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Objective

To investigate the interaction of imatinib mesylate (IM) with the clinically relevant 

ATP-binding cassette (ABC) efflux transporter MDR1 (ABCB1) in cells from 

patients with chronic myeloid leukaemia (CML), to explore whether inhibition of this

transporter would improve IM’s efficacy in the elimination of CML CD34+ cells by 

increasing cell associated drug accumulation.

Methods

Cells from newly diagnosed chronic phase CML patients were harvested by 

leukapheresis and enriched to >95% CD34+. Expression of the transporter gene 

MDR1 was performed by qRT-PCR. Interaction of IM with MDR1 was analysed by 

substrate (rhodamine 123) displacement assay. Cell associated levels of IM in CML 

CD34+ cells were measured by HPLC. Intracellular phospho-CrkL (p-CrkL) levels, 

apoptosis in total CML CD34+ cells and high resolution tracking of cell division were 

assayed by flow cytometry. 

Results

Measurements of cell associated IM uptake showed significantly lower drug levels in 

CD34+ cells, particularly the CD38- sub-population, as compared to IM sensitive 

K562 cells. MDR1 was expressed at low level and dye efflux studies demonstrated 

very little MDR1 activity in CML CD34+ cells. Furthermore, combination treatment 

of primitive CML cells, with IM and the MDR1 inhibitor PSC833, did not result in 

elevated cell associated IM levels. Although we observed slightly enhanced cytostasis

with IM when combined with PSC833, this was independent of BCR-ABL inhibition 

as no associated decrease in p-CrkL was observed. 

Conclusions

Our findings demonstrate that inhibition of MDR1 neither enhances the effect of IM 

against BCR-ABL activity, nor significantly potentiates IM’s efficiency in eliminating 

primitive CML cells. 

Keywords:  BCR-ABL; chronic myeloid leukaemia (CML); imatinib mesylate (IM); 

ATP-binding cassette (ABC) efflux transporters; MDR1.
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Introduction

Imatinib mesylate (IM; Glivec/Gleevec, Novartis Pharma AG, Basel, Switzerland) 

is a drug targeted against the Philadelphia (Ph) chromosome product,  BCR-ABL 

tyrosine kinase, that has proven to be remarkably effective in the treatment of patients 

with chronic myeloid leukaemia (CML) in early chronic phase (CP).[1] However, 

even with IM treatment most patients with CML fail to achieve complete molecular 

responses and still have detectable levels of minimal residual disease (MRD), as 

demonstrated by positivity for BCR-ABL transcripts.[2]

Several different mechanisms for IM-resistance have previously been proposed, 

including BCR-ABL gene amplification, clonal evolution and over-expression of Src-

related kinases.[3-8] However, point mutations within the kinase domain of BCR-ABL

account for over 50% of cases of IM-resistance.[9,10] In many instances, with the 

major exception of the T315I mutant, these mutations are only partially resistant to 

IM and either dose escalation [11] or treatment with higher potency new tyrosine 

kinase inhibitors (TKI), such as dasatinib (Sprycel™; BMS-354825; Bristol-Myers 

Squibb, New York, USA) and nilotinib (TasignaTM; AMN107; Novartis, Basel, 

Switzerland) can overcome resistance. [12,13]

There is accumulating evidence to suggest that variable expression of multidrug 

transporters in CML patients’ cells may play a critical role in the clinical response to 

IM treatment. [14] These transporters are transmembrane proteins functioning either 

as efflux or influx pumps for a wide range of compounds. Recent studies on IM influx 

have demonstrated an active uptake mechanism by cells via the organic cation 

transporter OCT-1 (slc22a1), with IM being a substrate for OCT-1.[15] However, the 

interaction of IM with efflux transporters has proven rather controversial. MDR1 (P-

glycoprotein, Pgp; ABCB1), is the archetypal member of the ATP-binding cassette 

(ABC) transporter protein family and has been studied extensively as a factor 

modulating chemotherapeutic drug levels. Recent reports provide biochemical 

evidence that IM may interact with MDR1 as a substrate [16-18] and suggest that 
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MDR1 expression can be a limiting factor in IM distribution in the body.[19] 

