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ABSTRACT 

 

Over the centuries people have developed different forms of addiction to various 

substances. 

Drug addiction manifests clinically as compulsive drug seeking, drug use, and cravings 

that can persist and recur even after extended periods of abstinence. From a 

psychological and neurological perspective, addiction is a disorder of altered cognition.  

The brain regions and processes that underlie addiction overlap extensively with those 

that are involved in essential cognitive functions, including learning, memory, attention, 

reasoning, and impulse control.  Drugs alter normal brain structure and function in these 

regions, producing cognitive shifts that promote continued drug use through 

maladaptive learning and hinder the acquisition of adaptive behaviors that support 

abstinence. 

All addictive drugs have in common that they enhance (directly or indirectly or even 

trans synaptically) dopaminergic reward synaptic function in the nucleus accumbens 

(NA) and for this reason are used self-administration’s drugs  to maintain a high level of 

dopamine (DA) and thus a high level of hedonic. In some classes of addictive drugs 

(e.g. opiates), the tolerance to the euphoric effects develops with chronic use. 

The fundamental principle that unites addictive drugs is that each one enhances synaptic 

DA by means that dissociate it from normal behavioral control, so that they act to 

reinforce their own acquisition.  

Within this context, our attention has focused on the study of phenomena associated 

with the consumption of alcohol and heroin. 

Alcohol is the drug of abuse certainly more socially accepted and alcoholism, a 

condition that occurs following chronic use of alcohol, is the cause of many deaths. 

To figure out what dose would be most suitable for the treatment we began our studies 

by analyzing the blood alcohol levels (BALs), and also to understand which binge 

alcohol paradigm was chosen to more closely resemble human drinking behaviour. 

The data showed that single or repeated EtOH binge intoxication induce BALs in the 

range of 350–450 mg/dl and thus it was clearly pharmacologically active. During binge 

treatment, the highest BAL (450 mg/dl) was reached after 30 minutes following the 

third administration and decreased to the level 120 mg/ml after 9 hours. A single dose 
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caused a BAL of 350 mg/dl 1 hour after the administration and decreased to non-

pharmacologically level after 9 hours . 

After determining the time required to reach the highest levels of alcohol in the blood, 

the animals received daily intragastric administrations of alcohol (20% in water) at a 

dose of 1.5 g/kg or equal volume of water in their home cages following this binge 

pattern regimen: three times daily at 1.5-hour intervals (10:00 am, 11:30 am, and 1:00 

pm), for a total daily dose of 4.5 g/kg/day. They were sacrificed at different time point.  

 

• 1 day group (1D) treated for 1 day and sacrificed 24h after last administration 

• 5 days group (5D) treated for 5 days and sacrificed 24h after last administration 

• 1-WD treated for 5 day and maintained 24h in withdrawal, then sacrificed 

• 3-WD treated for 5 day and maintained for 3 days in withdrawal, then sacrificed 

• 7-WD treated for 5 day and maintained for 3 days in withdrawal, then sacrificed 

 

 

Behavioral observations of intoxication and withdrawal were carried out on the animals, 

under acohol exposure, by two operators independently and in blind fashion. 

EtOH-induced intoxication in animals starting from the first binge administration and 

reached the maximum peak at Day 2. Intoxication signs decreased over Day 3 and 

disappeared over Day 5. 

EtOH-treated rats showed significant withdrawal signs measured 20 hours after each 

final daily EtOH treatment. The sum of  the observation scores progressively increased 

from 0 on Day 1 to 12.5 ± 0.4 on Day with significant differences between the 

experimental groups on Day 4, Day 7, Day 9 and Day 10 confirming the presence of 

significant overall withdrawal severity. 

Although alcohol has long been considered an unspecific pharmacological agent, recent 

molecular pharmacology studies have shown that acts on different primary targets, 

including ion channels and receptors, kicking off a cascade of synaptic events involving 

many neurotransmitter systems.  

Through gene expression studies conducted in recent years, it has been shown that the 

classical opioid receptors are differently involved in the consumption of ethanol  and, 

furthermore, the system nociceptin / NOP, recently included in the family of 

endogenous opioid system, and both appear able to play a key role in the initiation of 

alcohol use in rodents. What emerges is that manipulation of the opioid system, 
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nociceptin in particular, may be useful in the treatment of addictions and there are 

several evidences that support the use of this strategy. The PFCx  is a region of especial 

interest in opiate addiction because it plays an important role in cognitive control over 

drug intake, and also because it is directly related with the meso-corticolimbic 

dopaminergic system that mediates the rewarding and addictive properties of opiates. 

Based on these informations we have performed our studies of gene expression to 

evaluate if the same experimental conditions could lead changes in another brain area. 

The second area studied was the AM, which is a major substrate for neuronal behavior 

associated with the consumption of alcohol and anxiety. 

In the AM, gene expression studies revealed a significant increase in the levels of 

PDYN in the group of animals treated for 1 day and in the W-1D group. In the PFCx 

after 1 day of treatment with EtOH, PDYN mRNA was increased, whereas no changes 

were evident in the other groups. 

In the AM levels of the PNOC mRNA transcript in the AM were significantly increased 

in the 1D group and continues to increase with the progression of the treatment (5D 

group) becoming even higher. When the animals were kept in abstinence, the levels of 

peptide mRNA were still significant high in theW-1D group. Conversely, in the PFCx 

we did not observe significant changes in the expression of PNOC. 

Alterations in the expression of the receptors are visible only for the receptor KOP in 

the AM area in 5D group; no alteration are visible in the PFCx for both receptors 

analyzed. Recently, an increasing number of experimental evidence suggest that 

changes in gene expression induced by drugs of abuse may be mediated by epigenetic 

mechanisms. 

It is already known that many histone modification act like marker to identify active/ or 

inactive chromatin structure in the regulation of gene transcription. 

In our study we used H3K27me3 which is a repressive marker; H3K9Ac and H3K4me3 

which are active marker. In the AM, we found in 1D group of animals a significant 

decrease of H3K27me3 in both PDYN and PNOC promoter regions as well as a 

significant increase in H3K9Ac for PDYN promoter and for PNOC promoter. In the 

AM of animals treated for 5 days (5D group) a significant  increase of H3K9Ac in 

PNOC promoter but no significant alteration we for other histone modification analyzed 

and in PDYN promoter region were found. In the AM, in contrast, we did not observe 

any histone modifications changes in the W-1D group in both genes promoter. 
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Moreover, EtOH exposure did not induce any statistically significant alteration of 

H3K27me3, H3K9ac and H3K4me3. 

The analyses of DNA methylation in PDYN and PNOC promoters didn’t show a 

significative alteration. 

The data, about alcohol exposure, confirm a role of the PDYN/KOP system in the 

negative hedonic state associated with alcohol addiction and the hypothesis that the 

NOC system could function as a ‘brake’ to limit EtOH intake. 

The linkage between gene expression alterations and epigenetic modulation in PDYN 

and PNOC promoters following alcohol treatment confirm the possible chromatin 

remodeling mechanism already proposed for alcoholism. 

Our results could be important to partially fill the lack of knowledge of how EtOH by 

itself affects the opioid system in the brain, and suggest the possibility of using drugs 

acting on these systems for the treatment of withdrawal symptoms and alcohol 

dependence. 

In the second part of present study, we also investigated alterations in signaling 

molecules directly associated with MAPK pathway in a unique collection of 

postmortem brains from heroin abusers.  

Several studies have implicated ERK1/2 and p38 MAPKs in the modulation of various 

forms of synaptic plasticity, including the neuroplastic changes induced by drugs of 

abuse. In addition to PKA-mediated protein phosphorylation, extracellular signal-

regulated kinase (ERK) activity may also be regulated after heroin exposure. Moreover, 

previous studies has shown that amphetamine activates extracellular signal-regulated 

kinase 1 and 2 (ERK1/2) resulting in cAMP response element-binding protein (CREB) 

and Elk-1 phosphorylation in striatal neurons. 

On basis of these findings, our interest was focused on understanding the effects that 

prolonged exposure of heroin can cause in an individual, over the entire MAPK cascade 

and consequently on the transcription factor ELK1, which is regulated by this pathway. 

In the putamen of heroin addicts, the protein expression of MEK1 was significantly 

reduced, whereas MEK2 was also lower but not significantly changed. Of the two 

known targets of the MEK1/2, we observe a significant decrease in the protein level of 

ERK1; Conversely, there is a significant increase in the protein levels of ERK2. Dual 

phosphorylations of the ERKs are required for their full activation and for their ability 

to mediate a variety of cellular functions, including activation of downstream 

transcription factors. In the putamen of heroin addicts, the level of phosphorylated 
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ERK1 and phosphorylated ERK2 was not significantly changed when compared with 

control subjects. Elk-1 is directly phosphorylated by ERK1/2, and once activated forms 

a ternary complex on serum response elements (SREs) that activate immediate early 

genes such as c-fos. In the putamen of heroin addicts, the protein expression of Elk-1 

was significantly increased. However, there is a significant reduction in the level of 

phosphorylated Elk-1 in the putamen of heroin addicts. 

The data, about heroin exposure, confirm the presences of perturbations in protein 

levels of the MAPK pathway as a consequence of chronic heroin abuse. 

Moreover, we have shown that the activation of extracellular signal-regulated kinase 1 

and 2 (ERK1/2) resulting in Elk-1 phosphorylation in striatal neurons supporting the 

hypothesis that prolonged exposure to substance abuse causes a dysregulation of MAPK 

pathway, in the areas delegated to the reward. 

Our results could be important to clarify the role of ELK1 in the regulation of several 

gene expression, for changes in neuronal size, in the synaptic connectivity and in 

behavioral plasticity. 

Knowledge of the neuroanatomy, neurophysiology, neurochemistry and 

neuropharmacology of addictive drug action in the brain is currently producing a variety 

of strategies for pharmaco-therapeutic treatment of drug addiction, some of which 

appear promising. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 XI 

 
 

Abbreviations 
 
 
5-HT   5-hydroxytryptamine 
ADH                                  Alcohol dehydrogenase enzyme 
CNS   Central nervous system 
CP   Caudate putamen 
CPP                                   Conditioned place preference 
CRF                                   Corticotropin-releasing factor 
CSF    Cerebrospinal fluid 
DA                                     Dopamine 
DDCt   Delta-delta Ct 
DNMT          DNA methyltransferases 
ERK   Extracellular signal-regulated kinase 
EtOH                                 Ethanol 
fMRI                                  Functional magnetic resonance imaging 
GABA   γ-aminobutyric acid 
GAPDH   Glyceraldehyde-3-phosphate dehydrogenase 
HAT   Histone acetyltransferase 
HDACs   Histone deacetylase 
ICSS                                  Intracranial self-stimulation 
KOP                                  Kappa opioid receptor 
L-DOPA  L-3,4-dihydroxyphenilalanine 
MAO-B   Monoamine oxidase B 
MCI   Mild cognitive impairment 
MFB                                  Medial forebrain bundle 
Mn-EBDC  Manganese ethylenebis-dithiocarbamate 
NFTs   Neurofibrillary tangles 
NMDA   N-methyl-D-aspartate 
N/OFQ   neuropeptide nociceptin/orphanin FQ 
NOP   Nociceptin opioid receptor 
PKA                                   Protein kinase A 
PDYN                                prodynorphin 
PNOC                                pronociceptin Orphanin FQ 
ppN/OFQ  Pre-pro nociceptin Orphanin FQ 
RNAPII                             RNA polymerase II 
ROS   Reactive oxygen species 
SN   Substantia nigra 
SNPs                                 Single nucleotide polymorphism 
SRE                                   Serum response element 
SRF                                   Serum response factor 
TCF                                   Ternary complex factor 
UCH-L1  Ub carboxyl-terminal hydrolase 
VTA   Ventral tegmental area 
 



 1 

 
1. GENERAL BACKGROUND  
 

 

1.1   Concept and Identification of Addictive Drugs 
 

Defining the set of addictive drugs is complicate in part as it depends on whether 

society considers them to be destructive. For example, evidence for clinical opium 

use extends to 5000 B.C. in Sumeria, where it was known as ‘‘joy plant’’. Arabic 

pharmacologists who wrote on opium, including Galen, mention opium’s clinical use 

and its toxicity but don’t speak about the habit (Tibi, 2006).  

The first scientific article on opium is dated in 1701 by Dr. John Jones, from the 

London College of Physicians (Jones, 1701), who discusses clinical uses, as well as 

withdrawal symptoms, including death, after ‘‘lavish use.’’ Subsequently, studies at 

the Royal Hospital in Greenwich of Dr. John Awsiter have compared opium’s effects 

to those of drunkenness and the outlines features of withdrawal and overdose.  

He further discussed tolerance of large doses by those with opium habit, writing the 

dire consequences for the society (Awsiter, 1763).  

Other researchers, in 1990, had already foreshadowed to be able to treat one habit-

forming drug by prescribing nervous stimulants, which would have included ethanol 

or camphor (Sneader, 1990). It may be that the contemporary concept of addiction 

begins here.  

Over the centuries people have developed different forms of addiction to various 

substances. 

Drug addiction manifests clinically as compulsive drug seeking, drug use, and 

cravings that can persist and recur even after extended periods of abstinence. From a 

psychological and neurological perspective, addiction is a disorder of altered 

cognition.  

The brain regions and processes that underlie addiction overlap extensively with 

those that are involved in essential cognitive functions, including learning, memory, 

attention, reasoning, and impulse control.  

Drugs alter normal brain structure and function in these regions, producing cognitive 

shifts that promote continued drug use through maladaptive learning and hinder the 

acquisition of adaptive behaviors that support abstinence. 
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In a 2005 review, Steven Hyman stated the current neurological conception of drug 

abuse concisely: characterizing addiction as a disease of “pathological learning”. 

This article reviews the knowledges on the cognitive effects of drugs and their 

neurological underpinnings.  

These effects may be particularly disruptive when individuals are exposed to drugs 

during brain development, which lasts from the prenatal period through adolescence, 

and in individuals with mental disorders. 

All addictive drugs have in common that they enhance (directly or indirectly or even 

trans synaptically) dopaminergic reward synaptic function in the nucleus accumbens 

(NA) and for this reason are used self-administration’s drugs  to maintain a high 

level of dopamine (DA) and thus a high level of hedonic. In some classes of 

addictive drugs (e.g. opiates), the tolerance to the euphoric effects develops with 

chronic use.  

The fundamental principle that unites addictive drugs is that each one enhances 

synaptic DA by means that dissociate it from normal behavioral control, so that they 

act to reinforce their own acquisition.  

This occurs via the modulation of synaptic mechanisms that can be involved in 

learning, including enhanced excitation or disinhibition of DA neuron activity, 

blockade of dopamine reuptake, and altering the state of the pre-synaptic terminal to 

enhance evoked over basal transmission.  

Questions about the molecular actions of addictive drugs remain unresolved and this 

explains why the study of addiction treatment  has been challenging. 

 

 

1.2  How the Addictive drugs  acts on the Presynaptic Dopamine 

Neurotransmission  
 

 
 
1.2.1. Identification of a role for Dopamine Neurotransmission in Addiction 

 

The midbrain dopamine neurons, that project to the forebrain, were initially 

identified as a single continuous layer (Dahlstrm	
  and	
  Fuxe,	
  1964), arising from a 

single embryological cell group (Seiger	
  and	
  Olson,	
  1973).  
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However, perhaps because the lateral and medial portions were largely restricted to 

established brain regions the dorsal substantia nigra (SN) and the ventral tegmental 

area (VTA), the lateral and medial portions of this layer were given different labels 

(A9 and A10, respectively) and eventually became identified with two distinct 

nominal systems (a nigrostriatal system and a mesolimbic system (Ungerstedt,	
  

1971)(Figure 1).	
  

These two systems in turn became identified with different functions: the 

nigrostriatal system known to degenerate in Parkinson’s disease, with motor 

function, and the mesolimbic system, important for the habit-forming effects of 

cocaine and for approach behaviors, with motivation and reward function. 

 

 

 
 
 

Fig. 1. Mayor Dopaminergic pathways in the central nervous system 
 
 
 
The nigrostriatal and mesolimbic dopamine ‘‘systems’’ are not simply differentiated 

anatomically, and significant functional interactions between the two systems have 

been widely suggested (Haber	
  et	
  al.,	
  2000). A large body of  evidences shows  that 

the SN dopamine neurons, and not just those of the VTA, play a significant role in 

reward and addiction (Everitt	
  and	
  Robbins,	
  2005). 
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As was noted previously, there is no clear boundary between the two nominal 

midbrain dopamine systems (Figure 2). 

 
 

 
 
 
 

 
Fig. 2. Coronal sections of the ventral midbrain of the rat. The blue line outlines the layer of 

dopaminergic cell bodies and dendrites (dark brown) as revealed by tyrosine hydroxylase 

immunohistochemistry. The green line outlines the GABAergic cell bodies (purple) of the substantia 

nigra pars reticulata (SNr) as revealed by in situ hybridization. The spacing of the cells in the dorsal 

and ventral tiers is evident from in situ hybridization 

 
 
 
Anterograde and retrograde tracing studies show that the SN and VTA dopamine 

cells have overlapping, not distinct, projection fields. The discovery of dopamine 

terminals in prefrontal cortex (PFCx) initially thought to arise uniquely from the 

VTA, prompted postulation of a third (mesocortical) or an expanded 

(mesocorticolimbic) system, but projections to the PFCx were subsequently found to 

arise from the medial SN as well as from the VTA (Fallon	
  and	
   Loughlin,	
   1995). 

Thus	
   it	
   is	
   no	
   longer	
   possible	
   to	
   think	
   of	
   the	
   limbic	
   and	
   striatal	
   dopamine	
  

systems	
  as	
  arising	
  from	
  anatomically	
  distinct	
  lateral	
  SN	
  and	
  medial	
  VTA.	
  

Thus	
   the	
  midbrain	
  DA	
  neurons	
  are	
   currently	
   seen	
  as	
  a	
   final	
   common	
  path	
   for	
  

the	
   rewarding	
   effects	
   of	
   medial	
   forebrain	
   bundle	
   stimulation	
   (MFB). The	
  

mesocorticolimbic	
   dopamine	
   system	
   is	
  most	
   frequently	
   associated	
  with	
   brain	
  

stimulation	
   reward	
   and	
   the	
   reward	
   sites	
   are	
   found	
   in	
   both	
   SN	
   and	
   VTA	
  

(Routtenberg	
  and	
  Malsbury,	
  1969;	
  Crow,	
  1972).	
  

In	
  this	
  region	
  are	
  activated	
  activated	
  directly	
  the	
  sensitive	
  terminals	
  of	
  the	
  DA	
  

afferents	
  rather	
  than	
  the	
  relatively	
  insensitive	
  DA	
  neurons.	
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1.2.2. Dopamine Action : the Reward  

 

The term “reward”, in the more general meaning, refers to a stimulus or event that is 

rewarding. The  effects of a reward are short-lived and not stored in long-term 

memory, but they can influence the probability and vigor of the next response in a 

series when animals are responding rapidly or when they are responding for slowly 

decaying rewards such as addictive drugs (Gallistel	
  et	
  al.,	
  1974;	
  Pickens	
  and	
  Harris,	
  

1968).	
  

One of the principal neuronal system involved in processing reward information 

appears to be the Dopamine System. The DA projections from the VTA to the NA 

are the key component of the brain reward circuitry. This circuitry provides a 

common way for the valuation of diverse rewards by the brain (Montague	
   and	
  

Berns,	
  2002)(Figure 3). 

 

 

 
 

Fig. 3. Main neuronal circuits for mesolimbic dopamine reward system 

 

 

Within the VTA/NA circuit, DA is required for natural stimuli, such as food and 

opportunities for mating, to be rewarding; similarly, DA is required for the addictive 

drugs to produce reward (Kelley and Berridge, 2002; Di Chiara, 1998; Koob and 

Bloom,1988; Wise and Rompre, 1989).  
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The most obvious difference between natural goal objects, such as food, and 

addictive drugs is that the latter have no intrinsic ability to serve a biological need.  

However, because both addictive drugs and natural rewards release DA in the NA 

and other forebrain structures, addictive drugs mimic the effects of natural rewards 

and can thus shape behavior (Montague et al., 2004; Kelley and Berridge, 2002; 

Berke, 2003).  

Indeed, it has been hypothesized that addictive drugs have a competitive advantage 

over most natural stimuli in that they can produce far greater levels of DA release 

and more prolonged stimulation.	
  	
  

An early view of DA function was that it acted as a hedonic signal (signaling 

pleasure), but this view has been called into question by pharmacological blockade, 

lesion (Berridge and Robinson, 1998), and genetic studies (Cannon and Palmiter, 

2003) in which animals continued to prefer (“like”) rewards such as sucrose despite 

DA depletion.  

Moreover, the actions of nicotine have always remained a mystery on this account, 

because nicotine is highly addictive and causes DA release but produces little if any 

euphoria. Instead of acting as a hedonic signal, DA appears to promote reward-

related learning, binding the hedonic properties of a goal to desire and to action, thus 

shaping subsequent reward-related behavior (Berridge and Robinson, 1998).	
  

