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Preface

From the greek chalcos which means ”ore” and gen which means ”formation”,

a chalcogen is an ”ore former”. A chalcogen is also one of the three chemical

elements Sulfur S16, Selenium Se34 or Tellurium Te52. The thread running

through these 3 elements is an outer shell made up of 6 electrons, therefore

a chalcogen naturally seeks 2 more electrons to stabilize. An electro-positive

element is either a metal or a metalloid element with few electrons in the

outer shell and thus the ability to donate them to stabilize. When one or

more electro-positive elements combine with at least one chalcogen for the

common purpose of stability, the resulting chemical compound is a chalco-

genide.

Unlike other chemical compounds, chalcogenide atomic arrangement can

quickly and reversibly interchange between crystalline, amorphous and liq-

uid phases. For this reason, they are also called phase-change materials.

Additionally, chalcogenide thermal, electrical and optical properties vary

pronouncedly with the atomic arrangement leading to a number of differ-

ent applications in different fields.

From a thermal standpoint, it takes an energy of ∼ kJ to melt 1 kg of a

phase change material, that means their high heat fusion allows them to ab-

sorb a huge amount of energy in a small volume at one phase and release

it in another phase. As a result, they provide remarkable benefits through

thermal-energy storage for heating and cooling in residential and commercial

buildings [3]. This job is made easier by phase-change-material high ther-

mal conductivity which keeps it small the temperature gradient required for
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2 Preface

charging the storage material. The applications stretch from air conditioning

to refrigerator through solar thermal cell. Moreover, the materials ability to

keep the temperature close to constant over the phase change is useful for

making special clothings that keep human body at a uniform temperature.

From an optical angle, chalcogenides exhibit not only a high refractive in-

dex but also a pronounced difference between crystalline’s and amorphous’s.

This feature along with a low phonon energy made them an ideal material

for optical storage devices (CD, DVD ...) and for infrared optical fibers as

they also have the ability to transmit across the full range of the infrared

region of the electromagnetic spectrum [4].

Electrically, in the early 1900’s Alan Tower Waterman of Yale University

investigating the conductivity of molybdenide (MoS2) observes a large neg-

ative coefficient of resistance varying with temperature and a breakdown

characteristic resulting from heating the device through an electric current

[5]. This experiment led him to three conclusions, which are an increase

in conductivity even beyond the breakdown voltage, the potential existence

of the molybdenite chalcogenide in a high-resistance and a low-resistance

structure, finally the structure transition generatable by heat, electric field

or light. Back then, these conclusions didn’t receive any scientific and tech-

nological attention.

In 1939, while the discovery of phase-change materials for information stor-

age applications was falling into oblivion, the first electronic computer called

ABC was built by John Vincent Atasoff and Clifford Berry based on the

Universal Computing Machine principles laid down by Alan Turing three

years earlier. Whereas the electronic part worked pretty well, the instruc-

tions and data storage task was not always well carried out by mechanical

memory card-readers. Not even the magnetic core memory [6] introduced

few years later was able to meet ABC requirements thus anticipating the

need of solid state memories. John Bardeen’s invention of the transistor

(1948) and Jack Kilby’s invention of the integrated circuit (1958) gave birth

to a much higher density integrated solid state non-volatile memory based on
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a floating gate Metal Oxide Semiconductor Field Effect Transistor or flash

transitor [7]. Non-volatile memory cells were invented based on the flash

transistor ability to fill or empty the floating gate with charges. However,

these devices required four terminals, high voltages and in general, they were

rather big in size. Therefore, since 1960, the interest of scientists and engi-

neers turned back on two terminal devices such as semiconductor oxides and

chalcogenides.

The observation of a significant resistivity difference between two As−Te−I
glass region of stable conductivity by A. David Pearson in 1962 [8] and the

detailed explanations of the operations of reversible switching in chalcogenide

memory devices by Ovshinsky [9] increased the interest towards chalcogenides

as devices for information storage. In the early 1970, the 256-bit phase change

memory array by R. G. Neale and D. L. Nelson and the 1024-bit chip by

Roy R. Shanks were never commercialized because of the enormous power

consumption during the programming operations compared to competitive

electrical programmable read-only memories in the same period.

Thanks to Gordon Moore who predicted the trend in the number of inte-

grated circuits in silicon chips in 1965, rapid progress was made to shrink

electronic devices on chip. The main chalcogenide flaw of excessive power

consumption became an advantage over other technologies. As a matter of

fact, the energy required to switch the phase change memory is directly pro-

portional to the volume of the material and while silicon-based technologies

show limitations as the device is shrunk, chalcogenide-based memories are in

their optimal operation condition. In August 2006, BEA Systems introduced

the first commercially available radiation-hardened phase change memory de-

vice. To present days, industry’s and accademia’s interest in phase change

memory virtually exploded. The average number of US phase change mem-

ory patents per year moved from ∼ 05 in the period 1966− 1997 to ∼ 100 in

the period 1998− 2008.

In the age of flash memories, Jesus tried to save me,
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but there was no space left on his memory card.
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Introduction

When shrunk below ∼ 0.20 nm, charged-storage-based memory oxides break

down because of the too high programming power, making flash memory

cell unable to keep up with the electronic device down-scalability predicted

by Gordon Moore’s law. As resistance-storage-based memories scale down 5

times more, cycle more than a million times more, consume about a million

times less power, are roughly 10 times faster either for the read or write op-

eration, phase change memories represent a valid alternative. What makes

chalcogenides ever so effective and efficient is the amorphous to crystalline

resistance ratio of ∼ 103 and their ability to quickly and interchangeably

switch from amorphous to crystalline solid structure by Joule heat.

When in its crystalline phase (’set’ or ’on’ or ’0’ state) the current increases

with the voltage up to a point where by Joule effect the atomic bonds break.

The melted device is now rapidly quenched to prevent atoms from re-ordering

thus keeping the device in an amorphous phase (’reset’ or ’off’ or ’1’ state).

When in the amorphous phase, a very low current is observed until the volt-

age reaches a threshold point where the increase in current becomes more

noticeable, goes back linearly and then goes up again showing a special S-

shape behavior. When the melting point is reached, the atoms re-arrange

themselves in the original crystalline ordered structure where the device is

quenched again. This operation mode describes the way the cell is pro-

grammed. The ’read mode’ instead is performed merely using a voltage value

below the threshold point such that the attached high or low resistance tells

the chalcogenide phase (amorphous or crystalline) and therefore the memory

7



8 Introduction

cell state (’on/set’ or ’off/reset’)[19].

Since Ovshinsky first relevant contribution to understanding chalcogenide

electrical features in the early 1960’s, phase-change materials for information

storage have been through several structural, electronic, optical and trans-

port investigations. Crystalline cubic and hexagonal structures were mea-

sured [10] and calculated [11]. Different amorphous structures were proposed

based upon molecular dynamic simulations [13] and EXAFS experiments [12].

S. Yamaka [14] calculated the hexagonal electronic structure through ab ini-

tio method implemented in castep [14]. Optical constants were measured for

crystalline and amorphous phases [2]. D. Ielmini experimentally evidenced

the trap-like amorphous conduction mechanism [15] and proposed a simula-

tive transport model for the snap-back behavior [16]. Most importanly, very

recently a Monte-Carlo model born out the trap assisted conduction mecha-

nism highlighting the very strong trap density-dependence of the amorphous

Ge2Sb2Te5 I/V curve [17].

The present document furtherly improves the understanding of Ge2Sb2Te5

chalcogenide by presenting its electronic, vibrational and optical properties

for both crystalline phases. The basic ingredients for the vibrational and op-

tical properties are the electronic ground and excited states. It is so for the

vibrational properties because the phonon frequencies depend on the elec-

tronic ground state and it is so for optical properties for the optical response

of the system translates into a certain number of electron transitions within

and between valence and conduction states. For this reason, chapter 1 focuses

on the electronic state calculation by highlighting the paramount principles

of the theory of the electron density functional, by showing how the density

functional theory combined with norm-conserving pseudo-potentials along

with the expansion of atomic orbitals in plane waves is implemented within

the code Quantum Espresso [27] and by presenting the electronic band dia-

gram and density of states for the hexagonal and face-centered cubic phases.

In chapter 2, the pillards of the density functional perturbation theory are

presented as a better alternative to the Frozen-Phonon method, then the
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computational aspects of the calculation will precede the phonon dispersion

and spectrum discussed for both crystalline phases. Chapter 3 goes along

the same lines first addressing the equations behind the experimental and

calculated optical constants. In this instance, the real part εr(ω) of tranverse

dielectric function ε(ω) is derived from the band structure using the Drude-

Lorentz espression including Drude-type contribution. The imaginary part

εi(ω) is derived from εr(ω) through the Kramers-Kronig transformation. The

Maxwell model helped link the εr(ω) and εi(ω) to the refractive index n(ω)

and the extinctive coefficient k(ω) as well as the absorption coefficient. The

reflection R(ω) and transmission coefficients T (ω) are analytically derived

from εi(ω), n(ω) and k(ω) using the Fresnel equations. The computational

aspect of the calculations are presented as well as the discussion of the re-

sults. For all chapters, the formalisms, the proofs of theorems and further

readings are dealt with in the appendix.
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Chapter 1

Electronic Properties

1.1 Density Functional Theory in a Nutshell

“If you don’t like the answer, change the question”

Chalcogenides as well as any other speck of solid matter are quantum-mechanically

pictured as a set of electrons and nuclei enclosed in a constant volume in

space. It is then assumed that each particle moves in the field generated

by all the other particles. In a quantum-mechanical language, this means

that each particle feels a Hamiltonian that includes the all-electron (T̂e) and

all-nucleus (T̂n) kinetic contribution, all interactions between particles of the

same type (V̂ee for electrons and V̂nn for nuclei) and particles of different

type (V̂en). The quantum procedure for determining electronic states goes

through the following tasks:

Task 1 The choice of the Hamiltonian

Ĥ = T̂e + T̂n + V̂ee + V̂nn + V̂en (1.1)

Task 2 The choice of the solving method for the Shrödinger equation

Ĥψ({ri}, {Rj}) = Eψ({ri}, {Rj}) (1.2)

where i runs over the number of electrons and j the number of nuclei.

