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ABSTRACT 

 

Pharmaceuticals are useful tools to prevent and treat human and animal diseases. 

Following administration, a significant fraction of pharmaceuticals is excreted 

unaltered into faeces and urine and may enter the aquatic ecosystem and 

agricultural soil through irrigation with recycled water, constituting a significant 

source of emerging contaminants into the environment. Understanding major 

factors influencing their environmental fate is consequently needed to value the 

risk, reduce contamination, and set up bioremediation technologies. 

The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent 

attention due to the potential use as a first line defence against H5N1 and H1N1 

influenza viruses. Research has shown that OC is not removed during 

conventional wastewater treatments, thus having the potential to enter surface 

water bodies. A series of laboratory experiments investigated the fate and the 

removal of OC in surface water systems in Italy and Japan and in a municipal 

wastewater treatment plant.  

A preliminary laboratory study investigated the persistence of the active antiviral 

drug in water samples from an irrigation canal in northern Italy (Canale Emiliano 

Romagnolo). After an initial rapid decrease, OC concentration slowly decreased 

during the remaining incubation period. Approximately 65% of the initial OC 

amount remained in water at the end of the 36-day incubation period. A negligible 

amount of OC was lost both from sterilized water and from sterilized 

water/sediment samples, suggesting a significant role of microbial degradation. 

Stimulating microbial processes by the addition of sediments resulted in reduced 

OC persistence. Presence of OC (1.5 µg mL-1) did not significantly affect the 

metabolic potential of the water microbial population, that was estimated by 

glyphosate and metolachlor mineralization. In contrast, OC caused an initial 

transient decrease in the size of the indigenous microbial population of water 

samples. 

A second laboratory study focused on basic processes governing the 

environmental fate of OC in surface water from two contrasting aquatic 

ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this 

study confirmed the potential of OC to persist in surface water. However, the 
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addition of 5% of sediments resulted in rapid OC degradation. The estimated half-

life of OC in water/sediment of the River Po was 15 days. After three weeks of 

incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from 

water/sediment samples of the River Po and Venice Lagoon. OC was moderately 

retained onto coarse sediments from the two sites. In water/sediment samples of 

the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-

residues remained water-extractable after three weeks of incubation. The low 

affinity of OC to sediments suggests that the presence of sediments would not 

reduce its bioavailability to microbial degradation. 

Another series of laboratory experiments investigated the fate and the removal of 

OC in two surface water ecosystems of Japan and in the municipal wastewater 

treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in 

surface water ranged from non-detectable degradation to a half-life of 53 days. 

After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of 

sediments (5%) led to a significant increase of OC degradation and of 

mineralization rates. A more intense mineralization was observed in samples of 

the wastewater treatment plant when applying a long incubation period (40 days). 

More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was 

recovered as 14CO2 from samples of the biological tank and effluent water, 

respectively. Two bacterial strains growing on OC as sole carbon source were 

isolated and used for its removal from synthetic medium and environmental 

samples, including surface water and wastewater. Inoculation of water and 

wastewater samples with the two OC-degrading strains showed that 

mineralization of OC was significantly higher in both inoculated water and 

wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis 

and quantitative PCR analysis showed that OC would not affect the microbial 

population of surface water and wastewater. 

The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade 

a wide variety of environmentally persistent xenobiotics has been largely reported 

in literature. In a series of laboratory experiments, the efficiency of a formulation 

using P. chrysosporium was evaluated for the removal of selected 

pharmaceuticals from wastewater samples. Addition of the fungus to samples of 

the wastewater treatment plant of Bologna significantly increased (P < 0.05) the 

removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and 
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ciprofloxacin. Similar effects were also observed in effluent water. OC was the 

most persistent of the four pharmaceuticals. After 30 days of incubation, 

approximately two times more OC was removed in bioremediated samples than in 

controls. The highest removal efficiency of the formulation was observed with the 

antibiotic ciprofloxacin. 

The studies included environmental aspects of soil contamination with two 

emerging veterinary contaminants, such as doramectin and oxibendazole, wich are 

common parasitic treatments in cattle farms.  
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1. INTRODUCTION 
 
1.1 Emerging contaminants 

During the past decade, the increasing introduction in the market of new 

chemicals, and the development of more accurate analytical methods, added a 

variety of new environmental ‘emerging’ contaminants to the already large array 

of pollutants. Emerging contaminants are defined as any synthetic or naturally 

occurring chemical that is not commonly monitored in the environment, though 

having the potential to enter soil and aquatic ecosystems, causing known or 

suspected adverse ecological and/or human health effects (USGS, 2009). 

Recent concern are receiving chemicals that have been detected in varied water 

sources, such as antibiotics, anti-depressants, tranquilizers, endocrine disrupting 

chemicals, personal care products, illicit drugs, fluorinated compounds and 

nanomaterials. Although present in the environment at low concentrations, in the 

range of ng L-1, most of these ‘micropollutants’ raise considerable toxicological 

concern, particularly if present as components of complex mixtures 

(Schwarzenbach et al., 2006). Emerging contaminants can enter the environment 

by a variety of sources, such as sewage treatment plants (STPs), runoff from 

agricultural land uses, aquaculture and livestock farming, industrial wastes and 

hospital effluents (Figure 1). 

 

 

Figure 1 – Schematic representation of the fate of human and veterinary drugs, 
after application (Ternes, 1998). 
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The occurrence of pharmaceuticals in the environment is a recent issue. Research 

on this topic started in the 1990s, when Ternes, a German chemist, investigated 

the environmental fate of a group of prescribed medicines after exctretion (Ternes, 

1998). These were the first results of monitoring studies of pharmaceutical 

measurements in local STPs and rivers. 

Thousands of different pharmaceutically active compounds are actually used in 

high quantities to treat or to prevent diseases (Kümmerer et al., 2009a; Bottoni et 

al., 2010). Following therapeutic administration, a great percentage of 

pharmaceuticals is excreted in urine and faeces (Carlsson et al., 2006) as parent 

compound and/or metabolites and enters the sewage treatment system, where they 

are often only partially removed (Halling-Sørensen et al., 1998). In a study 

conducted in Italy, Zuccato et al. (2005) detected a variety of pharmaceuticals in 

STPs and in the River Po (Table 1). Some of the detected molecules are rapidly 

degraded (i.e. ibuprofen, sulfamethoxazole), while others are reported to be 

persistent in surface water (i.e. atenolol, carbamazepine, ciprofloxacin, 

erythromycin, ofloxacin). Degradation of xenobiotics in the aquatic ecosystem 

depends on a variety of factors, including compound properties and environmental 

factors (Lu et al., 2006). 

 

 
Type of drug 

STP 
(ng L-1) 

River Po 
(ng L-1) 

Ofloxacin chemotherapeutic antibiotic 600.0  33.1 
Atenolol used in cardiovascular diseases 466.0 17.2 
Hydrochlorothiazide diuretic 439.1 4.6 
Carbamazepine used to prevent and control seizures 291.1 23.1 
Ciprofloxacin chemotherapeutic antibiotic 251.0 Nd 
Sulfamethoxazole sulfonamide bacteriostatic antibiotic 127.2 Nd 
Ibuprofen anti-inflammatory 121.2 13.0 
Erythromycin wide spectrum antibiotic 47.4 3.2 

 
Table 1 – Pharmaceutical concentrations detected in urban sewage treatment 
plants (STPs) (median of nine STPs) and in River Po (median value of seven 
sampling sites) (Zuccato et al., 2005). 
 

 

Sewage treatments plant are usually designed to remove or to reduce the 

concentrations of microbial pathogens and loads of organic bulk, but they are not 

specifically designed to remove pharmaceuticals or biologically active substances. 

Furthermore, when a chemical is not detectable, it only means that the parent 
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compound has been removed from the compartment of interest, and eventually it 

has only been transformed in a degradation product. Degradation of a parent 

molecule consists in reactions of oxidation, reduction or hydrolysis, and its 

transformation products are often more reactive and sometimes more toxic than 

the parent drug. By changing the physico-chemical behaviour of the substance, 

degradation processes can modify its water solubility (usually an increase of water 

solubility is expected) with respect to the parent compounds (Halling-Sørensen et 

al., 1998). Present level of knowledge about the degradation pathways in STPs is 

not always exhaustive, and wastewater is one of the major sources of 

micropollutants in the environment (Schwarzenbach et al., 2006). 

The two major mechanisms involved in the removal of substances from the 

incoming waste stream in STPs are the following: microbial degradation and 

sorption onto solid particles. The removal rate of pharmaceuticals in STPs is 

affected by several factors, including their physico-chemical properties, the 

adopted treatment process, hydraulic and sludge retention time, environmental 

parameters, and properties of the influent (O'Brien and Dietrich, 2004). Sludge 

retention time has been considered as one of the most important process 

parameters. For highly polar substances, as most pharmaceuticals are, the most 

important removal process is biological transformation or mineralization by 

microorganisms; if the residence time is too short, it will not implement an 

efficient biodegradation. Wastewater treatment technologies for the removal of 

emerging contaminants are membrane bioreactors, ozonation and photocatalytic 

processes, constructed wetlands, advanced sorbents and nanotechnology, artificial 

recharge (Barceló et al., 2008; Radjenovic et al., 2009). None of these processes 

though is entirely successful in the complete removal of contaminants. Ozone 

treatment, for example, typically transforms chemical compounds but does not 

mineralize them entirely (Stalter et al., 2009). 

 

1.2 Fate of contaminants in the agro-ecosystem 

Application of municipal biosolids on agricultural lands, as a source of crop 

nutrients and organic matter, is a common farming practice in many countries and 

jurisdictions (European Commission, 2001; Mantovi et al., 2005; Edwards et al., 

2009). Furthermore, municipal wastewater reuse, through irrigation of agricultural 

land with reclaimed water, is an important supplement to water scarcity 
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worldwide, especially in arid regions. During the dry season, streams rely almost 

entirely on STPs effluents for flow, and effluents are extensively used in irrigation 

and even for recharging drinking water aquifers. However fields amended with 

biosolids and irrigated with reclaimed water risk to affect water quality by runoff 

of contaminants of emerging interest (Lee et al., 2007; Topp et al., 2008). The 

most worrying consequence is that these contaminants are continuously exposed 

to humans, with different possible pathways: ingestion of food plants cultivated 

on land irrigated with reclaimed water, ingestion of meat/animal products from 

animal pasture on contaminated land, ingestion of drinking water produced from 

groundwater polluted by reclaimed water, inhalation of volatile contaminants 

during irrigation processes (Figure 2).  

 

 

 

Figure 2 - Exposure pathway of chemicals to humans via agricultural irrigation 
(Weber et al., 2006). 
 

 

It has been reported that the use of reclaimed water for soil irrigation can result in 

the presence of pharmaceuticals in soil, in concentrations that vary through the 

irrigation season. Some compounds persist for months after irrigation, and 

accumulate in soil. It was demonstrated that soil samples collected before the 

irrigation season contained pharmaceuticals, presumably left over from the 

previous year’s irrigation, including erythromycin, carbamazepine, fluoxetine (an 

antidepressant), and diphenhydramine (a common antihistamine). Several of the 

pharmaceuticals detected increased in concentration during the study, suggesting 

that the soil retained or adsorbed the pharmaceuticals (Kinney et al., 2006). 

Agricultural land receives also other types of organic waste, such as solid and 

liquid manure from intensive livestock farming sites, and effluents from intensive 

aquaculture systems, in order to recycle nutrients and water for crop production. 

However hormones, antibiotics and veterinary medicines are used extensively in 

livestock production and, after application to animals, the drug may be adsorbed 

and partially metabolized before being excreted with urine and faeces. Once the 
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resulting manure or slurry is applied to land, the medicines and their metabolites 

may run off into surface waters or leach to groundwater, where they may impact 

the environment as well as human health (Koschorreck et al., 2002). The re-use of 

manure is therefore a significant source of emerging contaminants in agricultural 

land (Kolpin et al., 2002; Christian et al., 2003; Kumar et al., 2004). Aquaculture 

systems, where the use of veterinary drugs is ordinary and necessary, also 

contribute to the dispersion of pharmaceuticals into soil (Kupka-Hansen et al., 

1992).  

 

1.3 Why are emerging contaminants a concern? 

For most emerging contaminants there is currently little information regarding 

their potential toxicological significance in ecosystems. The very low 

concentrations in the environment, far below the doses employed for medical 

treatments, avoid the detection of any biological effects with acute toxicity tests 

(Boxall et al., 2003). The effects of these contaminants are especially related to 

long-term and low-level environmental exposures, and they do not need to be 

persistent to cause negative effects, due to the continuous introduction of assumed 

drugs into the environment. The chronic nature of exposure to trace 

concentrations of pharmaceuticals, the synergistic effects of mixtures of unrelated 

chemicals (Cleuvers, 2003), and to what extent drugs can be transferred to 

humans through food-chain biomagnification, are mostly unknown and advise 

caution.  

The reason why pharmaceuticals are problematic as environmental 

micropollutants, is that they are developed with the intention of performing a 

biological effect. Certain pharmaceuticals are designed to modulate endocrine and 

immune systems and cellular signal transduction and as such have obvious 

potential as endocrine disruptors in the environment. Antibiotics are meant to 

produce direct effects on bacteria, and consequently have the potential to alter the 

microbial community structure, change the growth, enzyme activity and diversity 

of microbes (Schiermeier, 2003), and select for those few resistant bacteria in any 

given population, which then reproduce and create an increasingly resistant 

population through successive generations (Castiglioni et al., 2008; Farrell, 2009).  

The use of biological systems for the treatment of antibiotic production 

wastewater creates an ecosystem that contains much higher concentrations of 
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antibiotics than normal aquatic environments, and thus may be an important 

reservoir of antibiotic-resistant bacteria. In a survey of a wastewater treatment 

plant that received effluent from a penicillin G production facility, Li et al. (2009) 

demonstrated that, compared with upstream samples, effluent and downstream 

samples showed significantly high levels of resistance for almost all the tested 

antibiotics.  

The effects of pharmaceuticals on water bacterial communities are principally a 

reduction from 50 to 70% of the bacterial number in water and sediments and 

therefore inhibition of bacteria responsible of anaerobic degradation of organic 

matter: reduction of nitrification processes and of sulphate-reducing activity. 

Concentrations of 12.5-75 mg L-1 of oxytetracycline, a broad spectrum antibiotic, 

have been found to be inhibitive of nitrification, and lead to a build-up of toxic 

ammonia and nitrite (Klaver et al., 1994). Oxytetracycline and flumequine 

inactive completely sulphate-reducing bacteria after 7 days of medication (Kupka-

Hansen et al., 1992; Smith et al., 1994). 

Exposure to waterborne pollutants may cause health risks, such as contamination 

of aquatic food sources and of agricultural products (Weber et al., 2006). Hence, 

any measures taken to prevent the chemical pollution of surface and groundwater 

resources will not only improve ecosystem health, but will also benefit both the 

production of clean water and safe food for human consumption (Schwarzenbach 

et al., 2006). Understanding the sources, transport, and fate of emerging 

contaminants is therefore essential to provide information to eventually expand 

the range of pollutants that should be monitored in effluent discharges and the 

implementation of the guidelines.  

 

Environment contamination with new pollutants may result in changes in the 

microbial ecology, possibly changing the types of bacteria that carry out important 

ecosystem processes such as nutrient transformations and biomass decomposition. 

Microbial biodiversity has in fact a functional importance in the maintenance of 

soil and water biological processes, because most of the transformations involved 

in biogeochemical cycles are mediated exclusively by microorganisms. It has 

been reported that shifts in microbial community structure, associated with a 

reduction in microbial biodiversity, lead to losses of functional stability (Griffiths 

et al., 2004; Girvan et al., 2005).  
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Nitrogen is an essential element for crop growth and a key agricultural input. The 

fixation of N2 from the atmosphere, in which it is reduced to ammonia in an 

energy-demanding process, is due principally to microbial activity. The oxidation 

of ammonia to nitrate via nitrite by autotrophic nitrifying bacteria is a key process 

in agricultural/natural ecosystems and wastewater treatment (Jordan et al., 2005). 

The first step, the oxidation of ammonia to hydroxylamine, is catalyzed by aerobic 

chemoautotrophic ammonia oxidizing bacteria (AOB) and nitrite-oxidizing 

bacteria (NOB). Activity and dynamics of the nitrifying bacterial population have 

been largely used in environmental studies (Hermansson and Lindgren, 2001; 

Limpiyakorn et al., 2005; Molina et al., 2007). Studies have shown that AOB and 

NOB are less competitive than the heterotrophic bacteria for oxygen and growing 

space and are sensitive to environmental inhibition (Van Benthum et al., 1997; 

Juliastuti et al., 2003; Limpiyakorn et al., 2005; Pagga et al., 2006). Ammonium 

oxidation by autotrophic ammonia-oxidizing bacteria (AOB) is a key process in 

agricultural ecosystems and wastewater treatment. Denitrification occurs in many 

distantly related species of microorganisms (Zumft, 1992), thus also bacteria with 

this physiological capability may be used as functional markers for ecological 

studies (Gregory et al., 2003). Bacterial communities constitute the basis of food 

webs and are responsible for organic matter transformations and mineral 

recycling. Ecosystem functions that depend on microbial activities can suffer from 

chemical exposures if microorganisms are sensitive to the toxic effects of 

pollutants (Ogunseitan, 2000). Given the various sensitivities of different 

microorganisms to toxic chemicals, there is a growing interest in microbial 

toxicity testing at the community or ecosystem level, and in including bacterial 

community responses in the environmental risk assessment of toxic pollutants 

(Brandt et al., 2004).  

 

1.4 Microbial ecology approach  

Traditional parameters used for the Environmental Risk Assessment (ERA) of 

pharmaceuticals are cheimodynamic and physico-chemical properties such as 

solubility, Kow (octanol/water partition constant), Kd (soil-water partition 

constant), Koc (soil organic carbon/water partition constant) and DT50 (degradation 

half-life) in soil and water, PEC (predicted environmental concentration), PNEC 

(predicted no-effect concentration). Furthermore ecotoxicological effects of 
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pharmaceuticals on non-target organisms in water and soil are assessed with 

standard acute and chronic ecotoxicologic tests on freshwater and marine 

organisms (e.g. Daphnia magna, rainbow trout) and soil organisms (e.g. Eisenia 

fetida, Enchytraeus crypticus, Caenorhabditis elegans, Folsomia candida).  

Pollution may influence soil and water quality and productivity but little is known 

on the effects on microbial communities, and consequent impacts on functioning. 

Due to their small size, large numbers, and ubiquitous distribution in the 

environment, microorganisms are valuable indicators of the occurrence of 

disturbances due to exogenous physico-chemical stressors. The study of bacterial 

abundance, vitality and community structure are among the most useful tools 

developed in microbial ecology for direct characterization of target populations, in 

their natural environment, avoiding cultivation. The assessment of variations in 

microbial community structure is of basic importance to permit to evaluate the 

impact of an environmental stressor. At the organism level, the presence of a 

certain indicator bacteria can indicate sources of pollution into an environment, 

but the molecular-level responses of autochthonous microorganisms to changes in 

ambient conditions are more critical for ecosystem health assessment. There is a 

wide array of molecules, including nucleic acids, lipids, and proteins, that is 

useful for diagnosing microbial responses to pollution and for monitoring 

environmental management strategies. The presence of toxic chemicals in 

microbial ecosystems, for example, induces the synthesis of detoxifying or 

degradative enzymes and certain stress proteins (Figure 3). Effects due to 

chemical toxicity tend to narrow the spectrum of microbial diversity because 

organisms that are not capable of resisting the toxic effects either die or enter a 

static metabolic phase, leaving those that have evolved resistance mechanisms, 

that are capable of utilizing the excess chemicals as nutrients, to proliferate and 

become dominant members of the impacted ecosystem (Ogunseitan, 2000). 

Protein molecules mediate these effects by virtue of the ability of each species to 

synthesize degradative enzymes or otherwise engage in repair mechanisms 

through the activities of stress proteins and modified structural components 

(Ogunseitan, 2000). Monitoring these proteins provides information on toxic 

chemical fates (biodegradative enzymes) and effects (toxicity-induced changes in 

protein profiles). Complex microbial communities may therefore serve as ideal 

and ecologically relevant toxicity indicators (Brandt et al., 2004).  
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A number of microbiologically driven processes has been proposed to evaluate 

the effects of xenobiotics on ecosystems (Wagner-Döbler et al., 1992; Nazaret et 

al., 1994; Moyer et al., 1994; Griebler and Slezak, 2001). Proteins, genes, 

metabolites, or lipids that, when expressed, present a pattern of molecular change 

in an organism in response to a specific environmental stressor, can be defined as 

environmental biomarkers. 

 

 

 

Figure 3 – Schematic representation of microbial community analysis in response 
to environmental perturbations. Toxic chemicals, for example, can cause changes 
in microbial population densities and diversity (Ogunseitan, 2000). 
 

