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Chapter 1 

A novel specific genetic translocation in epithelioid hemangioendothelioma showing a fusion 

of the WWTR1 and CAMTA1 genes. 

 

 

Introduction 

 

Vascular tumors encompass a wide histologic spectrum and include hemangioma, 

hemangioendothelioma, angiosarcoma, and their epithelioid variants (Wenger and Wold,  

2000; O’Connell et al., 2001). The vast majority of both benign and malignant vascular 

tumors are readily diagnosed based on their characteristic histologic features, such as the 

formation of vascular spaces and the expression of endothelial markers. However, some 

vascular tumors have atypical histologic features, such as a solid growth pattern, epithelioid 

change, or spindle cell morphology, which complicates their diagnosis (Folpe et al., 2001). 

For this rare subset of vascular tumors, there remains considerable controversy in regards to 

the terminology and the classification that should be used (O’Connell et al., 2001; Evans et 

al., 2003). For example, Evans et al. (2003) argued that epithelioid hemangioma is not a 

distinct tumor entity but rather a misdiagnosed hemangioendothelioma, a tumor that, unlike 

hemangioma, has metastatic potential. Furthermore, hemangioendothelioma of bone is not 

listed as a distinct diagnostic entity in current classification systems (World Health 

Organization Classification of Tumours, 2002).  

The genetic hallmark of vascular tumors is still under investigation. To date, only a 

few cases of vascular tumors have been analyzed cytogenetically, reporting different 

chromosomal translocations (Boudousquie et al., 1996; He et al., 2006; Dunlap et al., 2009). 

However, Mendlick et al. (2001) found an identical chromosomal translocation involving 
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chromosomes 1 and 3 [t(1;3)(p36.3:q25)] in 2 cases of epithelioid hemangioendothelioma 

(EHE), which possibly represents a characteristic rearrangement for this histopathologic 

entity. Therefore, we undertook a systematic molecular analysis of a large spectrum of EHEs, 

including lesions from various anatomic locations and lesions with different biological 

potentials. We hypothesized that a better understanding of the molecular signature of vascular 

tumors may help to refine the present classification system based on immunophenotype alone.  

 

Material and Methods 

 

We retrieved 23 cases of EHE with tissue samples available for molecular analysis 

from the surgical pathology and consultation files of our institution. In each case, we 

confirmed the pathologic diagnosis and the histologic grade by reviewing the pathology 

slides and by immunostaining them for the following endothelial cell markers: CD31, CD34, 

FLI1, and von Willebrand factor. The tumors were assessed morphologically for growth 

pattern, vasoformative nature, epithelioid versus spindle cell composition, cellular 

pleomorphism, mitotic activity, and necrosis (Fig 1).  

For each case, the location of the tumor was recorded, along with the anatomic 

structures involved. Based on their location, the lesions were classified into 4 groups: bone, 

soft tissue, intrathorax, and liver.  

Because EHE, a low-grade tumor with metastatic potential, is intermediate between 

epithelioid hemangioma, a benign tumor, and epithelioid angiosarcoma, a high-grade 

malignant tumor, we included 15 cases of epithelioid hemangioma and 5 cases of epithelioid 

angiosarcoma to determine if there was any relationship between them. In addition, we 

included 3 cases of epithelioid sarcoma because this tumor has the same morphologic and 

immunophenotypic features as EHE. 
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Fig 1: Morphological appearance of epithelioid vascular tumors analyzed in this study. (A) Malignant EHE of the arm, with 
cords and single cells of epithelioid cells with moderate nuclear atypia, embedded in a hyalinized stroma. (B) Classic EHE of 
the liver with bland epithelioid cells with readly visible intracytoplasmatic vacuoles. (C) EH of the penis in a 48-year-old 
man, who presented as multiple cutaneous and s.c. nodules, and showed large epithelioid cells with abundant eosinophilic 
cytoplasm surrounding vascular lumina. (D) Radiation-induced angiosarcoma of breast, composed of predominantly 
epithelioid morphology and showing high grade cytologic atypia, with prominent nucleoli, as well as vascular channel 
formation. 

 
 

FISH was performed on paraffin-embedded 4-µm-thick tissue sections using custom-

labeled FISH probes, as previously described (Antonescu et al., 2010). Each case was 

analyzed with 3 probes covering and flanking chromosomes 1p36.3 and 3q25. The rearranged 

regions of each chromosome were then evaluated using 3 new probes. This process was 

repeated as much as possible to zoom into the rearranged chromosomal regions (Fig. 2, 3).  
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Fig 2: FISH positional cloning strategy using BAC probe sets on 1p36.33-1p36.11. Three sets of experiments identified the breakpoint in 
1p36.23. Underlined genes have been previously reported in other chromosomal translocations. 
 
 
 
 
 
 
 
 
 

 
Fig 3: Distribution of BAC probe sets tested spanning the 3q24-27 region. Three rounds of FISH experiments illustrated in this diagram 
were able to narrow-down the break-apart region between 3q24-25.1. Underlined genes have been previously reported in other chromosomal 
translocations. 
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FISH enabled us to focus on the 200-kb region in which the CAMTA1 and WWTR1 

genes are located in chromosomes 1 and 3, respectively. Therefore, we performed reverse 

transcriptase-polymerase chain reaction (RT-PCR) on the 3 cases of EHE with frozen tissue 

available using housekeeping primers, as previously described (Antonescu et al., 2010). The 

RT-PCR products were analyzed by electrophoresis, and the RT-PCR-amplified products 

were sequenced using the Sanger method (Antonescu et al., 2010). 

 

Results 

 

In this study, we included a total of 17 cases of immunohistochemically confirmed 

EHE with tissue available for molecular analysis (Table I).  

 
EHE 

Case 

no. 

Age Sex Location IHC WWTR1-

CAMTA1 

Fusion 

Oncological 

Outcome 

Months 

1 52 F Soft Tissue CD 31 and CD 34 + AWD 15 

2 54 M Soft Tissue CD 31 and CD 34 + NED 108 

3 59 F Soft Tissue CD 31 and Factor VIII + NED 116 

4 39 M Soft Tissue CD31, CD34 and FLI1 + NED 14 

5 68 M Soft Tissue CD31 and Factor VIII + NED 16 

6 66 M Soft Tissue CD31 and CD34 + NED 4 

7 39 F Soft Tissue CD31 and CD34 + DOD 43 

8 56 M Intra-thoracic CD31 and CD34 + NED 30 

9 65 F Intra-thoracic CD31 and CD34 + NED 20 

10 61 M Intra-thoracic CD31, CD34 and Factor 

VIII 

+ DOD 82 

11 32 M Intra-thoracic CD34 + AWD 7 

12 29 F Intra-thoracic CD31 and CD34 + Lost at FU ? 

13 42 F Intra-thoracic  + NED 23 

14 34 M Intra-thoracic CD31 + DOD 4 

15 48 F Liver CD31 and CD34 + Lost at FU ? 

16 41 F Liver CD31 and CD34 + NED 7 

17 25 M Bone CD31 + DOD 24 
 
Table I: EHE, epithelioid hemangioendotelioma; NED, no evidence of disease; AWD, alive with disease; DOD, dead of disease; FU, 
follow-up. 
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Six cases were excluded because of unsuccessful fluorescence in situ hybridization 

(FISH): 4 cases because of low cellularity and 2 cases because of decalcification. There were 

8 women and 9 men, with a median age of 48 years (range, 25 to 68 years). The anatomic 

distribution of EHE was as follows: 7 cases in soft tissue, 7 in the intrathorax, 2 in the liver, 

and 1 in bone. 