11



12 Density Fucntional Theory in a Nutshell

In late 1930, Douglas Hartree and Vladimir Fock came up with a method

for determining the electronic states. Task 1 was carried out making the

following assumptions:

• Because an electron is roughly 1838 times lighter than the lightest nu-

cleus, the electronic and nuclear motions can be splitted. Mathemat-

ically, this means that the Hamiltonian in equation 1.1 narrows down

to:

Ĥ = Ĥe + Ĥn (1.3)

where Ĥe = T̂e + V̂ee + V̂nn + V̂en and Ĥn = T̂n + V̂e, V̂e being the

ground state energy of a system of interacting electrons moving in the

field of fixed nuclei, whose Hamiltonian is Ĥe. The straightforward

consequence of 1.3 is

ψ(r,R) = ψe(r)ψn(R) (1.4)

leading to two Shrödinger equations, equation 1.5 for the electronic

states and equation 1.6 for the nuclear states even though for the pur-

pose of lattice dynamics addressed in chapter 2, nuclei are treated as

classical particles because of their heavy mass.

Ĥeψe({ri}) = Eeψe({ri}) (1.5)

Ĥnψn({Rj}) = Enψn({Rj}) (1.6)

This set of assumptions was first made by Max Born and Robert Op-

penheimer in 1927 [18].

• The all-electron Hamiltonian Ĥe sums up the one-electron Hamilto-

nians ĥi acting on single electrons thus the factorisation in equation

1.7.

Ĥe =
Ne∑
i

ĥi (1.7)

As far as Task 2 is concerned,
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• The single-electron electronic states are calculated solving the Hartree-

Fock equations ĥiϕi = εiϕi where the single-electron Hamiltonians in-

clude the kinetic term T̂e, the interaction with the nucleus V̂en and the

the coulomb and exchange energy V̂c−x that takes in the effect of all

other electrons on the i-th electron.

• To make sure that electrons are anti-symmetric particles (fermions), Ψ

is computed combining ϕi through the Slater determinant

Ψi = 1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(1) ϕ1(2) . . ϕ1(n)

ϕ2(1) ϕ2(2) . . ϕ2(n)

. . . . .

. . . . .

ϕn(1) ϕn(2) . . ϕn(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣
Although the Hartree-Fock approach to the quest of the electronic states

makes theoretically sense, its implementation meets some limitations as the

system gets bigger. As a matter of fact, the Hamiltonian Ĥe is chosen as a

functional of the wavefunction Ψ, consequently, there are as many Hartree-

Fock equations as electrons in the system, which leads to a problem of 3Ne

degrees of freedom. On top of that, the strong dependence on the set of

functions which approximates the initial atomic orbital in the interactive

solution of the Hartree-Fock equations makes them computationally almost

unworkable for large systems.

In 1927, Thomas Llelwellyn [20] and Enrico Fermi [21] theoretically found out

that in an ideal case of non interacting electrons V̂ee ∼ 0, the electron kinetic

energy can be viewed as a functional of the charge density T̂e[n(r)] rather

than the wavefunction as in the Hartree-Fock perspective T̂e[Ψ(r)]. It then

turned out that the Hamiltonian too, can be expressed as functional of the

charge density Ĥ[n(r)] and as a result, the total energy. The observations

of the spectroscopist E. B. Wilson for which the electron density n(r) =

N
∫
|Ψ(r,R)|2dr uniquely determines the positions and charges of the nuclei

and thus trivially determines the Hamiltonian, unquestionably backed down

Thomas and Fermi’s theoretical intuition. The density functional theory was
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ready to be translated into a mathematical language.

Walter Kohn along with Pierre Hohenberg proved that the ground state

charge density n0(r) is sufficient to determine all properties of the system.

This mind-blowing and startling forethought is summed up in the following

theorems of Hohenberg and Kohn whose proves are dealt with in appendix

A.1:

Theorem I For any system of interacting particles in an external potential V̂n, the

external potential is determined uniquely, except for a constant, by the

ground state particle charge density n0(r).

Corollary I Since the Hamiltonian is thus fully determined, except for a con-

stant shift of the energy, it follows that the many-body wavefunc-

tions for all states (ground and excited) are determined. There-

fore, all properties of the system are completely determined given

only the ground state density n0(r).

Theorem II A universal functional for the energy E[n] in terms of the density n(r)

can be defined, valid for any external potential V̂n. For any particular

external potential V̂n(r), the exact ground state energy of the system is

the global minimum value of this functional, and the density n(r) that

minimizes the functional is the exact ground state density n0(r)

Corollary II The functional energy E[n] alone is sufficient to determine the

exact ground state energy and density. In general, excited states

of the electrons must be determined by other means. Neverthe-

less, the thermal equilibrium properties such as specific heat are

determined directly by the free-energy functional of the density.

In plain words, Hohenberg-Kohn theorems are a circle that begins with n0(r)

which determines Ĥ[n0(r)], which in turn determines the states Ψ(r) that

leads to the ground state Ψ0(r) through minimization of E[n] and finally

Ψ0(r) completes the circle coming back to n0(r). This simple change in

perspective from Ĥ[Ψ(r)] (the Hartree-Fock approach) to H[n(r)] translates
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into a huge computational shift from a problem of 3Ne degrees of freedom

to a just 3 degrees of freedom. Even though the idea that all properties of a

system are actually depending only on the ground state charge density n0(r)

was disarmingly simple and attractive, Hohenberg and Kohn theorems didn’t

provide any practical method for the determination of n0(r). Whereas the

functional form of the external potential V̂nn is known, the greatest challenge

lied in the exact functional form of T̂e and V̂ee for the interacting many-body

system.

In 1965, Walter Kohn and Lu Sham put forward that the interacting system

where the functional form for T̂e and V̂ee are unknown and an auxiliary non-

interacting system where T̂e is given and V̂ee sufficiently exact, share the

same ground state charge density n0(r). V̂ee has to be broken down into a

classical Coulomb interaction energy called Hartree energy V̂H which form is

given, and an empirical exchange and correlation energy V̂x−c that accounts

for all quantum effects resulting from electron-electron interaction (electron

hole interaction, exchange interaction, correlation interaction ...).

To sum it up, the density functional approach to the determination of the

electronic states (both ground and excited) performs Task 1 of the quantum

procedure

• Assuming the Born-Oppenheimer approximation,

• Assuming that the ground state charge density n0(r) is enough to de-

termine Ĥ[nint0 (r)] (Hohenberg-Kohn Theorems),

• Assuming the Kohn and Sham ansatz, i.e,

H[nint0 (r)] = H[nn−int0 (r)]

= T̂ n−inte [n] + V̂nn + V̂en + V̂H + V̂x−c (1.8)

where T̂ n−inte [n] is the electron kinetic energy for the non-interacting

system, V̂nn + V̂en is the external potential due to nucleus-nucleus in-

teractions and electron-nucleus interaction and finally V̂H + V̂x−c is the
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electron-electron energy including the classical electron-electron repul-

sion and all the quantum effect associated with it.

Task 2 is carried out,

• Solving the Kohn-Sham variational equations (see appendix A.2 for the

derivation of the Kohn-Sham equations)

[T̂ n−inte + V̂nn + V̂en + V̂H + V̂x−c]Ψi(r) = εiΨi(r)

n(r) = 2
Ne∑
i

|Ψi(r)|2. (1.9)

From a pragmatic vantage point, the theoretical nutshell of the density-

functional theory is the Hohenberg-Kohn theorems and its computational

nutshell is the Kohn-Sham variational equations. For this reason, the next

chapter focuses on how to feed equations 1.9 into a computer to get the

Ge2Sb2Te5 electronic states for both crystalline phases.

1.2 Density Functional Theory in a Computer

“To err is human, but to really foul things up requires a computer”

In this chapter, we focus on how to make the theory of the density func-

tional the most practical for the electronic state calculations. There are two

possible ways to find the electronic states assuming fixed atomic positions.

The first is to solve self-consistently the Kohn-Sham equations 1.9 by diago-

nalizing the Hamiltonian matrix and iterating on the charge density (or the

potential) until self-consistency is achieved. The second is to directly min-

imize the energy functional as a function of the coefficients of Kohn-Sham

orbitals in the plane waves (or other) basis set, under the constraint of or-

thonormality for Kohn-Sham orbitals. The basic ingredients are in both cases

the same. The first approach is used here. Hence, the reason behind what

follows is three-fold. Underline the conceptual assumptions as well as the

numerical approximations to the Kohn-Sham equations, lay out the steps of
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the calculations which are structural optimisation, self and non-self consis-

tent calculations and finally discuss the pros and cons of the approximations

mainly showing how and why they negatively impact the accuracy of the

band gap.

1.2.1 Conceptual and Numerical Approximations

The first equation of 1.9 cannot be fully solved without introducing some

assumptions on each term. Here they are,

• The kinetic term for the auxiliary non-interacting system is chosen to

be non-relativistic and spinless

T̂ n−inte = − ~
2m
∇2 (1.10)

• Because the core electrons are electrostatically bound to the nuclei,

they too, as well as the nuclei do not contribute significantly to the

electronic properties. Thence, each atom can be safely replaced by a

pseudo-atom that incorporates the nucleus and its core electrons into

a pseudo-nucleus and let outer electrons be exclusively responsible for

the electronic properties. The pseudo-system made up of pseudo-atoms

has an external potential called pseudopotential

V̂ ps
n ←− V̂n + core electrons (1.11)

that substitutes the second and third terms of equation 1.9 (see ap-

pendix A.3 for the proof of the validity of pseudo-potential approxima-

tion). To make sure that the pseudo-system doesn’t change relevantly

the electronic properties, the pseudopotential V̂ ps
n is built such that

all-electron wavefunctions and pseudo-wavefunctions have the same en-

ergy, they match beyond a core radius and the resulting charge density

has to coincide within the same core radius. Such a pseudopotential is

named norm-conserving pseudopotential.