Berridge and Robinson showed that DA is not required for the pleasurable (hedonic) 

properties of sucrose, which, in their investigation, continued to be “liked” by rats 

depleted of DA.  

Instead they have proposed that NA-DA transmission mediates the assignment of 

“incentive salience” to rewards and reward-related cues, such that these cues can 

subsequently trigger a state of “wanting” for the goal object as distinct from “liking.” 

In their view, an animal can still “like” something in the absence of DA transmission, 

but the animal cannot use this information to motivate the behaviours necessary to 

obtain it. Overall, it can be concluded that DA release is not the internal 

representation of an object’s hedonic properties; the experiments by Schultz (1993) 

suggest instead that DA serves as a prediction-error signal that shapes behavior to 

most efficiently obtain rewards (Schultz et al., 1993). 

This view of DA function is consistent with computational models of reinforcement 

learning (Montague et al., 2004; Sutton and Barto, 1998). Reinforcement learning 
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models are based on the hypothesis that the goal of an organism is to learn to act in 

such a way as to maximize future rewards. 

When such models are applied to the physiological data described earlier, pauses and 

phasic spiking of DA neurons can be conceptualized as the internal representation of 

reward prediction errors by which the planned or actual actions of the monkey 

(“agent”) are “criticized” by reinforcement signals (i.e., rewards that turn out to be 

better, worse, or as predicted).  

DA release can thus shape stimulus-reward learning to improve prediction while it 

also shapes stimulus-action learning, i.e., the behavioral response to reward-related 

stimuli (Schultz et al.,1997).  

Given the likelihood that the addictive drugs exceed natural stimuli in the reliability, 

quantity, and persistence of increased synaptic DA levels, a predicted consequence of 

these hypotheses would be profound over-learning of the motivational significance 

of cues that predict the delivery of drugs. At the same time, much remains unclear. 

If	
  the	
  activation	
  of	
  DA	
  neurons	
  plays	
  a	
  significant	
  role	
  in	
  reward	
  function,	
  these	
  

neurons	
  should	
  be	
  responsive	
  to	
  the	
  presentation	
  of	
  rewarding	
  stimuli.	
  Indeed	
  

this	
  has	
  been	
  well	
  established	
  by	
  electrophysiological	
  studies	
  (Schultz,	
  1997).  

When,	
   after	
   many	
   repeated	
   trials,	
   an	
   animal	
   learns	
   that	
   some	
   distal	
  

environmental	
   stimulus	
   reliably	
   predicts	
   the	
   presentation	
   of	
   reward,	
   DA	
  

neurons	
  come	
  to	
  respond	
  to	
  the	
  distal	
  predictive	
  stimulus	
  and	
  cease	
  responding	
  

to	
   the	
   proximal	
   reward	
   signal	
   itself.	
   The	
   distal	
   signal,	
   in	
   effect,	
   becomes	
   the	
  

reward	
  signal.	
  

	
  
	
  
	
  
	
  
1.3  How the Addictive drugs acts on the Endogenous Opioid System  
 

Endogenous opioids are small molecules naturally produced in the body that 

resemble morphine and have long been implicated in the actions of opiate drugs and 

alcohol. There are three classes of endogenous opioids: endorphins, enkephalins, and 

dynorphins (Figure 4). 
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Fig. 4. Proopiomelanocortin, preproenkephalin A, preproenkephalin B, and preproorphanin 

FQ (prepronociceptin) precursor molecules and their related cleavage products 

 

 

They all exert their effects by interacting with three subtypes of opioid receptors: µ 

(MOP), δ (DOP), and κ (KOP).  

 

 

1.3.1 Role of Opioid System in Dopamine release  

 
The relations between exogenous opioids and functions of neurotrasmettor and 

neuromodulators are very complex, and act, as is known, through different 

receptor types (Sbrenna et al., 2000, 1999): the exposure of opioid receptors 

to the opiate, produces, as you might expect, tolerance, which is 

selective for the various receptors: the morphine, for example, induce the tolerance at 

the level of MOP, and cross-tolerance compared to other µ-agonists, but this 
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tolerance is selective and does not involve the KOP (Picker et al., 1991).	
  The main 

types of opioid receptors are µ, δ and κ (Manallack et al., 1986) (Figure 5) and they 

belong to the family of G protein-coupled receptors have been have been isolated and 

characterized using molecular and pharmacological techniques (Evans et al., 1992; 

Uhl et al., 1994; Knapp et al., 1995). 

 

 
Fig. 5. Mu opioid receptor: located on the membrane of neuronal cells 

 

Endogenous opioid ligands exhibit different preferences for each receptor. β-

Endorphin binds with a higher affinity to µ than δ or k-opioid receptors, naturally 

indicating that it is the endogenous ligand for this opioid receptor type (Khachaturian 

et al., 1993; Simon et al., 1973). The affinity of enkephalins for DOP is 20-fold 

greater than that for MOP receptors, and dynorphin is presumed to be the 

endogenous ligand for KOP (Chavkin et al., 1982; Simon, 1991). Of the other novel 

endogenous opioids isolated, orphanin FQ appears to be an endogenous ligand for 

the nociceptin opioid receptor (NOP) which has a high degree of homology with the 

opioid receptors (Meunier et al., 1995; Reinscheid et al., 1995; Zadina et al., 1997). 

The involvement of opioid receptors in drug dependence has been further examined 

using µ- and δ-opioid receptor knockout mice; µ knockout mice display impaired self 

administration and conditioned place preference for morphine, heroin, alcohol, THC, 

and nicotine (Contet et al., 2004). 
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Recently, reduced locomotor activating effects (Chefer et al., 2004), conditioned 

place preference (CPP) (Hall et al., 2004), and self-administration (Mathon et al., 

2005) of cocaine were shown in MOP knockout mice as well. 

Since different drugs of abuse have different primary loci of action, a prominent and 

general role of the MOP in the rewarding effects of various substances is indicated. 

Several studies show that activation of the opioid system can modulate the secretion 

of DA, which as we have seen is much involved in the reward phenomena. When µ- 

and δ-opioid receptor agonists are self-administered in animal models (Devine and 

Wise, 1994), DA release in the NA increases (Devine et al., 1993). This increase 

occurs via the action of the agonists on GABAergic neurons in the VTA , which 

naturally inhibit DA neurotransmission. 

Indeed some reduction in the levels of DA seems be induced by agonists of the MOP 

(Yonehara and Clouet, 1984) and morphine has shown itself capable of reducing the 

concentration of DA in the portal circulation pituitary action that is reversible under 

the influence opioid antagonist naloxone (Gudelesky and Porter, 1979). 

While the general action of opiates on DA may play a inhibitory character, the other 

the specific stimulatory effect on certain areas of supports the activation of brain 

reward circuit (Sell et al., 1999): in experimental animals seems to be well 

documented that the release of dopamine in the NA represents the biochemical 

substrate capable of determining the additive behavior, both for opiates, and for other 

substances that induce dependence (Herz, 1998; Leshner and Koob, 1999) although 

this mechanism is not yet fully verified in humans (Gratton, 1996), and also a 

significant reduction of DA would occur during withdrawal from opiates (Lichtigfeld 

and Gillman, 1996). 

Ventricular infusions of β-endorphin were shown to increase dopamine release in the 

NA via µ- and δ-opioid receptors (De Vries and Shippenberg, 2002). This increased 

in DA release is likewise due to the inhibitory effect of  β-endorphin on GABA 

blocking DA neurons (Di Chiara and North, 1992).  

Furthermore, β-endorphin-induced reinforcement, as tested by the CPP paradigm, 

correlates positively with an increase in DA release in the NA (Spanagel et al., 

1991).  Interestingly, the reinforcing effect of β-endorphin occurs only at doses that 

stimulate DA release, which suggests that β-endorphin is an endogenous mediator of 

reinforcement, especially for addictive drugs that increase mesolimbic DA 

neurotransmission as a secondary target (Figure 6). 
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Fig. 6. Lengthwise view of the rat brain showing the distribution of endogenous opioid 

 

 

Involvement of  β-endorphin in drug-induced reward and reinforcement is supported 

by several evidence from studies performed during acquisition, maintenance and 

withdrawal stages of addictive drug usage, i.e. cocaine, alcohol, nicotine and THC; 

whether the endorphins are also involved in drug reinstatement has yet to be 

determined. 

The reward pathways for different addictive drugs converge to a common pathway in 

which the β-endorphin is a modulator element. As such, the observed elevations in 

brain levels of β-endorphin during drug self-administration and extinction of the 

drug-reinforced behavior would be functionally significant.  

For example, β-endorphin in the NA may activate appetitive rewarding. This 

possibility is supported by opioid receptor blocker-mediated reduction of the 

conditioned reinforcing effects of addictive drugs. 

Although drugs of abuse have different acute mechanisms of action, their brain 

pathways of reward exhibit common functional effects upon both acute and chronic 

administration (Nestler, 2005), including the involvement of β-endorphin as a 

common mechanism underlying the behavioral effects of substances of abuse was 

reviewed.  

Currently, evidence supports a prominent role for β-endorphin in the reward 

pathways of cocaine and alcohol. 
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1.3.2 Addictive behavior mediated by Endogenous Opioid System 
 
 
Animal models for drug dependence, where the characteristic aspects of human drug 

dependence can be mimicked, have provided a useful tool to study the 

neurobiological substrates underlying the dependence-creating properties of drugs of 

abuse. 

Several animal models based on operant conditioned behavior have been used to 

monitor the reinforcing and rewarding effects of addictive drugs. The underlying 

principle of operant conditioning is that consequences control behavior. An animal 

performs since it is reinforced for doing so. Reinforcement can be positive (food, 

water or addictive drugs) or negative (electric shock that can be avoided by making 

the correct response). Animals learn to obtain rewards and avoid punishment by 

responding correctly.  In this context, the role of endogenous opioid system seems to 

be very important. 

Several physiological and behavioral effects of enkephalins and β-endorphin, such as 

rewarding sensations and addictive properties, are similar to those displayed by 

morphine (Belluzzi and Stein, 1977; Goeders et al., 1984; Van Ree et al., 1979). 

Involvement of opioids, such as β-endorphin, in the reinforcing and dependence-

creating properties of drugs has been shown indirectly in pharmacological studies. 

Most of these studies focused on the relation between opioid receptors and drug-

seeking behavior.  

Much evidence exist demonstrating alterations in cocaine-seeking behavior upon 

blockade of µ- and δ-opioid receptors, which are favored by β-endorphin, hence 

indirectly indicating that this endogenous opioid is involved in certain aspects of 

cocaine addiction. 

Low doses of the non-specific opioid antagonists, naloxone and naltrexone, or the 

specific µ-antagonist, CTAP, are sufficient to inhibit cocaine-induced CPP (Gerrits et 

al., 1995; Kim et al., 1997; Kuzmin et al., 1997).  

It may be stated that the vast majority of literature indicates that blockade of opioid 

receptors in the brain decreases both the reinforcing and conditioned motivational 

effects of drug in both animals and humans, depending on a critical dose used (Roth-

Deri et al., 2008). 
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1.4 Addiction as a multistage process 

 
Addiction is defined as compulsive drug use despite negative consequences. The 

goals of the addicted person become narrowed to obtaining, using, and recovering 

from drugs, despite failure in life roles, medical illness, risk of incarceration, and 

other problems. An important characteristic of addiction is its stubborn persistence 

(Hser et al., 2001; McLellan et al., 2000).  

Although some individuals can stop compulsive use of tobacco, alcohol, or illegal 

drugs on their own, for a large number of individuals rendered vulnerable by both 

genetic and non genetic factors (Merikangas et al., 1998; Rhee et al., 2003), 

addiction proves to be a recalcitrant, chronic, and relapsing condition (McLellan et 

al., 2000).  

The central problem in the treatment of addiction is that even after prolonged drug-

free periods, well after the last withdrawal symptom has receded, the risk of relapse, 

often precipitated by drug-associated cues, remains very high (Wikler and Pescor, 

1967; O’Brien et al., 1998).  

A recent reviews characterize addiction as a two-stage process.  

In the first stage, the individual’s occasional drug taking becomes increasingly 

chronic and uncontrolled. 

The neurological source of these symptoms is drug-induced deregulation of the 

brain’s reward system (Feltenstein and See, 2008).  

Normally, increased DA signaling within this system, specifically, in the ventral 

striatum or NA, produces pleasurable feelings. Drugs of abuse hyper-activate this 

system, triggering abrupt and large increases in NA dopamine signaling, producing 

intense sensations that motivate additional drug taking, and promoting the formation 

of maladaptive drug-stimulus associations (Feltenstein and See, 2008). 

Individuals in the second stage of the addictive process present additional clinical 

features, including withdrawal symptoms during early abstinence, persistent 

vulnerability to relapse, and alterations in decision making and other cognitive 

processes. Although modification of the dopaminergic reward system remains 

important at this stage, it probably is not sufficient to maintain these complex and 

long-lasting changes. 
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Kalivas and Volkow (Kalivas and Volkow, 2005) summarize evidence implicating 

drug-induced alterations in signals carried by the neurotransmitter glutamate from 

the brain area that is primarily associated with judgment, the PFCx, to the NA.  

Moal and Koob (Koob and Moal, 2008) emphasize changes in brain stress circuits 

and negative reinforcement (i.e., effects that motivate drug taking by causing 

discomfort during abstinence, such as the onset of withdrawal symptoms).  

Thus, whereas early drug use fosters maladaptive drug stimulus associations that 

contribute to drug seeking and use, later stages disrupt cognitive and other processes 

that are important for successful abstinence. 

 

 

1.4.1 Reinforcement as Consolidation 

 

The term ‘‘reinforcement’’ is unambiguous. It refers only to the seemingly 

retroactive ‘‘stamping-in’’ of recent associations between	
   stimuli, stimuli and 

responses, and responses and outcomes that	
  occurs when the reinforcer is given after 

the stimulus or response in	
  question. Reinforcing actions of a reward depend on this 

temporal	
  sequence.  

In its most fundamental sense, reinforcement refers to any treatment that enhances 

the permanence or ‘‘consolidation’’ of a memory trace in the nervous system	
  

(Landauer,	
  1969).	
  	
  

In	
  both	
  the	
  rapid	
  time	
  frame	
  of	
  cellular	
  models	
  of	
  synaptic	
  potentiation	
  and	
  the	
  

more	
   prolonged	
   time	
   frame	
   of	
   consolidation	
   of	
   behavioural	
   learning	
   and	
  

memory,	
  the	
  DA	
  has	
  an	
  important	
  and	
  frequently	
  necessary	
  role	
  and	
  at	
  each	
  of	
  

these	
  levels	
  of	
  analysis,	
  DA	
  in	
  the	
  nigrostriatal	
  system	
  and	
  DA	
  in	
  the	
  mesolimbic	
  

system	
  have	
  each	
  been	
  implicated	
  (Figure	
  7).	
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Fig. 7. Neuronal Pathways Involved With the Reinforcing Effects of different Drugs of Abuse 

 
 
One approach for the study of reinforcement in animal models of alcoholism is a 

procedure called operant conditioning. With this approach, animals are trained to 

perform a response (e.g., press a lever or nose-poke a hole) that results in delivery of 

a stimulus (e.g., a small amount of alcohol) the animals are motivated to obtain. 

Operant conditioning procedures can be fine-tuned to include different work 

requirements for stimuli with varying degrees of motivational value for the 

individual tested. In this procedure models, how in humans, are shown varying 

degrees of willingness to work for alcohol and other drugs under many different 

conditions. 
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1.4.2 Tolerance and Withdrawal  

 

Tolerance in an individual, is the process whereby increasing doses of a substance 

are required over time to give the same effect. It is mediated by a combination of 

post-synaptic receptor down-regulation and reduced receptor sensitivity. 

There may also be changes in pre-synaptic auto-receptors affecting tonic levels of 

DA. In addition there are often compensatory increases in opposing pharmacological 

systems to help maintain a homeostatic balance within brain neural circuits (Taylor 

and Fleming, 2001;  He et al., 2002).  

A consequence of these processes of tolerance is that on abrupt cessation of taking an 

addictive substance, homeostasis is lost and the opponent processes dominate, giving 

rise to withdrawal symptoms. 

The neurotransmitter systems that are affected will vary from substance to substance.  

For instance, with opioids, reduced function of opioid receptors likely occurs through 

altered second messenger systems since few changes in receptor number have been 

found (Nestler, 2001a; 2001b; Nestler and Aghajanian, 1997). 

While increases in phasic DA have a role in mediating initial pleasure, neuro-

adaptations occur in chronic use, resulting in a hypodopaminergic state.  

These changes, occurring in withdrawal and early abstinence, probably underlie 

symptoms such as dysphoria, anhedonia and irritability, and may contribute to 

craving and drug-seeking behavior. 

For some substances, such as stimulants, such symptoms predominate with no or few 

physical symptoms. By contrast, for other substances of abuse such as opioids or 

alcohol, physical withdrawal symptoms can be prominent and contribute 

significantly to their dependency since drug use is to stave off or combat withdrawal. 

This is ‘negative reinforcement’, i.e. taking a drug to overcome an aversive state. 

 

 

1.4.3 Addiction a disease of Learning and Memory 

 

The most distinctive attribute of long-term memory is persistence over time. New 

studies have uncovered many aspects of the molecular and cellular biology of 

synaptic plasticity, and the acquisition and consolidation of memory, which are 

thought to depend on synaptic plasticity. Much less, however, is known about the 
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molecular and cellular biology of long-term memory persistence. Recent findings in 

the field are construed within the conceptual framework that proposes that 

consolidation and persistence of long-term memories require modulation of gene 

expression, which can culminate in synaptic remodeling.(Figure 8).  

 
 

Fig. 8. A Cell Signaling Cascade in Learning and Memory. 

Glutamate binds to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-

d-aspartic acid (NMDA) receptors in the neuron membrane, opening channels for sodium and calcium 

to flow into the cell; calcium influx induces adenylate cyclase to convert adenosine triphosphate 

(ATP) to cyclic adenosine monophosphate (cAMP). cAMP triggers activation, sequentially, of protein 

kinase A (PKA), mitogen-activated protein kinase/extracellular signal-regulated protein kinase 

(MAPK/ERK), and cAMP response element-binding (CREB). CREB attaches to DNA , increasing 

DNA production of protein for the construction of new synapses 

 

The synaptic plasticity is complex, but it can be divided into mechanisms that change 

the strength or “weight” of existing connections and those that might lead to synapse 

formation or elimination and remodeling of the structure of dendrites or axons 

(Chklovskii et al., 2004). The specificity of drug and their relationship to specific 

behavioral sequences suggest that at least some of the mechanisms underlying 

addiction must be associative and synapse specific. 
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The best-characterized candidate mechanisms for changing synaptic strength that are 

both associative and synapse specific are long-term potentiation and long-term 

depression. 

These mechanisms have been hypothesized to play critical roles in many forms of 

experience-dependent plasticity, including various forms of learning and memory 

(Martin et al., 2000; Malenka, 2003). 

 
 
 
1.5 Vulnerability, risk factors and relapse 
 

The brain circuits mediating the pleasurable effects of addictive drugs are 

anatomically, neuro-physiologically and neuro-chemically different from those 

mediating physical dependence, and from those mediating craving and relapse. There 

are important genetic variations in vulnerability to drug addiction, yet environmental 

factors such as stress and social defeat also alter brain-reward mechanisms in such a 

manner as to impart vulnerability to addiction. In short, the 'bio-psycho-social' model 

of etiology holds very well for addiction (Figure 9). 

 

 

 
 

 
Fig.9. Factors determine whether a person will become addicted to drugs 
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Because addiction relapse is a common phenomenon, research in the past decade has 

focused on whether there is a biology underlying relapse susceptibility, and if so, 

whether it is possible to develop new treatments to decrease relapse risk (Sinha, 

2001; Shaham et al., 2003).  

The most common reasons for relapse given by substance-abusing patients include 

stress, negative mood and anxiety, drug-related cues, temptations and boredom, and 

lack of positive environmental contingencies (eg, job, family relationships, 

responsibilities) (McKayn et al., 1995).  

To understand how and why recovering addicted individuals succumb to relapse, 

particularly in the context of external environmental stimuli and interoceptive cues, it 

is important to examine the psychobiological consequences of chronic drug use and 

assess whether such changes are involved in increasing relapse risk. 

High levels of stress and trauma exposure are commonly associated with substance 

use disorders (Sinha, 2008; Enoch, 2011). 

Increases in irritability, anxiety, emotional distress, sleep problems, dysphoria, 

aggressive behaviors, and drug craving are common during early abstinence from 

alcohol, cocaine, opiates, nicotine, and marijuana (Sinha, 2008).  

The dependent state is marked by negative affect, distress, and anhedonia during 

early abstinence, which relates to neuroadaptations in brain reward and stress 

pathways (Sinha, 2001; 2008; Kalivas and Volkow, 2005).  

We can argue that often the same phenomena that can lead to initiation of drug use, 

are often also the cause of relapses. 
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1.6 Ethanol 
 

Ethanol (EtOH) is a psychoactive substance which act with multiple effects on the 

human body, such as: energetic, nutritional, pharmacological, toxic and psychic. 

