next

section, where a dependency of the structural response from the hydroelastic effect

is shown.

Figure 6.20: Hydroelasticity effect on the impact dynamics of aluminium wedges

4mm thick of different deadrise angles entering the water at 4 m/s. From Left to right:

10◦,20◦,30◦ deadrise angle.

Figure 6.21: Hydroelasticity effect on the impact dynamics of aluminium wedges

4mm thick of different deadrise angles entering the water at 2 m/s. From Left to right:

10◦,20◦,30◦ deadrise angle.

Figure 6.22: Impact dynamics varying plate stiffness, deadrise angle from left to right:

10◦,20◦, 30◦, V0 = 2m/s.
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Figure 6.23: Impact dynamics varying plate stiffness, deadrise angle from left to right:

10◦,20◦, 30◦, V0 = 4m/s.

6.4 Stresses evaluation

Figures 6.24 and 6.25 show the comparison of the stresses evolution in time at

different distances from the wedge tip in case of fine and rough particles refinement

models. Results are definitely in good agreement, especially considering that the

difference in the computational time between the fine particles model and the

rough particles model is about 12 hours vs. 0.5 hours. The cases of 30◦ and 10◦

deadrise angles are shown, since these represents respectively the minimum and

maximum influence of hydroelastic effects on the impact loads. It is found that

in the first case the wedge deformation is ruled by the first mode of vibration,

while when high hydroelastic effects appear more modes of vibrations superpose.

As mentioned before, the main disadvantage of increasing the particle size is that

it becomes impossible to evaluate the pressure at the fluid/structure interface,

however, the overall structural deformation is evaluated correctly, as evidenced by

the stresses results.

Figure 6.26 shows a comparison of wedges with 30◦ deadrise angle and dif-

ferent stiffness entering the water at 4 m/s. Results show that moving from a

stiffer plate (on the left, Aluminium 4 mm thick plate) to a weaker plate (Fibre-

glass 2 mm thick, on the right), hydroelastic effects become more important and

the deformations of the plate get more complicate since more vibrating modes

superpose.
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Figure 6.24: Stresses at different distances from the wedge tip for fine and rough

particle refinement. β = 30◦, V0 = 4 m/s

Figure 6.25: Stresses at different distances from the wedge tip for fine and rough

particle refinement. β = 10◦, V0 = 4 m/s

Figure 6.26: Stresses at different distances from the wedge tip increasing the hydroe-

lastic effect. A4-4 (left), A2-4 (center), V2-4 (right). β = 30◦ (V0 = 4m/s)
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6.5 Hydroelastic effect

As suggested in [28], the loading can be considered as quasi static if the load-

ing period is significantly larger than the first natural period of the structure,

otherwise hydroelastic effects might appear. In Figure 6.27 it is shown the impact

dynamics maximum variation in respect to Von Karman’s results as function of

the term R given by the ratio between the wetting time calculated as tan(β)·l
v0

and

the first dry natural period of the structure calculated by the beam theory. Where

β is the deadrise angle, v0 is the impact velocity and l is the wedge side length.

The numerical impact dynamics has been evaluated at the tip of the wedge. The

calculation of the maximum variation between SPH and Von Karman results was

calculated as:

∆a =max [aSPH(t)− ath(t)] (6.5.1)

∆v =max [vSPH(t)− vth(t)] (6.5.2)

∆w =max [wSPH(t)− wth(t)] (6.5.3)

Figure 6.27: Maximum impact dynamics variation between SPH results and Von Kar-

man results. Acceleration a [m/s2] (left), Velocity v [m/s] (center) and Displacement

w [mm] (right).

Results show that the impact dynamics differ from the Von Karman’s analytical

solution for values of R lower than 1, meaning that hydroelasticity needs to be

taken into account when the wetting time is lower than the first structural dry

natural period.
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Comparison between experiments and

numerical results

Figures 7.1 to 7.4 show the comparison between experimental (blue lines) and

numerical (red lines) results of the water-entry of elastic wedges. Figures 7.1 and

7.2 show the impact-induced stresses in an aluminium plate 2 mm thick with

deadrise angle of 30◦ entering the water at 3 m/s and 4 m/s. The numerical

solutions compare well with the experimental results: stresses in time are well

replicated both in terms of maximum value and overall shape. This indicates that

the simulations are correctly replicating the fluid/structure interaction in case of

hydroelastic impacts. These results are particularly interesting considering that

the panels are only 2 mm thick, deformations are consequently very high and the

fluid motion is highly modified by the structure.