 

The evaluation of bacterial biodiversity is mainly limited by their small size, by 

the absence of distinguishing phenotypic characters, and by the fact that most of 

these organisms cannot be cultivated (Torsvik et al., 2002). The number of 

techniques to study microbial communities has increased exponentially over the 

last 20 years and the advent of culture-independent methods, such as molecular 

biological techniques, has changed the view of microbial diversity (Rossello-Mora 

and Amann, 2001). Among these techniques it is possible to distinguish between 

those which are primarily based on the use of Polymerase Chain Reaction (PCR), 
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and those that are non-PCR-based (Figure 4). PCR uses specific primers to 

amplify a DNA target sequence. The bacterial 16S rDNA gene is today the most 

commonly used for assessing overall diversity in microbial communities and for 

studying the phylogeny of microorganisms. Sequence variations in the PCR 

fragments are detected either by a cloning/sequencing analysis, which provides a 

complete characterization of the fragments, or by an electrophoretic analysis, 

which provides a visual separation of the mixture of fragments. Fragments 

separation is based on sequence polymorphism, in Denaturing Gradient Gel 

Electrophoresis (DGGE) or length polymorphism, in Terminal-Restriction 

Fragment Length Polymorphism (T-RFLP) and Automated Ribosomal Intergenic 

Spacer Analysis (ARISA). DGGE is frequently used in environmental studies 

(Ibekwe et., 2001; Guo et al., 2009). Quantitative Polymerase Chain Reaction 

(qPCR and qRT-PCR) has become a commonly used technique for the detection 

and quantification of microorganisms in the environment for its high sensitivity at 

low concentrations (Dionisi et al., 2003; Devers et al., 2004; Zhang and Fang, 

2006; Kim et al., 2007). It can be used to detect changes in gene expression 

patterns induced by adverse conditions, also not requiring prior knowledge of 

expected contaminants, using non-specific stress responses as general indicators 

of deleterious conditions (Van Dyk et al., 1995).  

Non-PCR-based methods commonly used in environmental studies are 

epifluorescence microscopy techniques, such as direct count of bacterial 

abundance (DAPI count) and vitality (Live/Dead cell viability assay), and 

Fluorescence In Situ Hybridization (FISH). FISH uses rRNA-targeted fluorescent 

probes to investigate the overall taxonomic composition of bacterial communities. 

Probes can be designed to be complementary to species-, group-, or kingdom-

specific target sites.  
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Figure 4 – Diagram of the different molecular approaches for assessing the 
genetic diversity of microbial communities. qPCR and qRT-PCR (quantitative 
PCR and quantitative reverse transcriptase-PCR), DGGE (Denaturing Gradient 
Gel Electrophoresis), ARDRA (Amplified Ribosomal DNA Restriction Analysis) 
and FISH (Fluorescence In Situ Hybridization) were used in this study (modified 
from Dorigo et al., 2005).  
 

Each of the above mentioned techniques can provide different information for the 

analysis of environmentally significant genes in microbial communities exposed 

to toxic chemicals and direct detection of genes involved in maintaining key 

biochemical functions at the microbial level (Ogunseitan, 2000).  

 

1.5 Legislation in the European Union 

During the past decades, the impact of chemical pollution has focused almost 

exclusively on conventional ‘priority pollutants’, especially those acutely 

toxic/carcinogenic pesticides and industrial intermediates displaying persistence 

in the environment. However Daughton and Ternes (1999) have reported that the 

amount of pharmaceuticals and personal care products entering the environment 

annually is about equal to the amount of pesticides used each year. Governments 

now regulate the use and disposal of toxic chemicals more rigorously than in the 

past, and several forms of legislation have alternated in the past decades to control 

water pollution in the European Union. The first steps in the European water 
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legislation have focused mainly on quality standards for certain types of waters 

(bathing waters, aquaculture and drinking waters), leading to the stipulation of the 

Drinking Water Directive and the Bathing Water Directive. 

Within the European Union, the quality of water for human consumption is 

determined by the Drinking Water Directive (Council Directive 98/93/EC). Of the 

48 parameters within the directive, none is related to pharmaceuticals.  

The nutrients dimension was then added to water protection with the Urban 

Wastewater Treatment Directive of 1991 (Council Directive 91/271/EEC), 

concerning urban wastewater treatment.  

The Nitrates Directive (91/676/EEC) sets out clear rules for nitrates pollution 

from agriculture, one of the main sources of groundwater pollution as well as of 

eutrophication of surface waters in many regions of Europe. 

In 2000, the Water Framework Directive (2000/60/EC) has expanded EU water 

policy to all waters and addresses all sources of impacts. It defines the ecological 

quality according to hydro morphological, physico-chemical and biological 

(biodiversity to the three levels: genetic, of population, of community) 

parameters, and priority pollutants concentrations in water, sediments and 

organisms. The Directive on Priority Substances (2008/105/EC) identifies 33 

substances or groups of substances, which have been shown to be of major 

concern for European Waters, for the adoption of control measures over the next 

20 years (http://ec.europa.eu/environment/water/water-

framework/priority_substances.htm). Further 14 substances were identified as 

being subject to review for identification as possible priority hazardous 

substances. The list includes selected chemicals, plant protection products, 

biocides, metals and other groups like Polyaromatic Hydrocarbons (PAH) that are 

mainly incineration by-products and Polybrominated Biphenylethers (PBDE) that 

are used as flame retardants. Additionally member countries have undertaken their 

own national reviews to identify emerging future contaminants. The much wider 

range of emerging pollutants that are now widely used is not included in the list, 

however the priority substance list will be updated every 4 years and has 

identified future emerging priority candidates.  

Since 2007, regulation on chemicals and their safe use is established by the 

European Community (EC 1907/2006) with the REACH legislation (Registration, 

Evaluation, Authorization of Chemicals). REACH regulates the large number of 
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substances that have entered the market in Europe in the last years, sometimes in 

very high amounts, for yet there is insufficient information on the hazards that 

they pose to human health and the environment. 

Furthermore, European guidelines for use of reclaimed water are generally limited 

to defining risks associated with microbial organisms, bulk parameters such as 

chemical oxygen demand (COD), biochemical oxygen demand (BOD), pH and 

total suspended solids (TSS). These parameters exclude the monitoring of specific 

chemical concentrations.  

The European Agency for the Evaluation of Medicinal Products (EMEA) 

coordinates the existing scientific resources of the Member States of the EU in 

order to evaluate and supervise medicinal products for both human and veterinary 

use throughout the entire EU. 

 

1.6 Bioremediation  

Molecular ecological information is especially useful for the development of 

strategies to improve bioremediation, in which the metabolic potential of 

microorganisms is used to clean up contaminated environments (Watanabe, 

2001). In the last years molecular tools have facilitated the study of natural 

microbial populations without cultivation, including the fraction of 

microorganisms that have the ability to degrade certain xenobiotics.  

Bioremediation employs living organisms, most often microorganisms, plants, or 

both to degrade, detoxify, or sequester toxic chemicals from natural waters and 

soils. It can be used to treat soil, sediment, sludge, water, or even air. Treatments 

can be either ex situ, involving the removal of contaminated materials from a 

polluted site prior to treatment, or in situ, if contaminants are treated without 

moving them to a treatment facility. Bioremediation treatments include: 

bioaugmentation, by augmenting natural systems with exogenous biological 

materials, usually natural microorganisms or plants grown to large numbers in 

fermenters or greenhouses; biostimulation, the use of nutrients, substrates or 

environmental conditions to stimulate the naturally occurring organisms that can 

perform bioremediation; bioreactors, treatment of a contaminated substance in a 

large tank containing organisms or enzymes; bioventing, involves the venting of 

oxygen through soil to stimulate the growth or natural and introduced 

bioremediation organisms; composting, involves mixing contaminated materials 
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with compost containing bioremediation organisms; land farming, the use of 

farming tilling and soil amendment techniques to encourage the growth of 

bioremediation organisms in a contaminated area. Finally, abiotic processes 

sometimes can be used in combination with biotic processes to degrade 

particularly recalcitrant molecules. Examples of abiotic catalysts that may 

enhance biodegradative processes include ultraviolet light, inorganic reductants, 

and Fenton reagent (iron and hydrogen peroxide). The bioremediation industry 

has developed many novel approaches for monitoring and quantifying 

bioremediation processes (Crawford, 2006) to offer an efficient, cheap and 

biocompatible option for decontamination of polluted ecosystems. 

The biodegradative environmental fate of contaminants can be determined 

through the integration of field, laboratory, and modelling efforts (Hooper et al., 

2002). The National Research Council (1993) has recommended three criteria for 

demonstrating intrinsic remediation: documenting a decrease in contaminant 

concentrations at the site, showing experimentally that microorganisms in site 

samples have the potential to transform the contaminants under expected site 

conditions, developing evidence showing that the biodegradation potential is 

actually realized in the field. 

Among bacteria, the degradation of recalcitrant pollutants is of great 

environmental significance. A wide variety of bacteria able to utilize xenobiotics 

as a source of energy and capable of degrading a broad range of pollutants has 

been isolated (Gu and Berry, 1992; Topp et al., 2000; Gu and Mitchell, 2006; 

Singh and Walker, 2006; Yoon et al., 2006; Miyauchi et al., 2008), and many 

have been exploited in pollutant biodegradation and wastewater treatment (Bryers, 

1994; Osswald et al., 1995; Sharp et al., 1998). Pseudomonas sp. ADP is one of 

the best studied s-triazine-degrading bacteria (Mandelbaum et al., 1995; Martinez 

et al., 2001; Moràn et al., 2006), Arthrobacter aurescens TC1 is able to degrade a 

variety of pollutants, among which the herbicide glyphosate, mixed bacterial 

cultures in a consortium can show degradation ability of various pollutants, even 

though their individual components can be unable to utilize the chemical as 

energy source (Mandelbaum et al., 1993; De Souza et al., 1993). 

Furthermore, among the genus Basidiomycetes, the so called white rot fungi 

(WRF) are capable of degrading a lignocellulose substrate by producing three 

types of extracellular enzymes, often referred to as Lignin Modifying Enzymes 
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(LMEs), and they are Lignin Peroxidase (LiP), Manganese-Dependent Peroxidase 

(MnP) and Laccase (Lac). LiP oxidises methoxyl groups on aromatic rings, MnP 

and Lac are able to oxidise phenolic substrates. As the enzymes are non-specific, 

they have been found capable of degrading a wide variety of chemical compounds 

like DDT, PCB, lindane, dioxin, benzopyrene, cyanides, azides, CCl4 and 

pentachlorophenol (Singh et al., 1999; Lu et al., 2009). The main fungus studied is 

Phanerochaete chrysosporium, and also studied extensively are Trametes 

versicolor, Pleurotus ostreatus, Phanerochaete sordida, Trametes hirsutus, and 

Fusarium culmorum. 

 

 

2. AIM OF THE THESIS AND SELECTED PHARMACEUTICALS  
 

The aim of the present thesis is to assess the impact of selected emerging 

contaminants on the microbial community of different water and soil ecosystems, 

selected for the study. This work is structured in three parts, each regarding the 

fate of different pharmaceuticals.  

Chapter 1 includes the main part of the work, it regards the fate and removal of 

the antiviral Tamiflu (oseltamivir carboxylate, OC), recommended for the 

treatment of cases of avian and swine influenza. Tamiflu is predicted to reach the 

water system because resistant to biodegradation in wastewater treatment plants. 

Contrasting environmental samples were chosen for laboratory experiments: three 

surface water ecosystems of Italy, such as an irrigation canal Canale Emiliano 

Romagnolo (paragraph 1), River Po and Venice Lagoon (paragraph 2); two 

surface water ecosystems of Japan, River Furukawa and Lake Biwa (paragraph 

3); and samples of activated-sludge-mixed liquor from the municipal wastewater 

treatment plant of the city of Bologna and the effluent water of the plant 

(paragraph 4). Besides degradation and mineralization of OC during incubation 

time, the effect of OC on the bacterial community structure was determined by 

fingerprinting techniques (ARDRA and DGGE), qPCR, qRT-PCR, and 

epifluorescence microscopy techniques (FISH, bacterial abundance and vitality). 

Furthermore, bacterial strains growing on oseltamivir as sole carbon source were 

isolated and tested for degradation capacities. A bioremediation strategy was 

performed to evaluate the capability of a white rot fungus, P. crysosporium, to 

degrade the antiviral.  
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In Chapter 2 the destiny of common use human and veterinary antibiotics, such 

as ciprofloxacine, erythromycin, sulfamethoxazole, was monitored in the afore-

mentioned wastewater treatment plant and effluent. Bioremediation with P. 

chrysosporium was tested for degradation processes acceleration.  

Chapter 3 concerns the fate of two veterinary pharmaceuticals, doramectin and 

oxibendazol, common parasitic treatments in farms, in contaminated soils, and the 

effect on the bacterial community structure.  

 

The work for this thesis was conducted principally in the University of Bologna 

(Department of Agroenvironmental Sciences and Technologies), with the 

contribution of national and international collaborations. A part of the research 

regarding the antiviral Tamiflu (Chapter 1) was conducted with the Water 

Research Institute (IRSA, CNR of Rome), in particular epifluorescence 

microscopy techniques. Collaboration with the Department of Chemistry of Umeå 

University (Dr. Jerker Fick) regarded chemical analysis conducted in Chapter 1 

and 2. The work in Chapter 3 was conducted during a 9 month period (January 

2007 - April 2007; September 2008 - March 2009) spent in Complutense 

University of Madrid, in the Faculty of Veterinary, under the supervision of Prof. 

Margarita Martin.  

 

 

2.1 Fate and removal of the antiviral drug oseltamivir (Tamiflu) in 

superficial water 

During the past years influenza A viral infections have posed serious risks to 

public health. Since 2003, 286 cases of ‘avian’ influenza H5N1 human deaths 

have been confirmed by the WHO, and worldwide more than 213 countries have 

reported laboratory confirmed cases of ‘swine’ influenza H1N1, including at least 

16226 deaths. The available options to control influenza A viruses are limited. 

Health agencies all over the world have been forced to adopt strategies for 

containing the viruses and to protect the health of the public. Although 

vaccination is the primary strategy for prevention, neuraminidase inhibitors are 

the drugs of choice for the treatment and the prevention of influenza A illness in 

children and adults. The World Health Organization (WHO, 2006) has 

recommended the use of the antiviral drug Tamiflu (oseltamivir phosphate), 
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produced and marketed by F. Hoffman-La Roche Ltd (Basel, Switzerland), for the 

treatment and post-exposure prophylaxis in a pandemic scenario. Hundreds of 

million of course of Tamiflu have been stockpiled worldwide since 2003, and in 

the last year sales of the antiviral have further exploded. Oseltamivir phosphate 

(OP) [ethyl-(3R,4R,5S)-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-

1-carboxylate] is the prodrug of the active metabolite oseltamivir carboxylate 

(OC) [(3R,4R,5S)-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-

carboxylic acid], a specific inhibitor of influenza A and B virus neuraminidase 

(Kim et al., 1997; Li et al., 1998). OC reduces viral infection by binding to the 

highly conserved active site of the neuraminidase of the virus, inhibiting the 

release of progeny virions from the surface of infected cells (Bardsley-Elliot and 

Noble 1999). OC has been shown to be clinically active for the treatment and 

chemoprophylaxis of influenza in adults and in children (Ward et al., 2005). 

Pharmacological studies have demonstrated that after oral administration of OP 

and absorption in the gastrointestinal tract, it is converted by the hepatic esterases 

to OC (Figure 5). More than 80% of each oral dose of OP is eliminated by renal 

excretion as OC (Ward et al., 2005).  

 

 

Figure 5 – Structure of the prodrug oseltamivir phosphate (OP) and the active 
form oseltamivir carboxylate (OC) (Singer et al., 2007). 
 

The OC molecule has amine and carboxylate groups that impart hydrophilicity, a 

low partition coefficient (log P 1.1), and high water solubility (588 mg mL-1 at 

25°C) (American Hospital Formulary Service, 2006). These physico-chemical 

features minimize loss by sorption to sewage sludge during wastewater treatment.  

A recent study conducted in Sweden by Fick et al. (2007) demonstrated that OC is 

not completely removed during conventional sewage water treatments which 

include mechanical, chemical and biological (activated-sludge) processes. 

Consequently, in case of urban areas with a large number of patients receiving 
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Tamiflu, the potential risk of OC to contaminate the aquatic ecosystem is 

expected (Fick et al., 2007; Singer et al., 2007, 2008). Predicted environmental 

concentration (PEC) of OC, calculated in catchments with particularly low flow 

and high populations, would be over 20 µg L-1, which is significantly higher than 

that observed for most other pharmaceutical contaminants (Singer et al., 2008). 

This assumption was recently confirmed in two studies conducted in Japan, OC 

was detected in a conventional activated-sludge–based STP discharge in the 

concentration of 293.3 ng L-1, and in the receiving river water samples in the 

concentration of 6.6–190.2 ng L-1 during the peak of the flu season (Ghosh et al., 

2010). Söderstrom et al., (2009) detected no OC in Japanese surface water 

systems before the flu-season, but 2–58 ng L-1 were found in the samples taken 

during the flu season. 

Chronic ecotoxicity tests, conducted in light of the 2006 EMEA guidelines on 

environmental risk assessment for human pharmaceuticals, revealed that the level 

of concern regarding ecotoxicity is quite low. The preliminary no observed effects 

concentrations (NOECs) resulted in a PNEC of 100 µg L-1, applying an 

assessment factor of 10 (Singer et al., 2007). Considerable concerns are the 

potential inhibition of non-target neuraminidases in different organisms than 

influenza viruses, and the fact that the presence of OC into rivers can be a risk for 

the generation of OC resistance in influenza viruses. Recent analysis of isolated A 

viruses revealed a high increase in Tamiflu-resistant strains, in different countries 

worldwide (Hurt et al., 2009). 

 

2.2 Fate and removal of common use antibiotics in WWTP 

Antibiotics are used extensively in human and veterinary medicine, as well as in 

aquaculture, for preventing or treating microbial infections. The risk to 

contaminate soil or surface water run-off after application of manure, or in the use 

of sewage sludge for land amendment, is high, increasing the selective pressure 

for resistant bacteria (Kümmerer et al., 2009b). Common use antibiotics of 

emerging concern, most likely to cause environmental problems (Zuccato et al., 

2006), have been used in this work, for a degradation and bioremediation study 

(Figure 6).  

Ciprofloxacin is a broad-spectrum fluoroquinolone antibacterial drug, commonly 

used for the treatment of bacterial infections, in particular of the urinary and 
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respiratory tracts. Erythromycin is a macrolide  antibiotic, used to treat several 

types of infections (respiratory tract infections, skin infections, acute pelvic 

inflammatory disease, erythrasma, etc.). Sulfamethoxazole is a sulfonamide 

bacteriostatic antibiotic, often used in combination with trimethoprim. Excretion 

rates and further details on properties and metabolism of antibiotics can be found 

on http://pubchem.ncbi.nlm.nih.gov/. 

 

 

Figure 6 - Human and veterinary common use antibiotics used in the study. 

 

 

2.3 Fate and removal of veterinary pharmaceuticals in soil 

Two veterinary antimicrobials were selected in this study to assess their effects on 

a contaminated soil bacterial community: doramectin and oxibendazole (Figure 

7).  

Doramectin is a macrocyclic lactone, potent anthelmintic, for the treatment of 

parasites such as gastrointestinal roundworms, lungworms, eyeworms, grubs, 

sucking lice and mange mites in cattle. It is an endectocide molecule, for the 

activity against ecto- and endo-parasites (Shoop et al., 1995). It has low 

mammalian toxicity and formulations are convenient to use, hence it is 

extensively used worldwide in veterinary medicine. However the occurrence and 

persistence of residues of the drug brings the need for continued monitoring of its 

fate. Residues of doramectin (79.8 µg kg-1) have been found in sheep milk at 3 

days post-treatment, and were still detectable for 30 days after treatment (Danaher 
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et al., 2006). In faeces of livestock, residues may represent a potential risk for soil 

microfauna (Kolar et al., 2008). 

Oxibendazole is a benzimidazole, broad spectrum anthelmintic, used in veterinary 

medicine to protect porcine species from roundworms, strongyles, threadworms, 

pinworms and lungworm infestations. After administration of the drugs, large 

amounts of unchanged product are excreted by urine and faeces, particularly 

during the first weeks after treatment (Lifschitz et al., 2000), and can reach 

agricultural ecosystems though the application of manure on soil. 

 

 

 

Figure 7 – Veterinary pharmaceuticals doramectin (left) and oxibendazole (right). 
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3. MATERIALS AND METHODS 

 

3.1 CHAPTER 1 – The antiviral drug Tamiflu 

 

3.1.1 Chemical analysis  

 

a. Degradation analysis by HPLC 

Oseltamivir carboxylate (OC) concentration in incubated water samples of the 

CER irrigation canal was determined by HPLC after derivatization with 20 mM 

naphthalene-2,3-dialdehyde (Sigma-Aldrich Italia s.r.l., Milan, Italy) and 20 mM 

potassium cyanide (Ultra Scientific Italia s.r.l., Bologna, Italy) as described in 

Eisenberg and Cundy (1998). Aliquots of the derivatized mixtures were analysed 

by a chromatography system equipped with a 250 x 0.46 mm Prodigy ODS-2 

column (Phenomenex Inc., Torrance, CA), and an RF-10AXL spectrofluorometric 

detector (Shimadzu Italia s.r.l., Milan, Italy). Isocratic elution was carried out at 

40 °C, and the eluent flow was set at 1.0 mL min-1 with 50 mM sodium acetate in 

acetonitrile/water (27 : 73, v/v). Detection of OC was achieved by setting the 

detector at excitation and emission wavelengths of 420 and 472 nm, respectively. 