• The fourth term in 1.9 is the Hartree potential given by equation A.21.
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• The fifth term of 1.9 is the exchange and correlation potential defined

in equation A.22 where the dependence on the exchange and correlation

energy is self-evident. In their original paper (1965), Kohn and Sham

suggested the assumption that each small volume of the system (so

small that the charge density can be thought to be constant therein)

contributes the same exchange-correlation energy as an equal volume of

a homogeneous electron gas at the same density. With this assumption,

the exchange-correlation energy functional and potential reads

Ex−c =

∫
εx−c(n(r))n(r)dr (1.12)

which through A.22 leads to

V̂x−c = εx−c(n(r)) + n(r)
∂εx−c(n(r))

∂n(r))
(1.13)

where εx−c(n(r)) is the exchange-correlation energy per particle in an

homogeneous electron gas at density n(r). This approximation is known

as the local density approximation (LDA). The approximate form of

εx−c(n(r)) is calculated using Monte-Carlo simulations for the homoge-

neous electron gas.

• The one-electron wavefunction in equation 1.9 is approximated using a

plane wave basis set

Ψi(r) =
1

Ω
ck,Ge

i(k+G)r (1.14)

where Ω is the crystal volume, k is a Bloch vector in the Brillouin Zone

and G is a reciprocal lattice vector. Geometrically, the plane waves in

1.14 can be thought as a grid in the k-space. Ideally, that expansion

is infinite, but computationally, it has to be truncated because the

contribution from higher Fourier components (large |k + G|) is small.

This takes place by setting the cut off energy Ecut such that

~2|k + G|2

2m
≤ Ecut (1.15)
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Plugging 1.14 into the first equation in 1.9 we get∑
G′

Hk+G,k+G′ci,k+G′ = εici,k+G (1.16)

where the matrix elements are

Hk+G,k+G′ =
1

2
|k + G|2 +V ps

n (k + G,k + G
′
) +VH(G−G

′
) +Vx−c(G−G

′
)

(1.17)

the pseudo-nuclei potential is defined as

V ps
n (G) =

∑
α

Sα(G)vα(G) (1.18)

with

Sα(G) =
∑
I

eiGRI . (1.19)

Solving equation 1.16 goes through the diagonalization of the matrix whose

elements are given in 1.17. Such an operation is the most computationally

demanding process of the entire electronic properties calculation. In fact,

NPW > 100 × number of atoms in the unit cell being the number of plane

waves, it takes about N2
PW elements to be stored and the computational

time to diagonalize a NPW ×NPW matrix grows as N3
PW .

As far as the charge density is concerned, one has to sum over an infinite

number of k-points, thus the second equation of 1.9 turns into

n(r) =
∑
k

∑
i

|Ψi(r)|2 (1.20)

where the index i runs over occupied bands. Assuming periodic (Born-Von

Karman) boundary conditions

Ψi(r + L1R1) = Ψi(r + L2R2) = Ψi(r + L3R3) = Ψi(r) (1.21)

with L = L1L2L3 being the number of allowed k-points as well as the number

of unit cells. In the ”thermodynamic” limit of an infinite crystal, L −→ ∞,

the sum over k becomes an integral over the Brillouin Zone. Experience shows

that this integral can be approximated by a discrete sum over an affordable
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number of k-points, at least in insulators and semiconductors. When present,

symmetry can be used to further reduce the number of calculations to be

performed. Only one k-point is left to represent each star (the set of k-points

that are equivalent by symmetry) with a weight ωi that is proportional to

the number of k-points in the star. The infinite sum over the Brillouin Zone

is replaced by a discrete sum over a set of points ki and weights ωi:

1

L

∑
k

fk(r) −→
∑
i

ωifki(r). (1.22)

The resulting sum is then symmetrized to get the charge density.

The above approximations and comments being made, we are ready to ad-

dress the actual electronic property calculations through the solution of 1.16

coupled with 1.20 where the unknowns are the coefficients of the expansion

in plane waves ck,G and the eigenvalues εi.

1.2.2 Computational Steps

At this point, it is instrumental to recall that the density functional theory

is a ground state theory which assumes the Born-Oppenheimer approxima-

tion. Within such an approximation, the separabillity of the electron-nucleus

Hamiltonian 1.3 into an electron Hamiltonian and a nuclei Hamiltonian with

all that comes with it (see equation 1.4), rests on the fact that the valence

electrons are supposed to move in a field of fixed pseudo-nuclei. This seem-

ingly harmless statement contains all the steps of our calculation. It stands to

reason that the foremost requirement to be met is to keep the pseudo-nuclei

fixed. The procedure that meets this condition is called structural relaxation

and is the first step toward the electronic states, then self-consistent solution

of the Kohn-Sham equations leads to the electronic ground state wheras the

excited states are obtained solving the same equations non self-consistently.

Structural Relaxation

As stated earlier, structural optimisation involves keeping the pseudo-nuclei

fixed, but the resulting structure wouldn’t be in its ground state if the lattice
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parameters didn’t match the ground state energy. Therefore, it is founda-

tional to see the ground state energy as a functional of both cell parameters

and atomic positions. Since pseudo-nuclei are way heavier than valence elec-

trons, they can be treated as classical particles, therefore solving 1.6 wouldn’t

be appropriate. It is safer to rely on the second law of dynamics, hence to

keep the pseudo-nuclei fixed means having the force Fps−n acting on them to

abide by

Fps−n = −∇E(Bβ,Rβα) = 0⇒ ∂E(Bβ,Rβα)

∂Bβ∂Rβα

= 0 (1.23)

and
∂2E(Bβ,Rβα)

∂Bβ
2∂Rβα

2 > 0 (1.24)

where Bβ ≡ ai, bj, ck the physical box for the lattice cell whose sides are ai,

bj, ck whereof any combination of subscript i, j and k leads to a different

box with suscript β. Rβα is the pseudo-nucleus positions within the box Bβ.

E(Bβ,Rβα) is the valence electron ground state energy. Structural optimisa-

tion is thus referred to as the process whereby we choose the particular box

B0 and the nucleus positions R00 within B0 that minimizes the ground state

energy E(Bβ,Rβα). This process breaks into two steps

Task A For each box Bβ with β ≡ i, j, k running from 1 to n, every set of

pseudo-nucleus positions Rβα with α spanning from 1 to m leads to

m different energy Eβα. The minimum of all m Eβα is the minimum

energy for the box α, Eβ0. The purpose of this step is to find Rβ0 out

of all the m Rβα that leads to Eβ0.

Task B Out of all the n boxes Bβ with Eβ0, the box with the minimum Eβ0

is B0, the box with the minimum energy E00. The combination of box

B0 and the nucleus positions R00 is the geometry that minimizes the

energy. What’s more, the combination of box B0 and the nucleus posi-

tions R00 is the structure that meets the Born-Oppenheimer approxi-

mation. Finally, that combination of box B0 and the nucleus positions

R00 is the relaxed structure that keeps pseudo-nuclei still while valence

electrons gravitate around them.
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Task A and B can be computed either manually or using a variable cell

molecular dynamics approach [22]. In either way, the structural relaxation

procedure is the most computationally demanding process in electronic prop-

erty calculations.

Finding the Ground States

The lattice parameters along with the fixed pseudo-nucleus positions result-

ing from the structural optimisation being known, equations 1.16 and 1.20

can be solved to find ground state charge density and therefore the ground

state eigenfunctions and eigenvalues. According to the Hohenger-Kohn the-

orems, a starting charge nin(r) uniquely determines the Hamiltonian which

through 1.16 determines the wavefunctions which in turn determine through

1.20 a new charge density nout(r). The consecutive application of equations

1.16 and 1.20 can be combined into the functional A such that

nout(r) = A[nin(r)]. (1.25)

We know that the ground state charge density meets the requirement

n(r) = A[n(r)]. (1.26)

The most intuitive and straightforward approach is to use nout(r) as the new

input charge density

n
(i+1)
in = n

(i)
out (1.27)

where the superscripts are the iteration numbers. Unfortunately, there is no

guarantee that this will work, and experience shows that it usually does not.

The reason is that the algorithm will work only if the error on the out-density

is smaller than the corresponding error on the in-density. An in-density error

δnin(r), leads at self-consistency to an out-density error along the lines of

δnout(r) '
∫

δA

δn(r)
δnin(r)dr ≡ Jδnin (1.28)

which may or may not be smaller than the in-density error, depending on

the size of the largest eigenvalue, eJ , of the operator J, which is related to
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the dielectric response of the system. Usually, eJ > 1 and the iteration does

not converge.

A simple algorithm that generally works, although sometimes slowly, is the

simple mixing. A new input charge density is generated by mixing the in and

out charge densities

n
(i+1)
in = (1− α)n

(i)
in + αn

(i)
out (1.29)

The value of α must be chosen empirically in order to speed the convergence

up. The error with respect to self-consistency becomes

δnout = [(1− α) + αJ]δnin (1.30)

and it can be easily proven that the iteration converges if α < | 1
eJ
|. Doing

so, the ground state charge density provides the ground state wavefunctions

and energies.

Finding the Excited States

As a consequence of the Hohenberg-Kohn theorems, any charge density corre-

sponding to any other minima/maxima but the absolute minima of the energy

functional, leads to an excited state of the system. As a result, contrarily

to the self-consistent procedure used for determining the ground states, the

excited states can be easily computed solving equations 1.16 and 1.20 non

self-consistently.

1.2.3 Successes and Failures of DFT

The calculation of electronic properties through the density functional theory

has strengths and weaknesses depending on the system under investigation.

Its attractiveness lies in cutting by Ne the degrees of freedom of the equations

behind the calculations reducing very significantly the computational load

attached to them. On top of that, the expansion of wavefunctions in a plane

wave basis set goes hand in hand with the periodicity of the crystal thus

furtherly decreases the computational load than if localized basis set was
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used.

Conversely, this comfortable computability comes with some approximations

which cannot help but curb the accuracy the results. The most impacting

approximation on the electronic properties is the local density approximation

which overestimates (∼ 20% and more) cohesive energies and bond strengths

in molecules and solids. For the purpose of our calculations, the most rilevant

problem associated with it is the miscalculation of the band gap addressed

in the following lines.

