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List of Figures
1.1 Plot of the 
umulative number of eruptive events listed in Kilauea 
atalog. Onthe right side of the dashed line there are the events that have been used inBH_TPM. This plot shows that the 
atalog is 
omplete from 1918, but we havetaken only eruptions from 1923 be
ause 1919 and 1922 eruptions have missingvolume data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331.2 Posterior distributions of relevant parameters of BH_TPM using a syntheti

atalog with b=0.5. The �rst plot on the left represents the syntheti
 data sets(i.e. volumes and interevent times); the other sub-plots show the parametersinferred by BH_TPM. For more information see the text. . . . . . . . . . . . . 341.3 Constru
ted Markov Chains for ea
h variable and parameter of the BH_TPM.For R and V we show just one of the 41 
hains relative to ea
h variable. In panela, ea
h 
hain (i.e. ea
h subplot) rea
hes the 
onvergen
e after few iterations,forgetting the initial guess very qui
kly. In this 
ase the starting values is 
hosento be 10 for all quantities. Iterations in panel a represent only the �rst 100iteration of the burn-in phase, for more details please refer to the text. Theremaining iterations (i.e. from 1001 to 10000), shown in b panel, represent the
onditional posterior distributions for BH_TPM variables and parameters. . . . 351.4 Posterior distribution for relevant parameters simulated using all data in 
ata-log. In panel a it is shown the posterior distribution of parameter b; in panel bthe posterior distribution for parameter K and in panel 
 the posterior distri-bution for parameter σ2

R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361.5 Blue stars show the posterior distributions of pairs of simulated variables (in-terevent times Ri and volumes Vi). These variables are simulated via MCMC-Gibbs sampling using all data in the 
atalog. Panel a is relative to Ri and Vifrom 1 to 20 and panel b from 21 to 41. Red plus is the observed data. . . . . . 37
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Introdu
tionIn this dissertation we present the three proje
ts we have been involved during the threeyears of the PhD program in Geophysi
s at University of Bologna. The �rst two proje
ts (inChapters 1 and 2) are 
losely related, one being the enhan
ement of the other. They fo
uson the development and 
arrying out of two Bayesian Hierar
hi
al Models for fore
astingvol
ani
 eruption of open 
onduit vol
anoes, with appli
ation to Kilauea vol
ano, Hawaii,and Mount Etna vol
ano, Si
ily. We have 
apitalized on the Bayesian methodology to testif these vol
anoes are 
ompatible with a time predi
table eruptive model, and to implementa pro
edure for probabilisti
 fore
ast assessment. The third and last proje
t (in Chapter 3)
on
erns the two main observables time-s
ales of the dynami
s of eruptive pro
esses, i.e. theinterevent time or repose time and the magma run-up time. We have investigated the inter-relationship of these two quantities 
onsidering 26 di�erent vol
anoes around the world relativeto 54 di�erent eruptions with magma 
omposition ranging from basalti
 to da
iti
. The �nalgoal is to investigate the inter-relationship between the interevent time and repose time tryingto 
onstrain the role of magma vis
osity in 
ontrolling these two physi
al observables.In order to make the reading easier, we organize this introdu
tion se
tion keeping separatedthe two main topi
s reported above. So we will introdu
e �rst the main argumentation on thephysi
al and statisti
al reasonings behind the two statisti
al models for eruption fore
ast. Inthe last part we will dis
uss widely of the last proje
t.One of the main 
hallenges in modern vol
anology is to fore
ast vol
ani
 eruptions withthe aim of mitigating the risk asso
iated with. The extreme 
omplexity, non linearity, limitedknowledge and the large number of degrees of freedom of a vol
ani
 system make deterministi
predi
tion of the evolution of vol
ani
 pro
esses rather impossible (e.g. Marzo

hi 1996; Sparks2003). Vol
ani
 systems are intrinsi
ally sto
hasti
. In general, eruption fore
asting involvestwo di�erent time s
ales: i) a short-term fore
asting, mostly based on monitoring measuresobserved during an episode of unrest (e.g., Newhall & Hoblitt 2002, Marzo

hi et al 2008among others), and mostly related to a statisti
al des
ription of the past eruptive 
atalogs(e.g. Klein, 1982, Bebbington, 1996a among others). Here, we fo
us our attention only on thelong term fore
ast.



2 Introdu
tionAn in
isive and useful fore
ast should be made before the onset of a vol
ani
 eruption,using the data available at that time. Models implemented with fore
ast purposes have totake into a

ount the possibility to provide �forward� fore
asts and should avoid the ideaof a merely �retrospe
tive� �tting of the data available. Although several statisti
al modelshave been proposed in the past years aiming at the identi�
ation of possible re
urren
e or
orrelation in the vol
ani
 time and/or volume data, none of those models has been 
arriedout with a robust pro
edure a
ting to test the fore
ast performan
e of the model (see forexample Klein 1982, Mulargia et al 1985, Bebbington & Lai 1996a and 1996b, Salvi et al,2006, among others). The idea behind these works was to make e�orts in best-�tting thedata disregarding to 
he
k the fore
ast 
apability of the model. Here we want to ta
kle thisproblem 
onstru
ting a model where the probabilisti
 fore
ast has to be one of the main goalsin a perspe
tive of probabilisti
 vol
ani
 hazard assessment .In addition, a statisti
al model should in
lude a physi
al eruptive pro
ess and related in-formation, if there is any, to give a better understanding of the overall phenomenon. These
onvi
tions lead us to use Bayesian methods in whi
h the posterior distribution for the param-eter ve
tor is a 
ompromise between the likelihood and the prior distribution (see for exampleGelman et al., 2000). While the likelihood quanti�es the probability of observation varyingthe parameters, the prior distribution, expresses in terms of probability density fun
tion somea priori belief about parameters. So, there is the possibility of assigning probability on thehypotheses using prior distributions together with the inferential use of the data as in a merelikelihood analysis. Therefore, probability distributions 
an be used to model and 
onstrainextra-sample information in the prior distribution settings. We believe this possibility 
ouldbe a suitable and helpful tool to get enhan
ement in fore
asting geophysi
al system when theinformation provided by data are poor ( for small or heterogeneous dataset for instan
e).Here, following the aforementioned ideas, we will apply the Generalized Time Predi
tablemodel as presented by Sandri et al (2005) and Marzo