Furthermore, several in vitro studies suggest that MDR1 activity confers resistance to 

IM in CML cell lines that have been modified to aberrantly express MDR1. This has 

been demonstrated by modulation of MDR1 function using specific inhibitors that 

abrogate the MDR1-dependent reduction of cell associated IM and restore sensitivity 

to IM.[20-22] Similar results have been obtained from Ph+ IM-resistant cell lines 

using a stable knockdown of MDR1 by RNAi  silencing. [23, 24] Although together

these data suggest that MDR1 mediates resistance to IM, contradictory evidence for 

the role of MDR1 exists. Ferrao et al, demonstrated that MDR1 does not confer IM-

resistance in vitro, as growth of K562 cells engineered to over-express MDR1, in the 

presence of IM, did not differ from control K562 cells.[25] Additionally, studies from 

Zong et al on the in vivo contribution of MDR1 to IM-resistance, performed in a

murine model of CML, showed no difference in haemopoietic response to IM upon

expression of MDR1.[26] However, despite the controversy regarding the role for 

MDR1 in mediating IM-resistance in cells lines and murine models, there has as yet

been no data for primitive  CML cells derived from patients in CP. 

Previously we and others have identified a rare population of primitive (CD34+38-), 

leukaemic, quiescent stem cells (qSC), that comprise <5% of total CD34+ cells and 

can regenerate CML populations in immunodeficient mice.[27-29] In addition, we 

have shown that CD34+ and CD34+38- cells express significantly increased levels 

(>10-fold) of BCR-ABL at the mRNA and protein levels, with respect to mature 

mononuclear cells.[30] Our recent findings demonstrate that primitive CD34+ and 

CD34+38- cells are both insensitive to IM in vitro, even at concentrations [31] that 

exceed the approximate in vivo peak steady state plasma level.[32] We have 

previously shown that ABCG2 over-expression is not associated with IM-resistance in 

primitive CML cells, as at therapeutic concentrations IM was shown to be an inhibitor 

of ABCG2 rather than a substrate.[33] The present study was designed to investigate 

the role of MDR1 in the resistance of CML CD34+ cells to IM and to determine the 
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type of interaction (substrate/inhibitor) IM exhibits with the MDR1 transporter in 

these primitive cells. 

We report here direct measurements of cell associated levels of IM in cell lines, 

CD34+ CML and non-CML cells, using an analytical approach based on high pressure 

liquid chromatography (HPLC). Additionally, in CML patient derived CD34+ cells, 

we investigated the level of expression of the MDR1 gene and whether modulation of 

the function of MDR1 protein would result in increased cell associated levels of IM,

thereby enhancing inhibition of BCR-ABL activity and cellular proliferation, thus 

sensitising the primitive population to IM treatment.

Materials and Methods

Cell lines and primary samples

K562-wild type (K-WT) and the transduced cell line K-MDR-GFP (K-MDR), which 

over-expresses the MDR1 gene, were donated by Dr T. Southgate and the late Dr L.

Fairbairn (Paterson Institute for Cancer Research, Manchester, UK). These were 

cultured in RPMI supplemented with 10% v/v FCS, 1mmol/L glutamine and 1mmol/L 

streptomycin/penicillin. Cells from newly diagnosed patients with CP CML and from 

patients with Ph- haematological disorders that do not involve haemopoietic stem cells

(non-CML) were harvested by leukapheresis and enriched to >95% CD34+ using 

CliniMACS (Miltenyi Biotec, Auburn, CA) according to the manufacturer’s 

instructions and cryopreserved in 10% (v/v) dimethyl sulfoxide in ALBA (4% [w/v] 

Human Albumin Solution, Scottish National Blood Transfusion Service). Further 

selection of CD34+38- cells was achieved by fluorescence activated cell sorting 

(FACS; BD FACSAria). Primary cells were cultured in IMDM with BIT, 1mmol/L 

glutamine, 1mmol/L streptomycin/penicillin, 40ng/mL LDL and 10-4mol/L 2-

mercaptoethanol, with or without 5 growth factors (GF) where indicated, as 

previously described.[31]
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RNA synthesis 

