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Introduction

In this dissertation we present the three projects we have been involved during the three
years of the PhD program in Geophysics at University of Bologna. The first two projects (in
Chapters 1 and 2) are closely related, one being the enhancement of the other. They focus
on the development and carrying out of two Bayesian Hierarchical Models for forecasting
volcanic eruption of open conduit volcanoes, with application to Kilauea volcano, Hawaii,
and Mount Etna volcano, Sicily. We have capitalized on the Bayesian methodology to test
if these volcanoes are compatible with a time predictable eruptive model, and to implement
a procedure for probabilistic forecast assessment. The third and last project (in Chapter 3)
concerns the two main observables time-scales of the dynamics of eruptive processes, i.e. the
interevent time or repose time and the magma run-up time. We have investigated the inter-
relationship of these two quantities considering 26 different volcanoes around the world relative
to 54 different eruptions with magma composition ranging from basaltic to dacitic. The final
goal is to investigate the inter-relationship between the interevent time and repose time trying
to constrain the role of magma viscosity in controlling these two physical observables.

In order to make the reading easier, we organize this introduction section keeping separated
the two main topics reported above. So we will introduce first the main argumentation on the
physical and statistical reasonings behind the two statistical models for eruption forecast. In
the last part we will discuss widely of the last project.

One of the main challenges in modern volcanology is to forecast volcanic eruptions with
the aim of mitigating the risk associated with. The extreme complexity, non linearity, limited
knowledge and the large number of degrees of freedom of a volcanic system make deterministic
prediction of the evolution of volcanic processes rather impossible (e.g. Marzocchi 1996; Sparks
2003). Volcanic systems are intrinsically stochastic. In general, eruption forecasting involves
two different time scales: i) a short-term forecasting, mostly based on monitoring measures
observed during an episode of unrest (e.g., Newhall & Hoblitt 2002, Marzocchi et al 2008
among others), and mostly related to a statistical description of the past eruptive catalogs
(e.g. Klein, 1982, Bebbington, 1996a among others). Here, we focus our attention only on the

long term forecast.



2 Introduction

An incisive and useful forecast should be made before the onset of a volcanic eruption,
using the data available at that time. Models implemented with forecast purposes have to
take into account the possibility to provide “forward” forecasts and should avoid the idea
of a merely “retrospective” fitting of the data available. Although several statistical models
have been proposed in the past years aiming at the identification of possible recurrence or
correlation in the volcanic time and/or volume data, none of those models has been carried
out with a robust procedure acting to test the forecast performance of the model (see for
example Klein 1982, Mulargia et al 1985, Bebbington & Lai 1996a and 1996b, Salvi et al,
2006, among others). The idea behind these works was to make efforts in best-fitting the
data disregarding to check the forecast capability of the model. Here we want to tackle this
problem constructing a model where the probabilistic forecast has to be one of the main goals

in a perspective of probabilistic volcanic hazard assessment .

In addition, a statistical model should include a physical eruptive process and related in-
formation, if there is any, to give a better understanding of the overall phenomenon. These
convictions lead us to use Bayesian methods in which the posterior distribution for the param-
eter vector is a compromise between the likelihood and the prior distribution (see for example
Gelman et al., 2000). While the likelihood quantifies the probability of observation varying
the parameters, the prior distribution, expresses in terms of probability density function some
a priori belief about parameters. So, there is the possibility of assigning probability on the
hypotheses using prior distributions together with the inferential use of the data as in a mere
likelihood analysis. Therefore, probability distributions can be used to model and constrain
extra-sample information in the prior distribution settings. We believe this possibility could
be a suitable and helpful tool to get enhancement in forecasting geophysical system when the

information provided by data are poor ( for small or heterogeneous dataset for instance).

Here, following the aforementioned ideas, we will apply the Generalized Time Predictable
model as presented by Sandri et al (2005) and Marzocchi & Zaccarelli (2006) for the eruptive
process. The classical Time Predictable Model (De La Cruz-Reyna, 1991, Burt et al 1994)
assumes eruptions occur when the volume in the storage system reaches a threshold value
being recharged at constant rate from deeper crust. The size of eruptions is a random variable
following some kind of statistical distribution. Mathematically, this implies that the interevent
time, the time between two consecutive onset of eruption events (i.e. r; = t;11 —t;), is linearly
dependent on the volume erupted during the ith eruption. Here we will use the generalization
of the classical time predictable model, proposed by Sandri et al (2005), where the input rate
in the magma shallow reservoir could be variable in time, implying a power law relationship

between interevent time and volume erupted.

In Sandri et al (2005), the authors have found that Mount Etna eruptions (both summit
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and lateral events since 1970 AD) follow a time predictable behavior. Marzocchi & Zaccarelli
(2006) have also showed that the Kilauea volcano eruptions are time predictable. Both models,
however, do not take into account the measurement errors for interevent times and volumes,

since volume data are affected by a large uncertainty.

As we will show in Chapter 1, using the Generalized Time Predictable model, we have
built up the model for forecasting volcanic eruption with application to Kilauea volcano. We
have used a Bayesian Hierarchical framework where variables and parameters of the process
are described used log-normal and inverse-gamma distributions with the aim of using the
information relative to the measurement error. The choices of this particular type of distribu-
tion, corroborated by goodness-of-fit tests, have come out for technical reasons making easier
numerical simulations within the model. This model has showed problems in fitting data,
while we have found the time-predictability of Kilauea volcano and have made probabilistic
forecast as we will show later in Chapter 1. Attributing this discrepancy in data fitting with
log-normal distributions, we have chosen to develop a further version of hierarchical model
with more appropriate and general probability density function for interevent times and vol-
umes. This choice was made in order to improve forecasts. We have chosen exponential-wise
distributions for interevent times and volumes according with Klein (1982), Mulargia (1985),
Marzocchi (1996) and Bebbington & Lai (1996a) and (1996b). We will present this second
model in Chapter 2 with application to Kilauea eruption and Mount Etna flank eruptions.
This project has been performed in collaboration with prof Bruno Sanso at Dept. of Applied
Mathematics and Statistics at University of California, Santa Cruz under the Marco Polo

exchange program of the University of Bologna.

Finally we will present in Chapter 3, the project developed with prof. Emily Brodsky
at the Dept. of Earth and Planetary Sciences at University of California, Santa Cruz. The
idea behind this exploratory work is that volcanoes usually show signs of unrest before an
eruption. The intensity of these signals during the pre-eruptive phase varies greatly. So,
establishing physical controls on the duration of precursory activity, i.e. run-up time, could
improve understanding of the dynamics of magma ascent from a shallow magma reservoir
to the surface. We also focused on another observable indicative of eruption dynamics: the
interevent time or repose time, i.e., the time between magmatic eruptions. For sake of clarity,
in Chapter 3 we will use repose time with the same meaning of interevent time. The repose
time could be associated with the mechanism that recharges the magmatic system. Both of
these dynamic quantities are strongly dependent on magma composition and hence magma
viscosity. In this preliminary work, we have investigated the inter-relationship between run-
up time, repose time and viscosity by collecting together a database of 54 eruptions from 26

different volcanoes around the world. The data ranges from basaltic to dacitic systems, so we
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could investigate the gross influence of viscosity by using the silica content as a proxy.

This dissertation is organized as follows: in Chapter 1 we will present “Bayesian Hierar-
chical Time Predictable Model for eruption occurrence: an application to Kilauea Volcano” ,
in Chapter 2 we will present “A new Bayesian Time-Predictable Model for Open Conduit Vol-
canoes: The Case of Mt Etna and Kilauea”, in Chapter 3 we will introduce “The Correlation
Between Run-Up and Repose Times of Volcanic Eruptions ”. We will give references, tables
and figures at the end of each chapter, while the bibliography of this introduction section will
be at the end of the dissertation.



Chapter 1

Bayesian Hierarchical Time
Predictable Model for eruption
occurrence: an application to Kilauea

Volcano

Abstract
The physical processes responsible for volcanic eruptions are characterized by a large number
of degrees of freedom, often non-linearly coupled. This extreme complexity leads to an in-
trinsic deterministic unpredictability of such events that can be satisfactorily described by a
stochastic process. Here, we address the long-term eruption forecasting of open conduit volca-
noes through a Bayesian Hierarchical Modeling information in the catalog of past eruptions,
such as the time of occurrence and the erupted volumes. The aim of the model is twofold: 1)
to get new insight about the physics of the process, using the model to test some basic phys-
ical hypotheses of the eruptive process; 2) to build a stochastic model for long-term eruption
forecasting; this is the basic component of Probabilistic Volcanic Hazard Assessment that is
used for rational land use planning and to design emergency plans. We apply the model to
Kilauea eruption occurrences and check its feasibility to be included in Probabilistic Volcanic

Hazard Assessment.

1.1 Introduction

The extreme complexity, non linearity, limited knowledge, and the large number of degrees of

freedom of a volcanic system make deterministic prediction of the evolution of volcanic pro-
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cesses impossible. Volcanic systems are intrinsically stochastic (e.g. Marzocchi 1996; Sparks
2003), and hazardous volcanic phenomena involve so many uncertainties that a probabilistic
approach is practically always needed (e.g. Newhall & Hoblitt 2002; Sparks 2003; Marzocchi
et al. 2004).

In general, eruption forecasting can be tackled in two different ways, related to two different
time scales: i) a short-term forecasting, mostly based on monitoring measures observed during
an episode of unrest (e.g., Marzocchi et al. 2008); ii) a long-term forecasting, usually made
during a quiet period of the volcano, and mostly related to a statistical description of the past
eruptive catalogs. Here, we focus our attention only on this second issue.

In a recent paper, Marzocchi & Zaccarelli (2006) found different behavior for volcanoes
with “open” conduit regime (i.e., volcanoes with high frequency of eruption and repose periods
less than few tens of years) compared to those with “closed” conduit regime (i.e., volcanoes
with periods of quiescence longer than 30-40 years). According to that paper, open conduit
volcanoes tested there (i.e. Mt Etna, Kilauea volcano) seem to follow a so-called Time Pre-
dictable Model, i.e. a model where the time to the next eruption depends on the size of the last
eruption (De La Cruz-Reyna, 1991, Burt et al. 1994). Closed conduit volcanoes, tested by
Marzocchi & Zaccarelli (2006) , conversely seem to follow mostly a Poisson distribution. These
results have been used to build general probabilistic models for volcanic hazard assessment of
open and closed conduit systems.

Different methods have been presented in the past years aiming at the identification of
possible recurrence or correlation in the volcanic time and/or volume data. Klein (1982) and
Bebbington & Lai (1996b) study the changes in volcanic regimes looking at the mean rate
of occurrence of the volcanic events. Sandri et al. (2005) apply a generalized form of time
predictable model to Mount Etna eruptions. De La Cruz-Reyna (1991) proposed a load-and-
discharge model for eruptions in which the time predictable model could be seen as a particular
case. Bebbington (2008) presented a stochastic version of the general load-and-discharge model
also including a way to take into account of the history of the volcano discharging behavior.
In this paper the author studied the time predictability as a particular case of his model
with application to Mount Etna and Mauna Loa and Kilauea data series. Finally a different
hierarchical approach has been presented by Bebbington (2007) using Hidden Markov Model
to study eruption occurrences with application to Mount Etna flank eruptions. This model is
able to find any possible underlying volcano activity resulting in volcanic regime changes.

Here, our goal is to improve significantly the modeling of open conduit systems through
the implementation of a Bayesian Hierarchical Time Predictable Model (hereafter BH TPM)
for eruption occurrence. The model is a formal generalization of the Time Predictable Model

in a full Bayesian framework. The Bayesian perspective allows accounting for stochastic
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fluctuations in each parameter of the model and in each recorded measurement (Wikle 2003).
In this way, each parameter of the model is described through a probability density function
whose posterior distribution is conditioned by the available data. The numerical solution is
obtained via MCMC-Gibbs sampling (Gelman et al., 2000). The BH_TPM is then applied
to the eruption record of Kilauea Volcano since 1923 published by the Hawaiian Volcano
Observatory (see Table 1.1). The outcomes for model variables and parameters show good
convergence properties for all model parameters and errors.

After describing the model in detail, we focus our attention on some specific issues: 1) to
discuss the volcanological implications of the model parameters obtained; 2) to verify if the
model describes the data satisfactorily; 3) to compare the forecasting capability of BH _TPM
with other models in the literature; i.e. Poisson model (Klein, 1982) and Log-Normal model
(Bebbington & Lai, 1996b) and Generalized Time Predictable Model (Sandri et al., 2005). We
would like to remark point 3) under a probabilistic forecast perspective. As we will show later
in the text, we will use BH TPM for forecasting purposes mimicking probabilistic eruption
forecasts using Kilauea volcano dataset. In order to do this, we will use the first third part of
the catalog as a learning phase for the model, and we will make probabilistic eruption forecast
on the remaining part using a forward procedure discussed later in the text. This allows to

test and use this model as a component of Probabilistic Volcanic Hazard Assessment (PVHA).

1.2 Bayesian Hierarchical Model

The formal ideas of hierarchical modelling arise from simple probability rules. Hierarchical
modelling is based on the simple fact that the joint distribution of a collection of random
variables can be decomposed into a series of conditional models (Wikle, 2002). That is, if X,
Y, and Z are random variables, we can write the joint distribution in terms of a factorization
such as [X,Y, Z] = [Z]Y, X][Y |X][X]. We make use of the bracket notation for probability
distribution in which [Y] refers to the distribution of Y and [Y|X] refers to the conditional
distribution of Y given X. This simple formula is the basic idea of hierarchical thinking. In
general it is easier to specify the distribution of the relevant conditional models than to work
with marginal distributions of variables involved in such models. In this case, the product of
a series of relatively simple conditional models leads to a joint distribution that can be quite
complicated.

In order to build the model, we follow the framework outlined by Wikle (2002; see also
references therein). The idea is to approach the problem by breaking it into three primary

stages:

e Data model : [data|process, parameters]
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e Process model : [process|parameters|

e Parameter model : [parameters]

The first stage regards the observational process or data model, which specifies the distribution
of the observed data given the process generating them and the parameters describing it.
The second stage describes the process, conditional on its parameters. Finally, the third
stage accounts for the uncertainty in the parameters. Ultimately, we are interested in the
distribution of the process and parameters updated by the data. We obtain the joint posterior
distribution for the process and parameters using Bayes’ rule:

[process, parameters|data] x [data|process, parameters][process|parameters|[parameters] (1.1)

In order to make inference about the process and parameters governing the occurrence of
volcanic eruptions for the case of “open” conduit volcano, we apply this simple approach. In
the next subsections we will illustrate each stage that we have performed for our hierarchical

model.

1.2.1 Data model

The dataset reported in Table 1.1 is taken from the Hawaiian Volcano Observatory web site
(http://hvo.wr.usgs.gov /kilauea/history/historytable.html). The full catalog starts from 1823
but only the 42 volcanic events having occurred after 1922 are considered in our analysis,
because only this latter part of the catalog can be considered complete in terms of occurrence
time and erupted volume data. Figure 1.1 reports the cumulative number of events versus time,
where the eruptive rate since 1923 is approximately constant except for a major quiescence
period around the 40’s. The catalog reports the onset of each eruption, the total volume of
material ejected (lava and tephra) and the interevent time. The volume of the 1924/05/10
event is taken from http://www.volcano.si.edu/ and is only the tephra volume. For more
details regarding the definition of interevent times see Klein (1982). Since the interevent time
following the last eruption cannot be available, we have 41 pairs of data of interevent time (i.e.
the time between the onset of ith and the onset of (i + 1)th eruptions) and volume erupted
(in the ith eruption), that from now on we indicate with d,, and d,, respectively.

In testing the independence of data via correlation function, the only significant correlation
(P-value=0.06) appears between the volume and the subsequent interevent time. Therefore
we assume that each pair of data (d,,,d,,) is independent from the other pairs. In a Bayesian
framework, the act of measurement does not lead simply to an observed value, but to a state of
information described by a distribution where the single measurement is a random realization
of this distribution.

In this paper, we assume that the logarithm of the data, made dimensionless by two gauge
constant (i.e. R = 1day and V =1 x 106 m?), i.e. D,, = In(d,,/R) and D,, = In(d,,/V),
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are respectively random draws from normal distributions, with the means R; = In(r;/R) for
the interevent times and V; = In(v;/V) for the volumes, where r;’s are the interevent time
variables and v;’s are the volume variables. We test whether or not D,, and D,, are normally
distributed using Anderson-Darling test (Anderson and Darling, 1952). The null hypothesis
is that logarithm of the data comes from a normal distribution. We can not reject the null
hypothesis of normality for D,, and D,, with P-value=0.625 and P-value=0.715 respectively
(Trujillo-Ortiz et al., 2007). We can conclude that normal distributions fit reasonably the
logarithm of the data.

The variables r; and v;, and their natural logarithm, represent the variables of our model.
The variances of such normal distributions are the data measurement errors for the interevent

times 0'%)” and for the volumes U%Ui. In this view, each single pair is:
D,, ~ N(R;,0%,,) and D, ~N(Vi,op,) i=1,...,41

where from now on N(a,b?) indicate a normal distribution with mean a and variance b? and
the symbol ~ means "is distributed as".

In order to give appropriate variances for R; and V; to each distribution, we use the error
propagation. We assume two different values for measurement errors on volume data before
and after 1960. Such division arises by considering that, after 1960, the measurements were
taken by the Hawaiian Volcano Observatory, and we assume that these measurements are
more accurate. Systematic and direct measurement of lava flow or modern measurement us-
ing satellite techniques should give a more precise estimation of the volume erupted. Indirect
measurement on historical lava flow, inferred with geological field methodology probably un-
derestimates the real erupted volume (e.g. Behncke et al., 2005). This is the reason why we
assume the relative error (Av;/v;) equal to 25% for the volumes before 1960 and equal to
15% for more recent data. For the interevent times we choose an error measurement equal to

Ar; = 1day. Therefore, applying the error propagation rule, we get:

OR; Ar;
oD =5 A =200 =1, 4L
T r;
oV; Av;
aDvi:a—lAvi:ﬁzo.% i=1,...,13
(Y (%
oV Av; )
ava:a—U?Avj:v—?:O.w j=14,...,41
J J

The error op,, is coincident with the relative error on the interevent time, while op,, is
independent from the data value and error.

At this point we are able to write the joint distributions for the data model, assuming
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independence among the pairs of data, as:

41

[DT|R’ O-%)r] = H N(RZ’ U%ri) (12)
1=1
41

[DU"/’ U%v] = H N(‘/%U%)vi) (13)
i=1

1.2.2 Process model

Before displaying our statistical considerations for the process model, we have to introduce
the underlying physical eruptive process. We use a very simple stochastic process to explain
the eruptive dynamic process. It is the Generalized Time-Predictable Model (GTPM, see
Sandri et al. 2005) for volcanic eruptions, assuming that eruptions occur when the volume in
the storage system reaches a threshold value, given that magma enters in the magma storage
system with a variable rate and that the size of eruptions is a random variable, following
some kind of statistical distribution. Under these assumptions, we have a generalized time-
predictable system with longer/shorter interevent time following large/small volume output
eruptions. In fact, for such a model, the time to the next eruption is determined by the time
required for the magma entering the storage system to reach the eruptive level. In this view
the more general form for a time-predictable model is a power law between the erupted volume
and the interevent time:

i = cv? (1.4)

that we want to linearize by logarithmic transformation. For this reason we need dimensionless

variables and so we introduce two gauge constants (i.e. R and V that are the same of previous

section) in order to make r; and v; dimensionless. Therefore we choose R = 1day and

V =1 x 106 m® and we define:

P Ti
R

that we introduce in the previous equation and we obtain:

and Vi =

* *b
r, = av;

where a = (¢V?)/R is a new constant. Now we can take the logarithm of this equation and
we have:

R; = K +bV; (1.5)

where K = In avis a constant and R; = Inr} and V; = Inv}. This dimensionless transformation
does not influence the following numerical solutions, but it is only an algebraic solution to

make dimensionless the argument of the logarithms.
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In the last equation, if the parameter b is equal to unity we are in a classical time predictable
system (see De La Cruz Reyna 1991, Burt et al. 1994). If b is equal to 0 the system is not
time predictable. If b > 1 we have a non-linear relationship implying a longer interevent time
after a large volume eruption compared to a classical time predictable system. If 0 < b < 1 we
still have a non-linear relationship but for a big volume eruption it implies a shorter interevent
time compared to a classical time predictable system. Assuming this process as a dynamic
eruptive behavior for the volcano, we proceed to show our statistical consideration about this
part of the hierarchical model implementation.