OC was quantified on the basis of external standards. OC was obtained from 

analytical grade OP (≥ 99% purity; Sequoia Research Product, Pangbourne, UK) 

by chemical hydrolysis at elevated pH. Samples from flasks containing water and 

sediments were extracted with ethanol, centrifuged at 5000 g for 10 min, 

redissolved in 50 mM monosodium phosphate and analysed as described above. 

Recoveries of OC from water and water/sediment samples were 97.1 and 87.7%, 

respectively. 

 

b. Degradation analysis by LC-ESI-MS/MS 

OC degradation in the further experiments was assessed following the procedure 

described in Fick et al. (2007), samples were extracted by solid phase extraction 

and analyzed by liquid chromatography/electro spray tandem mass spectrometry. 

Briefly, samples were acidified to pH 3, filtered through a 0.45-µm filter and 

loaded on a Strata-X-C (200 mg, 6 mL) column (Phenomenex Inc. Torrence, CA, 

USA). Eluate was concentrated and reconstituted in acetonitrile/H2O (1:1) 

containing 0.1% formic acid. Aliquots (10 µL) were injected into a LC-ESI-
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MS/MS equipped with C18 column (YMC Inc. Wilmington, NC), a P40000 HPLC 

pump (Thermo Scientific Inc., Waltham, MA, USA) and a LCQ Duo ion-trap 

mass spectrometer (Thermo Scientific Inc.). Oseltamivir carboxylate (OC) was 

obtained from F. Hoffmann-La Roche Ltd (Basel, Switzerland). 

 

c. Mineralization analysis 

Mineralization of [U-ring-14C]-OC was measured in biometers, which consisted in 

250-mL flasks equipped with suspended glass vials containing 4 mL of a 1 M 

NaOH solution to trap 14CO2. Aliquots of water (50 mL) were transferred into 

each flask under aseptic conditions and spiked with a solution of unlabeled 

(chemical purity > 98%) and 14C-OC (radiopurity > 97.9%, specific activity 4.96 

MBq mg-1) to give a final concentration of 20 µg L-1 (1.5 kBq mL-1). Radiolabeled 

OC was provided by F. Hoffmann-La Roche Ltd (Basel, Switzerland). Water 

samples containing 5 and 10% (w/v) sediments were included in the study. 

Samples consisting in autoclaved water and water/sediments were used as 

controls. Samples were incubated for 21 days at 20 °C on an orbital shaker (125 

rpm) in the dark. Trapped 14CO2 was determined by mixing a 1-mL aliquot of 

NaOH solution with 4 mL of Hi Safe 3 scintillation cocktail (PerkinElmer, 

Boston, MA, USA), and the amount of radioactivity was measured by liquid 

scintillation counting (LSC) using a Wallac 1490 liquid scintillation counter 

(Wallac Oy, Turku, Finland). Prior to analysis, samples were kept in the dark for 

12 hours.  

The experiment was conducted in triplicate. Data of the degradation and 

mineralization study were analyzed by analysis of variance. Means were separated 

by Fisher’s least significant difference (LSD) and significant differences were 

detected at the P = 0.05 level. 

 

d. Bioavailability and sorption isotherms 

At the end of the incubation period, samples of the mineralization study were 

transferred into 50-mL centrifuge tubes, shaken for 1 hour and centrifuged at 5000 

g for 10 min. The total volume of supernatant was measured and total 

radioactivity determined by LSC, mixing triplicate 1-mL aliquots with 4 mL of 

HiSafe 3 Scintillation Cocktail. Pellets were sequentially extracted with 0.1 M 

CaCl2, and acetonitrile. For each extraction, pellets were dispersed by vortexing, 
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shaken for 3 hours and centrifuged at 5000 g for 10 min. Total radioactivity in the 

supernatants was determined by LSC. Finally, remaining 14C-residues were 

determined by combusting triplicate subsamples of ACN-extracted pellet using a 

Packard 306 (Packard. Instrument Co., Sterling, VA, USA). Sorption isotherms of 

OC on sediments of the River Po and Venice Lagoon were determined by the 

batch equilibrium method. Aliquots ( 2 g, air-dried basis) of each sediment were 

weighed into 50-mL glass centrifuge tubes and a 10-mL aliquot of 14C-OC 

solution, prepared in 0.01 M CaCl2, was added. Sorption isotherms were 

determined using triplicate samples at five initial OC concentrations, ranging from 

20 to 100 µg mL-1. Radiolabeled OC was added to unlabeled solutions to give an 

initial radioactivity of approximately 3 x 10-3 µCi mL-1. Tubes were sealed with 

teflon-lined caps, mechanically shaken at 20 °C for 14 hours, and samples were 

centrifuged at 5000 g for 10 min. Aliquots (5 mL) of supernatant were removed, 

filtered through a 0.2-µm filter, and radioactivity in 1-mL fractions was 

determined by LSC. Preliminary investigations showed that equilibrium was 

attained in less than 14 hours and that there was no significant OC sorption to 

centrifuge tubes. The amount of sorbed OC was calculated from the concentration 

differences between the supernatant of the equilibrated solutions and those of the 

corresponding initial solutions. Sorption data were fitted to the log form of the 

Freundlich equation:  

logCs = logKf + (1/n) logCe 

where Cs is the concentration of OC sorbed (µg g-1 sediment), Ce is the 

equilibrium concentration (µg mL-1 solution) and Kf and 1/n are the empirical 

Freundlich constants. Values of Kf and 1/n were estimated by linear regression 

after a log–log transformation. 

 

3.1.2 Microbial analysis  

 

In this work, microbial community level toxicity was tested using a polyphasic 

approach, involving a range of molecular-based methods, targeting both structure 

and function of the tested microbial communities.  

Potential effects of OC on basic microbiological aspects of the indigenous 

microbial community of water and sediments were investigated using DNA-based 
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approaches. All the microbiological analyses were conducted using aliquots taken 

from samples of the OC degradation study. 

 

Bacterial community structure  

e. Bacterial abundance by direct count (DAPI) 

The size of the bacterial population in water samples was estimated by direct 

count, using a fluorescent dye. Total bacterial abundance was calculated by fixing, 

at different time intervals, aliquots (1 mL) of water with the same amount of 

phosphate-buffer saline (PBS) containing formaldehyde (2% w/v), Tween 20 (0.5 

v/v) and sodium pyrophosphate (0.1 M). In order to separate water bacterial 

aggregates, a gentle sonication (10 sec, 15 W using a Microson XL2000 ultrasonic 

liquid processor) was performed on each sub-sample. Samples were then treated 

with the DNA-binding fluorescent stain 4’-6-diamino-2-phenylindole (DAPI) (1 

µg mL-1), and filtered onto a 0.22 mm black polycarbonate filter. Cells were 

enumerated using an epifluorescence microscope (DM LB30, Leica GmBH, 

Heideberg, Germany), as described in Barra Caracciolo et al. (2005).  

 

f. Bacterial phylogenetic composition by Fluorescence In Situ Hybridization 

(FISH) 

In order to investigate the effects of OC on the bacterial community and to assess 

if it could be involved in degradation, Florescence In Situ Hybridization (FISH) 

was performed on OC treated and untreated sub-samples collected from 

degradation microcosms (2 replicates). The phylogenetic composition of the OC-

treated and control samples was analyzed at different sampling times (0, 14, 21 

and 36 days). For each condition, four sub-samples (1 mL each) were fixed (1:1) 

with a solution composed of phosphate-buffered saline: 130 mM NaCl; 7 mM 

Na2HPO4; 3 mM NaH2PO4; 2% formaldehyde; 0.5% Tween 20 and 100 mM 

sodium pyrophosphate. After sonication, samples were filtered on a 0.2 µm 

polycarbonate membrane. Filters were stored at -20 °C until further processing. 

FISH of the harvested cells was performed using probes for the identification of 

the major bacterial phylogenetic divisions found in freshwater (Zwart et al., 

2002), such as the Bacteria domain, and the phyla of α-Proteobacteria, β-

Proteobacteria, γ-Proteobacteria, Planctomycetes, Cytophaga-Flavobacterium, 

Firmicutes. For this purpose, the Cy3-labelled oligonucleotide probes described in 



Materials and Methods 

28  

Table 2 were applied, in accordance with previously published protocols (Barra 

Caracciolo et al., 2010; Grenni et al., 2009). Further details of the probes are 

available at http://www.microbial-ecology.net/probebase (Loy et al., 2007).  

 
 

Target Taxa Probe Sequence (5’-3’) 

Archaea ARCH915 GTGCTCCCCCGCCAATTCCT 

Bacteria EUB338 GCTGCCTCCCGTAGGAGT 

Bacteria EUB338II GCAGCCACCCGTAGGTGT 

Bacteria EUB338III GCTGCCACCCGTAGGTGT 

α-Proteobacteria ALF1b CGTTCGYTCTGAGCCAG 

β-Proteobacteria BET42a GCCTTCCCACTTCGTTT 

γ-Proteobacteria GAM42a GCCTTCCCACATCGTTT 

δ-proteobacteria SRB 
Sulfate-Reducing Bacteria 

SRB385 CGGCGTCGCTGCGTCAGG 

ε-proteobacteria EPS710 CAGTATCATCCCAGCAGA 

Planctomycetes PLA46 GACTTGCATGCCTAATCC 

Planctomycetes PLA886 GCCTTGCGACCATACTCCC 

Cytophaga-Flavobacterium CF319a TGGTCCGTGTCTCAGTAC 

Actinobacteria HGC69a TATAGTTACCACCGCCGT 

Firmicutes  LGC354a TGGAAGATTCCCTACTGC 

 
Table 2 – Cy3-labelled oligonucleotide probes applied in this study for 
Fluorescence In Situ Hybridization analysis. ARCH915, SRB385, EPS710, 
HGC69a probes were used in the subsequent study described in paragraph 3.3.3. 
Further details on the above-mentioned probes are available at probeBase (Loy et 
al., 2007). 
 
 
The number of cells binding to the probes for each bacterial group was calculated 

as a percentage of the total DAPI positive cells (500-1000 stained cells). The 

slides were mounted with a drop of Vectashield Mounting Medium and the 

preparation examined and counted with a Leica DM 4000B epifluorescence 

microscope at 1000 x magnification. Experimental data are reported as the 
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number of cells mL-1, calculated by multiplying the total cell abundance and the 

percentage of cells detected by each specific probe. 

Data were obtained from the mean of four sub-samples. Statistical analysis of the 

data was done using Kruskal-Wallis One Way Analysis of Variance on Ranks, 

with significant differences at level of P < 0.01. 

 

g. Microbial community structure by Amplified Ribosomal DNA Restriction 

Analysis (ARDRA) 

Samples of the degradation study were used to determine bacterial population 

changes in response to the presence of OC. Total DNA was isolated from 

incubated samples using the DNA PowerSoil Isolation Kit (MoBio Laboratories 

Inc., Solana Beach, CA). Duplicates 100-mL aliquots of water were passed 

through a 0.22-µm nylon filter (GE Water & Technologies, Trevose, PA). Filters 

were transferred into PowerBead tubes provided with the kit and then processed 

following the instructions of the manufacturer. The effects on the structure of the 

bacterial community were estimated by Amplified Ribosomal DNA Restriction 

Analysis (ARDRA). ARDRA is a method based on restriction endonuclease 

digestion of the amplified bacterial 16S rDNA. PCR amplification of 16S rDNA 

was carried out using the primer pair 63f/1387r (Table 3).  

 

Target Primer Sequence (5’-3’) 

bacterial 16S rDNA 
63f 

1387r 

CAGGCCTAACACATGCAAGTC 

GGGCGGWGTGTACAAGGC 

 
Table 3 – Primers used for ARDRA analysis (Marchesi et al., 1998). 
 
 
The PCR reaction mixture contained 25 µL of RedTaq ReadyMix (Sigma–Aldrich 

Chemie GmbH, Munich, Germany), 0.5 µM of each primer (Operon 

Biotechnologies, Inc., Huntsville, AL), 5–10 ng template DNA and water to a 

final volume of 50 µL. The cycling was performed with the T3 DNA 

thermalcycler (Biometra GmbH, Göttinger, Germany) as follows: 94 °C (4 min) 

followed by 30 thermal cycles of 94 °C (30 s), 56 °C (30 s), 68 °C (60 s), and a 

final elongation step at 72 °C for 15 min. The size of the PCR products was 

verified by electrophoresis on a 1% agarose gel and visualized after staining with 
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SYBR Green I (Sigma–Aldrich). Aliquots of amplified 16S rDNA products (10 

µL) were digested with 10 U of AluI and EcoRI (Sigma–Aldrich) in a total 

volume of 40 µL at 37 °C for 2 hours. Digested products were resolved by vertical 

non-denaturing 8% polyacrylamide gel electrophoresis and visualized by SYBR 

Green I staining. Data were computed with the software GelCompar II version 

5.10 (Applied Maths, Sint-Martens-Latem, Belgium) to cluster the data and 

construct the similarity matrix to make comparisons of bacterial communities of 

the differently treated sample. 

 

h. Microbial community structure by Denaturing Gradient Gel 

Electrophoresis (DGGE) 

The structure and diversity of the bacterial community was estimated by a two-

step nested-PCR denaturing gradient gel electrophoresis (DGGE) analysis. DGGE 

permits to see how bacterial sequences change over time and treatment. 

Prefiltered (0.45 µm) aliquots of water and water/sediment samples were passed 

through a sterile 0.22-µm nylon filter (GE Water & Technologies, Trevose, PA). 

Filters were transferred into PowerBead tubes provided with the kit PowerSoil 

DNA Isolation Kit (MoBio Laboratories Inc., Solana Beach, CA) and then 

processed following the instructions of the manufacturer. Total DNA was first 

amplified using the primer pairs P63f and P518r (Table 4) in a 50 µl reaction 

mixture consisting of 5-10 ng of DNA, 5 U of AmpliTaq DNA polymerase 

(Invitrogen, Carlsbad, CA), 10x reaction buffer, 4 mM MgCl2, 0.5 mM of each 

dNTP, 0.8 µM of each primer and nuclease-free water. Reaction conditions were 

the following: denaturation at 94 °C for 5 min, followed by 31 cycles of 

denaturation at 94 °C for 60 s, annealing at 53 °C for 60 s, extension at 72 °C for 

2 min, and final extension at 72 °C for 10 min. Amplicons were used for the 

second PCR using primer pairs P338f and P518r with the same cycler program 

(Table 4). 40-bp-long CG clamps were included at the 5′ end of the forward 

primer.  

 

Target Primer Sequence (5’-3’) 

bacterial 16S rDNA 

P63f  

P518r  

P338f 

CAGGCCTAACACATGCAAGTC 

ATTACCGCGGCTGCTGG 

ACTCCTACGGGAGGCAGCAG5 
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Table 4 – Primers used for DGGE analysis. 
 
 
After quantification of amplified products, equal amounts of amplicons (250-300 

ng) were loaded onto DGGE gel. Gel contained 8% (w/v) polyacrylamide gels 

(37.5:1 acrylamide:bisacrylamide) with a urea/formamide denaturing gradient of 

40–60% (where 100% denaturant contains 7 M urea 8 and 40% v/v formamide). 

A 10-mL stacking gel containing no denaturants was added before polymerization 

was complete. Gels were run for 16 hours at 60 °C, with a constant voltage of 65 

mV in 1 x TAE buffer. DGGE analysis was performed in DCode system (Bio-Rad 

Laboratories, Hercules, CA, USA). Bands were visualized after staining with 

GelRed (Biotum Inc., Hayward, CA). Band profiles were analyzed using the 

GelCompare II package (Applied Maths, Kortrijk, Belgium). Dendrograms were 

constructed using the DICE coefficients and were subjected to unweighted pair 

group method cluster analysis (UPGMA). 

 

Bacterial community function  

i. Bacterial viability by direct count 

The relative abundance of viable bacteria in water samples was estimated by 

direct count, using fluorescent dyes. Cell viability was estimated using a cell 

viability kit (Live/Dead®, BacLightTM), following the method proposed by 

Haglund et al. (2003). Two different fluorescent dyes were used, SYBR Green II, 

and propidium iodide, respectively as viability and membrane-compromised cell 

markers. Aliquots (1 mL) of water samples were incubated in the presence of 

SYBR Green II (1/10,000 dilution; Sigma-Aldrich, Germany) and propidium 

iodide (20 mM). After incubation, samples were filtered through a black 

polycarbonate filter (0.22 mm pore size) and viable (green) and dead (red) 

bacteria were enumerated by direct count using a Leica DM 4000B 

epifluorescence microscope at 1000 x magnification. Live cell abundance was 

calculated, as the number of live bacteria mL-1, from the total cell abundance, 

obtained by DAPI counts, multiplied by % of live cells/live+dead.  

 

j. Bacterial metabolic potential 

The effects of OC on the metabolic potential of the autochthonous 

microorganisms were assessed by measuring mineralization of the pesticides 
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glyphosate and metolachlor in water samples of the CER irrigation canal. Samples 

of non-sterilized and sterilized water containing OC (1.5 µg mL-1) were prepared 

as described above. Glyphosate and metolachlor were applied as water solutions 

using a mixture of unlabelled and 14C-labelled compound in order to obtain a final 

concentration of 1 µg a.i. L-1. Unlabelled glyphosate (purity > 99%) and 14C-

glyphosate (N-phosphonomethyl-2-14C-glycine; radiopurity > 99%, specific 

activity 5.4 mCi mmol-1) were purchased from Sigma-Aldrich Italia (Milan, Italy). 

Unlabelled metolachlor (purity > 96%) and 14C-metolachlor (2-chloro-N-(2-ethyl-

6-methyl-[U-14C]phenyl)-N-(2-methoxy-1-methyl-ethyl)acetamide; radiopurity > 

99%, specific activity 13 mCi mmol-1) were donated by Syngenta Crop Protection 

AG (Basel, CH). Treated water samples were incubated at 20 °C on an orbital 

shaker (125 rpm) in the dark. Metolachlor and glyphosate mineralization was 

monitored by trapping the evolved 14CO2 in vials containing 4 mL of a 1 M NaOH 

solution. The NaOH solution was replaced at sampling, facilitating flask aeration. 

Aliquots (1 mL) of NaOH solution were mixed with 4 mL of HiSafe 3 liquid 

scintillation cocktail (PerkinElmer, Boston, MA) and radioactivity quantified 

using a Wallac 1490 liquid scintillation counter (Wallac Oy, Turku, Finland). 

Samples were kept in the dark for 12 hours prior to analysis. Experiment was 

conducted in triplicate, and untreated samples (control) were included. 

Experiment was repeated with samples consisting of water/sediment mixture 

prepared as described above. Metabolic potential was expressed as the percentage 

of added glyphosate and metolachlor mineralized. 

 

k. Nitrifying bacteria quantification by quantitative PCR (qPCR and qRT-

PCR)  

Quantitative PCR (Heid et al., 1996; Schmittgen, 2001) is a technique that permits 

a very accurate quantitative determination of DNA and RNA. It is based on 

detecting and quantifying a fluorescent probe or DNA-binding agent. By 

recording the amount of fluorescence at each cycle, it is possible to monitor the 

PCR reaction during the exponential phase, when the first significant increase in 

the amount of PCR product is correlated to the initial amount of target template. 

The more template is present at the beginning of the PCR reaction, the fewer 

cycles it takes to reach the point at which the fluorescent signal is first detected as 

being significantly greater than the background.  



Materials and Methods 

33  

Total RNA was isolated by collecting cells onto a 0.22-µm filter as described for 

DNA isolation, except that filters were placed onto 2-mL centrifuge tubes 

containing 1 mL of Tri Reagent (Sigma–Aldrich). After homogenization by 

shaking, samples were incubated at room temperature for 5 min. Total RNA was 

separated from DNA and proteins by adding 0.2 mL of chloroform and 

centrifuging at 12000 g at 4 °C for 15 min. Finally, RNA was recovered from the 

aqueous phase by precipitation with isopropanol and redissolved in DEPC water. 

Remaining DNA was removed by the use of RNase-free DNase I (Sigma–

Aldrich). RNA was reverse transcripted into complementary DNA (cDNA) and 

amplified using the SYBR Green Quantitative RT-PCR Kit (Sigma–Aldrich), 

following the manufacturer’s instructions. Expression level of genes involved in 

the bacterial nitrification process was performed by quantitative reverse 

transcriptase PCR (qRT-PCR), targeting ammonia-oxidizing 16S rRNA genes, 

functional ammonia monooxygenase (amoA) genes, and nitrite-oxidizing bacteria 

Nitrospira-like 16S-rRNA genes, using the primer pairs described in Table 5. 

Other than samples of the degradation study, triplicate water samples treated with 

increasing concentration of OC (0.02– 2 µg mL-1) and incubated as described for 

the degradation study were included. Briefly, qRT-PCR was performed in 50 µL 

of the reaction mixture containing approximately 50 ng template RNA, 0.25 µM 

of each primer, 25 µL of SYBR Green Taq Ready Mix, 5 µL of the reference dye, 

0.25 µL of Moloney Murine Leukemia Virus Reverse, and 12.5 µL of nuclease-

free water. Thermocycling conditions were as follows: 2 min at 50 °C, 10 min at 

95 °C, and 40 cycles of 15 s at 95 °C and 1 min at 50 °C. The resulting samples 

were analyzed using an ABI Prism 7700 Sequence Detection System (Applied 

Biosystem Co., Foster City, CA). After quantification, amplified fragments 

samples were subjected to melting-curve analysis. A standard curve was 

generated by plotting cycle threshold values (Ct) against logarithmic-transformed 

amounts of target DNA obtained from 10-fold dilutions of DNA containing the 

target genes. 