EtOH , after being ingested, is rapidly metabolized into the stomach by the alcohol 

dehydrogenase enzyme (ADH), and then mostly in the liver by a series of oxidation 

reactions (Figure 10). 

 
 

 
 

Fig. 10. Ethanol structure 
 
 
 

The intermediate metabolite, acetaldehyde, is a reactive and toxic compound, 

contributing to the damage induced by ethanol (Figure 11). 

 

 
Fig.11. Acetaldehyde structure 

 
 
 

EtOH is oxidized to acetaldehyde through the actions of various alcohol ADH 

enzymes (e.g., enzymes encoded by the ADH1B and ADH1C genes), through the 

microsomal enzyme cytochrome P450 2E1 (CYP2E1), and by microbes living in the 

human gastrointestinal tract (e.g., mouth and colon) (Figure 12). 

The relative contributions of these pathways and the differences in activity between 

enzymes encoded by different ADH1B and ADH1C alleles is represented by the 

thickness of the arrows. Acetaldehyde is oxidized to acetate primarily by the enzyme 

aldehyde dehydrogenase 2 (ALDH2). Again, the thickness of the arrows indicates the 

rate of acetaldehyde oxidation in people carrying two active ALDH2*1 alleles, one 
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active ALDH2*1 and one inactive ALDH2*2 allele, or two inactive ALDH2*2 

alleles, respectively.  

The reaction catalyzed by ADH require a consumption of NAD +, whose availability 

is a limiting factor in the metabolism of EtOH, which is why the conversion rate of 

EtOH in the liver is fixed (approximately 8 g or 10 ml per hour for a man of 70 kg). 

The role of CYP2E1 enzyme, which belongs to the cytochrome P450, occurs when 

the amount of EtOH taken exceeds the capacity of the catabolic dehydrogenase. In a 

state of chronic alcoholism, the activity of this enzyme is induced causing an 

alteration in the ability of the liver in detoxification. 

 
 

 
 
 

Fig. 12. Ethanol metabolism 
 
 
 
 
1.6.1 Neurobiology of Alcohol Dependence 

 

Alcoholism is a debilitating disorder for the individual and very costly for society. 

According to the National Institute on Alcohol Abuse and Alcoholism (NIAAA), 

more than 17 million people in the United States either abuse or are dependent on 

alcohol (NIAAA, 2007), with a cost to U.S. society of over $180 billion annually 

(NIAAA, 2004). A major goal of alcohol research is to understand the neural 

underpinnings associated with the transition from alcohol use to alcohol dependence. 

Positive reinforcement is important in the early stages of alcohol use and abuse. 
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Negative reinforcement can be important early in alcohol use by people self-

medicating coexisting affective disorders, but its role likely increases following the 

transition to dependence. Chronic exposure to alcohol induces changes in neural 

circuits that control motivational processes, including arousal, reward, and stress.  

These changes affect systems utilizing the signaling molecules DA, opioid peptides, 

γ-aminobutyric acid, glutamate, and serotonin, as well as systems modulating the 

brain’s stress response. 

These neuro-adaptations produce changes in sensitivity to alcohol’s effects following 

repeated exposure (i.e., sensitization and tolerance) and a withdrawal state following 

discontinuation of alcohol use. Chronic alcohol exposure also results in persistent 

neural deficits, some of which may fully recover following extended periods of 

abstinence. However, the organism remains susceptible to relapse, even after long 

periods of abstinence. Recent research focusing on brain arousal, reward, and stress 

systems is accelerating our understanding of the components of alcohol dependence 

and contributing to the development of new treatment strategies. 

 

 
 
1.6.1.1 Reinforcement and the Transition from Alcohol use to Dependence 

 

Reinforcement is a process in which a response or behavior is strengthened based on 

previous experiences. Positive reinforcement describes a situation in which a 

presumably rewarding stimulus or experience (e.g., alcohol-induced euphoria) 

increases the probability that the individual exhibits a certain response (e.g., alcohol-

seeking behavior) (Gilpin and Koob, 2008). 

Negative reinforcement occurs when the probability of an instrumental response 

(e.g., alcohol-seeking behaviour) increases if this response allows the individual to 

circumvent (i.e., avoidance response) or alleviate (i.e., escape response) an aversive 

stimulus. In alcohol dependence, the aversive stimulus often is composed of 

motivational/affective symptoms (e.g., anxiety, dysphoria, irritability, and emotional 

pain) that manifest in the absence of alcohol (i.e., during withdrawal) and which 

result from prior discontinuation of alcohol consumption. Thus, people may drink to 

prevent or alleviate the anxiety they experience during alcohol withdrawal. In 

conditioned positive and negative reinforcement, stimuli that become associated with 

either alcohol or withdrawal can motivate subsequent alcohol-seeking behavior. 
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Alcohol-drinking behavior is driven by both positive and negative reinforcement, 

although their relative contributions change during the transition from alcohol use to 

abuse to dependence (Gilpin and Koob, 2008). 

 

 

 
1.6.1.2 Positive reinforcement  

 

The positive reinforcing effects of alcohol generally are accepted as important 

motivating factors in alcohol-drinking behavior in the early stages of alcohol use and 

abuse. These effects most often are examined using animal models of self-

administration. With different operant conditioning procedures, researchers can 

determine the time course, pattern, and frequency of responding for alcohol. 

Operant procedures most often are used to examine oral self-administration of 

alcohol, but they also can be used to assess self-administration of alcohol via other 

routes. For example, rats will respond for alcohol infusions directly into the stomach 

(Fidler et al., 2006), blood stream (Grupp, 1981), or brain (Gatto et al., 1994). But 

the reinforcing properties of alcohol can be assessed using different procedures, such 

as the intracranial self-stimulation (ICSS) in specific region hat are important in 

mediating the rewarding properties of alcohol. 

In this procedure, rats are implanted with electrodes in discrete brain regions and 

then are allowed to self-administer mild electrical shocks. if only mild electrical 

stimulation of a certain brain region is required to maintain responding, ICSS is said 

to have a high reward value; if, by contrast, a stronger electrical stimulation of a 

given brain region is required, then ICSS is said to have a lower reward value. 

Alcohol increases the reward value of ICSS because in the presence of alcohol, 

weaker electrical stimulation is required to maintain responding (Lewis and June, 

1990). 

Some recently developed animal models mimic binge drinking in humans. This 

pattern of self-administration, defined in humans as an excessive pattern of alcohol 

drinking that produces blood alcohol levels greater than 0.08 percent within a 2-hour 

period, may be associated with dependence (NIAAA, 2004). Models of binge 

drinking have been developed for both adult (Ji et al.,  2008) and adolescent (Truxell 

et al., 2007) rats and intend to mimic drinking behavior motivated primarily by the 

positive reinforcing effects of alcohol early in the transition to dependence. For 
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example, sweeteners often are added to the alcohol solution in these models, a 

procedure that is thought to reflect the situation in humans because people tend to 

begin drinking alcohol in sweetened beverages (Gilbert, 1978; Samson et al., 1996).  

Other approaches successfully have used genetic selection to produce animals that 

readily self-administer alcohol in a binge-like pattern (Grahame et al., 1999; Lumeng 

et al., 1977). For this approach, can be used models of specific subtypes of 

alcoholism. 

 
 
1.6.1.3 Negative reinforcement  

 

As mentioned above, the early stages of alcohol use and abuse mainly are associated 

with alcohol’s positive reinforcing effects. However, alcohol’s negative reinforcing 

effects may contribute to alcohol-drinking behavior at this stage in people who suffer 

from coexisting psychiatric disorders and use alcohol to self-medicate these 

disorders. 

Comorbidity of alcohol problems (i.e., abuse or dependence) with anxiety and 

depressive/ bipolar disorders is high (44 percent and 50 percent, respectively) 

(Kushner et al., 1990; Weissman et al., 1980).  

Thus, these people may use alcohol to alleviate the symptoms of the coexisting 

disorders. Generally, however, the negative reinforcing effects of alcohol become a 

critical component of the motivation to drink alcohol during the transition to 

dependence, when withdrawal symptoms occur following discontinuation of alcohol 

use and the individual drinks to avoid those withdrawal symptoms. 

In animal models, the negative reinforcing properties of alcohol often are studied 

during periods of imposed abstinence after chronic exposure to high doses of alcohol. 

Such studies have identified an alcohol deprivation effect, that is, a transient increase 

in alcohol-drinking behavior following long-term alcohol access and a period of 

imposed abstinence (Sinclair and Senter, 1967). 

Similarly, chronic inhalation of alcohol vapor can reliably produce large elevations 

in alcohol self-administration (Roberts et al., 1996, 2000a), an effect that is amplified 

when animals repeatedly are withdrawn from the alcohol vapor (O’Dell et al., 2004) 

and which lasts well into protracted abstinence (Gilpin et al., 2008). In general, 

studies using these approaches have demonstrated that the pattern of alcohol 

exposure (i.e., the frequency of withdrawals) appears to be as important as the 
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cumulative alcohol dose in revealing alcohol’s negative reinforcing properties. 

Changes in the reinforcing value of alcohol during the transition from alcohol use 

and abuse to dependence reflect (counter) adaptive neural changes resulting from 

chronic exposure to high alcohol doses. 

As stated above, during the early stages of non-dependent alcohol use, drinking 

behavior largely is motivated by alcohol’s positive reinforcing effects, whereas in the 

dependent state it likely is driven by both the positive and negative reinforcing 

effects of the drug (Figure 13). 

 

 

 

 

 
 

 
 
 

Fig. 13. Changes in the activity of the reward circuit mediating the acute positive reinforcing effects 

of alcohol and the stress circuit mediating negative reinforcement of dependence during the transition 

from nondependent alcohol drinking to dependent drinking. Key elements of the reward circuit are 

DA and opioid peptide neurons that act at both the VTA and the NA and which are activated during 

initial alcohol use and early stages of the progression to dependence (i.e., the binge/intoxication 

stage). Key elements of the stress circuit are corticotrophin-releasing factor (CRF) and norepinephrine 

(NE)-releasing neurons that converge on γ-aminobutyric acid (GABA) interneurons in the central 

nucleus of the AM and which are activated during the development of dependence. 
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1.6.1.4 Brain circuits Mediating Alcohol Reinforcement 

 

Alcohol interacts with several neurotransmitter systems in the brain’s reward and 

stress circuits (Figure 14). 

These interactions produce alcohol’s acute reinforcing effects. Following chronic 

exposure, these interactions result in changes in neuronal function that underlie the 

development of sensitization, tolerance, withdrawal, and dependence. Research using 

pharmacological, cellular, molecular, imaging, genetic, and proteomic techniques 

already has elucidated details of some of these alcohol effects. 

 
 

 
 
 

Fig. 14. Alcohol’s effects on neurotransmitter systems involved in the brain’s reward pathways. 

Alcohol, by promoting γ-aminobutyric acid (GABA) subtype GABAA receptor function, may inhibit 

GABAergic transmission in the VTA, thereby disinhibiting (i.e., activating) VTA dopamine. As a 

result, these neurons release dopamine in the nucleus accumbens, activating reward processes there. 

Similarly, alcohol may inhibit release of the excitatory neurotransmitter glutamate from nerve 

terminals that act on neurons in the NA. Many additional mechanisms (not shown) are proposed, 

through which alcohol may act on these pathways. Some evidence suggests that alcohol may activate 

endogenous opioid pathways and possibly endogenous cannabinoid pathways (not shown). 
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Dopamine Systems. DA is a neurotransmitter primarily involved in a circuit called 

the mesolimbic system. Studies suggest that DA also has a role in the incentive 

motivation associated with acute alcohol intoxication. For example, alcohol 

consumption can be blocked by injecting low doses of a compound that interferes 

with dopamine’s normal activity (i.e., a DA antagonist) directly into the NA (Hodge 

et al., 1997; Rassnick et al., 1993). Furthermore, alcohol ingestion and even the 

anticipation that alcohol will be available produce DA release in the NA as 

determined by increased DA levels in the fluid outside neurons (Weiss et al., 1993). 

However, lesions of the mesolimbic dopamine system do not completely abolish 

alcohol-reinforced behavior, indicating that DA is an important, but not essential, 

component of alcohol reinforcement (Rassnick et al., 1993). Finally, alcohol 

withdrawal produces decreases in DA function in dependent individuals, and this 

decreased DA function may contribute to withdrawal symptoms and alcohol relapse 

(Melis et al., 2005; Volkow et al., 2007) (Table 1). 

 

 

 

 

Opioid Systems. Researchers have hypothesized that positive alcohol reinforcement 

is mediated at least in part by the release of endogenous opioids in the brain. This 

hypothesis is supported by numerous studies demonstrating that opioid antagonists 

acting either at all opioid receptor subtypes or only at specific subtypes suppress 

alcohol drinking in a variety of species and models (Ulm et al., 1995). Moreover, 

complete inactivation (i.e., knockout) of the µ-opioid receptor blocks alcohol self-

administration in mice (Roberts et al., 2000b).  

The agent naltrexone, a subtype-nonspecific opioid receptor antagonist, currently is 

approved as a treatment for alcoholism in humans and is particularly effective in 

reducing heavy drinking. Opioid systems influence alcohol drinking behavior both 

via interaction with the mesolimbic Da system and also independent of the 

mesolimbic DA system, as demonstrated by alcohol-induced increases in 

extracellular endorphin content in the NA (Olive et al., 2001) (Table 1). 

Opioid receptor antagonists interfere with alcohol’s rewarding effects by acting on 

sites in the VTA, NA, and central nucleus of the AM (Koob, 2003). 
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Table 1. Summary of Neurobiological Mechanisms of Alcohol During the Phases of the Addiction 

Cycle Dominated by Positive Reinforcement Versus Negative Reinforcement. 

 
 

γ-Aminobutyric Acid Systems. γ-Aminobutyric acid (GABA) is the major 

inhibitory neurotransmitter in the brain. It acts via two receptor subtypes called 

GABA-A and GABA-B. Alcohol can increase GABA activity in the brain through 

two general mechanisms: 

• It can act on the GABA-releasing (i.e., presynaptic) neuron, resulting in 

increased GABA release; or 

• It can act on the signal-receiving (i.e., postsynaptic) neuron, facilitating the 

activity of the GABA-A receptor. 

Alcohol drinking is suppressed by compounds that interfere with the actions of the 

GABA-A receptor (i.e., GABA-A receptor antagonists) as well as compounds that 

stimulate the GABA-B receptor (i.e., GABA-B agonists) in the NA, ventral 

pallidum, bed nucleus of the stria terminalis, and AM (Koob, 2004). Of these, the 

central nucleus of the AM, a brain region important in the regulation of emotional 

states, is particularly sensitive to suppression of alcohol drinking by compounds that 

act on the GABA systems (i.e., GABAergic compounds) (Hyytia and Koob, 1995). 

Indeed, acute and chronic alcohol exposure produce increases in GABA transmission 

in this brain region (Roberto et al., 2003, 2004) (Table.1). 
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Compounds targeting the glutamate systems also are being used in the treatment of 

alcohol dependence. For example, the agent acamprosate modulates glutamate 

transmission by acting on NMDA and/or metabotropic glutamate receptors 

(Littleton, 2007). Thus, by dampening excessive glutamate activity, acamprosate 

blocks excessive alcohol consumption. Acamprosate’s ability to suppress alcohol 

drinking has been observed across species, and the drug has been approved for the 

treatment of alcoholism in humans, primarily for its perceived ability to reduce 

alcohol craving and negative affect in abstinent alcoholics (Littleton, 2007). 

 

 

 

Serotonin Systems. The neurotransmitter serotonin (also known as 5-

hydroxytryptamine or 5-HT) has long been a target of interest for potential pharmaco 

therapies for alcoholism because of the well-established link between serotonin 

depletion, impulsivity, and alcohol-drinking behavior in rats and humans (Myers and 

Veale, 1968; Virkkunen and Linnoila, 1990) (Table1). 

Pharmacological compounds that target the serotonin system by inhibiting neuronal 

reuptake of serotonin, thereby prolonging its actions, or by blocking specific 

serotonin receptor subtypes have been shown to suppress alcohol-reinforced behavior 

in rats (Johnson, 2008). However, some researchers are debating whether these 

compounds can affect alcohol-reinforced behavior without affecting consummatory 

behavior in general. During alcohol withdrawal, serotonin release in the NA of rats is 

suppressed, and this reduction is partially reversed by self-administration of alcohol 

during withdrawal (Weiss et al., 1996). 
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1.6.2 Epigenetics 
 
 
 
 

1.6.2.1 General consideration 

 

Epigenetics (from the Greek, epi-: επί- over, above; and -genetics) correspond to the 

study of heritable changes in gene expression or in the cellular phenotype caused by 

mechanisms other than changes in the DNA sequence (Feinberg and Tycko, 2004). 

Cellular differentiation is a well know example of relevance of epigenetic 

mechanism. If all cells within an organism have the same DNA (Nestler, 2009) then 

the ability to have different cells with different functions must be due to a selective 

activation or silencing of particular genes within genome (Grewal, 2003). Actually, it 

has been demonstrated that epigenetic events, altogether with genetic events, plays a 

crucial role in tumor progression (Jordà and Peinado, 2010). 

Three epigenetic mechanisms are considered the most important ones: genomic 

imprinting, histone modifications and DNA Methylation (Feinberg and Tycko, 2004) 

(Figure 15). Genomic Imprinting refers to the relative silencing of one parental allele 

compared with the other parental allele as consequence of differentially methylated 

regions within or near imprinted genes. 

Histone modifications, principally acetylation, methylation and phosphorylation, are 

important in transcriptional regulation due the ability to induce chromatin structure 

modification, altering DNA accessibility (Feinberg and Tycko, 2004). DNA 

methylation is the most common epigenetic mechanism (Jordà and Peinado, 2010) 

and consists in a covalent modification of DNA, in which a methyl group is 

transferred from S-adenosylmethionine to the C-5 position of cytosine by a family of 

cytosine (DNA-5)-methyltransferases (Feinberg and Tycko, 2004) and occurs 

predominantly in the cytosines that precede guanines (CpG) (Bird, 1986) (Figure 16). 
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Fig. 15. Pattern of principal components of epigenetic code, DNA Methylation and Histone 

modification. 
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1.6.2.2 Histone modifications 

 

Gene expression can also be modulated by the chromatin state. DNA is packed in the 

nucleus of eukaryotic cells through its chromatin organization. The nucleosome, the 

fundamental unit of chromatin structure, consists of 146 base pairs of DNA 

wrappped around an octamer of histone made up of two copies of each of the core 

histone (H2A, H2B, H3 and H4) (Kouzarides, 2007) (Figure 16). 

 

 
 

Fig. 16. DNA wrapped around histone octamers to form nucleosomes 

 

Each core histone is composed of a structured domain and an unstructured amino-

terminal tail of varying lengths from 16 amino acid residues for H2A, 32 for H2B, 44 

for H3 and 26 for H4, protruding outward from the nucleosome (Taniura et al., 

2007). These proteins provide not only a solid structure; N-terminal regions of 

histones which protrude from the nucleosome are susceptible to interactions with 

other proteins. Chromatin can exist either in a decondensated, active arrangement, 

termed euchromatin, or in a condensated, inactive state, i.e. heterochromatin. 

The post-translational modification of the residues at histone tails are: methylation of 

lysines and arginines, acetylation, phosphorylation, ubiquitination, sumoylation, and 

ADP-ribosylation. Two widely studied histone modifications are histone acetylation 

and phosphorylation. 

Histone acetylation is linked with transcriptional activation, while deacetylation is 

related to transcriptional repression (Berger, 2007).  

Histone acetylation is a reversible modification of lysine residues within the amino-

terminal tail domain of core histone; histone acetyltransferase (HATs) transfers an 
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acetyl-group from acetylcoenzyme A to the ε-amino group of the lysine residue, 

while histone deacetylase (HDACs) acts in the reverse to remove the acetyl group. 

Also histone can be methylated by histone methyltransferases, inducing changes in 

the chromatin structure. 

Methylation may create binding sites for other regulatory proteins thus influencing 

the chromatin structure, either condensating or relaxing the structure (Chouliaras et 

al.,  2010). 

Although DNA methylation and histone modifications can act independently, they 

can also interact with each other. DNA methylation is associated with histone 

modifications through methyl CpG binding proteins interaction with dynamic 

complexes containing histone-modifying enzymes that promote gene repression and 

DNA replication and repair (Klose and Bird, 2006).  

The binding of some deoxy-methylcytosine binding proteins to methylated sequences 

attracts complexes containing co-repressors and histone deacetylases, leading to a 

change in the chromatin structure from an open, trancriptionally active form to a 

more compact, inactive form, inaccessible to the transcription machinery 

(Richardson, 2003). 

 

 

 

1.6.2.3 DNA Methylation 

 

DNA methylation appears to be one of the most important epigenetic mechanisms 

used by the cell, for the establishment and manteinance of the correct patterns of 

gene expression. Indeed, alterations in the patterns of genomic methylation are 

strongly associated with several human diseases, making the use of specific 

inhibitors of the processes involved a common practise in their treatment (Egger et 

al., 2004).  