In building up the process model, we have to connect the model variables (R; and V;) with
the physical model, i.e., with equation (1.5). Here, we assume that the R;’s are independent
and each of them is normally distributed, with mean given by the generalized time-predictable

model and unknown variance representing the model error. Hence:
Ri~NOMV;+ K,0%) i=1,...,41

and for the all variables R; the resulting joint distribution given the model parameters is:

41
[RIV,b, K, o] = [[ NOV; + K, 0%) (1.6)

i=1
In order to assign the distribution for the volume variables (V;) we have to exert a little effort.
We do not have information about the real size distribution of Kilauea eruptions. However,
according to the Anderson and Darling test performed in the previous sub-section, the set
of volume data, i.e. D,, (i = 1,...,41), is satisfactorily fitted by a log-normal distribution.
Because of this goodness-of-fit test, we assume that also the volume variables (i.e., v;) in the
BH_ TPM have a log-normal distribution. The logarithm of variables, i.e. V;, are therefore
normally distributed with unknown mean p, and variance o2, and for each of them we can

write:

Vi~ N, 02) i=1,...,41

and the joint distribution is:
41

[V|IU’U’ Ug] = H N(MU, 0'12;) (17)
=1

In addition, we assume that the parameter p, has uniform non informative vague prior
distribution. A non informative prior expresses vague or general information about a variable.
Non informative priors can express objective information (e.g., "the variable is positive")
assigning equal probabilities to all possibilities within the defined domain (e.g., for all x > 0).

The simplest case of non informative vague prior distribution is the uniform distribution with
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unlimited domain (e.g., —0o < x < +00). In this text when we refer to non informative vague
prior distribution, we always use uniform distribution with unlimited domain, see Table 1.2.

The distribution of variance parameters, i.e. 0'12{ and o2, are constructed from inverse
gamma family, which is the natural conjugate family for the normal distribution (see Gelman
et al., 2000). The property of conjugacy is very useful in Bayesian prior to posterior analysis.
The conjugacy is formally defined in this way: for a given vector of data ¥y = y1,...,¥n
and a parameter vector = 6y,...,0,, if @ is a class of likelihood [y | 0], and ¥ is a class
of prior distribution for @, then the class ¥ is conjugate for @ if [0 | y] € ¥ forall [y |
0] € & and [A] € ¥ where data and parameters are linked by Bayes’ theorem, i.e. [0 |
y] o< [0y | 0]. In our case, if we model the prior distribution for variance by an inverse
gamma distribution, the likelihood is normal (i.e. equation (1.6) and (1.7)), thus the posterior

distribution (for the variance) becomes an inverse gamma distribution.

Therefore, the prior distributions for variances are:
2 —1
[UR] =T (aURWBUR)

03] =T (00, Bo,)

where I'™! indicates the inverse gamma distribution with mean = /(o) — 1) for oy > 1
and variance s = ﬁ(Q_)/(oz(.) —1)*(ay —2) for agy > 2, and agy, and a,, are shape parameters

and 5, and [3,, are scale parameters.

1.2.3 Parameter model

In a Bayesian perspective, we have to assign a distribution for the parameters (b and K) from
equation (1.5), describing the physical model. From a Bayesian point of view, and for reasons
of conjugacy properties of the distributions used, we simply assign a normal distribution to
the parameters that we want to make inference on. The means (u;, and py) and variances (o

and o) of those distribution are called hyperparameters. Hence we have:
[bluv, 03] = N (pp, 03) (1.8)

K |1, o7] = N (s, o7) (1.9)

The prior distributions for the hyperparameters are assumed to be independent. We assume
non informative vague uniform prior distributions for the means (see Table 1.2), and the

inverse-gamma, prior distributions for the variances; the latter are
[o0] = T~ (a0, o)

[UK] = F_l(a0K7 60}()
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where o, and o, are shape parameters and (5, and [, are scale parameters (see previous

section).

1.2.4 Posterior distribution for variables and parameters

In Table 1.2 there is a summary of the all distributions assigned. The last step, now, is
to calculate the joint posterior distribution as a product of data model, process model and
parameters model. The posterior distribution is the process and parameters distribution

updated by the observed data. Remembering equation (1.1) and the Bayes’ rule, we have:

[R,V,b, K, jiy. ik, fiy, 0%, 02, 0%, 02| Dy, Dy o (1.10)

v

[Dr|R, 0, |[Du|V, 03, ][RIV b, K, 0 ][V | 1w, 7]

(0|11, 21K |k, o2 [pa] L) (1] [0 2] [0 ] [07] [0%:]

The relevant BH_TPM parameters that we want to simulate from equation (2.7) are the
parameters of the physical model b and K, and the error 0%. Also, we want to simulate the
variables R; and V;, in order to compare them with the observations. Finally we simulate u,
and o2 for model check purpose, that will be explained in the following section. In order to
simulate these parameters and variables, we have to integrate the joint posterior distribution

given by equation 2.7.

We use a Monte Carlo integration using Markov Chain (MCMC), where the Markov Chain
are constructed using Gibbs sampler (Gilks et al. 1996 and references therein).The Gibbs sam-
pling algorithm generates an instance from the distribution of each variable in turn, conditional
on the current values of the other variables/parameters. Therefore Gibbs sampling works by
iteratively drawing samples from the full conditional distribution of each quantity of interest
(i.e., variable or parameter); thus we calculate the full conditional distribution for every vari-
able R; and V;, and every parameter b, K, 012%, y and o2. The analytic expression for each

full conditional distribution calculated and used for sampling procedure is:

41
[R | rest] o< [ [N(Dy, | Ri, 0, )N(R; | bV; + K , 0%)]
=1

41 D, 41 Vit K ay 1 -1
N (Z 21+Z%>’<Zaz—+—2>

i—1 %Dri i R i=1 = Dr, R

K3
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V| rest] N(D,. | Vi, 0% IN(R; | bV + K,0%)N (Vi | 1w, 0
i D, R

41 41 41 -1
D, b(Ri — K) iy 1 11
N[ (D 5+ — 5+ a =t
— o o Lo o

Dv;  i—1 Dv; %9v IR

[b | rest] o<H [N (Ri | bV; +K,U%)} N (b | ,ub,az)

41 41 -1
SRV KV ) (SR
i=1

i=1 OR 9%

[K | rest] oc [T [N (R; | bV + K, 0%)] N (K | 115, 07)
- DR —0Vh) e a1 1\
o (LR (5 )
(Z55) () )

[ty | rest] ocH (Vi | o, 03)] U (4t | —00, +00)
41 ~1
Vi 41
“N<(§£o——z>’<o—%> )

[O’% | rest] O(H [N (RZ | bV@ +K, 0'%%)] F_l (U%% | O‘UR’ﬂUR)

5T ((471 +%R> , <ﬁi +§ (Ri — <b?+K>>2>>

=1

|I'€St O(H V | My, O v ]Fil (0-12; | agvaﬁov)

cr () (e )
Tv =1
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where the symbol U(a, b) indicate a uniform distribution on the domain [a, b].

To implement the Gibbs algorithm, we have to set the starting values for each quantity of
interest. The numerical solutions, obtained after 11000 iterations, exhibit good convergence
properties for all model variables and parameters. Figure 1.3 shows the constructed Markov
Chain using Monte Carlo integration for all values of BH TPM. We discard the first 1000
iterations as the burn-in phase. For readers are not familiar with MCMC simulations, the burn-
in phase is the number of iterations or the time steps needed by chains to reach convergence.
After that burn-in phase, the constructed chain can be considered stationary. In Figure 1.3
each chain converges after very few iterations. Anyway, for sake of precision, we run each
chain longer than needed (i.e., 11000 time steps), discarding the first 1000 iterations as the
burn-in phase (mainly because the longer is the chain, the better is the approximation of the
target stationary distribution, and moreover the Gibbs sampler simulation code is very fast
to run ). Hence the last 10000 Gibbs sampled time steps set up the posterior distributions for
BH_ TPM parameters and variables.

In order to ensure the convergence of each chain, regardless of starting values and the
number of time steps (i.e. iterations) used, we finally calculate the Gelman and Rubin statistics
(for a more detailed description of this method see Gelman et al. 2000, 331-332). For this
reason we perform a number of different parallel simulations with different starting values,
to check that the stationary distributions obtained are not sensitive to the random choice of
starting values. We perform 10 parallel simulation of 15000 runs with different starting values
and we monitor the convergence only for parameters b, K, 02, u, and o2. We use a higher

number of simulations to avoid slow convergence problems related to extreme starting values.

The Gelman and Rubin approach is substantially based on comparing different simulated
sequences by computing the between-sequence (i.e. B) and within-sequence (i.e. W) variance
(using the same notation present in Gelman et al. 2000). For a general scalar ¢;; with
i=1,....,nand j = 1,...,J, where n is the number of the simulations (i.e. 15000 in our

case) and J is the number of parallel sequences (i.e. 10 in our case), we compute:

B =

"N 6,-8)

J 1

1

J
]:

where E_j = %Z?:l ¢;j is the mean of the j-th sequence and ¢ = %ijl a_j is the grand
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mean and
1
2
W=— E 85
j:l

— \2. . - .
where s? = ﬁ Yoy (gbij — qﬁ_j) is the variance within sequence j.
Hence we can estimate var(¢ | data), the marginal posterior variance of the estimand, by

a weighted average of W and B, namely:

var(¢ | data) = "—_1W + lB
n n
For a finite number of simulations n, the variance W should be an underestimate of var(¢ |
data) because the individual sequences do not cover all the range of target distribution and,
as a result, will have less variability; in the limit n — oo, the expectation of W approaches
var(¢ | data). Therefore the aim is to monitor convergence by means of the factor

var(¢ | data)

R =
w

that has to be close to the unity. For the all parameters in our model, this R-factor estimand
is in practice equal to the unity. Therefore we have checked that the constructed Markov
chain for BH TPM parameters are independent of the starting values, then we can use the

last 10000 sampling values as posterior distribution for the parameters b, K, o, 1, and o,.

1.3 Parameters estimation and forecasting

In this section we examine the results obtained via MCMC-Gibbs Sampling for the model
variables and parameters. We explain the physical meaning of the simulated quantities and
their reliability to reproduce observational data. We test the forecast capability of this model
compared with some appropriate models previously published in the literature.

Before discussing the results obtained for Kilauea Volcano, we test the BH TPM and its
reliability by analyzing synthetic data. To this purpose, we generate a sample of 50 synthetic

7

synt from a log-normal distribution with zero mean and unit variance. By definition

values v
of log-normal distribution, we have that Viy,; = log(vﬁynt) are normally distributed. This set
of 50 Vit are random draws from a normal distribution and they mimic a synthetic catalog
of volume erupted. These synthetic volume data are substituted into the Time Predictable

equation (1.5), setting different values for the parameters b and K, in order to obtain a "purely"
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%

synt- Lhen, we add a white noise at

time predictable catalog of synthetic interevent times R

%

each synthefic interevent time Rf ,

. using the following equation:

iynt =K+ b‘/siynt +e
where £ ~ N (0, 1) is a stochastic noise term.

%
syn

different value of b, i.e. b =0.5, b =1 and b = 1.5, and the same value of K = 5, in order to

Thus we generate three different synthetic data sets of R . and Vi . each one with a

syn
reproduce three different eruptive regimes achievable with a Time Predictable equation (1.4),
ie. 0 <b< 1l b=1andb> 1. With this procedure we build up three synthetic data sets
consisting each of 50 pairs of intervent times and volumes. The idea is to use them to test our
BH_ TPM. Eventually, if the model is robust, we expect to find as outcomes the same b and
K values used to obtain the synthetic interevent times Riynt for each data sets. The results
of this synthetic test show a good reproducibility of the model respect to the parameters used
generating the Rgy,;’s. In Figure 1.2 there are the BH_TPM simulations for the parameters
b, K and 072, when the synthetic interevent time Ry,¢’s are generated with b = 0.5 and K = 5.
We obtain similar results in the other cases (i.e. b =1 and b = 1.5); we do not show them to
avoid redundancy. It is even interesting in Figure 1.2 that the numerical value of the variance
of interevent times distribution of BH TPM, i.e. o2, is comparable with the noise term e.
Yet, we acknowledge that the three data sets do not contain outliers, so there is a very small

variability inside them. Finally, as the model seems to be robust, we apply it to a “real”

dataset.

1.3.1 Parameters estimation

Using the great flexibility of the implemented Markov Chain, we obtain the numerical values

for model variables and parameters in two ways:

1. using all the first 41 events in the catalog (Table 1.1), but discarding the 42nd because
it is ongoing, to obtain the distributions of the variables R and V and the parameters

b, K and a%, see Figure 1.4, 1.5;

2. sampling b, K and 0'12{ through a forward procedure. At first, we use only the first event
in the catalog (see Table 1.1), and we add one pair of volume and interevent time data

at a time. Then, we simulate the distribution of each sampled parameter. Therefore we
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obtain 41 distributions for the model parameters, each one with an increasing number
of data used (see Figure 1.6. In this case, the last distribution in Figure 1.6 is the same

of the one in Figure 1.4.

Note that the second procedure provides interesting information; for example, it allows
us to investigate which is the minimum amount of data necessary to have an accurate and
informative distribution for model parameters. In other words we can control the amount
of data necessary to correctly perform the learning phase for the model. Moreover, this
procedure is particularly suitable to mimic a realistic eruption forecasting, since it uses only
data available at a specific time to forecast what will happen in the next future.

As it is shown in Figure 1.4, the inferred slope parameter b of the GTPM equation (1.5)
has a well defined distribution. First, we test the null hypothesis Hg:b <0 and we reject it
at 5% level of significance, stating that b has a distribution of values significantly greater
than zero. Its numerical values are between 0 and 0.5, with mean b = 0.21 and standard
deviation @ = 0.10. This means that GTPM works out for eruptive behavior at Kilauea
Volcano. Moreover its numerical value less than one implies a non-linear relationship in
equation (1.4) between interevent times and erupted volumes. Such non-linear relationship
implies the possibility of having a non costant input rate in the magma storage system.
Therefore, after a large erupted volume, we expect a shorter interevent time compared with a
classic Time Predictable System where the magma input rate is assumed constant in time.

A possible explanation might be represented by an increment in the magma input rate from
the depth to the shallow magma storage system after an eruption characterized by a large
volume. This might be due to an additional pressure gradient inside the magma chamber
ought to magma discharging process, because a large eruption drains the magma chamber
and decreases the effective pressure inside it (see Aki & Ferrazzini, 2001). This reduction of
pressure inside the magma storage system may trigger an increasing of magma buoyancy and,
obviously, an increase of the magma input rate. In addition, Takada, 1999 shows, as a result of
his deterministic model for dike migrations and stationing in the level of neutral buoyancy, the
possibility to have a constant supply rate with oscillations or fluctuations beneath intraplate
volcanoes (i.e. Mauna Loa and Kilauea volcanoes).

Another result is reported in Figure (1.4), where we show the distribution of intercept K

in equation (1.5). In terms of its physical meaning, we can consider it as a gauge parameter
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(see equation (1.4)) that links together two non-homogeneous quantities, i.e. interevent time
and erupted volume. As it is shown in Figure 1.4, the mean and standard deviation of the
parameter K are respectively K = 5.27 and &; = 0.22. The main result is that K has a
proper finite distribution, that represents the appropriate dimensional constant for equation
(1.4). The parameter K can also be seen as a function of the average recharge rate: in
equation (1.5) K = Ina, where a = (¢V?)/R, and a = 7}/v}’ from equation (1.4). So the
dimensionless o parameter, or better the dimensional parameter c¢ is function of the inverse
average recharge rate. However, due to the fact that b is different from 1, the term vf makes
it difficult to compare physically 1/c with the average recharge rate at Kilauea volcano for the

period 1923-1983.

The parameter 0% (see Figure 1.4) depends on the quantity R; — (bV; + K) and it can be
seen as a measure of the discrepancy between the simulated interevent times and the Time
Predictable equation. This error is a measure of how close the BH TPM model realizations
for R and V fit the data (D, and D,) when the variables simulated are constrained by the
data in the MCMC-Gibbs Sampling. In the process model distribution for interevent times
(i.e. equation (1.6)) errors are additive on the logarithm. After an exponential transformation,
this error becomes multiplicative respect to r;. The median of the distribution in Figure 1.4
is 1.33, and so an error of about 4 times the relative interevent time comes out. Nevertheless
we cannot consider 0% as a measure of goodness-of-fit for BH TPM to the data; this aspect
is discussed in the next subsection when we simulate and compare synthetic datasets with
observational data. This feature of the model in reproducing data with relatively small errors
is shown in Figure 1.5. The various panels in Figure 1.5 represent the simulated volumes
and interevent times (blue stars), plotted together with the observed data (red plus) that are

always within the simulated distributions.

As mentioned above, Figure 1.6 represents the distributions for model parameters b, K and
0'12{ using the sampling forward procedure described above at the point 2. Those figures show
the learning phase, before the dashed line, and the remaining part used to model checking
and forecasting. We choose the first third part of the catalog, i.e first 14 events, as a learning
phase; this means that we test the model on the remaining 27 events. We test again the null
hypothesis Hyp:b <0 and we can reject it a 5% level of significance for all b distributions after

the learning phase. The physical interpretation is the same as it was given before in describing
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results obtained using all catalog.

In particular we want to point out that results in Figure 1.6 are important to understand
the framework of the forward procedure to infer parameters distribution. This kind of sam-
pling, i.e. adding one pair of data at a time, will be particularly useful when we make forecast

for future interevent times (see below).

1.3.2 Model checking

The final goal is to check if the model is capable to reproduce satisfactorily the observed
data. To this purpose, we follow the approach suggested by Gelman et al. (2000,161), and
we compare the synthetic realizations given by BH TPM with the real data via descriptive
statistics. We choose this approach instead of the classical goodness-of-fit tests, because in this
way we can control directly the possible model failures computing the discrepancy between
the synthetic realizations (the so called posterior predictive distribution) and data. This is
an easy task in Bayesian statistics, because it is always possible to simulate the quantities of
interest from their posterior distribution.

In order to compare model realizations and data, we simulate a 10000 synthetic catalogs
from BH_TPM. The first step is to draw a random volume V from the process equation
(1.7) using its own mean pu, and variance o2 already simulated via MCMC-Gibbs sampling
using all data. The second step is to simulate an interevent time relative to the simulated
volume V from equation (1.6), using the parameters b, K and 012% in Figure 1.4. We iterate
this pattern to replicate the 41 pairs of interevent times and volumes, ending up with a new
synthetic catalog. By replicating this scheme 10000 times, we obtain 10000 catalogs each
one containing 41 events. The last step is to compare real catalog (41 observed interevent
times) with the 10000 replicated by BH _TPM, using descriptive statistics. For both real and
synthetic catalogs, we calculate the mean number of events (or mean rate of occurrence) A,
the maximum, the minimum, the median and the standard deviation of the interevent times.

The results are displayed in Figure (1.7), where we show the distributions for the above
quantities both for the synthetic realizations (blue bars) and for the real data (red line in
figure). The figures suggest that the model generates synthetic data that are reasonably in
agreement with real data, even though with some important discrepancies. In particular, the

model tends systematically to overestimate the maximum of R; and, as a consequence, it tends
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to underestimate the mean rate of occurrence. Owing to the overestimate of the maximum,
the standard deviation is overestimated too. Besides, the minimum is underestimated. In
spite of this lack-of-fit, however the median of the distribution shows a better agreement.

A possible explanation of these discrepancies may be linked to the use of log-normal
distribution for inter-event times and volumes. This choice has been mostly adopted for
technical reasons; in fact, the use of conjugate distributions (i.e. normal and inverse gamma
distributions) for each level in data model, process model and parameters model, makes the
calculations much easier. The log-normal distribution has a fat tail, so when we generate
synthetic data by drawing independent samples from such distribution, we obtain large values
(both for volumes and interevent times). In this way, in each catalog generated, there is
at least a synthetic eruption with unreasonably large erupted volume. Consequently, there
is systematically at least one very large interevent time, implying an overestimate of the
maximum. An analogous problem arises for the minimum. We attribute the lack-of-fit for
the minimum again to the tail behavior of the log-normal distribution close to zero. Likely,
the log-normal is not the optimal choice to capture the behavior of the extreme values of the
data in Table 1.1. Further developments of the model will drop the assumption of conjugacy
in order to improve the model. For now, we argue that these discrepancies do not affect
the conclusions about the existence of a time predictable model behind the eruption process.
Most important, as we will see in the next section, they do not affect too much the forecasting

performances of the model.