hi & Za

arelli (2006) for the eruptivepro
ess. The 
lassi
al Time Predi
table Model (De La Cruz-Reyna, 1991, Burt et al 1994)assumes eruptions o

ur when the volume in the storage system rea
hes a threshold valuebeing re
harged at 
onstant rate from deeper 
rust. The size of eruptions is a random variablefollowing some kind of statisti
al distribution. Mathemati
ally, this implies that the intereventtime, the time between two 
onse
utive onset of eruption events (i.e. ri = ti+1− ti), is linearlydependent on the volume erupted during the ith eruption. Here we will use the generalizationof the 
lassi
al time predi
table model, proposed by Sandri et al (2005), where the input ratein the magma shallow reservoir 
ould be variable in time, implying a power law relationshipbetween interevent time and volume erupted.In Sandri et al (2005), the authors have found that Mount Etna eruptions (both summit



Introdu
tion 3and lateral events sin
e 1970 AD) follow a time predi
table behavior. Marzo

hi & Za

arelli(2006) have also showed that the Kilauea vol
ano eruptions are time predi
table. Both models,however, do not take into a

ount the measurement errors for interevent times and volumes,sin
e volume data are a�e
ted by a large un
ertainty.As we will show in Chapter 1, using the Generalized Time Predi
table model, we havebuilt up the model for fore
asting vol
ani
 eruption with appli
ation to Kilauea vol
ano. Wehave used a Bayesian Hierar
hi
al framework where variables and parameters of the pro
essare des
ribed used log-normal and inverse-gamma distributions with the aim of using theinformation relative to the measurement error. The 
hoi
es of this parti
ular type of distribu-tion, 
orroborated by goodness-of-�t tests, have 
ome out for te
hni
al reasons making easiernumeri
al simulations within the model. This model has showed problems in �tting data,while we have found the time-predi
tability of Kilauea vol
ano and have made probabilisti
fore
ast as we will show later in Chapter 1. Attributing this dis
repan
y in data �tting withlog-normal distributions, we have 
hosen to develop a further version of hierar
hi
al modelwith more appropriate and general probability density fun
tion for interevent times and vol-umes. This 
hoi
e was made in order to improve fore
asts. We have 
hosen exponential-wisedistributions for interevent times and volumes a

ording with Klein (1982), Mulargia (1985),Marzo

hi (1996) and Bebbington & Lai (1996a) and (1996b). We will present this se
ondmodel in Chapter 2 with appli
ation to Kilauea eruption and Mount Etna �ank eruptions.This proje
t has been performed in 
ollaboration with prof Bruno Sansò at Dept. of AppliedMathemati
s and Statisti
s at University of California, Santa Cruz under the Mar
o Poloex
hange program of the University of Bologna.Finally we will present in Chapter 3, the proje
t developed with prof. Emily Brodskyat the Dept. of Earth and Planetary S
ien
es at University of California, Santa Cruz. Theidea behind this exploratory work is that vol
anoes usually show signs of unrest before aneruption. The intensity of these signals during the pre-eruptive phase varies greatly. So,establishing physi
al 
ontrols on the duration of pre
ursory a
tivity, i.e. run-up time, 
ouldimprove understanding of the dynami
s of magma as
ent from a shallow magma reservoirto the surfa
e. We also fo
used on another observable indi
ative of eruption dynami
s: theinterevent time or repose time, i.e., the time between magmati
 eruptions. For sake of 
larity,in Chapter 3 we will use repose time with the same meaning of interevent time. The reposetime 
ould be asso
iated with the me
hanism that re
harges the magmati
 system. Both ofthese dynami
 quantities are strongly dependent on magma 
omposition and hen
e magmavis
osity. In this preliminary work, we have investigated the inter-relationship between run-up time, repose time and vis
osity by 
olle
ting together a database of 54 eruptions from 26di�erent vol
anoes around the world. The data ranges from basalti
 to da
iti
 systems, so we



4 Introdu
tion
ould investigate the gross in�uen
e of vis
osity by using the sili
a 
ontent as a proxy.This dissertation is organized as follows: in Chapter 1 we will present �Bayesian Hierar-
hi
al Time Predi
table Model for eruption o

urren
e: an appli
ation to Kilauea Vol
ano� ,in Chapter 2 we will present �A new Bayesian Time-Predi
table Model for Open Conduit Vol-
anoes: The Case of Mt Etna and Kilauea�, in Chapter 3 we will introdu
e �The CorrelationBetween Run-Up and Repose Times of Vol
ani
 Eruptions �. We will give referen
es, tablesand �gures at the end of ea
h 
hapter, while the bibliography of this introdu
tion se
tion willbe at the end of the dissertation.



Chapter 1Bayesian Hierar
hi
al TimePredi
table Model for eruptiono

urren
e: an appli
ation to KilaueaVol
ano Abstra
tThe physi
al pro
esses responsible for vol
ani
 eruptions are 
hara
terized by a large numberof degrees of freedom, often non-linearly 
oupled. This extreme 
omplexity leads to an in-trinsi
 deterministi
 unpredi
tability of su
h events that 
an be satisfa
torily des
ribed by asto
hasti
 pro
ess. Here, we address the long-term eruption fore
asting of open 
onduit vol
a-noes through a Bayesian Hierar
hi
al Modeling information in the 
atalog of past eruptions,su
h as the time of o

urren
e and the erupted volumes. The aim of the model is twofold: 1)to get new insight about the physi
s of the pro
ess, using the model to test some basi
 phys-i
al hypotheses of the eruptive pro
ess; 2) to build a sto
hasti
 model for long-term eruptionfore
asting; this is the basi
 
omponent of Probabilisti
 Vol
ani
 Hazard Assessment that isused for rational land use planning and to design emergen
y plans. We apply the model toKilauea eruption o

urren
es and 
he
k its feasibility to be in
luded in Probabilisti
 Vol
ani
Hazard Assessment.1.1 Introdu
tionThe extreme 
omplexity, non linearity, limited knowledge, and the large number of degrees offreedom of a vol
ani
 system make deterministi
 predi
tion of the evolution of vol
ani
 pro-
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urren
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ation to Kilauea Vol
ano
esses impossible. Vol
ani
 systems are intrinsi
ally sto
hasti
 (e.g. Marzo