All cases had an identical chromosomal translocation involving chromosomes 1 and 3 

[t(1;3)(p36.23:q25.1)]. Immunohistochemically, all tumors were positive for CD31, showing 

typically strong and diffuse staining, as well as for CD34 and/or Factor VIII or FLI1. The 

RT-PCR applied in the 3 tumors with available frozen tissue showed 3 different 

rearrangements: fragments of exons 8 and 9 of CAMTA1 were fused in-frame to a fragment 

of exon 2 of WWTR1 (Fig. 4).  

 

Fig. 4: Identification of candidate genes on 1p36.23 and 3q25 by FISH. (A) Gray are showed 1p36.23 breakpoint location within CAMTA1 
gene. Three-color FISH showed a break-apart between green-RP11-1120114 and Orange-RP11-338N10 (inset). (B) Two-color FISH 
(orange-RP11-2G17 and Red-580-RP11-255N4) identified a split red signal associated with the orange signal (inset). This pattern narrowed 
the breakpoint at chr.3: 149270000 (hg. 19), which localized in WWTR1 exon 4 to exon 8. 
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Fig. 5: RT-PCR detection of WWTR1-CAMTA1 fusion transcript variants and FISH demonstration of fused CAMTA1 and WWTR1 
signals. (A) Gel electrophoresis showing amplified products in lanes 1-3, of two distinct sizes (M, size marker, lane 1; EHEs line 1, 2 and 3; 
negative control, lane 4). (B) Sequencing of three amplicons identified two molecular variants, with exon 4 of WWTR1 being fused in-
frame to either exon 8 (variant 1, upper panel) or exon 9 (variant 2, lower panel) of CAMTA1. (C) FISH demonstration of fused signals, 
using probes centromeric to CAMTA1 and telomeric to WWTR1. 
 

 

In terms of survival outcome, at follow-up, 9 patients were alive with no evidence of 

disease, 2 were alive with disease, 4 had died of disease, and 2 were lost to follow-up. 

None of the other vascular tumors (13 cases of epithelioid hemangioma, 5 of 

epithelioid angiosarcoma, and 3 of epithelioid sarcoma) had a WWTR1-CAMTA1 fusion. 

Two epithelioid hemangiomas of bone were excluded because of unsuccessful FISH due to 

decalcification. 

 

Discussion 

 

One of the most confusing issues related to vascular tumors is the myriad of names 

that are used to describe them. Pathologically, these tumors are remarkably similar, which 

makes differentiating them from each other very difficult (Wenger and Wold, 2000). This 

issue is compounded by the fact that current surgical pathology textbooks inadequately 
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describe and classify these tumors. Moreover, most of these textbooks do not even 

acknowledge the existence of the 3 subtypes of epithelioid neoplasms. Not surprisingly, 

epithelioid hemangioma continues to be confused with EHE (O’Connell et al., 2001). In a 

series of 13 patients with so-called hemangioendothelioma reported by Evans et al. (2003), 3 

of their patients were treated with chemotherapy, and another 3 underwent amputation. 

However, none of the patients in their series died. Furthermore, Rosenberg has argued that 

Evans et al.’s illustrations of the tumors show characteristics of epithelioid hemangioma, a 

benign neoplasm (Floris et al., 2006). This example illustrates the danger inherent in using 

poorly defined and inappropriate terminology to classify vascular tumors. Because clinical 

behavior and, consequently, treatment and prognosis vary significantly among vascular 

tumors, it is important to effectively and accurately distinguish them from each other.  

Currently, we are limited to our subjective interpretations, so molecular analysis may 

help provide an objective answer. Prior to the current study, an identical chromosomal 

translocation [t(1;3)(p36.3:q25)] was identified in 2 cases of EHE arising in 2 distinct 

anatomic locations, the liver and soft tissue (Mendlick et al., 2001).  

In our study, an in-depth molecular analysis of 17 cases of EHE arising in different 

anatomic locations revealed an identical genetic translocation [t(1;3)(p36:q25)] involving the 

CAMTA1 and WWTR1 genes on chromosomes 1 and 3, respectively. As a result of the 

translocation, 2 protein-coding regions were fused in-frame, producing a chimeric protein. To 

our knowledge, this is the first time that a CAMTA1-WWTR1 fusion has been reported. This 

is especially important because the CAMTA1 and WWTR1 genes have been shown to play 

an important role in oncogenesis (Barbashina et al., 2005; Henrich et al., 2006; Lei et al., 

2008; Chan et al., 2009; Zhang et al., 2009). 
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CAMTA1 

CAMTA1 is a member of a recently described protein family designed as calmodulin-

binding transcription activators (CAMTAs) (Bouché et al., 2002). Its primary structure 

contains a nuclear localization signal, 2 DNA-binding domains (CG-1 and TIG), calmodulin-

binding motifs, and ankyrin repeats. CAMTA1 is a transcription activator potentially 

involved in cell cycle regulation (Nakatani et al., 2004) that may interact with 

Ca2+/calmodulin and be engaged in Ca2+ signaling (Bouché et al., 2002).  

In mammalian cells, Ca2+ and the Ca2+ receptor calmodulin are involved in the 

regulation of gene transcription; nuclear and cytoplasmic Ca2+ control transcription by 

distinct mechanisms. Indeed, certain transcription factors are selectively activated in response 

to distinct Ca2+ signal duration and amplitude (Bouché et al., 2002; Lipskaia and Lompré, 

2004; Munaron et al., 2006). A sustained increase in cytosolic Ca2+ is necessary to activate 

calcineurin, a Ca2+/calmodulin–dependent phosphatase, which dephosphorylates many 

proteins including the transcription factor NFAT (nuclear factor of activated cells) and 

induces its translocation to the nucleus (Lipskaia and Lompré, 2004; Munaron et al., 2006).  

By contrast, transient Ca2+ influx is particularly effective in activating CREB, the 

cAMP-responsive element binding protein, via Ca2+/calmodulin–dependent phosphorylation 

by Ca2+/calmodulin–dependent protein kinase (CaMK) or by mitogen-activated protein 

kinase (Lipskaia and Lompré, 2004; Munaron et al., 2006). Phosphorylation of CREB by 

Ca2+ facilitates its interaction with the co-activator CREB-binding protein (CBP) or the 

related protein p300. There is substantial evidence suggesting that the p300/CBP 

transcriptional co-activators play a critical role in the transactivation of the tumor suppressor 

p53 and on downstream effects of p53 on growth arrest and apoptosis. Therefore, one of the 

functions of CREB phosphorylation via Ca2+ entry might be the maintenance of a quiescent  
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state, at least in excitable cells (Lipskaia and Lompré, 2004; Finkler et al., 2007).  

A possible correlation between CAMTA1 and growth control is further supported by 

Nakatani et al. (2004), who examined the expression of CAMTA1 mRNA and protein during 

cell cycle progression in human neuroblastoma cells. Because the expression of CAMTA1 

was found to be similar to that of p53 in neuroblastoma cell lines, they speculated that 

CAMTA could be involved in cell cycle regulation in the same way as p53 (Nakatani et al., 

2004).  

Bouché et al. (2002) investigated the properties of members of the CAMTA family 

from Arabidopsis and humans and demonstrated the ability of both to interact with DNA in 

vitro and activate transcription in yeast cells. Using the fly CAMTA, Gong et al. (2007) 

further demonstrated that CAMTAs may function as a dimer, both in vitro and in fly 

photoreceptor neurons, and that the CG-1 domain may mediate the potential dimerization of 

CAMTA transcription factors. Therefore, in organisms with multiple CAMTAs, the 

possibility of homo- and heterodimerization exists with further functional implications 

(Finkler et al., 2007; Gong et al., 2007). 

  A possible role for human CAMTA1 in cell proliferation and tumor suppression has 

recently been put forward by several research groups (Katoh and Katoh, 2003; Attiyeh et al., 

2005; Barbashina et al., 2005; Henrich et al., 2006).  