1.3.3 Forecasts

The last check on the reliability of the model consists of comparing the forecasting perfor-
mances of BH TPM against others model already present in literature. We endeavor to
compare the forecast capability of BH TPM with those of a Poisson model (Klein, 1982),
Log-Normal model (Bebbington & Lai, 1996b) and Generalized Time Predictable Model
(GTPM) (Sandri et al., 2005). The test mainly consists of calculating the gain in proba-
bility of BH TPM with respect to the cited models, under the framework of a probabilistic
forecast made on the observed data.

The homogeneous Poisson model is a totally random and memoryless model and it is

the simplest model to describe the eruptive process (e.g., Klein, 1982; Marzocchi, 1996).
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If the events follow a Poisson distribution, then the interevent times follow an exponential

distribution (see Klein 1982; Mulargia et al. 1985; Bebbington & Lai 1996a).

A Log-Normal model has been proposed by Bebbington & Lai (1996b) as a best fit dis-
tribution for Kilauea data. According to those authors, a log-normal distribution should take
into account the possible eruption cyclicity at Kilauea volcano. The authors test interevent
time distribution at Kilauea volcano on 7all“ data available (i.e. period 1823 to 1977 AD )
trying different possible distributions. The best fit is given by a log-normal one. At the same
time, the authors also state that the hypothesis of an exponential interevent time distribution
(Poisson process) can not be rejected when focusing only on data from 1918 to 1977 AD. This
latter results is in agreement with Klein (1982). This may mean that for our dataset (only
eruption form 1923 to 1983, see Table 1.1) a Poisson model could be preferred. Nevertheless,

we compare our model both with Poisson and Log-Normal models.

The GTPM proposed by Sandri et al. (2005) is substantially the non-hierarchical version
of the present model (i.e. BH_TPM). Those authors have applied a regression analysis on
the logarithm of the interevent time and volume data at Mount Etna volcano, finding a
time predictability for this volcano. However, in that model there is no possibility to use the
information given by the volume errors; volume data in GTPM are assumed to be affected only
by the scatter around the regression line. Here, we also compare BH TPM to GTPM. In this
way we point out some justifications for our choice of introducing a hierarchy to better capture
the time predictable behavior, which in turn is mainly due to the necessity of accounting for

the volume errors.

To this purpose, following the scheme proposed in seismology by Kagan & Knopoff (1997),
we calculate the probability gain of BH_ TPM versus Poisson, and Log-Normal and GTPM
models as the difference between the log-likelihood of the two models. Because of the com-
plexity of BH TPM, we do not have a classical analytical likelihood function, but equation
(1.6) contains the sample information and the process information, therefore we consider this
equation as the likelihood of our model. The probability gain is calculated over the data
following the learning phase (see Figure 1.6). For each of these eruptions, we calculate the
probability of having an event in a time window of one month around the observed interevent
time. For the BH_TPM such probability is obtained by equation (1.6) with the observed

volume datum and parameters estimated from the previous data. For example, in forecasting
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the 20th interevent time,we use the volume erupted in event number 20 in the catalog and
the parameters inferred from the first 19 events. For the other models, we use the likelihood
function to calculate the probability in the same one month time window around observed

data.

For sake of clarity, this procedure deserves further explanation. To calculate the prob-
ability for BH TPM we first simulate 10000 interevent times from the posterior predictive
distribution, then we calculate the empirical cumulative distribution function for the simu-
lated interevent times and finally we calculate the probability from the empirical distributions.
For Poisson, and Log-Normal models, we instead use the analytical cumulative distribution
function. We fit the parameters of those distributions via Maximum Likelihood Estimation
using the same forward procedure used for BH TPM. For GTPM we first calculate the re-
gression line following the forward procedure described above, then we forecast the interevent
time using the regression parameters and the volume datum. The probability here is calcu-
lated from the cumulative normal distribution on the logarithm of the data with mean equal
to the log-interevent time forecasted and variance equal to the residual mean sum of square.
Probability is always calculated as the difference in the one month time window around the

observed interevent time.

The results are displayed in Figure (1.8), where we show the probability gain for each
event (the so called "punctual probability gain”), and its total value obtained summing up
all punctual probability gains. If the probability gain is greater than zero, our model makes
better forecast than others. Figure (1.8) shows that not all the punctual probability gains are
positive, although the total probability gain is positive for all tests. In particular, BH TPM
does better forecast than all the other models we tested. Our choice of introducing this kind
of hierarchy is corroborated by the highest probability gain value which is obtained against
GTPM. In order to check if there are some systematic co-variation between the punctual
probability gain and the interevent times, we check a possible correlation between these two
quantities. We show only for the probability gain against the Poisson process, because this
model represents a totally random and memoryless eruptive behavior for Kilauea. Comparison
with a Poisson model allows us to speculate on the physical processes possibly involved in the

eruption dynamics.

Figure 1.9 shows the relationship between interevent times and punctual probability gains.
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The inverse linear relationship (the slope is significantly less than zero, P-value< 0.01) means
that, for very long interevent times, BH TPM performs worse than Poisson model. Per-
forming the same analysis for the punctual probability gain against the Log-Normal model,
it shows a weaker but still significant, inverse relationship. The slope is less than zero with
P-value=0.0125.

There are different possible explanations for the inverse linear relationship: 1) for long in-
terevent times, Kilauea volcano becomes memoryless in its eruptive behavior (see Marzocchi
& Zaccarelli, 2006); 2) our assumption on the time predictable model as a dynamic eruptive
behavior is too simple to describe events with long repose time; 3) the assumption used to con-
sider eruption as a point event in time without taking into account the eruption duration may
become distorting for the model forecast purposes (see Bebbington, 2008); 4)with BH TPM
at Kilauea, we neglect magma intrusions not followed by an eruption (Takada, 1999, Dvorak
& Dzurisin, 1993); 5) also we neglect possible changes in magma chamber geometry after an
eruption (see Gudmundsson, 1986). Further explanations could be derived focusing on the
volumes instead of the interevent times. The volume erupted may change the physical and
chemical conditions of the magma chamber and the magma conduit. However performing the
same regression analysis as in Figure 1.9, but for the volumes instead of interevent times, it

does not provide any significative correlation.

1.4 Conclusions

In this work we have developed a time predictable model embedded in a hierarchical Bayesian
structure (BH_TPM), to describe the behavior of eruptive catalog of open conduit volcanoes.
The use of a Bayesian structure allows to explicitly and formally include in the analysis any
kind of uncertainty (relative to data, models, and parameters). We have applied the model to
Kilauea eruptive catalog from 1923 to 1983 AD. The results show that interevent times depend
on the previous erupted volume, as in a generalized time predictable model (Sandri et al. 2005;
Marzocchi & Zaccarelli 2006). The model shows a reasonable fit with the data observed at
Kilauea volcano, although it is not able to capture all the features and variability of the real
catalog. We find also that the Kilauea volcano has a weak time predictable eruptive behavior;
likely this model could work better when applied to other “open” conduit volcanoes. However,

these discrepancies do not seem to affect the forecasting capability of BH TPM, that remains
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superior to the forecasting capability of a stationary Poisson model, a Log-Normal model and
Generalized Time Predicable Model. We suggest that the present model could be included in
a long-term Probabilistic Volcanic Hazard Assessment as a basic component for modelling the

occurrence of eruptions in time at Kilauea Volcano.
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Tables

Eruption # Onset Interevent time Volume
yyyymmdd [days] lava e tephra [10%m3]
1 1923 08 25 259 0.073
2 1924 05 10 70 0.79
3 1924 07 19 1083 0.234
4 1927 07 07 594 2.30
5 1929 02 20 155 1.40
6 1929 07 25 482 2.60
7 1930 11 19 399 6.20
8 1931 12 23 988 7.00
9 1934 09 06 6504 6.90
10 1952 06 27 703 46.70
11 1954 05 31 273 6.20
12 1955 02 28 1720 87.60
13 1959 11 14 60 37.20
14 1960 01 13 408 113.20
15 1961 02 24 7 0.022
16 1961 03 03 129 0.26
17 1961 07 10 74 12.60
18 1961 09 22 441 2.20
19 1962 12 07 257 0.31
20 1963 08 21 45 0.80
21 1963 10 05 517 6.60
22 1965 03 05 294 16.80
23 1965 12 24 681 0.85
24 1967 12 05 291 80.30
25 1968 08 22 46 0.13
26 1968 10 07 138 6.60
27 1969 02 22 91 16.10
28 1969 05 24 812 185.00
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Eruption # Onset Interevent time Volume
yyyymmdd [days] lava e tephra [10m?]

29 1971 08 14 41 9.10
30 1971 09 24 132 7.70
31 1972 02 03 457 162.00
32 1973 05 05 189 1.20
33 1973 11 10 251 2.70
34 1974 07 19 62 6.60
35 1974 09 19 103 10.20
36 1974 12 31 333 14.30
37 1975 11 29 654 0.22
38 1977 09 13 794 32.90
39 1979 11 16 896 0.58
40 1982 04 30 148 0.50
41 1982 09 25 100 3.00
42 1983 01 03 ongoing

Table 1.1: Catalog of eruptive events at Kilauea volcano




32

Tables

Data Model

Process Model

Parameter Model

Dy, ~ N(R;,0%,.)

R; ~ N(bV; + K,0%)

b~ N(u,07)

D'U,L' ~ N(‘/Z?O-QDUI)

Vi~ N(Mvv 012))

KNN(/J'K’O-%()

2
Thy, = known

oy ~ U(—00,400) *

My ~ U(_OO7 +OO) *

2
T, = known

U%% ~ Fil(aURv 501?,)*

pr ~ U(0,4+00)*

0‘2/ ~ F_l(agv,ﬁov)*

oy ~ T~ (aa,, Bs,)*

U%{ ~ Pil(aaKvﬁUK)*

Table 1.2: Overview of distributions used in BH TPM. The distributions highlighted with

*

gamma’s (i.e. I71) are taken equal to 1. U means uniform distribution.

are prior distributions for the BH TPM. The prior distribution parameters for inverse
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Completeness of Kilauea catalogue
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Figure 1.1: Plot of the cumulative number of eruptive events listed in Kilauea catalog. On
the right side of the dashed line there are the events that have been used in BH TPM. This
plot shows that the catalog is complete from 1918, but we have taken only eruptions from 1923

because 1919 and 1922 eruptions have missing volume data.
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Figure 1.2: Posterior distributions of relevant parameters of BH TPM using a synthetic cat-
alog with b=0.5. The first plot on the left represents the synthetic data sets (i.e. volumes and
interevent times); the other sub-plots show the parameters inferred by BH TPM. For more

information see the text.
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Figure 1.3: Constructed Markov Chains for each variable and parameter of the BH TPM. For
R and V we show just one of the 41 chains relative to each variable. In panel a, each chain
(i.e. each subplot) reaches the convergence after few iterations, forgetting the initial guess very
quickly. In this case the starting values is chosen to be 10 for all quantities. Iterations in panel
a represent only the first 100 iteration of the burn-in phase, for more details please refer to
the text. The remaining iterations (i.e. from 1001 to 10000), shown in b panel, represent the

conditional posterior distributions for BH _TPM wvariables and parameters.
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Figure 1.4: Posterior distribution for relevant parameters simulated using all data in catalog.
In panel a it is shown the posterior distribution of parameter b; in panel b the posterior

distribution for parameter K and in panel ¢ the posterior distribution for parameter O’%.
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Figure 1.5:  Blue stars show the posterior distributions of pairs of simulated variables (in-
terevent times R; and volumes V;). These variables are simulated via MCMC-Gibbs sampling
using all data in the catalog. Panel a is relative to R; and V; from 1 to 20 and panel b from
21 to 41. Red plus is the observed data.
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Figure 1.7: Distributions of synthetic interevent times (blue bars) compared with observed val-
ues (red line) using descriptive statistic. This goodness-of-fit test (for more detail see the text)
shows that our BH TPM predicts unreasonably long and short interevent times for Kilauea

volcano.
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Figure 1.8: "Punctual probability gain® of the BH _TPM for each event after the learning phase
against: in panel a Poisson Model (Klein, 1982), in panel b Log-Normal Model (Bebbington &
Lai, 1996b) and in panel ¢ Generalized Time Predictable Model (Sandri et al., 2005). Values
greater than zero indicate when BH TPM model performs better forecast than the reference
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probability gains.
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Figure 1.9: Regression analysis for BH TPM “punctual probability gain® against Poisson
Model versus observed interevent times. The significant inverse linear relationship, whose best
fit regression coefficients and R? are given, indicates a systematic negative probability gain
for long interevent times. As discussed in the text, this means an additional complezity for
long interevent times compared to the time predictable eruptive behavior. This causes a worse

ability of our BH _TPM, compared to Poisson model, to forecast long interevent times.
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Chapter 2

A new Bayesian Time-Predictable

Model for Open Conduit Volcanoes:
The Case of Mt Etna and Kilauea

Abstract

One of the main goals in volcanology is to forecast volcanic eruptions. A trenchant forecast
should be made before the onset of a volcanic eruption, using the data available at that
time, with the aim of mitigating the volcanic risk associated to the volcanic event. In other
words, models implemented with forecast purposes have to take into account the possibility
to provide “forward” forecasts and should avoid the idea of a merely “retrospective” fitting
of the data available. In this perspective, the main idea of the present model is to forecast
the next volcanic eruption after the end of the last one, using only the data available at
that time. We focus our attention on volcanoes with open conduit regime and high eruption
frequency. We assume a generalization of the classical time predictable model to describe the
eruptive behavior of open conduit volcanoes and we use a Bayesian hierarchical model to make
probabilistic forecast. We apply the model to Kilauea volcano eruptive data and Mount Etna

volcano flank eruption data.

The aims of this model are: 1) to test whether or not the Kilauea and Mount Etna vol-
canoes follow a time predictable behavior; 2) to discuss the volcanological implications of the

time predictable model parameters inferred; 3) to compare the forecast capabilities of this
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model with other models present in literature. The results obtained using the MCMC sam-
pling algorithm show that both volcanoes follow a time predictable behavior. The numerical
values inferred for the parameters of the time predictable model suggest that the amount of
the erupted volume could change the dynamics of the magma chamber refilling process during
the repose period. The probability gain of this model compared with other models already
present in literature is appreciably greater than zero. This means that our model provides
better forecast than previous models and it could be used in a probabilistic volcanic hazard
assessment scheme.

Keywords. Effusive volcanism, Bayesian modeling, Mount Etna, Kilauea, Probabilistic fore-

casting, Volcanic hazards and risks.

2.1 Introduction

One of the main goals in modern volcanology is to provide reliable forecast of volcanic eruptions
with the aim of mitigating the risk associated with. The extreme complexity and non linearity
of a volcanic system make deterministic prediction of the evolution of volcanic processes rather
impossible (e.g. Marzocchi 1996; Sparks 2003). Volcanic systems are intrinsically stochastic.
In general, eruption forecasting involves two different time scales: i) a short-term forecasting,
mostly based on monitoring measures observed during an episode of unrest (e.g., Newhall &
Hoblitt 2002, Marzocchi et al. 2008 among others); ii) a long-term forecasting, usually made
during a quiet period of the volcano, and mostly related to a statistical description of the past
eruptive catalogs (e.g. Klein, 1982, Bebbington, 1996a among others). Here, we focus our
attention only on this second issue. An incisive and useful forecast should be made before the
onset of a volcanic eruption, using the data available at that time, with the aim of mitigating
the volcanic risk associated. In other words, models implemented with forecast purposes have
to take into account the possibility to provide “forward” forecasts and should avoid the idea
of a merely “retrospective” fitting of the data available.

Different methods have been presented in the past years aiming at the identification of pos-
sible recurrence or correlation in the volcanic time and/or volume data for long-term eruption
forecast. Klein (1982), Bebbington & Lai (1996a and 1996b) and Mulargia et al (1985) studied
the time series of volcanic events looking at the mean rate of occurrence. Sandri et al. (2005)

applied a generalized form of time predictable model to Mount Etna eruptions using regression
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analysis. Marzocchi & Zaccarelli (2006) found different behavior for volcanoes with “open”
conduit regime compared to those with “closed” conduit regime. Open conduit volcanoes ( Mt
Etna, Kilauea volcano there tested) seem to follow a so-called Time Predictable Model. While
closed conduit volcanoes seem to follow a homogeneous Poisson process. De La Cruz-Reyna
(1991) proposed a load-and-discharge model for eruptions in which the time predictable model
could be seen as a particular case. Bebbington (2008) presented a stochastic version of the
general load-and-discharge model also including a way to take into account of the history of
the volcano discharging behavior. In this paper the author studied the time predictability as
a particular case of his model with application to Mount Etna and Mauna Loa 3and Kilauea
data series. A different hierarchical approach has been presented by Bebbington (2007) using
Hidden Markov Model to study eruption occurrences with application to Mount Etna flank
eruptions. This model is able to find any possible underlying volcano activity resulting in
changes of the volcanic regime. Salvi et al (2006) carried out analysis for Mt Etna flank erup-
tion using an Non Homogeneous Poisson process with a power law intensity, while Smethurst
et al (2009) applied a Non Homogeneous Poisson process with a piecewise linear intensity to

Mt Etna flank eruptions

In a recent paper Passarelli et al (2010) (in Chapter 1) proposed a Bayesian Hierarchical
Model for interevent time-volumes distribution using the time predictable process with ap-
plication to Kilauea volcano. The model presents a new Bayesian methodology for an open
conduit volcano that allows to take into account uncertainties in observed data. Besides, the
authors present and test the forecast ability of the model retrospectively on the data through
a forward sequential procedure. While the model seems to perform better forecast compared
with others model in literature, it produced fits to eruption volumes and interevent times that
were too large and this reduces the forecast performances. This is due to the use of normal
distributions for the log-transformed data. This is a restrictive distributional assumption that
creates very long tails. Here we propose a more general modeling strategy that allows for more

flexible distributions for the interevent times and volumes data.

Using the same framework of Passarelli et al (2010), we will model the interevent times
and volumes data through distributions with exponential decay (Klein, 1982, Mulargia, 1985,
Marzocchi, 1996, Bebbington, 1996a, 1996b and 2007, Salvi et al, 2006, Smethurst et al,

2009). This provide a general treatment of the volume and interevent time series, hopefully
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improving the forecast capability of the model. As a eruptive behavior we use the Generalized
Time Predictable Model (Sandri et al, 2005 and Marzocchi & Zaccarelli, 2006). This model
assumes: 1) eruptions occur when the volume of magma in the storage system reaches a
threshold value, 2) magma recharging rate of the shallow magma reservoir could be variable
and 3) the size of eruptions is a random variable, following some kind of statistical distribution.
Under these assumptions, the time to the next eruption is determined by the time required for
the magma entering the storage system to reach the eruptive threshold. The more general form
for a time-predictable model is a power law between the erupted volume and the interevent
time:

i = cv? (2.1)

where, if the parameter b is equal to unity we are in a classical time predictable system (see De
La Cruz Reyna 1991, Burt et al. 1994). If b is equal to 0 the system is not time predictable.
If b>1or 0<b<1wehave a non-linear relationship implying a longer or shorter interevent
time after a large volume eruption compared to a classical time predictable system. The goal
of the present work is to infer the parameters of Generalized Time Predictable equation (2.1).

In the remainder part of the paper, we focus our attention on some specific issues: 1) to
discuss the physical meaning and implications of parameters inferred; 2) to verify if the model
describes the data satisfactorily; 3) to compare the forecasting capability of the present model
with other models previously published in literature using the sequential forward procedure
discussed in Passarelli et al (2010) (see section 1.3 in Chapter 1). In the first part of this
paper, we will introduce the generality of the model by considering three stages: 1) a model
for the observed data; 2) a model for the process and 3) a model for the parameters (Wikle,
2003). Then we will discuss how: 1) to simulate the variables and parameters of the model,
2) to check the model fit, 3) to use the model to assess probabilistic forecast in comparison
with other statistical published models. The last part of the paper contains the application

of the model to Kilauea volcano and Mount Etna eruptive data.