hi 1996; Sparks2003), and hazardous vol
ani
 phenomena involve so many un
ertainties that a probabilisti
approa
h is pra
ti
ally always needed (e.g. Newhall & Hoblitt 2002; Sparks 2003; Marzo

hiet al. 2004).In general, eruption fore
asting 
an be ta
kled in two di�erent ways, related to two di�erenttime s
ales: i) a short-term fore
asting, mostly based on monitoring measures observed duringan episode of unrest (e.g., Marzo

hi et al. 2008); ii) a long-term fore
asting, usually madeduring a quiet period of the vol
ano, and mostly related to a statisti
al des
ription of the pasteruptive 
atalogs. Here, we fo
us our attention only on this se
ond issue.In a re
ent paper, Marzo

hi & Za

arelli (2006) found di�erent behavior for vol
anoeswith �open� 
onduit regime (i.e., vol
anoes with high frequen
y of eruption and repose periodsless than few tens of years) 
ompared to those with �
losed� 
onduit regime (i.e., vol
anoeswith periods of quies
en
e longer than 30-40 years). A

ording to that paper, open 
onduitvol
anoes tested there (i.e. Mt Etna, Kilauea vol
ano) seem to follow a so-
alled Time Pre-di
table Model, i.e. a model where the time to the next eruption depends on the size of the lasteruption (De La Cruz-Reyna, 1991, Burt et al. 1994). Closed 
onduit vol
anoes, tested byMarzo

hi & Za

arelli (2006) , 
onversely seem to follow mostly a Poisson distribution. Theseresults have been used to build general probabilisti
 models for vol
ani
 hazard assessment ofopen and 
losed 
onduit systems.Di�erent methods have been presented in the past years aiming at the identi�
ation ofpossible re
urren
e or 
orrelation in the vol
ani
 time and/or volume data. Klein (1982) andBebbington & Lai (1996b) study the 
hanges in vol
ani
 regimes looking at the mean rateof o

urren
e of the vol
ani
 events. Sandri et al. (2005) apply a generalized form of timepredi
table model to Mount Etna eruptions. De La Cruz-Reyna (1991) proposed a load-and-dis
harge model for eruptions in whi
h the time predi
table model 
ould be seen as a parti
ular
ase. Bebbington (2008) presented a sto
hasti
 version of the general load-and-dis
harge modelalso in
luding a way to take into a

ount of the history of the vol
ano dis
harging behavior.In this paper the author studied the time predi
tability as a parti
ular 
ase of his modelwith appli
ation to Mount Etna and Mauna Loa and Kilauea data series. Finally a di�erenthierar
hi
al approa
h has been presented by Bebbington (2007) using Hidden Markov Modelto study eruption o

urren
es with appli
ation to Mount Etna �ank eruptions. This model isable to �nd any possible underlying vol
ano a
tivity resulting in vol
ani
 regime 
hanges.Here, our goal is to improve signi�
antly the modeling of open 
onduit systems throughthe implementation of a Bayesian Hierar
hi
al Time Predi
table Model (hereafter BH_TPM)for eruption o

urren
e. The model is a formal generalization of the Time Predi
table Modelin a full Bayesian framework. The Bayesian perspe
tive allows a

ounting for sto
hasti
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tuations in ea
h parameter of the model and in ea
h re
orded measurement (Wikle 2003).In this way, ea
h parameter of the model is des
ribed through a probability density fun
tionwhose posterior distribution is 
onditioned by the available data. The numeri
al solution isobtained via MCMC-Gibbs sampling (Gelman et al., 2000). The BH_TPM is then appliedto the eruption re
ord of Kilauea Vol
ano sin
e 1923 published by the Hawaiian Vol
anoObservatory (see Table 1.1). The out
omes for model variables and parameters show good
onvergen
e properties for all model parameters and errors.After des
ribing the model in detail, we fo
us our attention on some spe
i�
 issues: 1) todis
uss the vol
anologi
al impli
ations of the model parameters obtained; 2) to verify if themodel des
ribes the data satisfa
torily; 3) to 
ompare the fore
asting 
apability of BH_TPMwith other models in the literature; i.e. Poisson model (Klein, 1982) and Log-Normal model(Bebbington & Lai, 1996b) and Generalized Time Predi
table Model (Sandri et al., 2005). Wewould like to remark point 3) under a probabilisti
 fore
ast perspe
tive. As we will show laterin the text, we will use BH_TPM for fore
asting purposes mimi
king probabilisti
 eruptionfore
asts using Kilauea vol
ano dataset. In order to do this, we will use the �rst third part ofthe 
atalog as a learning phase for the model, and we will make probabilisti
 eruption fore
aston the remaining part using a forward pro
edure dis
ussed later in the text. This allows totest and use this model as a 
omponent of Probabilisti
 Vol
ani
 Hazard Assessment (PVHA).1.2 Bayesian Hierar
hi
al ModelThe formal ideas of hierar
hi
al modelling arise from simple probability rules. Hierar
hi
almodelling is based on the simple fa
t that the joint distribution of a 
olle
tion of randomvariables 
an be de
omposed into a series of 
onditional models (Wikle, 2002). That is, if X,
Y , and Z are random variables, we 
an write the joint distribution in terms of a fa
torizationsu
h as [X,Y,Z] = [Z|Y,X][Y |X][X]. We make use of the bra
ket notation for probabilitydistribution in whi
h [Y ] refers to the distribution of Y and [Y |X] refers to the 
onditionaldistribution of Y given X. This simple formula is the basi
 idea of hierar
hi
al thinking. Ingeneral it is easier to spe
ify the distribution of the relevant 
onditional models than to workwith marginal distributions of variables involved in su
h models. In this 
ase, the produ
t ofa series of relatively simple 
onditional models leads to a joint distribution that 
an be quite
ompli
ated.In order to build the model, we follow the framework outlined by Wikle (2002; see alsoreferen
es therein). The idea is to approa
h the problem by breaking it into three primarystages:� Data model : [data|process, parameters]
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hi
al Time Predi
table Model for eruption o