Local Density Approximation and the Band Gap

If one electron in the state v is removed from the system, EN − EN−1 = εv,

where EN is the energy of the system with N electrons. Likewise, an addition

of an electron in the state c leads to EN+1−EN = εc. The difference between

the largest addition energy and the smallest removal energy defines the energy

band gap

Eg = εc − εv = EN+1 − EN−1 − 2EN . (1.31)

In solids, this is the onset of the continuum of optical transitions, if the gap

is direct (if the lowest empty state and the highest filled state have the same

k vector). From atomic and molecular physics, the highest occupied and

lowest unoccupied states are respectively called HOMO (Highest Occupied

Molecular Orbital) and LUMO (Lowest Unoccupied MO), while addition and

removal energy are respectively referred to as electron affinity, A, and ioniza-

tion potential, I. Due to the discontinuity of exchange-correlation potential

(see the discussion in appendix A.4), it is safe to say, Eg = I −A which in

turn can be written as

Eg = −µ(N − δ) + µ(N − δ)

=
δE

δn(r)

∣∣∣∣∣
N+δ

− δE

δn(r)

∣∣∣∣∣
N−δ

(1.32)

with δ −→ 0 .

Substituting to E[n(r)] the explicit Kohn-Sham form in A.14. The Hartree
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and external potential terms of the functional will yield no discontinuity and

no contribution to Eg. Only the kinetic and exchange-correlation terms may

have a discontinuity and contribute to Eg.

For a non interacting system, only the kinetic term contributes, and the gap

is exactly given by the auxiliary non interacting system gap:

En−int
g =

δTn−int
δn(r)

∣∣∣∣∣
N+δ

− δTn−int
δn(r)

∣∣∣∣∣
N−δ

= εLUMO − εHOMO (1.33)

It is remarked that even the kinetic energy of non interacting electrons, con-

sidered as a functional of the density, must have a discontinuous derivative

when crossing an integer number of electrons. This is one reason why it is

so difficult to produce explicit functionals of the charge density for Tn−int

that are able to yield good results: no simple functional form will yield the

discontinuity, but this is needed in order to get the correct energy spectrum.

For the interacting system:

Eg =
δTn−int
δn(r)

∣∣∣∣∣
N+δ

− δTn−int
δn(r)

∣∣∣∣∣
N−δ

+
δEx−c
δn(r)

∣∣∣∣∣
N+δ

− δEx−c
δn(r)

∣∣∣∣∣
N−δ

= En−int
g + Ex−c

g (1.34)

Note that the kinetic term is evaluated at the same charge density as for

the non interacting system, so it coincides with the auxiliary non interacting

system gap.

By virtue of 1.34 the gaps calculated through the density functional theory

are not by construction equal to the true gap because they are missing a

term (Ex−c
g ) coming from the discontinuity of derivatives of the exchange-

correlation functional. This is absent by construction from any current ap-

proximated functional (be it LDA or gradient-corrected or more complex).

There is some evidence that this missing term is responsible for a large part

of the band gap problem, at least in common semiconductors.
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Figure 1.1: Atomic arrangement of the hexagonal (left) and of the fcc (right) GST, showing

the stacking sequence along the crystalline planes shown.

1.3 Results and Discussion

In this section, we present the parameters used in the electronic property

calculations as well as the band structure and the density of states for both

chalcogenide phases.

The starting lattice parameters and atomic positions for the structure relax-

ation are taken from experiments [10]. The hexagonal experimental structure

is made up of 9 atoms in the hexagonal unit cell arranged in the stacking

sequence Te − Ge − Te − Sb − Te − Te − Sb − Te − Ge. The FCC ex-

perimental structure results from hexagonal’s shifting Te − Sb − Te − Ge

sub-unit along the [210] direction thus creating a vacancy site leading to

unit cell of 27 atoms and 3 vacancies arranged in the stacking sequence

Te−Ge− Te− Sb− Te− v− Te− Sb− Te−Ge repeated three times (see

figure 1.1). The whole relaxation process for the hexagonal structure took

around 2 days on a 8-processor Linux cluster. Due to its intrinsic greater

structural complexity, the computational load of the FCC cell proved to be

4 times higher. The structure optimisation resulted in a cell parameter de-
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viation from the experimental data of ∆a = 0.08%, ∆c = 3.02% for the

hexagonal phase and ∆a = −1.19%, ∆c = 0.11% for the FCC cubic phase.

The self (ground states) and non self-consistent (the excited states) calcu-

lations were carried out using the Perdew and Zunger exchange-correlation

energy [27] along with the non-conserving ionic Bachelet-Hamann-Schluter

pseudopotentials [27] (as for the electron-ion interaction), a cut off energy of

80 Ryd and the following valence configurations 4s24p2, 5s25p3, and 5s25p4

for Ge, Sb, and Te, respectively. The mixing parameter for the charge den-

sity convergence in equation 1.30 is set to be 0.3 for both phases. By the

same token, the convergence threshold on the total energy was set to be 10−7

for both phases.
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Figure 1.2: Hexagonal band diagram along the high symmetry lines (left) and density of

states (right).

The hexagonal electronic structure along the high symmetry lines in figure

1.2 shows no band gap wheras the FCC band structure along the same high

symmetry lines in figure 1.3 exhibits a band gap of about 0.1 eV. Both values

of the band gap are not in agreement with the experimental ones (0.5 eV) for
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Figure 1.3: FCC band diagram along the high symmetry lines.

the reasons laid out in the previous section. It should be pointed out that the

band gap increase from hexagonal to FCC is mainly due to the increase of

defects in the structure therefore we would expect the amorphous Ge2Sb2Te5

band gap to be even higher because of a larger number of vacancy sites. This

is supported also by the amorphous experimental band gap ∼ 0.7 eV larger

than the crystalline one (∼ 0.5 eV). What’s more, a direct band gap observed

in figure 1.2 and an indirect band gad observed in figure 1.3 are confirmed by

optical experiments [2]. We will elaborate on that in the section dedicated to

optical properties. The FCC density of states compared to the experimental

one [23] in figure 1.4 shows a good matching as it relates to the valence band

states.
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Chapter 2

Vibrational Properties

In this section, the phonon calculation is addressed. The equation behind the

nuclear motion is derived and shows a dependence on the second derivative of

the total energy. Unlike the frozen phonon approach which diretly computes

the second derivative of the total energy as a function of the nucleus posi-

tions, the perturbative approach computes the same quantity viewing it as a

functional of the ground state electron density and its linear response. The

latter is calculated within the density-functional perturbation theory whose

principles are shown in the first section. DFPT’s and phonon’s implementa-

tion are shown in the second section.

2.1 Phonons and the Density Functional Per-

turbation Theory in a Nutshell

2.1.1 Phonons

The Shrödinger equation for nuclei in 1.6 would hold if their motion were as

fast as electrons’. Since nuclei are way heavier, their motion is way slower. It

is thus safe to treat them as classical particles. Whereas the net force acting

on each nucleus has to vanish to keep it fixed at its equilibrium positions

31
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(1.23), the following condition is required to calculate their motion

Mn
∂2Rn

∂t2
= Fn(R) = − ∂

∂Rn

E(Rn) (2.1)

where E(Rn) is the ground state energy Rn, Mn is the nucleus mass, and

Rn(t) is the motion of each nuclear position. Within the harmonic approx-

imation [24] the nuclear motion is thought of as a vibrational mode at fre-

quency ω and described by displacements

un(t) = Rn(t)−Req
n ' une

iωt (2.2)

where Req
n is the nuclei position such that Fn(Req

n ) = 0.

Expanding E(Rn) in power of displacements we get

E = E0 + Cα
ni
uni + Cαβ

ninj
uniunj + ... (2.3)

where the coefficients of the expansion are called interatomic force constants

and defined as

Cα
ni

=
∂E(Rn)

∂Rα
ni

Cαβ
ninj

=
∂2E(Rn)

∂Rα
ni
∂Rβ

nj

... (2.4)

Knowing that Cα
ni

= 0 because of 1.23 and leaving out all the terms of the

expansion from the third, 2.3 and 2.2 into 2.1 leads to

−ω2Mniu
α
ni

= −
∑
njβ

Cαβ
ninj

uβnj (2.5)

for each i-th nucleus. The full solution for all vibrational states is a set of

independent oscillators with each vibrational frequency ω, determined by the

secular equation,

det

∣∣∣∣∣ 1√
MniMnj

Cαβ
ninj

uβnj − ω
2

∣∣∣∣∣ = 0 (2.6)
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where the dependence upon masses Mni , Mnj has been cast in symmetric

form. The problem in solving 2.6 comes down to how to calculate

Cninj =
∂2E(Rn)

∂Rni∂Rnj

(2.7)

where the super-scripts α and β were dropped down for sake of simplicity.

While the frozen phonon approach calculates 2.7 computing the total energy

as a function of R, we use the DFT perspective that views the total energy

as a functional of the charge density n(r). The Hellmann-Feynman theorem

[28] is used. It states that

Fni = −
∫
n(r)

∂Ven
∂Rni

dr− ∂Vnn
∂Rni

(2.8)

where

Ven = −
∑
ini

Znie
2

|ri −Rni |

Vnn =
e2

2

∑
ni 6=nj

ZniZnj
|Rni −Rnj |

(2.9)

are the electron-nucleus and the nucleus-nucleus potentials respectively. The

second derivative of appearing in 2.7 is then calculated making use of 2.8

leading to

∂2E(Rn)

∂Rni∂Rnj

=
∂Fni

∂Rnj

(2.10)

=

∫
∂n(r)

∂Rnj

∂Ven
∂Rni

dr +

∫
n(r)

∂2Ven(r)

∂Rni∂Rnj

dr +
∂2Vnn(r)

∂Rni∂Rnj

It is worth noting in equation 2.10 that the matrix of inter-atomic force

constants rests on the ground state electron charge density, n(r) and its

linear response to a distortion of the nuclear geometry ∂n(r)/∂Rnj . While

the former is calculated solving self-consistently equations 1.9, the latter is

calculated resorting to the theory of the density functional perturbation.
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2.1.2 Density Functional Perturbation Theory

In the following, the change of parameter from Rni to λ ≡ {λi} is made

to simplify the notation. According to the Hellmann-Feynman theorem, the

first and second derivatives of the ground-state energy can be written as

∂E

∂λi
=

∫
∂V

∂λj
n(r)dr (2.11)

∂2E

∂λi∂λj
=

∫
∂2Vn
∂λi∂λj

n(r)dr +

∫
∂n(r)

∂λi

∂Vn
∂λj

n(r)dr (2.12)

The electron-density response, ∂n(r)/∂λi, in 2.11 can be evaluated linearizing

the Kohn-Sham equations 1.9 with respect to wave-function, density, and

potential variations. The linearization of the charge density equation in 1.9

leads to:

∆n(r) = 4<
N
2∑

n=1

Ψn(r)∆Ψn(r) (2.13)

where the finite-difference operator ∆λ is defined as:

∆λF =
∑
i

∂F

∂λi
∆λi (2.14)

Since the external potential (both unperturbed and perturbed) is real, each

Kohn-Sham eigenfunction and its complex conjugate are degenerate. As a

consequence, the imaginary part of the sum in 2.13 vanishes, so that the

prescription to keep only the real part can be dropped.