Cells were washed twice in PBS and total RNA was isolated from pellets using the 

RNeasy Mini Kit (Qiagen, Crawley, UK). The resulting RNA was quantitated using a 

Nanodrop spectrophotometer Nd-1000 (Labtech International, East Sussex, UK) and 

the integrity of the RNA was determined using the Agilent 2100 Bioanalyser (Agilent 

Technologies, Wokingham, UK). RNA was synthesised to cDNA by the High 

Capacity cDNA Archive kit (Applied Biosystems, Warrington, UK) and the cDNA 

samples were stored at -80ºC until further use. RNA (1μg aliquots) derived from 

normal CD34+ cells isolated from mobilised peripheral blood (mPB) was purchased 

from StemCell Technologies UK (London, UK).

Semi-quantitative RT-PCR 

The expression of transporter gene MDR1 [31,34-36] was measured using custom 

Taqman Low Density Array (TLDA) cards (Applied Biosystems, Warrington, UK). 

The formula used for the relative quantification of MDR1 was based on the 

comparative crossing threshold method. This is calculated by initially subtracting the 

endogenous control Ct (cycle number at which the curve intersects the threshold) 

from the target gene Ct to give a ΔCt. The comparison between the target CML 

sample with regard to the normal calibrator sample is then calculated by subtracting 

the ΔCt value of the normal sample from the CML sample to give a ΔΔCt, which is 

then used as the number in the power calculation 2-ΔΔCt (i.e. 2-(ΔCt[target sample]-ΔCt[calibrator 

sample]), providing the fold difference in CML compared to the normal sample.

Cell associated IM levels and the effect of efflux transporter inhibition

For a single experiment, cells were plated at 5x104 cells/mL/well for cell lines and 

1x105 cells/mL/well for patient cells and left to equilibrate for 2h at 37ºC and 5% 

CO2, prior to addition of different concentrations of IM for 2h. To test the effect of 

MDR1 inhibition on cell associated levels of IM, cells were incubated with 5M 

PSC833 (a specific inhibitor of MDR1; Dr R. Clark, University of Liverpool, UK) for 
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30 mins, prior to addition of IM (5, 10 M) for 2h. PSC833 was maintained in the cell 

culture medium throughout IM incubation.

Following drug treatment, cells were centrifuged at 276g for 10 mins at 4ºC and the 

resulting pellet was washed three times with 1mL ice-cold PBS, collecting the 

supernatant each time for analysis of extracellular IM levels to assure that the number 

of washes was sufficient in eliminating any extracellular IM. For cell associated 

concentrations, cells were lysed with 100L 0.2M NaOH/1% SDS, vortexed and 

sonicated for 2 mins. For extracellular IM levels, 100L of supernatant was used from 

washing steps. An internal standard (IS), clozapine was added at 100g/mL to each 

sample prior to extraction. Extraction of IM from lysed cells and supernatants was 

performed by protein precipitation with 150L of ice-cold acetonitrile, followed by 

brief vigorous mixing and centrifuged at 432g for 15 mins at 4ºC.

The cell associated IM content of drug-treated cells was determined by a modified

HPLC isocratic elution method. Analysis was performed on a Dionex Ultimate 3000 

LC with a UV detector (260nM) and temperature controlled column compartment 

(35ºC). A 150x2mm, 5m Gemini Phenomenex reversed phase column was used at a 

flow rate of 0.450mL/min. The mobile phase, used for LC analysis, consisted of 65:35 

methanol:20mM NH4Ac buffer, pH10. Intracellular IM levels as well as extracellular 

levels were analysed by injecting 20L of extracted lysed cells or 

supernatant/washing solution onto the HPLC column. 

Cell volumes

Cell volumes (Vcell) were calculated based on the equation: Vcell=
4/3  r3. The cell 

radius was measured by taking images of live cells (~30 cells) in suspension with an

Olympus CKX41 microscope and using CellB imaging software.  