 

Target Primer Sequence (5’-3’) 

bacterial 16S rDNA 
 

1055f 
1392r 

 

ATGGCTGTCGTCAGCT 
ACGGGCGGTGTGTAC 

 
N. oligotropha like 

amoA gene 
amoNo550D2f 

amoNo754r 
TCAGTAGCYGACTACACMGG 
CTTTAACATAGTAGAAAGCGG 
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ammonia-oxidizing 
bacterial 16S rDNA 

 

CTO 189fA/B 
CTO 189fC 

RT1r 
 

GGAGRAAAGCAGGGGATCG 
GGAGGAAAGTAGGGGATCG 

CGTCCTCTCAGACCARCTACTG 
 

Nitrospira spp. 
16S rDNA 

NSR1113f 
NSR1264r 

CCTGCTTTCAGTTGCTACCG 
GTTTGCAGCGCTTTGTACCG 

 
Table 5 – Primers used in qPCR analysis. Respectively (Ferris et al., 1996; 
Dionisi et al., 2002; Hermansson et al., 2001; Harms et al., 2003). 
 
 
Size of the total bacterial community, and of the ammonia-oxidizing bacteria, was 

estimated also by quantitative PCR (qPCR). Total bacteria were evaluated using a 

primer pair targeting the conservative bacterial 16S rDNA fragment. Ammonia-

oxidizing bacteria were evaluated using two primers sets, including the ammonia-

oxidizing bacterial 16S rDNA and the Nitrosomonas oligotropha-like amoA gene. 

Primers used in this study are described in Harms et al. (2003). Each 25 µl qPCR 

reaction contained 2 µl of DNA, 12.5 µl of 2x TaqMan Universal PCR Master 

Mix (Applied Biosystems, CA), and 0.2 µM of each primer. Thermocycling 

conditions were as follows: 2 min at 50 °C, 10 min at 95 °C, cycles of 15 s at 95 

°C and 1 min at 60 °C. Reactions were performed using an ABI Prism 7700 

Sequence Detection System (Applied Biosystems). Gene copies were estimated 

by comparison of cycle threshold values obtained from known amounts of DNA. 

All analyses were conducted in triplicate. 

 

l. Bacterial isolates and bioremediation tests 

Environmental samples were used as a source of inoculum for enrichments on 

OC. Enrichment cultures were done in a definite minimal salt medium (MSM) 

containing (g L-1): KH2PO4, 0.4; K2HPO4, 1.6; CaSO4 2H2O, 0.1; MgSO4 7H2O, 

1.0; (NH4)SO4, 2.0. A volume of 1 mL was added to 250-mL flasks containing 50 

mL of MSM and 50 mg L-1 of analytical grade OC. Flasks were incubated at 25 

°C with shaking (250 rpm). Enrichment cultures were sub-cultured six times by 

transferring 0.5 mL to a fresh MSM containing OC. Pure cultures were isolated 

from the enrichments by streaking out on solid MSM supplemented with 50 mg L-

1 OC. Colonies were picked and screened for their ability to mineralize OC. After 

growing overnight in LB broth, cells were harvested by centrifugation at 10,000 g 

for 10 min and washed twice with sterile phosphate buffer saline (PBS). The 
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pellet was resuspended in PBS to the initial density of approximately 4 x 106 cell 

mL-1. For each single colony, 0.5 mL of inoculum was transferred to biometers 

flask containing MSM and a mixture of unlabeled and 14C-OC to give a final 

concentration of 30 µg mL-1. Biometers were incubated for 10 days at 25 °C with 

shaking (250 rpm). Trapped 14CO2 was measured as described above. Two strains 

which showed higher potential for OC mineralization were selected for the 

bioremediation study. Bacterial strains were identified by sequencing a PCR-

amplified fragment of the bacterial 16S rDNA. Genomic DNA was isolated using 

the commercial kit UltraClean Microbial DNA Isolation (MoBio Laboratories 

Inc., Solana Beach, CA) following the manufacturer’s instructions. Isolated DNA 

was amplified by PCR using the universal primers as described in Willems and 

Collins (1996). PCR products were purified using the QIAquick PCR Purification 

Kit (Qiagen GmBH, Hilden, Germany) and DNA sequencing was performed by 

cycle sequencing using the DyeDeoxy Terminator Cycle Sequencing Kit and an 

ABI Prism DNA Sequencer (Applied Biosystem, Foster City, CA, USA). DNA 

sequences of the genomic 16S rDNA were compared with existing sequences 

using BLAST (http://www.ncbi.nlm.nih.gov) and submitted to GenBank under the 

Accession Numbers GU065286 and GU065287.  

Bacterial strains were used to assess their potential to mineralize OC in water and 

water/sediment samples. The experiment was conducted in biometer flasks 

containing 50 mL of samples and OC (10 g mL-1). Flasks were separately 

inoculated with one or the combination of the isolated strains following the 

procedure described above. Trapped 14CO2 was measured by LSC. 

 

The efficiency of a Patent Pending formulation, using the fungus Phanerochaete 

crysosporium, strain DSMZ 1547, was tested for bioremediation of Tamiflu in the 

municipal wastewater treatment plant (WWTP) of Bologna. Samples of the 

ASML and EW (100 mL) were transferred into 250-L flasks under aseptic 

conditions. Analytical grade OC was applied to flasks to give a final concentration 

of 10 µg mL-1. After adding the fungus formulation, flasks were sealed and 

incubated for 30 days on an orbital shaker (125 rpm) at 20 °C in the dark. At 

selected intervals, triplicate samples were taken for chemical and microbial 

analysis. 
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3.1.3 Study cases in different water ecosystems 

 

3.1.3.1 Irrigation canal in Emilia Romagna 

 

Experimental site, sampling and microcosm set up 

Water and sediment samples were collected in April 2006 from the irrigation 

canal Canale Emiliano Romagnolo (CER) in proximity of Medicina (44°27’59’’ 

N, 11°42’25’’ E) (Figure 8). CER is a 133 km long canal that receives water from 

the River Po, runs from Salvadonica di Bondeno (Ferrara) downs to Donegaglia di 

Bellaria (Rimini) before empting in the Uso river.  

 

 

Figure 8 – View of the irrigation canal Canale Emiliano Romagnolo (CER). 

 

Samples were collected manually by immersing 2-L sterile glass bottles 

approximately 10 cm below the water surface. Collected samples were transported 

to the laboratory within 2 hours from sampling and were kept at 4 °C in the dark. 

Prior to use, water samples were left at 20 °C overnight. A portion of the collected 

water was sterilized by autoclaving for 1 hour at 121 °C and 103 kPa. Some of the 

physico-chemical properties of the collected water and sediment are given in 

Table 6.  
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Water 

pH 
DO 

(mg L-1) 
DOC 

(mg L-1) 
HCO3

- 
(mg L-1) 

F- 
(mg L-1) 

Cl- 
(mg L-1) 

NO2
- 

(mg L-1) 
NO3

- 
(mg L-1) 

PO4
3- 

(mg L-1) 
SO4

2- 
(mg L-1) 

8.3 13.1 4.7 158.0 0.17 28.5 0.07 13.2 <0.02 83.8 
 

Sediments 
Sand Silt Clay Organic Carbon 
7.3% 38.9% 53.8% 2.8% 

 
Table 6– Physico-chemical properties of water and sediment from irrigation canal 
Canale Emiliano Romagnolo (CER). DO: dissolved oxygen. DOC dissolved 
organic carbon. 
 
 

Water samples (80 mL) were transferred into 250-mL sterile Erlenmeyer flasks 

under aseptic conditions. Samples were treated with oseltamivir carboxylate (OC) 

dissolved in 50 mM NaH2PO4 to give a final concentration of 1.5 µg mL-1. Flasks 

were sealed, and samples were incubated at 20 °C on an orbital shaker (125 rpm) 

in the dark. At selected time intervals, duplicate 1-mL aliquots were taken for 

analytical or microbiological analysis. All operations were conducted under sterile 

conditions. Control samples, consisting of untreated water and samples containing 

5% (w/v) of sterilized or non-sterilized sediments taken from the same irrigation 

canal, were included. Sediments were air-dried and passed through a 5-mm sieve. 

The whole experiment was conducted in triplicate. 

 

Chemical analysis 

Degradation of OC was assessed by HPLC, as described in paragraph a. 

 

Microbial analysis 

Bacterial abundance (e), viability (i), phylogenetic composition using the probes 

for the identification of the bacterial taxa: Bacteria, α-Proteobacteria, β-

Proteobacteria, γ-Proteobacteria, Planctomycetes, Cytophaga-Flavobacterium, 

Firmicutes (f), and metabolic potential (j) were assessed as described in the 

mentioned paragraphs. 

 

3.1.3.2 River Po and Venice Lagoon 
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Experimental site, sampling and microcosm set up 

Samples of water and sediment were collected in November 2007 from the River 

Po (Occhiobello, Italy) and the Venice Lagoon (in proximity of St. Mark’s 

Square, Venice, Italy) (Figure 9).  

 

 

 

Figure 9 – Sampling points in River Po (above) and Venice Lagoon (below). 

 

 

In both sites, samples were collected manually by immersing 2-L sterilized glass 

bottles approximately 10 cm below the water surface. Sediments were collected 

using a sterilized stainless steel corer. Samples were transported to the laboratory 

within 2 hours from sampling and kept at 4 °C in the dark for no longer than three 

days. Prior to use, water samples were left at 20 °C overnight. Sediments were left 

to dry at room temperature for two days, homogenized by passing through a 4-mm 

sieve and the remaining water content was determined gravimetrically. A portion 
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of the collected water and sediments was sterilized by autoclaving for 1 hour at 

121 °C and 103 kPa on three successive days. Selected physico-chemical and 

microbiological properties of the collected water and sediments are given in Table 

7.  

 

 River Po Venice Lagoon 
Water   
pH 6.91 7.60 
Dissolved Organic Carbon (mg L-1) 1.49 2.29 
Suspended particulate matter (mg L-1) 62.16 99.77 
Bacterial number (log cell number mL-1) 5.82 5.91 
NH3 (mg L-1) 5.71 6.82 
Salinity (psu) <1 27.22 

Sediments   
pH 7.10 7.71 
Sand (%) 91.45 94.09 
Silt (%) 4.45 5.12 
Clay (%) 4.10 0.79 
Total carbon (%) 2.68 5.68 
Total nitrogen (%) 0.17 0.21 
Bacterial number (log cell number g-1) 7.91 7.48 

 
Table 7 – Selected properties of water and sediment of the River Po and Venice 
Lagoon. 
 
 
For the degradation study, microcosms were prepared by transferring water (500 

mL) and sediments (5 and 10% w/v) from the aquatic ecosystems into 1-L flasks 

under aseptic conditions. Analytical grade OC (chemical purity > 98%) was 

applied to each sample to give a final concentration of 20 µg L-1. Finally, flasks 

were sealed and incubated for 21 days on an orbital shaker (125 rpm) at 20 °C in 

the dark. Untreated flasks were included as control for microbiological analysis. 

At selected intervals, duplicate samples were taken for chemical and microbial 

analysis. 

 

Chemical analysis 

Degradation and Mineralization of OC were assessed as described in paragraph b 

and c, bioavailability and sorption isotherms of OC as in paragraph d. 

 

Microbial analysis 
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Microbial community structure by ARDRA, and the nitrifying bacteria 

quantification by qRT-PCR were assessed as described in paragraphs g and k. 

 

3.1.3.3 Lake Biwa and River Furukawa 

 

Experimental site, sampling and microcosm set up 

Samples of water and sediments of Lake Biwa (34° 59.81'N, 135° 53.68'E) and 

River Furukawa (34° 54.10'N, 135° 44.87'E) were collected in Japan, on January 

2009 and shipped to Europe in a refrigerated container ensuring a constant 

temperature of 4 °C within. Sediments of the two Japanese water bodies were left 

to dry at room temperature and homogenized by passing through a 4-mm sieve. 

Lake Biwa is the largest lake and the greatest water resource in Japan. It supplies 

municipal and industrial water to 14 million residents around and downstream of 

the lake. It has a surface area of 670 km2 with a maximum depth of 103.6 m. 

River Furukawa is one of Japan's first-class rivers, it is a branch of River Yahagi, 

which flows from Nagano Prefecture's Mount Ōkawairi, through Gifu Prefecture, 

and enters Mikawa Bay from Aichi Prefecture.  

Selected physico-chemical properties of the collected samples are given in Table 

8.  

 

 Lake Biwa River Furukawa  
pH 7.3 7.1 
Chemical Oxygen Demand (mg L-1) 3.3 3.7 
Conductivity (mS/M) 15.6 18.5 
Turbidity  20.0 23.1 
Total nitrogen (mg L-1) 0.29 1.4 
Total phosphorus (mg L-1) 0.01 0.07 

 
Table 8 - Selected properties of Lake Biwa and River Furukawa waters. 
 

 

Microcosms for the degradation study were set up by transferring water (250 mL) 

and sediments (5% w/v) from the two Japanese aquatic ecosystems into 1 L flasks 

under aseptic conditions. Analytical grade OC was applied to each sample to give 

a final concentration of 40 µg L-1, and samples were incubated for 40 days.  

 

Chemical analysis 
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The same procedure, described previously in paragraphs b and c, was followed for 

degradation and mineralization analysis. 

 

Microbial analysis 

Microbial community structure was assessed by ARDRA and DGGE following 

the procedure described previously, in paragraph g and h. Nitrifying bacteria 

quantification was conducted by qPCR (paragraph k), and bacterial strains were 

isolated and tested for bioremediation (paragraph l). 

 

3.1.3.4 Wastewater Treatment Plant of Bologna 

 

Experimental site, sampling and microcosm set up 

Samples of activated-sludge-mixed liquor (ASML) were obtained from the 

municipal wastewater treatment plant (WWTP) of Bologna, Italy (44° 33.09´N, 

11° 21.48´E) in May 2009 (Figure 10). The selected WWTP has a surface of 

150,000 m2 and a capacity of up to 900,000 population equivalent and included 

the use of pressure swing technology with partial recycling of dewatered sewage 

sludges for energy production. After chlorine oxidation and microfiltration, 

treated effluent is discharged into the Navile canal. The average hydraulic 

retention period of the plant is 4-5 hours.  

 

 

Figure 10 – Air photo of the municipal wastewater treatment plant (WWTP) of 

Bologna. 
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Samples of effluent water (EW) were also included in the study. Sampling 

operations were conducted in May 2009 using aseptic techniques. Samples were 

stored at 4 °C for no longer than 2 days. Prior to use, all the samples were left at 

20 °C overnight. Selected properties of the samples used in this study are 

summarized in Table 9. 

 

 Bologna ASML Bologna EW 
pH 7.1 7.8 
Chemical Oxygen Demand (mg L-1) 35.4 36.2 
Biological Oxygen Demand (mg L-1) 10.7 7.0 
Total Suspended Solids (mg L-1) 14.5 10.6 
N-NH3 (mg L-1) 7.6 11.2 

 
Table 9 - Selected properties of activated-sludge-mixed liquor (ASML) and 
effluents (EW) of the wastewater treatment plant of Bologna. 
 

 

Chemical analysis 

The degradation study was performed by transferring samples from the WWTP 

into 1 L flasks under aseptic conditions. Analytical grade OC was applied to each 

sample to give a final concentration of 40 µg L-1, and samples were incubated for 

40 days. The same procedure described previously in paragraphs b and c was 

followed for degradation and mineralization analysis of the WWTP samples. 

 

Microbial analysis 

Isolated bacterial strains were tested for mineralization capability in ASML and in 

EW samples (paragraph l). 

 

3.2 CHAPTER 2 – Fate and removal of common use antibiotics in WWTP 

 

3.2.1 Experimental site, sampling and microcosm set up 

A series of laboratory studies was conducted to evaluate the degradation of three 

antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin in the same 

wastewater treatment plant described in paragraph 3.1.3.4. The efficiency of a 

Patent Pending formulation, using the fungus P. crysosporium strain DSMZ 1547, 

was tested for bioremediation in the wastewater from the studied pharmaceuticals.  
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All antibiotics were of analytical grade (> 98 %) and were obtained from Sigma-

Aldrich Chemie GmbH (Steinheim, Germany). Samples of the incubation study 

were prepared by transferring ASML or EW (100 mL) into 250-L flasks under 

aseptic conditions. Analytical grade pharmaceuticals were separately applied to 

each flask to give a final concentration of 10 µg mL-1. After adding the fungal 

formulation, flasks were sealed and incubated for 30 days on an orbital shaker 

(125 rpm) at 20 °C in the dark. At selected intervals, triplicate samples were taken 

for chemical and microbial analysis. 

 

3.2.2 Chemical analysis 

Samples were extracted by solid phase extraction and analyzed by liquid 

chromatography/electro spray tandem mass spectrometry. Analysis of the three 

pharmaceuticals were performed using a triple stage quadrupole MS/MS TSQ 

Quantum Ultra EMR (Thermo Fisher Scientific, San Jose, CA, USA) coupled 

with an Accela LC pump (Thermo Fisher Scientific, San Jose, CA, USA) and a 

PAL HTC autosampler (CTC Analytics AG, Zwingen, Switzerland). Samples (20 

µL) were loaded onto a Hypersil GOLD aQ TM column (50 mm x 2.1 mm ID x 5 

µm particles, Thermo Fisher Scientific, San Jose, CA, USA). Elution conditions 

were programmed as follows: water/methanol (90/10) for 1 min, then composition 

was changed to water/acetonitrile/methanol (30/10/60) for 8 min and then the 

column was washed for 9 min by acetonitrile/methanol (60/40). Heated 

electrospray in positive ion mode was used for ionisation of target compounds. 

Key parameters were the following: ionisation voltage 3.5 kV, sheath gas 50 and 

auxiliary gas 35 arbitrary units, vaporiser temperature 100 °C, capillary 

temperature 325 °C, collision gas was argon at 1.5 mL min-1. Both first and third 

quadrupole were operated at resolution 0.7 FWHD. Three SRM transitions were 

monitored for each analyte. Samples were quantified using internal standards. 

Prior to analysis, samples were kept in the dark for 12 hours. The whole 

incubation study experiment was conducted in triplicate. Data of the degradation 

study were analyzed by analysis of variance. Means were separated by Fisher’s 

least significant difference (LSD) and significant differences were detected at the 

P = 0.05 level. 

 

3.2.3 Microbial analysis  
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Triplicates samples prepared as for the incubation study were used for 

microbiological analysis. Growth of the introduced bioremediation fungus was 

monitored by quantitative PCR (qPCR) using the primer pair Cu1F/Cu2R 

targeting the laccase gene (Luis et al., 2004). Granules used for amending ASML 

and EW samples were periodically removed and total DNA was isolated using the 

CTAB method (Doyle and Doyle, 1990). Briefly, triplicates granules were 

removed from each incubated sample, dried at 40 °C for 2 hours, vortexed for 5 

min to remove adhering organic particles and air-flushed by high-pressure air. 

Surface-cleaned granules were transferred to a 2-mL microcentrifuge tube 

containing 500 µL of CTAB buffer and glass beads (425-600 µm; Sigma-

Aldrich). After vortexing for 2 min, tubes were incubated at 65 °C for 15 min, and 

an equivalent volume of chloroform:isoamyl alchol (24:1) was added to tubes. 

Tubes were gently shaken and centrifuged at 10,000 x g for 5 min before the 

addition of 2/3 volume of isopropanol/ammonium acetate to precipitate the DNA.  

The pellet was rinsed with 70% ethanol, air dried, resuspended in 100 µL of TE 

buffer and used for qPCR. Each 25 µL qPCR reaction contained 2 µL of DNA, 

12.5 µL of 2× TaqMan Universal PCR Master Mix (Applied Biosystems, CA), 

and 0.2 µM of each primer. Thermocycling conditions were as follows: 2 min at 

50 °C, 10 min at 95 °C, cycles of 15 s at 95 °C and 1 min at 60 °C. Reactions 

were performed using an ABI Prism 7700 Sequence Detection System (Applied 

Biosystems). Gene copies were estimated by comparison of cycle threshold values 

obtained from known amounts of DNA. All analyses were conducted in triplicate. 

Structure of the bacterial and fungal communities of incubated samples was 

investigated by PCR- denaturing gradient gel electrophoresis (DGGE) analysis. 