In Figure 7.2 the numerical solution slightly differ from the experimentally

recorded values after 40 ms of impact. This difference has to be attributed to

boundary effects: after 40 ms the entire wedge is wet and the water starts to

overflow the panel from the side. To solve this problem the hydrodynamic loads

acting on the free edge of the wedge have to be computed accurately. This can be

done increasing the particle spatial resolution, with a consequent increase of the

computational time. However, this problem is not on interest at this stage of the

work.

Figures 7.3 and 7.4 show the comparison between numerical and experimental

results of an aluminium wedge 2 mm thick with deadrise angle of 15◦ entering

the water at 4 m/s and 5 m/s. In both cases the numerical solution fits with the
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Figure 7.1: Recorded strains and numerical solution of an aluminium wedge 2mm

thick, deadrise angle β = 30◦. Initial velocity 3 m/s

Figure 7.2: Recorded strains and numerical solution of an aluminium wedge 2mm

thick, deadrise angle β = 30◦. Initial velocity 4 m/s

experiments only in the very first instants of the impact, approximately up to

20 ms. The plates later vibrate at higher frequencies in the numerical solution

than in reality. In these simulations in fact the wedge detaches from the fluid and

vibrates like in vacuum. Figure 7.5 shows a sequence of the numerical simulation.

In these cases the numerical simulation is not capable of correctly predicting the

experimental results because of the approximations introduced in the model (see

section 4). Better results can be achieved modifying the model to account for

ventilation and cavitation since, if air is entrapped in between the fluid and the
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Figure 7.3: Recorded strains and numerical solution of an aluminium wedge 2mm

thick, deadrise angle β = 15◦. Initial velocity 4m/s. Note that after 20 ms the ex-

perimental recorded strain show longer period of vibration compared to the numerical

results.

Figure 7.4: Recorded strains and numerical solution of an aluminium wedge 2mm

thick, deadrise angle β = 15◦. Initial velocity 5m/s. As in Figure 7.3, in the numerical

solution the wedge vibrates at higher frequency beyond 20 ms of impact.

body, a small difference in the water shape may lead to high difference in the

hydrodynamic pressure.
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t = 0 ms t = 5 ms t = 10 ms

t = 15ms t = 20 ms t = 25 ms

t = 30 ms t = 35 ms t = 40 ms

Figure 7.5: Aluminium wedge deformation over time. 15◦ deadrise angle, 2 mm thick,

V0 =5 m/s. At about 20 ms of impact a void in the fluid is formed. Beyond this

instant, since no air is implemented in the model, the numerical solution differs from

the experimental results.
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Chapter 8

Conclusions

In this work, hydroelastic impacts of deformable wedges entering the water

through free fall motion was studied numerically and experimentally. The water

entry of deformable structures has been previously treated in the literature by

other authors, however, on the contrary with their studies, this work investigates

extremely flexible structures, introducing high hydroelastic effects. Furthermore,

in opposition with what has been found in the literature, interest focused not only

on the evaluation of the pressure at the fluid/structure interface but also on the

overall structural deformation.

Hydroelastic effects were studied as function of different parameters like: dead-

rise angle, impact velocity and stiffness to area mass ratio. In particular, it was

found that hydroelastic effects lowers increasing deadrise angle and plate stiffness,

while increase with the impact velocity. The relative importance of hydroelasticity

was found to be governed by the ratio (R) between the wetting time and the nat-

ural period of the structure. For the particular geometry studied, hydroelasticity

is important for values of R lower than 10.

The experiments were replicated by a numerical method. A coupled SPH/FEM

model was used for the simulations and, validating the solutions with the experi-

mental results, it was found that this model is actually capable of correctly mod-

eling the fluid behavior and of predicting hydroelastic impacts, although a range

of validity applies.

The numerical model has been used to investigate the water entry of asymmet-

ric wedges. It was found that the analytical models used for symmetric impacts
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can be easily adapted to asymmetric impacts. Both the impact dynamics and the

hydrodynamic pressure are well predicted by the analytical methods: the hydrody-

namic load follows Wagner’s prediction previous correction of the impact dynamics

due to the horizontal velocity component.