Efflux studies
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The MDR1 efflux protocol was a modification of the protocol previously described

for ABCG2 efflux transporter function.[33] Briefly, cells were incubated with either 

PSC833 (5M) and/or IM (1-5M) to block pump activity before the addition of 

rhodamine 123 (0.5g/mL) (MDR1 substrate). Cells were then washed in ice-cold 

medium and analysed by flow cytometry.

Cellular analysis

Measurement of intracellular levels of phosphorylated CrkL (p-CrkL) , assessment of 

apoptotic cells, viability counts and high resolution tracking of cell division by CFSE 

(carboxyfluorescein succinimidyl ester) staining, were performed on CML CD34+

cells, treated either with IM (5M) or PSC833 (5M), alone or in combination,  for 

72h. Intracellular p-CrkL and CFSE staining were performed and analysed by flow 

cytometry as described previously. [28-30, 39] For analysis of apoptosis, cells were 

incubated with 5μl Annexin V-FITC and 10μl Viaprobe in 100μl Annexin binding 

buffer for 15 mins in the dark. Finally, 400μl Annexin buffer were added to the cells

and fluorescence was read by flow cytometry, within the hour, to identify apoptotic

(Annexin V + Viaprobe positive) cells. Viability of CML CD34+ cells was measured 

by trypan blue dye exclusion assay.

Statistical analysis

Results are shown as the mean ± standard deviation (SD) values obtained in repeated

independent experiments. Differences between treatments were assessed using the 

paired Student’s t-test.

Results 

Efficiency of HPLC methodology for the measurement of cell associated IM levels

The lower limit of quantification (LLOQ) of this assay was assigned as 0.1M 

(58.97ng/mL) IM, with signal to noise ratio >5. The analytical method was validated 

for accuracy and precision, based on 5 different concentrations, using quality controls 

(QCs) at 0.5 (294.8ng/mL), 1 (589.7ng/mL), 5 (2948ng/mL), 10 (5897ng/mL) and 
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50M (29480ng/mL), for cell lysates performed in 5 replicates per day, over a 3 day 

period. Cell lysates were derived from K-WT cells. For all the QCs performed with

cell lysates, accuracy was within 11% of the nominal value, while precision ranged 

from 3.8-7.5% as measured by the coefficient of variance. Recovery of IM by 

acetonitrile precipitation was determined at 2 concentrations (1 and 10M) and gave 

92% recovery of IM from cell lysates. Results were expressed as pg/cell, taking into 

account the number of cells per experiment, the volume of lysis buffer and extraction 

solvent and the injection volume.  

Uptake of IM in cell lines and in CML and non-CML CD34+ cells

HPLC analysis was used to determine the cell associated levels of IM achieved in 

vitro at concentrations of IM approximating the steady state plasma level in patients 

taking 400mg per day (1 and 5M) [32] and at a higher concentration of 10M. 

Although incubation of the Ph- cell line HL60 with 1M IM lead to similar cell 

associated IM levels as for the Ph+ cell line K-WT (HL60: 1.60±0.69pg/cell, n=3; K-

WT: 1.83±0.75pg/cell, n=7; p=0.77), incubation with 5 (p=0.02) or 10M (p=0.05) 

IM revealed significantly lower levels of IM in HL60 versus K-WT (Figure 1a).

Lower levels of drug uptake were observed in CP CML CD34+ cells (5M: 

1.36±0.36pg/cell, n=6; 10M: 2.39±0.36pg/cell, n=6) and non-CML CD34+ samples

(5M: 0.79±0.25pg/cell, n=3; 10M: 1.77±0.24pg/cell, n=6) (Figure 1b). Analysis of 

IM accumulation in the CD34+38- subset of CML samples, which approximates the 

qSC population in vivo, revealed a lower accumulation at both concentrations (5M: 

0.47 ± 0.09pg/cell, n=6; 10M: 0.97 ± 0.09pg/cell, n=6) compared to the total CML 

CD34+ population (p=0.04 and 0.009) (Figure 1b). However, measurement of the cell 

volumes demonstrated that there were significant cell volume differences between cell 

lines (HL60: 1498m3; K-WT: 2635m3) and patient cells (CML CD34+: 800m3; 

CML CD34+38-: 641.1m3; non-CML CD34+: 588.7 m3), which may explain the 

higher cell associated levels observed in cell lines (Table 1).
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MDR1 efflux transporter expression and functionality in CML CD34+ cells 

To determine whether MDR1 activity contributed to cell associated levels of IM, we 

investigated MDR1 expression in CML and normal CD34+ cells and determined

whether the MDR1 transporter was functional in these cells.