Prefiltered (0.45 µm) aliquots of ASML and EW samples were passed through a 

sterile 0.22-µm nylon filter (GE Water & Technologies, Trevose, PA). Filters 

were transferred into PowerBead tubes provided with the UltraClean Soil DNA 

Isolation Kit (MoBio Laboratories Inc., Solana Beach, CA) and then processed 

following the instructions of the manufacturer. For bacterial PCR-DGGE, total 

DNA was amplified using the primer pair GC-968f/1401r targeting the V6-V8 

region of the 16S rDNA (Heuer et al., 1999). Amplification reactions were 

performed in a 50 µL reaction mixture consisting of 5-10 ng of DNA, 1.25 U of 

BioTaq DNA polymerase (Bioline Abcys, Paris, France), 10× PCR buffer, 2.5 

mM MgCl2, 200 µM of each dNTP, 0.5 µM of each primer, 250 ng µL-1 bovine 
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serum albumin and nuclease-free water. Reaction conditions were the following: 

denaturation at 94 °C for 5 min, followed by 35 cycles of denaturation at 97 °C 

for 45 s, annealing at 58 °C for 60 s, extension at 72 °C for 45 s and final 

extension at 72 °C for 5 min. For fungal PCR, a semi-nested approach targeting 

the internal transcribed spacer region (ITS) was adopted. Primer pairs and PCR 

conditions are described elsewhere (Crouzet et al., 2010).  Equal amounts of 

amplicons (800 ng) were loaded onto DGGE gel. Gel contained 8% (w/v) 

polyacrylamide gels (37.5:1 acrylamide:bisacrylamide) with a urea/formamide 

denaturing gradient of 45 – 65% for bacteria and 25–55% for fungi (where 100% 

denaturant contains 7 M urea and 40% v/v formamide). Gels were run for 16 

hours at 60 °C, with a constant voltage of 140 V for bacteria and 70 V for fungi. 

DGGE was performed in DCode system (Bio-Rad Laboratories, Hercules, CA, 

USA). Bands were visualized after staining with Gel Star Nucleic acid gel stain 

and digitized using the Versa Doc Imaging System (Bio-Rad). Band profiles were 

analyzed using the GelCompare II package (Applied Maths, Kortrijk, Belgium). 

Dendrograms were constructed using the DICE coefficients and were subjected to 

unweighted pair group method cluster analysis (UPGMA). 

 
 
3.3 CHAPTER 3 – Veterinary Pharmaceuticals  
 

3.3.1 Experimental site, sampling and microcosm set up 

Soil from an olive tree grove in Aranjuez, in central Spain, was sampled in 2008. 

The agricultural soil is routinely amended with livestock residues from a pig farm. 

Two sets of microcosms were arranged by adding to the soil the veterinary drugs 

oxibendazole, to give a final concentration of 5 µg mL-1, and doramectin, with 20 

µg mL-1 final concentration. Samples were incubated at 20 °C on an orbital shaker 

(125 rpm) in the dark. After respectively 21 and 23 days of incubation, soil 

aliquots were used for analytical and microbiological analysis. All operations 

were conducted under sterile conditions. Control samples, consisting of untreated 

soil, were included.  

 

3.3.2 Microbial analysis  
 
In order to investigate the effects of oxibendazole and doramectin on the 

phylogenetic structure of the soil bacterial community, filters with cells, fixed as 
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described previously in paragraph (f), were analysed by Fluorescence In Situ 

Hybridization. Phylogenetic probes were applied for the identification of the 

following bacterial taxa: Archaea, Bacteria, α-Proteobacteria, β-Proteobacteria, 

γ-Proteobacteria, δ-proteobacteria Sulfate-Reducing Bacteria, ε-proteobacteria, 

Cytophaga-Flavobacterium, Actinobacteria, Firmicutes. 

Furthermore, because of the importance of nitrate-reducing bacteria in the 

nitrogen cycle, the effects of the two veterinary drugs on this functional group 

were investigated. Denitrification involves the reduction of nitrate, via nitrite and 

nitric oxide, to nitrous oxide or dinitrogen gas by a respiratory process under 

oxygen-limiting conditions. In particular in this work, the nitrate reductase gene 

narG, was of special interest to provide information on the denitrifying bacteria in 

the environment. Denitrification was induced by adding sodium nitrate (10 mM) 

to soil, and simultaneously shifting to O2-limited conditions by sealing the sample 

with a paraffin layer and avoiding shaker rotation. 

The presence of the narG gene in soil samples was checked by PCR amplification 

from extracted DNA, prior to analysis of gene expression. Total DNA was 

isolated from incubated samples using Ultra Clean Soil DNA Kit (MoBio 

Laboratories, Inc. Solana Beach, CA, USA). A set of partially degenerated 

primers for the amplification of the narG gene (Table 10), in yet uncultivated 

bacteria in the environment, was used for PCR and qRT-PCR assays. Total RNA 

was isolated from soil using the FastRNA® Pro Soil-Direct Kit (MP Biomedicals, 

Solon, OH). Samples were processed following the instructions of the 

manufacturer. Reverse transcriptase was obtained by utilization of the 

iScript™cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA), and 

amplification was obtained by the use of SYBR Green PCR mix (iTaqTM 

SYBR® Green Supermix with ROX, Bio-Rad). Conditions described in (López-

Gutiérrez et al., 2004) were used for the qRT-PCR assay.  

 

Target Primer/Probe Sequence (5’-3’) 

narG gene 1960m2f TA(CT)GT(GC)GGGCAGGA(AG)AAACTG 

narG gene 2050m2r CGTAGAAGAAGCTGGTGCTGTT 

Table 10 – narG primers and probe used in the study for qPCR and FISH analysis 
(López-Gutiérrez et al., 2004). 
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The sequence of the narG primer 2050m2r was used to build a specific fam-

labelled probe, for the detection of the narG gene by Fluorescence in Situ 

Hybridization in the incubated and non-incubated soil samples (paragraph f). 

Conditions described previously were used for the FISH analysis (Martin et al., 

2008). Percentages of narG-harbouring cells were calculated based on the total 

number of cells stained with DAPI. 

 

Isolation of bacterial strains 

Bacterial strains, able to grow on the veterinary drugs as sole carbon source, were 

isolated from the soil sample by enrichment culture in minimal medium MB 

(K2HPO4: 1.6 g L-1; KH2PO4: 0.4g L-1; CaSO4 x 2 H2O: 0.1 g L-1; MgSO4 x 7 

H2O: 1.0 g L-1; FeSO4 x 7 H2O: 0.02 g L-1; (NH4)2SO4: 2 g L-1; Agar: 15 g L-1) 

supplemented with doramectin (100 µg mL-1) and oxibendazole (100 µg mL-1). 

DNA from each isolate was extracted using the method described in Casas et al. 

(1995). Amplification of rDNA gene was performed by PCR using the universal 

primer ARI (5’ GAGAGTTTGATCCTGGCTCAGGA 3’), and reverse pH (5’ 

AAGGAGGTGATCCAGCCGCA 3’). The amplified fragments were sequenced 

and compared with sequences available in the GenBank/EMBLdatabases 

(http://www.ncbi.nlm.nih.gov).  
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4. RESULTS AND DISCUSSION  

 

4.1 CHAPTER 1 – The antiviral drug Tamiflu 

 

4.1.1 Irrigation canal in Emilia Romagna 

 

Chemical analysis 

Degradation of OC 

Degradation of OC in water and water/sediment samples over the course of the 

36-day incubation period is shown in Figure 11. Degradation of OC in water did 

not adequately fit the first-order model (r2 ≤ 0.80). After a rapid decrease, OC 

concentrations slowly decreased during the remaining incubation period. 

Approximately 65% of the applied amount degraded in water samples within 36 

days. These findings suggested that degradation of OC in water is a complex 

process, not simply described by the linear model. OC was less persistent in 

samples containing sediments (5% w/v). In contrast to water samples, the linear 

model gave a strong fit (r2>0.96) to the degradation of OC in water/sediment 

mixtures. The estimated half-life of OC in the water/sediment microcosm was 21 

days. Chemical analysis revealed that approximately 5% of the applied OC was 

degraded within 36 days in sterilized water samples (Figure 11). Similar values 

were observed in the sterilized water/sediment mixture (data not shown). This 

information provides supporting evidence that OC degradation was mainly driven 

by microbial processes. Considering the size of the cultivable bacterial population 

(7.9±0.28 log CFUs g-1 air-dried sediments), the effect of sediments is compatible 

with the increasing microbial abundance and metabolic potential of the 

microcosm. Enhanced biodegradation of xenobiotics in the presence of sediments 

has been reported for a number of compounds, including pesticides and 

antimicrobials (Walker et al., 1984; Pritchard et al., 1987; Kim et al., 2004). This 

effect could result from a greater number of microorganisms on the surface of 

sediment particles, an increased activity of microorganisms in the presence of 

sediments due to greater availability of nutrient, or an ability of sediments to 

concentrate chemical through sorption (Walker et al., 1984). Under some 

circumstances, abiotic processes (i.e. hydrolysis and photolysis) can have an 

important role in the degradation of pharmaceuticals in water (Liu et al., 2001). 
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The present work was conducted in the dark, and consequently it cannot be 

excluded that abiotic processes would have a greater importance in the 

degradation of OC under normal light conditions.  

 

Figure 11 - Degradation of oseltamivir carboxylate (OC) in water and 
water/sediment samples of the irrigation canal Canale Emiliano Romagnolo 
(CER). Bars represent standard deviations of the means. 
 

Presented results indicate that OC is moderately persistent in the water of the CER 

irrigation canal. This appears to be mainly due to the reduced intensity of 

microbial degradation processes as further evidenced by results of the glyphosate 

and metolachlor mineralization experiment. The low biodegradability of a wide 

number of pharmaceuticals in surface water has been previously documented 

(Alexy et al., 2004).  

 

Microbial analysis 

Bacterial abundance 

The size of the bacterial population of untreated water samples (control) remained 

approximately constant during the whole 36-day incubation period, except a 

transient decrease at the end of the second week of sample incubation. Addition of 

the antiviral drug OC (1.5 µg mL-1) led to a significant decrease in the number of 

bacteria during the first half of the incubation period. The highest decrease was 

observed in samples containing the antiviral drug. In the remaining period, the 

number of bacteria remained significantly higher in samples treated with OC than 
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in the control (Table 11). Even though pharmaceuticals are specifically designed 

to perform some sort of biological effect, the direct and indirect effects of 

pharmaceuticals on non-target organisms have received little attention (Accinelli 

et al., 2006). OC is a selective inhibitor of influenza virus neuraminidase, an 

enzyme involved in the release of new virus particles from infected cells 

(Eisenberg and Cundy, 1998). Based on its specific mode of action and in contrast 

to antimicrobials, which are active against bacteria, no direct toxic effect of OC 

on water microorganisms would be expected. However, this does not exclude the 

possibility that OC may have indirect effects on non-target microorganisms. This 

phenomenon has been evidenced for a wide number of compounds, including 

pharmaceuticals (Kümmerer et al., 2000; Engelen et al., 1998; Busse et al., 2001).  

 

Incubation time 
(days) 

Bacteria abundance 
(log cell number ml-1) 

  Control OC treated 
0 6.24±5.64 6.12±5.35 
3 5.95±4.28 5.22±5.05 
7 5.83±4.92 5.37±4.51 
14 6.53±5.46 5.78±4.81 
21 6.27±4.93 6.92±6.22 
28 6.07±5.28 6.42±5.45 
36 6.01±4.97 6.55±5.87 

 

Table 11 – Abundance of the bacteria population (log cell number mL-1) of 
untreated water (control) and water samples treated with oseltamivir carboxylate 
(OC) during the incubation period. Values are means of three replicates ± standard 
deviations. 
 
 
Bacterial community structure and vitality 

The addition of OC led to an initial decrease in the number of Bacteria cells, 

detected by the EUB probes. However, at day 21 a significant peak (p < 0.01) in 

the Bacteria cell number was observed in the OC-treated samples (Figure 12 A). 

This trend was observed also (p < 0.01) for α-Proteobacteria, β-Proteobacteria 

and γ-Proteobacteria (Figure 12 B, C, D). In particular, the β-Proteobacteria 

group was the most abundant and constituted 40% of the Bacteria domain, 

suggesting an active role in the OC degradation. The other bacterial groups 

investigated by FISH were not significantly affected by the presence of OC, and 

represented about 1-2% of the Bacteria domain. In particular Cytophaga-

Flavobacterium was the relatively most abundant group (the average number mL-1 
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during the experimental period was 1.39E+04 ±4.02E+03) followed by 

Actinobacteria (2.8+03 ±1.67+03) and finally Planctomycetes (1.22E+04 

±7.3+03). The results of the bacterial community analysis show that the decrease 

at day 14 in bacterial abundance of the main phylogenetic groups in presence of 

OC was transient. This initial negative effect was subsequently offset by a 

significant increase in their presence and presumably activity at day 21. This 

hypothesis is confirmed by the fact that about 65% of the OC applied was 

degraded in 36 days in water samples, while just 5% was degraded in the 

sterilized water, as shown previously. Consequently the overall results confirmed 

the key role of the bacterial community in OC degradation, and suggested which 

bacterial groups, i.e. α-Proteobacteria, γ-Proteobacteria and above all β-

Proteobacteria could be directly involved. These results encourage the 

performance of further studies to better investigate the bacterial metabolism 

(and/or co-metabolism) of this compound and the formation of its transformation 

products prior to its possible mineralization. The presence/absence of bacterial 

populations with a natural attenuation capacity versus pharmaceuticals is a crucial 

factor in assessing their actual environmental fate in aquatic ecosystems. 
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Figure 12 - Bacterial community structure detected by FISH in surface water at 
different times: 0, 14, 21 and 36 days, in presence of oseltamivir carboxylate (OC) 
and control. Vertical bar represent standard errors. 
 
 
 
FISH results are in line with the transient decrease in live cell vitality (No. live 

bacteria mL-1) at day 14, followed by a significant increase at day 21 in OC-

treated samples (Figure 13).  
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Figure 13 - Live cell abundance (No. live bacteria mL-1) at different sampling 
times in OC-treated and Control in surface water samples.  
 

Metabolic potential of water microorganisms 

General microbial activity was estimated from the mineralization of radiolabelled 

glyphosate and metolachlor. These two herbicides were chosen as models of 

chemicals which are degraded by a wide number of microorganisms (Accinelli et 

al., 2005). Representative mineralization values of glyphosate and metolachlor, 

expressed as 14CO2 evolution, in water and water/sediment samples are shown in 

Figure 14. As expected, mineralization of glyphosate and metolachlor proceeded 

without a lag phase, thus confirming that these two chemicals are degraded by a 

variety of microorganisms and that microbial adaptation is not strictly necessary.  

 

Figure 14 - Glyphosate (circles) and metolachlor (triangles) mineralization in 
water (empty symbols) and water/sediment (full symbols) samples. 
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During the 36-day incubation period, cumulative 14CO2 evolution in water 

samples accounted for 2.9 and 0.9% of the total applied 14C as glyphosate and 

metolachlor, respectively (Table 12). Even though mineralization of glyphosate 

can vary among environmental samples, these values are considerably lower than 

those reported for soil ecosystems (Accinelli et al., 2005; Getenga and Kengara, 

2004; Strange-Hansen et al., 2004). Addition of sediments resulted in an intense 

increase in glyphosate and metolachlor mineralization. At the end of the 

incubation period, mineralization of both glyphosate and metholachlor in samples 

containing 5% sediments was approximately 10 times higher than that observed in 

water samples. These findings confirmed the important role of microorganisms in 

glyphosate and metolachlor mineralization. Moreover, the lack of herbicide 

mineralization in sterilized water suggested that chemical degradation is not a 

major pathway of degradation of these two chemicals (Table 12). Results from 

this mineralization experiment reinforced the concept that a major factor limiting 

a more rapid degradation of OC in surface water of the CER irrigation canal is 

represented by the low metabolic potential of this ecosystem. Information 

concerning degradation and other environmental aspects of these two chemicals in 

surface water is scarce (Tsui and Chu, 2003). Based on the results from a recent 

monitoring investigation conducted in the USA, Kolpin et al. (2006) speculated 

that glyphosate would be much more persistent in surface waters than in soil. The 

presence of a low concentration (1.5 µg mL-1) of the antiviral drug OC did not 

reduce the potential of water from the irrigation canal to mineralize the two 

studied herbicides (Table 12). These are the first data concerning environmental 

aspects of the antiviral drug OC or other neuraminidase antivirals. Considering 

that degradation of glyphosate and metolachlor is to some extent related to the 

size of indigenous bacteria, these findings suggest that the moderate persistence of 

OC in water was mainly caused by the low metabolic potential of the water 

microbial community rather than indirect effects of OC on microorganisms.  

 

 Cumulative 14CO2 evolution 
 14C-Glyphosate 14C-Metolachlor 
 Control OC treated Control OC treated 

Water 2.85±0.15 2.91±0.22 0.85±0.07 0.81±0.09 
Steril water 0.82±0.06 0.88±0.06 0.11±0.02 0.09±0.02 
Water/sediment 38.22±3.98 36.35±4.11 9.91±1.21 8.75±1.39 
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Table 12– Effect of oseltamivir carboxylate (OC) on 14CO2 evolution from radio-
labelled glyphosate and metholachlor within the 36-day incubation period (% of 
initial radioactivity). 
 
 
4.1.2 River Po and Venice Lagoon 

 

Chemical analysis 

Concentrations of OC in samples of the River Po over the course of the 21-day 

incubation period are shown in Figure 15. No appreciable degradation of OC was 

observed in water. In contrast, addition of sediments promoted OC degradation. 

More specifically, OC degradation in samples containing 5% sediments was 

adequately described by the first order kinetic model (r2 = 0.91) with a calculated 

half-life of 15 days. Degradation of OC was not further stimulated by raising the 

sediment content to 10%.  

 

Figure 15 - Degradation of oseltamivir carboxylate (OC) in water and 
water/sediment samples of the River Po and in water of the Venice Lagoon. Bars 
represent standard deviations of the means. 
 

These findings are consistent with those of the mineralization study. As indicated 

in Figure 16, less than 1% of 14CO2 was evolved from water samples. Cumulative 
14CO2 evolution was approximately 10-times higher in samples containing 5% of 

sediments. Addition of a higher amount of sediments did not lead to a significant 

increase of 14CO2 evolution. Since no appreciable OC mineralization was 
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observed in sterilized water and water/sediment samples (data not shown), results 

suggest that the fate of OC in the aquatic ecosystem was governed by microbial 

processes, thus confirming previous findings on the CER irrigation canal study. 

The stimulatory effects of sediments on OC degradation were likely due to a 

greater size of the microbial population of samples containing sediments.  

 

 

Figure 16 - Cumulative 14CO2 evolution from water and water sediment samples 
of the River Po and Venice Lagoon. Bars represent standard deviations of the 
means. 

 

Similar to water of the River Po, OC concentration remained approximately stable 

in water samples of the Venice Lagoon (Figure 15). In contrast to river samples, 

concentrations of recovered OC of water and water/sediment samples did not 
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significantly change over the incubation period (data not shown). Using the 

extraction method proposed by Fick et al. (2007), the average recovery for OC in 

water and water/sediment samples of the River Po was >95%. Less OC was 

recovered from samples of the Venice Lagoon. More specifically, recovery 

efficiencies were 85 and 47% in water and water/sediment samples, respectively, 

with no effect of the sediment level. These low recoveries combined with high 

relative standard deviations did not permit to correctly describe the fate of OC in 

Venice samples despite the usage of a deuterated internal standard. Mineralization 

of 14C-OC in Venice samples is shown in Figure 16. At the end of the 21-day 

incubation, total accumulated 14CO2 from Venice did not exceed 1% of the total 

applied 14C as OC. As observed with samples of the River Po, addition of 

sediments led to a significant increase of 14CO2 evolution, with no effect of 

sediment percentage. Water/sediment samples from Venice Lagoon had a higher 

potential to mineralize the antiviral drug OC. Since sediments from the two sites 

had comparable size of the microbial population and distribution of particles size, 

one possible explanation is the fact that the higher content of organic carbon of 

Venice sediments would provide more nutrients for sustaining the microbial 

activity. 

 

Retention and bioavailability of OC in water and water/sediments 

Table 13 summarizes the partition of 14C-residues between liquid and solid phase 

of water samples containing 5% of samples at the end of the 21-day incubation 

period.  

 

 Liquid phase Sediments 

  Total 
Bioavailable 

fraction 
Sorbed 
fraction 

Bound 
residues 

 
% of the total 14C 

applied 
% of the total 14C 

applied 
% of the total 14C remaining in 

sediments 
Po 73.1 16.3 79.3 13.5 4.4 
Venice 66.6 20.9 59.8 28.9 7.2 
 

Table 13 – Partition of 14C-residues between liquid phase and sediment of samples 
of the River Po and Venice Lagoon after 21 days of incubation. Sediments were 
extracted with 0.1 M CaCl2 (bioavailable fraction), acetonitrile (sorbed fraction). 
Total 14C-residues of sediments were determined by combustion. 
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As expected, most of the 14C-residues were recovered from the liquid phase. 

Approximately 70 and 65% of 14C-residues remained were recovered from the 

liquid phase of Po and Venice samples, respectively. The high percentage of 

water-extractable fractions of 14C-residues recovered from the pellet is consistent 

with the low affinity of OC to sediment particles. Based on mass balance, 14 and 

29% of the remaining 14C residues were extracted by the solvent acetonitrile from 

Po and Venice pellets, respectively. The higher sorption capacity of Venice 

sediments was confirmed by the determined sorption coefficients. Sorption 

isotherms are presented in Figure 17.  

 

Figure 17 – Sorption isotherms of oseltamivir carboxylate in sediments of the 
River Po and Venice Lagoon. Calculated Freundlich constant (Kf) and regression 
coefficients (r2) are reported. 