DNA methylation patterns are stablished during differentiation, and serve to suppress 

genes unnecessary for the function of the mature cell. Demethylation of DNA also 

occurs and involves at least two mechanisms: the first is the mechanism by which 5-

azacytidine (an irreversible DNA Mtase inhibitor) hypomethylates DNA, and a 

second mechanism is that may involve DNA demethylase (Richardson, 2003). 
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DNA methylation in mammals occurs in the cytosin of the CpG dinucleotide via a 

reaction catalysed by enzymes named DNA methyltransferases (DNMTs) and the 

recognition of methylated cytosines is done by proteins that posses a specific binding 

domain, the so-called methyl-CpG binding domain. DNMTs are expressed 

throughout neural development, and in the adult brain in selective regional and cell-

specific patterns including mature stem cell generative zones mediating ongoing 

neurogenesis (Feng et al., 2007).  

Moreover, DNMTs are actively regulated by physiological and pathological states 

and interactions, and they promote neuronal survival, plasticity and stress responses 

(Ooi et al., 2007). In mammals, the DNMT family includes five proteins: DNMT1, 

DNMT2, DNMT3, DNMT3B, and DNMT3L (DNMT3-like). 

On the other hand, the proteins that binds to and recognises 5-methylcytosines are 

the methyl-CpG binding domain proteins in mammals are MeCP2, MBD1, MBD2, 

MBD3 and MBD4. MeCP2 was the first of these proteins to be characterised. 

The methylation of CG sequences can affect nearby gene expression. 

Hypomethylation of regulatory sequences usually correlates with gen expression, 

while methylation results in transcriptional suppressor. In general, the more CpG 

islands located in the promoter of a gene, the more the trancription level is dependent 

on DNA methylation (Graff and Mansuy, 2008).  

Methylation of CpG units disrupts the binding of transcription factors and attracts 

proteins known as methyl-CpG binding domain proteins that are associated with 

gene silencing and chromatin compaction (Antequera and Bird, 1993). 

The CpG islands, regions with more than 500 bp and a G + C content larger than 

55%, are localized in the promoter regions of 40% of all the genes in mammals and 

are normaly maintaind in the non-methylated form (Bird and Wolffe, 1999), but the 

CpGs located outside the CpG islands are usually methylated (Urdinguio et al., 

2009). 

The importance of DNA methylation in the function of normal cells is evidenced by 

its role in differentiation, X chromosome inactivation, genomic imprinting 

maintenance of chromatine structure, and suppression of "parasitic" DNA. 

Methylated citosines can serve as binding platform for specific proteins. On the other 

hand, this modification can also prevent binding of proteins to DNA. 
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It has been observed that multiple exogenous agents can affect DNA methylation, 

and it is possible that transient exposure to a DNA methylation inhibitor can have 

long term effects on DNA methylation.  

 
 
 
1.6.3 Relationship between Alcohol effects and Chromatin Remodeling 

 

Recently, experimental evidences suggest that the variations of gene expression 

induced by drugs of abuse may be mediated by epigenetic mechanisms (Renthal and 

Nestler, 2008). Several studies have demonstrated that intermittent ethanol treatment 

in the rats induces PFCx and hippocampal damage by inflammatory processes, and 

causes important short and long-lasting cognitive and behavioral deficits (Pascual et 

al., 2007). Human epidemiological studies have also demonstrated that early-onset 

alcohol use is associated with an increased risk of subsequent alcohol abuse and the 

development of alcohol disorders, including dependence (Grant and Dawson 1997; 

Hawkins et al., 1997; De Wit et al., 2000). Other studies have also demonstrated that 

the age of first encounter with psychoactive drugs is critical, given the greater 

probability to shift from use to abuse and to develop addiction (Anthony and 

Petronis, 1995; Breslau and Peterson 1996; Patton et al., 2004). Although these 

studies suggest that adolescence is a stage that is vulnerable to the consequences of 

alcohol and other psychoactive drugs abuse, the pathogenic process leading to drug 

addiction is still far from being completely understood. 

The mesolimbic DA system is known to be involved in the reward and reinforced 

effects of drugs of abuse, including alcohol (Koob and Weiss, 1992; Robbins and 

Everitt, 2002). 

Recent evidence suggests that histone modification and chromatin-remodelling 

events are involved in drug-related behavioural sensitization and reward (Schroeder 

et al., 2008), and in particular that alcohol exposure can induce possible mechanism 

for long-term neuro-chemical alterations and recently the chromatin remodeling has 

been reported as a plausible mechanism for alcoholism (Pandey et al., 2008). 

Pandey et al. (2008) have revealed a novel epigenetic mechanism suggesting that, the 

increased histone acetylation and decreased HDAC activity in the AM may be 

involved in the anxiolytic effects of acute EtOH and conversely, decreased histone 

acetylation and increased HDAC activity in the AM may be involved in the 
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development of anxiety during withdrawal after chronic EtOH exposure. The 

cessation of chronic EtOH consumption has been shown to lead to the development 

of withdrawal symptoms both in human alcoholics and animal models (Weiss and 

Rosenberg, 1985; Wilson, 1988; Lal et al., 1993; Pandey et al., 2003). 

These evidence presented here suggests that decreased histone acetylation, 

attributable to increased HDAC activity in the AM during alcohol withdrawal, may 

be associated with withdrawal symptoms, such as anxiety, and that acute EtOH 

exposure may produce anxiolytic effects because of its ability to increase histone 

acetylation through HDAC inhibition (Pandey et al., 2008). 

Moreover,  specific studies conducted in our laboratories have shown that exposure 

to ethanol and its metabolite induce chromatin modifications in neuroblastoma cell 

line on the endogenous opioid system (D’Addario et al., 2011a). 

They have showed a link between gene expression alterations evoked by EtOH and 

acetaldehyde and epigenetic modulation in the promoter region of the PDYN gene, 

proposing a temporal relationship between transcriptional PDYN silencing and 

chromatin alterations. 

The reactivation of the PDYN gene by the same agents on prolonged exposure may 

be related to preferential methylation of H3K4 and acetylation of H3K9 while 

keeping H3K27 un-methylated. This hypothesis is also supported by temporal 

changes in RNA polymerase II (RNAPII) recruitment and activation consistent with 

epigenetic changes. In fact, the increase observed in RNAPII, either total and S5P, at 

72 h after EtOH exposure correlates with the increase at this time point of the two 

activating marks investigated, H3K4me3 and H3K9Ac, but not of the repressive one, 

H3K27me3. In addition, the alteration on H3K9Ac at 48 h becomes more relevant, 

since this histone modification seems to precede not only the reactivation of gene 

expression evident just after 96 h, but also the recruitment and activation of the 

RNAPII (D’Addario et al., 2011a). 

 

 

 
 
 
 
 

 
 
 



 37 

1.6.4 Pharmacological  Treatment for Alcoholism 

 

The treatment of alcoholism, seeks a full psycho-social rehabilitation of the subject 

and also provides a possible psychosocial intervention, a pharmacotherapy. In this 

case we can identify various stages. A phase of detoxification, preceded, if 

necessary, by treatment of withdrawal syndrome and followed by treatments aimed 

to the relapse prevention. In fact, about half of alcoholics go relapsed after a shorter 

or longer abstaining period (Maisto et al., 2000). 

The main drugs used in the treatment for alcohol-addiction are: disulfiram, 

naltrexone, the acamprosato. Drugs acting on the system  dopaminergic (tiapride, 

amisulpride and flupenthixol), and serotonergic (buspirone, fluoxetine, nefazodone, 

ritanserina and ondansetron) have been and are  currentlysubject of clinical studies. 

Moreover, the mood-stabilizing drugs (Salloum et al., 2005), as well as those acting 

sedative-hypnotic (Kranzler et al., 1994), have demonstrated their effectiveness in 

the presence of psychiatric comorbidity. 

 

 

Disulfiram: The disulfiram causes irreversible inhibition of both, cytosolic and 

mitochondrial, 

the enzyme aldehyde dehydrogenase form (Figure 17). This molecule, by inhibiting 

aldehyde dehydrogenase, causes accumulation of acetaldehyde which is formed by 

oxidation of ethanol by the alcohol dehydrogenase. 

 

 

 
 

Fig. 17 Disulfiram 
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In the presence of disulfiram, alcohol intake is then accompanied the onset of toxic 

effects acetic aldehyde, rather unpleasant and alarming on the subjective level (facial 

flushing, throbbing headache, sweating, nausea, vomiting, tachycardia, dyspnea, 

hypotension, dizziness, collapse). Therefore the goal of treatment with disulfiram is 

to create an aversion alcohol, rather than to modulate the neuropsycho 

pharmacological effects. 

 

 
Naltrexone : Neuropharmacological assumption of the efficacy of opioid antagonists 

is that the endorphins contribute to the effects of positive reinforcement of alcohol 

interacting with the mesolimbic dopamine system, as demonstrated experimentally 

by the fact that the decrease of the self-administration of alcohol is associated with a 

decrease of dopamine release (Gonzales and Weiss, 1998). Indeed, preclinical 

studies, performed in different experimental conditions, agree to observe that the 

administration of µ-receptor antagonists such as naloxone and naltrexone attenuate 

the consumption of alcohol (Herz, 1997; Stromberg et al., 1998) ( Figure 18). 

 

 

 
 

Fig. 18. Naltrexone  

 

 

Clinical studies (Volpicelli et al., 1992; O'Malley et al., 1992) have demonstrated the 

ability of the naltrexone to reduce relapses in heavy drinkers [= heavy drinkers taking 

more than 5 units (1 unit = 10g of alcohol) alcoholic / day], as well as to reduce the 

craving and the frequency of alcohol intake. Unfortunately, not all clinical trials 

subsequently conducted on relapse, have confirmed these positive results. 
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Acamprosate 

The modulatory effects of this molecule on glutamatergic transmission (in 

particular, its action of depression of the transmission and the same 

Activation of NMDA receptors) largely explain its use in therapy 

alcoholism. As known, in fact, one of the bases of the neuropharmacological 

alcohol dependence is established right rising both the number of 

functionality of NMDA receptors (Figure 19). 

 
 

 
 
 
 

Fig. 19. Acamprosate 
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1.7 Heroin 
 

Opiates are among the most commonly abused illegal drugs (Kreek, 1997; Hughes 

and  Rieche, 1995).  

Currently, heroin stands out as the most addictive and destructive illegal drug on the 

planet. It has considerably grave side effects and devastating implications for delicate 

organs of the body like the brain, the CNS and respiratory structure for those who 

take it. Its effects on the brain cause it to lose the capacity to manage normal, 

standard bodily functions thus rendering the body incapable of performing even the 

simplest of tasks.  

 

 

 

1.7.1 Heroin pathways 

 

Heroin is an opioid, regardless of chemical structure, that produces effects similar to 

those of opium and morphine (Wickler, 1980). Heroin has the scientific name 

diacetylmorphine;  its chemical structure is similar to that of 6-acetyl morphine and 

morphine (Figure 20) and is a chronic relapsing disease that is associated with a high 

level of mortality and crime (Hulse et al., 1999). 

The blood brain permeability of heroin is about 10 times that of morphine 

(Washington et al., 2001; Bao et al., 2006). 

 

 

 
 

Fig. 20. Heroin structure after blood brain barrier crossing 
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Once heroin crosses the blood brain barrier, it is hydrolyzed into 6-acetyl morphine 

and morphine, which then quickly bind to opioid receptors (Bao et al., 2006). The 

“rush” felt by heroin users is the sensation caused by the rapid entry of heroin into 

the brain and the attachment of 6-acetyl morphine and morphine to opioid receptors.  

Opioids in general can change the neurochemical activity in the brain stem causing a 

depression in breathing.  In the limbic system opioids cause an increase in feelings of 

pleasure, and have the ability to block pain signals sent through the spinal cord 

(NIDA, 2005) (Figure 21).  

 

 

 
 

Fig. 21. Brain under heroin exposure 
 

 

Several reports suggest that chronic exposure to opiates, such as morphine and 

heroin, can result in cognitive deficits (Guerra et al., 1987; Ciopolli and Galliani, 

1987; Spain and Newsom, 1991). 

For example, heroin users have poorer performance on attention, verbal fluency, and 

memory tasks than controls (Guerra et al., 1987), and rats chronically exposed to 

morphine show impaired acquisition of reference memory (Spain and Newsom, 

1991). Such findings suggest that long-term opiate use may produce maladaptive 

plasticity in brain structures involved in learning and memory. 

The rewarding effects of heroin, like prescription opiate-based drugs, are mediated 

via morphine-dependent activation of the µ-opioid receptor (MOR; Matthes et al., 
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1996; Sora et al., 2001). The opioid receptors, µ, κ and δ, belong to the superfamily 

of G protein-coupled receptors (GPCR). 

Activation of the opioid receptors can modulate multiple effectors, including the 

inhibition of adenylyl cyclise and voltage-gated Ca2+ channels (Gross and 

Macdonald, 1987; Tallent et al., 1994) and the activation of inward rectifying K+ 

channels, phospholipase C (PLC; Spencer et al., 1997) and mitogen-activated protein 

kinase (MAPK) components ERK1 and ERK2 (Fukuda et al., 1996, Cheng et al., 

1996). Activation of the MAPK pathway can occur through the Gαi/o associated Gβγ 

subunits in a Ras-dependent manner as well as by the process of opioid receptor 

phosphorylation by GRK3 and association with β-arrestin2 (Macey et al., 2006). 

Once activated, ERK1/2 can regulate many downstream cytoplasmic and nuclear 

targets to alter gene expression and, as a consequence, events such as synaptic 

plasticity in the brain.  

The physiological output of opioid receptors is dependent primarily on coupling to 

the inhibitory Gαi and Gαo subunits of the heterotrimeric G proteins. However, 

persistent activation of opioid receptors can alter downstream signaling events by 

increasing the responsiveness of Gβγ as well as Gαs subunits.  

In addition, this long-term exposure to opiates also results in receptor desensitization, 

an event which is related to opioid tolerance and dependence. Other compensatory 

measures, such as changes in gene transcription and protein synthesis, which 

contribute to long-term alterations in synaptic function, exist to counter sustained 

activation of the MOR.  

A large meta-analysis recently performed identified a hypothetical common network 

of molecules that underlie addiction to a number of different drugs of abuse (Li et al., 

2007). 

Genetic components contribute significantly to susceptibility to heroin addiction (40-

60%) and gene variants such as those encoding opioid receptors have been shown to 

be associated with this disease. The most widely-studied single nucleotide 

polymorphism (SNPs) in the OPRM1 gene are located within exon 1 (A118G and 

C17T variants) and encode amino acid substitutions in the extracellular N terminus 

of the receptor.  

In particular, the A118G variant has been associated with an enhanced response to 

therapies for alcohol and nicotine dependence and positive susceptibility to opioid 

addiction (Kroslak et al., 2007). 
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In contrast, other studies, including two meta-analyses of case-controlled subjects, 

failed to detect an association of the A118G variant with opioid dependence. These 

inconsistencies are likely a reflection of the high linkage disequilibrium the A118G 

SNP has with other causative variants.  

There are also conflicting reports in the literature that describe the impact the amino 

acid substitution (N40D) has on receptor binding in in vitro studies. However, the 

118G variant is associated with reduced OPRM1 mRNA levels in human brains and 

in decreased receptor levels in cells expressing the same variant (Kroslak et al., 

2007). Furthermore, a mouse model possessing the equivalent SNP in the OPRM1 

gene (A112G) also showed reduced mRNA expression and receptor protein levels, as 

well as reduced morphine-mediated hyperactivity and anti nociception (Mague et al., 

2009). 

Over 100 SNPs have been identified in the OPRM1 gene and a number of these 

variants have been associated with a varied response to alcohol (Ehlers et al., 2008), 

intiation of smoking (Zhang et al., 2006a) and the initial positive response to heroin 

(Zhang et al., 2006b). 

The signaling and transcriptional reprogramming that underlies adaptations of the 

brain to chronic heroin exposure is currently poorly understood. 

When heroin is injected or smoked, users typically feel two types of euphoric effects, 

a “rush” and a “high.”   

The rush usually lasts one to two minutes and occurs right after the drug is 

administered.  It is described as an intense feeling that is felt throughout the body, 

especially in the abdomen.   

Following the rush is a high that can last four to six hours.  The feeling is described 

as  pleasant, with indifference to internal and external stimuli.  The following 

characterizations may occur during a high (Stimmel, 1992). Timing of Effects : 

injecting heroin intravenously can produce a feeling of euphoria in seven to eight 

seconds. The peak effects of smoking heroin are similar to those obtained from 

intravenous injection (Cone, 1998). In contrast, injecting intramuscularly,  leads to a 

slower onset of euphoria, taking five to eight minutes (NIDA, 2005).  

The peak effects of snorting heroin occur in 10 to 15 minutes (NIDA, 2005) whereas 

the oral administration has little effect.   
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1.7.2 Priming, Addiction and Withdrawal 

 

A large body of evidence indicates that the reinforcing effects of heroin  are 

mediated by the drugs actions in the VTA, (the cell body region of the mesolimbic 

dopamine system) and in the NA (a terminal region of this system) (Wise, 1996). 

Results from studies using systemic drug injections indicate that dopamine 

neurotransmission mediates cocaine-induced reinstatement (Self and Nestler, 1998; 

Shalev et al., 2002; Spealman et al., 1999). Reinstatement induced by cocaine and 

heroin priming is mediated by activation of dopamine D2-like, but not dopamine D1-

like, receptors (Alleweireldt et al., 2003; De Vries et al., 1999; Khroyan et al., 2000; 

Marinelli et al., 2003; Self et al., 1996; Wise et al., 1990). 

In earlier studies, Stewart (1984) found that intra-VTA infusions of morphine, which 

increases dopamine cell firing and release, reinstate heroin or cocaine seeking, and 

intra-accumbens infusions of amphetamine, which increases local DA release, 

reinstate heroin seeking. Based on these studies and studies using systemic drug 

injections, there was, until recently, a consensus that accumbens DA activity 

mediates reinstatement induced by heroin priming. In another study, Luo et al. 

(2004) trained rats to self-administer heroin or saline (a control condition) and after 

extinction of the drug-reinforced responding they examined in different groups the 

effect of heroin priming injections on reinstatement or fMRI signal in several brain 

areas, including components of the mesocorticolimbic system. The main finding was 

that rats with a history of heroin self-administration showed profound tolerance to 

the effect of heroin priming on the Functional magnetic resonance imaging (fMRI) 

signal. The significance of these findings, however, is not clear because previous 

studies have shown that the effects of heroin and dopaminergic drugs on 

reinstatement of heroin seeking is highly correlated with their ability to induce 

locomotor sensitization (De Vries et al., 1998; De Vries and Shippenberg, 2002). 

 

 

1.7.3  Heroin Relapse 

 
The central problem for treatment of heroin addiction remains the return to drug use 

after periods of abstinence (relapse) (Mendelson and Mello, 1996; O'Brien, 1997; 

Wallace, 1989). Studies in humans provide evidence that relapse to heroin or cocaine 

use or craving for these drugs can be triggered by exposure to the self-administered 
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drug (De Wit, 1996; Meyer and Mirin, 1979), drug-associated cues (Carter and 

Tiffany, 1999; Childress et al., 1993) or stress (Sinha, 2001). 

Others have argued that this clinical scenario can be modelled in a reinstatement 

model using laboratory rats and monkeys (Epstein and Preston, 2003; Shaham et al., 

2003; Spealman et al., 1999; Stewart, 2000). 

In the operant version of the reinstatement model, laboratory animals are trained to 

self-administer drugs and are then subjected to extinction training during which lever 

presses are not reinforced with drugs.  

Reinstatement of extinguished lever responding (the operational measure of drug 

seeking) is determined after such manipulations as non contingent priming injections 

of the drug (deWit and Stewart, 1981; Stretch et al., 1971), exposure to cues 

associated with drug intake (Davis and Smith, 1976; Meil and See, 1996) or 

exposure to stress (Erb et al., 1996; Shaham and Stewart, 1995). 

During testing for reinstatement, extinction conditions remain in effect (drug is not 

available). In the conditioned place preference (CPP) variation of the reinstatement 

model, laboratory animals are trained to associate a distinct environment with drug 

injections and are then subjected to extinction training during which they are exposed 

to the same environment in the absence of drug.  

Resumption of preference for that environment is then determined after non-

contingent priming injections of the drug (Mueller and Stewart, 2000; Parker and 

McDonald, 2000) or exposure to stress (Sanchez and Sorg, 2001).  

The effects of drug-associated cues on relapse to drug seeking can also be examined 

in extinction tests that are administered at different days after the termination of drug 

self administration (Di Ciano and Everitt, 2004; Lu et al., 2004; Tran-Nguyen et al., 

1998). This permits characterization of the time course of susceptibility to relapse to 

drug seeking.  

 

 

1.7.4 The MAP Kinase  Pathway 

 
The MAP kinases (MAPK) are phosphorylated enzyme activities that regulate 

various biological mechanisms such as gene expression, metabolism, proliferation 

and programmed cell death and cell motility. These enzymes, once activated, they act 

on different target proteins that other proteins may be kinases, transcription factors, 

phospholipases, and cytoskeletal proteins and determining the level of 



 46 

phosphorylation at specific serine and threonine residues with activation or inhibition 

of their activities (Figure 22). 