urren
e: anappli
ation to Kilauea Vol
ano� Pro
ess model : [process|parameters]� Parameter model : [parameters]The �rst stage regards the observational pro
ess or data model, whi
h spe
i�es the distributionof the observed data given the pro
ess generating them and the parameters des
ribing it.The se
ond stage des
ribes the pro
ess, 
onditional on its parameters. Finally, the thirdstage a

ounts for the un
ertainty in the parameters. Ultimately, we are interested in thedistribution of the pro
ess and parameters updated by the data. We obtain the joint posteriordistribution for the pro
ess and parameters using Bayes' rule:
[process, parameters|data] ∝ [data|process, parameters][process|parameters][parameters] (1.1)In order to make inferen
e about the pro
ess and parameters governing the o

urren
e ofvol
ani
 eruptions for the 
ase of �open� 
onduit vol
ano, we apply this simple approa
h. Inthe next subse
tions we will illustrate ea
h stage that we have performed for our hierar
hi
almodel.1.2.1 Data modelThe dataset reported in Table 1.1 is taken from the Hawaiian Vol
ano Observatory web site(http://hvo.wr.usgs.gov/kilauea/history/historytable.html). The full 
atalog starts from 1823but only the 42 vol
ani
 events having o

urred after 1922 are 
onsidered in our analysis,be
ause only this latter part of the 
atalog 
an be 
onsidered 
omplete in terms of o

urren
etime and erupted volume data. Figure 1.1 reports the 
umulative number of events versus time,where the eruptive rate sin
e 1923 is approximately 
onstant ex
ept for a major quies
en
eperiod around the 40's. The 
atalog reports the onset of ea
h eruption, the total volume ofmaterial eje
ted (lava and tephra) and the interevent time. The volume of the 1924/05/10event is taken from http://www.vol
ano.si.edu/ and is only the tephra volume. For moredetails regarding the de�nition of interevent times see Klein (1982). Sin
e the interevent timefollowing the last eruption 
annot be available, we have 41 pairs of data of interevent time (i.e.the time between the onset of ith and the onset of (i + 1)th eruptions) and volume erupted(in the ith eruption), that from now on we indi
ate with dri

and dvi
respe
tively.In testing the independen
e of data via 
orrelation fun
tion, the only signi�
ant 
orrelation(P-value=0.06) appears between the volume and the subsequent interevent time. Thereforewe assume that ea
h pair of data (dri

,dvi
) is independent from the other pairs. In a Bayesianframework, the a
t of measurement does not lead simply to an observed value, but to a state ofinformation des
ribed by a distribution where the single measurement is a random realizationof this distribution.In this paper, we assume that the logarithm of the data, made dimensionless by two gauge
onstant (i.e. R̂ = 1day and V̂ = 1 × 106 m3), i.e. Dri

= ln(dri
/R̂) and Dvi

= ln(dvi
/V̂ ),
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hi
al Model 9are respe
tively random draws from normal distributions, with the means Ri = ln(ri/R̂) forthe interevent times and Vi = ln(vi/V̂ ) for the volumes, where ri's are the interevent timevariables and vi's are the volume variables. We test whether or not Dri
and Dvi

are normallydistributed using Anderson-Darling test (Anderson and Darling, 1952). The null hypothesisis that logarithm of the data 
omes from a normal distribution. We 
an not reje
t the nullhypothesis of normality for Dri
and Dvi

with P-value=0.625 and P-value=0.715 respe
tively(Trujillo-Ortiz et al., 2007). We 
an 
on
lude that normal distributions �t reasonably thelogarithm of the data.The variables ri and vi, and their natural logarithm, represent the variables of our model.The varian
es of su
h normal distributions are the data measurement errors for the intereventtimes σ2
Dri

and for the volumes σ2
Dvi

. In this view, ea
h single pair is:
Dri

∼ N(Ri, σ
2
Dri

) and Dvi
∼ N(Vi, σ

2
Dvi

) i = 1, . . . , 41where from now on N(a, b2) indi
ate a normal distribution with mean a and varian
e b2 andthe symbol ∼ means "is distributed as".In order to give appropriate varian
es for Ri and Vi to ea
h distribution, we use the errorpropagation. We assume two di�erent values for measurement errors on volume data beforeand after 1960. Su
h division arises by 
onsidering that, after 1960, the measurements weretaken by the Hawaiian Vol
ano Observatory, and we assume that these measurements aremore a

urate. Systemati
 and dire
t measurement of lava �ow or modern measurement us-ing satellite te
hniques should give a more pre
ise estimation of the volume erupted. Indire
tmeasurement on histori
al lava �ow, inferred with geologi
al �eld methodology probably un-derestimates the real erupted volume (e.g. Behn
ke et al., 2005). This is the reason why weassume the relative error (∆vi/vi) equal to 25% for the volumes before 1960 and equal to15% for more re
ent data. For the interevent times we 
hoose an error measurement equal to
∆ri = 1day. Therefore, applying the error propagation rule, we get:

σDri
=

∂Ri

∂ri
∆ri =

∆ri

ri
i = 1, . . . , 41

σDvi
=

∂Vi

∂vi
∆vi =

∆vi

vi
= 0.25 i = 1, . . . , 13

σDvj
=

∂Vj

∂vj
∆vj =

∆vj

vj
= 0.15 j = 14, . . . , 41The error σDri

is 
oin
ident with the relative error on the interevent time, while σDvi
isindependent from the data value and error.At this point we are able to write the joint distributions for the data model, assuming
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urren
e: anappli
ation to Kilauea Vol
anoindependen
e among the pairs of data, as:
[Dr|R,σ2