For the cases studied, it was found that the structural deformation is not

affecting the hydrodynamic pressure at the fluid/structure interface during the first

instants of the impact: difference in the pressure at the fluid/structure interface

are noticeable only after the maximum impact force is reached and a half of the

maximum impulse load has been applied to the wedge. The presented SPH model

was found to be able to simulate hydroelastic impacts if no air is trapped between

the structure and the fluid. In fact, if (due to the structural deformation) air

bubbles are trapped into the fluid during the impact, air cannot be neglected in

the numerical model. By the numerical simulations it was also possible to better

understand the mechanisms causing cavitation and air entrapment between the

structure and the fluid due to hydroelastic effects.
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Appendix I

Experimental results

For clarity, only a very reduced number of the experimental results have been

presented in the main text. In the following are presented the remaining experi-

mental results. For each configuration, only one repetition will be shown, due to

the high repeatability encountered during the experiments.

Abbreviations:

• A= Aluminium plate.

• V = E-glass (mat) / Vynilester. Manufacturing technique: VARTM .

• W = E-glass(woven) / epoxy. Manufacturing technique: autoclave.
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Experimental results

I.1 Aluminium wedges

Figure I.1: 2 β 35◦ impact height 225

cm

Figure I.2: A2 β 35◦ impact height 200

cm

Figure I.3: A2 β 35◦ impact height 175

cm

Figure I.4: A2 β 35◦ impact height 150

cm

Figure I.5: A2 β 35◦ impact height 125

cm

Figure I.6: A2 β 35◦ impact height 100

cm
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Experimental results

Figure I.7: A2 β 35◦ impact height 75

cm

Figure I.8: A2 β 35◦ impact height 50

cm

Figure I.9: A2 β 35◦ impact height 25

cm

Figure I.10: A2 β 30◦ impact height 225

cm

Figure I.11: A2 β 30◦ impact height 200

cm

Figure I.12: A2 β 30◦ impact height 175

cm
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Experimental results

Figure I.13: A2 β 30◦ impact height 150

cm

Figure I.14: A2 β 30◦ impact height 125

cm

Figure I.15: A2 β 30◦ impact height 100

cm

Figure I.16: A2 β 30◦ impact height 75

cm

Figure I.17: A2 β 30◦ impact height 50

cm

Figure I.18: A2 β 30◦ impact height 25

cm

IV Esame finale anno 2012 - Ciclo XXIV Panciroli Riccardo



Experimental results

Figure I.19: A2 β 25◦ impact height 225

cm

Figure I.20: A2 β 25◦ impact height 200

cm

Figure I.21: A2 β 25◦ impact height 175

cm

Figure I.22: A2 β 25◦ impact height 150

cm

Figure I.23: A2 β 25◦ impact height 125

cm

Figure I.24: A2 β 25◦ impact height 100

cm
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Experimental results

Figure I.25: A2 β 25◦ impact height 75

cm

Figure I.26: A2 β 25◦ impact height 50

cm

Figure I.27: A2 β 25◦ impact height 25

cm

Figure I.28: A2 β 20◦ impact height 225

cm

Figure I.29: A2 β 20◦ impact height 200

cm

Figure I.30: A2 β 20◦ impact height 175

cm
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Experimental results

Figure I.31: A2 β 20◦ impact height 150

cm

Figure I.32: A2 β 20◦ impact height 125

cm

Figure I.33: A2 β 20◦ impact height 100

cm

Figure I.34: A2 β 20◦ impact height 75

cm

Figure I.35: A2 β 20◦ impact height 50

cm

Figure I.36: A2 β 20◦ impact height 25

cm

Hydroelastic impacts of deformable wedges VII



Experimental results

Figure I.37: A2 β 15◦ impact height 225

cm

Figure I.38: A2 β 15◦ impact height 200

cm

Figure I.39: A2 β 15◦ impact height 175

cm

Figure I.40: A2 β 15◦ impact height 150

cm

Figure I.41: A2 β 15◦ impact height 125

cm

Figure I.42: A2 β 15◦ impact height 100

cm
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Experimental results

Figure I.43: A2 β 15◦ impact height 75

cm

Figure I.44: A2 β 15◦ impact height 50

cm

Figure I.45: A2 β 15◦ impact height 25

cm
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Experimental results