Loss of genetic material on the short arm of chromosome 1 occurs in many human 

cancers. In a study of 683 solid tumors arising at different anatomic locations, the prevalence 

of loss of heterozygosity on 1p ranged from 30% to 64%, depending on tumor location 

(Ragnarsson et al., 1999). However, the most extensive 1p deletion mapping in search of 

tumor suppressors has been done in neuroblastomas, which are known to have 1p losses in 

about 30% of cases (Maris et al., 2000; Attiyeh et al., 2005; White et al., 2005).  
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Although the expression of CAMTA1 is seen in various organs, low CAMTA1 

expression seems to be significantly associated with poor outcome in neuroblastoma (Attiyeh 

et al., 2005; Henrich et al., 2006). In addition, Katoh and Katoh (2003) showed that the 

CAMTA1 gene was located within the commonly deleted region of neuroblastoma. The 

potential role of CAMTA1 in tumor development is also supported by Barbashina et al. 

(2005) who showed, in a subset of gliomas, that a deleted region on 1p36 involved the 

CAMTA1 gene.  

Taken together, these data strongly suggest that CAMTA1 is involved in the 

development of neuroblastoma and other tumors with 1p mutations. Identifying CAMTA1 

downstream target genes and interacting proteins are among the major tasks ahead. Such 

studies should provide important information to elucidate the role of CAMTA1 in 

oncogenesis and, consequently, improve diagnostic tools and therapies. 

 

WWTR1 

WWTR1, also called TAZ, is a transcriptional co-activator with PDZ-binding motif 

that was initially identified by its ability to interact with 14-3-3 proteins. Sharing amino acid 

sequence homology with YAP (Yes-associated protein), TAZ contains a conserved WW 

domain capable to interact with the PDZ domain (Kanai et al., 2000). Lei et al. (2008) 

reported that TAZ is negatively regulated by LATS tumor suppressor kinase, which is a 

component of the Hippo pathway initially defined by genetic studies in Drosophila 

melanogaster (Justice et al., 1995; Xu et al., 1995; Tapon et al., 2002).  

The Hippo pathway controls organ size and contact inhibition by regulating cell 

proliferation and apoptosis (Chan et al., 2010a). It is conserved from fly to human and its 

deregulation in mammals often leads to tumorigenesis (Chan et al., 2010a). The downstream 
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effectors of the Hippo pathway in mammals are the transcriptional co-activators YAP and 

TAZ.  

The transcription factors TEAD1-4 (TEADs) in mammals are major interacting 

partners for functional outcome. When TAZ is not inhibited by the Hippo pathway and 

remains in the nucleus, it interacts with TEADs and activates expression of genes such as 

CTGF, IGFBP3, ITGB2, Birc5/Survivin, Gli2, and Axl (Chan et al., 2010a). Phosphorylation 

of TAZ by LATS leads to 14-3-3 binding and translocation from the nucleus to the cytoplasm, 

resulting in functional inactivation of this transcription co-activator. TAZ itself has no DNA-

binding domain, and so it must bind to DNA-binding transcription factors to stimulate 

downstream target gene expression (Lei et al., 2008).  

TAZ has been shown to interact not only with TEADs (Chan et al., 2009) but also 

with many other proteins, such as EphrinB1 (Xing et al., 2010), Cbfa1/Runx2 (Hong et al., 

2005), Wbp2 (Chan et al., 2010b), and PAX3 (Marukami et al., 2005). The identification of a 

myriad of TAZ-interacting transcription factors participating in various cellular and 

development processes raises an important question as to which protein is most relevant to 

the role of TAZ in oncogenesis and what is the underlying molecular mechanism (Chan et al., 

2009).  

Chan et al. (2009) presented evidence supporting a novel mechanism for TEADs to 

mediate nuclear accumulation of TAZ to promote oncogenic transformation. They suggested 

that TAZ distribution is regulated by 2 major regulatory mechanisms. The first is the well-

defined cytoplasmic sequestration by interaction with 14-3-3 proteins upon its 

phosphorylation by the Hippo pathway; the other is nuclear retention mediated by its 

interaction with TEADs. Their results suggest that endogenous TEADs, and especially 

TEAD4, are important for TAZ to promote oncogenic transformation of MCF10A cells 

(Chan et al., 2009).  
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Zhang et al. (2009) supported these results and identified TEADs transcription factors 

as the major TAZ-interacting transcription factors in HEK293 cells. They further 

demonstrated that TEADs are indispensable for TAZ function in promoting cell proliferation 

and cell migration and in inducing epithelial mesenchymal transition, which are all involved 

in cancer initiation and progression (Zhang et al., 2009).  

TAZ is highly expressed in a wide spectrum of human cancer cell lines and various 

primary tumors, suggesting that this protein has oncogenic potential (Chan et al., 2008; 

Balasenthil et al., 2010). Chan et al. (2008) reported that TAZ was highly expressed in 

invasive breast cancer cell lines and in a significant fraction of primary breast cancers. They 

also reported that TAZ overexpression induced morphologic changes characteristic of cell 

transformation and enhanced cell migration and invasion (Chan et al., 2008).  

In addition, Balasenthil et al. (2010) found TAZ overexpression in pancreatic cell 

lines. Ectopic TAZ expression also induced cell proliferation, overcame contact inhibition, 

and led to tumorigenesis in nude mice (Lei et al., 2008).  

Taken together, these finding advance our understanding of the role of TAZ in cancer 

development and provide a potential therapeutic target for cancer treatment. Chan et al. 

(2011) recently showed that angiomotin, a novel regulator of endothelial cell migration 

(Troyanovsky et al., 2001), can interact with TAZ, leading to its cytoplasmic retention and 

inhibiting its transcriptional outcome and oncogenic property. This interaction causes 

cytoplasmic sequestration of TAZ in a manner similar to, but independent of, TAZ 

interaction with the Hippo pathway. Along with this study, future experiments should further 

our understanding of the possible use of angiomotin as a targeted therapy for EHE. 

Acquired chromosome abnormalities were first suggested to be casual factors in the 

origin of cancer by Boveri in 1902 (Boveri, 2008). However, the first specific translocation 

identified in human neoplasia was t(9;22)(q34;q11), resulting in the Philadelphia 
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chromosome (Rowley JD, 1973).  There is now a general agreement that cancer is a genetic 

disease with 2 types of initiating genetic events having been identified: the inactivation of 

genes by deletion, mutation, or epigenetic mechanism, and the activation or deregulation of 

genes as a consequence of point mutation, amplification, or balance cytogenetic 

abnormalities (Mitelman F et al., 2007). It is also should be noted that there are a few 

examples of balanced translocations leading to a loss of gene function (Popovici et al., 2002; 

Belloni et al., 2004).  

Compared with haematological disorders, our knowledge of the karyotype of solid 

tumors is limited. All solid tumors make up only 27% of the total number of cases with an 

abnormal karyotype reported in the literature (Mitelman F et al., 2007). In fact, we know less 

about cytogenetics of the most common malignant tumors becasuse the chromosome 

morphology is often poor and the karyoptype is usually complex. However, molecular and 

cytogenetic studies performed over the past decades have had a major impact on the 

identification and classification of a large variety of sarcomas (Bovée and Hogendoorn, 2010).  

Non-random chromosomal translocations have been detected in about 15% to 20% of 

mesenchymal tumors, and they are restricted to specific tumor types (Mitelman et al., 2007; 

Bovée and Hogendoorn, 2010). Tumor specific molecular changes can be useful for several 

reasons. First, the identification of chromosomal translocations helps the pathologist in 

diagnosing these lesions. Second, these tumor-specific molecular changes may serve as 

markers to detect minimal residual disease. Third, these molecular data increase our 

understanding of the pathogenesis of cancer. Finally, recurrent fusion oncogenes offer the 

best potential targets for therapeutics strategies (Kaye, 2009; Bovée and Hogendoorn, 2010).  