 

 

 
 

 
Fig. 22. The Mitogen-Activated Protein Kinase Pathway 

 
 
 
 

Molecular Machanisms The activation of various MAPK provides a sequence of 

phosphorylations by different kinases activated in succession. Starting from an 

extracellular stimulus is coming, following the activation cascade of different 

substrates, the MAPK phosphorylation of the final will go to that then phosphorylate 

target proteins localized in different cellular regions (Chang and Karin, 2001).   

In particular, the cascade of activation generally begins at the hands of a small G 

protein (Ras) that transmits a signal activating a MAPKKK that phosphorylates, at 

specific serine residues and \ or threonine, a MAPKK which, in turn, phosphorylates 
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and active, through a dual tyrosine and threonine phosphorylation, the MAPK itself 

(Yoav et al., 2006).  

In particular, an example of activation mechanism involving tyrosine kinase 

receptors for growth factors.  

The cascade begins with activation of receptor tyrosine phosphorylation in response 

to the link with growth factors. The tyrosine phosphorylated binds directly or through 

the adapter Shc, Grb2 protein, responsible for the recruitment of Sos and subsequent 

activation of Ras, which, through Raf and MEK kinase, phosphorylates the MAPK 

(including ERK) that are thus activated. Another activation mechanism is the 

involvement of G protein-coupled receptors (G protein coupled receptors, GPCRs). 

In the case of Gq protein-coupled receptors, diacylglycerol (DG) of phosphoinositide 

hydrolysis, which forms the membrane, activates protein kinase C (PKC) that 

phosphorylates Raf, MEK and therefore responsible for the activation of ERK. The 

MAPK phosphorylation site recognized by the always consists of a tyrosine or a 

threonine followed by proline. The phosphate groups that both the MAPK substrate 

proteins are then removed by specific phosphatase resulting signal is switched off 

(Yoav et al., 2006). 

 

 
 

1.7.4.1 ERK  1 / 2   

 

The ERK 1 \ 2 are widely expressed and are involved in the regulation of 

proliferation and cell differentiation and neuronal plasticity. ERK proteins are 

products of two genes, ERK 1 (Mapk3) and ERK2 (Mapk1) (Boulton et al., 1991). 

Besides the two major proteins ERK1 (44 kDa) and ERK 2 (42 kDa) protein 

isoforms are known to other members of the same family including ERK1b (46 kDa) 

typical of rodents (Yung et al., 2000) and ERK2c ERK1b and their primate 

(Aebersold et al., 2004; Gonzalez et al., 1992). The involvement of ERK 1 / 2 in 

long-term memory (long-term memory, LTM) has been demonstrated by various 

behavioral and biochemical studies. 

With the test of Morris has been shown that, following administration of inhibitors of 

ERK, treated animals took a much longer time to perform the test compared to 

control animals.  
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When learning was also observed an increased activity of hippocampal ERK. In 

neuronal cells, neurotransmitters such as DA and norepinephrine, through their 

receptors coupled to adenylate cyclase, or acetylcholine through muscarinic receptors 

coupled M1 type of phosphoinositide hydrolysis, can stimulate the' activities of 

ERK, and then , influence the neuronal plasticity.  

The ERKs are also able to facilitate gene transcription by modifying chromatin 

structure through the activation of kinases that determine the relaxation of the DNA 

double helix by increasing the access of transcription initiation factors.  

Once activated by various extracellular stimuli or internal processes of the ERK 

pathway are involved in the processes of proliferation, cell differentiation, regulating 

the expression of genes necessary for cell growth and division, and the effect of the 

enzyme-dependent translocation to the nucleus, determine the increase in the 

synthesis of nucleotides necessary for the formation of new molecules of DNA and 

RNA and cellular proteins. 

All ERKs are activated by a double phosphorylation at residue tyrosine and threonine 

regulators. This dual phosphorylation appears to be mediated by MEK. 

Following mutational analysis has discovered a region in the C-terminal portion of 

the ERK (amino acids 312 to 320 of ERK2) important for interaction with MEK 

(Rubinfeld et al., 1999; Chuderland and Seger, 2005). 

The most important residues for interaction in this region are 3 amino acids (Asp316, 

Asp819, Glu320 in ERK2). This region is able to interact with three and two basic 

residues located in the hydrophobic N-terminal portion of MEK called domain D 

(Zhou et al., 2006). 

Crystallization studies have shown that the binding of the domain D with the ERK 

pathway induces a conformational change that exposes the threonine and tyrosine 

residues outside regulators allowing the attack of MEK and phosphorylation of these 

residues (Pulido et al., 1998). 
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1.7.4  ETS family and ELK1  
 
The ETS-domain transcription factor Elk-1 was first discovered in a fraction of HeLa 

cell nuclear extract that formed ternary complexes with the serum response factor 

(SRF) on the c-fos serum response element (SRE)(Shaw et al., 1989). This protein 

was thus named p62TCF, based on its properties of being a 62 kDa protein and being 

a ternary complex factor (TCF). 

The TCFs represent a subfamily of the ETS domain transcription factor family 

(Graves and Petersen, 1998; Sharrocks, 2001). These transcription factors are 

characterized by the presence of the ETS DNA-binding domain, and sequence 

conservation within this domain alone is sufficient to classify ETS-domain proteins 

into subfamilies. Elk-1 is the best studied of the TCFs, and several functional 

domains/motifs have been identified (Figure 23). 

 

 

 
  

 

Fig. 23. Domain structure of Elk-1 

The locations of the ETS domain, B-box (SRF interaction) motif, Rmotif, D-domain, FxF 

motif [MAP kinase (MAPK) binding] and TAD are indicated. The ETS domain and the R-

motif exhibit transcriptional repression activity. The TAD also overlaps the regulatory region 

of the protein that is phosphorylated (P) by MAP kinases. 

 
 
Elk-1 was initially identified as part of a ternary complex with SRF on the c-fos SRE. 

Since then, the molecular and structural details of how this complex is assembled and 

regulated have been elucidated. It is recruited to the SRE by a combination of 

protein-DNA and protein-protein interactions (Figure 24).  
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Fig. 24. Structure of the TCF–SRF–SRE ternary complex 

 

 

The formation of the ternary complex can be regulated at several levels. For 

example, phosphorylation stimulates ternary complex formation by Elk-1 (Janknecht 

et al., 1994; Gille et al., 1992). 

Binding of Elk-1 to the c-fos SRE in the absence of SRF cannot be detected, 

suggesting that protein-protein interactions with SRF are a pre-requisite for its 

recruitment (Hipskind et al., 1991). But at the same time, this stimulation can also be 

observed with high-affinity ETS binding sites in the absence of SRF (Sharrocks, 

1995), indicating that this enhancement is mediated, at least in part, by promotion of 

protein/DNA interactions via the ETS domain. Conversely, ternary complex 

formation and autonomous DNA binding by Elk-1 and other TCFs can be inhibited 

by interaction with members of the Id subfamily of helix-loop-helix proteins. 

The TCFs are direct targets of the MAP kinases, and Elk-1 was the first TCF shown 

to be regulated by ERKs (Hill et al., 1993; Marais et al., 1993). 

 

Phosphorylation of Elk-1 both enhances its recruitment to DNA (either in ternary 

complexes or autonomously) and potentiates its transcriptional activation activity. 
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ERK-mediated Elk-1 phosphorylation is also thought to promote the formation of 

quaternary complexes containing two Elk-1 molecules (Gille et al., 1996). 

Recently, the mechanism by which MAP kinases recognize and interact with the 

TCFs has been elucidated in detail. While the local context of the phosphoacceptor 

motifs plays an important role in specificity determination for a particular type of 

MAP kinase, docking modules also play a major role in specificity determination. 

In Elk-1, the D-domain and FxF motif constitute a bipartite docking module that 

dictates its selective phosphorylation by ERK and JNK MAP kinases, but selects 

against phosphorylation by p38 (Yang et al., 1998; Jacobs et al., 1999). 

In Elk-1 the FxF motif is responsible for directing the preferential phosphorylation of 

the critical Ser-383 residue (Fantz et al., 2001). 

However, while it should be emphasized that Ser-383 is clearly the most important 

residue for Elk-1 function, Elk-1 contains multiple MAP kinase sites that are 

phosphorylated to a high stoichiometry in vivo (Cruzalegui et al., 1999). The 

function(s) regulated by the other MAP kinase sites in Elk-1 are currently unknown. 

Phosphorylation of the TCFs regulates a number of key activities. A sequential series 

of events is triggered by phosphorylation by MAP kinase of the C-terminal 

regulatory domain of Elk-1 (Figure 25). 

 

 

 
 

Fig. 25. Role of phosphorylation in Elk-1 regulation 
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4. AIM OF RESEARCH 

 
The research project conducted during these years, is focused on the effects evoked 

by drugs of abuse in the central nervous system (SNC). 

Within this context, our attention has focused on the study of phenomena associated 

with the consumption of alcohol and heroin. 

Alcohol is the drug of abuse certainly more socially accepted and alcoholism, a 

condition that occurs following chronic use of alcohol is the cause of many deaths, 

just think that in Italy every year there are approximately 50,000 new alcoholics and 

40,000 deaths related to alcohol. Recent data from the Italian Institute of Health 

indicate that about 1 and a half million young people (aged between 11 and 24 years) 

are at high risk of alcoholism.  

Although alcohol has long been considered an unspecific pharmacological agent, 

recent studies of molecular pharmacology have shown that acts on different primary 

targets, including ion channels and receptors, kicking off a cascade of synaptic 

events involving many neurotransmitter systems. However, it should be noted that 

prolonged use at high doses induces alterations on all systems and thus becomes 

difficult to define which of these is the most involved. 

Despite considerable progress in explaining the contribution of the susceptibility 

factors to the development of alcohol dependence, the exact mechanism of this 

phenomenon remains unclear. In particular there are two big questions to be 

answered: 

• what are the genetic and environmental factors that cause the initiation and 

maintenance of alcohol consumption  

• what are the changes in the brain behind the transition from control to a 

compulsive use 

Genetically, we can determine non-specific susceptibility factors that increase the 

risk of developing alcohol dependence, including contemporary psychiatric disorders 

and depressive disorders more serious, while on a personal level or passive 

dependence and antisocial impulsive behavior may lead to different individual 

responses (Cloninger, 1987).  

These factors have been proposed to reflect the hypothesis of differences in 

neurotransmitter systems of the brain, which in turn can influence the 



 53 

pharmacodynamics of alcohol, and also determine, minimally, an individual 

variability in search of substance. 

A large number of studies suggest that the endogenous opioid system appears to be 

an important target for the mediation of the mechanisms associated with alcohol 

consumption (Koob et al., 1998).  

Through studies conducted in recent years on gene expression, it has been shown that 

the classical opioid receptors are differently involved in the consumption of ethanol 

(Roberts et al., 2001) and, furthermore, the system nociceptin / NOP, recently 

included in the family of endogenous opioid system, and both appear able to play a 

key role in the initiation of alcohol use in rodents (Ciccocioppo et al., 2004). 

In particular, naltrexone, known opioid antagonist, if taken daily in alcohol abusers, 

following a period of detoxification, can reduce the frequency of relapse in some 

groups of patients (Volpicelli et al., 1992) because it is able to revert the increased 

release Dopamine in the NA (Gonzales and Weiss, 1998). 

Several studies have also shown that nociceptin exhibits high structural similarity 

with the DYN and can interact with a G protein coupled receptor, NOP, whose 

sequence is very similar to that of the KOP. Despite the high degree of similarity 

between these two systems, they appear to exert opposing physiological functions, in 

particular, there is a real functional antagonism of the nociceptin system against the 

endogenous opioid system (Reinscheid et al., 1998).  

Genetic studies have shown the presence of polymorphisms in genes coding for KOP 

and for the precursor of its ligand, the PDYN, which is associated with the risk of 

developing alcohol dependence (Xuei et al., 2006). 

It was also observed that variations in genes coding for the nociceptin system, for 

NOP receptor and for the precursor of its ligand, the pronociceptin/Orphanin FQ 

(PNOC), are associated with alcoholism (Xuei et al., 2008). 

What emerges is that manipulation of the opioid system, nociceptin in particular, 

may be useful in the treatment of addictions and there are several evidences that 

support the use of this strategy (Sakoori and Murphy, 2004; Kotlinska et al., 2003). 

Based on these findings, the primary aim was to evaluate the effects on gene 

expression induced by ethanol precursors of opioid peptides (PNOC and PDYN) and 

their respective receptors in different regions of the brain associated with addiction 

and to understand the physiological function of N / OFQ in endogenous reward and 

the development of addiction.  
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Our interest has focused in particular on the analysis of the PFCx where there is a 

high density of opioid receptors (Mansour et al., 1987). 

The PFCx (Fuster, 2001; Miller and Cohen, 2001) is a region of considerable interest 

in opiate addiction because it plays an important role in cognitive control over drug 

intake (Moghaddam and Homayoun, 2008), and also because it is directly related 

with the meso-corticolimbic dopaminergic system that mediates the rewarding and 

addictive properties of opiates (Volkow et al., 2003; Everitt et al., 2007; 

Schoenbaum and Shaham, 2008). The PFCx is involved in the processes of response 

to sensory stimuli (Devinsky et al., 1995) and alcoholism is also often accompanied 

by signs of dysfunction in charge of PFCx (Lyvers, 2000). 

Based on these results we have continued studies of gene expression to evaluate if 

the same experimental conditions could lead other modifications in the AM area, an 

important substrate for neuronal behavior associated with the consumption of alcohol 

and anxiety (Fadda and Rossetti, 1998; McBride, 2002).  

In fact, anxiety is one of the first symptoms linked to the  abstinence and it’s also an 

important factor in negative reinforcement, which leads to excessive consumption of 

alcohol  (Weiss et al., 2001; Pandey, 2003). 

Recently, an increasing number of experimental evidence suggest that changes in 

gene expression induced by drugs of abuse may be mediated by epigenetic 

mechanisms (Renthal and Nestler, 2008). There are two types of chromatin 

modifications involved in the regulation of gene transcription: histone modifications 

and DNA methylation.  

Other mechanisms such as RNA interference and prion proteins may contribute to 

epigenetic regulation. Chromatin is the form in which nucleic acids are organized in 

the nucleus of the eukaryotic cell and is composed of DNA, RNA and proteins. It has 

a particularly dynamic structure, responds to extracellular signals and controls gene 

expression (Kouzarides, 2007; Bernstein et al., 2005). 

The histone modifications are posttranslational events and occur on the N-and C- 

tails which protruding from the surface of the chromatin polymer. They include 

acetylation, phosphorylation, methylation and ADP-ribosylation. 

These changes end up altering chromatin structure by influencing histone-DNA and 

histone-histone contacts. 

In contrast to the transient nature of phosphorylation and acetylation, methylation of 

histones seems to be a relatively stable signature for the long-term maintenance of 
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the state of chromatin (Schubeler and Elgin, 2005).  Increasing evidences on the 

relationships between changes in methylation of lysine on histone 3, and alteration of 

gene expression are evident (Boggs et al., 2002). 

Epigenetic mechanisms seem to play a role in the cellular effects induced by EtOH 

(Shukla and Aroor, 2006) and, recently, the chromatin remodeling has been reported 

as a plausible mechanism for alcoholism (Pandey et al., 2008). 

With this purpose, studies have been performed using epigenetic Chromatin Immuno 

Precipitation assays (ChIP) in order to observe different changes in the promoter 

regions of several target genes, related to the alterations in gene expression, evoked 

by alcohol exposure. 

Moreover, many findings suggest that hypo-methylation of the DNA surrounding the 

promoter region is a prerequisite for gene activation, and that a high methylation 

status may mead to the loss of transcriptional activity (Hsieh, 1994; Furuta et al., 

2008). 

In the second part of the present study, I also investigated alterations in signaling 

molecules directly associated with MAPK pathway in a unique collection of post-

mortem brains from heroin abusers.  

The reinforcing effects of opiate drugs, like heroin, are mediated by opiate receptors 

in the VTA (Bozarth and Wise, 1981), NA (Olds, 1982), and hippocampus (Stevens 

et al., 1991) through both DA-dependent and, independent mechanisms. Following 

chronic heroin self-administration, neuro-adaptations in mesolimbic DA neurons and 

their target regions are thought to play a central role in the maintenance of opiate 

addiction (Koob and Le Moal, 2001; Nestler and Aghajanian, 1997; Self and Nestler, 

1995). 

In this context, chronic morphine exposure in rats resulted in structural changes of 

neurons compatible with the induction of synaptic plasticity (Sklair-Tavron et al., 

1996; Robinson and Kolb, 1999; Spiga et al., 2003; Liao et al., 2005; Ballesteros-

Yáñez et al., 2007). 

Although some signaling pathways have been associated with morphine-induced 

changes in neuronal size, synaptic connectivity and behavioral plasticity, increasing 

evidences indicate that proteins of the apoptotic pathways can also play relevant 

roles in promoting various forms of synaptic plasticity (Gilman and Mattson, 2002; 

Mattson and Gleichmann, 2005; Mattson, 2007). 
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Given that opiate receptors are coupled to inhibitory G proteins that reduce cyclic 

AMP formation (Childers, 1991), a compensatory up-regulation in cyclic AMP-

dependent protein kinase (PKA) has been reported in the NA following chronic 

heroin self-administration (Self et al., 1995). Increased PKA activity in the NA 

causes elevated drug and alcohol intake (Self et al., 1998; Wand et al., 2001) and 

exacerbates the aversive aspects of opiate withdrawal. 

Several studies have implicated ERK1/2 and p38 MAPKs in the modulation of 

various forms of synaptic plasticity (Derkinderen et al., 1999; Thomas and Huganir, 

2004), including the neuroplastic changes induced by drugs of abuse (Girault et al., 

2007). 

In addition to PKA-mediated protein phosphorylation, extracellular signal-regulated 

kinase (ERK) activity may also be regulated after heroin exposure. All ERKs are 

activated by a double phosphorylation at residue tyrosine and threonine regulators 

and among their molecular targets we find ELK1, the best members studied of the 

TCFs. We already know that TCFs are direct targets of the MAP kinases, and Elk-1 

was the first TCF shown to be regulated by ERKs (Hill et al., 1993; Marais et al., 

1993). Previous studies have shown that amphetamine activates extracellular signal-

regulated kinase 1 and 2 (ERK1/2) resulting in cAMP response element-binding 

protein (CREB) and Elk-1 phosphorylation in striatal neurons (Choe and Wang, 

2002).  

On basis of these findings, my interest is focused on understanding the effects that 

prolonged exposure of heroin can cause in an individual, over the entire MAPK 

cascade and consequently on the transcription factor ELK1, which is regulated by 

this pathway. 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 



 57 

3. MATERIALS AND METHODS 

 
3.1 Ethanol studies in animals model  

 
3.1.1 Animals and Treatments 

 

All animal experiments were carried out in accordance with the European 

Communities Council Directive of 24 November 1986 (86/609/EEC) and National 

(Ministry of Health) laws and policies (authorization no. 204/2008-B). Carewas 

taken to minimize the number of experimental animals and to take measures to 

minimize their suffering. 

Adult male SpragueDawley rats (Harlan, Udine, Italy) weighing 330–360 g at the 

beginning of the experiment were housed two per cage in standard Macrolon cages 

(Tecniplast Gazzada, Buguggiade, Italy) in a temperature- and humidity-controlled 

room with a constant 12-hour light/dark cycle (lights on at 7am).The rats were 

allowed to acclimatize for at least 1 week before the start of the experiments. 

Free access to standard lab chow and tap water were available ad libitum. Alcohol or 

water was administered intragastrically by oral gavage (Figure 26) by using a slightly 

bent stainless steel feeding needle. No restraint was used. The procedure was 

finished within 10 seconds. 

 

 
 

 

Fig. 26. Procedure for Oral Gavage 
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Preliminary results from our laboratory showed that a single intragastric 

administration of 20% EtOH at a dose of 3 g/kg induced a long lasting loss of 

righting reflex (LORR) and eventually coma.  

This dose induced an up-regulation of PDYN and PNOC gene expression in the AM 

dissected 30 minutes after the treatment; whereas no changes were observed after 2 

hours, the other timepoint investigated. Moreover, a low dose of EtOH (0.75 g/kg) at 

both the timepoints (30 minutes and 2 hours) did not induce any changes in opioid 

genes expression (data not shown). 

On the basis of these results and previous report (Zhou et al., 2000), a binge alcohol 

paradigm was chosen to more closely resemble human drinking behavior with 

several hours of heavy alcohol exposure by the oral route. 

Hence, animals received daily intragastric administrations of alcohol (20% in water) 

at a dose of 1.5 g/kg or equal volume of water in their home cages following this 

binge pattern regimen: three times daily at 1.5-hour intervals (10:00 am, 11:30 am, 

and 1:00 pm), for a total daily dose of 4.5 g/kg/day. 