2.2 A Bayesian Hierarchical Model for Time-Predictability

In the following sections we present a detailed description of our proposed model. We will

denote it as Bayesian Hierarchical Time Predictable Model IT (BH__TPM II), while the model
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proposed in Passarelli et al (2010) will be denoted as BH_TPM. In Section 2.2.1 we discuss
the modeling the measurement errors. In Section 2.2.2 we consider a model for the underlying
process (equation (2.1)), which is based on the exponential distribution. In Section 2.2.3
we discuss the distributions that are placed on the parameters that control the previous two
stages of the model. In Section 2.2.4 we introduce the simulation procedure and in Section

2.2.5 we consider model assessment and forecasting of volcanic eruptions.

2.2.1 Data Model

The dataset for this model has n observations with two components: erupted volumes and
interevent times. We will denote the volumes as d,;, and the interevent times as d,,. We
assume independence between the measurement errors of interevent times and volumes. This
is justified by the fact that these two quantities are measured using separate procedures. De-
pendence between interevent times and volumes will be handled at the process stage, following
the power law in (2.1). In addition, we assume that, conditional on the process parameters,
the interevent times or volumes are independent within their group. This is a natural assump-
tion within a hierarchical model framework. It is equivalent to assuming that the volumes
(times) are exchangeable between them. Exchangeability implies that all permutations of the
array of volumes (times) will have the same joint distribution. Exchangeability is weaker than
independence, and it is implied by it.

Our measurement error model assumes a multiplicative error for the observations. This

follows from BH TPM where it was assumed that
log(dy,) = logr; + log €y, (2.2)

with log €., ~ N (0,07, ) where 07, = (%)2 ( Passarelli et al 2010, data model in Chapter

1). The analogous assumption log(d,,) = logv; + loge,, and loge,, ~ N(O’JJQ:)U.) where

O'%)U' = (%)2, was considered for the volumes. Exponentiating on both sides of Equation
(2.2) we have

dy, = €r,15 (2.3)

which is the data stage model we propose in BH TPM II.
The error in Equation (2.3) follows a probability distribution with positive support. We

choose an inverse gamma distribution. This is a flexible distribution defined by two parameters
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which will provide computational advantages. We fix the two defining parameters by assuming
E(er,) = 1 and calculating var(e,,) using a delta method approximation. Specifically, from the

assumption that loge,, ~ N(0, a%r_)), we have that E(loge,,) = 0 and var (loge,,) = O'%)T' =

(%)2. Thus
’ 2 2
e =ob |0 (2(52))] = ()

where g(z) = exp(z) and ¢’ is the first derivative. At this point, remembering that a ran-

dom variable X that follows an inverse gamma distribution with parameters o, and 3,, has

2
expected value is F(X) = ale and variance var(X) = (—fQﬂ’ we then have that
Br,
ar,—1 =1

B _ (Adr\?
(ar,—1)%(ar;—2) — < dr; >

s - Ady, . :
Add;, )2+2and B, = (Add;_ )2 41 where d‘ff is the relative

Solving for «a,, and G, gives a,, = (

error. Analogous calculations can be done for the volumes. The joint distributions for the

measurement errors €, = (€y,,...,€,, ) and €, = (€, ..., €, ) result in
n
[er ‘047"1-7 ﬁrl H r- 047"1 s ﬁn and [Ev ’avi 5 ﬁv,] = H Fil (avi 5 ﬁvl) (24)
i=1

2
where o, = <Ad;i') +2 and B, = <Ad;li.) + 1. We use [X] to denote a distribution of

random variable X and I'"! to denote an inverse gamma.

The distribution for the observed variables d,, and d,, can be obtained from the error

qu«l

distributions specified by the expression in (2.4). Noting that ‘ @

= % we have from the
1

change of variables formula for probability density functions that

n

[dr|ar¢aﬁria""i] = HF_l(ari,ﬁrin) and [dv|aviaﬁviavi] = Hr_l(aviaﬁvivi)- (25)
=1

i=1
The expression in (2.5) will be used to obtain the likelihood function for our data. For sake
of clarity, assuming X is a random variable with continuous probability density function f.
Suppose that Y = r(X) , where r is a differentiable function, then the change variables formula

gives g(y) = f(r~*(y)) | dr~'(y)/dy |, where g is the probability density function of Y.

2.2.2 Process model

The starting point for the model pertaining the unobserved quantities r; is the assumption

that volcanic eruptions correspond to a homogeneous Poisson process. A homogeneous Poisson
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process in times has the property that the number of events that occur during a given time
interval follow a Poisson distribution with mean proportional to the length of the interval.
Additionally the time between consecutive events is distributed as an exponential random
variable (Klein, 1982, Mulargia, 1985, Marzocchi, 1996, Bebbington & Lai, 1996a, 1996b).
Thus we assume that r; ~ Exp()) implying that the joint distribution of r = (ry,...,7y)
is given by [r|]A\] = [, Exp(\). Given the distributional assumption for the interevent

times we can obtain the distribution of the volumes v; using Equation (2.1). Recalling that

Ty = cvf and % = cbvffl. the change of variable formula for probability density functions
1
yields [v;] = cb)\vf_le*)‘wf Written in distributional form we have: v; ~ Wb <b, (ﬁ) b) where

Wb(-,-) denotes a Weibull distribution. The joint distribution for the volumes v = (vy,...,v,)

is given as

WA b, d] = QWb (b, <%>b> . (2.6)

This completes the specification of the second stage of our model.

2.2.3 Parameters model

To complete our model we need to specify distributions for the parameters b, ¢ and A. Our
choices are based on prior information obtained from previous modeling efforts. In a Bayesian
setting, like the one proposed in this work, we have the ability to include structural informa-
tion, like the one used to build the second stage model, as well as prior information. The final
product consists of the posterior distribution of all model parameters. This contains a blend
of the information provided by all the stages of the model: data, process and prior knowledge.

We choose for A a gamma distributions with known parameters, from now on hyperpa-
rameters. This is denoted as have: A ~ Ga(ay, 8)) where a;y and ) are calculated by fitting
the interevent times data with a gamma distribution, via maximum likelihood estimation.
For the time predictable equation parameters, i.e. b and ¢, we use normal distributions with
moments calculated using the posterior distributions taken from BH_TPM (Passarelli et al.,
2010). Thus [b] = N(u, 07) and [¢] = N(pe, 02).

By choosing the values of the hyperparameters we are introducing a certain degree of
subjectivity in our modeling. We believe that this is a desirable feature of the Bayesian
approach, as it allows to incorporate knowledge from similarly behaved open conduit volcanoes.

We remark the subjective approach allowed in Bayesian Statistics could be a suitable tool in
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modeling geophysical phenomena where available data are scarce. This provides the possibility
of incorporating knowledge obtained from other sources in a probabilistic way, through the
prior distributions. This allows for the introduction of physical and/or statistical constraints,
when available, on the parameters governing the examined phenomenon. In principle this
methodology could be helpful to improve the understanding of a particular system. We want
to point out, though, that subjective statistical modeling choices need careful justification,

possibly relying on physical or phenomenological constraints.

2.2.4 Posterior and full conditional distributions

The three stage model specification developed in the previous sections produces a posterior
distribution for the model parameters 7, v, b, c and A that, using Bayes theorem, can be written

as

[r,v,b, ¢, A|dy, dyAd, Ad,] (2.7)

[dr|a, , Ba, » r][dvl|aa, s Ba,, v][v]e, A, bl[r [ ATATB][e]

To make inference about the posterior distribution specified by Equation (2.7) we draw samples
from it using Monte Carlo Markov Chain (MCMC) methods (Gelman et al, 2000, Gilks et
al, 1996 ). This requires the full conditional distributions for each parameter in the model.
In the equations below we specify each of them using the notation [X]...] to indicate the

distribution of variable X conditional on all other variables.

[Ti\---]@?‘f‘”exp{—n <)\+%>}:Ga<ar+1 /\+5—T>

[vi] ...] via”ﬁb*l exp { <)\cv + ﬁ; Z) }

[A...] oc A2l exp {—)\ (ﬁA +c v + Z rl>}
Ga<a>\+2n,ﬁ>\+cz Zﬁ)
1=1 1=1
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n 2
b HcC C
[c\...]occ"exp{—c)\ g vi+2ag_ﬁ}

i=1

The full conditional distributions of r;,7 = 1,...,n and A can be sampled from directly, as
they correspond to gamma distributions. So those parameters can be sampled using Gibbs
steps. The full conditionals of the other parameter do not have standard forms. So we use
Metropolis steps to obtain samples from them. Once samples from the MCMC are obtained
we discard the first part of the chain as a burn-in phase (see for example Gilks et al, 1996 );
then we do a “thinning” of the chain by subsampling the simulated values at a fixed lag k. This
strategy ensures that, setting k to some value high enough, successive draws of the parameters
are approximately independent (Gelman, 1996). To define the lag we use the auto-correlation

function as we will show afterwards in the text.

2.2.5 Model Checking and Forecasting procedure

We have presented, so far, the hierarchical structure of the model and the fitting procedure
for the model parameter, based on MCMC sampling. We now address the issues of (1) testing
the goodness of the proposed model and (2) forecasting future interevent times.

Bayesian model checking is based on the idea that predictions obtained from the model
should be compatible with actual data. So our strategy consists of simulating data from the
predictive posterior distribution and compare them to actual observations. The predictive
posterior distribution quantifies the uncertainty in future observations given the observed

data. By denoting 7 future values of interevent times we have that the posterior predictive is
(7 | Data] = / 7 | A\ | DataldA (2.8)
Rt

To obtain samples from the expression in Equation (2.8) we start from the MCMC sample of
\. Suppose we have N of them and denote them as M. Conditional on M, for j =1,..., N we
simulate 7/ from [7 | ], which are products of exponential. In this way we obtain N synthetic

catalogs each one with n pairs of interevent time and volume data. These are compared to
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the observed data using descriptive statistics. As descriptive statistics we choose the mean
number of events, maximum, minimum, median and standard deviation for both real and

synthetic data.

To test the ability of the model to forecast future volumes and interevent times we use
a sequential approach. We proceed by fitting the model to the first data pair, then we add
the data of the second event to the model fitting. We continue adding data sequentially until
the last event. This provides an assessment of the number of data needed for the model
to effectively “learn” the model parameters. Using this sequential approach, we are able to
decide the minimum amount of data needed to define the learning phase for the model. For
the remaining part of data (i.e. voting phase), we use the sequentially sampled parameters
to generate the distribution for the next event (interevent time). In this way we can compare
the forecasted interevent times with the observed data and with other other possible models
already present in literature (see forward procedure discussed in Passarelli et al., 2010, see

Section 1.3 this volume).

A close look at Equation (2.8) reveals a practical forecasting problem. We observe that
the posterior predictive distribution of the interevent times depends on the distribution of the
interevent times given the parameter A. While this is statistically correct, it is not a realistic
forecasting procedure. In fact, in a generalized time predictable system the time to the next
eruption is strongly dependent on the volume of the previous eruption. More explicitly, in
our current framework, after the end of the n-th eruption we have samples of A that are
simulated using only the information up to (dr(nfl)’dv(nfl))- We would like to incorporate
the information on d,,,. We do this by resampling the posterior realizations of A\ using the
Sampling Importance Resampling algorithm (hereafter SIR), (Rubin,1988, Smith and Gelfand,
1992) together with the Bayes theorem.

Let 6,_1 = b, ¢, A the samples obtained from our model using the first n — 1 data. For the

n-the interevent time we have

| dy,] = / o a0t OB | oy 1) (2.9)
R

Obtaining samples from the predictive distribution in Equation (2.9) requires samples of

[0rn—1 | dy,,vn—1], which are not available. Our MCMC algorithm produces samples of
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[0n—1 | dy, ,,vn—1] instead. Using Bayes theorem we have that
[an—l ‘ dvnavn—l] X [dvn ‘ vn—han—l][en—l ’ Un—l] . (210)

In Equation (2.10) we recognize [d,,, | vn—1,0r—1] as the inverse gamma distribution used for
volume data in Equation (2.5). [f,—1 | v,—1] is the posterior distribution for parameters X, b
and c up to the first n — 1 events. The SIR algorithm consists of resampling the output from

the MCMC, say 6’%_1, with replacement, using the normalized weights defined as

w(eizfl')
S w(®h )

w(0),1) =

9@'

! _1]. The weights w correspond to the inverse gamma distribu-

where w(0!_|) = [dy, | v8_q,
tion in Equation (2.5) for the observed volume of the n-th event conditional on the sampled
volumes of the previous event and the remaining parameter, as simulated by the MCMC.
The output from the SIR algorithm can be used within Equation (2.9) to obtain the desired

samples of the n interevent time. A brief description of the SIR algorithm is in Appendix A.

Finally we make explicit comparison for the probability of eruption calculating the prob-
ability gain or information content as proposed by Kagan & Knopoff (1987). We calculate
the information gain for the present model with respect to other statistical models previously
published, sharing the sequential approach above discussed and only on the voting phase. Let
A and B two statistical models, the probability gain is simply defined as the difference between

the log-likelihood distributions, i.e.:

n n

PG = "1a(6dy) = Y 15(5dy,) (2.11)
i=m i=m

where [4 is the natural logarithm of the likelihood of the model A and [p of the model B

calculated in a temporal window dd,, of one month around the observed interevent time in

the voting phase (i.e. on the n — m events).

If PG is greater than zero, model A performs better forecast than model B, if PG is
zero the two models provide the same information to the forecast. Together with the total
probability gain given by equation (2.11), we can calculate the “punctual® probability gain,

i.e. the probability for each event l4(dd,,) —lp(dd,,) with i =m, ..., n (Passarelli et al, 2010).
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Application to Kilauea volcano, Hawaii, and Mount Etna vol-

cano, Sicily

We apply the BH TPM II to Kilauea volcano and Mt Etna volcano eruption data. Marzocchi
and Zaccarelli (2006) found that Kilauea volcano and Mt. Etna volcano follow a time pre-
dictable eruptive behavior. They also stated that these volcanoes are in open conduit regime
because their high eruptive frequency and consequently short duration of interevent times.
Bebbington (2007) showed evidence of the time-predictable character of Mt. Etna flank erup-
tions using a catalog since 1610 AD. The same results on time-predictability are attained by
Sandri et al (2005) only focusing on the Mt Etna flank eruptions in the period 1971-2002.
Passarelli et al (2010) (in Chapter 1) found time-predictability of Kilauea volcano for eruptive
catalog since 1923 AD.

These findings led us to use Kilauea and Mt Etna as the best candidate for the model.
In applying the model to these two volcanoes we will able to test: 1) whether or not they
follow a time predictable behavior; 2) the reliability of the assumptions used in the model; 3)
improvements in using the information given by the volume measurement errors; 4) the ability
in fitting the observed data and 5) the forecast capability of the model compared with models

previously published in literature for Kilauea and Mt Etna.

2.3 Kilauea volcano

Kilauea volcano is the youngest volcano on the Big Island of Hawaii. The subaerial part of
Kilauea is a domelike ridge rising to a summit elevation of about 1200 m, it is about 80 km
long and 20 km wide, and covers an area of about 1500 km?. Kilauea had a nearly continuous
summit eruptive activity during the 19th century and the early part of the 20th century.
During the following years, Kilauea’s eruptive activity had shown little change. After 1924,
summit activity had become episodic and after a major quiescence period during 1934-1952,
the rift activity raised increasing the volcanic hazard (Holcomb, 1987). Tt is widely accepted
that Kilauea has its own magma, plumbing system extending from the surface to about 60 km
deep in the Earth, with a summit shallow magma reservoir at about 3 km depth. The shallow
magma reservoir is an aseismic zone beneath the South zone of the Kilauea caldera and it is

surrounded on two sides by active rift conduits (Klein et al 1987).
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The eruption history of Kilauea volcano directly documented dates back to 18th century,
however before the 1923 the recorded eruptions are spotty and in most of the events the volume
erupted is unknown. Therefore, in our analysis we consider all 42 events after 1923 AD (please
refer to Passarelli et al., 2010 for more details on the Kilauea catalog completeness, Chapter
1). The data are listed in Table 2.1 where we report the onset date of each eruption together
with the erupted volume (lava + tephra) and the relative interevent time. The volume of the
1924/05/10 event is taken from http://www.volcano.si.edu/ and is only the tephra volume.
Since the eruption that began in 1983 is still ongoing with a volume erupted greater than 3
km?, we have 41 pairs of data of interevent time (i.e. the time between the onset of i-th and
the onset of (i+1)-th eruptions) and erupted volume (in the i-th eruption).

In the next two subsections we will present the results of the model for the Kilauea dataset.
We will show first the results obtained for the model parameters both using all data and the
sequential procedure discussed in section 2.2.5, together with the ability of the model in fitting
the data (model checking). Then we will show the forecasts obtained using this model; we

will compare it with forecasts provided by other models previously published.

2.3.1 Results for variables and parameters

Before to embark on the discussion of the results achieved, we need first to specify the values
for the measurement errors (Ad,,, Ad,,) and the hyperparameters (u, 07, jic and o2) of the
prior distributions of b and c¢. For interevent times we choose an error (Ad,,) of 1 day for
all data in the catalog; for volumes errors we assign a relative errors (Ad,,/d,,) of 0.25 for
data before the 1960 AD (i.e. i = 1,...,13) and of 0.15 for data after the 1960 AD (i.e.
i = 14,...,41) (see discussion in Passarelli et al, 2010, Section 1.2.1 in this volume). The
values for the hyperparameters are taken running the BH TPM and calculating the mean
and standard deviation of the posterior distribution for b and ¢, i.e. up = 0.2, g = 0.1,
te = 200 and 0. = 50 (see Passarelli et al, 2010, see Figure 1.4 in Chapter 1).

We simulate the variables and parameters from the posterior distribution (2.7) using
MCMC algorithm. As stated in the section 2.2.4, we use both Metropolis-Hastings and Gibbs
sampling algorithms. Those simulation techniques do not provide independent samples; suc-
cessive values for each chain (i.e. each full conditional distribution) are potentially highly

correlated. The optimal number of iterations needed to obtain independent draws from the
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posterior distribution is determined by using the autocorrelation function. We calculate the
autocorrelation function to determine at which lag the values for variables and parameters
are independent. In Figure 2.1 is plotted the autocorrelation function for lag 1 to 20 for the
parameters b, ¢ and A, we do not show the same plot for the 41 variables r;’s and 41 v;’s
because they give zero correlation almost at the first lags. It is easy to see that the auto-
correlation function is close to zero when lag is equal to 20. Hence we run each chain in the
MCMC algorithm for 201000 iteration and we thin it with every 20 iteration discarding the
first 1000 iteration as a burn-in phase. At the end we have that each variable and parameter

is composed by 10000 simulations.

Simulations obtained are presented in Figures 2.2 and 2.3. In Figure 2.2 we show the
MCMC realizations for the model variables r; and v; (blue stars) compared with the observed
data (red pluses). Those variables are calculated using all data in the catalog and are repre-
sentative of how the model can reproduce the data. The data reproduction is optimal when
the variables are constrained into their full conditionals by the data. It is worth to under-
line, looking at the scale for x-axis and y-axis, how the model is able to reproduce errors

measurements, simulating interevent times with little errors and volumes with bigger ones.

In Figure 2.3 we present the results for the model parameters b, ¢ and A using all data.
A close look at their value gives that Kilauea volcano has a time predictable behavior, since
b (top left panel) is less than 1 and greater than zero with mean b = 0.45 and standard
deviation @, = 0.05. This results are similar to those achieved by Passarelli et al (2010),
however there the mean value for b distribution is lower. The discrepancy could be imputed
at two factor: a different parametrization used in the models and the fact that here we do not
use the logarithm of the interevent times and volumes. For the distribution for ¢ (top right
panel), which is function of the average magma recharge process, we find a mean value ¢ = 164
days/10% m? with error (1 standard deviation) &, = 24 days/10% m3. In the bottom left panel
we have the posterior distribution for A, the rate of occurrence or the number of events over

1 and standard deviation

the length of the catalog. Their mean value is A = 2.0 x 1073 days™
o = 0.3x 1073 days~! which are totally compatible to the occurrence time calculated directly
by the data with Maximum Likelihood Estimation (MLE) technique, i.e. Ayszp = 1.9 x 1073

days—! with 95 % confidence interval [1.4,2.5] x 103 days~!.