 

The Freundlich model adequately described OC sorption to sediments from the 

two sites (r2 > 0.91). According to several authors, Kf values are directly 

correlated with sorption capacity of organic xenobiotics (Seybold and Mersie, 

1996; Krutz et al., 2004; Accinelli et al., 2006; Sukul et al., 2008). Consequently, 

the Kf values reported here are compatible with low affinity of OC to sediment 

particles (Table 13). Sediments form the two sites showed similar particle size 

distribution (Table 7). Since more organic matter was found in sediments from the 

Venice Lagoon, the higher Kf values measured in Venice sediments is likely due 

to its preferential affinity to organic matter. However, other factors than organic 

matter are expected to influence sorption of OC on sediments. 



Results and Discussion 

59  

 

Microbial analysis 

The structure of the bacterial community of Po water was highly variable during 

the course of the incubation period. As indicated in the dendrogram of genetic 

distances shown in Figure 18, no clear effects of OC on the diversity of the 

bacterial community were observed. A relatively high degree of similarity (70%) 

was only found among samples receiving 0.2 and 2 µg mL-1 of OC. Less 

similarity was observed between samples receiving lower OC dosage (0.02 and 

0.002 µg mL-1) and the untreated control. Considering the low degree of 

similarity, results suggest that most of the variability was likely due to other 

factors than concentration of the antiviral. Similar patterns were observed in water 

of the Venice Lagoon (data not shown).  

 

 

Figure 18 - Dendrogram showing the degree of similarity of ARDRA patterns of 
Po water samples receiving increasing concentrations of oseltamivir carboxylate 
and incubated for 10 days. 

 

A number of microbiologically driven processes have been proposed to evaluate 

the effects of xenobiotics on the aquatic ecosystems (Wagner-Döbler et al., 1992; 

Moyer et al., 1994; Nazaret et al., 1994; Griebler and Slezak, 2001). Among the 

different approaches, activity and dynamics of the nitrifying bacterial population 

have been largely used in environmental studies (Hermansson and Lindgren, 

2001; Limpiyakorn et al., 2006; Molina et al., 2007). Nitrification is the biological 

process of converting ammonia to nitrate via nitrite and is catalyzed by aerobic 

chemoautotrophic ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing 
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bacteria (NOB) (Bock et al., 1992). Studies have shown that AOB and NOB are 

less competitive than the heterotrophic bacteria for oxygen and growing space and 

are sensitive to environmental inhibition (Van Benthum et al., 1997; Boon et al., 

2003; Juliastuti et al., 2003; Limpiyakorn et al., 2004; Pagga et al., 2006). Results 

from the qRT-PCR analysis showed that OC did not interfere with the expression 

of three basic genes involved in the bacterial nitrification process (Figure 19).  

 

Figure 19 – Representative qRT-PCR analysis of water samples of the River Po 
and Venice Lagoon incubated for 10 days at 20 °C. Analysis was conducted using 
primer pairs targeting genes of ammonia-oxidizing bacteria (AOB 16S and AOB 
amoA) and of nitrite-oxidizing bacteria (NOB, NSR 16S). 

 

 

Using the universal 16S rDNA bacterial primer pairs 1055f/1392r (Ferris et al., 

1996), as control references, the present study also showed that increasing 

concentrations of OC did not affect the transcription process of the highly 

conserved 16S rDNA. Together, these results confirm that OC would not have 

detrimental effects on basic bacterial-driven processes of surface water. OC is a 

selective inhibitor of influenza virus neuraminidase, an enzyme involved in the 
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release of new virus particles from infected cells. Based on its specific mode of 

action and in contrast to other pharmaceuticals, which are specifically designed to 

produce biological effects on bacteria, no direct toxic effect of OC on water 

microorganisms would be expected. Absence of effects of OC on basic bacterial 

processes of surface water was also observed in the previous study on the CER 

irrigation canal. Ecotoxicology studies showed no detrimental effects of OC on 

other organisms, including the green alga Pseudokirchneriella subcapitata, the 

crustacean Daphnia magna and the fish Danio rerio (Singer et al., 2008). 

 

4.1.3 Lake Biwa and River Furukawa 

 

Chemical analysis 

Degradation patterns of OC in water samples of Lake Biwa and Furukawa river 

are shown in Figure 20. During the course of the 40 day incubation period, no 

appreciable decrease of OC concentration was observed in Biwa water. In 

contrast, samples containing 5% sediments showed an intensification of OC 

degradation processes. More precisely, the degradation of OC in water/sediments 

proceeded following the first-order kinetics (r2 = 0.97), with an estimated half-life 

of 46.2 days. A decrease of OC concentrations over time was also observed in 

Furukawa samples. Fitting the data to the first-order kinetics yielded half-life 

values of OC in water and water/sediments of 53.3 (r2 = 0.91) and 38.5 days (r2 = 

0.96), respectively. Concentration of OC remained approximately stable in 

autoclaved samples over the whole incubation period (data not shown). These 

findings are consistent with the results of the previous studies on irrigation canal 

CER and on River Po and Venice Lagoon, thus further confirming that the fate of 

OC in the aquatic ecosystem is driven by microbial process.  
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Figure 20 - Degradation of oseltamivir carboxylate in water and water/sediment 
samples of Lake Biwa and River Furukawa incubated for 40 days. Bars represent 
standard deviations of the means. 

 

As discussed below, qPCR revealed a large bacterial community in sediments of 

both Japanese sites. Results of this experiment reinforced the concept that the 

stimulatory effect of sediments is likely due to the increase of the size of the 

microbial community. However, this assumption does not support the unexpected 

rapid degradation of OC in the selected river water. As indicated in Figure 20, 

degradation of OC in Furukawa water/sediments proceeded after a 2-week long 

lag phase, thus reflecting the implication of microbial adaptation and/or selection 

of OC-degrading bacteria. Although no apparent, or a shorter, lag phase was 

observed in Biwa samples and Furukawa water, the occurrence of adaptation 

and/or selection processes cannot be excluded in these natural aquatic ecosystems. 

This explanation is partially supported by the fact that the most promising 

bacterial strain, which can be used for OC bioremediation programs, was isolated 

from River Furukawa. In addition, higher nutrient levels of the river would 

support greater microbial activity than the lake water (Table 8). Using the same 

procedure described in paragraph d, a preliminary study demonstrated that 

sediments of River Furukawa had a lower affinity to OC than those of the Lake 

Biwa (approximately 30% lower; data not shown). The greater bioavailability of 

OC in Furukawa samples is consistent with the more rapid degradation of the 

antiviral drug. 
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OC mineralization 

Results of the mineralization study are summarized in Figure 21. Mineralization 

of OC in water of Lake Biwa, expressed as 14CO2 evolution, accounted for <1% of 

the initial 14C added as 14C-OC. During the same 40-day incubation period, a 

higher mineralization was observed in water samples from River Furukawa. 

Similarly to what was observed in the OC degradation study, the addition of 5% 

sediments led to an increase of 14CO2 evolution. More precisely, the cumulative 

mineralization accounted for 12.8% and 21.0% in Biwa and Furukawa samples, 

respectively (Figure 21). No appreciable 14CO2 evolution was observed in sterile 

samples (data not shown). Differences of OC mineralization among samples of 

the two Japanese aquatic environments are compatible with results of the OC 

degradation study. Negligible mineralization of OC in surface water had been also 

observed in River Po and Venice samples, and by other authors (Straub, 2009). 

Slow degradation rates in surface water are commonly reported for a number of 

xenobiotics, including pesticides (Accinelli et al., 2007).  

 

 

Figure 21 - Cumulative 14CO2 evolution from water and water sediment samples 
of the Lake Biwa and River Furukawa. Samples were incubated for 40 days. Bars 
represent standard deviations of the means. 
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Microbial analysis 

Potential effects of the antiviral drug OC on diversity and dynamic of the 

microbial community of the two selected Japanese waters were estimated using 

the following DNA-based methods: DGGE, ARDRA and qPCR. DGGE profiles 

of 16S rDNA fragments amplified from total water and sediments DNA are 

shown in Figure 22. In both samples, DNA band profiles revealed small 

differences in term of band numbers and electrophoretic distances. Band profiles 

were subjected to a numerical analysis based on the Dice similarity coefficient, 

followed by cluster analysis (Figure 22). The effect of incubation on untreated and 

OC-treated Furukawa samples was variable, with Dice coefficients ranging from 

0.30 to 0.67. Similar differences were observed in Biwa samples, with coefficients 

ranging from 0.57 to 0.84 in untreated sediments and untreated water, 

respectively. After 30 days of incubation, cluster analysis revealed that there were 

no major changes between untreated and OC-treated samples of both sites (Dice 

similarity coefficients >0.71). These findings are similar to those of the ARDRA 

(Dice similarity coefficients >0.80; data not shown).  
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Figure 22 - PCR-DGGE fingerprints (top) and dendrograms of band profiles 
(bottom) of incubated samples of Lake Biwa and River Furukawa. Lanes 1 and 2: 
water from OC-treated and untreated samples at 0 days of incubation; lanes 3 and 
4: sediment from OC-treated and untreated samples after 0 days of incubation; 
lanes 5 and 6: water from OC-treated and untreated samples after 30 days of 
incubation; lanes 7 and 8: sediments from OC-treated and untreated samples after 
30 days of incubation; M: DNA marker. 

 

 

Effects of xenobiotics on the aquatic microbial community depend on a variety of 

factors, including chemical structure, concentration, their target site, etc. (Brandt 

et al., 2004; Accinelli et al., 2007). Tamiflu is an inhibitor of the viral 

neuraminidase or sialidase enzyme (von Itzstein, 2007). Neuraminidases are 

widespread in animals and microorganisms and catalyze the release of terminal 

sialic acid residues from glycoconjugates (Taylor, 1996). While the role of 

bacterial neuraminidases of certain pathogenic bacteria has been elucidated, its 

significance in the microbial community of water or other environments remains 

unexplored (Soong et al., 2006). Results presented here demonstrated that 

concentration of OC up to 40 µg L-1 has no effects on the structure of the 

microbial community of the two Japanese aquatic ecosystems. Working with 

different organisms, including algae, daphnia, fish, and marine algae and 

invertebrates, Straub (2009) and Hutchinson et al. (2009) have reached the same 

conclusions. DNA fingerprinting techniques based on total pool of 16S rDNA 

fragments, including DGGE, ARDRA and other similar methods, are widely used 

tools for studying the community structure and diversity of microorganisms. In 

recent years, qPCR has emerged as a promising technique in environmental 

microbiology (Fierer et al., 2005). More specifically, qPCR-based methods have 

been largely used to estimate potential effects of xenobiotics on microorganisms 

(Kim et al., 2007). In this experiment the potential effects of OC on the size of the 

whole bacterial community and on nitrifying bacteria have been investigated. 

Results of the qPCR analysis targeting the conservative 16S rDNA, the 16S rDNA 

of ammonia-oxidizing bacteria and the amoA gene involved in the conversion of 

ammonia to nitrite are presented in Figure 23. OC did not affect copy numbers of 

the three target genes, thus indicating that the presence of OC did not significantly 

influence the size of the total bacterial community and of the ammonia-oxidizing 

bacteria. This is consistent with the expression levels reported in the River Po and 

Venice Lagoon experiment. 
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Figure 23 - Quantitative PCR results of Lake Biwa and River Furukawa samples 
incubated for 30 days. Results are expressed in copy numbers of genes targeting 
the conservative bacterial 16S rDNA, the ammonia-oxidizing bacterial 16S rDNA 
and the Nitrosomonas oligotropha-like amoA gene. 
 

 

A more practical approach for increasing the removal of OC would be the use of 

OC-degrading bacteria. In the present study, a basic enrichment culture technique 

was employed for isolating OC-degrading bacterial strains. After six serial 

transfers to MSM, two bacterial strains, Nocardioides sp. and Flavobacterium sp., 

able to use OC as sole carbon source and energy were isolated from Lake Biwa 

and River Furukawa, respectively. As shown in Figure 24, the Flavobacterium sp. 

strain isolated from River Furukawa was the most promising for potential use in 

bioremediation programs. Considering the higher potential of Furukawa water to 

degrade/mineralize OC, it is not surprising that the more efficient strain was 
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isolated from this water body. After 10 days of incubation, approximately 6% and 

11% of the 14CO2 was evolved in MSM inoculated with the Flavobacterium sp. 

strain and the consortium of the two bacterial strains, respectively (Figure 24).  

 

 

Figure 24 - Patterns of cumulative 14CO2 evolution from a mineral salt medium 
supplemented with 14C-oseltamivir (OC) as a sole carbon source, and inoculated 
with OC-degrading bacterial strains isolated from Lake Biwa (Biwa-OC) and 
River Furukawa (Furu-OC), including a consortium of the two strains. Bars 
represent standard deviations of the means. 

 

 

Since we were interested to test the in situ ability of the two strains to remove OC, 

environmental samples were included in the study. Mineralization values of OC in 

surface water samples inoculated with the OC-degrading strains are reported in 

Table 14.  

 
 Total evolved 14CO2 (% of the initial radioactivity) 

 Control Biwa-OC Furu-OC Biwa-OC+Furu-OC 

Lake Biwa 0.42±0.1 4.77±1.1 7.23±1.9 11.33±2.0 

River Furukawa  1.33±0.1 6.31±1.7 10.14±3.0 19.75±1.8 

 
Table 14 - Mineralization of oseltamivir carboxylate (OC) in water samples of 
Lake Biwa and River Furukawa. Samples were separately inoculated with OC-
degrading bacterial strains isolated from Lake Biwa (Biwa-OC) and River 
Furukawa (Furu-OC), and a consortium of the two strains. Samples were 
incubated for 10 days. Data are expressed as total 14CO2 ± standard deviation. 
Control consists in uninoculated water samples. 
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4.1.4 Wastewater Treatment Plant of Bologna 

Chemical analysis 

In this study, we were also interested to investigate the fate of OC in samples 

representing two different steps of the ordinary wastewater treatment process. 

Consequently, we investigated the mineralization of OC in samples collected from 

the WWTP of Bologna. In particular, OC mineralization was evaluated in samples 

of ASML and EW. Cumulative 14CO2 evolution from ASML and EW samples 

over the course of the 40-day incubation period are reported in Figure 25. ASML 

showed a high potential to mineralize OC. Approximately 75% of the initial 

radiolabeled OC evolved as 14CO2 during the 40-day incubation period. In 

contrast, OC mineralization in EW accounted for <37%.  

 

 

Figure 25 - Cumulative 14CO2 evolution from water and water sediment samples 
of the wastewater treatment plant of Bologna, including activated-sludge-mixed 
liquor (ASML) and effluent water (EW). Samples were incubated for 30 days. 
Bars represent standard deviations of the means. 
 

Among other factors influencing mineralization of xenobiotics (i.e. 

bioavailability, etc.), the higher metabolic potential of ASML with respect to EW 

is likely explained by differences in the size of the microbial population and 

nutrient content. The WWTP of Bologna is designed to remove approximately 

80% of the BOD and total suspended solids entering the plant. In addition, it 

should be also considered that wastewater effluents are treated with sodium 

hypochlorite before discharging in the canal. Obviously, the disinfection step is 

expected to reduce the microbial activity of EW and thus its potential to 
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mineralize the antiviral drug OC. In a laboratory study, simulating normal sewage 

treatment, Fick et al. (2007) demonstrated that OC is not removed during the 

entire process. Similar conclusions are reported by Straub (2009). A common 

aspect of these studies is that incubation period of OC-treated wastewater samples 

did not exceed 24 hours. The main reason we decided to investigate the 

mineralization of OC in ASML and EW was to verify the potential application of 

bioremediation approaches directly in WWTPs. This information can be useful for 

setting up practical strategies for the removal of OC during the wastewater 

treatment process. Obviously, the long incubation period chosen for this study is 

not compatible with the shorter hydraulic retention times commonly adopted in 

ordinary WWTPs. 

 

Microbial analysis 

The in situ ability of the two isolated strains to remove OC was tested by 

measuring OC mineralization in ASML and EW (Table 15). The superior ability 

of the consortium was observed in wastewater samples. However, less differences 

among inoculated and uninoculated samples were observed in EW and especially 

in ASML.  

 
 Total evolved 14CO2 (% of the initial radioactivity) 

 Control Biwa-OC Furu-OC Biwa-OC+Furu-OC 

Bologna ASML 29.14±2.8 36.99±3.8 39.72±4.1 42.53±4.8 

Bologna EW 12.11±1.6 37.68±6.0 39.11±4.4 49.45±6.2 

 
Table 15 - Mineralization of oseltamivir carboxylate (OC) in water samples of the 
wastewater treatment plant of Bologna, including activated-sludge mixed liquor 
(ASML) and effluent water (EW). Samples were separately inoculated with OC-
degrading bacterial strains isolated from Lake Biwa (Biwa-OC) and River 
Furukawa (Furu-OC), and a consortium of the two strains. Samples were 
incubated for 10 days. Data are expressed as total 14CO2 ± standard deviation. 
Control consists in uninoculated water samples. 
 
 

These findings are compatible with the larger microbial population of these 

samples and consequently with the higher selective pressure on the introduced 

strains. In addition, the superior ability of Flavobacterium sp. to metabolize 

xenobiotics when inoculated with other bacteria has been also observed by Kawai 

and Yamanaka (1986).  
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Bioremediation assay using a P. chrysosporium formulate 

The Patent Pending bioremediation formulation of the white rot fungus P. 

chrysosporium, was assayed for its ability to remove the antiviral drug OC from 

samples of the WWTP. Decrease of OC concentrations proceeded exponentially 

in ASML, with no evident lag phase (Figure 26). A significantly higher (P < 0.05) 

amount of OC was removed from samples amended with the bioremediation 

formulation. Decrease of OC concentration in control and bioremediated samples 

obeyed to the first-order kinetic model (r2 > 0.9), with estimated half-lives of 69 

and 17 days, respectively.  

 

Figure 26 - Effect of the fungal formulation (fungus) on degradation of 
oseltamivir carboxylate in samples of activated-sludge-mixed liquor (ASML) and 
effluent water (EW). Samples were incubated for 30 days at 20 °C. Bars represent 
standard deviations of the means. 
 

These findings are compatible with high efficiency of the formulation in the 

removal of OC from ASML. In addition, results of the present experiment further 

support the ability of P. crysosporium to degrade a large list of different 

compounds, now including the recently introduced antiviral drug OC. The 

capability of this WRF to degrade OC and, more generally, antiviral drugs have 

not been reported in the literature. Considering the importance of OC for treating 

regular seasonal flu, its potential use in the case of pandemic flu scenarios (Singer 
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et al., 2008), the proposed formulation would represent a practical alternative for 

future bioremediation programs.  

Degradation of OC in EW (Figure 26) did not fit the first-order kinetic model. 

However, and as discussed below, even considering that OC was more persistent 

in EW, removal of OC was significantly stimulated (P < 0.05) in bioremediated 

samples. 

 

After 30 days of incubation, the cumulative evolution of 14CO2 accounted for 40 

and 69% of the initial radioactivity in control and bioremediated ASML samples, 

respectively (Figure 27). Less 14CO2 evolved from EW samples (Figure 27). 

These findings are consistent with the previous experiments, that demonstrated 

that OC degradation and mineralization in water and wastewater is mainly driven 

by microbial process. Before entering the receiving canal, water from the WWTP 

is subjected to microfiltration and chlorine oxidation treatments. In addition to 

microbial oxidation occurring in the biological tank, these two latter treatments, 

are expected to further reduce the microbial activity of EW. 

 

 

Figure 27 - Effect of the fungal formulation (fungus) on cumulative 14CO2 
evolution of oseltamivir carboxylate from samples of activated-sludge-mixed 
liquor (ASML) and effluent water (EW). Samples were incubated for 30 days at 
20 °C. Bars represent standard deviations of the means. 
 
 
Analysis of the bacterial 16S rDNA PCR products by DGGE (Figure 29) 

indicated the structure of the microbial community of ASML and EW over the 

incubation period. The introduced formulation did not cause major changes in the 
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bacterial community diversity. And as expected, high degree of similarity was 

observed within bacterial populations in OC-treated and non-treated samples, thus 

confirming the low impact of OC on indigenous bacteria populations.  
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4.2 CHAPTER 2 – Common use antibiotics in WWTP 
 
Two of the three antibiotics, sulfamethoxazole and erythromycin were rapidly 

degraded in ASML (Figure 28). 

 

Figure 28 – Efficiency of the formulation (fungus) in the removal of 
erythromycin, sulfamethoxazole and ciprofloxacin from samples of activated-
sludge-mixed liquor (ASML) and effluent water (EW). Data are expressed as 
percentage of recovered active substance after 5 and 30 days of incubation. Bars 
represent standard deviations of the means.  
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The effect of the bioremediation formulation was clearly distinguishable after 5 

days of incubation in both ASML and EW samples. In the case of the antibiotic 

ciprofloxacin, this positive effect was also distinguishable at the end of the 

incubation period. In particular, after 30 days of incubation, 30 and 18% of 

ciprofloxacin were removed from bioremediated and control ASML samples, 

respectively. In contrast to the other pharmaceuticals, more ciprofloxacin was 

removed in EW than in ASML, with a significant stimulatory effect of the 

formulation. The results of this experiment demonstrated the efficacy of the 

bioremediation approach. 