MDR1 mRNA expression was measured in 7 CP CML and 11 normal CD34+ samples 

using real time qPCR. Using GAPDH as the endogenous control, CML samples 

consistently expressed MDR1 mRNA at approximately 7-fold less than their normal 

counterparts (CML: ΔCt=8.33±0.47, normal: ΔCt=5.44±0.24 (p=0.0003)). The 

protein function of MDR1 was measured by substrate displacement studies using the 

specific MDR1 fluorescent substrate rhodamine 123 and the specific MDR1 inhibitor 

PSC833. The assay was initially validated in K-WT and K-MDR cells (Figures 2a & 

b). K-MDR efficiently effluxed 50ng/mL of rhodamine 123 and this efflux was

maximally inhibited by 5μM PSC833 (Figure 2b), confirming that MDR1 was 

functional in the cell line K-MDR. In CML samples (n=3), minimal efflux was 

observed in the absence of PSC833 compared to the presence of this specific inhibitor 

(Figure 2c), suggesting very low levels of functional MDR1 protein, in keeping with 

the mRNA data. Although there was a slight increase in rhodamine 123 retention in 

the presence of PSC833, the difference observed did not reach statistical significance.

Effect of IM on MDR1 efflux transporter function in CML CD34+ cells

To determine whether IM interacts with the MDR1 efflux transporter, the substrate 

displacement assay was repeated by replacing the known inhibitor PSC833 with IM. 

In K-MDR cells, the addition of IM resulted in a concentration-dependent decrease in 

the efflux of rhodamine 123, although even 5M IM did not fully reverse rhodamine 

123 efflux as shown for PSC833 (Figure 3a). When this assay was repeated in primary 

CML CD34+ cells, no increase in rhodamine 123 fluorescence was observed (Figure 

3b).

Effect of inhibition of MDR1 on IM uptake by CML CD34+ cells 
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To further confirm the results of the displacement assays, cell associated levels of IM 

were measured by HPLC for cells cultured in the presence and absence of PSC833. 

There were no significant differences in the concentration of IM, in the presence or 

absence of PSC833, for K-WT, CML or non-CML CD34+ cells (Figures 4a-c), 

supporting the earlier observation that MDR1 is expressed at too low a level to be of 

functional significance in these cells (CML CD34+ cells 5M IM: 1.13±0.41pg/cell,

vs 5M IM + 5M PSC833: 0.59±0.26pg/cell, n=4, p=0.17).

Effect of inhibition of MDR1 on primitive CML CD34+ cell proliferation and viability 

To confirm that MDR1 activity does not limit the action of IM, the effect of MDR1 

inhibition on the proliferation of CML CD34+ cells was evaluated. Cells were cultured

with 5GF, in the presence or absence of either 5M PSC833, 5M IM or both, for 

72h. Incubation with PSC833 resulted in a significant reduction in total viable CML 

CD34+ cells, as compared to untreated control, similar to that observed with IM 

treatment (untreated, 177±21.9x104 cells vs PSC833 treated, 80±12x104 cells, 

p=0.002; or vs IM treated 90.03±10.74x104 cells, p=0.002; all n=4), suggesting that 

PSC833 exerts an inhibitory effect on CML CD34+ cells. In addition, the combination 

of PSC833 and IM further decreased the total number of viable CD34+ cells compared 

to IM alone (PSC833 5M + IM 5M, 30.2±7.1x104 cells, n=4, p=0.002 compared to 

untreated), although this was not significant when compared to either IM or PSC833 

alone (Figure 5a). The effect of PSC833 on the undivided CD34+ population 

remaining following 72h of culture, as defined by CFSEmax, was also examined 

(Figure 5b). As demonstrated previously, IM resulted in an accumulation of undivided 

CD34+ cells through its anti-proliferative effect,[31] however, PSC833 alone or in 

combination with IM had no effect on this critical qSC population.