Since vascular tumors are uncommon neoplasms, they are generally regarded as 

difficult to classify by surgical pathologists. The differential diagnosis of these tumors can be 

very difficult because of their remarkably similar histopathologic and morphologic features. 
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Although morphologic and immunohistochemical features remain the cornerstone of 

diagnosis, tumor-specific genetic alterations can be very helpful in diagnosis-making (Bovée 

JV and Hogendoorn PC, 2010). Indeed, there is a strong sentiment to reclassify solid tumors 

on the basis of their pathogenetic fusion translocations (Kaye, 2009).  

It is important to emphasize that the rearrangenets might not be the sole anomaly. In 

fact, tumor developmemt is usually clonal evolution process driven by the accumulation of 

new genetic changes. However, recurrent balanced aberrations represent often an initial event 

in oncogenesis. Moreover, there is some evidence that the expression of certain sarcoma gene 

fusions is sufficient for the cell differentiation and tumorigenicity (Riggi et al. 2006; Riggi et 

al 2010).  

Most balanced structural rearrangements have been found to exert their tumorigenic 

action by 2 alternative mechanisms: overexpression of a gene in one of the breakpoints, or the 

creation of a hybrid gene through the fusion of two genes, one in each breakpoint. Therefore, 

the identification of structural chromosome changes is important because the breakpoints 

involved point to the location of cancer-relevant genes (Mitelman et al., 2007). Specific 

translocations can also reveal targets for therapy. A fusion product involving the collagen 

type 1, α1 gene and the platelet-derived growth factor B gene (COL1A1-PDGFB) in 

dermatofibrosarcoma protuberans can be blocked using tyrosine kinase inhibitors at PDGFR, 

such as imatinib (Bovée and Hogendoorn, 2010). 

In summary, we identified a novel specific chromosomal translocation 

[t(1;3)(p36:q25)] in 17 cases of EHE arising in distinct anatomic locations and involving the 

CAMTA1 and WWTR1 genes. This chromosomal translocation may serve as the ultimate 

biomarker, as it is specific for this distinct histopathologic tumor type, so it may be helpful to 

refine the classification of vascular neoplasms.   

Furthermore, it is widely accepted that fusion proteins resulting from chromosome 
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translocations are oncogenic, based on evidence that they are able to transform cells in 

culture (Xia and Barr, 2005). As more oncogenic properties of the fusion protein and 

cooperative events are elucidated, therapeutic strategies can be further developed to interrupt 

these oncogenic processes.  
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Chapter 2 

Monoclonality of multifocal epithelioid hemangioendothelioma: confirmation by analysis of 

WWTR1-CAMTA1 rearrangements. 

 

 

Introduction 

 

Epithelioid haemangioendothelioma (EHE), similar to other vascular tumors, presents 

with multiple non-contiguous tumors in approximately 50% of cases, and it is unclear 

whether the separate lesions represent multicentric disease or metastases (Deyrup and 

Montag, 2007; O’Connell et al., 2001). Multicentricity in mesenchymal neoplasms is defined 

the presence of tumor at two or more anatomically separated sites, before the manifestation of 

disease in sites where sarcomas most commonly metastasize, such as the lungs (Antonescu et 

al., 2000). Because the clinical course of EHE is frequently indolent, the concept that 

different lesions are independent primary tumors often prevails (Gupta et al., 2006; 

O’Connell et al., 2001).  

However, it seems that we are limited to our subjective interpretations and that we 

must wait for molecular analysis of vascular tumors before a more definitive and objective 

answer becomes apparent. 

In this study, we examined the question of whether EHE is a metastatic or 

multicentric disease. The recent identification of WWTR1-CAMTA1 fusion, as the genetic 

hallmark of EHE irrespective of anatomic location, provides an objective and powerful 

diagnostic tool that can be used to distinguish if multifocal EHE has a monoclonal origin. In 

fact, as expected, in our previous study the genomic breakpoints of the t(1;3)(p36;q25) 

differed from one patient to others (Errani et al., 2011). 
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Therefore, we undertook a molecular analysis of 2 multicentric EHEs of the liver, 

including separate tumor samples from each patient. Our hypothesis is that the identification 

of an identical WWTR1-CAMTA1 rearrangement in different lesions from each patient could 

explain the monoclonal origin of EHE. 

 

Material and Methods 

 

We retrieved 2 cases of EHE from the surgical pathology files of our institution with 

available tissue for molecular analysis. In each case, the diagnosis and histologic grade was 

confirmed by reviewing the H&E slides. All tumors included for analysis were positive for 

the CD31 endothelial marker. The tumors were assessed morphologically for growth pattern, 

vasoformative nature, epithelioid versus spindle cell composition, cellular pleomorphism, 

mitotic activity, and necrosis (Fig. 1).  

For each case, the location of the tumor was recorded, along with the anatomic 

structures involved. Both patients presented with multiple sites in the liver, two lesions and 

three lesions, respectively (Fig. 2).  

Fluorescence in situ hybridization (FISH) positional cloning of the t(1;3)(1p36.23;3q25.1).  

FISH was performed in both cases for the presence of WWTR1/CAMTA1 

rearrangement to confirm the histologic diagnosis (Errani et al., 2011).  

As previously reported, BAC clones were obtained from the BACPAC Resources 

Center of the Children’s Hospital of Oakland Research Institute (http://bacpac.chori.org) 

(Errani et al., 2011). Probe preparation and FISH analysis were performed on paraffin-

embedded, 4-µm-thick tissue sections, as previously described (Antonescu et al., 2010).  

In brief, BAC DNA was isolated using phenol-chloroform, labeled with different 

fluorochromes (Enzo, PA, USA) in a nick translation reaction, and validated on normal 
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metaphases. Probe mixtures were co-denatured, and hybridized to pretreated slides. Slides 

were incubated, washed and mounted with DAPI in an antifade solution. At least two 

hundred successive non-overlapping nuclei were examined using a fluorescence microscope.  

A case was confirmed as positive for rearrangement of a given gene when ≥ 20% of 

the nuclei examined showed a break-apart signal pattern using its respective BAC probes. 

Reverse transcriptase-polymerase chain reaction (RT-PCR).  

In both EHE tumors adequate RNA extracted from frozen tissue (Trizol Reagent; 

Invitrogen, USA) was available to investigate possible fusion transcripts from each different 

lesion in each patient. RNA quality was determined by Eukaryote Total RNA Nano Assay 

and cDNA was tested by RT-PCR for PGK housekeeping gene. A two-step RT-PCR was 

used, with Oligo(dT)20 primer under SuperScript® III system (Invitrogen, USA) being 

applied for first-strand cDNA synthesis, followed by a second-step PCR, using the HotStar 

Taq Master Mix (Qiagen, Valencia, CA). The RT-PCR products were analyzed by 

electrophoresis and the RT-PCR amplified products were sequenced using the Sanger method. 

Primers used for the RT-PCR detection of WWTR1-CAMTA1 fusion are listed in Table 1.  

 

Results 

 

FISH analysis for the presence of a WWTR1 and CAMTA1 gene rearrangements 

showed signal abnormalities in both WWTR1 and CAMTA1. Combined results confirmed the 

translocation t(1;3)(1p36.23;3q25.1) in both EHE cases (Fig. 3). 