 

PCR amplification of the conservative bacterial 16S rDNA produced fragments of 

the expected size (data not shown). Separation of PCR products by DGGE 

resulted in distinct band profiles (Figure 29). Analysis of DGGE profiles indicated 

that the structure of the microbial community of ASML and EW changed over the 

incubation period. Band profiles of samples receiving the same pharmaceutical 

were generally similar, thus suggesting that major changes were caused by 

pharmaceuticals rather than the introduced formulation. Similarity within the 

bacterial community was less pronounced at the end of the 30-day incubation 

period.  
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Figure 29 - PCR-DGGE patterns (below) and similarity analysis (above) of 
amplified 16S gene from total DNA of activated-sludge-mixed liquor (ASML) 
and effluent water (EW) samples at the initial stage (5 days) and at the end of the 
incubation period (30 days). Samples were singularly spiked with the four 
pharmaceuticals listed below and amended (*) or not amended with the fungal 
formulation. OC: oseltamivir carboxylate, ER: erythromycin, SU: 
sulfamethoxazole, CI: ciprofloxacin. 
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4.3 CHAPTER 3 – Veterinary pharmaceuticals  

 

Analysis of bacterial community composition by FISH 

The structure of the autochthonous bacterial community of the soil incubated with 

oxbendazole and doramectin was determined at the phylogenetic level by 

Fluorescence In Situ Hybridization.  

The 21-day incubation of soil with 5 µg mL-1 of oxibendazole (Figure 30) 

determined significant changes in the Archaea, Cytophaga-Flavobacterium and 

Firmicutes-LGC taxa, appearing to promote their abundance, in respect to the 

non-incubated control. Among the remaining groups, only the ε-proteobacteria 

were significantly depressed by the presence of oxibendazole, and the main 

phylogenetic groups of the Proteobacteria did not seem to be affected. These 

findings suggest that, those of the bacterial groups that are promoted by the drug, 

might be involved in it’s degradation, and that the presence of a low concentration 

of oxibendazole does not have any detrimental effects on the overall bacterial 

community phylogenetic structure. 
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Figure 30 – Bacterial community structure detected by FISH, in soil incubated for 
21 days with 5 µg mL-1 of oxibendazole and control. The values are expressed as 
% of the DAPI positive cells, and are means of four analyses. Vertical bars 
represent standard errors. 
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The presence of 20 µg mL-1 of doramectin affected the bacterial community 

phylogenetic structure by depressing significantly (p < 0.01) the Bacteria and α-, 

γ-, ε-, δ-proteobacteria groups (Figure 31). On the contrary the β-proteobacteria 

cluster seems to be enhanced by the presence of the veterinary drug in soil. 
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Figure 31 – Bacterial community structure detected by FISH, in soil incubated for 
23 days with 20 µg mL-1 of doramectin and control. The values are expressed as 
% of the DAPI positive cells, and are means of four analyses. Vertical bars 
represent standard errors. 
 
 

Furthermore FISH analysis, using the narG probe, permitted the gene detection in 

incubated and non-incubated soil samples. The presence of both, oxibendazole 

and doramectin caused a significant (p < 0.05) increase in the narG positive % of 

the DAPI stained cells (Table 16) in comparison to the non-incubated control. 

This result suggests that the bacterial community might use the chemical drug as a 

substrate for metabolism, possibly involving its degradation. 

 

 narG positive cells (%DAPI)  
Control 4.64 ± 2.58 
Oxibendazole 11.70 ± 9.88 
Control 1.04 ± 1.23 
Doramectin 22.73 ± 17.23 

 

Table 16 – Number of narG positive cells (% DAPI) in incubated soils and 
control, analyzed by FISH. Values are the means of four replicates ± standard 
deviations. 
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Analysis of narG gene by PCR and qRT-PCR  

The presence and expression level of the narG gene in soil samples, incubated 

with the veterinary drugs and controls, was further confirmed by classical PCR 

amplification, from extracted DNA in all the samples, indicating that the gene was 

ubiquitous. The change in expression of the narG gene in the sample was 

evaluated by comparison to the control (no treatment) as a ratio, using the 16S 

gene a reference. The presence of oxibendazole, did not affect the expression of 

the narG gene, that remained constant in the incubated soils and in the control. 

This is in line with FISH analysis of the bacterial community that revealed no 

specific negative effects. On the contrary the presence of doramectin caused a 

significant increase in narG/16S mRNA ratios, from 12 to 55 times. The increase 

of the narG/16S mRNA ratio is possibly due to the global decrease of 16S 

mRNA, while the portion of remaining bacteria contribute to the denitrification 

process. 

 

Isolation of bacterial strains 

Eleven different bacterial isolates were obtained from the oxibendazole-treated 

microcosms, and classified as Bacillus pumilus, Bacillus imples, Bacillus 

nealsonii, Bacillus thuringiensis, Bacillus benzoevorans, Bacillus anthracis, 

Acetobacter pasteurianus, Bacillus cereus, Arthrobacter crystallopoietes, 

Rhodococcus rhodochrous, and Klebsiella planticola. Two different strains were 

obtaines from doramectin-treated microcosms, classified as Bacillus subtilis and 

Bacillus megaterium. Strains were tested for their degrading capabilities and qRT-

PCR was performed to monitor the expression of narG gene in presence/absence 

of the two veterinary drugs (work in progress, data not shown). 
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5. CONCLUSIONS 

 

5.1 CHAPTER 1 

The first study on CER irrigation canal samples showed the important role played 

by microbial processes in the degradation of the antiviral drug oseltamivir 

carboxylate (OC) in surface water. Even though the low amount of 1.5 µg mL-1 of 

OC was lost from surface water samples, the potential of OC degradation was 

significantly greater in water samples containing sediments.  

For better understanding the degradation of OC in other environmental scenarios 

and to elucidate potential effects of this antiviral drug on the structure of the 

microbial community of surface water, a second laboratory study was conducted 

on two different aquatic environments located in northern Italy, the River Po and 

the Venice Lagoon. This study demonstrated the potential of the antiviral to 

persist in surface water, showing also that in both river and saline water, rapid OC 

removal can be achieved by addition of a low amount (5%) of sediments to water, 

which promotes microbial degradation processes. Since OC showed a low 

sorption affinity to sediments, no reduction of bioavailability is expected after 

stimulating microbial processes by addition of sediments to environmental 

samples. Concentrations of OC up to 20 µg mL-1 did not affect the structure of the 

microbial community and bacterial nitrification processes. Considering that 

environmental concentrations of OC in highly populated catchments during an 

influenza pandemic are predicted to be in excess of 20 µg mL-1, no detrimental 

effects of OC on the microbial community are expected.  

Further laboratory experiments conducted using samples from the Japanese 

surface water and sediments of Lake Biwa and River Furukawa, and wastewater 

from the treatment plant of the city of Bologna indicated that OC degradation is 

variable and not easily predictable. Major factors influencing the degradation rate 

of this antiviral drug include intrinsic environmental properties and most 

importantly the size of the indigenous microbial community. Although slow 

biotransformation rates were observed in surface water, degradation of OC 

proceeded more rapidly in wastewater. This suggests that bioremediation 

techniques would be more successful when applied to wastewater and effluent. 

Using different DNA-based approaches, it may be concluded that OC would not 

affect the structure of the microbial community and the size of the whole bacterial 
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community, including the group of ammonium-oxidizing bacteria. In the present 

study the potential use of OC-degrading bacteria was explored for its removal 

from water and wastewater. Two bacterial strains able to grow using OC as sole 

carbon and energy sources were isolated. Inoculation of environmental samples 

with these two bacterial strains demonstrated the feasibility of this technology, 

especially in surface water and effluents of a wastewater treatment plant.  

Furthermore the tested bioremediation strategy using a formulation with the 

fungus P. chrysosporium showed that after 30 days of incubation, the formulation 

removed more than half the initial amount of OC in both activated-sludge-mixed 

liquor (ASML) and effluents (EW).  

Taken together, these information suggest that prolonged residential time of OC in 

the biological degradation step of wastewater treatment plants, and the 

bioremediation approach can be useful strategies for reducing the risk of OC to 

enter the aquatic ecosystem.  

 

5.2 CHAPTER 2 

The bioremediation formulation of P. chrysosporium was capable to remove 

efficiently also three different antibiotics from wastewater, including samples of 

ASML and EW. In the case of the less persistent pharmaceutical, the antibiotic 

erythromycin, almost 80% of the applied amount was removed in bioremediated 

ASML and EW samples within only 5 days of incubation. 

 

5.3 CHAPTER 3 

The presence of two veterinary pharmaceuticals, doramectin and oxibendazole, in 

an agricultural soil affected the overall structure of the bacterial community, 

analyzed by FISH promoting some phylogenetic groups rather than depressing 

others. The two drugs were possibly used as a substrate for bacterial metabolism, 

as suggested by the increase in the narG positive cells. Furthermore the isolation 

of a number of bacterial strains capable to grow on oxibendazole and doramectin 

was promising for the development of further bioremediation strategies. 

 



References 

82  

REFERENCES 

 
Accinelli C, Koskinen WC, Seebinger JD, Vicari A, Sadowsky MJ (2005) 
Environmental Fate of Two Sulfonamide Antimicrobial Agents in Soil. J Agric 
Food Chem, 53, 4110 
 
Accinelli C, Hashim M, Epifani R, Schneider RJ, Vicari A (2006) Effects of the 
antimicrobial agent sulfamethazine on metolachlor persistence and sorption in 
soil. Chemosphere, 63, 1539 
 
Accinelli C, Koskinen WC, Becker JM, Sadowsky MJ (2007) Environmental fate 
of two sulfonamide antimicrobial agents in soil. J Agric Food Chem, 55(7), 2677-
82 
 
Alexy R, Kümpel T, Kümmerer K (2004) Assessment of degradation of 18 
antibiotics in the Closed Bottle Test. Chemosphere, 57, 505 
 
American Hospital Formulary Service (2006) Oseltamivir. In: AHFS Drug 
Information, 8:1828: Available: http://www.ashp.org/ahfs/first_rel/Revised-
75oseltamivir_nov2006.pdf 
 
Bardsley-Elliot A and Noble S (1999) Oseltamivir. Drugs 58(5):851–860. BBC. 
2006. Bird Flu: Country Preparations. Available: 
http://news.bbc.co.uk/1/hi/health/4380014stm 
 
Barra Caracciolo A, Grenni P, Cupo C, Rossetti S (2005) In situ analysis of native 
microbial communities in complex samples with high particulate loads. FEMS 
Microbiol Lett, 253(1), 55-8  
 
Barra Caracciolo A, Grenni P, Saccà ML, Amalfitano S, Ciccoli R, Martín M, 
Gibello A (2010) The role of a groundwater bacterial community in the 
degradation of the herbicide terbuthylazine. FEMS Microbiol Ecol, 71, 127-136 
 
Bock E, Koops HP, Ahlers B, Harms H (1992) The genus Nitrobacter and related 
genera. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (Eds.), 
The Prokaryotes. Springer-Verlag, New York, pp. 414–430 
 
Boon N, Top EM, Verstraete W, Siciliano SD (2003) Bioaugmentation as a tool to 
protect the structure and function of an activated-sludge microbial community 
against a 3-chloroaniline shock load. Appl Environ Microbiol, 69, 1511–1520 
 
Bottoni P, Caroli S, Barra Caracciolo A (2010) Pharmaceuticals as priority water 
contaminants. Toxicological & Environmental Chemistry, 92 (3) 549-565 
 
Barceló D, Petrovic M (2008) Emerging Contaminants from Industrial and 
Municipal Waste, Removal Technologies. The Handbook of Environmental 
Chemistry (Eds: O. Hutzinger D. Barceló ·A. Kostianoy) Volume 5 Water 
Pollution, Part S/2 270-274 
 



References 

83  

Brandt KK, Jørgensen NOG, Nielsen TH, Winding A (2004) Microbial 
community-level toxicity testing of linear alkylbenzene sulfonates in aquatic 
microcosms. FEMS Microbiology Ecology, 49 (2) 229-241 
 
Bryers JD (1994) Biofilms and the technological implications of microbial cell 
adhesion. Colloid Surf. B: Biointerf, 2, 9–23 
 
Busse MD, Ratcliff AW, Shestak CJ, Powers RF (2001) Glyphosate toxicity and 
the effects of long-term vegetation control on soil microbial communities. Soil 
Biol Biochem, 33, 1777 
 
Carlsson C, Johansson AK, Alvan G, Bergman K, Kuhler T (2006) Are 
pharmaceuticals potent environmental pollutants? Part II: Environmental risk 
assessments of selected pharmaceutical excipients. Science of the Total 
Environment 364, 88–95 
 
Casas I, Powell L, Klapper PE, Cleator GM (1995) New method for the extraction 
of viral RNA and DNA from cerebrospinal fluid for use in the polymerase chain 
reaction assay. J Virol Methods, 53, 25-36 
 
Castiglioni S, Pomati F, Miller K, Burns BP, Zuccato E, Calamari D, Neilan BA 
(2008) Novel homologs of the multiple resistance regulator marA in antibiotic-
contaminated environments. Water Research, 42 (16) 4271-4280 
 
Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the 
assessment of combination effects. Toxicol Lett, 142, 185–194 
 
Cleuvers T, Schneider RJ, Farber HA, Skutlarek D, Meyer MT, Goldbach (2003) 
Determination of Antibiotic Residues in Manure, Soil, and Surface Waters. Acta 
Hydrochim Hydrobiol, 31, 36-44 
 
Crawford RL (2006) Bioremediation In: Dworkin M., Falkow S., Rosenberg E., 
Schleifer K.H. and Stackebrandt E. (Eds.), The Prokaryotes: A Handbook on the 
Biology of Bacteria. Volume 1: Symbiotic associations, Biotechnology and 
Applied Microbiology. New York, USA: Springer-Verlag, pp. 850-863 
 
Danaher M, Howells LC, Crooks SRH, Cerkvenik-Flajs V, O’Keeffe M (2006) 
Review of methodology for the determination of macrocyclic lactone residues in 
biological matrices. Journal of Chromatography B, 844 (2) 175-203 
 
De Souza ML, Newcombe D, Alvey S, Crowley DE, Hay A, Sadowsky MJ & 
Wackett LP (1993) Molecular basis of a bacterial consortium: interspecies 
catabolism of atrazine. Appl Environ Microbiol, 64, 178–184 
 
Devers M, Soulas G, Martin-Laurent F (2004) Real-time reverse transcription 
PCR analysis of expression of atrazine catabolism genes in two bacterial strains 
isolated from soil. Journal of Microbiological Methods, 56, 3–15 
 
Dionisi HM, Layton AC, Harms G, Gregory IR, Robinson KG, Sayler GS (2002) 
Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and 



References 

84  

Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. 
Appl Environ Microb, 68, 245–253 
 
Dionisi HM, Harms G, Layton AC, Gregory IR, Parker J, Hawkins SA, Robinson 
KG, Sayler GS (2003) Power analysis for real-time PCR quantification of genes 
in activated sludge and analysis of the variability introduced by DNA extraction. 
Appl Environ Microbiol, 69 (11) 6597-604 
 
Dorigo U, Volatier L, Humbert JF (2005) Molecular approaches to the assessment 
of biodiversity in aquatic microbial communities. Water Res, 39, 2207-2218 
 
Edwards M, Topp E, Metcalfe CD, Li H, Gottschall N, Bolton P, Curnoe W, 
Payne M, Beck A, Kleywegt S, Lapen DR (2009) Pharmaceutical and personal 
care products in tile drainage following surface spreading and injection of 
dewatered municipal biosolids to an agricultural field. Science of The Total 
Environment, 407 (14) 4220-4230 
 
Eisenberg EJ and Cundy KC (1998) High-performance liquid chromatographic 
determination of GS4071, a potent inhibitor of influenza neuraminidase, in plasma 
by precolumn fluorescence derivatization with naphthalenedialdehyde. J 
Chromatogr B Biomed Sci Appl, 716(1-2) 267-73 
 
Engelen B, Meinken K, von Wintzingerode F, Heuer H, Malkomes HP, Backhaus 
H (1998) Monitoring impact of a pesticide treatment on bacterial soil 
communities by metabolic and genetic fingerprinting in addition to conventional 
testing procedures. Appl Environ Microbiol, 64, 2814 
 
European Commission (2001) Organic contaminants in sewage sludge for 
agricultural use. Report Coordinated by the European Commission Joint Research 
Centre, Institute for Environment and Sustainability, Soil and Waste Unit, 
October, 2001, pp 73 
 
Farrell NR (2009) The Landscape of Antibiotic Resistance. Environ Health 
Perspect, 117, A244-A250 
 
Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis 
profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat 
community. Appl Environ Microb 62, 340–346 
 
Fick J, Lindberg RH, Tysklind M, Haemig PD, Waldenström J, Wallensten A, 
Olsen B (2007) Antiviral oseltamivir is not removed or degraded in normal 
sewage water treatment: implications for development of resistance by influenza 
A virus. PLoS ONE 3 2 (10), e986 
 
Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil 
microbial community structure by use of taxon-specific quantitative PCR assays. 
Appl Environ Microbiol 71, 4117–4120 
 
Getenga ZM and Kengara FO (2004) Mineralization of Glyphosate in Compost-
Amended Soil Under Controlled Conditions. Bull Environ Contam Toxicol, 72, 
266 



References 

85  

 
Ghosh GC, Nakada N, Yamashita N, Tanaka H (2010) Oseltamivir Carboxylate, 
the Active Metabolite of Oseltamivir Phosphate (Tamiflu), Detected in Sewage 
Discharge and River Water in Japan. Environ Health Persp, 118, 103–107 
 
Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA (2005) Bacterial 
diversity promotes community stability and functional resilience after 
perturbation. Environ Microbiol, 7 (3) 301-13 
 
Gregory LG, Bond PL, Richardson DJ, Spiro S (2003) Characterization of a 
nitrate-respiring bacterial community using the nitrate reductase gene (narG) as a 
functional marker. Microbiology, 149, 229–237 
 
Grenni P, Gibello A, Barra Caracciolo A, Fajardo C, Nande M, Vargas R, Saccà 
ML, Martínez-Iñigo MJ, Ciccoli R, Martín M (2009) A new fluorescent 
oligonucleotide probe for in situ detection of s-triazine-degrading Rhodococcus 
wratislaviensis in contaminated groundwater and soil samples. Water Res, 43, 
2999-3008 
 
Griebler C and Slezak D (2001) Microbial activity in aquatic environments 
measured by dimethyl sulfoxide reduction and intercomparison with commonly 
used methods. Appl Environ Microb, 67, 100–109 
 
Griffiths BS, Kuan HL, Ritz K, Glover LA, McCaig AE, Fenwick C (2004) The 
relationship between microbial community structure and functional stability, 
tested experimentally in an upland pasture soil. Microb Ecol, 47 (1) 104-13 
 
Gu JD and Berry DF (1992) Metabolism of 3-methylindole by a methanogenic 
consortium. Appl Environ Microbiol, 58, 2667–2669 
 
Gu JD and Mitchell R (2006) Biodeterioration. In: Dworkin M, Falkow S, 
Rosenberg E, Schleifer KH and Stackebrandt E (Eds.), The Prokaryotes: A 
Handbook on the Biology of Bacteria. Volume 1: Symbiotic associations, 
Biotechnology and Applied Microbiology. New York, USA: Springer-Verlag, pp. 
864-903 
 
Guo H, Chen G, Lv Z, Zhao H, Yang H (2009). Alteration of microbial properties 
and community structure in soils exposed to napropamide. J Environ Sci, 21 (4) 
494-502 
 
Haglund AL, Lantz P, Törnblom E, Tranvik L (2003) Depth distribution of active 
bacteria and bacterial activity in lake sediment. FEMS Microbiol Ecol, 46 (1) 31-8 
 
Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft 
HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical 
substances in the environment- A review. Chemosphere, 36 (2) 357-393 
 
Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA, 
Robinson KG, Sayler GS (2003) Real-time PCR quantification of nitrifying 
bacteria in a municipal wastewater treatment plant. Environ Sci Technol, 37 (2) 
343-51 



References 

86  

 
Hermansson A and Lindgren PE (2001) Quantification of ammonia-oxidizing 
bacteria in arable soil by real-time PCR. Appl Environ Microbiol, 67 (2) 972-6 
 
Hooper SW, Daye KJ, Shuttle KA, Williams RA (2002) Subsurface Contaminant 
Fate Determination Through Integrated Studies of Intrinsic Remediation. In: Scow 
KM, Fogg GE, Hinton DE, Johnson ML (Eds.), Integrated Assessment of 
Ecosystem Health. CRC Press. Chap. 4, pp. 63-70 
 
Hurt AC, Ernest J, Deng YM, Iannello P, Besselaar TG, Birch C, Buchy P, 
Chittaganpitch M, Chiu SC, Dwyer D, Guigon A, Harrower B, Kei IP, Kok T, Lin 
C, McPhie K, Mohd A, Olveda R, Panayotou T, Rawlinson W, et al. (2009) 
Emergence and spread of oseltamivir-resistant A(H1N1) influenza viruses in 
Oceania, South East Asia and South Africa. Antiviral Research, 83 (1) 90-93 
 
Hutchinson TH, Beesley A, Frickers PE, Readman JW, Shaw JP, Straub JO 
(2009) Extending the environmental risk assessment for oseltamivir (Tamiflu®) 
under pandemic use conditions to the coastal marine compartment. Environ Int, 
35, 931–936 
 