Two groups of rats received EtOH (1D group; n = 7) or water (control group; n = 7) 

for 1 day, were killed by decapitation and brain regions of interest were rapidly 

dissected and frozen on dry ice 30 minutes after the treatment. This timepoint was 

chosen based on preliminary studies as mentioned above. 

EtOH or water (control) were also administered to other groups of animals (n = 7 for 

each group: three groups administered with EtOH and three groups with water) for 5 

days and, depending on the end-point and based on the behavioral studies described 

below, they were named as 5D (rats killed 30 minutes after the last EtOH or water 

administration), 1 day withdrawal (W-1D), 3 days withdrawal (W-3D) or 7 days 

withdrawal (W-7D) (rats killed 1, 3 or 7 days after the last dose of EtOH or water), in 

accordance with the behavioural parameters assessed (see Table 2 for synopsis of the 

experimental design).  

 

 

Brains were placed into an ice-cold matrix, and then sliced with a razor blade into 

coronal sections. Slices containing the PFCx (1 mm starting at 3.20 anterior the 

bregma) or AM (2 mm starting at 1.5 posterior the bregma) were obtained. 

Sample-punches of the PFCx (including prelimbic and infralimbic regions) and of 

the AM (including basolateral complex and central nucleus) were dissected under 
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stereomicroscope in accordance with rat brain atlas (Paxinos and Watson, 1986), 

frozen immediately on dry ice and stored at -80°C until analysis. 

 
 

 
 
ETOH = Ethanol 
 

Table 2. Description of the experimental design showing ETOH doses, treatments and tissue 

dissection timing for each group of study. 

 

Body weight of rats have been recorded daily (Table 3). 

 

 Body Weight (g : mean ± SEM)     
             

Groups Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 
veh 341 ± 6 336 ± 6 333 ± 7 333 ± 7 331 ± 8 329 ± 7 

EtOH 343 ± 4 330 ± 4 319 ± 5 308 ± 6 303 ± 8 301 ± 9 
 
 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 

veh 330 ± 6 331 ± 8 347 ± 9 352 ± 9 354 ± 9 357 ± 9 
EtOH 299 ± 6 297 ± 7 299 ± 9 304 ± 9 309 ± 9 315 ± 8 

 

SEM = standard error of the mean. 

 

Table 3. Bodyweight of rats subjected to 5-day intragastric administrations (three times per day) of 

water (vehicle) or EtOH, including withdrawal groups (total period 12 days). Results are expressed in 

grams (mean _ SEM). No significant differences between vehicleand EtOH-treated groups have been 

detected at any day. 
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3.1.2 Blood alcohol levels (BALs) 

 

For BALs, a separate set of rats (n = 7) was used. Blood was collected from the tail 

vein (0.5 ml) 30, 60, 120, 210, 300, 420, 540 minutes following a single EtOH 

administration of 3.0 g/kg and the first EtOH administration of 1.5 g/kg of the 

cumulative dose (1.5 g/kg three times at 1.5-hour intervals) and immediately frozen. 

EtOH levels were determined by gas chromatography (Schroeder, 1984). Samples 

were mixed with an internal standard of n-butanol, incubated for 60 minutes at 40°C 

and a 1-ml headspace aliquot was injected into an HRGC 5160 Mega series (Carlo 

Erba, Milan, Italy) containing a Phenomenex Zebron ZB-624 

(Phenomenex, Torrance, CA, USA). The analysis was performed isothermally at 

150°C with a constant pressure of 0.2 Kg/cm2 of Helium carrier gas. The inlet and 

detector temperature were kept at 200°C. EtOH peaks were identified and quantitated 

by comparison with a known standard. The blood EtOH concentrations are expressed 

in mg/dl. 

 

 

 

3.1.3 Behavioral measures 

 

Behavioral observations of intoxication and withdrawal were carried out by two 

operators independently and in blind fashion. 

 

 

 

3.1.3.1 Degree of Alcohol Intoxication  

 

Following the second alcohol or water administration, the degree of alcohol 

intoxication was assessed every day by using the following rating scale described by 

Majchrowicz (Majchrowicz, 1975): 

 

 

 

 



 61 

 0 = Neutral : no signs of intoxication. 

1 = Sedation: reduced muscle tone, dulled appearance and slow locomotor activity, 

but no impairment of gait or coordination. 

2 = Ataxia 1: slight gait impairment and slight motor incoordination, but able to 

elevate abdomen and pelvis. 

3 = Ataxia 2: clearly impaired staggering gait and impaired motor coordination, 

some elevation of abdomen and pelvis. 

4 = Ataxia 3: slowed righting reflex, heavily impaired motor coordination, no 

elevation of abdomen and pelvis. 

5 = LORR: unable to right itself when placed on its back, other reflexes still present. 

6 = Coma: no signs of movement; no response to pain stimuli; no blinking reflex; 

spontaneous breathing. 

 

 

 

3.1.3.2 Measurement of physical signs of alcohol withdrawal 

 

The rats were then observed for 5 minutes 20 hours after the last EtOH 

administration. At each observation time, rats were assessed simultaneously for the 

following behavioral conditions: Each parameter was scored from 0 to 5 using a 

rating scale . 
	
  
	
  
	
  

0=	
  Agitation	
  

1=	
  Tail	
  stiffness	
  

2=	
  Abnormal	
  posture	
  

3=	
  Abnorml	
  gait	
  

4=	
  Autonomic	
  hyperactivity	
  

5=	
  Lack	
  of	
  exploratory	
  behavior	
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3.1.4 Real-Time quantitative reverse transcription-polymerase chain reaction 

(qRT-PCR) 

 

 

3.1.4.1 Extraction and measurement of total RNA 

 

Total RNA was prepared according to the method previously described 

(Chomczynski and Sacchi, 1987). The RNA was extracted from single tissue 

samples by homogenizing with TRI Reagent solution (Ambion Inc. Italy), containing 

phenol and guanidine thiocyanate (Ambion), 1 mL TRI Reagent solution per 50-100 

mg tissue. Then, 0.2 ml chloroform/2 ml of homogenate, and centrifuging the 

suspension at 12,000 x g for 10-15 minute at 4°C, and was transfered the aqueous 

phase to a fresh tube. A volume of 0.5 ml isopropanol was added, incubated for 15 

min at 4°C and the RNA pellet was isolated by centrifugation at 12,000 x g for 25 

min at 4°C. 

The pellet was washed twice with 75% ethanol, dried under vacuum and then 

resuspended in 25 µl of Rnase-free water. Total RNA, digested with DNase RNase-

free enzyme to eliminate genomic DNA content, was quantified by measurement of 

absorbance at 260 nm (1OD/ml = 40 µg RNA/ml). The ratio OD260/OD280 > 2 

provided an estimate of the purity of the total RNA. 

 

 

 

3.1.4.2 Reverse Transcription and PCR 

 

RNA samples were subjected to DNase treatment and converted to cDNA with the 

GeneAmp RNA PCR kit (Applied Biosystems, Foster City, CA, USA) by using 

random hexamers (0.45 µg of total RNA in a final reaction volume of 20 µl). The 

cDNAs were subsequently diluted three times.  

Relative abundance of each mRNA species was assessed by real-time RT-PCR 

employing 1 µl of the diluted samples in a final volume of 20 µl using iQ SYBR 

Green Supermix (Bio-Rad, Hercules, CA, USA) on an DNA Engine Opticon 2 

Continuous Fluorescence Detection System (MJ Research, Waltham, MA, USA). 
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To provide precise quantification of initial target in each PCR reaction, the 

amplification plot is examined and the point of early log phase of product 

accumulation is defined by assigning a fluorescence threshold above background 

defined as the threshold cycle number or Ct.  

Differences in threshold cycle number were used to quantify the relative amount of 

PCR target contained within each tube. Relative expression of different gene 

transcripts was calculated by the Delta-Delta Ct (DDCt) method and converted to 

relative expression ratio (2-DDCt) for statistical analysis (Pfaffl, 2001; Livak and 

Schmittgen, 2001). 

All data were normalized to the endogenous reference genes glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) expression. Results on RNA were normalized to 

results obtained on RNA from the control, vehicle treated rats. After PCR, a 

dissociation curve (melting curve) was constructed in the range of 60 ºC to 95 ºC to 

evaluate the specificity of the amplification products. The primers used for PCR 

amplification (Table 2) were designed using Primer 3. 

Total RNA was converted to complemetary DNA (cDNA) using 50 U Superscript II 

Reverse Transcriptase (Invitrogen, Milan, Italy) in 20 µL of buffer containing 0.5 

mM deoxynucleotide triphosphates (Invitrogen, Milan, Italy), 40 U RNase inhibitor 

(Invitrogen, Milan, Italy) and 0.5 µg Oligo (dT) 12-18 Primer (Invitrogen, Milan, 

Italy) (Table 4). 

 
 

          
FORWARD ( 5’- 3’) 

 
REVERSE  (3’- 5’) 

PRODUCT 
SIZE 

	
  
GAPDH 

 
AGACAGCCGCATCTTCTTGT 

	
  
CTTGCCGTGGGTAGAGTCAT 	
  

207 
	
  
BACT 

	
  
ATCACGATCATGGCCCTCTACTCC 

	
  
TGGTGGCAGTCTTCATCTTGGTGT 	
  

106 
	
  
KOP 

	
  
TTGGCTACTGGCATCATCTG 

	
  
ACACTCTTCAAGCGCAGGAT 	
  

177 
	
  
NOP 

	
  
AGCTTCTGAAGAGGCTGTGT 

	
  
GACCTCCCAGTATGGAGCAG 	
  

101 
	
  
PDYN 

	
  
CCTGTCCTTGTGTTCCCTGT 

	
  
AGAGGCAGTCAGGGTGAGAA 	
  

157 
	
  
PNOC 

	
  
TGCAGCACCTGAAGAGAATG 

	
  
CAACTTCCGGGCTGACTTC 

	
  
170 

 
 
BACT = beta-actin; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; KOP = kappa opioid 

receptor; NOP = nociceptin opioid receptor; PDYN = prodynorphin; PNOC = pronociceptin. 

 

Table 4. Primer sequences used for reverse-transcription-polymerase chain reaction 
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3.1.4.3 Statistical analysis 

 

Intoxication and withdrawal signs data, represented as total score, were analyzed by 

non-parametrical analysis (Mann–Whitney U-test). EtOH effects on genes expression 

alterations were statistically asnalyzed using the twotailed Student’s t-test. Statistical 

significance was set at P < 0.05. 

 

 
 
3.1.5 Epigenetic studies 

 

 

3.1.5.1 Analysis of histones modification by Chromatin Immunoprecipitation 

(ChIP) and Real Time PCR 

 

Chromatin was prepared from frozen tissues as previously described with minor 

modifications (Dahl and Collas, 2007): proteins were cross-linked to DNA by 

addition of formaldehyde at a final concentration of 1% in phosphate buffer saline 

(PBS) containing a broad-range protease inhibitor cocktail (PIC) (Roche) and 

butyrate (Sigma), for 8 min at room temperature. The cross-linking reaction was 

quenched by adding glycine to a final concentration of 0.125 M and incubating for 5 

min at room temperature, the sample washed, and lysed thorough resuspension by 

pipetting in 120 ul of lysis buffer.  

The sample was incubated on ice and sonicated for 30 s to shear the DNA to 

fragments ranging in size from 150 to 700 bp, as analyzed by agarose gel 

electrophoresis. 

The lysate was centrifuged at 12 000 g for 10 min at 4°C and the supernatant 

transferred into a chilled tube, leaving around 30 ul of buffer with the pellet. Another 

30 ul of lysis buffer was added and the tube vortexed. After centrifugation as before, 

50 ul of the supernatant was pooled with the first supernatant and sonicated for 

another 2 X 30 s on ice.  

After removing a few µl to serve as "input" DNA, for each immunoprecipitation, 8 

µg of chromatin was diluted 10-fold in RIPA buffer (10 mM Tris-HCl, pH 7.5, 1 mM 

EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% SDS, 0.1% Na-deoxycholate, 140 

mM NaCl) containing PIC and incubated overnight by rotation with either no 
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antibody as control or with 1 - 4 µg of antibody, previously coated with Protein A 

beads (Invitrogen), for 2 hours at 4°C with agitation, against either H3K4me3 

(Abcam, ab8580), H3K27me3 (Millipore, 17-622), H3K9Ac (Millipore, 17-658). 

The beads and associated immune complexes were washed three times with RIPA 

buffer and once with Tris-EDTA buffer. The immune complexes were eluted with 

elution buffer (20 mM Tris-HCl, 5 mM EDTA, 50 mM NaCl) containing proteinase 

K (50 µg/ml) at 68°C for 2 hours, and DNA was recovered by phenol extraction, 

ethanol precipitated, and resuspended in 50 µl of sterile water. This procedure has 

been described in more detail (Dahl and Collas, 2007). Thereafter, real-time qPCR 

(RT-qPCR) quantification of the genomic sequences from regions in the rat PDYN 

and PNOC proximal promoter associated with the immunoprecipitated proteins were 

carried out. The primers used for PCR amplification were designed using Primer 3 

software (Rozen and Skaletsky, 2000): 

 
 
 

PDYN (from –348 to –175 bp)  

Forward (5′- ctgtctcctcccatctctgc) and the antisense primer: (5′- 

tagctgctccaggtgatgtg). 

 

PNOC (from –645 to –460 bp) 

Forward (5′- cagacagggaggacatggat) and the antisense primer: (5′- 

ggactgcaaagtgcagacaa). 

 

 

The relative abundance was assessed by RT-qPCR using iQ SYBR Green Supermix 

(Bio-Rad) on a DNA Engine Opticon 2 Continuous Fluorescence Detection System 

(MJ Research). 

To provide precise quantification of the initial target in each PCR reaction, the 

amplification plot was examined and the point of early log phase of product 

accumulation defined by assigning a fluorescence threshold above background, 

defined as the threshold cycle number or Ct.  

Differences in threshold cycle number were used to quantify the relative amount of 

the PCR targets contained within each tube. After PCR, a dissociation curve (melting 

curve) was constructed in the range of 60 ºC to 95 ºC (22) to evaluate the specificity 
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of the amplification products. The relative expression of different transcripts was 

calculated by the delta-delta Ct (DDCt) method and converted to relative expression 

ratio (2-DDCt) for statistical analysis (Livak and Schmittgen, 2001). 

All ChIP data were normalized to the input DNA amounts (Ct values of 

immunoprecipitated samples were normalised to Ct values obtained from 'input'). In 

addition, results on DNA from treated samples were normalized to results obtained 

on DNA from the control sample. Each ChIP experiment was repeated at least three 

times. 

 

 

3.1.5.2 DNA methylation 

 

In order to assess the possible methylation status of the promoter region of studied 

genes in  the rats treated with alcohol was performed: 

 

• DNA extraction  

• Bisulfite treatment of extracted DNA 

• Analysis of treated DNA by Real-Time PCR 

 

 

DNA extraction and purification  

 

DNA was extracted from samples of rat brain, which have been moved at <-20 ° C 

for several days before extraction to facilitate lysis leukocytes. FlexiGene (Quiagen) 

was used to extract genomic DNA following manufacterer’s instuctions which main 

steps are mentioned below. 

 

1.  To FG1 Buffer (lysis), contained in 50 ml falcon tube, add 7 ml of whole 

blood and vortex to mix well. 

2. Centrifuge 2500 rpm for 30 min at 10°C. Centrifugation separate proteins 

(and other macromolecules and sub cellular structures) according they 

dimensions (and form) through generation of gravitational forces within a 

sample tube. 
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3. Surnatant is discarded and FG2 Protease Buffer (denaturation buffer) is added 

and inmediatly vortexed, the resulting volume is then divided in 1,5 ml 

eppendorf. 

4. Incubate aliquots at 65° for 10 min: color changes from red to green when 

proteic digestion verifies. 

5. Add isopropanol (100%) and mix until DNA precipitation. 

6. Centrifuge 10000 rpm for 10 min at room temperature and discard surnatant. 

7. Add ethanol 95 % and vortex 5 seconds. 

8. Centrifuge 10000 rpm for 10 min at room temperature and discard surnatant. 

9. Dry DNA pellet at room temperature until full diluent evaporation (at least 5 

min). 

10. Add FG3 Buffer (hydratation buffer), vortex 5 seconds at low speed, 

resuspend the DNA pellet and incubate for 1 hour at 65°C bath. 

 

Sample DNA amount was determined by spectrophotometry at 260 nm and DNA 

aliquots were frozen at -20°C. 

 

 
 
Sodium Bisulfite treatment 

 

The vast majority of DNA methylation analysis is based on using a PCR using DNA 

treated with sodium bisulphite as a model. Two different strategies are used in the 

design of the primers for these reactions:  

 

• Methylation-indipendent PCR primers (MIP) 

• Methylation-specific PCR primers (MSP) 

 
Normally, the epigenetic information is lost during the PCR because the DNA 

polymerase does not distinguish between methylated and non-methylated cytosine, 

so the polymerase adds a guanine and then a non-methylated cytosine in both 

situations. After PCR, each originally methylated allele is diluted to a concentration 

impossible to analyze, so the DNA must be modified in a way that allows methylated 

information to remain preserved. Treatment with sodium bisulfite, which deaminates 

cytosine into uracil (Clark et al., 1994) is the method of choice in most laboratories 
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for this type of analysis. Due the fact that the degree of deamination of 5'-

methylcytosine to thymine is much slower than the conversion of cytosine to uracil, 

it is assumed that the only remaining cytosine after treatment with sodium bisulfite 

are those derived from 5'metilcitosine. Thus, during the subsequent PCR, the uracil 

residues are transcribed as cytosine. 

The procedure is based on the chemical reaction of single-stranded DNA with 

sodium bisulfite (HSO3-) at low pH and high temperatures. 

The chemical reaction of each step is as follows: cytosine carbon-6 sulfonation, 

irreversible hydrolytic deamination of carbon-4 that produces a sulfonate uracil, and 

finally the following desulfonation under alkaline conditions to generate uracil.  

Methylation of carbon-5 prevents the carbon-6 sulfonation in the first step reaction. 

Although the 5-methylcytosine can react with sodium bisulfite, this reaction is 

extremely slow, and the balance favors the 5-methylcytosine rather than thymine (the 

deamination product of 5-methylcytosine). 

Thus it is important the subsequent necessary purification to remove salts and other 

reagents used in the process.  Treatment with sodium bisulfite converts unmethylated 

cytosine of the original strand of DNA to uracil, while methylated cytosines remain 

cytosines. The CpG dinucleotide is the target of methylation in human cells (Figure 

27). 

 

 

 
 

Fig. 27. Sodium Bisulftine treatment of Genomic DNA 
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The protocol described by Frommer et al 1992 has been widely used for the 

treatment with sodium bisulfite. When treatment with sodium bisulfite is conducted 

under appropriate conditions, the expected convertion level of unmethylated 

cytosines is about 99% (Taylor et al., 2007). 

Despite this high level of conversion, however, it is possible that a small amount of 

DNA have a lower conversion rate (Warnecke et al., 2002) and the distribution of 

unconverted sites does not be random, so some promoter regions are more prone to 

an incomplete conversion. The conversion rate depends greatly on the quality of 

DNA (Warnecke et al., 2002).  

This is especially important to keep in mind when looking for low levels of DNA 

methylation with MSP primers based methods. 

 

The antiparallel strands of DNA are no longer complementary after treatment with 

sodium bisulfite. Therefore, the MIP and MSP primers are designed to be both 

Forward and Reverse. 

In mammalian DNA, the major base modification is 5-methylcytosine (5-MC), this 

occurs in 2-5% of all cytosine residues (generally those that are found in CpG 

doublets). The modification with bisulfite is a reaction between the molecule 

bisulfite and unmodified cytosine of single-stranded DNA. The reaction converts 

cytosine into uracil, while methylated cytosine (5-MC) within the CpG sites remains 

unchanged. The modified DNA can be amplified via PCR to understand the state of 

methylation.  

The bisulfite modification of DNA samples was carried out with the EpiTect bisulfite 

kit (Zymo) (Figure 28) as described by the manufacturer. For each conversion 

reaction 1 ug of DNA was used. After conversion, the modified DNA was purified 

and eluted in 20 ul of TE (2,5 mmol / L EDTA, 10 mmol / L Tris-HCl (pH 8)), then 

used immediately or stored at -20 ° C for one month. Positive control (100%) and 

standard curves were produced using universally methylated (uDNA) and methylated 

(mDNA) DNA. 
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DNA Input: each treated sample have 500 ng of DNA 

Conversion efficiency: >99% of unmethylated Cytosines are converted to Uracil 

NA Recovery: >80% 

 

 

• Add 5uL of M-Dilution Buffer to DNA sample. Add Nuclease-Free water to 

a final volume of 50µL. 

 

• Incubate 15 min at 37°C, and add 100µL of CT Conversion Reagent to each 

sample. Incubate for 12 to 16 hours at 50°C. 

 

• At the end of incubation time, transfer each sample to individual separation 

columns, containing 400µL of M-Binding Buffer. After the first 

centrifugation, the DNA remains attached to the resin present in the column 

while the buffer is discarded. 

 

• Add M-Desulphunation Buffer and incubate 15-20 min. 

 

• Add M-Wash Buffer and centrifuge to wash the DNA. 