The RT-PCR applied in both cases identified an amplified product in each case, but of 

two different sizes. However, the size of the rearranged bands from multifocal tumors in each 

individual patient was identical (Fig. 4). RT-PCR amplified two 5’WWTR1-CAMTA13’ 

variant transcripts from both EHE cases. The 5’WWTR1 showed a consistent breakpoint 
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within intron 3 and intron 4 respectively, while another 2 different breakpoints were seen in 

exon 9 by 3’CAMTA1. Exon 3 (variant 1) and exon 4 (variant 2) of WWTR1 were fused to 

CAMTA1 exon 9. 

The sequence of the fusion gene confirmed a different WWTR1-CAMTA1 

rearrangement in each patient, but an identical WWTR1-CAMTA1 rearrangement from 

different lesions in each individual patient (Fig. 5). 

 

 

Fig. 5: Gel electrophoresis showing amplified products from two different cases of two distinct sizes. 
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Fig 6: Sequencing of three amplicons identified two molecular variants, with exon 3 (variant 1, upper panel) or exon 4(variant 2, lower 
panel) of WWTR1 being fused in-frame to exon 9  of CAMTA1. 
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Discussion 

 

As with other vascular tumors, epithelioid hemangioendotelioma can be multifocal in 

up to 50% of cases (Deyrup and Montag, 2007; O’Connell et al., 2001). Because of its usual 

indolent clinical behaviour, this finding is commonly referred to as multifocal disease, and is 

often not accepted or recognised as a metastatic process (Gupta et al., 2006; O’Connell et al., 

2001). 

In this study, we examined the question of whether EHE is a multicentric or 

metastatic tumor. We hypothesized that molecular analysis could help elucidate this question. 

A variety of molecular genetic molecular techniques can be utilized to determine the 

clonality of multifocal tumors. Monoclonal tumors should exhibit the identical initial genetic 

alteration in genes responsible for early tumor development. However, additional genetic 

changes will subsequently accumulate, leading to sub-clonal divergence and intratumoral 

heterogenicity (Hafner et al., 2002).  

A frequent used method for evaluating clonality is based on X-chromosome 

inactivation. However, the reliability of X-chromosome inactivation analysis for clonality 

study in tumors has been challenged (Sieben et al., 2003). One problem is that tumors may 

show altered DNA methylation patterns. Furthermore, non-random X-chromosome 

inactivation in germline DNA of healthy and cancer-affected females may complicate the 

interpretation (Sieben et al., 2003). 

In contrast to analysis of clonality by X-chromosome inactivation, loss of 

heterozygosity (LOH) is an irreversible genetic event acquired during tumorigenesis rather 

than an epigenetic phenomenon like methylation. The weakness of this approach is that in the 

absence of informative markers and the failure to detect LOH it is likely to underestimate the 

frequency of clonality (Sieben et al., 2003).  
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Another technique used to investigate clonality in multifocal cancer is comparative 

genomic hybridization (CGH). However, in contrast to LOH analysis, the alternate loss of 

paternal and maternal alleles, strongly indicating different clones, is not detectable with this 

method. Therefore, CGH and LOH analysis may be less sensitive methods for detecting 

genetic aberrations as compared to polymerase chain reaction (PCR) (Kros et al., 2002).  

If the gene rearrangement is the initiating event of tumorigenesis, fusion product 

seems to be the most powerful idiotypic clonal marker (Antonescu et al., 2000; Melotti et al., 

2010).  In chromosomal translocations, the genomic breakpoints usually occur within introns. 

However, like in our study, the gene rearrangement can also occur within exons. Within 

introns or exons, the distribution of breakpoints from different cases seems essentially 

random. This provides formal support for the use of these rearrangements to establish clonal 

relationships in multifocal tumors characterized by specific chromosomal translocations 

(Antonescu et al., 2000). 

To our knowledge, there are only a few reports that have been used gene 

rearrangements to prove the clonal origin of multifocal tumor (Antonescu et al., 2000; 

Melotti et al., 2010; Ohta K et al., 2008; Plaza JA et al., 2008; Shah ZH et al., 2009; Sugg et 

al., 1998). Most of them have investigated multifocal lymphoproliferative processes and the 

analysis of clonality by PCR has played an important diagnostic role (Melotti et al., 2010; 

Ohta K et al., 2008; Plaza JA et al., 2008; Shah ZH et al., 2009; Sugg et al., 1998). Ohta et al. 

reported a case in which B cell monoclonality was found in an intraocular lymphoma and a 

primary breast lymphoma. They showed an identical gene rearrangement in the vitreous and 

breast tumors. The same-sized band were detected in both samples and direct sequencing of 

the PCR products revealed an identical monoclonal rearrangments of the IgH gene. 
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Our study shows similar result. In fact, we tested two multifocal liver EHEs with 

different rearrangments of WWTR1 and CAMTA1 genes. An identical monoclonal 

rearrangment was found in each lesion fron each patient, but not in tumors from different 

patients. The identical WWTR1-CAMTA1 rearrangment suggests that multifocal EHE 

resulted from metastasis of the same neoplastic clone rather than a simultaneous neoplastic 

formation of multiple EHE cell clones. 

Our conclusions are supported by the results of a recent study that reported a series of 

patients with liver EHE. Sixsteen patients received liver transplant and 5 of them (31%) had 

recurrence of disease in the new liver (Lau et al., 2011).  

This finding follows the “seed and soil” theory that Paget (1989) proposed in 1889, 

namely, “When a plant goes to seed, its seeds are carried in all directions; but they can only 

live and grow if they fall on congenial soil.”  

Recently, many investigators have validated this metastatic theory (Kaplan et al., 

2006; Gupta et al., 2006; Norton and Massagué, 2006). They defined the metastatic niche 

(soil) as a friendly site for the tumor cell (seed) to attach to and grow. In addition, Norton and 

Massagué (2006) proposed that cancer was a self-seeding disease and that the appearance of 

multifocality was conveyed by self-seeds returning to the primary tumor’s organ of origin but 

not attaching to the primary tumor mass.  

Following these hypotheses, we can speculate that in both our cases the EHE cells 

were able to attach and grow only in the liver. Therefore, it seems that multifocal EHE is 

more likely a metastatic disease rather than manifestation of multicentricity. 

Our data could have therapeutic implications. In fact, metastatic disease suggests an 

aggressive tumor that warrants further treatment; in contrast, tumors arising independently 

may simply reflect the propensity of an organ to develop occult tumors, which may or may 

not progress to clinically significant disease.  
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In summary, our present analysis of the genomic rearrangments of WWTR1-

CAMTA1 genes in 2 patients with liver EHE confirms the monoclonal origin of multifocal 

EHE. This unusual clinical manifestation most likely represents an intrinsic property of this 

subset of EHE to re-seed in a congenial soil like the tissue of origin. 
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Chapter 3 

Epithelioid Hemangioma of Bone and Soft Tissue: a benign tumor with metastatic potential? 

 

 

Introduction 

 

Vascular tumors encompass a wide histologic spectrum and include hemangioma, 

hemangioendothelioma, angiosarcoma, and their epithelioid variants (Wenger and Wold,  

2000; O’Connell et al., 2001). The vast majority of both benign and malignant vascular 

tumors are readily diagnosed based on their characteristic histologic features, such as the 

formation of vascular spaces and the expression of endothelial markers. However, some 

vascular tumors have atypical histologic features, such as a solid growth pattern, epithelioid 

change, or spindle cell morphology, which complicates their diagnosis (Folpe et al., 2001).  