Effect of inhibition of MDR1 on CrkL phosphorylation and apoptosis in CML CD34+ 

cells

The previous results suggested that the combination of IM and PSC833 had an 

additive effect when total cell numbers were used as a measure of drug action. In 
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addition, further analysis demonstrated a slight increase in apoptosis with either IM or 

PSC833 alone, or in combination (Figure 5d). However, this combined effect may be 

due to either MDR1 inhibition or non-specific toxicity. To further define this

inhibition, we analysed the effect on BCR-ABL activity by measuring the 

phosphorylation of the downstream substrate CrkL, which is used as a surrogate

marker for establishing the level of BCR-ABL activity. As expected, following 72h 

treatment, IM-treated CML CD34+ cells showed reduced p-CrkL activity, however 

PSC833 alone had no effect. Furthermore, the combination of PSC833 and IM did not 

further reduce p-CrkL levels in comparison to IM alone (Figure 5c). Therefore, 

PSC833 did not potentiate the inhibition of BCR-ABL by IM strongly suggesting that 

the decreased cell numbers seen with PSC833 or PSC833 with IM occurred through a 

BCR-ABL independent mechanism. 

Discussion

With the introduction of TKIs such as IM, the majority of CML patients now expect 

to achieve cytogenetic and even molecular responses.[1] However, few patients 

achieve sustained molecular remission and a significant proportion develop IM-

resistance. Although BCR-ABL domain mutations are a recognisable cause of IM-

resistance, other contributory factors have been suggested including the expression of

proteins that facilitate the transport of IM in and out of cells. In particular, many 

studies have suggested that MDR1 and ABCG2 play an important role in IM-

resistance. We have previously demonstrated that although ABCG2 is over-expressed 

in CML CD34+ in comparison to normal CD34+ cells, IM acts as an inhibitor for this 

transporter and thus the increased expression of ABCG2 does not affect cell 

associated IM levels nor mediate resistance in this population.[33] 

In this study we extended our work on efflux transportation of IM by focusing on the 

significance of MDR1 in modulating the cellular accumulation of IM in CD34+ CP 

CML cells, a cell population that includes persistent qSCs that we have proposed to be 

responsible for the persistence of disease after treatment. Here, we have shown that 
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transcript levels for MDR1 are in fact lower in CML CD34+ cells in comparison to the

normal CD34+ population. Jiang et al have also compared the expression of MDR1 in 

leukaemic and normal CD34+ cells and reported an elevated expression of MDR1 in 

the leukaemic population.[40] Although we do not fully understand this disparity in 

results it may relate to factors that would render valid comparison of these two studies 

impossible. Jiang et al examined only specimens in which long-term culture initiating 

cells (LTC-ICs) were predominately Ph+/BCR-ABL+ (only 10-15% of new diagnosis 

CML in CP). This may have led to preferential selection of more advanced phase 

CML samples in which MDR1 expression might be expected to be elevated. In 

contrast, the cohort analysed in this work was unselected in terms of LTC-IC 

genotype. We therefore consider that our data will better reflect the baseline 

expression in standard CML CP CD34+ cells. Furthermore, Thomas et al also 

measured expression of MDR1 in patient samples and found that although MDR1

gene transcripts were detectable in peripheral blood leukocytes from patients in both 

CP and accelerated phase, they were expressed at low levels, which is in concordance 

with our finding that primary CD34+ CML cells express low levels of MDR1 mRNA

and demonstrate only weak MDR1 function.[41] These results are supported by

previous studies that measured MDR1 functional activity in mononuclear cells 

(MNC) from peripheral blood of patients in CP or accelerated phase CML and 

similarly found no significant MDR1 activity.[42,43]

We also found that treatment of CML CD34+ cells with IM, in combination with 

PSC833, does not enhance cell associated IM levels, indicating that MDR1 does not 

mediate energy-dependent exclusion of IM from these cells. Furthermore, in the cell 

line engineered to over-express MDR1, K-MDR, we observed a concentration-

dependent increase in the accumulation of the known MDR1 substrate rhodamine 123 

by IM, demonstrating that IM interacts with MDR1 as an inhibitor rather than 

substrate. Our data is consistent with the data of White et al, suggesting that IM is not 

effluxed by MDR1, but instead may actually inhibit MDR1-mediated efflux of known 

substrates.[44] Furthermore, inhibition of MDR1 with PSC833, in combination with 
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IM, did not enhance the efficacy of IM alone against bulk CD34+ cells or the qSC 

fraction, as assessed by viable cell number (qSC), apoptosis and BCR-ABL inhibition. 