Dr] =

41
∏

i=1

N(Ri, σ
2
Dri

) (1.2)
[Dv |V, σ2

Dv] =

41
∏

i=1

N(Vi, σ
2
Dvi

) (1.3)1.2.2 Pro
ess modelBefore displaying our statisti
al 
onsiderations for the pro
ess model, we have to introdu
ethe underlying physi
al eruptive pro
ess. We use a very simple sto
hasti
 pro
ess to explainthe eruptive dynami
 pro
ess. It is the Generalized Time-Predi
table Model (GTPM, seeSandri et al. 2005) for vol
ani
 eruptions, assuming that eruptions o

ur when the volume inthe storage system rea
hes a threshold value, given that magma enters in the magma storagesystem with a variable rate and that the size of eruptions is a random variable, followingsome kind of statisti
al distribution. Under these assumptions, we have a generalized time-predi
table system with longer/shorter interevent time following large/small volume outputeruptions. In fa
t, for su
h a model, the time to the next eruption is determined by the timerequired for the magma entering the storage system to rea
h the eruptive level. In this viewthe more general form for a time-predi
table model is a power law between the erupted volumeand the interevent time:
ri = cvb

i (1.4)that we want to linearize by logarithmi
 transformation. For this reason we need dimensionlessvariables and so we introdu
e two gauge 
onstants (i.e. R̂ and V̂ that are the same of previousse
tion) in order to make ri and vi dimensionless. Therefore we 
hoose R̂ = 1day and
V̂ = 1 × 106 m3 and we de�ne:

r∗i =
ri

R̂
and v∗i =

vi

V̂that we introdu
e in the previous equation and we obtain:
r∗i = αv∗biwhere α = (cV̂ b)/R̂ is a new 
onstant. Now we 
an take the logarithm of this equation andwe have:

Ri = K + bVi (1.5)where K = ln α is a 
onstant and Ri = ln r∗i and Vi = ln v∗i . This dimensionless transformationdoes not in�uen
e the following numeri
al solutions, but it is only an algebrai
 solution tomake dimensionless the argument of the logarithms.
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hi
al Model 11In the last equation, if the parameter b is equal to unity we are in a 
lassi
al time predi
tablesystem (see De La Cruz Reyna 1991, Burt et al. 1994). If b is equal to 0 the system is nottime predi
table. If b > 1 we have a non-linear relationship implying a longer interevent timeafter a large volume eruption 
ompared to a 
lassi
al time predi
table system. If 0 < b < 1 westill have a non-linear relationship but for a big volume eruption it implies a shorter intereventtime 
ompared to a 
lassi
al time predi
table system. Assuming this pro
ess as a dynami
eruptive behavior for the vol
ano, we pro
eed to show our statisti
al 
onsideration about thispart of the hierar
hi
al model implementation.In building up the pro
ess model, we have to 
onne
t the model variables (Ri and Vi) withthe physi
al model, i.e., with equation (1.5). Here, we assume that the Ri's are independentand ea
h of them is normally distributed, with mean given by the generalized time-predi
tablemodel and unknown varian
e representing the model error. Hen
e:
Ri ∼ N(bVi + K,σ2

R) i = 1, . . . , 41and for the all variables Ri the resulting joint distribution given the model parameters is:
[R|V, b,K, σ2

R] =
41
∏

i=1

N(bVi + K,σ2
R) (1.6)In order to assign the distribution for the volume variables (Vi) we have to exert a little e�ort.We do not have information about the real size distribution of Kilauea eruptions. However,a

ording to the Anderson and Darling test performed in the previous sub-se
tion, the setof volume data, i.e. Dvi

(i = 1, . . . , 41), is satisfa
torily �tted by a log-normal distribution.Be
ause of this goodness-of-�t test, we assume that also the volume variables (i.e., vi) in theBH_TPM have a log-normal distribution. The logarithm of variables, i.e. Vi, are thereforenormally distributed with unknown mean µv and varian
e σ2
v , and for ea
h of them we 
anwrite:

Vi ∼ N(µv, σ
2
v) i = 1, . . . , 41and the joint distribution is:

[V |µv, σ
2
v ] =

41
∏

i=1

N(µv, σ
2
v) (1.7)In addition, we assume that the parameter µv has uniform non informative vague priordistribution. A non informative prior expresses vague or general information about a variable.Non informative priors 
an express obje
tive information (e.g., "the variable is positive")assigning equal probabilities to all possibilities within the de�ned domain (e.g., for all x > 0).The simplest 
ase of non informative vague prior distribution is the uniform distribution with
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urren
e: anappli
ation to Kilauea Vol
anounlimited domain (e.g., −∞ < x < +∞). In this text when we refer to non informative vagueprior distribution, we always use uniform distribution with unlimited domain, see Table 1.2.The distribution of varian
e parameters, i.e. σ2
R and σ2

v , are 
onstru
ted from inversegamma family, whi
h is the natural 
onjugate family for the normal distribution (see Gelmanet al., 2000). The property of 
onjuga
y is very useful in Bayesian prior to posterior analysis.The 
onjuga
y is formally de�ned in this way: for a given ve
tor of data y = y1, . . . , ynand a parameter ve
tor θ = θ1, . . . , θn, if Φ is a 
lass of likelihood [y | θ], and Ψ is a 
lassof prior distribution for θ, then the 
lass Ψ is 
onjugate for Φ if [θ | y] ∈ Ψ for all [y |

θ] ∈ Φ and [θ] ∈ Ψ where data and parameters are linked by Bayes' theorem, i.e. [θ |

y] ∝ [θ][y | θ]. In our 
ase, if we model the prior distribution for varian
e by an inversegamma distribution, the likelihood is normal (i.e. equation (1.6) and (1.7)), thus the posteriordistribution (for the varian
e) be
omes an inverse gamma distribution.Therefore, the prior distributions for varian
es are:
[σ2

R] = Γ−1(ασR
, βσR

)

[σ2
v ] = Γ−1(ασv , βσv )where Γ−1 indi
ates the inverse gamma distribution with mean µ = β(·)/(α(·) − 1) for α(·) > 1and varian
e s = β2

(·)/(α(·) − 1)2(α(·) − 2) for α(·) > 2, and ασR
and ασv are shape parametersand βσR

and βσv are s
ale parameters.1.2.3 Parameter modelIn a Bayesian perspe
tive, we have to assign a distribution for the parameters (b and K) fromequation (1.5), des
ribing the physi
al model. From a Bayesian point of view, and for reasonsof 
onjuga
y properties of the distributions used, we simply assign a normal distribution tothe parameters that we want to make inferen
e on. The means (µb and µk) and varian
es (σband σk) of those distribution are 
alled hyperparameters. Hen
e we have:
[b|µb, σ

2
b ] = N(µb, σ

2
b ) (1.8)