For this rare subset of vascular tumors, there remains considerable controversy in 

regards to the terminology and the classification that should be used (O’Connell et al., 2001; 

Evans et al., 2003). For instance, epithelioid hemangioma (EH) continues to be confused with 

hemangioendothelioma (O’Connell et al., 2001). Evans et al. (2003) recently argued that EH 

is not a distinct clinicopathologic entity but rather a misdiagnosed hemangioendothelioma, a 

tumor that, unlike hemangioma, has malignant potential. In a series of 13 patients with so-

called hemangioendothelioma reported by Evans et al. (2003), 3 of patients were treated with 

chemotherapy, and another 3 underwent amputation. Remarkably, none of the patients in 

their series died.  However, in a “Letter to the Editor” in the International Journal of Surgical 

Pathology, Rosenberg argued that Evans et al.’s illustrations of the tumors showed 

characteristics of EH, a benign neoplasm (Floris et al., 2006). This example not only 

illustrates the current confusion surrounding the classification of this rare subset of vascular 
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tumors but also indicates the danger inherent in using poorly defined and inappropriate 

terminology to classify them.  

Because the clinical behavior and, consequently, treatment and prognosis of vascular 

tumors can vary significantly, it is important to effectively and accurately distinguish them 

from each other.  In this study, we examined the question of whether EH is a benign tumor 

with metastatic potential. We hypothesize that the clinical behavior of EH can help elucidate 

this question and establish if this rare tumor is a benign or malignant neoplasm.  

 

Material and Methods 

 

We performed a retrospective analysis of all cases of EH from the surgical pathology 

files of our institution. In each case, the diagnosis of EH was confirmed by reviewing 

available histologic slides (Fig. 7).  

Available radiographic images were also reviewed, and treatment and follow-up 

information was obtained from the patient records. In addition, for each case, fluorescence in 

situ hybridization (FISH) was performed to exclude the presence of the specific chromosomal 

rearrangement t(1;3)(1p36.23;3q25.1), which has been shown to be characteristic of 

epithelioid hemangioendothelioma (EHE) (Errani et al., in press). BAC clones were selected 

according to the UCSC genome browser (http://genome.ucsc.edu) and were obtained from 

the BACPAC Resources Center of the Children’s Hospital of Oakland Research Institute 

(CHORI) (Oakland, CA) (http://bacpac.chori.org). Probe preparation and FISH analysis were 

performed on paraffin-embedded, 4-µm-thick tissue sections, as previously described 

(Antonescu et al., 2010).   
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Fig. 7: Histologic analysis showed (A) a lobular growth pattern of the lesion with extension outside the cortex in adjacent soft 
tissue; (B) mature vascular lumen formation with eosinophilis infiltrating the adjacent stroma; (C) vasoformative properties at the periphery 
of the lesion, with larger calibre vessels lined by epithelioid cells; (D) hobnailed endothelial cells protruding in the lumen in a characteristic 
tomstone appearance; (E) the central portion of the lesion typically had more solid growth with sheets of epithelioid cells with densely 
eosinophilic cytoplasm and lacked obvious vessel formation. Occasionally abundant erythrocyte extravasation was seen; (F) epithelioid cells 
with a more foamy, vacuolated cytoplasm and focal, moderate pleomorphism and pseudonuclear inclusions; (G) intracytoplasmic vacuoles 
but typically these were not a predominant feature; (H)occasional areas of bland spindle cell component; and (I) vascular ivasion in one 
patient who had lymphonode spread. 

 

 

At least 200 successive non-overlapping nuclei were examined using a fluorescence 

microscope. A case was considered to have a specific genetic rearrangement if ≥ 20% of the 

nuclei examined showed a break-apart signal pattern using its respective BAC probes (Fig. 8).  
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Fig. 8: Three-color fluorescence in situ hybridization (FISH) shows no break-apart (split signal) in the region of 3q25.1-25.3. 

 

Results 

 

We identified 16 patients with tissue available for molecular analysis: 4 women and 

12 men, with a mean age at presentation of 44 years (range, 18 to 81 years). Additional 

demographic data for these patients are shown in the Table. 

In each case, the diagnosis of EH was first confirmed by reviewing available 

histologic slides. All tumors were positive for the CD31 endothelial marker.  

Morphologically, EHs were defined as either lobulated or well-circumscribed lesions, which 

had clear vasoformative properties, forming “mature” vessels with open lumina. The lesional 



 

33 
 

cells occasionally had the so-called tombstone appearance and consistently showed an 

abundant, glassy, eosinophilic cytoplasm.  

The correct diagnosis of all our EH cases based on immunophenotype alone was 

confirmed thanks to lack of the specific genetic rearrangement [t(1;3)(1p36.23;3q25.1)] 

characteristic of epithelioid hemangioendothelioma that we showed in a previously report 

(Errani et al., 2011). 

The anatomic distribution of EH was as follows: 9 cases in bone, 5 in soft tissue and 2 

in both bone and soft tissue. Four patients had an unusual multifocal presentation of EH in 

the hand, wrist, foot, head and neck respectively.  

On conventional x-rays, the bone lesions were usually lucent with well-defined 

margins (Fig. 9).   

 

Fig 9: (A) The en bloc resection specimen shows a diffusely hemorrhagic cut surface lesion expanding the rib. (B) A contrast-enhanced CT 
image of the same patient shows a multiseptated, expansile lytic lesion in the anterior portion of the right ninth rib, indenting and causing 
low-attenuation presumed to be reactive edema in the subjacent liver. 
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In a few cases of EH of bone, the bone was expanded and focally destroyed with 

tumor extending into adjacent soft tissue. By contrast, in cases of EH of soft tissue, the 

lesions had less-defined margins on the magnetic resonance images.  The size of the tumors 

was known in 12 patients, ranging from 1 cm to 8.5 cm in diameter. 

Treatment varied widely, ranging from biopsy to segmental resection.  Most patients 

with EH of bone were treated with intralesional curettage. Three patients, 2 with EH in the rib 

and 1 with EH in the carpus, underwent segmental resection. By contrast, all patients with EH 

of soft tissue underwent excision with marginal or wide margins, except for 1 patient who 

only underwent biopsy. Two patients were also treated with radiation therapy, and one of 

these patients with systemic therapy.  

Follow-up information was available for all 16 patients; the mean follow-up time was 

64.5 months (range, 6 to 162 months). None of the patients died of disease, including the 4 

patients with a multifocal presentation of EH, and only 2 patients developed a local 

recurrence (Table 2). 

A few cases, because of their unusual clinical features, are described in detail.  The 

first patient was a 56-year-old woman with numerous lesions of the right foot (Fig 10). He 

was treated with trans-tarsal amputation. The patient is alive and well free of disease 66 

months later. The second patient was an 18-year-old man with an EH of the right carpus 

involving the scaphoid and trapezium bones. He underwent segmental resection with wide 

margins, and he is currently alive with no evidence of disease 156 months after surgery. The 

third patient was a 49-year-old man who presented with numerous bone and soft tissue EHs 

in the index and middle fingers.   
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EHCase 
no. 

Age 
(y) 

Sex Location Multifocal vs 
Solitary 

Treatment Outcome 
(months) 

1 63 M Soft Tissue (arm) Solitary Biopsy AWD 
(64) 

2 38 M Soft Tissue (arm) Solitary Surgery (M) NED (58) 
3 63 F Soft Tissue (hand) Solitary Surgery (M) NED (67) 
4 38 F Soft Tissue (axilla) Solitary Surgery (W) NED 

(162) 
5 31 M Bone (metatarsus) Solitary Surgery (I) NED (51) 
6 20 M Bone (metatarsus) Solitary Surgery (I) NED (31) 
7 40 M Bone (metatarsus) Solitary Surgery (I) NED1 

(22) 
7 59 M Bone (cuneiform) Solitary Surgery (I) NED (9) 
8 23 M Bone (rib) Solitary Surgery (W) NED (68) 
9 41 M Bone (rib) Solitary Surgery (W) NED1 

(67) 
10 81 M Bone (clavicle) Solitary Surgery (I) NED (6) 
11 50 M Bone (vertebra) Solitary Surgery (I) 

and RXT 
DOO (16) 

12 34 F Bone (tibia) Solitary Surgery (I) NED1 
(114) 

13 18 M Bone (carpus) Multifocal 
(scaphoid and 
trapezium) 

Surgery (W) NED 
(156) 

15 49 M Bone  and Soft 
Tissue (hand) 

Multifocal (index 
and middle 
fingers) 

Surgery (I) NED (48) 

16 56 F Bone and Soft 
Tissue (foot) 

Multifocal 
(midfoot and 
forefoot) 

Surgery (W) NED (66) 

17 35 M Soft Tissue (head 
and neck) 

Multifocal (bone 
and parotid) 

Surgery (M), 
RXT and CHT 

NED1 
(240) 

 
Table II: EH, epithelioid hemangioma; M, male; F, female; NED, no evidence of disease; NED1, no evidence of disease after local or distant 
recurrence; AWD, alive with disease; DOO, dead of other causes. 
 