In the Figure 2.4 we present the parameters b, cand A using the sequential approach dis-
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cussed in section 2.2.5.The black dashed lines determine the division between the learning and
voting phases. In particular the events on the left of the dashed line are the learning phase
(first third of the catalog, i.e. 14 events), while we use the remaining part to test the eruption
forecasts (i.e. 27 events). We will use these realizations into the forecast procedure and we
will discuss it in the next section.

The results obtained imply a power law relationship between interevent times and volumes.
As discussed in Passarelli et al (2010) this non linear relationship underlines the role played
by magma discharging process onto the eruption frequency. Such relationship implies the
possibility of having a non costant input rate in the magma storage system. Therefore, large
erupted volume may trigger the increasing of the magma upwelling process inside a shallow
reservoir. We expect a shorter quiescence period after an eruption characterized by a large
volume compared with a process where the magma recharging rate is constant (i.e. Classical
Time Predictable model). A simple explanation could be thought as an additional gradient
of pressure ought to the drainage process of the shallow magma system by a large erupted
volume. This pressure gradient may increase the magma upwelling process from the deep
crust. Non constant magma input rate for the shallow magma reservoir for Kilauea volcano
has been found by Aki & Ferrazzini (2001) and Takada, (1999). This possible non-stationarity

should be taken into account in modeling the magma chamber dynamics at Kilauea volcano.

2.3.2 Model checking and Forecasts

The model check is a way to assess the fit of the model to the data. This sensitivity analysis
quantify the uncertainties of the model in regard to future observations; on the other hand, it
is a way to understand the limits of the model in reproducing data. In checking the model,
we simulate 10000 synthetic catalogs using the procedure described in Section 2.2.5. Then we
calculate for both synthetic catalogs and observed data, the rate of occurrence, the maximum,
the minimum, the median and the standard deviation. In Figure 2.5 we plot the synthetic
data as histograms (blue bars) and the relative quantities calculated over the real dataset (red
line). For each plotted quantity the p-value (i.e. fraction of synthetic simulations with value
greater than the observed quantity) is indicated. It is easy to see a good agreement for the rate
of occurrence, the minimum and the median. The are some discrepancies for the maximum

and consequently for the standard deviation. In these cases the observed value falls in the
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tails of the predictive distributions. This is due to the fact that the maximum corresponds to
the 18 years of quiescence of the Kilauea volcano (i.e. 1934-1952 AD). This is a extraordinary
long period of rest for the Kilauea and it could be considered as an extreme value. The second
longest interevent time is about 5 years of quiescence (i.e. 1955-1959 AD). Such value falls
right at the center of the distribution with p-value=0.7. In summary, the model is capable
of reproducing the data, with the exception of future extreme events that correspond to the

tails of the predictive distribution.

The last check on the reliability of the model is to evaluate its forecast performances and
compare them with already published models for the Kilauea volcano interevent times. We
make probabilistic forecast comparison of this model with homogeneous Poisson process (Klein
et al, 1982), Log-Normal model (Bebbington & Lai, 1996b), Generalized Time Predictable
Model (GTPM) (Sandri et al., 2005) and BH_TPM (Passarelli et al, 2010, Chapter 1 in this

volume) using the sequential procedure described in Section 2.2.5.

The homogeneous Poisson process was proposed by Klein (1982) to describe the Kilauea
interevent time data. This model implies a totally random and memoryless eruptive behavior;
while the number of events in time is distributed according with a Poisson distribution, the
time intervals between two consecutive events has exponential distribution. The Log-Normal
model was proposed by Bebbington & Lai (1996b); in this model interevent times are described
using a log-normal distribution. The mode of a log-normal distribution could reveal a certain
degree of cyclicity in the eruptive behavior for Kilauea volcano. The GTPM was proposed by
Sandri et al., 2005. It is a linear regression among pairs of logarithm of interevent times and
of volumes. The BH TPM is a hierarchical model where the interevent times and volumes
are described via log-normal distributions and uses the logarithm of the generalized time

predictable model equation as eruptive behavior.

We calculate the probability for BH TPMII drawing simulations from equation (2.9),
where the M\ are resampled with the SIR algorithm using the information given by volume
data. The results of the SIR procedure are plotted in Figure 2.6 where the blues stars refer
to the MCMC’s output and the red ones are the resampled. It is worth to underline that
the information provided by the volume data into the SIR procedure shrinks and shifts the A
distributions. Besides the mode of the resampled \’s has a higher value than the mode of the

non resampled ones. Now, using the resampled \’s, we can calculate the probability gain.
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The results are plotted in Figure 2.7 where we show the ” punctual® probability gain and
we report the total probability gain as calculated using equation (2.11). The model shows an
improvement in forecasting capability respect to the other models because the total probability
gain is always greater than zero in all tests. The best results is for the test against the Poisson
model (panel a) where the model performs better forecasts for 20 out of 27 eruptions. Good
results are those against the Log-Normal model (panel c) and the highest probability gain is
obtained testing against the GTPM (panel d). This latter result implies that the information
on the error measurements are helpful in the model budget. The test against the counterpart
of this model, i.e. BH_TPM (panel b), shows a weaker results, however the total probability
gain is greater than zero. BH_ TPMII gives better forecasts over 19 out of 27 events. PG,
here, is influenced by two events (i.e. the 1st and 11th in Figure 2.7) where the "punctual®
probability gain is particularly negative. It seems that, despite of some local discrepancies,
the BH TPMII shows a better behavior in forecasting the eruptive events. Evidence toward
this statement is the fact that in all tests BH _TPMII gives better forecast for more than 50%
of events manifesting a higher reliability in case of its potential use in probabilistic volcanic
hazard assessment.

Finally we investigate some possible correlation between the "punctual” probability gains
and the interevent times or volumes using linear regression analysis. We do not find any
correlation between volumes and probability gain. The only significant linear dependence (p-
value< 0.01) we find is between “punctual ¢ probability gain calculated against homogeneous
Poisson process and observed interevent times, as in Figure 2.8. The inverse relationship imply
that systematically we perform worse forecast for long interevent times. We can justify this
results stating that for long quiescence period the Kilauea volcano becomes memoryless (see
Marzocchi & Zaccarelli, 2006). In addition, considering the events as points in time could
be distorting when eruptions last months to years (see Bebbington, 2008), together with the
fact that we do not consider intrusions not followed by eruptions (Takada, 1999, Dvorak &
Dzurisin, 1993). Finally another possible explanation could be related to possible modification

of the shallow magma reservoir geometry after an eruption ( Gudmundsson, 1986).
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2.4 Mount Etna volcano

Mount Etna volcano is a basaltic stratovolcano located in the North-Eastern part of the Sicily
Island. Tt is one of the best known and monitored volcano in the world and records of its
activity date back to several centuries B.C. The sub-aerial part of Mount Etna is 3300 m high
covering an area of approximately 1200 km?. Two styles of activity occur at Mt Etna: a quasi-
continuous paroxysmal summit activity, often accompanied with explosions, lava fountains and
minor lava emission; a less frequent flank eruptive activity, typically with higher effusion rate
originate from fissures that open downward from the summit craters. The flank activity is
sometimes accompanied by explosions and lava spattering; recently, two flank eruptions have
been highly explosive and destructive, the 2001 and 2002-2003 events (Behncke & Neri, 2003,
Andronico et al, 2005, Allard et al, 2006).

At present there are petrological, geochemical and geophysical evidences for a 20-30 km
deep reservoir controlling the volcanic activity (Tanguy et al, 1997), but it is still debated
whether or not Mt Etna has one o more shallower plumbing systems. Results from seismic
tomography do not reveal any low velocity zone in the uppermost part of the volcanic edifice,
while a high-velocity body at depth of < 10 km b.s.l. is interpreted as a main solidified
intrusive body (Chiarabba et al, 2000, Patané et al, 2003). However, a near-vertical shallower
plumbing system has been recently inferred at about 4.5 km b.s.l. using deformation data
(Bonforte et al, 2008 for a review). It is widely accepted that a central magma conduit feeds
the near-continuous summit activity, while lateral eruption are triggered by lateral draining of
magma from its central conduit. Only few events appear to be independent from the central
conduit being fed by peripheral dikes (see Acocella & Neri, 2003 among others).

The recorded eruptive activity for Mt Etna dates back to 1500 B.C. (Tanguy et al, 2007).
Unfortunately, the eruptive catalog can be considered complete only since 1600 AD for flank
eruptions (Mulargia et al, 1985). Instead summit activity, was recorded carefully only after
the World War II (Andronico & Lodato, 2005) and only after 1970 all summit eruptions were
systematically registered (Wadge, 1975, Mulargia et al, 1987). Thus the Mt Etna catalog is
considered complete since 1970 AD for summit eruptions. There are several catalogs for Mt
Etna eruptions available in literature, the most recent ones being those compiled by Behncke
et al (2005), Branca & Del Carlo (2005) and Tanguy et al (2007); the Andronico & Lodato

(2005) catalog is detailed only for events in the 20th century. In this study we use only the
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flank eruptions since 1600 AD using the Behncke et al (2005) catalog as it appears the most
complete, at least for volume data. We also integrate and double-check the volume data for
the 20th century events with the Andronico & Lodato (2005) catalog. The Behncke et al
(2005) catalog lists events up to 2004/09/07 eruption, so we update it for 2006 AD and 2008
AD eruptions using information available in Burton et al (2005) and Behncke et al (2008). A
raw estimation for the volume of the 2008/05/13 eruption was kindly provided by Marco Neri
(Marco Neri personal communication, 2010).

The choice of using only lateral eruptions needs qualification. Although it could be ar-
guable and could explain only one aspect of the eruption activity at Mt Etna volcano, we are
pushed in this direction by the quality of data available. Besides, from a statistical point of
view, it is better not to use an incomplete dataset with the awareness of the risk of losing
one piece of information, than using incomplete data and find false correlations (Bebbington,
2007). Flank eruptions, however, constitute one of the most important threat for a volcanic
hazard assessment at Mt Etna (see Behncke et al, 2005 and Salvi et al, 2006 among others).
Thus, in our opinion, the choice of using only flank eruptions seems the best available in a
volcanic hazard assessment perspective. In Table 2.2 the data of flank eruptions at Mt Etna
are reported; we indicate the onset date, interevent times (d,,) and volumes (d,,). The are 63
eruptive events and consequently 62 pairs of interevent time and volume data.

The next two subsections are organized as follows: we first show the results obtained for
the model parameters both using all data and the sequential procedure discussed in Section
2.2.5, then the ability of the model in fitting the data (model checking) and the forecast
obtained. Finally, we will compare them with forecast provided by other models previously

published (when the comparison is possible).

2.4.1 Results for variables and parameters

In order to apply the model to the Mt Etna flank eruptions, first we need to specify the
measurements errors (Ad,,, Ad,,) and the hyperparameters (, 07, fic and o2) for the priors
distribution for b and c¢. In the Behncke et al (2005) catalog there is no mention about the
interevent time errors whereas relative errors are given for volume data. Therefore, we assign
an error of 1 day for Ad,, for interevent times. According to Behncke et al (2005) we assign

relative errors as follows: Ad,,/d,;, = 0.25 for i = 1,...,43 (eruptions from 1607 to 1970AD),
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Ad,, /d,, = 0.05 for i = 44, ...,60 (eruptions form 1970 to 2004 AD) and Ad,,/d,, = 0.25 for
i = 61,62. The latter errors are relative to the 2006 and 2008 AD events not in Behncke et
al (2005) catalog; whose volumes are first raw estimate not reparametrized yet (Marco Neri

personal communication, 2010).

The MCMC simulations here are performed following the thinning procedure already dis-
cussed. In Figure 2.9 there are the autocorrelation function results from lag 1 to 20 for the
parameters b, ¢ and A, we do not show the same figures for the 62 variables r;’s and 62 v;’s
because they provide zero correlation at almost the first lags. The autocorrelation function is
practically zero at lag 20 for all parameters. Therefore we run 201000 simulations discarding
the first 1000, as a burn-in, and than thinning the chains every 20 iterations. In this way we
obtain posterior distributions for variables and parameters of 10000 simulation each. For the
hyperparameters we choose the same parameters as the Kilauea case, i.e.u; = 0.2, o = 0.1,

e = 200 and o, = 50.

Simulations obtained are presented in Figures 2.10 and 2.11. The data reproduction here
is optimal when the variables are constrained in their full conditionals by data, see Figure
2.10 where simulation are blue stars and data red pluses. Also here, as in the Kilauea case,
the model reproduces reliably the measurement errors assigned. In Figure 2.3 we present the
results for the model parameters b, ¢ and A using all data. The value obtained for b (top
left panel in Figure 2.11) suggests that Mt Etna flank eruptions follow a time predictable
eruptive behavior. The numerical value for 0 < b < 1 implies a power law time predictable
behavior, the mean and standard deviation are b = 0.35 and &, = 0.04 respectively. For the
distribution for ¢ (top right panel), which is function of the average magma recharge process,
we find a mean value ¢ = 330 days/10® m? with error (1 standard deviation) &, = 40 days/10°
m?3. In the bottom left panel we have the posterior distribution for the rate of occurrence
A. The mean value and standard deviation are A = 5.4 x 107* days™! and @ = 0.6 x 1074

I respectively, and are totally compatible with the rate of occurrence calculated directly

days™
by the data with MLE technique, i.e. Ayrp = 4.2 x 1074 with 95 % confidence interval

[3.2,5.4] x 1074

In the Figure 2.12, we present the parameters b,cand) using the sequential approach
discussed in section 2.2.5. The black dashed lines determine the division between the learning

and voting phase; the events on the left of the dashed line constitute the learning phases (first
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third of the catalog, i.e. 20 events), while we use the remaining part to test the eruption
forecasts (i.e. 42 events). We will use these realizations into the forecast procedure and we
will discuss it in the next section.

By looking at the outcomes of the MCMC simulations for the parameters b and ¢, it is
clear that flank eruptions at Mt Etna follow a time predictable eruptive behavior. The value
of b less than one implies a non-linear relationship between interevent times and volumes. The
time predictable equation (2.1) is a power law similar to the one we infer for Kilauea volcano.
These findings lead to speculate about the role played by the magma chamber feeding system
in the eruption frequency as we have speculated in Section 2.3.1. Under this perspective the
Mt Etna volcano seems to act as a non-stationary volcano (Mulargia et al, 1987), and the
non-stationarity could also imply some sort of cyclicity in the eruption frequency (Behncke &
Neri, 2003, Allard et al, 2006). This possible non-stationarity should be taken into account in

modeling the magma chamber dynamics at Kilauea volcano.

2.4.2 Model checking and Forecasts

The results of the model check are presented in Figure 2.13. It is immediate to realize the
agreement of the synthetic simulations (blue bars) with values calculated from the data (red
bar) for the rate of occurrence, maximum, minimum and median. For the rate of occurrence
where the p-value=0.87, we can speculate that the model predicts interevent times slightly
longer that the observed one. Although the model works well for minimum, median and rate, it
is less satisfactorily for the maximum and as a consequence for the standard deviation. Again
here as for Kilauea, the model can reproduce the maximum only within the tail behavior
of the synthetic realizations. A close look at Mt Etna catalog reveals that the maximum
interevent time is relative to a long quiescence period from 1702 to 1755 AD. This value could
be considered an extreme value (53 years) because the second longest interevent time is only 20
years, being the quiescence period from 1614 AD to 1634 AD. This second longest interevent
time is compatible with the synthetics maximum simulation with p-value—0.7. As we verified
in checking the model for Kilauea data, BH TPMII model is able to capture the main data
features except for the extreme value, or better, is able to reproduce the extreme value only
within the tail of the distribution for the synthetic catalogs.

The final task, now, is to test the forecast performance of the model and compare it with
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other models for Mt Etna interevent times already present in literature using the sequential
approach discussed in Section 2.2.5. Before to embark in this comparison, we present the
results of the SIR procedure used to resample the M’s in the right side of equation (2.9).
In Figure 2.14 the M are plotted as they are from the MCMC simulation (blue stars) with
superimposed the outcome of the resampling procedure (red stars). The information provided
by the volume data in the SIR procedure shrinks and shifts the M distributions and as a results
the mode of the distributions for the resampled quantities is higher than the non resampled
ones. Now, as soon as we get the resampled M’s, we can use them to simulate the integral in

equation (2.9).

There are several statistical model in literature describing statistically the eruptive data
series for Mt Etna. The model are: BH_TPM proposed by Passarelli et al (2010) (Chapter
1), a Non Homogeneous Poisson process with a power law intensity proposed by Salvi et al
(2006), a Non homogeneous Poisson process with piecewise linear intensity by Smethurst et
al (2009); the GTPM by Sandri et al (2005) and the Hidden Markov Models of Bebbington
(2007). The latter model is a model that allows to identify change in volcanic activity using
Hidden Markov Models. In this work the activity level of Mt Etna volcano is tested through
the onset count data, the interevent time data and the quiescence time data (interonset in the
Bebbington 2007 terminology) together with time and size-predictable model. To be honest,
we are not able to apply the sequential procedure to the Bebbington (2007) model due to its

intrinsic computational complexity, so we do not perform the probability gain test against it.

We have already discussed the BH_TPM and GTPM in the previous sections (see Section
2.3.2), thus we present the main peculiarity of the Salvi et al (2006) model and the Smethurst
et al (2009) model. Salvi et al (2006) model is an Non Homogeneous Poisson model. The
intensity of the process has a power law time dependence whose parameters can be estimated
using MLE. This model implies that the intensity can increase or decrease with time, depending
on the value of the exponent. In this way the model can take into account and fit any trend in
eruptive activity. In Smethurst et al (2009), authors study different Non Homogeneous Poisson
processes, finding the best model is one with a piecewise linear intensity. In other words, fitting
the model via numerical MLE, the intensity of the process is constant (Homogeneous Poisson
process) for eruption before 1970 AD, and then it starts to increase linearly with time. This

is a process with a change point and is not easy to handle under our sequential procedure.
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The change point found by Smethurst et al. (2009) works only if the numerical MLE is done
using all data (with the benefit of hindsight). On the other hand, applying the sequential
procedure, i.e. adding one data at a time after the learning phase, does not guarantee to find
the same change point and not even to find exactly one change point (see Gasperini et al,
1990). In addition, the parameters of the process in the Smethurst et al (2009) model are not
in closed form, so the stability of the numerical maximization could produces further problems

in applying the sequential approach.

To tackle this complicated change point problem and compute "forward“ probabilities of
eruptions, we choose to employ two different approaches. The first one is to keep the change
point (i.e. 1964 AD) found by Smethurst et al (2009) using all data and simulate sequentially
the other two parameters of the model. In this way we calculate the probability gain in
equation (2.11) assuming a constant intensity up to the change point, and then assuming a
linearly increasing intensity. Anyway, in the forward sequential approach perspective we want
to use, this is not a fair game to get eruption probabilities, as we are using the value of the

change point calculated using all data.

The second approach is instead based on the empirical estimation of the trend for the
intensity of the process calculated under the sequential procedure. As we show in Figure
2.15, after the learning phase, we examine and evaluate the trend for the intensity Apyrp
(blue stars in the graph), calculated by adding one data at a time, assuming a homogeneous
Poisson process. We find that the intensity shows a slow increase with important fluctuations
up to the change point found by Smethurst et al. (2009) (black dashed line). Then, after the
change point, the intensity rises more markedly. To figure out whether or not the intensity after
each event is increasing with time, we estimate its trend with linear regression. In particular,
we perform linear regression on the intensity since the datum before the last change of sign
in its trend assessing the goodness of the regression (F-test on the slopes at 1% significance
level). In Figure 2.15, we show positive slopes with significant regression with green lines, and
negative slopes or positive ones with not significant regression with red lines. It is clear from
the graph that intensity does not show any significant trend up to four events after the change
point found by Smethurst et al (2009). This is something widely known, that is to say, in
order to recognize a significant trend in a forward study, one needs several data points (see for

example Cornelius & Voight, 1995).Hence, in calculating the parameters under the forward



A new Bayesian Time-Predictable Model for Open Conduit Volcanoes: The
66 Case of Mt Etna and Kilauea

sequential procedure, we keep a homogeneous Poisson process on the events where the above
regressions are not significant (i.e. four events after the Smethurst et al, 2009 change point),

then we use the Non Homogeneous Poisson process with linearly increasing intensity.