The variation of the KS orbitals, ∆Ψn(n(r)), is obtained by standard first-

order perturbation theory [25]

(HSCF − εn)|∆Ψn〉 = −(∆VSCF −∆εn)|Ψn〉 (2.15)

With

HSCF = − ~2

2m

∂2

∂r2 + VSCF (r) (2.16)

being the unperturbed KS Hamiltonian and

∆VSCF (r) = ∆V (r) + e2
∫

∆n(r
′
)

|r− r′|
dr

′
+
dvx−c
dn

∣∣∣∣∣
n=n(r)

∆n(r) (2.17)
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the first-order correction to the self-consistent potential. δεn = 〈Ψn|∆VSCF |Ψn〉
is the first order variation of the Kohn-Sham eigenvalue, εn.

Equations 2.13, 2.17 and 2.15 form a set of self-consistent equations for the

perturbed system similar to the Kohn-Sham equations 1.9 in the unper-

turbed case. In 2.15, the self-consistency requirement manifests itself in the

dependence of the right-hand side upon the solution of the linear system. As

∆VSCF (r) is a linear functional of ∆n(r) which in turn depends linearly on

the ∆Ψ’s, the whole self-consistent calculation can be cast in terms of a gen-

eralized linear problem. It should be pointed out that though the right-hand

side of 2.15 for ∆Ψn depends through ∆n on the solution of all the similar

equations holding for the ∆Ψm, (m 6= n). Therefore, all the N equations,

2.15, are linearly coupled to each other, and the set of all the ∆Ψ is the

solution of a linear problem whose dimension is (NM/2×NM/2), M being

the size of the basis set used to describe the Ψ’s. Whether this big linear

system is better solved directly by iterative methods or by the self-consistent

solution of the smaller linear systems given by 2.15 is a matter of computa-

tional strategy.

The first-order correction to a given eigen-function of the Schrödinger equa-

tion, given by 2.15, is often expressed in terms of a sum over the spectrum

of the unperturbed Hamiltonian,

∆Ψn(r) =
∑
m6=n

Ψm(r)
〈Ψm|∆VSCF |Ψn〉

εn − εm
(2.18)

running over all the states of the system, occupied and empty, with the

exception of the state being considered, for which the energy denominator

would vanish. Using Equation 2.18, the electron charge-density response in

2.13 can be cast into the form:

∆n(r) = 4

N
2∑

n=1

∑
m 6=n

Ψ∗n(r)
〈Ψm|∆VSCF |Ψn〉

εn − εm
(2.19)

which shows that the contributions to the electronic density response com-

ing from products of occupied states cancel out, so that the m index can
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be thought as running onto conduction states only. This is tantamount to

say that the electron density distribution does not respond to a perturbation

which only acts onto the occupied-state manifold (or, more generally, to the

component of any perturbation which couples occupied states among each

other).

The explicit evaluation of ∆Ψ out of 2.18 would require the knowledge of the

whole spectrum of the Kohn-Sham Hamiltonian and extensive summations

over conduction bands. In Equation 2.15, instead, only the knowledge of the

occupied states of the system is needed to construct the right-hand side of

the equation, and efficient iterative algorithm can be used for the solution

of the linear system. Doing so, the computational cost of the determination

of the density response to a single perturbation is of the same order as that

needed for the calculation of the unperturbed ground-state density. The left-

hand side of Equation 2.15 is singular because the linear operator appearing

therein has a null eigenvalue. However, we saw above that the response of

the system to an external perturbation only depends on the component of

the perturbation which couples the occupied-state manifold with the empty-

state one. The projection onto the empty-state manifold of the first-order

correction to occupied orbitals can be obtained from equation 2.15 by replac-

ing its right-hand side with −Pc∆|Ψn〉, where Pc is the projector onto the

empty-state manifold, and by adding to the linear operator on its left-hand

side, HSCF −εn, a multiple of the projector onto the occupied state manifold,

Pv, so as to make it non-singular

(HSCF + αPv − εn)|∆Ψn〉 = −Pc∆VSCF |Ψn〉 (2.20)

Virtually, if the linear system is solved by the conjugate-gradient or any other

iterative method and the trial solution is chosen orthogonal to the occupied-

state manifold, orthogonality is maintained during iteration without having

to care about the extra Pv term on the left-hand side of equation 2.20.

In a very nutshell, the phonon calculation involves solving the secular equa-

tion 2.6 wherein the matrix of interatomic force constants is determined by

the ground state charge density and its linear response to a perturbation.
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while the ground state charge density is obtained using the scf procedure

which fondamentally lies in solving iteratively the Kohn-Sham equations 1.9,

the charge density linear response is calculated solving iteratively equations

2.17, 2.19 and 2.20. Hence, in the next section we will solve equations 2.6,

2.17, 2.19 and 2.20 for monochromatic perturbations in the case of crystalline

solids.

2.2 Phonons and the Density Functional Per-

turbation Theory in a Computer

2.2.1 Phonons

In equation 2.6, the nucleus positions in the interatomic force constant are

labelled by an index, ni, which indicates the unit cell to which a given atom

belongs, l, and the position of the atom within that unit cell, s: ni ≡ l, s.

The position of the ni-th atom is thus:

Rni ≡ Rl + Req
s + us(l), (2.21)

where Rl is the position of the l-th unit cell in the Bravais lattice, Req
s is the

equilibrium position of the s-th atom in the unit cell, and us(l) indicates the

deviation from equilibrium of the nuclear position. Because of translational

invariance, the matrix of inter-atomic force constants in 2.7, changes with l

and m only through the difference Rl −Rm:

Cαβ
st (l,m) ≡ ∂2E

∂uαs (l)∂uβt (m)
= Cαβ

st (Rl −Rm), (2.22)

where the greek super-scripts indicate Cartesian components. The Fourier

transform of Cαβ
st (R) with respect to R, C̃αβ

st (q), can be seen as the sec-

ond derivative of the total energy with respect to the amplitude of a lattice

distortion of definite wave-vector:

C̃αβ
st (q) ≡

∑
R

e−iqRCαβ
st (R) =

1

Nc

∂2E

∂u∗αs (q)∂uβt (q)
(2.23)
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where Nc is the number of unit cells in the crystal, and the vector us(q) is

defined by the distortion pattern:

Rni [us(q)] = Rl + Req
s + us(q)e−iqRl . (2.24)

Phonon frequencies, ω(q), are solutions of the secular equation:

det

∣∣∣∣∣ 1√
MsMt

C̃αβ
st (q)− ω2(q)

∣∣∣∣∣ = 0 (2.25)

Translational invariance can be alternatively stated in this context by saying

that a lattice distortion of wavevector q does not induce a force response

in the crystal at wave-vector q
′ 6= q. Because of this property, inter-atomic

force constants are most easily calculated in reciprocal space and, when they

are needed in direct space, they can be readily obtained by Fourier transform.

The reciprocal-space expression for the matrix of inter-atomic force con-

stants, in 2.7, is the sum of an electronic and of an nucleus contribution:

C̃αβ
st (q) = elC̃αβ

st (q) + nuC̃αβ
st (q), (2.26)

where

elC̃αβ
st (q) =

1

Nc

[∫
∂2Vn

∂u∗αs (q)∂uβt (q)
n(r)dr +

∫
∂n(r)

∂uαs (q)

∂Vn

∂uβt (q)
n(r)dr

]
,

(2.27)

and

Vn(q) =
∑
ls

vs(r−Rl −Req
s − us(l)), (2.28)

vs being the pseudo-nucleus potential for the s-th atomic species. All the

derivatives must be calculated for us(q) = 0. The pseudo-nucleus contribu-

tion comes from the ion-ion interaction energy (the last term of 2.7) and does

not depend on the electronic structure. Using 2.24 and 2.28, the derivatives

of the potential appearing in 2.27 read:

∂Vn
∂uαs (q)

= −
∑
l

∂vs(r−Rl −Req
s )

∂r
e−iqRl , (2.29)

while the corresponding derivative of the electron charge density distribution

will be addressed in the next section.
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2.2.2 Density Functional Perturbation Theory

One of the main points of DFPT is that within it, the responses to pertur-

bations of different wave-lengths are decoupled. This feature allows one to

calculate phonon frequencies at arbitrary wave-vectors q avoiding the use

of supercells and with a workload which is essentially independent of the

phonon wave-length. To see this in some detail, we first rewrite 2.20 by ex-

plicitly indicating the wave-vector k and band index v of the unperturbed

wave-function, Ψk
v , and by projecting both sides of the equation over the

manifold of states of wave-vector k + q. Translational invariance requires

that the projector onto the k + q manifold, P k+q, commutes with HSCF and

with the projectors onto the occupied- and empty-state manifolds, Pv and Pc.

By indicating with P k+qPv = P k+q
v and P k+qPc = P k+q

c the projectors onto

the occupied and empty states of wave-vector k + q, 2.20 can be rewritten

as:

(HSCF + αP k+q
v − εkv )|∆Ψk+q

v 〉 = −P k+q
c ∆VSCF |Ψk

v 〉, (2.30)

where |∆Ψk+q
v 〉 = P k+q|Ψk

v 〉. Decomposing the perturbing potential, ∆VSCF ,

into Fourier components,

∆VSCF (r) =
∑
q

∆vq
SCF e

iqr (2.31)

where ∆vq
SCF is a lattice-periodic function, 2.30 becomes(

Hk+q
SCF + α

∑
v′

|uk+q

v′ 〉〈uk+q

v′ | − εkv

)
|∆uk+q

v 〉

= −

[
1−

∑
v′

|uk+q

v′ 〉〈uk+q

v′ |

]
∆vq

SCF |u
k
v 〉 (2.32)

where v
′
runs over the occupied states at k+q, uk

v and ∆uk+q
v are the periodic

parts of the unperturbed wave-function and of the k + q Fourier component

of its first-order correction, respectively, and the coordinate representation

kernel of the operator Hk+q
SCF , hk+q

SCF (r, r
′
) = 〈r|Hk+q

SCF |r
′〉 is defined in terms of

the kernel of the SCF Hamiltonian, h0
SCF (r, r

′
) = 〈r|Hk+q

SCF |r
′〉, by the relation

hk+q
SCF (r, r

′
) = ei(k+q)rh0

SCF (r, r
′
)ei(k+q)r

′

. (2.33)
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2.32 shows that the time-consuming step of the self-consistent process, equa-

tion 2.20, can be carried on working on lattice-periodic functions only, and

the corresponding numerical workload is therefore independent of the wave-

length of the perturbation.