Ibekwe AM, Papiernik SK, Gan J, Yates SR, Yang CH, Crowley DE (2001) 
Impact of Fumigants on Soil Microbial Communities. Appl Environ Microbiol, 
67, 3245–3257 
 
Jordan FL, Cantera JJL, Fenn ME, Stein LY (2005) Autotrophic ammonia-
oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted 
forested ecosystem. Appl Environ Microbiol, 71, 197–206 
 
Juliastuti SR, Baeyens J, Creemers C, Bixio D, Lodewyckx E (2003) The 
inhibitory effects of heavy metals and organic compounds on the net maximum 
specific growth rate of the autotrophic biomass in activated sludge. Journal of 
Hazardous Materials, 100, 1-3, 271-283 
 
Kawai F and Yamanaka H (1986) Biodegradation of polyethylene glycol by 
symbiotic mixed culture (obligate mutualism). Arch Microbiol 146, 125–129 
 
Kim CU, Lew W, Williams MA, Liu H, Zhang L, Swaminathan S, et al. (1997) 
Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in 
the enzyme active site: design, synthesis, and structural analysis of carbocyclic 
sialic acid analogues with potent anti-influenza activity. J Am Chem Soc, 119 (4) 
681–690 
 
Kim YH, Pak K, Pothuluri V, Cerniglia CE (2004) Mineralization of 
erythromycin A in aquaculture sediments. FEMS Microbiol Lett, 234, 169 
 
Kim YS, Min J, Hong HN, Park JH, Park KS, Gu MB (2007) Gene expression 
analysis and classification of mode of toxicity of polycyclic aromatic 
hydrocarbons (PAHs) in Escherichia coli. Chemosphere, 66 (7) 1243-8 
 



References 

87  

Kinney CA, Furlong ET, Werner SL, Cahill JD (2006) Presence and distribution 
of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. 
Environmental Toxicology and Chemistry, 25, 317-326 
 
Klaver AL and Matthews RA (1994) Effects of oxytetracycline on nitrification in 
a model aquatic system. Aquaculture, 123, 237-247 
 
Kolar L, Erzen NK, Hogerwerf L, van Gestel CAM (2008) Toxicity of abamectin 
and doramectin to soil invertebrates. Environmental Pollution 151, 182-189 
 
Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, 
Buxton HT (2002) Pharmaceuticals, hormones, and other wastewater 
contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci 
Technol, 36 (6) 1202-11 
 
Kolpin DW, Thurman EM, Lee EA, Meyer MM, Furlong ET, Glassmeyer ST 
(2006) Urban contributions of glyphosate and its degradate AMPA to streams in 
the United States. Sci Total Environ, 354, 191  
 
Koschorreck J, Koch C, Rönnefahrtet I (2002) Environmental risk assessment of 
veterinary medicinal products in the EU—a regulatory perspective. Toxicology 
Letters, 131, 117–124 
 
Krutz LJ, Senseman SA, McInnes KJ, Hoffman DW, Tierney DP (2004) 
Adsorption and desorption of metolachlor and metolachlor metabolites in 
vegetated filter strip and cultivated soil. J Environ Qual, 33, 939–945 
 
Kubota M, Kawahara K, Sekiya K, Uchida T, Hattori Y, Futamata H, Hiraishi A 
(2005) Nocardioides aromaticivorans sp. nov., a dibenzofuran-degrading 
bacterium isolated from dioxin-polluted environments. Systematic and Applied 
Microbiology, 28, 2, 165-174 
 
Kumar K, Thomposon A, Singh AK, Chander Y, Gupta SC (2004) Enzyme-
Linked Immunosorbent Assay for Ultratrace Determination of Antibiotics in 
Aqueous Samples. J Environ Qual, 33, 250-256 
 
Kümmerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Biodegradability of 
some antibiotics, elimination of the genotoxicity and affection of wastewater 
bacteria in a simple test. Chemosphere, 40, 701  
 
Kümmerer K (2009a) The presence of pharmaceuticals in the environment due to 
human use – present knowledge and future challenges. Journal of Environmental 
Management, 90 (8) 2354-2366 
 
Kümmerer K (2009b) Antibiotics in the aquatic environment – A review – Part II. 
Chemosphere, 75, 435–441 
 
Kupka-Hansen P, Lunestad BT, Samuelsen OB (1992) Ecological effects of 
antibiotics/ chemotherapeutics from fish farming. In Chemotherapy in 
Aquaculture: from theory to reality; C. Michel, Alderman, D. J., Eds.; Office 
International des Epizooties: Paris; pp 174-178 



References 

88  

 
Lee LS, Carmosini N, Sassman SA, Dion HM, Sepúlveda MS (2007) Agricultural 
Contributions of Antimicrobials and Hormones on Soil and Water Quality. 
Advances in Agronomy, 93, 1-68 
 
Li D, Yang M, Hu J, Zhang J, Liu R, Gu X, Zhang Y, Wang Z (2009) Antibiotic-
resistance profile in environmental bacteria isolated from penicillin production 
wastewater treatment plant and the receiving river. Environ Microbiol 11, 6, 
1506-1517 
 
Li W, Escarpe PA, Eisenberg EJ, Cundy KC, Sweet C, Jakeman KJ, et al. (1998) 
Identification of GS 4104 as an orally bioavailable prodrug of the influenza virus 
neuraminidase inhibitor GS 4071. Antimicrob Agents Chemother, 42 (3) 647–653 
 
Lifschitz A, Virkel G, Sallovitz J, Sutra JF, Galtier P, Alvinerie M, Lanusse C 
(2000) Comparative distribution of ivermectin and doramectin to parasite location 
tissues in cattle. Veterinary Parasitology, 87, 4, 327-338 
 
Limpiyakorn T, Kurisu F, Yagi O (2004) Distribution of ammonia-oxidizing 
bacteria in sewage activated sludge: analysis based on 16S rDNA sequence. Water 
Sci Technol, 54, 9–14 
 
Limpiyakorn T, Shinohara Y, Kurisu F, Yagi O (2005) Communities of ammonia-
oxidizing bacteria in activated sludge of various sewage treatment plants in 
Tokyo. FEMS Microbiology Ecology, 54, 2, 205-217 
 
Limpiyakorn T, Kurisu F, Yagi O (2006) Quantification of ammonia-oxidizing 
bacteria populations in full-scale sewage activated sludge systems and assessment 
of system variables affecting their performance. Water Sci Technol, 54, 91–99 
 
Liu B, McConnell LL, Torrents A (2001) Hydrolysis of chlorpyrifos in natural 
waters of the Chesapeake Bay. Chemosphere, 44, 1315 
 
Loy A, Maixner F, Wagner M, Horn M (2007) probeBase--an online resource for 
rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res 
35(Database issue):D800-4 
 
López-Gutiérrez JC, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L 
(2004) Quantification of a novel group of nitrate-reducing bacteria in the 
environment by real-time PCR. Journal of Microbiological Methods, 57, 3, 399-
407 
 
Lu J, Wu L, Newman J, Faber B, Gan J (2006) Degradation of pesticides in 
nursery recycling pond waters. J Agric Food Chem, 54, 2658 
 
Lu Y, Yan L, Wang Y, Zhou S, Fu J, Zhang J (2009) Biodegradation of phenolic 
compounds from coking wastewater by immobilized white rot fungus 
Phanerochaete chrysosporium. J Hazard Mater, 165 (1-3) 1091-7 
 



References 

89  

Mandelbaum RT, Wackett LR, Allan DL (1993) Mineralization of the s-triazine 
ring of atrazine by stable bacterial mixed cultures. Appl Environ Microbiol, 59, 
1659–1701 
 
Mandelbaum RT, Allan DL, Wackett LP (1995) Isolation and Characterization of 
a Pseudomonas sp. That Mineralizes the s-Triazine Herbicide Atrazine. Appl 
Environ Microbiol, 61 (4) 1451-1457 
 
Mantovi P, Baldoni G, Toderi G (2005) Reuse of liquid, dewatered, and 
composted sewage sludge on agricultural land: effects of long-term application on 
soil and crop. Water Res, 39, 289–96 
 
Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG 
(1998) Design and evaluation of useful bacterium-specific PCR primers that 
amplify genes coding for bacterial 16S rRNA. Appl Environ Microb, 64, 795–799 
 
Martin M, Gibello A, Lobo MC, Nande M, Garbi C, Fajardo C, Barra Caracciolo 
A, Grenni P, Martínez-Iñigo MJ (2008) Application of fluorescence in situ 
hybridization technique to detect simazine degrading bacteria in soil samples. 
Chemosphere, 71, 703–710 
 
Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ (2001) Complete 
nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 
from Pseudomonas sp. strain ADP. J Bacteriol, 183 (19) 5684-97 
 
Miyauchi K, Sukda P, Nishida T, Ito E, Matsumoto Y, Masai E, Fukuda M (2008) 
Isolation of dibenzofuran-degrading bacterium, Nocardioides sp. DF412, and 
characterization of its dibenzofuran degradation genes. J Biosci Bioeng, 105 (6) 
628-35 
 
Molina V, Ulloa O, Farías L, Urrutia H, Ramírez S, Junier P, Witzel KP (2007) 
Ammonia-oxidizing b-proteobacteria from the oxygen minimum zone off 
northern Chile. Appl Environ Microb, 73, 3547–3555 
 
Moràn AC, Muller A, Manzano M, Gonzalez B (2006) Simazine treatment history 
determines a significant herbicide degradation potential in soils that is not 
improved by bioaugmentation with Pseudomonas sp. ADP. J Appl Microbiol 101 
(1) 26-35 
 
Moyer CL, Dobbs FC, Karl DM (1994) Estimation of diversity and community 
structure through restriction fragment length polymorphism distribution analysis 
of bacterial 16S rRNA gene from a microbial mat at an active, hydrothermal vent 
system, Loihi Seamount, Hawaii. Appl Environ Microb, 60, 871–879 
 
National Research Council (1993) In Situ Bioremediation. National Academy 
Press, Washington DC 
 
Nazaret S, Jeffrey WH, Saouter E, von Haven R, Barkay T (1994) MerA gene 
expression in aquatic environments measured by mRNA production and Hg(II) 
volatilization. Appl Environ Microb, 60, 4059–4065 
 



References 

90  

O'Brien E and Dietrich DR (2004) Hindsight rather than foresight: reality versus 
the EU draft guideline on pharmaceuticals in the environment. Trends in 
Biotechnology, 22 (7) 326-330 
 
Ogunseitan OA (2000) Microbial proteins as biomarkers of ecosystem health. In 
K. Scow, G.E. Fogg, D. Hinton, and M.L. Johnson (eds.). Integrated Assessment 
of Ecosystem Health, pp. 207–22. Boca Raton, FL: CRC Press 
 
Osswald P, Courtes R, Bauda P, Block JC, Bryers JD, Sunde E (1995) Xenobiotic 
biodegradation test using attached bacteria in synthetic seawater. Ecotoxicol 
Environ Safety, 31, 211–217 
 
Pagga U, Bachner J, Strotmann U (2006) Inhibition of nitrification in laboratory 
tests and model wastewater treatment plants. Chemosphere, 65, 1, 1-8 
 
Pritchard PH, Cripe CR, Walker WW, Spain JC, Bourquin AW (1987) Biotic and 
abiotic degradation rates of methyl parathion in freshwater and estuarine water 
and sediment samples. Chemosphere, 16, 1509 
 
Radjenovic J, Petrovic M, Barceló D (2009) Fate and distribution of 
pharmaceuticals in wastewater and sewage sludge of the conventional activated 
sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water 
Research, 43, 831–841 
 
Rossello-Mora R and Amann RI (2001) The species concept for prokaryotes. 
FEMS Microbiol Ecol, 25, 39–67 
 
Seybold CA and Mersie W (1996) Adsorption and desorption of atrazine, 
deethylatrazine, deisopropylatrazine, hydroxyatrazine, and metolachlor in two 
soils from Virginia. J Environ Qual, 25, 1179–1185 
 
Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von 
Gunten U, Wehrli B (2006) The Challenge of Micropollutants in Aquatic 
Systems. Science, 313, 1072-1077 
 
Schiermeier Q (2003) Studies assess risks of drugs in water cycle. Nature 424, 5 
 
Sharp RR, Bryers JB, Jones WG, Shields MS (1998) Activity and stability of a 
recombinant plasmid-borne TCE degradative pathway in suspended cultures. 
Biotechnol Bioeng, 57, 287–296 
 
Shoop WL, Mrozik H, Fisher MH (1995) Structure and activity of avermectins 
and milbemycins in animal health. Veterinary Parasitology, 59, 2, 139-156 
 
Singer AC, Nunn MA, Gould EA, Johnson AC (2007) Potential risks associated 
with the widespread use of Tamiflu. Environ Health Persp, 115, 102–106 
 
Singer AC, Howard BM, Johnson AC, Knowles CJ, Jackman S, Accinelli C, 
Barra Caracciolo A, Bernard I, Bird S, Boucard T, Boxall A, Brian J, Cartmell E, 
Chubb C, Churchley J, Costigan S, Crane M, Dempsey MJ, Dorrington B, Fick J, 
Holmes J, Hutchinson T, Karcher F, Kelleher SL, Marsden P, Noone G, Nunn 



References 

91  

MA, Oxford J, Rachwal T, Roberts N, Roberts M, Saccà ML, Sanders M, Straub 
JO, Terry A, Thomas D, Toovey S, Townsend R, Voulvoulis N, Watts C, Wells U 
(2008) Assessment of Tamiflu release to the environment under pandemic 
conditions. Report from an interdisciplinary workshop. Environ Health Persp, 
116, 1563–1567 
 
Singh BK, Kuhad RC, Singh A, Lal R, Triapthi KK (1999) Biochemical and 
molecular basis of pesticide degradation by microorganisms. Crit Rev Biotechnol, 
19, 197–225 
 
Singh BK and Walker A (2006) Microbial degradation of organophosphorus 
compounds. FEMS Microbiol Rev, 30, 428–471 
 
Smith P, Donlon J, Coyne R, Cazabon D J (1994) Fate of oxytetracycline in a 
fresh water fish farm: influence of effluent treatment systems. Aquaculture, 120, 
319-325 
 
Söderstrom H, Järhult JD, Olsen B, Lindberg RH, Tanaka H, Fick J (2009) 
Detection of the antiviral drug oseltamivir in aquatic environments. PLoS ONE 4, 
e6064 
 
Soong G, Muir A, Gomez MI, Waks J, Reddy B, Planet P, Singh PK, Kaneko Y, 
Wolfgang MC, Hsiao YS, Tong L, Prince A (2006) Bacterial neuraminidase 
facilitates mucosal infection by participating in biofilm production. J Clin Invest, 
116, 2297–2305 
 
Stalter D, Magdeburga A, Weilb M, Knackerb T, Oehlmann J (2009) Toxication 
or detoxication? In vivo toxicity assessment of ozonation as advanced wastewater 
treatment with the rainbow trout. Water Research, 44, 2, 439-448 
 
Strange-Hansen R, Holm PE, Jacobsen OS, Jacobsen CS (2004) Sorption, 
mineralization and mobility of N-(phosphonomethyl)glycine (glyphosate) in five 
different types of gravel. Pest Manag Sci, 60, 570 
 
Straub JO (2009) An environmental risk assessment for oseltamivir (Tamiflu®) for 
sewage works and surface waters under seasonal-influenza- and pandemic-use 
conditions. Ecotox Environ Safe, 72, 1625–1634 
 
Sukul P, Lamshöft M, Zühlke S, Spiteller M (2008) Sorption and desorption of 
sulfadiazine in soil and soil–manure systems. Chemosphere, 73, 1344–1350 
 
Taylor G (1996) Sialidases: structures, biological significance and therapeutic 
potential. Curr Opin Struct Biol, 6, 830–837 
 
Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and 
rivers. Water Research, 32, 11, 3245-3260 
 
Topp E, Mulbry WM, Zhu H, Nour SM and Cuppels D (2000) Characterization of 
S-Triazine Herbicide Metabolism by a Nocardioides sp. Isolated from 
Agricultural Soils. Appl Environ Microbiol, 66, 3134-3141 
 



References 

92  

Topp E, Monteiro SC, Beck A, Coelho BB, Boxall ABA, Duenk PW, Kleywegt S, 
Lapen DR, Payne M, Sabourin L, Li H, Metcalfe CD (2008). Runoff of 
pharmaceuticals and personal care products following application of biosolids to 
an agricultural field. Science of The Total Environment, 396, 1, 52-59 
 
Torsvik V, Øvreas L, Thingstad TF (2002) Prokaryotic diversity—magnitude, 
dynamics and controlling factors. Science, 296, 1064–1066 
 
Tsui MT and Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: 
comparison between different organisms and the effects of environmental factors. 
Chemosphere, 52, 1189 
 
USGS (United States Geological Survey) (2009) Toxic Substances Hydrology 
Program website, Emerging Contaminants in the Environment, 
http://toxics.usgs.gov/regional/emc/index.html 
 
Van Benthum WAJ, van Loosdrecht MCM, Heijnen JJ (1997) Process design for 
nitrogen removal using nitrifying biofilm and denitrifying suspended growth in a 
Biofilm Airlift Suspension reactor. Water Science and Technology, 36, 1, 119-128 
 
Van Dyk TK, Smulski DR, Reed TR, Belkin S, Vollmer AC, Larossa RA (1995) 
Responses to toxicants of an escherichia coli strain carrying a uspA9::lux genetic 
fusion and an E. coli strain carrying a grpE9::lux fusion are similar. Appl Environ 
Microbiol, 61, 11, 4124–4127  
 
Wagner-Döbler I, Pipke R, Timmis KN, Dwyer DF (1992) Evaluation of aquatic 
sediment microcosms and their use in assessing possible effects of introduced 
microorganisms on ecosystem parameters. Appl Environ Microbiol, 58, 1249–
1258 
 
Walker WW, Cripe CR, Pritchard PH, Bourquin AW (1984) Dibutylphthalate 
degradation in estuarine and freshwater sites. Chemosphere, 13, 1283 
 
Watanabe K (2001) Microorganisms relevant to bioremediation. Current Opinion 
in Biotechnology, 12 (3), 237-241 
 
WHO (World Health Organization) (2006) Cumulative Number of Confirmed 
Human Cases of Avian Influenza A/(H5N1) Reported to WHO. Available: 
http://www.who.int/csr/disease/avian_influenza/country/cases_table_2006_11_13/
en/index.html  
 
Willems A and Collins MD (1996) Phylogenetic relationships of the genera 
Acetobacterium and Eubacterium sensu stricto and reclassification of 
Eubacterium alactolyticum as Pseudoramibacter alactolyticus gen. nov., comb. 
nov. Int J Syst Bacteriol, 46, 1083-1087 
 
Yoon JH, Lee JK, Jung SY, Kim JA, Kim AK, Oh TK (2006) Nocardioides 
kongjuensis sp. nov., an N-acylhomoserine lactone-degrading bacterium. 
International Journal of Systematic and Evolutionary Microbiology, 56, 1783–
1787 
 



References 

93  

Zhang T and Fang HHP (2006) Applications of real-time polymerase chain 
reaction for quantification of microorganisms in environmental samples. Appl 
Microbiol Biotechnol, 70, 281-289 
 
Zuccato E, Castiglioni S, Fanelli R (2005). Identification of the pharmaceuticals 
for human use contaminating  the Italian aquatic environment. Journal of 
Hazardous Materials, 122, 3, 205-209 
 
Zuccato E, Castiglioni S, Fanelli R, Reitano G, Bagnati R, Chiabrando C, Pomati 
F, Rossetti C, Calamari D (2006) Pharmaceuticals in the environment in Italy: 
causes, occurrence, effects and control. Environ Sci Pollut Res Int, 13 (1) 15-21 
 
Zumft WG (1992) The denitrifying prokaryotes. In The Prokaryotes, 2nd edn, pp. 
554–582. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. 
Schleifer. New York: Springer-Verlag 
 
Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK (2002) Typical 
freshwater bacteria: an analysis of available 16S rRNA gene sequences from 
plankton of freshwater lakes and rivers. Aquat Microb Ecol, 28, 141-155 
 



Acknowledgements 

94  

ACKNOWLEDGEMENTS  

I would like to express my deep gratitude to Prof. Alberto Vicari and Dr. Cesare 

Accinelli for three years of constant support. Thank you also to Mariangela 

Mencarelli. Prof. Margarita Martin of the Complutense University of Madrid is 

greatly acknowledged for giving me the opportunity to build up the precious 

collaboration with her research group, of which in particular I thank Prof. Alicia 

Gibello, Dr. Carmen Lobo, Dr. Carmen Fajardo, Dr. Mª José Martínez Iñigo and 

Mar Nande. Dr. Anna Barra Caracciolo, and her group of the Water Reasearch 

Institute of Rome, Dr. Paola Grenni and Francesca Falcone, is specially thanked 

for being a constant reference point. I thank Prof. Björn Olsen, of Uppsala 

University for believing in our collaboration. Dr. Jerker Fick, from the University 

of Umeå is acknowledged for chemical analysis of Tamiflu. Thank you to F. 

Hoffmann-La Roche Ltd for providing analytical grade and radiolabeled 

oseltamivir carboxylate. I would like to thank also Dr. Isabelle Batisson 

(Université Blaise Pascal - Clermont-Ferrand) for DGGE analysis in the fungus 

bioremediation study. 

 