I.2 Composite wedges - Mat

Figure I.46: V4 β 35◦ impact height 225

cm

Figure I.47: V4 β 35◦ impact height 200

cm

Figure I.48: V4 β 35◦ impact height 175

cm

Figure I.49: V4 β 35◦ impact height 150

cm

Figure I.50: V4 β 35◦ impact height 125

cm

Figure I.51: V4 β 35◦ impact height 100

cm
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Experimental results

Figure I.52: V4 β 35◦ impact height 75

cm

Figure I.53: V4 β 35◦ impact height 50

cm

Figure I.54: V4 β 30◦ impact height 225

cm

Figure I.55: V4 β 30◦ impact height 200

cm

Figure I.56: V4 β 30◦ impact height 175

cm

Figure I.57: V4 β 30◦ impact height 150

cm
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Experimental results

Figure I.58: V4 β 30◦ impact height 125

cm

Figure I.59: V4 β 30◦ impact height 100

cm

Figure I.60: V4 β 30◦ impact height 75

cm

Figure I.61: V4 β 30◦ impact height 50

cm

Figure I.62: V4 β 25◦ impact height 225

cm

Figure I.63: V4 β 25◦ impact height 200

cm
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Experimental results

Figure I.64: V4 β 25◦ impact height 175

cm

Figure I.65: V4 β 25◦ impact height 150

cm

Figure I.66: V4 β 25◦ impact height 125

cm

Figure I.67: V4 β 25◦ impact height 100

cm

Figure I.68: V4 β 25◦ impact height 75

cm

Figure I.69: V4 β 25◦ impact height 50

cm
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Experimental results

Figure I.70: V4 β 20◦ impact height 225

cm

Figure I.71: V4 β 20◦ impact height 200

cm

Figure I.72: V4 β 20◦ impact height 175

cm

Figure I.73: V4 β 20◦ impact height 150

cm

Figure I.74: V4 β 20◦ impact height 125

cm

Figure I.75: V4 β 20◦ impact height 100

cm
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Experimental results

Figure I.76: V4 β 20◦ impact height 75

cm

Figure I.77: V4 β 20◦ impact height 50

cm

Figure I.78: V4 β 15◦ impact height 225

cm

Figure I.79: V4 β 15◦ impact height 200

cm

Figure I.80: V4 β 15◦ impact height 175

cm

Figure I.81: V4 β 15◦ impact height 150

cm
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Experimental results

Figure I.82: V4 β 15◦ impact height 125

cm

Figure I.83: V4 β 15◦ impact height 100

cm

Figure I.84: V4 β 15◦ impact height 75

cm

Figure I.85: V4 β 15◦ impact height 50

cm

Figure I.86: V4 β 10◦ impact height 225

cm

Figure I.87: V4 β 10◦ impact height 225

cm
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Experimental results

Figure I.88: V4 β 10◦ impact height 175

cm

Figure I.89: V4 β 10◦ impact height 150

cm

Figure I.90: V4 β 10◦ impact height 125

cm

Figure I.91: V4 β 10◦ impact height 100

cm

Figure I.92: V4 β 10◦ impact height 75

cm

Figure I.93: V4 β 10◦ impact height 50

cm
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Experimental results

I.3 Composite plates - Woven

Figure I.94: Repeatability of the impact acceleration and comparison with Von Kar-

man’s model - W2 β 20◦

Figure I.95: Repeatability of the impact acceleration and comparison with Von Kar-

man’s model - W2 β 30◦
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Experimental results

Figure I.96: W2 β 20◦ impact height 50

cm

Figure I.97: W2 β 20◦ impact height 75

cm

Figure I.98: W2 β 20◦ impact height

100 cm

Figure I.99: W2 β 20◦ impact height

125 cm

In the next 4 experiments, the strin

gauge placed in the middle of the panel

broke due to the excessive panel defor-

mation.

Figure I.100: W2 β 20◦ impact height

150 cm
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Experimental results

Figure I.101: W2 β 20◦ impact height

175 cm

Figure I.102: W2 β 20◦ impact height

200 cm

Figure I.103: W2 β 20◦ impact height

225 cm

Figure I.104: W2 β 30◦ impact height

50 cm

Figure I.105: W2 β 30◦ impact height

75 cm

Figure I.106: W2 β 30◦ impact height

100 cm
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Experimental results

Figure I.107: W2 β 30◦ impact height

125 cm

Figure I.108: W2 β 30◦ impact height

150 cm

Figure I.109: W2 β 30◦ impact height

175 cm

Figure I.110: W2 β 30◦ impact height

200 cm

Figure I.111: W2 β 30◦ impact height

225 cm
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