Let us now see how the other two steps of the selfconsistent process, 2.13 and

2.17, can be carried on in a similar way by treating each Fourier component

of the perturbing potential and of the charge-density response independently.

The Fourier components of any real function (such as ∆n and ∆v) with wave-

vectors q and−q are complex conjugate of each other: ∆n−q(r) = (∆nq(r))∗,

and likewise for the potential. Because of time-reversal symmetry, a similar

results applies to wave-functions: ∆uk+q
v (r) = (∆u−k−q

v (r))∗. Taking into ac-

count these relations, the Fourier component of the charge-density response

at wave-vector q are obtained from Equation 2.13

∆nq
v (r) = 4

∑
kv

uk∗
v (r)∆uk+q

v . (2.34)

equation 2.17 displays a linear relation between the self-consistent variation

of the potential and the variation of the electron charge-density distribution.

The Fourier component of the self-consistent potential response reads:

∆vq
SCF (r) = ∆vq(r) + e2

∫
∆nq

v (r
′
)

|r− r′ |
eiq(r−r

′
)dr

′
+
dvx−c(n)

dn

∣∣∣∣∣
n=n(r)

∆nq
v (r)

(2.35)

The sampling of the Brillouin Zone needed for the evaluation of 2.34 is sim-

ilar to that needed for the calculation of the unperturbed electron charge

density.

In conclusion, equations 2.32, 2.34, and 2.35 form a set of self-consistent

relations for the charge-density and wavefunction linear response to a per-

turbation of a wavevector, q, which can be solved in terms of lattice-periodic

functions only, and which is decoupled from all the other sets of similar equa-

tions holding for other Fourier components of same perturbation. The most

computationally demanding process for the whole phonon calcultation is the

evaluation of the interatomic force constants. As a matter of fact, the eval-
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uation of the dynamical matrices on a regular grid of wave-vectors in the

Brillouin Zone, whose spacing must be chosen of the order of the inverse of

the range of the matrix (labelled RIFC): ∆q ∼ 2π/RIFC . The number of

q-points in such a grid is of the order of R3
IFC . As the computational cost for

the calculation of each column of the dynamical matrix is of the order of N3
at

(and the number of such columns is 3Nat) the total cost for the dynamical

matrix calculation (and, hence, of complete phonon dispersions) using DFPT

is of the order of R3
IFC × 3N4

at. In the next section we present and discuss

the results.

2.3 Results and Discussion

The calculation of the ground state charge density was performed through

the self-consistent procedure with the same parameters as the band structure

calculation and a k-point grid 4 × 4 × 1 dense. The phonon calculation is

performed with a q-vector grid of 4 × 4 × 4 either for the hexagonal or the

FCC phase. The phonon calculation took around 2 weeks for the hexagonal

phase and a month for the FCC phase on a 8-processor Linux cluster. The

convergence threshold for the phonon calculation has been set to 10−12 for

the hexagonal phase and 10−14 for the FCC phase. Figure 2.1 shows the
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Figure 2.1: Phonon dispersion (left) and spectrum (right) for the hexagonal phase.
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calculated phonon spectrum and the corresponding phonon density of states

of the hexagonal phase. The phonon dispersion shows a set of 27 branches

that stretches from 0 to ∼ 165 cm−1. On the contrary, the FCC phonon
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Figure 2.2: Phonon dispersion for the FCC phase.

dispersion (see figure 2.2) and density of phonon states (figure 2.3) show a

set of 81 branches spanning from ∼ −160 to ∼ 210 cm−1. The negative

frequencies for the FCC phase signal the instabily of the structure. Non-

surprisingly, the FCC structure is referred to as meta-stable to make it easier

for the transition to the amorphous phase to take place.
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Figure 2.3: Phonon spectrum for the FCC phase.



Chapter 3

Optical Properties

Largely, a material optical response is paramount to its investigation because

it provides detailed information about the band gap and the electronic state

occupancy. This is specially foundational for chalcogenides because they were

primarily used for optical-storage devices. In this instance, the meaningful

difference in reflectivity depending on the phase the material is in, tells apart

two binary digits. In this section we figure out how the photon energy ω

changes the optical constants such as the dielectric function ε (both real

and imaginary parts), the refractive index n, the extinction coefficient k,

the absorption coefficient α, the optical transmission T and reflection R.

We will also figure out the thickness dependence of T (ω) and R(ω). What

follows is thus organized into a methodology and a result sections. In the

methodology section, a three fold picture of optical constants is given based

on light as a ray, a wave or a beam of corpuscules. Although the ray-like and

wave-like pictures are basic and elementary, a brief summary is helpful for

a better understanding of corpuscule-like or microscopic calcultations. Then

the result section discloses and comments the comparison between calculated

and measured optical properties.

43
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3.1 Methodology and Computational Details

3.1.1 Methodology

Optical Constants: the ray-like perspective

Let us begin by stating that how much light velocity is curbed in a medium

defines the refractive index of that medium

nmi = c/vmi , (3.1)

mi being the i-th medium. When a light ray of intensity I0 at an incidence

angle î shines on the interface between two mediums m1 and m2, where m2

is a material z thick, part of it is reflected at an angle r̂, the remaining part

goes through the material bending at an angle of t̂ and with an intensity of

I. Snell-Descartes’s law of refraction

nm1 sin(̂i) = nm2 sin(t̂), (3.2)

links the two medium refractive indexes, Beer-Lambert’s law

I = I0e
−αz, (3.3)

defines the intensity attenuation as absorption coefficient, α. Fresnel’s equa-

tions

R =
sin(t̂− î)
sin(t̂+ î)

T +R = 1, (3.4)

relate the transmitted T and reflected light R together and to the angles î,

r̂ and t̂.

Optical constants: the wave-like perspective

Let us think of a light ray going through a material as an electromagnetic

wave propagating in the z direction of a lossy medium. The electric part of

the wave equation thus comes down to

∂2Ex

∂z2 = iωµ0(σ + iεω)Ex = Γ2Ex (3.5)
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where the conductivity σ and the dielectric constant ε are defined within the

Maxwell equations.

Γ =
√
iωµ0(σ + iεω) = (α/2) + iβ (3.6)

is the complex propagation constant. The ratio

Γ

Γ0

= −ñ2 (3.7)

where Γ0 is the propagation constant in a free space (σ = 0, ε = ε0) defines

the complex refractive index ñ = n+ik with a real part (refractive index) and

an imaginary called extinction coefficient. Moreover, 3.1 with c = 1/
√
µ0ε0

and vmi = 1/
√
µ0ε leads to ñ2 = ε/ε0 = εr + iεi. The real and imaginary

parts of the dielectric function are thus related to the complex refractive

index through the following relations

n2 − k2 = εr

2nk = −εi. (3.8)

The absorption coefficient α appearing in equation 3.6 is therefore determined

as

α =
4πk

λ
. (3.9)

Optical constants: the corpuscule-like perspective

From equations 3.8, 3.9 and 3.4, it stands out that the knowledge of the

dielectric function ε is sufficient to derive all other optical constants. The

whole dielectric tensor is calculted and then the diagonal terms are extracted

out of it.

Seeing light as a set quasi-particles, photons, leads to interpret its interaction

with matter as absorption or emision of such photons by electrons. The

microscopic effect of it is a certain number of electron transitions within and

between the valence and the conduction bands. The imaginary part of the

dielectric tensor εiα,β(ω) can be thus viewed as a response function that comes
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from a perturbation theory with adiabatic turning on:

εα,β(ω) = 1 +
4πe2

ΩNkm2

∑
n,n′

∑
k

M̂α,β

(Ek,n′ − Ek,n)2
...

...

{
f(Ek,n)

Ek,n′ − Ek,n + ~ω + i~Γ
+ ...

...
f(Ek,n)

Ek,n′ − Ek,n − ~ω − i~Γ

}
(3.10)

where Γ is the adiabatic parameter which, for the total energy conservation

must tend to zero. This is the way in which the Dirac Delta function ap-

pears and this means that every excited state has an infinite lifetime, i.e., is

stationary.

εiα,β(ω) =
4πe2

ΩNkm2

∑
n,n′

∑
k

M̂α,βf(Ek,n)

(Ek,n′ − Ek,n)2
...

...

[
δ(Ek,n′ − Ek,n + ~ω) + δ(Ek,n′ − Ek,n − ~ω)

]
(3.11)

This situation is unphysical because the interaction with electromagnetic

field (even in the absence of photons, i.e., spontaneous emission) gives an

intrinsic broadening to all exited states, the lifetime is finite and Γ must be

larger than zero. In the limit of small but non vanishing Γ the dielectric

tensor turns into the Drude-Lorentz one:

εiα,β(ω) =
4πe2

ΩNkm2

∑
n,k

df(Ek,n)

dEk,n

ηωM̂α,β

ω4 + η2ω2
+ ...

...+
8πe2

ΩNkm2

∑
n6=n′

∑
k

M̂α,β

Ek,n′ − Ek,n

...

...
Γωf(Ek,n)[

(ωk,n′ − ωk,n)2 − ω2
]2

+ Γ2ω2
(3.12)

while the real part comes from the Kramers-Kronig transformation:

εrα,β(ω) = 1 +
2

π

∫ ∞
0

ω′εiα,β(ω′)

ω′2 − ω2
dω′ (3.13)
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εrα,β(ω) = 1− 4πe2

ΩNkm2

∑
n,k

df(Ek,n)

dEk,n

ω2M̂α,β

ω4 + η2ω2
+ ...