[K|µk, σ
2
k] = N(µk, σ

2
k) (1.9)The prior distributions for the hyperparameters are assumed to be independent. We assumenon informative vague uniform prior distributions for the means (see Table 1.2), and theinverse-gamma prior distributions for the varian
es; the latter are

[σb] = Γ−1(ασb
, βσb

)

[σK ] = Γ−1(ασK
, βσK

)
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and ασK

are shape parameters and βσb
and βσK

are s
ale parameters (see previousse
tion).1.2.4 Posterior distribution for variables and parametersIn Table 1.2 there is a summary of the all distributions assigned. The last step, now, isto 
al
ulate the joint posterior distribution as a produ
t of data model, pro
ess model andparameters model. The posterior distribution is the pro
ess and parameters distributionupdated by the observed data. Remembering equation (1.1) and the Bayes' rule, we have:
[R,V, b,K, µb.µk, µv, σ

2
R, σ2

v , σ
2
k, σ

2
b |Dr,Dv ] ∝ (1.10)

[Dr|R,σ2
Dr][Dv |V, σ2

Dv][R|V, b,K, σ2
R][V |µv, σ

2
v ]

[b|µb, σ
2
b ][K|µk, σ

2
k][µv][µb][µk][σ

2
v ][σ

2
b ][σ

2
k][σ

2
R]The relevant BH_TPM parameters that we want to simulate from equation (2.7) are theparameters of the physi
al model b and K, and the error σ2

R. Also, we want to simulate thevariables Ri and Vi, in order to 
ompare them with the observations. Finally we simulate µvand σ2
v for model 
he
k purpose, that will be explained in the following se
tion. In order tosimulate these parameters and variables, we have to integrate the joint posterior distributiongiven by equation 2.7.We use a Monte Carlo integration using Markov Chain (MCMC), where the Markov Chainare 
onstru
ted using Gibbs sampler (Gilks et al. 1996 and referen
es therein).The Gibbs sam-pling algorithm generates an instan
e from the distribution of ea
h variable in turn, 
onditionalon the 
urrent values of the other variables/parameters. Therefore Gibbs sampling works byiteratively drawing samples from the full 
onditional distribution of ea
h quantity of interest(i.e., variable or parameter); thus we 
al
ulate the full 
onditional distribution for every vari-able Ri and Vi, and every parameter b, K, σ2

R, µv and σ2
v . The analyti
 expression for ea
hfull 
onditional distribution 
al
ulated and used for sampling pro
edure is:

[R | rest] ∝ 41
∏

i=1

[N(Dri
| Ri, σ

2
Dri

)N(Ri | bVi + K , σ2
R)
]

∝N( 41
∑

i=1

Dri

σ2
Dri

+

41
∑

i=1

bVi + K

σ2
R

)

,

(

41
∑

i=1

1

σ2
Dri

+
1

σ2
R

)−1



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[V | rest] ∝ 41

∏

i=1

[N(Dvi
| Vi, σ

2
Dvi

)N(Ri | bVi + K,σ2
R)N (Vi | µv, σv)

]

∝ N( 41
∑

i=1

Dvi

σ2
Dvi

+

41
∑

i=1

b(Ri − K)

σ2
R

+
µv

σ2
v

)

,

(

41
∑

i=1

1

σ2
Dvi

+
1

σ2
v

+
1

σ2
R

)−1




[b | rest] ∝ 41
∏

i=1

[N (Ri | bVi + K,σ2
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1.2 Bayesian Hierar
hi
al Model 15where the symbol U(a, b) indi
ate a uniform distribution on the domain [a, b].To implement the Gibbs algorithm, we have to set the starting values for ea
h quantity ofinterest. The numeri
al solutions, obtained after 11000 iterations, exhibit good 
onvergen
eproperties for all model variables and parameters. Figure 1.3 shows the 
onstru
ted MarkovChain using Monte Carlo integration for all values of BH_TPM. We dis
ard the �rst 1000iterations as the burn-in phase. For readers are not familiar with MCMC simulations, the burn-in phase is the number of iterations or the time steps needed by 
hains to rea
h 
onvergen
e.After that burn-in phase, the 
onstru
ted 
hain 
an be 
onsidered stationary. In Figure 1.3ea
h 
hain 
onverges after very few iterations. Anyway, for sake of pre
ision, we run ea
h
hain longer than needed (i.e., 11000 time steps), dis
arding the �rst 1000 iterations as theburn-in phase (mainly be
ause the longer is the 
hain, the better is the approximation of thetarget stationary distribution, and moreover the Gibbs sampler simulation 
ode is very fastto run ). Hen
e the last 10000 Gibbs sampled time steps set up the posterior distributions forBH_TPM parameters and variables.In order to ensure the 
onvergen
e of ea
h 
hain, regardless of starting values and thenumber of time steps (i.e. iterations) used, we �nally 
al
ulate the Gelman and Rubin statisti
s(for a more detailed des
ription of this method see Gelman et al. 2000, 331-332). For thisreason we perform a number of di�erent parallel simulations with di�erent starting values,to 
he
k that the stationary distributions obtained are not sensitive to the random 
hoi
e ofstarting values. We perform 10 parallel simulation of 15000 runs with di�erent starting valuesand we monitor the 
onvergen
e only for parameters b, K, σ2
r , µv and σ2

v . We use a highernumber of simulations to avoid slow 
onvergen
e problems related to extreme starting values.The Gelman and Rubin approa
h is substantially based on 
omparing di�erent simulatedsequen
es by 
omputing the between-sequen
e (i.e. B) and within-sequen
e (i.e. W ) varian
e(using the same notation present in Gelman et al. 2000). For a general s
alar φij with
i = 1, . . . , n and j = 1, . . . , J , where n is the number of the simulations (i.e. 15000 in our
ase) and J is the number of parallel sequen
es (i.e. 10 in our 
ase), we 
ompute:

B =
n

J − 1

J
∑

j=1

(

φ.j − φ..