 

• Add 20 µL of M-Elution Buffer to release DNA from the resin. 

 

 

Converted DNA can be conserved at -80° for up to three months. 
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Fig. 28. EZ DNA Methylation procedure (source ZIMO RESEARCH 2010). 

 

 

MSP primers 

 

The MSP primers are designed to amplify only the methylated DNA thus the 

possible errors associated with MIP based methods are no longer a problem. This 

specificity is achieved by including a few CpG sites in the sequence of the primer, 

preferably at the 3’ end (Figure 29) (see Table 5 for MSP primers). 

If PCR strict conditions are followed, only the amplification of methylated DNA will 

occurs.  

MSP assays are generally associated with high levels of false positives, especially 

when using large numbers of PCR cycles, which are often necessary to obtain high-

sensitivity analytical assays. 

False-priming events (in which the amplification takes place despite the mismatch 

between primer and sample) and not fully converted DNA molecules may be 

responsible for false-positive results. 
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The events of false-priming can be detected through the use of an appropriate 

negative control and prevented by limiting the number of cycles and using higher 

annealing temperatures. 

The present study analyzes four genes PDYN, PNOC and BACT. We also used 

MYOD noCpG. Of each of these genes we create their MSP primers in order to 

perform MSP Real-Time PCR. 

After retrieving the correct sequence of special databases of the gene of interest, we 

look upstream in the promoter region for CpG rich areas (CpG Island). Several pairs 

of suitable sequences are tested (forward / reverse primers). 

 

 
 
 
 
 

 
 
 
 
Fig. 29. Graphic representation of CpG rich areas (CpG Island) within gene promoter region. 
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MSP primers 

PDYN:    

Forward 5’- TTTTATAGTTTAATTACGTAAAGTCGT -3’ 

Reverse 5’- AACTCATTACATACCTCATACAACCG -3’ 

PNOC:   

Forward 5’- TTTTTGAAATTTAAGGGTTTATTTC -3’ 

Reverse 5’- AATTTACTACACTCCAATAACYGAT -3’ 

BACT:    

Forward 5’- TTTTGAATTTGGGGGTGTGT -3’ 

Reverse 5’- AAAACCAAACCAACTTCCTTATTCT -3’ 
 

 
Table 5. Sequence of MSP primers used for MSP RT-PCR. 

 
 
 
 
MSP Real-Time PCR 

 

For the methylation PCR study, a SYBR Green PCR kit was used. Each 20 ul of 

PCR reaction contains: 2 ul of eluted bisulfite modified DNA, 10 ul of SYBR Green 

PCR Master Mix, 1 ul of each of the two primers (concentrations used vary from 10 

to 100 pmol / ul resulting in final concentrations of 0.3 to 3 uM), and 6 ul of DNase-

free water. 

To normalize for the amount of input DNA, we have chosen a pair of primers 

corresponding to a specific sequence of MyoD gene. Real-time PCR conditions were 

95 ° C for 15 minutes followed by 45 cycles of 94 ° C for 15 s, 60 ° C for 30 s, 72 ° 

C for 30 s with data acquisition after each cycle. At the end, the amplification 

products will be verified by melting curve analysis: 95 ° C for 1 min, 55 ° C for 1 

min, followed by 80 cycles of increasing incubation temperature for 10 s each, from 

55 ° C to up to 95 ° C (0.5 °C increase) with data acquisition after each cycle. Two 

replicates for each sample were used and PCR was performed in a DNA Engine 

Opticon 2 continuous fluorescence detection system (MJ Research, Waltham, MA, 

USA). 



 74 

Ct values of each sample were recorded. Methylation percentage was calculated by 

2^(-DDCT), where DDCT = (Ct Target - Ct, MyoD) sample - (Ct Target - Ct, 

MyoD) fully methylated DNA and multiplied by 100. 

A calibration curve using the fully methylated DNA was carried out in parallel with 

each analysis, providing additional confirmation for each sample as methylation 

ratio, defined as the ratio of the fluorescence emission intensity values of target PCR 

product respect those of Myod PCR products.  

The correct length and purity of PCR products were verified by agarose gel 

electrophoresis (1,5% agarose). 

 

 
 
 
3.5.1.3 Statistical Analysis 

 

EtOH effects on histone modification and DNA methylation alterations were 

statistically analyzed using the two-tailed Student’s t- test. Statistical significance 

was set at p<0.05.  
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3.2 Heroine studies in human abusers 

  

 
3.2.1 Reagents 

 

The antibody directed against the MOR was obtained from GeneTex, Inc. (Irvine, 

CA). The antibody directed against βarrestin1 was obtained from Epitomics, Inc. 

(Burlingame, CA). Antibodies directed against phospho-MOR, ERK1/2, phospho-

ERK1/2, Elk-1 and phospho-Elk-1 were all obtained from Cell Signaling 

Technology, Inc. (Danvers, MA).  

The antibody directed against GAPDH was obtained from Millipore (Billerica, MA). 

The antibody directed against MEK1 was obtained from Invitrogen Corporation 

(Carlsbad, CA). Antibodies directed against β arrestin2 and MEK2 were obtained 

from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).  

 
 
 
 

3.2.2 Methods 

 

3.2.2.1 Human Brain Specimens 

 

Postmortem brains were obtained from either the Forensic Medicine Department of 

Semmelweis University (Budapest, Hungary) or from the Forensic Medicine 

Department of Karolinska Institutet (Stockholm, Sweden) under approved ethical 

guidelines. All cases were from Caucasians and had a postmortem interval < 24 hrs. 

The subjects were sorted into two case groups: those that died from heroin overdose 

(heroin group) and normal control subjects without head trauma (control group).  

All of the subjects were evaluated for common drugs, including alcohol, barbiturates, 

benzodiazepines and phenycyclidine. 

A total of four subjects tested positive for ethanol toxicity, three in the heroin and 

one in the control group, but none of these subjects showed signs of chronic alcohol 

abuse. Most of the subjects in the heroin group had a prior history of heroin abuse 

and also had physical signs of abuse such as needle track marks at time of autopsy. 

Furthermore, these subjects also exhibited a positive toxicology for heroin and/or its 
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metabolites, such as 6-monoacetylmorphine (6-MAM), morphine and morphine 

glucuronide. In contrast, the subjects in the control group had negative toxicology for 

opiates.  

The heroin subjects used in this study were predominantly heroin users that had no 

history of methadone or buprenorphine clinical treatment and were negative for 

human immunodeficiency virus (HIV) infection.  

These subjects therefore represent a unique population of drug abusers that can be 

utilized to study the long-term effects of heroin use on the biochemical and molecular 

alterations that occur in the human brain. 

 
 
 
 

3.2.2.2 Brain Punches 

 

The tissue (average weight of 200 mg) was punched from the putamen of 48 

postmortem human brains and kept at -80oC. The tissue punches were pulverized into 

a fine powder using a Bio-pulverizer (Biospec Products Inc.) on dry ice, mixed and 

then aliquoted into eppendorf tubes that were kept at -80oC until either protein was 

isolated. 

 

 
 
 
3.2.2.3 Western Blotting 

 
For each brain, between 10-20 mg of pulverized human putamen brain was 

homogenized on ice in modified RIPA buffer (1% IGEPAL CA-630, 1% sodium 

deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.01 M sodium phosphate, pH 7.2) with 5 

mM DTT, 1 µg/ml leupeptin, complete protease inhibitor cocktail with EDTA 

(Roche) and Halt™ phosphatase inhibitor cocktail (Thermo Scientific) using a 

dounce homogenizer (Kimble-Kontes), incubated at 4oC for 20 min and then 

centrifuged at 15,000 g for 15 min at 4oC. The protein concentrations of the 

supernatants were determined by using the BCA protein assay (Thermo Scientific). 

An initial test gel was performed for each of the antibodies utilized in this study to 

confirm that there was a linear relationship between the amount of protein loaded 

onto the gel and the detection of that protein. A total of approximately 12µg was 
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resuspended in Laemmli buffer and analyzed on SDS-PAGE gels (Bio-Rad) and 

transferred to Protran® nitrocellulose membranes (Whatman).  

The membranes were stained for protein using Memcode (Thermo Scientific), scanned 

and then blocked overnight at 4oC using 50% Odyssey blocking buffer (Li-COR) diluted in 

PBS with gentle shaking. 

Primary antibodies were diluted in Odyssey blocking buffer with 0.1% Tween-20 

and incubated overnight at 4oC with gentle shaking. The membranes were washed six 

times, 5 min each, in PBS with 0.1% Tween-20 (PBST) at room temperature with 

gentle shaking. Secondary antibodies of either goat anti-rabbit or goat anti-mouse 

IRDye 680CW or IRDye 800CW (Li-COR) were diluted 1:5000 in Odyssey buffer 

with 0.1% Tween-20 and 0.01% SDS and incubated for 1 hour at room temperature 

with constant shaking.  

The membranes were washed another six times, 5 mins each, in PBST. Membranes 

were imaged using the Odyssey infrared imaging machine and the blots analyzed 

using ImageJ software. 

 

 

3.2.2.4 Statistical Analysis 

 

Values derived from densitometric analysis using ImageJ software were normalized 

to total protein levels as determined by staining nitrocellulose membranes with 

Memcode protein stain. Data for the heroin subjects were calculated with respect to 

control subjects (100%). In order to determine normal distribution of the data, a 

Shapiro-Wilk W test was performed.  

Either a square root or logarithmic transformation was performed in order to render 

non-normal distributions into normally distributed data.  

A general linear stepwise regression analysis was used to calculate statistical 

significance and to identify possible covariates. Variables included in the analysis 

were: age, sex, PMI, brain pH, ethanol toxicity and storage time. A Student’s t-test 

was used when no covariates were found. Spearman’s correlation coefficients were 

calculated to assess the relationship between protein levels and also to identify 

correlations with toxicology. Statistical tests were carried out using JMP (v 7.0.1; 

SAS Institute Inc.) and all results are expressed as mean ± SEM. 
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4. RESULTS  

 

 

4.1  Ethanol results in animals model  
 

 

4.1.1 Estimation of BALs 

 

Single or repeated EtOH binge intoxication induced BALs in the range of 350–450 

mg/dl and thus was clearly pharmacologically active. During binge treatment, the 

highest BAL (450 mg/dl) was reached after 30 minutes following the third 

administration and decreased to the level 120 mg/ml after 9 hours. A single dose 

caused a BAL of 350 mg/dl 1 hour after the administration and decreased to non-

pharmacologically level after 9 hours (Figure 30) (D’Addario et al., 2011b). 

 
 
 

 
 
 

 
Fig. 30.  Blood alcohol levels (BAL; mg/dl; mean_standard error of the mean) observed in the rat 

after intragastric single (3 g/kg) or repeated (3 x 1.5 g/kg) EtOH administration. 
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4.1.2 Behavioral changes during EtOH intoxication and withdrawal  
 

 

 

4.1.2.1	
  Intoxication	
  rating	
  

	
  

EtOH-induced intoxication in animals starting from the first binge administration 

(score: 2.7 ± 0.35 overall; Mann–Withney U = 0, P < 0.0002; Figure 31 ) and 

reached the maximum peak at Day 2 (score: 4.0 ± 0.27 overall; U = 0, P < 0.0002; 

Figure 31). Intoxication signs decreased over Day 3 (rate: 3.27 ± 0.4 overall; U = 0, 

P < 0.0002; Figure 31) and 4 (score: 2.3 ± 0.3 overall; U = 6, P < 0.01; Figure 31 ) 

and disappeared over Day 5 (score: 0.4 ± 0.2 overall; U = 13, P = 0.07; Figure 31). 

Control animals showed no signs of intoxication in all days (score: 0.45 ± 0.09 

overall ) (D’Addario et al., 2011b). 

 

 

 
 
 
Fig. 31. Intoxication score in ethanol administered rats. Intoxication rating, assessed every day 

following the second alcohol or water (veh) administration, is shown across the 5 days of binge-like 

EtOH administration. Mann–Withney U test **P < 0.01 and ***P < 0.001 versus control group. 
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4.1.2.2	
  Signs	
  of	
  alcohol	
  withdrawal	
  	
  

	
  

EtOH-treated rats showed significant withdrawal signs (compared with vehicle-

treated rats), measured 20 hours after each final daily EtOH treatment (Figure 32). 

The sum of  the observation scores [agitation, tail stiffness, abnormal posture, 

abnormal gait, autonomic, hyper-reactivity, no rearing (Uzbay et al., 1997)] 

progressively increased from 0 on Day 1 to 12.5 ± 0.4 on Day 6 (Mann–Withney U = 

0, Z = 3.3, P < 0.001; Figure 32), with significant differences between the 

experimental groups on Day 4 (U = 6, Z = 2.3, P < 0.02), Day 5 (U = 0, Z = 2.4, P = 

0.02), Day 7 (U = 0, Z = 2.6, P < 0.006), Day 8 (U = 0, Z = 2.7, P < 0.006), Day 9 (U 

= 0, Z = 2.4, P < 0.01), Day 10 (U = 0, Z = 2.6, P < 0.009) confirming the presence 

of significant overall withdrawal severity. Body weight of rats subjected to 

intragastric administrations was recorded daily up to Day 12 (W-7D group). A slight 

weight reduction in both vehicle- and EtOH-treated groups has been observed every 

day up to Day 8, recovering thereafter until the end of the experiment (Day 12). No 

significant differences were observed between the experimental groups (D’Addario 

et al., 2011b). 

 
 

 
 
 
Fig. 32. Withdrawal  score in ethanol administered rats. Alcohol withdrawal total score evaluated 20 

hours after the last administration of EtOH or water and up to 12 days. Mann–Withney U tests 

confirmed that withdrawal signs occurred in EtOH treated rats starting on Day 4 up to Day 10 after 

EtOH binge administration. *P < 0.02 and **P < 0.01 versus control group. 
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4.1.3 Gene expression studies 

 

 

4.1.3.1 PDYN/KOP System  

 

In the AM, gene expression studies revealed a significant increase in the levels of 

PDYN in the group of animals treated for 1 day (1D group) (3.194 ± 0.865 versus 

control group equal to 1, unpaired t-test: **P < 0.01; F(6, 6) = 2.430) returning to 

values comparable with control in the 5D group, and showing again an up-regulation 

in the W-1D group [1.7 ± 0.07, unpaired t-test: *P < 0.05; F(5, 4) = 7.061] (Figure 

33a) (D’Addario et al., 2011b). 

 

a) AM 
 

 
 
 
Fig. 33a. Levels of PDYN mRNA in the AM of rats treated with EtOH intragastrically (total daily 

dose: 4.5 g/kg/day) for 1 day (1D group) or 5 days (W-1D,W-3D,W-7D groups) in comparison with 

their respective control groups (CONT), see Materials and Methods section for details. Bars represent 

2-DDCt value calculated by Delta-Delta Ct (DDCt) method of seven rats for each group. Expression 

was normalized to glyceraldehyde-3-phosphate dehydrogenase and means of mRNA levels are 

expressed relative to control rats_standard error of the mean. Differences among treatments were 

estimated by t-test. *P < 0.05 and **P < 0.01 versus control group. 
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In the PFCx after 1 day of treatment with EtOH, PDYN mRNA was increased [1D 

group: 1.760 ± 0.262, unpaired t-test: *P < 0.05; F(5, 6) = 4.248], whereas no 

changes were evident in the other groups (Figure 33b) (D’Addario et al., 2011b). 

 
 

b) PFCx 

 
 

 
Fig. 33b. Levels of PDYN mRNA in the PFCx of rats treated with EtOH intragastrically (total daily 

dose: 4.5 g/kg/day) for 1 day (1D group) or 5 days (W-1D,W-3D,W-7D groups) in comparison with 

their respective control groups (CONT), see Materials and Methods section for details. Bars represent 

2-DDCt value calculated by Delta-Delta Ct (DDCt) method of seven rats for each group. Expression 

was normalized to glyceraldehyde-3-phosphate 
dehydrogenase and means of mRNA levels are expressed relative to control rats_standard error of the 

mean. Differences among treatments were estimated by t-test. *P < 0.05 and **P < 0.01 versus 

control group. 
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Levels of the KOP mRNA transcript in the AM show an increase after 5 days of 

treatments [1.71 ± 0.16, unpaired t-test: *P < 0.05; F(6,6) = 1.690] (Table 6). In the 

PFCx alterations in KOP gene expression were not observed (Table 6) (D’Addario et 

al., 2011b). 
 
 
 
 
 

KOP   

  1D 5D W-1D W-3D W-7D 
AM 1,04 ± 0,33 1,71 ± 0,16 ** 0,83 ± 0,29 1,08 ± 0,26 0,88 ± 0,15 
PFCx 0,89 ± 0,16 0,62 ± 0,13 0,6 ± 0,05 0,91 ± 0,13 1,01 ± 0,10 

 
 
 
Table 6. Quantitative reverse-transcription-polymerase chain reaction results. Relative KOP gene 
expression levels in AM and PFCx of rats orally administered with ethanol up to 5 days. Expression 
was normalized to glyceraldehyde-3-phosphate dehydrogenase and means of mRNA levels are 
expressed relative to control animals ± standard error of the mean. ** Indicate a significant difference 
from control group, P< 0.01 (t-test). 
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4.1.3.2 PNOC/NOP System  

 

In the AM levels of the PNOC mRNA transcript in the AM were significantly 

increased in the 1D group [2.298 _ 0.479, unpaired t-test: *P < 0.05; F(6, 6) = 5.325] 

and continues to increase with the progression of the treatment (5D group) becoming 

even higher [2.827 ± 0.403, unpaired t-test: **P < 0.01; F(6, 6) = 3.778]. When the 

animals were kept in abstinence, the levels of peptide mRNA were still significant 

high in the W-1D group [2.211 ± 0.259, unpaired t-test: *P < 0.05; F(5, 5) = 1.558] 

(Figure 34a) (D’Addario et al., 2011b). 

 
a) AM 

 

 
 

 
 
 

Fig. 34a. Levels of PNOC mRNA in the AM of rats treated with EtOH intragastrically (total daily 

dose: 4.5 g/kg/day) for 1 day (1D group) or 5 days (5D,W-1D,W-3D,W-7D groups) in comparison 

with their respective control groups (CONT), see Materials and Methods section for details. Bars 

represent 2-DDCt value calculated by Delta-Delta Ct (DDCt) method of seven rats for each group. 

Expression was normalized to glyceraldehyde-3-phosphate 

dehydrogenase and means of mRNA levels are expressed relative to control rats_standard error of the 

mean. Differences among treatments were estimated by t-test. *P < 0.05 and **P < 0.01 versus 

control group. 
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Conversely, in the PFCx we did not observe significant changes in the expression of 

PNOC (Figure 34b) (D’Addario et al., 2011b). 

 

 

b) PFCx 
 
 

 
 
Fig. 34b. Levels of PNOC mRNA in PFCx of rats treated with EtOH intragastrically (total daily 

dose: 4.5 g/kg/day) for 1 day (1D group) or 5 days (5D,W-1D,W-3D,W-7D groups) in comparison 

with their respective control groups (CONT), see Materials and Methods section for details. Bars 

represent 2-DDCt value calculated by Delta-Delta Ct (DDCt) method of seven rats for each group. 

Expression was normalized to glyceraldehyde-3-phosphate 

dehydrogenase and means of mRNA levels are expressed relative to control rats_standard error of the 

mean. Differences among treatments were estimated by t-test. *P < 0.05 and **P < 0.01 versus 

control group. 
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Moreover, no changes in NOP mRNA were detected in both the AM and PFCx 

(Table 7) (D’Addario et al., 2011b). 
 

 

NOP   

  1D 5D W-1D W-3D W-7D 
AM 1,02 ± 0,18 1,35 ± 0,13 1,32 ± 0,15 0,87 ± 0,19 0,84 ± 0,11 
PFCx 1,27 ± 0,11 1,07 ± 0,05 1,06 ± 0,10 1,12 ± 0,12 0,78 ± 0,17 

 

 

Table 7. Quantitative reverse-transcription-polymerase chain reaction results. Relative NOP gene 
expression levels in AM and PFCx of rats orally administered with ethanol up to 5 days. Expression 
was normalized to glyceraldehyde-3-phosphate dehydrogenase and means of mRNA levels are 
expressed relative to control animals ± standard error of the mean.  
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4.1.4 Histone modifications 

 

 

Sprague Dawley rats have administered with repeated binge EtOH intoxication to 

investigate whether alcohol could evoke epigenetic changes (histone modifications) 

in the PDYN and PNOC promoter regions associated with the different previously 

demonstrated genes up-regulation in the AM complex (Figure 35). 

 
 

 
 
 
 

Fig. 35. Sequences of rattus norvegicus PDYN and PNOC promoter regions. The transcriptional start 
site (+1) is indicated. The TATA box on PDYN promoter and the CRE sequence on PNOC promoter 
are also indicated and highlighted. Primer sequences are underlined indicating also the starting 
positions. 
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Group 1D 

 

In the AM, we found in the animals treated for 1 day with EtOH (1D group) a 

significant decrease of  H3K27me3 in both PDYN (0,45 ± 0,09 versus CONT group 

= 1, p< 0,05) and PNOC (0,46 ± 0,11 versus CONT group = 1, p < 0,05) promoter 

regions as well as a significant increase in H3K9Ac for PDYN promoter (1,7 ± 0,3, p 

< 0,05) and for PNOC promoter (1,8 ± 0,26, p < 0,05) (Figure 36). 