...+
8πe2

ΩNkm2

∑
n6=n′

∑
k

M̂α,β

Ek,n′ − Ek,n

...

...

[
(ωk,n′ − ωk,n)2 − ω2

]
f(Ek,n)[

(ωk,n′ − ωk,n)2 − ω2
]2

+ Γ2ω2
(3.14)

Finally the complex dielectric function is:

εα,β(ω) = 1− 4πe2

ΩNkm2

∑
n,k

df(Ek,n)

dEk,n

M̂α,β

ω2 + iηω
+ ...

...+
8πe2

ΩNkm2

∑
n′ 6=n

∑
k

M̂α,β

(Ek,n′ − Ek,n)
...

...
f(Ek,n)

(ωk,n′ − ωk,n)2 + ω2 + iΓω

Γ and η are respectively intersmear and intrasmear parameters. The square

matrix elements are defined as follow:

M̂α,β = 〈uk,n′ |p̂α|uk,n〉〈uk,n|p̂†β|uk,n′〉 (3.15)

∝ u?k,n′(r)
d

dxα
uk,n(r)u?k,n(r)

d

dxβ
uk,n′(r) (3.16)

the double index reveals the tensorial nature of εi(ω), while |uk,n〉 is a factor

of the single-particle Bloch function obtained with a self-consistent calcula-

tion. In all the cases illustrated above the non-local contribution due to the

pseudopotential is neglected, actually the correction to the matrix element

that takes into account the non-local part of the Hamiltonian is not imple-

mented. From the previous definition of the imaginary part of the dielectric

function it is easy to see that even the local-field contributions are not im-

plemented.

The self consistent calculation works on a plane wave set so the Bloch func-

tions of the matrix element (3.15) are decomposed as follow:

|ψk,n〉 = eiG·ruk,n =
1√
V

∑
G

an,k,Ge
i(k+G)·r (3.17)
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and consequently:

M̂α,β =

(∑
G

a?n,k,Gan′,k,GGα

)(∑
G

a?n,k,Gan′,k,GGβ

)
(3.18)

Defined in this way the matrix element accounts only for interband transi-

tions, i.e., vertical transitions in which the electron momentum k is conserved

(optical approximation). In standard optics the intraband transitions give

a negligible contribution due to the very low momentum transferred by the

incoming/outcoming photon.

Operating a London transformation upon εiα,β(ω), it’s possible to obtain the

whole dielectric tensor calculated on the imaginary frequency axe εα,β(iω).

εα,β(iω) = 1 +
2

π

∫ ∞
0

ω′εiα,β(ω′)

ω′2 + ω2
dω′ (3.19)

The dielectric function being calculated, the refractive index, the extentive

and absorption coefficient are obtained through 3.8 and 3.9. As it relates to

the optical transmission T (ω) and reflection ω, it should be pointed out that

equations 3.4 hold at the interface with the theoretical infinite sample. In

most practical cases instead, Ge2Sb2Te5 samples are available as thin films on

substrates. What’s more, unlike other optical constants, T (ω) and R(ω) vary

significantly with the film thickness. For this matter, [T (ω), R(ω)] thickness

dependence is introduced through exact optical equations for a normally

incident light on a thin layer on top of a thick substrate [26]. A transparent

substrate with n = 1.5 and k = 0 is assumed for this post-processing because

a glass slide has similar properties especially between ω ∼ 0.4 and ω ∼ 4 eV.

3.1.2 Computational Details

As equation 3.1.1 needs both ground and excited states to be computed, a

self-consistent calculation is performed using grid of 12×12×4 and 12×12×2

for the hexagonal and FCC phases respectively using the same parameters

and the band diagram and density of electronic state calculations. A uniform

grid of 20 × 20 × 20 is used in the non-self consistent calculation for the



Results and Discussion 49

excited states. The non-self-consistent calculation took roughly 2 days for

the hexagonal phase and 6 days for the FCC phase. Such a very dense

grid is used to increase the accuracy on the excited charge density mainly

responsible for the excited states since the self-consistency doesn’t apply here.

The parameters Γ (intersmear) and η (intrasmear) are set to 1.0 and 1.0 for

the hexagonal phase and 0.8 and 0.3 for the face-centered cubic state to best

fit experimental data.

3.2 Results and Discussion

The calculated real and imaginary parts of the hexagonal dielectric function

are presented in figure 3.1. The comparison with the measured ones is appre-

ciable even though there is a shift in the energy axis that will be explained

further on. Figure 3.2 shows pretty much the same agreement and the same

shift in the energy axis between calculated and experimental [2, 1] εr and εi

for the face-centered cubic phase. The magnitude difference in figures 3.1, 3.2

for small energy values are mainly due to the fact that for small energy differ-

ences in the denominator of expressions 3.1.1 and 3.1.1, εi(ω) and εr(ω) tend

to diverge. The magnitude difference around the peak result from transis-

tions between the top of the valence band and the bottom of the conduction

band is not accurately described because of the inaccuracy of the band gap

for the reasons laid out in the sub-section ”Local Density Approximation and

the Band Gap”. As the calculated band gap is smaller than the experimental

one, it stands to reason that by virtue of equations 3.1.1 and 3.1.1, the peak

of the calculated curve is higher than the experimental one.

The calculated and experimental [2] refractive index and extinctive co-

efficient are also compared for the hexagonal (figure 3.3) and FCC (figure

3.4) structures. As n(ω) and k(ω) vary directly with εi(ω) and εr(ω), the

same reasons behind the experimental and calculated FCC dielectric func-

tion discrepancies apply here even though it should be pointed out a better

matching for the FCC refractive index and extinctive coefficient. This can
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Figure 3.1: Calculated and experimental real (left) and imaginary (right) parts of the

hexagonal dielectric function.
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Figure 3.2: Calculated and experimental real (left) and imaginary (right) parts of the fcc

dielectric function.

be ascribed to the fact that FCC band gap is closer to the experimental one.

This is especially true for the peak differences. Figure 3.5 shows the calcu-

lated and experimental [2] absorption coefficient for the hexagonal and FCC

phases. Here too, the FCC absorption coefficient better accords with the

experimental one because its calculated band gap is closer to the measured

one.

As to the optical transmission and reflection, figure 3.6 and 3.7 shows the
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Figure 3.3: Calculated vs experimental refractive index (left) and extinctive coefficient

(right) for the hexagonal phase.
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Figure 3.4: Calculated vs experimental refractive index (left) and extinctive coefficient

(right) for the fcc phase.

simulated T (ω) and R(ω) for various thickness values of Ge2Sb2Te5. Inter-

ference fringes are apparent in the spectra near or below the optical bandgap,

since multiple reflections occur inside the film and interfere with each other.

On top of that, in both figures T (ω) scales down with the thickness as intu-

itively expected. Conversely, R(ω) scales up with the thickness as expected

by experiments. This calculated [T (ω), R(ω)] thickness dependence reason-

ably line up with the experiments (see figures 3.8 for the hexagonal phase
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and 3.9 for th FCC phase). Similar interference fringe patterns appear at

lower photon energies in the calculated spectra than in the measured data,

since the calculated bandgap values are lower than the measured ones.
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Figure 3.5: Calculated and experimental absorption coefficient for the hexagonal (left)

and FCC (right) phases.
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Figure 3.6: Calculated optical transmission (left) and reflection (right) reflection changing

with the thickness for the hexagonal phase.
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Figure 3.7: Calculated optical transmission (left) and reflection (right) reflection changing

with the thickness for the fcc phase.
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Figure 3.8: Calculated and experimental thickness dependence of T (left) and R for the

hexagonal phase.
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Figure 3.9: Calculated and experimental thickness dependence of T (left) and R for the

fcc phase.



Conclusion

To sum it up, the electronic, vibrational and optical properties for the hexag-

onal and FCC phases of the Ge2Sb2Te5 chalcogenide have been addressed.

As it relates to the electronic properties, the electronic band diagram and

density of states were calculated using the density functional theory combined

with plane waves, norm-conserving pseudopotentials and the local density

approximation implemented in the code Quantum Espresso [27]. Hexagonal

band diagram and density of states agrees well with those calculated with

castep [14]. As a matter of fact both exhibit a 0.0 eV band gap. FCC band

diagram and density of states are shown with a band gap of about 0.10 eV

and it should be pointed out that the FCC density of states remarkably lines

up with the experimental one. The increase in the calculated band gap can be

explained by the defect increase in the structure (no vacancy in the hexagonal

primitive cell, 3 vacancies in the FCC primitive cell). The difference between

the calculated band gap for both phases and the experimental one mainly

originates from the local density approximation in the DFT calculations.

As far as the optical properties are concerned, the real part of the dielectric

function was obtained implementing the Drude-Lorentz expression whereas

the imaginary part was derived through the Kramers-Kronig relationship.

Further, the refractive index, the extinctive and absorption coefficients are

derived from the Maxwell model. The optical transmission and reflection

are calculated. The calculated and measured thickness dependence of such

quantities successfully compared. The discrepancies are mainly related to

the inaccuracy in the calculated band gap that makes the transitions be-
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tween valence and conduction states not exactly reproducible.

The density-functional perturbation theory allowed us to calculate the phonon

dispersion and spectra for both phases. The results confirmed the chalco-

genide tendency to have very low phonon frequency. The negative phonon

frequencies obtained for the FCC phase is ascribed to the FCC instability

mostly due to the high percentage of vacancy (20%). In fact, as opposed to

the hexagonal stable phase, FCC’s is referred to as metastable .



Appendix A

A.1 The Hohenberg and Kohn Theorems

A.1.1 Proof of Theorem I: density as a basic variable

Let us suppose two different external potentials V̂
(1)
n and V̂

(2)
n differing by

more than a constant and both corresponding to the same ground state

density n0(r). As a result, V̂
(1)
n and V̂

(2)
n lead to Ĥ(1) and Ĥ(2) which in turn

yield two different wavefunctions, Ψ(1) and Ψ(2) respectively. As Ψ(2) is not

the ground state of Ĥ(1), it follows that

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉. (A.1)

where the strict inequality holds if the ground state is non-degenerate. The

last term in A.1 can be written

〈Ψ(2)|Ĥ(1)|Ψ(2)〉 = 〈Ψ(2)|Ĥ(2)|Ψ(2)〉+ 〈Ψ(2)|Ĥ(1) − Ĥ(2)|Ψ(2)〉 (A.2)

= E(2) +

∫
d3r[V̂ (1)

n − V̂ (2)
n ]n0(r) (A.3)

such that

E(1) < E(2) +

∫
d3r[V̂ (1)

n − V̂ (2)
n ]n0(r) (A.4)

Likewise for E(2), we find the same equation with superscripts (1) and (2)

interchanged,

E(2) < E(1) +

∫
d3r[V̂ (2)

n − V̂ (1)
n ]n0(r) (A.5)
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Combining A.4 and A.5, we cannot help but get to the contradictory in-

equality E(1) +E(2) < E(1) +E(2) which establishes the desired results, that

is, there cannot be two different external potentials differing by more than a

constant for the same non-degenerate ground state charge density. Therefore,

the density uniquely determines the external potential within a constant.