)2where φ.j = 1
n

∑n
i=1 φij is the mean of the j-th sequen
e and φ.. = 1

J

∑J
j=1 φ.j is the grand
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urren
e: anappli
ation to Kilauea Vol
anomean and
W =

1

J

J
∑

j=1

s2
jwhere s2

j = 1
n−1

∑n
i=1

(

φij − φ.j

)2 is the varian
e within sequen
e j.Hen
e we 
an estimate var(φ | data), the marginal posterior varian
e of the estimand, bya weighted average of W and B, namely:var(φ | data) =
n − 1

n
W +

1

n
BFor a �nite number of simulations n, the varian
e W should be an underestimate of var(φ |data) be
ause the individual sequen
es do not 
over all the range of target distribution and,as a result, will have less variability; in the limit n → ∞, the expe
tation of W approa
hesvar(φ | data). Therefore the aim is to monitor 
onvergen
e by means of the fa
tor

R =

√var(φ | data)
Wthat has to be 
lose to the unity. For the all parameters in our model, this R-fa
tor estimandis in pra
ti
e equal to the unity. Therefore we have 
he
ked that the 
onstru
ted Markov
hain for BH_TPM parameters are independent of the starting values, then we 
an use thelast 10000 sampling values as posterior distribution for the parameters b, K, σr, µv and σv.1.3 Parameters estimation and fore
astingIn this se
tion we examine the results obtained via MCMC-Gibbs Sampling for the modelvariables and parameters. We explain the physi
al meaning of the simulated quantities andtheir reliability to reprodu
e observational data. We test the fore
ast 
apability of this model
ompared with some appropriate models previously published in the literature.Before dis
ussing the results obtained for Kilauea Vol
ano, we test the BH_TPM and itsreliability by analyzing syntheti
 data. To this purpose, we generate a sample of 50 syntheti
values vi

synt from a log-normal distribution with zero mean and unit varian
e. By de�nitionof log-normal distribution, we have that Vsynt = log(vi
synt) are normally distributed. This setof 50 Vsynt are random draws from a normal distribution and they mimi
 a syntheti
 
atalogof volume erupted. These syntheti
 volume data are substituted into the Time Predi
tableequation (1.5), setting di�erent values for the parameters b and K, in order to obtain a �purely"



1.3 Parameters estimation and fore
asting 17time predi
table 
atalog of syntheti
 interevent times Ri
synt. Then, we add a white noise atea
h syntheti
 interevent time Ri

synt using the following equation:
Ri

synt = K + bV i
synt + εwhere ε ∼ N(0, 1) is a sto
hasti
 noise term.Thus we generate three di�erent syntheti
 data sets of Ri

synt and V i
synt ea
h one with adi�erent value of b, i.e. b = 0.5, b = 1 and b = 1.5, and the same value of K = 5, in order toreprodu
e three di�erent eruptive regimes a
hievable with a Time Predi
table equation (1.4),i.e. 0 < b < 1, b = 1 and b > 1. With this pro
edure we build up three syntheti
 data sets
onsisting ea
h of 50 pairs of intervent times and volumes. The idea is to use them to test ourBH_TPM. Eventually, if the model is robust, we expe
t to �nd as out
omes the same b and

K values used to obtain the syntheti
 interevent times Ri
synt for ea
h data sets. The resultsof this syntheti
 test show a good reprodu
ibility of the model respe
t to the parameters usedgenerating the Rsynt's. In Figure 1.2 there are the BH_TPM simulations for the parameters

b, K and σ2
r when the syntheti
 interevent time Rsynt's are generated with b = 0.5 and K = 5.We obtain similar results in the other 
ases (i.e. b = 1 and b = 1.5); we do not show them toavoid redundan
y. It is even interesting in Figure 1.2 that the numeri
al value of the varian
eof interevent times distribution of BH_TPM, i.e. σ2

r , is 
omparable with the noise term ε.Yet, we a
knowledge that the three data sets do not 
ontain outliers, so there is a very smallvariability inside them. Finally, as the model seems to be robust, we apply it to a �real�dataset.1.3.1 Parameters estimationUsing the great �exibility of the implemented Markov Chain, we obtain the numeri
al valuesfor model variables and parameters in two ways:1. using all the �rst 41 events in the 
atalog (Table 1.1), but dis
arding the 42nd be
auseit is ongoing, to obtain the distributions of the variables R and V and the parameters
b, K and σ2

R, see Figure 1.4, 1.5;2. sampling b, K and σ2
R through a forward pro
edure. At �rst, we use only the �rst eventin the 
atalog (see Table 1.1), and we add one pair of volume and interevent time dataat a time. Then, we simulate the distribution of ea
h sampled parameter. Therefore we
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urren
e: anappli
ation to Kilauea Vol
anoobtain 41 distributions for the model parameters, ea
h one with an in
reasing numberof data used (see Figure 1.6. In this 
ase, the last distribution in Figure 1.6 is the sameof the one in Figure 1.4.Note that the se
ond pro
edure provides interesting information; for example, it allowsus to investigate whi
h is the minimum amount of data ne
essary to have an a