Previously, it has been speculated by Shukla et al that there may be a narrow 

concentration range in which ABC transporters can transport IM. [17] This was 

derived from the contradictory results on the interaction of IM with ABCG2. Firstly, 

Houghton et al [45] reported that 1M 14C-IM accumulation was similar in cell lines 

expressing functional and non-functional ABCG2. However, Burger et al [46] found 

that at 10 fold lower concentrations intracellular levels of 14C-IM were significantly 

reduced in cell lines that over-expressed ABCG2. Although the behaviour of IM in 

relation to its interaction with transporter proteins might change in low and high 

concentrations, in our study we have used concentrations that relate to the steady state 

trough plasma levels (<5M) previously reported in patient clinical trials. [32, 47]    

Finally, we have previously reported that the inhibitory concentrations (IC50) for IM, 

in proliferation and cell viability assays, is significantly lower for K-WT than for 

primary CD34+ CML cells (0.6, and 5M respectively).[31] It was therefore 

interesting to observe a differential accumulation of IM, which may in part explain the 

variation in sensitivity to IM treatment between cell lines and primary CD34+ cells.

However, cell associated IM levels may be simply related to cell volume. By direct 

measurements of the cell diameter, we were able to calculate cell volumes and found 

that there were differences in cell volume between cell lines and patient cells, which 

may explain the higher cell associated levels observed in the larger cell lines. 

However, if a direct relationship between cell volume and IM accumulation is 

assumed, the amount we measured in the CML CD34+38- cell population is lower 

than that expected when compared to total CML CD34+ cells (Table 1). This may 

imply that cell volume is only one parameter influencing cell associated IM levels and 

as we have shown that efflux transportation is not a strong determinant of IM level, 

influx may play a critical role. OCT1has been shown to be important for IM uptake, 

and Jiang et al [40] have previously reported that CML stem cells (CD34+38-) have 

particularly low expression of this influx transporter. Similarly, we have found that 
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OCT-1 mRNA is undetectable in CD34+ CML cells (unpublished data).  Thus, the 

lack of OCT-1 may be in part responsible for the low cell associated IM levels in 

primitive CML that we report here. In general, OCT-1 influx transport is proving to 

be an important clinical determinant to IM-response in patients. [14,15,48] White et al

showed that patients with high OCT-1 activity achieved significantly greater 

molecular responses over 24 months of IM treatment than patients with low OCT-1 

activity [14]. Thus, it seems that in general in CML cells influx rather than efflux is a 

strong determinant of cell associated IM levels and response to treatment,  however 

the very low or undetectable levels of OCT-1 in the most primitive cells implies that 

there maybe another as yet unidentified mechanism involved.

Taken together, our results demonstrate conclusively that MDR1, although present at 

low levels in primary CD34+ CML cells, is unlikely to mediate IM-resistance in this 

primitive population. Even when expressed at higher levels, such as in advanced 

phase CML, MDR1 is unlikely to mediate IM-resistance since IM appears to inhibit 

MDR1, rather than interact with the transporter as a substrate. Whether alternative 

members of the ABC drug efflux transporter family [49] are expressed on CD34+

CML cells and capable of mediating IM-resistance in this cellular context is as yet 

unknown.
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Titles and Legends to Figures:

Figure 1: Cell associated levels of IM. (a) Levels of IM in K-WT (n=7) and HL60 

(n=3) cell lines. (b) Levels of IM in CML (n=6) and non-CML (n=3) CD34+ cells and 

the CML CD34+38- subpopulation (n=6). Cell associated levels were measured in 

5x104 cells for cell lines and 1x105 cells for primary cells as described in Materials & 

Methods. Statistical analysis was performed between groups treated with the same 

concentration of IM, p values are reported in graphs only when statistically significant 

(p<0.05).