Finally we present the results for the probability gain in Figure 2.16. As it is shown in the
inset of each panel, PG’s are always greater than zero, showing the present model performs
better forecast compared to the others. In particular, the forecasting test against the homoge-
neous Poisson process (panel a) shows only 14 eruptions out of 42 with a negative "punctual”
probability gain, corroborating the fact that Mt Etna flank eruptions are non stationary in
time (Mulargia et al 1987, Bebbington, 2007, Salvi et al 2006 and Smethurst et al, 2009).
While in testing against BH_TPM (panel b), only 17 eruptions have a negative probability
gain indicating that modeling Mt Etna interevent times with log-normal distributions does
not seem to be the best choice. The result in panel ¢ against the GTPM is the best one and
remarks the limitation of a regression technique in modeling linear relationship between the
logarithm of interevent times and of volumes, without using measurement errors. Salvi et al
(2006) model, in panel d, performs worse forecasts compared with BH TPMII, confirming
that a power law intensity is not appropriate for Mt Etna eruption occurrences (Smethurst et
al 2009). In panel e, the test against the Smethurst et al (2009) model, with fixed change point
as they found, is the worse one, although the PG is still slightly positive. On one hand, this
test shows that modeling the intensity with a linear increasing function for events in the last
40 years seems more appropriate. At the same time, it shows some limitations: a close look
to the subplot e shows that event 38 have a very high gain in favor of the BH TPMII. This
event is the 2001 AD eruption, started after 10 years of quiescence. Therefore, the Smethurst
et al (2009) model, with the ad hoc fitted piecewise linear intensity, could be misleading for
real forecasting purposes as the observed eruption frequency decreases in the future. Finally
we present, in panel f, the probability gain against the modified Smethurst et al (2009) model
following the specification discussed in the previous section for the “forward” application. Re-
spect to panel e, here the probability gain is considerably higher although the linear intensity

fits better the last part of the catalog.

It seems that, despite some local discrepancies, the BH TPMII shows a better overall
behavior in forecasting the eruptive events providing better forecast for more than 50% of

events and manifesting a higher reliability if used in probabilistic volcanic hazard assessment.
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To get geophysical insights, we investigate some possible correlation between the "punctual”
probability gains and the interevent times or volumes using linear regression analysis. We do
not find any correlation between volumes and probability gain. The only significant linear
relationship (p-value< 0.01) we find, as in the Kilauea case, is between “punctual ¢ probability
gain calculated against the homogeneous Poisson process and interevent times, as in Figure
2.17. The inverse relationship implies that we systematically perform worse forecast for long
interevent times. We can justify this results stating that for long quiescence periods the volcano
becomes memoryless with transition from open and closed conduit regime (see Marzocchi
& Zaccarelli, 2006 and Bebbington, 2007). An other explanation could be related to the
complexity of the volcano eruption system not considered in this model. The time predictable
model seems to be more appropriate when the eruption are close in time, conversely, when
the quiescence period are extremely long, other compelling physical processes may control the
volcanic activity. Finally, neglecting the summit activity, we lose one piece of information
related to the amount of erupted volume from summit crater during the quiescence period.

This may introduce a bias that could explain this inverse relationship.

2.5 Conclusions

In this work we have carried out a Bayesian Hierarchical model to test time predictable model
for open conduit volcanoes (BH _TPMII). The use of Bayesian Hierarchical modeling provides
a suitable tool to take into account the physical uncertainties related to the eruption process
and relative to the data, parameters and variables. We have applied the model to Kilauea
eruptive catalog from 1923 to 1983 AD and to Mount Etna flank eruptions from 1607 to
2008 AD. The results show that both volcanoes have a generalized time predictable eruptive
behavior where interevent times depend on the previous volume erupted. The numerical
values of the time predictable model parameters inferred suggest that the amount of the
erupted volume could change the dynamics of the magma chamber refilling process during the
subsequent repose period.

The model shows a good fit with the observed data for both volcanoes and is also able
to capture extreme values as a tail behavior of the distributions. The forecasts obtained by
BH_ TPM II are superior to those provided by other statistical models for both volcanoes.

In particular we have improved the forecast performance compared with those of BH TPM,
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corroborating the hypotheses of building up the present model. We want to point out that
an Non Homogeneous Poisson process, as the one developed in Smethurst et al (2009), could
provide better forecast if the flank eruptive activity on Mt Etna keeps increasing in time as it
did in the last 40 years. We suggest that the present model could be included in a long-term
Probabilistic Volcanic Hazard Assessment as a basic component for modeling the occurrence

of eruptions in time at Kilauea Volcano and Mount Etna volcano.
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A Sampling Importance Resampling algorithm

The Sampling Importance Resampling (SIR) is a non iterative procedure proposed by Ru-
bin (1988). The SIR algorithm generates an approximately independent and identically dis-
tributed (i.i.d.) sample of size m from the target probability density function f(z). It starts by
generating M (m < M) random numbers from a probability density function h(z) as inputs
to the algorithm. The output is a weighted sample of size m drawn from the M inputs, with
weights being the importance weights w(x). As expected, the output of the SIR algorithm is
good if the inputs are good (h(x) is close to f(x)) or M is large compared to m.

The SIR consists of two steps: a sampling step and an importance resampling step as given

below:

1. (Sampling step) generate X,..., Xy i.i.d. from the density h(x) with support including
that of f(x);

2. (Importance Resampling Step) draw m values Y7,...,Y,, from Xy,..., X with prob-
ability given by the importance weights:
w(X;)
M

Zj:l w(X;)

where w(X;) = f(X;)/h(X;) for all j.

w*(Xl,"'aXM) =

The resampling procedure can be done with or without replacement.
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Tables

Table 2.1: Catalog of eruptive events at Kilauea volcano

Eruption# Onset Interevent time Volume
(yyyy mm dd) [days| lava e tephra [106m3]
1 1923 08 25 259 0.073
2 1924 05 10 70 0.79
3 1924 07 19 1083 0.234
4 1927 07 07 594 2.30
5 1929 02 20 155 1.40
6 1929 07 25 482 2.60
7 1930 11 19 399 6.20
8 1931 12 23 988 7.00
9 1934 09 06 6504 6.90
10 1952 06 27 703 46.70
11 1954 05 31 273 6.20
12 1955 02 28 1720 87.60
13 1959 11 14 60 37.20
14 1960 01 13 408 113.20
15 1961 02 24 7 0.022
16 1961 03 03 129 0.26
17 1961 07 10 74 12.60
18 1961 09 22 441 2.20
19 1962 12 07 257 0.31
20 1963 08 21 45 0.80
21 1963 10 05 517 6.60
22 1965 03 05 294 16.80
23 1965 12 24 681 0.85
24 1967 12 05 291 80.30
25 1968 08 22 46 0.13
26 1968 10 07 138 6.60
27 1969 02 22 91 16.10
28 1969 05 24 812 185.00
29 1971 08 14 41 9.10
30 1971 09 24 132 7.70
31 1972 02 03 457 162.00
32 1973 05 05 189 1.20
33 1973 11 10 251 2.70
34 1974 07 19 62 6.60
35 1974 09 19 103 10.20
36 1974 12 31 333 14.30
37 1975 11 29 654 0.22
38 1977 09 13 794 32.90
39 1979 11 16 896 0.58
40 1982 04 30 148 0.50
41 1982 09 25 100 3.00
42 1983 01 03 ongoing
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Table 2.2: Catalog of eruptive events at Mount Etna volcano

Eruption # Onset Interevent time Volume
yyyymmdd [days] lava e tephra [10%m3]

1 1607 06 28 954 158.00
2 1610 02 06 86 30.00
3 1610 05 03 1520 91.71
4 1614 07 01 7476 1071.00
5 1634 12 19 2985 203.03
6 1643 02 20 1369 4.12
7 1646 11 20 1519 162.45
8 1651 01 17 6628 497.53
9 1669 03 11 7308 1247.50
10 1689 03 14 4741 20.00
11 1702 03 08 19359 16.94
12 1755 03 09 2891 4.73
13 1763 02 06 132 21.08
14 1763 06 18 197 149.96
15 1764 01 01 847 117.20
16 1766 04 27 5135 137.25
17 1780 05 18 4391 29.35
18 1792 05 26 3824 90.13
19 1802 11 15 2324 10.43
20 1809 03 27 944 38.19
21 1811 10 27 2769 54.33
22 1819 05 27 4906 47.92
23 1832 10 31 4034 60.74
24 1843 11 17 3199 55.70
25 1852 08 20 4519 134.00
26 1865 01 03 3525 94.33
27 1874 08 29 1731 1.47
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Eruption # Onset Interevent time Volume
yyyymmdd [days] lava e tephra [10m?]
28 1879 05 26 1396 41.93
29 1883 03 22 1154 0.25
30 1886 05 19 2243 42.52
31 1892 07 09 5772 130.58
32 1908 04 29 693 2.20
33 1910 03 23 536 65.20
34 1911 09 10 2638 56.60
35 1918 11 30 1660 1.20
36 1923 06 17 1965 78.50
37 1928 11 02 4988 42.50
38 1942 06 30 1700 1.80
39 1947 02 24 1012 11.90
40 1949 12 02 358 10.20
41 1950 11 25 1923 152.00
42 1956 03 01 4329 0.50
43 1968 01 07 1184 1.00
44 1971 04 05 1031 78.00
45 1974 01 30 40 4.40
46 1974 03 11 350 3.20
47 1975 02 24 278 11.80
48 1975 11 29 882 29.40
49 1978 04 29 118 27.50
50 1978 08 25 90 4.00
51 1978 11 23 253 11.00
52 1979 08 03 592 7.50
53 1981 03 17 741 33.30
54 1983 03 28 713 100.00
55 1985 03 10 599 30.03
56 1986 10 30 1106 60.00
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Eruption # Onset Interevent time Volume
yyyymmdd [days] lava e tephra [10m?]
57 1989 11 09 765 38.40
o8 1991 12 14 3503 250.00
59 2001 07 17 467 40.90
60 2002 10 27 681 131.50
61 2004 09 07 675 40.00
62 2006 07 14 669 25.00
63 2008 05 13 35.00
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Figure 2.1: Autocorrelation function for MCMC realizations for parameters: b top left panel,

c top right panel and X\ bottom left panel. The autocorrelation function is zero at lag 20, so

we run each MCMC chain for 201000 iterations thinning it every 20 MCMC-steps. We obtain

10000 independent realizations for each chain.
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Figure 2.2:  Blue stars show the posterior distributions of pairs of simulated variables (in-
terevent times r; and volumes v;). These variables are simulated via MCMC Gibbs sampling
(ri’s) and Metropolis Hastings (v;’s) using all data in the catalog. The top panel is relative to
r;’s and v;’s from 1 to 20 and the bottom panel from 21 to }1. Red plus is the observed data.
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Figure 2.4: Posterior distributions of: b parameter in top left panel, ¢ parameter in top right

panel and X in the bottom left panel, all calculated using the sequential procedure discussed in

the text. Black dashed line represents the learning phase. Red triangles are the mean of each

distribution.
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text) shows that BH TPMII predicts synthetic interevent times in good agreement with the
observed data, except for the mazimum and standard deviation where the observed quantities
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Figure 2.6: Results for the SIR procedure applied to posterior distribution of X’s. In this plot
we indicate with blue stars the posterior MCMC-realizations for N while red stars refer to the
resampled ones with SIR algorithm. Using the SIR procedure, described in Appendiz A, we
update each posterior distribution of A\ with the information given by the observed volume under
the sequential procedure discussed in the text. The SIR procedure is applied on \’s obtained
after the learning phase as required in the sequential approach used (i.e. events from 14 to 41

in Table 2.1).
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Figure 2.7: "Punctual probability gain“ of the BH TPMII for each event after the learning
phase against: in panel a Poisson Model (Klein, 1982), in panel b BH TPM (Passarelli et
al, 2010), in panel ¢ Log-Normal Model (Bebbington & Lai, 1996b) and in panel ¢ Gener-
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Figure 2.8: Regression analysis for BH TPMII "punctual probability gain“ against Poisson
Model versus observed interevent times. The significant inverse linear relationship, whose best
fit regression coefficients and R? are given, indicates a systematic negative probability gain
for long interevent times. As discussed in the text, this means an additional complezity for
long interevent times compared to the time predictable eruptive behavior. This causes a worse

ability of our model, compared to Poisson model, to forecast long interevent times.
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Figure 2.9: Autocorrelation function for MCMC realizations for parameters: b top left panel,

c top right panel and X bottom left panel. The autocorrelation function is zero at lag 20. So,

to obtain 10000 independent realizations for each chain, we run each MCMC chain for 201000
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Figure 2.10: Blue stars show the posterior distributions of pairs of simulated variables (in-
terevent times r; and volumes v;). These variables are simulated via MCMC Gibbs sampling
(r;’s) and Metropolis Hastings (v;’s) using all data in the catalog. From top to bottom the first
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values (red line) using descriptive statistic. This goodness-of-fit test (for more detail see the
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Figure 2.14: Results for the SIR procedure applied to posterior distribution of A’s. In this plot
we indicate with blue stars the posterior MCMC-realizations for N while red stars refer to the
resampled ones with SIR algorithm. Using the SIR procedure, described in Appendiz A, we
update each posterior distribution of A\ with the information given by the observed volume under
the sequential procedure discussed in the text. The SIR procedure is applied on \’s obtained

after the learning phase as required in the sequential approach used (i.e. events from 20 to 62

in Table 1.1).
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Figure 2.15: Plot to detect the trend of intensity of a homogeneous Poisson process under the
sequential procedure. Blue stars are the intensity Ayrp calculated sequentially via MLE adding
one data at a time plotted versus the time of each event. The A\yrr’s are calculated after the
learning phase. To figure out whether or not the intensity is increasing with time, we estimate
its trend with linear regression, please refer to the text for more details. Red lines represent
non significant regressions (at 1% level), green lines represents significant regressions. The
black dashed line is the change point found by Smethurst et al 2009. Estimating sequentially
the trend, one is able to detect the increasing trend only four events after the change point

found by Smethurst et al., 2009, say, only after the 1975 AD eruption.
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Figure 2.16: "Punctual probability gain® of the BH TPMII for each event after the learning
phase against: in panel a Poisson Model (Klein, 1982), in panel b BH TPM (Passarelli et
al, 2010), in panel ¢ GTPM (Sandri et al, 2005), in panel d Salvi et al, 2006 model, in panel
e Smethurst et al, 2009 model and in panel f modified piecewise linear model of Smethurst et
al, 2009 under the sequential procedure (please see the text for more details). Values greater
than zero indicate when BH TPM model performs better forecast than the reference models.
The inset in each panel is the total Probability gain, i.e. the sum of the punctual probability

gains.



96 Figures

0.8

Regression Puctual probability gain—interevent times
T T

A N pg =-0.077d, +0.49 i
~ *
S~ *
* *. 2
04 BT M R?=0.82 B
o KONF ok
* *
* *
. -
02 * ¥ ~ N
. *
.% o
* ~ *
[=2}
o— ~ ¥ * |

2 ~
E * F
=} -
Q9 -02— ~ *
e ~
a . v *
= -
5 04 ~ * _
‘6 * A
S SN
o

-0.6— ™ - -

N
-0.8— ™ - -
- * * -

2 | | | |

5 10 15 20
Interevent Time [year]

Figure 2.17: Regression analysis for BH TPMII "punctual probability gain“ against Poisson
Model versus observed interevent times. The significant inverse linear relationship, whose best
fit regression coefficients and R? are given, indicates a systematic negative probability gain
for long interevent times. As discussed in the text, this means an additional complezity for
long interevent times compared to the time predictable eruptive behavior. This causes a worse

ability of our model, compared to Poisson model, to forecast long interevent times.



Chapter 3

The Correlation Between Run-Up and

Repose Times of Volcanic Eruptions

Abstract
Volcanoes usually show signs of unrest before an eruption. The intensity of these signals during
the pre-eruptive phase varies greatly. Establishing physical controls on the duration of precur-
sory activity, i.e. run-up time, could improve understanding of the dynamics of magma ascent
from a shallow magma reservoir to the surface. Another observable indicative of eruption dy-
namics is the interevent repose time, i.e., the time between magmatic eruptions. The repose
time could be associated with the mechanism that recharges the magmatic system. Both of
these dynamic quantities are strongly dependent on magma composition and hence magma
viscosity. In this work we investigate the inter-relationship between run-up time, repose time
and viscosity by collecting together a database of 54 eruptions from 26 different volcanoes
around the world. Run-up time and repose are strongly correlated with 60% of the variance
in the data well-explained by a linear correlation with repose time equal to approximately 10*
times the run-up time. The probability of the data being uncorrelated is <0.1%. The data
ranges from basaltic to dacitic systems, so we can investigate the gross influence of viscosity
by using the silica content as a proxy. High silica, and thus by inference high viscosity, sys-
tems have longer repose times and run-up times. The run-up time observations are consistent
with model where timescales are controlled by flow processes such as diking. The observed
repose times are consistent with recharge rates inferred in other studies and thus appears to be

reflecting the dynamics of deep crustal magma flow. The observed interrelationships provide
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a new tool for constraining physical and probabilistic models for volcanic hazard mitigation.

3.1 Introduction

Volcanic eruptions commonly have geophysically observable precursors. Before an eruption,
seismicity, ground deformation and gas emission may increase. The intensity of those precur-
sory phenomena varies substantially in size and temporal duration for different volcanoes, yet
most eruptions have at least some sign of the impending eruption.

The precursors are thought to be related to magma ascent beneath the volcanic edifice.
For instance, at a variety of volcanoes the seismicity and ground deformation are associated
with magmatic pressure, fluids exsolving from the magma chamber, and heat perturbing the
stress distributions and pore fluids in surrounding host rocks (Lipman & Mullineaux, 1981;
Tokarev, 1985; Yokoyama, 1988; Yokoyama et al, 1992; Cornelius & Voight, 1994; Druitt &
Kokelaar, 2002; Newhall & Punongbayan, 1996; Aki & Ferrazzini, 2000; Yokoyama & Seino,
2000; Kilburn 2003; Cervelli et al, 2006; De La Cruz-Reyna et al, 2008). Therefore, the time of
precursory activity, or run-up time, should reflect the physical properties of the magma. Most
notably, viscosity should have a major effect of the dynamics of diking and thus the run-up
time of activity (Rubin, 1995). However, discerning such a relationship on a single volcano
is relatively difficult, in large part because of the lack of detailed constraints on the viscosity
and state of the magma at depth.

Since the details of the magma viscosity are subject to large uncertainties, we need to
use a large dataset which encompasses extreme variations. For that reason we focus on well-
documented eruptions around the world during the last 70 years using all material available
for pre-eruptive and eruptive period. Therefore, if we compare eruptions from a large variety
of volcanoes with different silica-content, we can assemble a data set where viscosity of the
magma varies by 7 orders of magnitude and thus becomes the most dominant parameter in
the system.

In addition, magma viscosity may play a role in controlling another observable of the
system: inter-event repose time. The time between eruptions is controlled by the recharge
of the magma chamber and the accumulation of pressure. Both of these processes are also
sensitive to magma, viscosity and thus might be expected to vary from volcano to volcano.

Again, a study at a single edifice would be difficult, but capitalizing on the large viscosity
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variations from edifice to edifice might be instructive.

In this paper we investigate the interrelationships among run-up time, recurrence interval
and viscosity by using 54 eruptions. Repose time, run-up times and silica content of each
event are listed in Table 3.1. First, we take some time to carefully define and discuss the
operational definitions of repose time and run-up time. Next we observe a strong correlation
between recurrence time and repose time along with a dependency on petrology. We will then
translate the petrologic constraints into viscosity using a rough proxy model based on silica
content. Finally we interpret our results as manifestations of the control of viscosity via diking

on the precursory process and magma recharge rate on the inter-eruptive processes.

3.2 Definitions

We define the time associated with a precursory phase before a magmatic eruption as the run-
up time. The run-up time ¢,,,—yp is the time elapsed from the onset of observed magmatic
unrest to the onset of a magmatic eruption. The run-up time defined in this way should
be related to the time taken by the magma to move from a magma chamber to the surface.
Although this definition of run-up seems a very straightforward one, it leads us to deal with
very complicated questions: 1) How do you define a starting point for a magmatic eruption?
2) How do you define the starting point of magmatic unrest?