 

 

1 D Group 

  
 

               a) PDYN promoter                                     b) PNOC promoter 

 

     
 
 
Fig. 36. RT-qPCR analyses of H3K27me3, H3K9Ac and H3K4me3 immunoprecipitated DNA 
fragments at a)PDYN and b)PNOC promoters. ChIP showing the levels of specific histone 
modification normalized to total input DNA in rats treated with EtOH intragastrically (total daily 
dose: 4.5 g/kg/day) for 1 day (1D group, n = 7) or vehicle (cont, n =7). Data are expressed as means ± 
SE of triplicate independent samples.*P < 0.05 vs. control; t-test. 
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Group 5D 

 

In the AM, we found in the animals treated for 5 days (5D group) a significant  

increase of H3K9Ac in PNOC promoter (2,4 ± 0,67, p < 0,05) (Figure 37); no 

significant alteration we found for other histone modification analyzed. 

No changes we observed in PDYN promoter region. 

 

 

5 D Group 

 
 

              a) PDYN promoter                                       b) PNOC promoter 
 
 
 

         
 
 
 
Fig. 37. RT-qPCR analyses of H3K27me3, H3K9Ac and H3K4me3 immunoprecipitated DNA 
fragments at a) PDYN and b) PNOC promoters. ChIP showing the levels of specific histone 
modification normalized to total input DNA in rats treated with EtOH intragastrically (total daily 
dose: 4.5 g/kg/day) for 5 day (5D group, n = 7) or vehicle (cont, n =7). Data are expressed as means ± 
SE of triplicate independent samples.*P < 0.05 vs. control; t-test. 
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Group W-1D 

 

In the AM, in contrast, we did not observe any histone modifications changes in the 

W-1D group in both genes promoter. Moreover, EtOH exposure did not induce any 

statistically significant alteration of H3K27me3, H3K9ac and H3K4me3 (Figure 38).  

 

 

W-1D Group 

 
 
                a) PDYN promoter                                 b) PNOC promoter 

 
 
 

          
 
 
 
Fig. 38. RT-qPCR analyses of H3K27me3, H3K9Ac and H3K4me3 immunoprecipitated DNA 
fragments at a) PDYN and b) PNOC promoters. ChIP showing the levels of specific histone 
modification normalized to total input DNA in rats treated with EtOH intragastrically (total daily 
dose: 4.5 g/kg/day) for 5 day and 1 day of withdrawal (W-1D group, n = 7) or vehicle (cont, n =7). 
Data are expressed as means ± SE of triplicate independent samples. 
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4.1.5 DNA Methylation 
 
 
 

Sprague Dawley rats have administered with repeated binge EtOH intoxication to 

investigate whether alcohol could evoke epigenetic changes (DNA methylation) in 

the PDYN and PNOC promoter regions associated with the different previously 

demonstrated genes up-regulation in the AM complex 

The analyses of DNA methylation in PDYN and PNOC promoters didn’t show a 

significative alteration (Table 8).  
 

 

 
 
Table 8. DNA METHYLATION LEVELS AT GENE PROMOTERS : % of DNA methylation in 
promoter regions of PDYN and PNOC in rats treated with vehicle or EtOH intragastrically (total day 
dose : 4.5g/kg/day) for 1 day (1D group) or for 5 days (5D group, W-1D). 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



 92 

4.1  Heroin results in Human abusers 
 
 
 
4.1.1 Regulation of MAPK signaling components in the brains of heroin 

addicts 

 

One of the key intracellular pathways activated by MOR is the MAPK pathway. 

To determine whether there are perturbations in protein levels of the MAPK 

pathway as a consequence of chronic heroin abuse, we focused on the core 

components of the pathway including MEK1/2 and ERK1/2. In the putamen of 

heroin addicts, the protein expression of MEK1 was significantly reduced (91.28 

± 2.55%, p < 0.05; F 1,41 = 4.33; Figure 39a), whereas MEK2 was also lower but 

not significantly changed (91.43 ± 4.29%; Figure 39b).  

 

 

 

                           a) MEK1                                                b) MEK2 

 

 

 

Fig. 39. Protein levels of  a) MEK1  b) MEK2 in the putamen of control subjects and heroin 

abusers. Results are expressed as mean ± SEM with respect to control subjects (100%). * P < 

0.05.  
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Of the two known targets of the MEK1/2, we observe a significant decrease in 

the protein level of ERK1 (84.78 ± 3.83%, p < 0.05; F 1,46 = 4.40; Figure 40a). 

Conversely, there is a significant increase in the protein levels of ERK2 (111.78 

± 2.32%. p < 0.005; F 1,44 = 9.33; Figure 40b).  

 

 

 

                           a) ERK1                                                b) ERK2 

 

 

 

Fig. 40. Protein levels of  a) ERK1 b) ERK2 in the putamen of control subjects and heroin 

abusers. Results are expressed as mean ± SEM with respect to control subjects (100%). * P < 

0.05, ** P < 0.01.  
 

 

 

Dual phosphorylations of the ERKs are required for their full activation and for 

their ability to mediate a variety of cellular functions, including activation of 

downstream transcription factors. In the putamen of heroin addicts, the level of 

phosphorylated ERK1 (105.67 ± 13.01%; Figure 41a) and phosphorylated ERK2 

(120.1 ± 11.4%; Figure 41b) was not significantly changed when compared with 

control subjects.  
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                          a) pERK1                                               b) pERK2 

 

 

Fig. 41. Protein levels of  a) pERK1 b) pERK2 in the putamen of control subjects and heroin 

abusers. Results are expressed as mean ± SEM with respect to control subjects (100%). 

 

 
 

 
4.1.2 Regulation of Elk-1 in the brain of heroin addicts 

 

The well-characterized transcription factors Ets-like protein-1 (Elk-1) has been 

implicated in the cellular responses of opioids and is a nuclear targets for 

activated ERK1/2. Elk-1 is directly phosphorylated by ERK1/2, and once 

activated forms a ternary complex on serum response elements (SREs) that 

activate immediate early genes such as c-fos. In the putamen of heroin addicts, 

the protein expression of Elk-1 was significantly increased (133.26 ± 8.21%, p < 

0.01; F 1,46 = 7.38; Figure 42a). However, there is a significant reduction in the 

level of phosphorylated Elk-1 (86.92 ± 3.35%, p < 0.05; F 1,41 = 5.21; Figure 42b) 

in the putamen of heroin addicts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 95 

a) ELK1                                               b) pELK1 
 
 

 
 
 
 
Fig. 42. Protein levels of  a) ELK1 b) pELK1 in the putamen of control subjects and heroin 

abusers. Results are expressed as mean ± SEM with respect to control subjects (100%). * P < 

0.05, ** P < 0.01.  
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5. DISCUSSION 
 

 

 

5.1 ALCOHOL  

 

 

5.1.1 Gene expression  

 

It is generally difficult to clearly understand whether changes in them RNA levels 

reflect a possible involvement of a specific gene in the execution of a behavior (i.e. 

alcohol intake) or the effect of alcohol by itself on this particular gene. Because 

prolonged exposure to EtOH by itself changes the expression of several genes (Worst 

et al., 2005), the main goal of our study was to try to correlate the effects of different 

exposure to EtOH on opioid genes expression using a direct administration protocol. 

The majority of studies describing the EtOH effects utilized different protocols of 

administrations such as forced drinking (Schulz et al., 1980), liquid diet (Seizinger et 

al., 1983), injection procedures (Lindholm et al., 2000), placement in a vapor 

chamber (Zapata and Shippenberg, 2006) or using a genetically selected line for high 

alcohol drinking behavior (Arlinde et al., 2004).  

A clear distinction between the role of a specific gene in drinking behavior or in 

EtOH effect is still confounding; thus, we decide to use binge intragastric protocol to 

minimize the potential confounding factors induced by EtOH administration in rats.  

The first main result of the present study is that the experimental conditions used 

were able to evoke tolerance to alcohol effects and dependence in rats, as measured 

by the progressive decrease of intoxication signs and the occurrence of clear 

withdrawal signs, respectively. Our results are thus consistent with very recent 

published data showing that this is a reliable methodology that effectively induces 

physical dependence upon EtOH over a short time period (Braconi et al., 2010). 
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Changes in PDYN/KOP system gene expression 

 

Many of the studies examining dynorphinergic system activity following exposure to 

alcohol (Przewlocka et al., 1997; Rosin et al., 1999; Lindholm et al., 2000) reported 

inconsistent results probably arising from the various paradigm of administration 

used and experimental models, but also for the complex role of this system.  

Here, we observed an up-regulation of PDYN mRNA following a single day of 

EtOH administration in both the brain region investigated, the AM and the PFCx. 

Acute EtOH has been already shown to stimulate, in rats and humans, the release of 

opioid peptides, such as b-endorphin and enkephalins (Dai et al., 2005; Marinelli et 

al., 2005), contributing to the reinforcing effects of EtOH, and also DYN (Marinelli 

et al., 2006), this last neuropeptide exerting compensatory alterations. 

In this respect, the aversive role of k-opioid agonists is well known (Land et al., 

2008). In the AM, the increased activity of the dynorphinergic system has also been 

observed in dependent animals (5D group), where KOP mRNA resulted up-regulated 

and PDYN gene expression returns to levels comparable with control. Moreover, 

PDYN gene expression resulted to be increased in the AM in the early withdrawal 

(EW) group. Our data are consistent with the hypothesis that the blockage of KOP 

induces a decrease in EtOH intake in rats that are physiologically dependent on 

EtOH, but not in nondependent rats (Walker and Koob, 2008). 

DYN system changes during dependence and in EW are consistent with the 

previously suggested recruitment of this system during the different neurochemical 

and behavioural phases of alcohol intake history (Walker et al., 2010).  

Overall, these effects are here probably linked to the negative dysphoric state in 

withdrawal, that EtOH could relieve as previously proposed (Walker and Koob, 

2008). This is a transient initial effect, because in the next withdrawal interval, up to 

Day 7, no alteration in the gene expression of the precursor was observed. 
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Changes in PNOC/NOP system gene expression 

 

We did not observe any alteration in NOP mRNA levels in both the brain regions 

investigated. In contrast, the PNOC gene expression was increased by EtOH 

administration both after 1 day (1D) as well as in dependent (5D group) and in EW 

group animals in the AM, a key region in regulating alcohol consumption (Koob, 

2003).  

Intracerebro-ventricular injection of NOC as well as administration of NOC into the 

central AM significantly inhibited EtOH self-administration in the alcohol preferring 

animals (Economidou et al., 2008). 

In the central AM of EtOH-dependent rats, an enhanced sensitivity to NOC effects 

was found because the peptide blocked the EtOH-induced augmentation of inhibitory 

postsynaptic currents (Roberto and Siggins, 2006).  

An important role of the NOC system in neuronal circuits involved in reinforcing or 

conditioning effects of EtOH was also proposed by behavioral data (Kuzmin et al., 

2007). 

Thus, our findings, showing a constant upregulation of PNOC gene expression in the 

AM during EtOH intake and, to a lesser extent, in EW, appear to be consistent with a 

role of functional antagonism played by this system (Mogil and Pasternak, 2001) 

towards the positive reinforcing actions of EtOH associated with mu-acting opioids. 

 
 
5.1.2 Epigenetic studies 

 

We here studied the involvement of epigenetic mechanisms in the recently observed 

changes on PDYN and PNOC genes expression evoked by different EtOH 

administrations (D’Addario et al., 2011b). We observed a close relationship between 

selective chromatin modifications and PDYN and PNOC genes expression, 

especially  in rats treated for 1 day with alcohol (1D group). 

Epigenetic mechanisms have already been proposed to be responsible for the cellular 

actions of EtOH (Shukla and Aroor, 2006; Kim and Shukla, 2006) and recently 

chromatin remodeling was suggested to be a plausible characteristic of alcoholism 

(Pandey et al., 2008). 
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It has been observed that chronic EtOH exposure causes a more open structure of 

chromatin, consistent with a switch from heterochromatin to euchromatin (Mahadev 

and Vemuri, 1998).  

In rat hepatocytes, EtOH induced a selective, post-translational acetylation of H3K9 

in a dose-dependent and time-dependent manner (Park et al., 2003), and distinct 

methylation patterns in histone H3K4 and H3K9 correlate with up- and down-

regulation of genes (Pal-Bhadra et al., 2007).  

Our study revealed an inverse relationship of H3K27me3, a repressive mark, and 

H3K9Ac, activating mark, in both PDYN and PNOC promoters, in animals treated 

for 1 day with EtOH in the AM.  

This may point to a covalently modified chromatin domain, already observed by us 

for the PDYN gene in SH-SY5Y cells exposed to alcohol and acetaldehyde 

(D’Addario et al., 2011a) and characterized for many other genes (Azuara et al., 

2006; Roh et al., 2006; Pan et al., 2007; Mikkelsen et al., 2007; Zhao et al., 2007). 

Alterations of H3K9Ac, but not of H3K27me3, were still present in the 5D group for 

the PNOC promoter, again in accordance with the gene expression increase. 

None of the histone modifications under study were not directly associated with gene 

expression changes in the W-1D group.  

This could be possibly explained by different hypothesis. First of all, it has to be 

taken under consideration the complexity of gene regulation by histone modifications 

(Barski et al., 2007) and that multiple modifications may function cooperatively to 

prepare chromatin for transcriptional activation. Moreover, in addition to epigenetic 

mechanisms, gene expression is also regulated by many components of the complex 

transcriptional machinery.  

One possibility for PNOC gene could be also that a long-term maintenance of 

epigenetic chromatin state (Boggs et al., 2002; Peters et al., 2002) could determine 

accessibility for transcription factors eventually inducing specific transcription even 

in absence of the modification not needed anymore.  

 

Changes in DNA methylation in the promoter region of different genes such as the 

alpha-synuclein (Bönsch et al., 2005), dopamine transporter (Hillemacher et al., 

2009), homocysteine-induced endoplasmic reticulum protein genes (Bleich et al., 

2006), as well as PDYN (Taqi et al., 2011) have recently been observed in alcohol 

dependent patients. 
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However, in our study no significant alterations in DNA methylation following 

different alcohol exposures were present.  

This data is anyhow in agreement with our previous in vitro observation showing no 

changes in DNA methylation of PDYN promoter in SH-SY5Y exposed to alcohol 

(D’Addario et al., 2011a). Moreover, we did not observe any alteration of H3K4me3 

in all the experimental groups under study, and thus the latter findings suggest  the 

selectivity of alcohol effects. 

 

 

Overall our data indicate a linkage between gene expression alterations and 

epigenetic modulation in PDYN and PNOC promoters following 1 day and up to 5 

days of alcohol treatment and we observed a cross-regulation of histone 

modifications in the 1D group.  

In our experimental conditions even we did not observed any epigenetic alteration in 

the promoter regions of the genes investigated during withdrawal, we could confirm 

the possible chromatin remodeling mechanism already proposed for alcoholism 

(Pandey et al., 2008). 

 

 
 
5.2 HEROIN 

 
 
5.2.1  Proteins level studies 

 
 
One of the key intracellular pathways activated by MOR is the MAPK pathway. To 

determine whether there are perturbations in protein levels of the MAPK pathway as 

a consequence of chronic heroin abuse, we focused on the core components of the 

pathway including MEK1/2 and ERK1/2.  

In this context, chronic morphine exposure in rats resulted in structural changes of 

neurons compatible with the induction of synaptic plasticity (Sklair-Tavron et al., 

1996; Robinson and Kolb, 1999; Spiga et al., 2003; Liao et al., 2005; Ballesteros-

Yáñez et al., 2007). 

Although some signaling pathways have been associated with morphine-induced 

changes in neuronal size, synaptic connectivity and behavioral plasticity, increasing 
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evidences indicate that proteins of the apoptotic pathways can also play relevant 

roles in promoting various forms of synaptic plasticity (Gilman and Mattson, 2002; 

Mattson and Gleichmann, 2005; Mattson, 2007). 

In the putamen of heroin addicts, the protein expression of MEK1 was significantly 

reduced and on the two known targets of the MEK1/2, we observe an opposite 

effects: significant decrease in the protein level of ERK1 but, conversely, a 

significant increase in the protein levels of ERK2. 

The activation of ERK1 is mediated by both MAPK1/2 and the decrease that we 

observed is clearly evoked by MEK1 level reduction. Conversely ERK2 activation is 

mediated only by MEK2, that didn’t change in our experimental condition, and is 

also be under negative regulation by ERK1, which can inhibit its activation. 

The reduction of the levels of ERK1 protein may lead to a reduction of the block that 

this exerts on the protein ERK2. In this way the effect of a prolonged exposure to 

heroin means, upstream, with a reduction of the activity of MEK1 which has the 

effect downstream to increase the levels of ERK2. 

The control that ERK2 exerts on the protein ELK1 is positive, but the direct effect,  

observed in the putamen of heroin addicts, is a significantly increased in the global 

level of ELK1 but a significant reduction in the level of phosphorylated Elk-1 form. 

Previous studies have shown that amphetamine activates extracellular signal-

regulated kinase 1 and 2 (ERK1/2) resulting in cAMP response element-binding 

protein (CREB) and Elk-1 phosphorylation in striatal neurons (Choe and Wang, 

2002) and our data support the hypothesis that prolonged exposure to substance 

abuse causes a dysregulation of the MAPK pathway in the areas delegated to the 

reward. 

In fact, the striatum is essential for motivation and drug reinforcement. Moreover, 

several basal ganglia dysfunction occurs in drug addiction and its alteration have 

been suggested to be responsible for enhanced liability to abuse drugs 

(Spreckelmeyer et al., 2011). 

The opposite direction in the levels of ELK1 and pELK1 remains controversial. 

Under normal conditions we can expect that the levels of total protein and its 

phosphorylated form going in the same direction after drugs exposure. Often, 

however, the opposite happens. Seems that the direct effect of ERK2 activation been 

the increase in ELK1 total level; the subsequent reduction observed in its 

phosphorylated form could be due to a compensatory effect induced by prolonged 
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activation of the transcription factor, or may simply result from the fact that, even if 

they are fresh-frozen tissue, the time is not sufficient to observe the up-regulation of 

the active form. This is possible if we consider that the exposure to drugs of abuse 

results in adaptation in the brain involving changes in gene expression and 

transcription factors ( Martín et al., 2011). 
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6. CONCLUSION AND PERSPECTIVES 

 
Over the last decade, the distinct processes of addiction  to drugs of abuse are being 

investigated as specific forms of drug-induced neural plasticity, and much attention 

has been focused on the genetic, cellular, molecular and behavioral mechanisms 

underlying the induced changes in brain function (Kalivas and O’Brien, 2008;  

Thomas et al., 2008). Thus, opiate addiction in humans can be approached as a form 

of neuroplasticity, in which the lasting and aberrant adaptations in the brain would 

play major roles in the development of the principal features of this chronic medical 

disorder: opiate tolerance and dependence, behavioral sensitization, and compulsive 

drug use that underlines the long persistence of relapse risk in the addicted person 

(Hyman, 2005; Christie, 2008). 

 

 
Conclusion I 

 

The data about alcohol exposure confirm a role of the PDYN/KOP system in the 

negative hedonic state associated with alcohol addiction (Walker and Koob, 2008) 

and the hypothesis that the NOC system could function as a ‘brake’ to limit EtOH 

intake (Roberto and Siggins, 2006).  

The linkage between gene expression alterations and epigenetic modulation in 

PDYN and PNOC promoters following alcohol treatment confirm the possible 

chromatin remodeling mechanism already proposed for alcoholism (Pandey et al., 

2008). 

Our results could be important to partially fill the lack of knowledge of how EtOH by 

itself affects the opioid system in the brain, and suggest the possibility of using drugs 

acting on these systems for the treatment of withdrawal symptoms and alcohol 

dependence (Walker and Koob, 2008). 
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Conclusion II 

 

The data, about heroin exposure, confirm the presences of perturbations in protein 

levels of the MAPK pathway as a consequence of chronic heroin abuse. 

Moreover, we have shown that the activation of extracellular signal-regulated kinase 

1 and 2 (ERK1/2) resulting in Elk-1 phosphorylation in striatal neurons (Choe and 

Wang, 2002) supporting the hypothesis that prolonged exposure to substance abuse 

causes a dysregulation of MAPK pathway, in the areas delegated to the reward. 

Our results could be important to clarify the role of ELK1 in the regulation of several 

gene expression, for changes in neuronal size, in the synaptic connectivity and in 

behavioral plasticity (Gilman and Mattson, 2002; Mattson and Gleichmann, 2005; 

Mattson, 2007). 

 

 

 

 

 

Knowledge of the neuroanatomy, neurophysiology, neurochemistry and 

neuropharmacology of addictive drug action in the brain is currently producing a 

variety of strategies for pharmacotherapeutic treatment of drug addiction, some of 

which appear promising. 
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