Figure 2:  The function of MDR1 in Ph+ cell lines and CML CD34+ cells. The effect 

of the specific MDR1 inhibitor PSC833 to inhibit substrate rhodamine 123 efflux was 

determined in (a) K-WT, (b) K-MDR cells and (c) primary CML CD34+ cells. MDR1 

function was measured by substrate displacement assays using flow cytometry 

analysis as described in Materials & Methods. Unstained cells (black fill), cells 

treated with rhodamine 123 in the absence (light grey fill) and presence of PSC833 

(dark grey fill). The plots are representative of 3 independent experiments.

Figure 3: IM interaction with MDR1 protein. Increasing concentrations of IM were 

added prior to addition of the specific MDR1 substrate rhodamine 123 and compared 

with the effect of the known inhibitor, PSC833 in (a) K-MDR cells and (b) primary 

CML CD34+ cells. MDR1 function was measured by substrate displacement assays 

by flow cytometry as described in Materials & Methods. Representation of different 

treatments is assigned on FACS plots. The plots are representative of 3 independent 

experiments.

Figure 4: Effect of the MDR1 specific inhibitor PSC833 on the cell associated levels 

of IM. Levels of IM in K-WT cell line (n=3) (a), CML (n=4) (b) and non-CML 

CD34+ (n=3) cells (c). Cell associated levels of IM (5 and 10M) were measured in 

the presence or absence of 5M PSC833 in 5x104cells for K-WT and 1x105 cells for 

primary cells by HPLC as described in Materials & Methods. No statistical 

significance was observed in cell associated levels of IM in cells treated with the same 

amount of IM in the presence or absence of PSC833 (p>0.05).
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Figure 5: The effect of inhibition of MDR1 function with PSC833 on efficacy of IM 

in CML CD34+ cells. Effect of PSC833 on (a) the viability of total CD34+ cells, (b) 

the undivided CML CD34+ population, (c) p-CrkL  and (d) CD34+ cells that undergo 

apoptosis. CD34+ cells were seeded at 1x105 cells/mL and treated with either IM or 

PSC833 alone or in combination for 72h and measured as described in Materials and 

Methods. Results are expressed as the mean ± SD for three independent experiments; 
*P<0.05, **P<0.01 significantly different from no-drug control (ND). 

Table 1: Predictions and comparison of calculated cell associated IM levels based on 

cell size and measured IM levels by HPLC. Predicted IM levels were based on values 

normalised against non-CML CD34+ cell size for primary cells and HL60 for cell 

lines. 

Table 1:

Cell type Actual 

volume

(m3)

Relative 

volume 

(m3)

Assumed IM cell 

associated  

concentrations 

measured (pg/cell)

IM cell 

associated 

concentrations 

(pg/cell ± SD)

Non-CML CD34+ 589 1.00 0.79 0.79±0.25

CML CD34+38- 641 1.09 0.86 0.47±0.09

CML CD34+ 800 1.36 1.07 1.36±0.36

HL60 1498 1.00 3.51 3.51±0.97

K562 2635 1.76 6.18 9.01±2.74
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Dear Sir

Inhibition of MDR1 does not sensitise primitive chronic myeloid leukaemia CD34+ cells to imatinib.  

S Hatziieremia et al

I am pleased to submit this article for consideration for publication in Experimental Hematology.  In 

this work, we confirm that efflux by MDR1 is not a mechanism for resistance of CML stem cells to 

imatinib.  We uniquely combine HPLC quantification of cell associated drug concentrations with flow 

cytometry based functional assays for transporter activity in the primitive (CD34+ CD38- ) 

subpopulation of CML stem / progenitor cells.

I look forward to hearing your decision.

Heather G Jorgensen PhD

*Letter of Submission



This piece of the submission is being sent via mail.

*Statement of Authorship


	citation_temp.pdf
	http://eprints.gla.ac.uk/18524/