To answer question (1), we define the start of an eruption as when juvenile magma material
is detected at the surface. Despite this simple definition, sometimes this information is not
easily available for explosive eruptions because phreatic and phreato-magmatic activity can
obscure when juvenile material is first ejected. We tackle this problem using information
available in literature about petrography and petrology of the eruptive products. In Table
3.1 there are also indicates references for the magmatic composition and petrography of each
eruption.

For most eruptions the onset time is well known with an error of at least 1 day, but for
some historical eruptions it is impossible to know when juvenile material is ejected first. For
eruptions without a clear onset in the literature we use the start date given by Smithsonian
Institution-Global Volcanism Program datasets. In cases both day and month of an event
are unknown we use 01 January as the onset date together with the given year. The relative

error introduced by this approximation is always <1% and thus we can neglect it for all cases.
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When only year and month are specified we use the 15th day of the month as a onset date.

Answering question (2) is a difficult matter. The defined starting point for volcanic unrest
depends on the ability to detect precursory volcanic signals above variable background levels,
and it is unavoidably related to a particular type of volcano. Signs of pre-eruptive unrest
vary and eruptions in this study include both examples of elevated seismicity and increased
ground deformation (See below). In addition the data for precursory activity usually are not
easily available, are often strongly heterogeneous and in some cases are only qualitative (see
Newhall & Dzurisin, 1988, Simkin & Siebert, 1994, Benoit & McNutt, 1996). This makes it
very difficult to set a comprehensive scheme for defining the onset date of magmatic unrest

and the relative run-up time for volcanic eruptions.

Our strategy in dealing with this complicated problem has arisen from reading the scien-
tific work and reports about eruptions around the world. Given the great variability among
eruptions and scarcity of detailed pre-eruptive data available for direct interpretation, we
have deferred to the authors of each study and used the local definition of run-up time for
this work. This strategy is inherently dangerous both because it does not use a quantitative
or precise definition of background and because it uses a posteriori interpretation given by au-
thors about volcanic signs. For instance, it does not account for the highly variable ability to
detect precursory activity depending on the frequency of visual observation and the proximity
to geophysical monitoring instrumentation. However, it is the only easily accessible method

since there is no worldwide volcanic geophysical database available.

In many studies made after an eruption, authors describe the characteristics and duration
of precursory activity well. For example in Aki & Ferrazzini (2000, Table 3), the authors
give clear information about the precursory activity for eruptions from 1985 to 1996 at Piton
de la Fournaise, a well-monitored volcano. This single dataset allows comparison of multiple
eruptions in a consistent way. Another very helpful work about Popocatepetl Volcano 1994
eruption and its very long precursory activity is made by De la Cruz-Reyna et al (2008). In
this case, the documentation is sufficient to make reasonable statements about the precursory
activity for even a single event. Similar quantitative studies we found elsewhere in the litera-
ture identify the starting point for a magmatic unrest. The precise sources of documentation

for each eruption in this study are listed in Table 3.1.

In most of these studies the time for the precursory activity is indicated by precursory
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seismicity (see for example Tokarev, (1985); Yokoyama, (1988); Yokoyama et al, (1992); Gil
Cruz & Chouet, (1997); Yokoyama & Seino, (2000); Soosalu et al, (2005) Table 1); a few cases
have ground deformation and seismicity (for example Lockwood et al, (1987)) and one case
has only ground deformation (Cervelli et al, 2006). To double check the information taken
from the literature, we used the monthly and weekly report of Global Volcanism Program
(www.volcano.si.edu) as a source of information. For example in the case of the 1999 eruption
of Tungurahua Volcano there is no literature regarding the precursory activity, so we integrate
the information from monthly report BGVN 24:11 from Global Volcanism Program web sites
(http://www.volcano.si.edu). For such events where we found some discrepancy between
seismicity and deformation as precursory signals, we always refer to the seismicity for the
run-up time value. When only the month of precursory activity is known, we conventionally

use the 15th day of the month as a starting date.

We also collected data on the relative repose time or interevent time t,.¢posc defined as the
time elapsed between two subsequent eruptions. As stated before, we consider the onset of
an eruption as the time when first juvenile material is present in volcanic ejecta. We use the
onset time rather than duration to define the time between eruptions (Klein, 1982, Mulargia,
1985, De la Cruz-Reyna, 1991, Burt et al, 1994, Bebbington & Lai 1996, Sandri et al, 2005,
Marzocchi & Zaccarelli, 2006). The cited literature was supplemented by the Global Volcanism

Program records to determine the eruptive history (See Table 3.1 for detailed onset times).

Finally we collected information for magma composition and silica content. However not
all eruptions considered have direct petrologic data. In cases where we do not know the exact
magma composition for a particular eruption, we use the magma composition information
from the most recent eruption of that volcano. When more than one magma composition is
given for a particular eruption we use the mean. Finally, we reserve a special mention for
the 18 Piton de la Fournaise events. Direct compositional information from Villeneuve et al
(2008) was available only for 1983, 1986 and 1998 eruptive event. Hence for all events between
1985 and 1998 we use the 1986 silica content which appears reasonable as Peltier et al (2009)
suggest that there is no strong variations in the magma composition in the last 30 years (See

Table 3.2).

For each eruption included in this analysis we report the volcano name, silica content,

run-up time, repose or interevent time, volume erupted (tephra and lava) and reference list in



102 The Correlation Between Run-Up and Repose Times of Volcanic Eruptions

Table 3.1.

3.3 Observations

The data we have collected are shown in Figure 3.1. The log-log plot shows the repose and
run-up times together with their magma composition. Petrological types are categorized by
silica content using the standard classification of Le Bas et al (1986).

At first glance it is easy to see that both run-up and repose times vary over about six order
of magnitude. For basaltic volcanoes repose times are of the order of months to a few years
and run-up times are of the order of minutes to a few days. For high silica volcanoes repose
times are of the order of several years up to several centuries and run-up time of the order of
days to several months. The ratio between the run-up and repose times is always less than
1% except for 8 events which are less than 10%. Run-up time is always much shorter than
repose time, so the first phenomenological evidence here is that the pre-eruptive activity is
a small fraction of the time between two eruptions, which is consistent with our operational
definitions.

The main physical insight from this plot is that repose times and run-up times are positively
correlated. This is corroborated by the simple linear fit of the logarithmic data (Figure 3.1).
The high value of R2=0.60 in log-log space means 60% of the data are explained by the linear
regression model. The value of R? allows us to reject the hypothesis of uncorrelated values
(i.e. slope equal to zero) with an error of <0.001 (i.e. P-value of the hypotheses testing),
according to an F-test (Draper & Smith, 1998). The P-value is the risk associated with
rejecting the hypothesis, so in this case the probability that we have inappropriately rejected
the uncorrelated hypothesis is less than 0.1%. The observed ratio of the repose times and
run-up time in Figure 1 ranges between 10 and 10°.

However, a regression is not sufficient to fully prove the significance of the correlation for
these data. In regression analysis the data are assumed to have constant variance. In this case
we can not say easily that run-up times have constant variance, because we can not know their
exact errors. The error associated with run-up times is strongly dependent on the resolution
with which one volcano is monitored and varies over time. Therefore, the goodness of fit
test could be biased by the assumption of constant variance. So to corroborate our analysis,

we perform a bootstrap regression analysis with 1000 data permutations and without any
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assumption on the data. The bootstrap mean for the slope is 1.1 £ 0.1 and for intercept is
-3.5 £ 0.3 where the error bars are 1 standard deviation. These values are again resolvably
positive and we conclude that the positive correlation is robust.

Another observation in Figure 3.1 is that the magma composition seems to be correlated
with run-up and repose times. Because the SiOy for Piton de la Fournaise eruptions has
the same value for several eruptions, a different test of correlation is necessary than before.
The repeated values will bias a regression and therefore we directly compute the correlation
coefficient p from the raw data rather than embarking on a fit and interpreting R2. The
distinction is that R? tests the correlation between the prediction of a linear fit and the
observed data, while p is simply a measure of the correlation between the variables, i.e., the
covariance divided by the standard deviation of each individually (Draper & Smith, 1998).
We found p=0.35 (P-value =0.01, null hypotheses is correlation coefficient equal to zero )
for repose times and silica content and p=0.31 (P-value=0.02 null hypotheses is correlation
coefficient equal to zero) for run-up times and silica content. The significantly greater than
zero correlation value implies a relationship between the parameters, although it is not as
strong as the relationship between repose and run-up times. The observation indicates that
using the silica content as a fundamental parameter in describing the pre-eruption dynamics
may be productive. But it is also a warning that other physical parameters like the crystal
content in magma, magma temperature, tectonic and local stress distribution must be taken

into account to fully model the pre-eruptive dynamics.

3.3.1 Unusual Individual Eruptions

Much of the scatter in Figure 3.1 is likely due to the great variability of individual eruptive
circumstances. It is helpful to outline the limits of the proposed relationships by reviewing
some of the peculiarities of the individual data points that lead to significant departures from
the trend.

Shishaldin Volcano 1999 eruption shows a very long pre-eruption activity compared with
other basaltic volcano with a run-up time that is 1/4 the repose time. This unusual ratio goes
with an unusual sequence that includes a hiatus in the middle of the precursory activity. The
precursory activity we consider here starts in late June 1998 with a series of small low-frequency

earthquakes that continued until the end of October 1998. After October, the volcano became
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quiet until the new increase in the precursory activity in early February, possibly indicating
a new or renewed intrusion (Nye et al, 2002; Moran et al, 2002). Measuring the precursory
interval from February results in a ratio of 1/40, which is still different from the mean, but less
extraordinary. In Figure 3.1 and subsequent interpretations, we maintain consistency with the
operational definition of Section 3.2 by choosing June 15, 1998 as the onset time, although it
is possible that a shorter one would have been more appropriate physically.

Less easy to explain are Hekla and Okmok eruptions. These voluminous basaltic andesite
eruptions have repose times consistent with their moderate silicate composition, but run-
up times more typical of low silica systems, i.e., shorter than expected. The anomalously
short warning was anecdotally noted for both systems as a cause for consternation to local
observatories (Soosalu et al, 2005; Prejean et al, 2008). We speculate that in these systems, late
stage evolution may have dropped the viscosity resulting in relatively fast magma migration

to the surface.

3.4 Interpretation in terms of viscosity

To interpret the observations, we first need to translate the data into a likely physical control
like viscosity. In order to do this, we will use the most important control on gross viscosity,
silica content, as a means to delineate the variations between eruptive systems. Once this
translation is complete, we will then model the run-up time in terms of viscous processes. The
test of the model will be whether or not it predicts the observed ratio of run-up to viscosity
for a reasonable set of model parameters. For repose time, we will not embark on a full-scale
model but will rather connect the data to previous observations and models of inter-eruptive

intervals.

3.4.1 Viscosity based on Silica content

Starting from the petrologic information available, we calculate the viscosity of magma for
17 events in catalog using the Conflow software package (Mastin & Ghiorso, 2000). Then
we find a best-fit relationship between the viscosity and the relative silica content assuming
that the log-viscosity varies linearly with silica content. Finally, we use this fit to infer the

viscosity for all data in Table 3.1 from the silica content. Details about eruptions, magma
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compositions and temperatures setting for Conflow are in Table 3.2. For all eruptions we
choose to use a melt composition with 0 wt % of water owing to the lack of information about
the magma melt water content. This dry viscosity may be an overestimate by as much as
an order of magnitude. Since we are focusing on the gross variations of viscosity associated
with silica content, this assumption will need to suffice. In the process of inferring viscosity,
we are neglecting several other significant controls such as crystallinity and vesicularity. The
justification for relying solely of silica content as a proxy is that silica content is the most
reliably measurable parameter for the dataset and thus allows us to generate a reasonably
uniform approximation. Furthermore, since eruptive temperature and silica content co-vary,
regressing with respect to silica content captures the first-order viscosity signal robustly. The
results for the linear best fit are in Figure 3.2. Again, we perform the F-test on the slope of
the regression under the null hypotheses that the slope is equal to zero, and we reject with
P-value<0.01. As stated before, we use the regression line to estimate the viscosity for all 54
events in the catalog from their SiOs content. This result is similar to Hulme (1976). The
resultant viscosity for all events varies over 7 orders of magnitude from 10! to 108 Pa-s (Table
3.2). The calculated viscosity can now be used to study the compatibility of a simple physical
model and the data. Performing the translation between silica content and inferred viscosity
leads to Figure 3.3. Here the trends of increasing run-up and repose time with increasing
silica content become clearly tied to increasing viscosity. The run-up time in seconds is on
the order of 1074 to 103 times the viscosity in Pa-s (or time in days is 107 to 1072 times
viscosity). The repose time in seconds is 10! to 10° times the viscosity in Pa-s (or time in days
is 107* to 10 times the viscosity). We do not further quantify the correlation between repose
time and run-up time with respect to viscosity simply because we will obtain the same result
discussed for the correlation with silica content. Therefore, we will proceed to investigate

physical models for the control of viscosity on both times.

3.4.2 Model for Run-up Times

We defined run-up time as a proxy for the time necessary for magma to travel from the magma
chamber to the surface. We now model this process as a dike intrusion event. We will predict
dike propagation time (and hence run-up time) as a function of viscosity by considering the

movement of a pressure-driven, magma-filled crack. The observed run-up time to viscosity
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ratio o = tpyn—up/n is between 10~* Pa~! and 103 Pa~!, with mean value approximately equal
to 10 Pa~! . The mean value a is calculated as the mean ratio of the run-up time and the
viscosity in logarithmic space. We use here the arithmetic mean of logarithm of run-up’s and
viscosities because these quantities vary over seven order of magnitude. The test of the model
will be whether or not we can successfully predict this mean value for realistic parameters. The
dike will be modeled as a 2-D planar pressure-driven crack with elliptical shape and minor
axis w much smaller than the major axis and height L, propagating in an elastic medium
subjected to a regional stress (Rubin, 1995). By analyzing the Poiseuille flow for a viscous
fluid in a elliptical crack where the perturbation to the host rock stresses and the displacement
due to the dike opening depend only upon the difference between internal magma, pressure
and the ambient compressive stress, Rubin (1995) calculates the velocity of the dike (Rubin,
1995). The order of magnitude dike propagation velocity under a linear pressure gradient

po/L, assuming a laminar flow in the height direction, is given by:

Lepoy, (3.1)

=32

where 7 is the viscosity, pg is the magma pressure at the dike entrance, M is the elastic

stiffness, L is the dike height and w = (p3/M?)L is the half dike thickness (see Rubin, 1995).

The time necessary for ascent from the magma chamber to the surface is the propagation
time of a dike with height L equal to the depth of magma chamber below the surface (Figure
3.4). Therefore,

L (3.2)

757’un7up =
Combining equation (3.1) and (3.2) we can evaluate the run-up time in terms of the
viscosity
trun—up 3M2

a= = — ~10Pa”! (3.3)
n Ps

when the pressure is pg = 6 MPa and the elastic stiffness is M = 3 x 10'°Pa. For these
reasonable parameters, the result is identical to the mean value of the observations. At this
point the run-up times seem to be compatible with the dynamics of magma ascent, even

though we are using a very simple model.
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3.4.3 Model for Repose Times

Between eruptions, the magma chamber is recharged by a series of intrusions from depth.
The speed of each individual intrusion is again related to viscosity through some combination
of diking, diapirism and porous media flow (Annen et al 2006; Karlstorm et al, 2009). In
all of these processes, recharge rate is inversely proportional to viscosity, therefore the higher
silica systems are expected to take longer to fill a magma chamber and accumulate sufficient
overpressure for an eruption. Studies of the duration of magma transfer in the crust based on
uranium-series disequilibria show that magma differentiation time (i.e. cooling and crystal-
liquid separation) is a function of silica content with high silica magma having greater intervals
storage in crustal magma reservoir than low silica magma (Reid, 2003). Storage time from
crystal ages for basaltic system are generally longer or equal to repose times; for higher silica
systems the storage times are comparable or slightly shorter than repose times (White et
al, 2006). A complete model of magma chamber recharge processes is beyond the scope of
this paper. One simple conceptualization of magma reservoir is a storage system to which
mass enters with a particular rate @Q; and is extracted at particular rate Q.. In such cases
when input and output are equal, i.e. @Q; = @, it may attain quasi-steady-state condition
and the magma residence time could be defined as VzQ_! (Reid, 2003). Only fewer than
30% or likely the 10% of the sub-aerial volcanoes approximate these conditions (Pyle, 1992).
For other volcanoes eruption is not the only output of magma reservoir: there is also sub-
surface magma solidification as plutonism. In these non-steady-state cases, @i < Qe and the
relationship between residence times and volumes is only approximate (Reid, 2003).

Here, we simply show that the observed repose time trend is consistent with recharge rates
inferred by other means and thus appears to be reflecting the dynamics of deep crustal magma
flow. We can make this connection by converting the repose time information into volcanic
eruption extrusion rates, which is a quantity previously studied. The repose time is related to

the extrusion rate Q. by

Qe = V/trepose (34)

where V' is the volume of an individual eruption. From the information in Table 3.1, the
average Q. for the basaltic volcanoes is (3.8 £ 0.1) x 1072Km3/yr , for basaltic andesites is
(3.7£0.9) x 1072 Km3 /yr for andesites is (7.6+2.0) x 1073 Km?3 /yr and dacites is (5.141.0) x

1073Km?3/yr . Errors for extrusion rate are calculated using the error propagation formula
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assuming a relative error for repose times and volumes equal to 1% and 25% respectively.
White et al (2006) inferred values for the output rate for a wide class of volcanism world-
wide grouping volcanoes in only three class: basaltics, andesites and rhyolites. For those
class of volcanoes they calculate average extrusion rates equal to (2.6 4 1.0) x 1072km3 /yr,
(2.340.8) x 1073km3 /yr and (4.041.4) x 10~3km3 /yr, respectively. The average output rates
here calculated are compatible within the error bars those presented by White et al (2006) ex-
cept for the the output rate of andesite volcanoes (Figure 3.5). The mean values are somewhat
higher in this study. The discrepancy may in part be due to a difference in dataset definitions.
White et al (2006) defined "repose time" as the duration between characteristic sized eruptions
while here we study the interval between eruptions of any size and define ). based on the
volume erupted after the repose interval. Despite the difference in absolute values, Figure
3.5 in both datasets shows a decreasing trend with silica content. This trend is compatible
with the fact that high silica systems show longer repose times compared with basaltic ones.
As a first order approximation, it should be seen as the role played by the viscosity in the
magma reservoir recharging process (Reid, 2003). Finally this simple comparison highlights
how the low silica systems take shorter time to refill the magma reservoir than high silica
system, assuming the output rate as a rough measure of the magma recharge rate. For low
silicic volcanoes with relatively low viscosity the recharge rate is higher; high silica systems

show very low recharge rate compatible with their higher viscosity.