Several lesions were excised, and the remainder was treated with laser therapy. This 

patient is alive and disease-free 48 months after treatment. Another patient was a 35-year-old 

man, who presented with a facial mass in 1991. He was treated with chemotherapy 

(Adriamycin and Edatrexate) without significance response. Therefore, he received 3000cGy 

in 10 fractions to the whole brain with an excellent response. He developed a local recurrence 

involving lymphoid tissue adjacent to the salivary gland in 2002.  
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Thus, the patient underwent marginal excision of the lesion followed by radiation 

therapy (4500cGy). He did well until 2005, when he presented left sphenoid and orbital roof 

metastases. These lesions were excised only in 2011 and the presence of EH was 

subsequently confirmed. He is alive 20 years later the first appearance of the disease.  

   

 

Fig 10: (A) A radiograph shows the first metatarsal has been replaced and expanded by a multiseptated lytic lesion. No gross calcified 
matrix is evident in the lesion. (B) A coronal non contrast CT image through the forefoot of the same patient shows marked expansion of the 
first metatarsal with extensive cortical destruction and several thin intralesional septa. The attenuation of the tumor is slightly lower than that 
of muscle. 
 
 
 
 

Finally, the last interesting case was that of a 63-year-old man diagnosed with a soft 

tissue EH in the arm (Fig 11). He was treated with biopsy alone and did not show any disease 

progression at follow-up 64 month after treatment. 
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Fig 11: (A) The radiograph shows a tiny permeative, lytic focus in the posterior cortex of the midhumeral shaft (arrow). No calcifications 
are evident in nearby soft tissues. (B) An axial proton density MR image shows heterogeneous tumor deposits in the triceps muscle and an 
intracortical tumor deposit (arrow). (C) A sagittal proton density MR image shows multinodular tumor deposits with low-signal intensity 
inner rings (arrows), possibly related to hemosiderin deposition. 
 
 

Discussion 

 

Epithelioid vascular tumors remain controversial because of their unusual morphology, 

poorly understood histogenesis, and unpredictable biologic behavior (Keel et al., 1999). In 

fact, there is much debate involving certain vascular tumors that show an epithelioid 

phenotype and that share many of the same histologic features. This has resulted in the 

frequent misdiagnosis and inappropriate treatment of EH (Nielsen et al., 2009).  
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Although imaging is extremely helpful in the diagnosis of hemangioma and usually 

excludes the need for biopsy, it cannot be used effectively in the diagnosis of EH and other 

vascular tumors because these entities lack characteristic radiologic features (Gupta et al., 

2006; Shah et al., 2005). In fact, the presence of multifocal lesions may be the only clue 

indicating a diagnosis of a vascular tumor (Wenger and Wold,  2000). 

Morphologic and immunohistochemical features thus remain the cornerstone of 

diagnosis of vascular tumors and their epithelioid variants. The differential diagnosis of EH 

includes EHE and epithelioid angiosarcoma. Because of their epitheloid appearance, 

epithelioid vascular neoplasms may also be misdiagnosed as metastatic carcinoma. However, 

antibodies against certain vascular and endothelial antigens have been shown to be helpful in 

differentiating vascular tumors from metastatic carcinomas (Kleer et al., 1996). Furthermore, 

features that distinguish EH from epithelioid angiosarcoma include the absence of significant 

cytologic atypia, brisk mitotic activity, and necrosis and the presence of well-formed vessels 

(Deyrup et al., 2007). The more difficult distinction between EH and EHE could be made on 

the basis of our recent discovery of a novel genetic rearrangement that is specific to EHE, 

[t(1;3)(1p36.23;3q25.1)] (Errani et al., in press), which was not present in all cases of EH 

analyzed in the current study. The correct differential diagnosis between these 2 entities is 

critical because EHE exhibits a more aggressive clinical course than EH. It is also more 

frequently multifocal when occurring in bone (O’Connell et al., 1993). By contrast, the vast 

majority of bone EHs are solitary. However, up to 25% of bone EHs can affect the skeleton 

in a multifocal fashion (Sung et al., 2000; O’Connell et al., 2001; Deshpande et al., 2003).  

Moreover, Floris et al. (2006) reported a case of EH of the 2nd toe with secondary 

involvement of the ipsilateral inguinal, iliac, and paraortic lymph nodes. The groin lymph 

nodes were excised, and the presence of EH was subsequently confirmed.  
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This 2006 article by Floris et al. sparked a controversy reflected in an exchange of 

opinions in the form of “Letters to the Editor” in the International Journal of Surgical 

Pathology (Floris et al., 2006). In his letter, Evans reiterated his opinion that EH is not a 

distinct clinicopathologic entity but rather a misdiagnosed hemangioendothelioma, a tumor 

with malignant potential. However, in his own letter, Rosenberg argued that these neoplasms 

are histologically and biologically different from one another. In a series of 13 patients with 

so-called hemangioendothelioma reported by Evans et al. (2003), none of the patients died of 

disease and, in Rosenberg’s opinion, Evans et al.’s illustrations of the tumors show 

characteristics of EH. Of these 13 patients, 3 were treated with aggressive chemotherapy, and 

3 underwent a forequarter amputation, hip disarticulation, and internal hemipelvectomy, for 

what Rosenberg considers a benign neoplasm. Clearly, the classification of epithelioid 

vascular tumors remains a topic of considerable controversy as EH continues to be confused 

with EHE or some other type of vascular sarcomas.   

Crucial to the significance of this controversy is what effect, if any, the classification 

of these vascular tumors has on their treatment and prognosis (O’Connell et al., 2001). In a 

recent study, Nielsen et al. (2009) analyzed 50 cases of EH of bone. In their series, most 

patients presented with a single lesion, but 9 patients (18%) presented with lesions involving 

more than 1 bone. Two of the patients with multifocal EHs had discontinuous lesions of bone, 

skin, artery, and lymph node, but none of these patients with an unusual multifocal 

presentation of EH experienced an adverse outcome. Therefore, the nonaggressive behavior 

of EH reported in the literature (Evans et al., 2003; Floris et al., 2006; Nielsen et al., 2009) 

supports the hypothesis that this tumor is indeed benign.  

Despite the fact that our series is relatively small, our findings confirm that EH does 

not behave aggressively and thus is a benign tumor. In fact, although most patients received 

conservative treatment, including only biopsy in 1 case, their long-term prognosis was 
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excellent, and none of them died of disease. By contrast, as we previously reported, EHE is 

also associated with good prognosis, but it can metastasize in some cases and produce a fatal 

outcome (Errani et al., in press ).   

In the current study, we found that 4 cases of EH had a multifocal appearance. 