The corollary follows since the Hamiltonian is uniquely determined (except

for a constant) by the ground state density. Then, in principle, the wavefunc-

tion of any state is determined by solving the Shrödinger equation with this

Hamiltonian. Among all the solutions which are consistent with the given

density, the unique ground state wavefunction is the one that has the lowest

energy.

A.1.2 Proof of Theorem II

This theorem is a straighfoward consequence of the first on condition that one

carefully defines the meaning of the functional of the density and restricts the

space of densities. The original Proof of Hohenberg and Kohn is restricted to

densities n(r) that are ground state densities of the electron Hamiltonian with

some external potential V̂n. Such densities are called ”V-representable”. This

defines a space of possible densities within which we can construct functionals

of the density. Since all properties such as kinetic energy and so forth are

uniquely determined if n(r) is specified, then each property can be viewed as

a functional of n(r), including the total energy functional

E[n] = 〈Ψ|T̂e + V̂ee + V̂n|Ψ〉

= 〈Ψ|T̂e + V̂ee|Ψ〉+ 〈Ψ|V̂n|Ψ〉

= F [n(r)] +

∫
n(r)V̂ndr (A.6)

where F [n(r)] must be universal by construction since the kinetic energy and

interaction energy of particles are functionals of the density only.

Considering now a system with the ground state density n(1)(r) corresponding

to an external potential V̂
(1)
n , based on what just mentioned, the Hohenberg-

Kohn functional is equal to the expectation value of the Hamiltonian in the
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unique ground state, which has a wavefunction Ψ(1) such that

E(1) = E[n(1)] = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉. (A.7)

Similarly a different density n(2)(r) with Ψ(2) will lead to an energy

E(2) = 〈Ψ(2)|Ĥ(1)|Ψ(2)〉 > 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 = E(1). (A.8)

Thus the energy given by A.6 in terms of the Hohenberg-Kohn functional

evaluated for the correct ground state density n0(r) is indeed lower than the

value of this expression for any other density n(r).

It follows that if the functional F [n(r)] was known, then by minimizing the

total energy of the system, A.6, with respect to variations in the density

function n(r), one would find the exact ground state density and energy.

This establishes Corollary II.

A.2 Kohn and Sham Equations

From Kohn and Sham’s perspective, the interacting system can be replaced

by a non-interactive one having the same ground state charge density n0(r).

The charge density of such an auxiliary system

n(r) = 2
Ne∑
i

|Ψi(r)|2dr (A.9)

rests on the non-interacting electron orbitals Ψi(r) resulting from

[T̂ n−inte + V̂n]Ψi(r) = εiΨi(r) (A.10)

and abiding by the orthonormality constraints∫
Ψ∗i (r)Ψj(r) = δij. (A.11)

The existence of a unique potential V̂n having n0(r) as its ground state charge

density is a consequence of the Hohenberg and Kohn theorem, which holds

irrespective of the form of the electron-electron interaction V̂ee.
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The purpose is to determine V̂n for a given n(r). This problem is solved by

considering the variational property of the energy. For an arbitrary variation

of the orbital Ψi(r), under the orthonormality constraints of Eq. A.11, the

variation of E must vanish. This means that the functional derivative with

respect to the wavefunction Ψi(r) of the constrained functional

E
′
= E −

∑
ij

λij(

∫
Ψ∗i (r)Ψj(r)− δij), (A.12)

where λij are Lagrange multipliers, must vanish:

∂E

∂Ψ∗i (r)
=

∂E
′

∂Ψi(r)
= 0. (A.13)

Let us re-write the energy functional as follows:

E = Tn−int[n(r)] + EH [n(r)] + Ex−c[n(r)] +

∫
n(r) + V̂ndr, (A.14)

where the first term is the kinetic energy of non-interacting electrons

Tn−int[n(r)] = − ~2

2m
2
∑
i

∫
Ψ∗i (r)∇2Ψj(r)dr. (A.15)

The second term (called the Hartree energy) contains the electrostatic inter-

actions between clouds of charge

EH [n(r)] =
e2

2

∫
n(r)n

′
(r

′
)

|r− r′|
drdr

′
. (A.16)

The third term, called the exchange-correlation energy, contains all the re-

maining terms. Knowing that

∂n(r)

∂Ψ∗i (r)
= Ψi(r)δ(r− r

′
). (A.17)

∂Tn−int
∂Ψ∗i (r)

= − ~2

2m
2
∑
i

∇2Ψi(r). (A.18)

∂EH
∂Ψ∗i (r)

= e2
∫

n(r)

|r− r′|
dr

′
Ψi(r) (A.19)
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equation A.13 turns into

[− ~2

2m
∇2 + V̂H + V̂x−c + V̂n]Ψi(r) =

∑
j

λijΨj(r), (A.20)

where we have introduced a Hartree potential

V̂H(r) = e2
∫

n(r)

|r− r′|
dr

′
(A.21)

and the exchange and correlation potential

V̂x−c(n(r)) =
∂Ex−c
∂n(r)

. (A.22)

The Lagrange multipliers λij are obtained by multiplying both sides of Eq.A.20

by Ψ∗k(r) and integrating

λij =

∫
Ψ∗k(r)(− ~2

2m
∇2 + V̂H + V̂x−c + V̂nn)Ψi(r)dr. (A.23)

For an insulator, whose states are either fully occupied or completely empty,

it is always possible to make a subspace rotation in the space of Ψ (leaving

the charge density invariant). We finally get the KS equations

(Ĥ − εi)Ψi(r) = 0, (A.24)

where λij = δijεj and the Kohn-Sham operator for the auxiliary system is

defined as

Ĥ = − ~2

2m
∇2 + V̂H + V̂x−c + V̂nn

= − ~2

2m
∇2 + V̂n, (A.25)

and is related to the functional derivative of energy

∂E

∂Ψ∗i (r)
= ĤΨi(r). (A.26)
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A.3 Pseudopotential Approximation

The pseudopotential approximation also known as frozen core approximation

suggests to ignore the changes in core state. Here, the soundness of such a

suggestion is presented.

Let nrc, n
r
v be the core and valence charge densities for the real auxiliary

system and npsc , npsv the core and valence charge densities for the pseudo-

system. As the energy E[nc, nv] is a functional of the core and valence charge

densities, let us introduce the error

δ = E[nrc, n
r
v]− E[npsc , n

ps
v ]. (A.27)

the expansion of δ around nrc and nrv yield

δ '
∫

∂E

∂nrc
(npsc − nrc)dr +

∂E

∂nrv
(npsv − nrv)dr + 2nd order terms (A.28)

Knowing that ∂E/∂nrc and ∂E/∂nrv are constant, and that the pseudo-system

meets the norm-conserving conditions (see section 1.2.1) first order terms (the

most important) can be taken out of A.28 making the error δ insignificant.

A.4 Discontinuity in the Exchange-correlation

Potential

The basic variational property of the density functional can be expressed by

the stationary condition

∂

∂n(r)
(E − µ(

∫
n(r)dr−N)) = 0, (A.29)

where µ is a Lagrange multiplier and N an integer number. The formulation

of DFT can be extended to non-integer number of particles N + ω (ω > 0)

via the following definition

E[n(r)] = Ffrac[n(r)] +

∫
V (n(r))n(r)dr, (A.30)
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and

Ffrac[n(r)] = min tr{D(T + U)}

D = (1− ω)|ΨN〉〈ΨN |+ ω|ΨN+1〉〈ΨN+1|, (A.31)

where the minimum must be sought on all density matrices D that yield

the prescribed density n(r). It is easily verified that integration of n(r)

over all space yields N + ω electrons. With this definition the variational

principle, Eq. A.29, is defined for any number of electrons and yields the

Euler equations
δE

δn(r)
= µ, (A.32)

and that µ is really the chemical potential: if we call EN the energy at the

ground state for N electrons, one has

µ(N) =
∂EN
∂N

. (A.33)

There is an obvious problem if we consider µ(N) a continuous function of

N for all values of N . Consider two neutral isolated atoms: in general, they

will have two different values for µ. As a consequence the total energy of the

two atoms will be lowered by a charge transfer from the atom at a higher

chemical potential to the one at lower chemical potential.

In reality there is no paradox, because the EN curve is not continuous. If we

write down explicitly EN+ω, we find that both energy and minimizing charge

density at fractionary number of electrons are simply a linear interpolation

between the respective values at the end points with N and N + 1 electrons:

EN+ω = (1− ω)EN + ωEN+1

nN+ω(r) = (1− ω)nN(r) + ωnN+1(r), (A.34)

with obvious notations. The interesting and far-reaching consequence is that

there is a discontinuity of the chemical potential µ(N) and of the functional

derivative δE/δn(r) at integer N . This is an important and essential charac-

teristic of the exact energy functional that simply reflects the discontinuity
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of the energy spectrum.

Coming back to our paradox: for an atom with nuclear charge Z, ionization

potential I(Z) and electron affinity A(Z) in the ground state,

µ(N) = −I(Z) for N ∈ ]Z − 1, Z[

= −A(Z) for N ∈ ]Z,Z + 1[. (A.35)

For a system of two neutral atoms with nuclear charges X and Y , in which

ω electrons are transferred from the first to the second atom:

µ(ω) = µ(0) + I(Y )−A(X) for ω ∈ ]− 1, 0[

= µ(0) + I(X)−A(Y ) for ω ∈ ]0, 1[ (A.36)

Since the largest A is still smaller than the smallest I, the neutral ground

state is stable.
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