3.5 Conclusions and Implications for Eruption Forecasts

In this work we show the interrelationship between repose time, run-up time and viscosity.
The data presented suggest a strong positive correlation between repose time and run-up time
for all classes of magma composition volcanoes. In addition, both times seem to correlate
with silica content and, therefore with gross variations in magma viscosity. Using extremely
simplified models of magma ascent immediately before an eruption, we successfully match
the observed dependencies of the run-up time times on viscosity. Propagation of a single,
pressure-balanced dike from the chamber is consistent with the run-up time data. Using
the relationships between run-up and repose time observed here provides a way to design a
prediction window appropriate to a particular magmatic system. For instance, if unrest begins

on a low silica system with short quiescent period, one should expect an eruption to occur
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within hours to days, if it is going to happen. On the other hand, for a high silica system that
has experienced a very long quiescent time, an alert period should remain open for a much

longer period of time from days to years.
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Volcano Magma Run-up Repose time Volume
SiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3]
HHMMSS HHMMSS
1 AUGUSTINE Andesite 2005-11-17 00:00:00 2006-01-11 00:00:00
(AU) 2006 60.001 % 1986-03-27 00:00:00 2006-01-11 00:00:00
2 BEZYMIANNY andesite/dacite 1955-09-29 00:00:00 950-01-15 00:00:00* £:2800
(Bz) 1956 59.90% 1956-03-30 00:00:00 1956-03-30 00:00:00
3 EL CHICHON Andesite 1981-01-15 00:00:002,** 1432-01-01 00:00:00 £:2300
(EC) 1982 55.88% 1982-03-28 00:00:00 1982-03-28 00:00:00
(~550 years)
4 GALERAS andesite/dacite 1988-06-15 00:00:00** 1936-08-27 00:00:00
(Ga) 1992 59.40% 1991-10-09 00:00:00 1991-10-09 00:00:00
5 GRIMSVOTN basaltic/andesite 2004-10-31 21:00:00 1998-12-18 00:00:00
(Gr) 2004 50.003% 2004-11-01 00:00:00 2004-11-01 00:00:00
(3 hour) 4
6 | GUAGUA PICHINCHA dacite 1998-09-15 00:00:00 > 1660-11-27 00:00:00 1:> 6
1999 (GP) 64.50% 1999-09-26 00:00:00 1999-09-26 00:00:00
7 HEKLA basaltic andesite 1980-08-16 23:35:00 1970-05-05 00:00:00 1: 200
(Hk1) 1980 54.90% 1980-08-17 00:00:00 1980-08-17 00:00:00 t: 70
(25 min)
8 HEKLA basaltic andesite 1981-04-16 23:37:00 1980-08-17 00:00:00 1:120
(Hk2) 1981 55.40% 1981-04-17 00:00:00 1981-04-09 00:00:00 t: 60
(23 min)
9 HEKLA basaltic andesite 1991-01-16 23:30:00 1981-04-09 00:00:00 1: 150
(Hk3) 1991 54.70% 1991-01-17 00:00:00 1991-01-17 00:00:00 t: 20
(30 min)
10 HEKLA basaltic andesite 2000-02-25 22:41:00 1991-01-17 00:00:00 1:286
(Hk4) 2000 55.00% 2000-02-26 00:00:00 2000-02-26 00:00:00 t: 10
(79 min)
11 MAUNA LOA basalt 1974-08-15 00:00:00** 1950-06-01 00:00:00 1:3
(ML1) 1975 52.04% 1975-07-06 00:00:00 1975-07-06 00:00:00
12 MAUNA LOA Basalt 1984-03-24 21:30:00 1975-07-06 00:00:00 1: 220
(ML2) 1985 51.37% 1984-03-25 00:00:00 1984-03-25 00:00:00
(~2 h 30m )
13| MIYAKEJIMA basaltic andesite 2000-06-26 00:00:00 1983-10-03 00:00:00 £:9.3
(My) 2000 54.00% 2000-06-27 00:00:00 2000-06-27 00:00:00

'Based on 1986 eruption where range of SiO2 is 56-64%wt
*From Yokoyama [1988]

3From BGVN and Sigmarsson et al 2000 for previous eruption in 1998.

*Swarm 3 hours before eruption, probably increasing seismicity from 5-7 am Nov 1(from BGVN 29:10)
SFrom Garcia et al (2007), onset is mid-September
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Volcano Magma Run-up Repose time Volume
SiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3]
HHMMSS HHMMSS
14 Mt. S. HELENS Dacite 1980-03-20 00:00:00 1850-03-15 00:00:00 © I: 74
(MSH1)1980 62.00% 1980-05-18 00:00:00 1980-05-18 00:00:00 £:1200
15 Mt. SSHELENS Dacite 2004-09-23 00:00:00 1980-05-18 00:00:00 1:93
(MSH2) 2004 64.85% 2004-10-01 00:00:00 2004-10-01 00:00:00
16 Mt. SPURR Andesite 1991-08-15 00:00:00** 1953-07-09 00:00:00 t: 150
(MSp) 1992 56.00% 1992-06-27 00:00:00 1992-06-27 00:00:00
17| OKMOK Basaltic andesite” 2008-07-12 19:00:00 1997-02-11 00:00:00
(Ok) 2008 56.00% 2008-07-12 19:43:00% 2008-07-12 19:43:00
( 43 minutes)
18 PAVLOF basaltic andesite 1996-09-13 00:00:00 1986-04-16 00:00:00
(Pvl) 1996 53.00°% 1996-09-16 00:00:00 1996-09-16 00:00:00
19 PAVLOF basaltic andesite 2007-08-14 00:00:00 1996-09-16 00:00:00
(Pvl) 2007 53.00% 2007-08-15 00:00:00 2007-08-15 00:00:00
20) PINATUBO Dacite 1991-03-15 00:00:00** 1491-01-01 00:00:00 t:(1.140.5)
(Pi) 1991 64.00% 1991-06-07 00:00:00 1991-06-07 00:00:00 x104
( 500years) l: 4
21 PITON Basalt 1983-12-03 21:40:00 1981-02-03 00:00:00 1:8
de la FOURNAISE 48.74% 1983-12-04 00:00:00 1983-12-04 00:00:00
(PF1) (~ 3 hr)
22| PITON Basalt 1983-12-03 23:00:00 1983-12-04 00:00:00 I 1
de la FOURNAISE 47.78% 1983-12-03 00:00:00 1985-06-14 00:00:00
(PF2) (~ 1 hrs)
23| PITON basalt 1985-08-13 21:23:00 1985-06-14 00:00:00 L7
de la FOURNAISE 47.78% 1985-06-14 00:00:00 1985-08-05 00:00:00
(PF3) (2 h 37 min)
24 PITON Basalt 1985-09-05 22:48:00 1985-08-05 00:00:00 1:14
de la FOURNAISE 47.78% 1985-09-05 00:00:00 1985-09-06 00:00:00
(PF4) (1h 12 min)
25 PITON basalt 1985-11-30 23:43:00 1985-09-06 00:00:00 1: 0.7
de la FOURNAISE 47.78% 1985-12-01 00:00:00 1985-12-01 00:00:00
(PF5) (17 min)
26 PITON Basalt 1985-12-27 23:46:00 1985-12-01 00:00:00 1. 7
de la FOURNAISE 47.78% 1985-12-28 00:00:00 1985-12-28 00:00:00
(PF6) (14 min)

5Data taken from www.volcano.si.edu

"Personal communication Jessica Larsen (2009), Geophysical Institute, Fairbanks, AK

8Real onset time for run-up is known (see caption)

9Magma, composition not available for 1996 eruption, so used the 2007 magma composition
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Volcano Magma Run-up Repose time Volume
SiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3]
HHMMSS HHMMSS
27| PITON Basalt 17-03-1986 14:36:00 1985-12-28 00:00:00 I: 14
de la FOURNAISE 47.78% 1986-03-18 00:00:00 1986-03-18 00:00:00
(PFT) (9h 24 min)
28] PITON basalt 1987-07-18 21:47:00 1987-06-10 00:00:00 1: 0.8
de la FOURNAISE 47.78% 1987-07-19 00:00:00 1987-07-19 00:00:00
(PF8) (2 h 13 min)
29| PITON Basalt 1987-11-29 22:30:00 1987-11-06 00:00:00 I: 10
de la FOURNAISE 47.78% 1987-11-30 00:00:00 1987-11-30 00:00:00
(PF9) (1h30)
30| PITON basalt 1988-02-06 21:55:00 1987-11-30 00:00:00 1:8
de la FOURNAISE 47.78% 1988-02-07 00:00:00 1988-02-07 00:00:00
(PF10) (2 h 05 min)
31 PITON basalt 1988-05-17 23:29:00 1988-02-07 00:00:00 I: 15
de la FOURNAISE 47.78% 1988-05-18 00:00:00 1988-05-18 00:00:00
(PF11) (31 min)
32 PITON basalt 1988-08-30 21:35:00 1988-05-18 00:00:00 I 7
de la FOURNAISE 47.78% 1988-08-31 00:00:00 1988-08-31 00:00:00
(PF12) (2 h 25 min)
33 PITON basalt 1988-12-13 19:29:00 1988-08-31 00:00:00 I: 8
de la FOURNAISE 47.78% 1988-12-14 00:00:00 1988-12-14 00:00:00
(PF13) (4h 31 min)
34 PITON basalt 1990-01-17 23:13:00 1988-12-14 00:00:00 1: 0.5
de la FOURNAISE 47.78% 1990-01-18 00:00:00 1990-01-18 00:00:00
(PF14) (47 min)
35| PITON basalt 1990-04-17 17:15:00 1990-01-18 00:00:00 I: 8
de la FOURNAISE 47.78% 1990-04-18 00:00:00 1990-04-18 00:00:00
(PF15) 6h 45 min
36 PITON basalt 1991-07-17 23:08:00 1990-04-18 00:00:00 I: 2.8
de la FOURNAISE 47.78% 1991-07-18 00:00:00 1991-07-18 00:00:00
(PF16) (52 min)
37| PITON basalt 1992-08-26 23:03:00 1991-06-18 00:00:00 I: 5.5
de la FOURNAISE 47.78% 1992-08-27 00:00:00 1992-08-27 00:00:00
(PF17) 57 min
38| PITON basalt 1998-03-07 12:00:00 1992-08-27 00:00:00 1:60
de la FOURNAISE 48.74% 1998-03-09 00:00:00 1998-03-09 00:00:00
(PF18) (36 h)
39, POPOCATEPETL andesite/dacite 1990-06-03 00:00:00 1919-02-19 00:00:00 I: > 28
(Pp) 1996 62.41% 1996-03-01 00:00:00 1996-03-01 00:00:001°

00nset of dome extrusion,

no information on previous juvenile material
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Volcano Magma Run-up Repose time Volume
SiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3]
HHMMSS HHMMSS
40 RABAUL andesite/dacite 1994-09-17 21:00:00 1943-12-23 00:00:00 I: 04
(Rb1) 1994 61.66% 1994-09-19 00:00:00 1994-09-19 00:00:00
(27hours)
41 RABAUL andesite/dacite 1995-11-27 00:00:00 1994-09-19 00:00:00 I: 4.540.5
(Rb2) 1995 61.40% 1995-11-28 00:00:00 1995-11-28 00:00:00
(24 hours)
42 REDOUBT Andesite 1989-12-13 01:00:00 1967-12-06 00:00:00 1: 88
(Rd) 1989 61.00'1% 1989-12-14 00:00:00 1989-12-14 00:00:00 t: 210
(~ 23h)
43 RUAPEHU Andesite 1995-04-15 00:00:00'2 1977-07-16 00:00:00 t: 30420
(Rh1) 1995 58.50% 1995-09-17 00:00:00 1995-09-17 00:00:00
44 RUAPEHU Andesite 1996-06-14 08:00:00 1995-09-17 00:00:00 t:4
(Rh2) 1996 57.47 % 1996-06-16 00:00:00 1996-06-16 00:00:00
(40 hours)
45) SHISHALDIN Basalt 1998-06-15 00:00:00** 1995-12-23 00:00:00 I: 14
(Shis) 1999 51.94% 1999-04-17 00:00:00 1999-04-17 00:00:00
46 SHIVELUCH andesite/dacite 1964-02-24 00:00:00 1944-11-05 00:00:00 £:750+50
(Shiv) 1964 60.00% 1964-11-11 00:00:00 1964-11-11 00:00:00
47 SOUFRIERE Andesite 1994-06-15 00:00:00 '3 1650-01-15 00:00:00% | 1:1.2 x 102
HILLS 1995 (SHV) 60.02% 1995-09-25 00:00:00 1995-09-25 00:00:00
48 TOKACHI andesite 1962-05-01 00:00:00'4 1924-05-24 00:00:00 t: 72
(Tk2) 1962 52.78% 1962-06-30 00:00:00 1962-06-30 00:00:00
49 TOKACHI Andesite 1988-09-15 00:00:00'5 1962-06-30 00:00:00 t: 0.75
(Tk1) 1988 53.15% 1988-12-19 00:00:00 1988-12-19 01:00:00
50 TUNGURAHUA andesite 1999-05-15 00:00:00 1916-03-03 00:00:00
(Tg) 1999 58.58% 1999-10-15 00:00:00 16 1999-10-15 00:00:00
51 UNZEN dacite 1989-11-15** 00:00:00 1792-02-10 00:00:00 1:150
(Uz) 1990 65.31% 1991-02-12 00:00:00 1991-02-12 00:00:00 t:>4.7
52| USsU dacite/rhyolite 1943-12-28 00:00:00 1853-03-06 00:00:00 1: 70?7
1943 (Us1) 70.24% 1944-08-15 00:00:00 1944-08-15 00:00:00 7 t:4

"Range of SiO2 content is 58.5-64%wt
2In Christenson [2000] the onset is not clear, but from www.volcano.si.edu BGVN(20:05) onset mid April
1from Kokelaar 2002, mid June, 1995-07-18 beginning of phreatic activity, poor information from seismicity

before.
"from Yokoyama, 1964

15 problematic onset run up time, choose mid September, but increase seismicity started in july 88 from

Okada et al., 1990
16

onset of both run up and repose time are from www.volcano.si.edu

"from Showa-Shinzan diary Aug, 17, 1944 with some ambiguity, so chose 08/15
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Volcano Magma Run-up Repose time Volume
SiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3]
HHMMSS HHMMSS
53] Usu dacite 1977-08-05 16:00:00 1944-08-15 00:00:00 t:100
1977 (Us2) 69.65% 1977-08-07 00:00:00 1977-08-07 00:00:00
(32 hrs)
54 UsuU dacite 2000-03-27 08:00:00 '8 1977-08-07 00:00:00
2000 (Us3) 68.89% 2000-03-31 13:10:00 2000-03-31 00:00:00

Table 3.1: Data set of run-up times, repose times, silica content and volume erupted. For some
eruptions the run-up time duration is also bracketed together with the onset date. In those
cases we only found the specification of the duration of the precursory activity and not the
precise start time. The start date for those eruptions is a convention that allows us to use
a homogeneous notation for all event and easily convert into Julian days. In nearly all cases
the eruption start point is assumed to be at 00:00:00. The exceptions are Usu 2000 eruption
and Okmok 2008 eruption where the real onset time for both precursory activity and eruption
start are known. When eruptions are marked with * this means that month and day of onset
are set as 01-15 by convention in absence of other information, while those marked with **
day of onset is set as 15th day of month by convention in absence of other information. In
volume column | means lava and t tephra. The references list is given below with the same

alphabetical order as in this table.

18real onset times
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Tables

Volcano SiO; T Crystal Main crystal | Viscosity [Pa s]
wt % | [°C] volume % of melt phase (melt + crystal)

Tokachi 1962 52.78 1000 48 Plagioclase 7.784 x 10°
Tokachi 1988 53.15 1000 42 Plagioclase 2.981 x 10°
Piton de la 48.74 | 1200 22 Olivine 6.707 x 10!
Fournaise 1983

Piton de la 47.78 1200 12 Olivine 2.100 x 10!
Fournaise 1986

Piton de la 48.74 1200 20 Olivine 6.795 x 10*
Fournaise 1998

El Chichon 55.88 850 53 Plagioclase 5.366 x 107
Galeras 59.90 900 50 Plagioclase 2.718 x 107
Mauna Loa 1975 | 52.04 | 1200 20 Olivine 1.321 x 102
Mauna Loa 1984 51.37 1200 20 Olivine 1.008 x 10?
Popocatepetl 62.41 900 39 Plagioclase 3.650 x 106
Usu 1943 70.24 900 13 Plagioclase 4.914 x 107
Usu 1977 69.65 900 4 Plagioclase 2.074 x 107
Usu 2000 68.89 900 4 Plagioclase 1.769 x 107
Hekla 1970 54.90 1100 10 Plagioclase 2.111 x 102
Hekla 2000 55.00 1100 10 Plagioclase 4.475 x 103
Guagua Pichincha | 65.79 900 10 Plagioclase 4.204 x 108
Soufriere Hills 60.02 900 40 Plagioclase 4.042 x 106

Table 3.2: Data used to calculate the viscosity, last column on the right using the software
program Conflow (Mastin and Ghiorso, 2000). For the melt composition used as input,
please refers to reference list of Table 1. Pressure is always chosen equal to 26 MPa and

the melt water content is always zero. The value of viscosity refers to melt + crystal.
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Run up time vs Repose time and silica content
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Figure 3.1: Repose time versus run-up time data. The error associate with the slope of the

regression is equal to 0.3 and with the intercept is 0.1. Labels of individual points correspond

to each eruption documented in Table 1. Magma composition is based on the Le Bas et al

(1986) classification.
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Linear regression log-viscosity vs silica content

10 T T T T T
lo =027 X -10.4
0 a(n,,) si0, y
| R®-085

10 3
W L ]
]
=
:'IOE E |
=
= s
B0 =
Q
Q
Q. ]
>

'IO3 E 3

‘IO2 E E

10 i 1 I I I 1

45 50 55 80 65 70 75

Silica content SiO2 [wios]

Figure 3.2: Regression analysis to infer an empirical relationship between silica content and vis-
cosity. Viscosity is calculated using Conflow with reported compositional information (Mastin

& Ghiorso, 2000). Please refer to Table 2 for more details.
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Run up time vs Repose time and viscosity
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Figure 3.3: Repose time versus run-up time with viscosity calculated using the regression line

i Figure 2 for each eruption.
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F4 I magma production zone

Figure 3.4: Schematic illustration of the physical model used in the text. Q; is the magma

supply rate. For more details, please refer to the text.
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Conclusions

In this dissertation we presented the three project developed during my PhD studies. We
have carried out two time predictable models embedded in a hierarchical Bayesian structure
(BH_TPM and BH_TPMII), to describe the behavior of eruptive catalog of open conduit
volcanoes. The use of a Bayesian structure allows to explicitly and formally include in the
analysis any kind of uncertainty (relative to data, models, and parameters). While in the
last chapter we have presented the inter-relationship between repose time, run-up time and
viscosity.

We have applied the BH TPM to Kilauea eruptive catalog from 1923 to 1983 AD. The
results have shown that interevent times depend on the previous erupted volume, as in a
Generalized Time Predictable Model (Sandri et al. 2005; Marzocchi & Zaccarelli 2006). The
model has shown a reasonable fit with the data observed at Kilauea volcano, although it
was not able to capture all the features and variability of the real catalog. We have found
also that the Kilauea volcano has a weak time predictable eruptive behavior. However, these
discrepancies do not seem to affect the forecasting capability of BH TPM, that remains
superior to the forecasting capability of a stationary Poisson model, a Log-Normal model and
Generalized Time Predicable Model.

In the second chapter we have carry out, as improvement of the BH TPM, a new Bayesian
Hierarchical model to test time predictability, the BH TPMII. We have applied the model
to Kilauea eruptive catalog from 1923 to 1983 AD and to Mount Etna flank eruptions from
1607 to 2008 AD. The results have shown both volcanoes having time predictable eruptive
behavior. The model have shown a good fit with the observed data for both volcanoes and
is also able to capture extreme values as a tail behavior of the distributions. In addition, the
BH_ TPMII have improved the data fitting compared with those of BH TPM. The forecasts
obtained by BH_TPM II are superior to those provided by other statistical models for both
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volcanoes. In particular we have improved the forecast performance compared with those of
BH_ TPM which corroborate the hypotheses of building up the present model.

The numerical values of the time predictable model parameters, inferred in both models,
suggest the amount of the erupted volume could change the dynamics of the magma chamber
refilling process during the repose period. This is an important feature that should be taken
into account in modeling the magma chamber recharging process for both Kilauea and Mt
Etna volcanoes.

Both BH TPM and BH TPMII have shown some limits in forecasting eruptions after
long quiescence periods compared with a Poisson process. This feature could be interpreted
an additional complexity for long interevent times compared to the time predictable eruptive
behavior. A possible explanation may be addressed in the transition between open conduit
regime and closed conduit regime where the time predictable assumption may fails (Marzocchi
& Zaccarelli, 2006).

Finally, in the last chapter looking at the inter-relationship between repose time, run-up
time and viscosity, data have shown a strong positive correlation between repose time and
run-up time for all classes of magma composition volcanoes. In addition, both times reason-
ably correlated with silica content and, therefore with gross variations in magma viscosity.
Using extremely simplified models of magma ascent immediately before an eruption, we have
successfully matched the observed dependencies of the run-up time times on viscosity. This
preliminary results for the relationships between run-up and repose time observed here pro-
vides a way to design a prediction window appropriate to a particular magmatic system. For
instance, if unrest begins on a low silica system with short quiescent period, one should expect
an eruption to occur within hours to days, if it is going to happen. On the other hand, for
a high silica system that has experienced a very long quiescent time, an alert period should

remain open for a much longer period of time from days to years.
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