Although we cannot disprove a multicentric origin for EH, we favor the theory of metastatic 

spread of the tumor from bone and soft tissue, given the intimate relationship that vascular 

tumors typically have with non-neoplastic vessels (Bollinger et al., 1994).  However, we do 

not believe that metastatic potential necessarily means malignancy. In 1889, Paget (1989) 

originally proposed the “seed and soil” theory, namely, “When a plant goes to seed, its seeds 

are carried in all directions; but they can only live and grow if they fall on congenital soil.” 

Recently, many investigators have validated the metastatic theory (Kaplan et al., 2006; Gupta 

et al., 2006; Norton and Massagué, 2006). They defined the metastatic niche (soil) as a 

friendly site for the tumor cell (seed) to attach to and grow. In Kaplan et al.’s and Gupta et 

al.’s hypotheses, the metastatic niche is prepared by a substance secreted by the primary 

tumor. The metastatic niche contains precursor cells or bone marrow-derived stem cells. 

Subsequently, the invading metastatic cell must exhibit the proper features to effectively 

colonize the new site. Their data suggest that differences in tumor-secreted humoral factors 

promote metastatic spread to specific distant organs, and, as expected, the genes that mediate 

these different site-specific metastatic activities are largely distinct. In addition, Norton and 

Massagué (2006) proposed that cancer was a self-seeding disease and that the appearance of 

multifocality was conveyed by self-seeds returning to the primary tumor’s organ of origin but 

not attaching to the primary tumor mass.  

Building upon these hypotheses, Mihm and Nelson (2010) proposed that the 

metastatic niche theory can elucidate infantile hemangioma development.  They reported that 

infantile hemangiomas may be metastases from the fetal component of placenta. In fact, 



 

41 
 

certain aspects of the biology of infantile hemangioma cells suggest a relationship to the 

placenta as a possible site of origin for hemangioma precursor cells. First, distinct 

immunohistochemical markers are uniquely co-expressed by fetal microvessels of the human 

placenta and juvenile hemangiomas (North et al., 2001). Second, the genome-wide gene 

expression profiles of the placenta and hemangiomas exhibit a higher degree of global 

similarity relative to other tissues (Barnes et al., 2005). Finally, the natural progression of 

infantile hemangiomas is similar to that of the placenta (rapid proliferation followed by 

subsequent stabilization). Thus, they hypothesized that the site where hemangioma forms is 

prepared by humoral factors that determine the site of infantile hemangioma development, in 

the same way that malignant tumor cells prepare a site for tumor metastases (Mihm and 

Nelson, 2010). Taken together, these findings suggest that hemangioma precursor cell arise 

from the placenta as a “benign metastasis.”   

The possible existence of benign metastasis is further supported by the behavior of 

giant cell tumors, another type of benign bone tumor that can metastasize without producing 

a fatal outcome. At the Rizzoli Institute, the overall metastatic rate of 349 giant cell tumors of 

the extremity was 4%, and all tumors were associated with good long-term prognosis (Errani 

et al., 2010). Similarly, Klenke et al. (2011) found the same rate of pulmonary metastases in 

118 patients with giant cell tumors, and none of the patients died of disease. However, we 

ultimately agree with Rosenberg, who pointed out, “Currently, it seems that we are limited to 

our subjective interpretations and that we must wait for molecular analysis of vascular tumors 

before a more definitive and objective answer becomes apparent” (Floris et al., 2006).  

In summary, our findings confirm that EH does not behave aggressively and support 

the contention that EH is a benign tumor. Based on our experience, EH of bone can be 

effectively treated with curettage and EH of soft tissue with marginal/wide excision; EH is 

thus associated with an excellent prognosis. Like other vascular tumors, however, EH may 
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present with multifocal involvement. Therefore, we conclude that EH is a benign tumor with 

metastatic potential. It is important to distinguish EH from other epithelioid vascular tumors 

because of the significant differences in their management and clinical outcome. 

 

Conclusions 

 

The classification of epithelioid vascular tumors remains challenging with considerable 

morphologic overlap spanning across benign to malignant categories. A prior 

t(1;3)(p36.3;q25) was identified in 2 cases of EHE, however no follow-up studies have been 

performed to identify the gene fusion or to assess its prevalence in a larger cohort of patients. 

We undertook a systematic molecular analysis of 17 EHE, characterized by classic 

morphologic and immunophenotypic features, from various anatomic locations and with 

different malignant potential. Also included for comparison was a group of epithelioid 

hemangioma and epithelioid angiosarcoma. FISH positional cloning strategy, spanning the 

cytogenetically defined regions on chromosomes 1p36.3 and 3q25, confirmed rearrangements 

in two candidate genes from these loci in all EHE cases tested. Subsequent RT-PCR 

confirmed the CAMTA1-WWTR1 fusion product in 3 cases. None of the other benign or 

malignant epithelioid vascular tumors examined showed these abnormalities. CAMTA1 and 

WWTR1 genes have been previously shown to play important roles in oncogenesis. Our 

results demonstrate the presence of CAMTA1-WWTR1 fusion in all EHE tested from bone, 

soft tissue and visceral location (liver, lung) in keeping with a single tumor entity. Thus FISH 

or RT-PCR analysis for this fusion can serve as a useful molecular diagnostic tool in 

challenging diagnoses. 

Like other vascular tumors, EHE can have multifocal presentation in up to 50% of cases. 

However, whether multifocal EHE represents an unusual pattern of metastasis or multiple 
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separate primary tumors remains to be elucidated. Our recent identification of WWTR1-

CAMTA1 fusion as the genetic hallmark of EHE irrespective of anatomic location was used to 

clarify this question by comparing the similarity of translocation breakpoints. In our previous 

study, we found variability of the fusion transcripts of the t(1;3)(p36;q25) translocation 

among different patients with EHE. Thus, we undertook a molecular analysis of six samples 

from two patients with multicentric hepatic EHE to test our hypothesis that the presence of 

identical breakpoints in WWTR1 and CAMTA1 support the monoclonal nature of multifocal 

EHE. Using FISH, RT-PCR and subsequent sequencing we confirmed an identical WWTR1-

CAMTA1 fusion transcript product from different nodules in each patient. Our results confirm 

that multifocal EHE are monoclonal and thus representing metastatic implants of the same 

neoplastic clone rather than a ‘field-effect’ or synchronous occurrence of multiple neoplastic 

clones.  

The controversy surrounding EH diagnosis, particularly when arising in skeletal locations, 

stems not only from its overlapping features with other malignant vascular neoplasms, but 

also from its somewhat aggressive clinical characteristics, including multifocal presentation 

and occasional lymph node metastases. Specifically, the distinction from EHE has been 

considerably controversial. The recurrent t(1;3)(p36;q25) chromosomal translocation, 

resulting in WWTR1-CAMTA1 fusion, recently identified in EHE of various anatomic sites, 

but not in EH or other epithelioid vascular neoplasms, suggests distinct pathogeneses. Thus, 

we investigated the clinicopathologic and radiographic characteristics of bone and soft tissue 

EHs in patients treated at our Institution with available tissue for molecular testing. Seventeen 

patients were selected after confirming the pathologic diagnosis and FISH analysis for the 

WWTR1 and/or CAMTA1 rearrangements. Four patients had multifocal presentation, 

including one with locoregional lymph node metastases. Most patients with EH of bone were 

treated by intralesional curettings, while patients with EH of soft tissue underwent excision 
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with marginal or wide margins. None of the patients died of disease and only four patients 

developed a local recurrence. Our results, using molecular testing to support the pathologic 

diagnosis of EH, reinforce prior data that EH is a benign lesion, characterized by an indolent 

clinical course, with occasional multifocal presentation and rare metastatic potential to 

locoregional lymph nodes. These findings highlight the importance of distinguishing EH 

from other malignant epithelioid vascular tumors due to their difference in management and 

clinical outcome. 
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