urate andinformative distribution for model parameters. In other words we 
an 
ontrol the amountof data ne
essary to 
orre
tly perform the learning phase for the model. Moreover, thispro
edure is parti
ularly suitable to mimi
 a realisti
 eruption fore
asting, sin
e it uses onlydata available at a spe
i�
 time to fore
ast what will happen in the next future.As it is shown in Figure 1.4, the inferred slope parameter b of the GTPM equation (1.5)has a well de�ned distribution. First, we test the null hypothesis H0:b ≤0 and we reje
t itat 5% level of signi�
an
e, stating that b has a distribution of values signi�
antly greaterthan zero. Its numeri
al values are between 0 and 0.5, with mean b = 0.21 and standarddeviation σb = 0.10. This means that GTPM works out for eruptive behavior at KilaueaVol
ano. Moreover its numeri
al value less than one implies a non-linear relationship inequation (1.4) between interevent times and erupted volumes. Su
h non-linear relationshipimplies the possibility of having a non 
ostant input rate in the magma storage system.Therefore, after a large erupted volume, we expe
t a shorter interevent time 
ompared with a
lassi
 Time Predi
table System where the magma input rate is assumed 
onstant in time.A possible explanation might be represented by an in
rement in the magma input rate fromthe depth to the shallow magma storage system after an eruption 
hara
terized by a largevolume. This might be due to an additional pressure gradient inside the magma 
hamberought to magma dis
harging pro
ess, be
ause a large eruption drains the magma 
hamberand de
reases the e�e
tive pressure inside it (see Aki & Ferrazzini, 2001). This redu
tion ofpressure inside the magma storage system may trigger an in
reasing of magma buoyan
y and,obviously, an in
rease of the magma input rate. In addition, Takada, 1999 shows, as a result ofhis deterministi
 model for dike migrations and stationing in the level of neutral buoyan
y, thepossibility to have a 
onstant supply rate with os
illations or �u
tuations beneath intraplatevol
anoes (i.e. Mauna Loa and Kilauea vol
anoes).Another result is reported in Figure (1.4), where we show the distribution of inter
ept Kin equation (1.5). In terms of its physi
al meaning, we 
an 
onsider it as a gauge parameter
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asting 19(see equation (1.4)) that links together two non-homogeneous quantities, i.e. interevent timeand erupted volume. As it is shown in Figure 1.4, the mean and standard deviation of theparameter K are respe
tively K = 5.27 and σk = 0.22. The main result is that K has aproper �nite distribution, that represents the appropriate dimensional 
onstant for equation(1.4). The parameter K 
an also be seen as a fun
tion of the average re
harge rate: inequation (1.5) K = ln α, where α = (cV̂ b)/R̂, and α = r∗i /v
∗b
i from equation (1.4). So thedimensionless α parameter, or better the dimensional parameter c is fun
tion of the inverseaverage re
harge rate. However, due to the fa
t that b is di�erent from 1, the term vb

i makesit di�
ult to 
ompare physi
ally 1/c with the average re
harge rate at Kilauea vol
ano for theperiod 1923-1983.The parameter σ2
R (see Figure 1.4) depends on the quantity Ri − (bVi + K) and it 
an beseen as a measure of the dis
repan
y between the simulated interevent times and the TimePredi
table equation. This error is a measure of how 
lose the BH_TPM model realizationsfor R and V �t the data (Dr and Dv) when the variables simulated are 
onstrained by thedata in the MCMC-Gibbs Sampling. In the pro
ess model distribution for interevent times(i.e. equation (1.6)) errors are additive on the logarithm. After an exponential transformation,this error be
omes multipli
ative respe
t to ri. The median of the distribution in Figure 1.4is 1.33, and so an error of about 4 times the relative interevent time 
omes out. Neverthelesswe 
annot 
onsider σ2
R as a measure of goodness-of-�t for BH_TPM to the data; this aspe
tis dis
ussed in the next subse
tion when we simulate and 
ompare syntheti
 datasets withobservational data. This feature of the model in reprodu
ing data with relatively small errorsis shown in Figure 1.5. The various panels in Figure 1.5 represent the simulated volumesand interevent times (blue stars), plotted together with the observed data (red plus) that arealways within the simulated distributions.As mentioned above, Figure 1.6 represents the distributions for model parameters b, K and

σ2
R using the sampling forward pro
edure des
ribed above at the point 2. Those �gures showthe learning phase, before the dashed line, and the remaining part used to model 
he
kingand fore
asting. We 
hoose the �rst third part of the 
atalog, i.e �rst 14 events, as a learningphase; this means that we test the model on the remaining 27 events. We test again the nullhypothesis H0:b ≤0 and we 
an reje
t it a 5% level of signi�
an
e for all b distributions afterthe learning phase. The physi
al interpretation is the same as it was given before in des
ribing
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urren
e: anappli
ation to Kilauea Vol
anoresults obtained using all 
atalog.In parti
ular we want to point out that results in Figure 1.6 are important to understandthe framework of the forward pro
edure to infer parameters distribution. This kind of sam-pling, i.e. adding one pair of data at a time, will be parti
ularly useful when we make fore
astfor future interevent times (see below).1.3.2 Model 
he
kingThe �nal goal is to 
he
k if the model is 
apable to reprodu
e satisfa
torily the observeddata. To this purpose, we follow the approa
h suggested by Gelman et al. (2000,161), andwe 
ompare the syntheti
 realizations given by BH_TPM with the real data via des
riptivestatisti
s. We 
hoose this approa
h instead of the 
lassi
al goodness-of-�t tests, be
ause in thisway we 
an 
ontrol dire
tly the possible model failures 
omputing the dis
repan
y betweenthe syntheti
 realizations (the so 
alled posterior predi
tive distribution) and data. This isan easy task in Bayesian statisti
s, be
ause it is always possible to simulate the quantities ofinterest from their posterior distribution.In order to 
ompare model realizations and data, we simulate a 10000 syntheti
 
atalogsfrom BH_TPM. The �rst step is to draw a random volume V from the pro
ess equation(1.7) using its own mean µv and varian
e σ2
v already simulated via MCMC-Gibbs samplingusing all data. The se
ond step is to simulate an interevent time relative to the simulatedvolume V from equation (1.6), using the parameters b, K and σ2

R in Figure 1.4. We iteratethis pattern to repli
ate the 41 pairs of interevent times and volumes, ending up with a newsyntheti
 
atalog. By repli
ating this s
heme 10000 times, we obtain 10000 
atalogs ea
hone 
ontaining 41 events. The last step is to 
ompare real 
atalog (41 observed intereventtimes) with the 10000 repli
ated by BH_TPM, using des
riptive statisti
s. For both real andsyntheti
 
atalogs, we 
al
ulate the mean number of events (or mean rate of o

urren
e) λ,the maximum, the minimum, the median and the standard deviation of the interevent times.The results are displayed in Figure (1.7), where we show the distributions for the abovequantities both for the syntheti
 realizations (blue bars) and for the real data (red line in�gure). The �gures suggest that the model generates syntheti
 data that are reasonably inagreement with real data, even though with some important dis
repan
ies. In parti
ular, themodel tends systemati
ally to overestimate the maximum of Ri and, as a 
onsequen
e, it tends
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asting 21to underestimate the mean rate of o

urren
e. Owing to the overestimate of the maximum,the standard deviation is overestimated too. Besides, the minimum is underestimated. Inspite of this la
k-of-�t, however the median of the distribution shows a better agreement.A possible explanation of these dis
repan
ies may be linked to the use of log-normaldistribution for inter-event times and volumes. This 
hoi
e has been mostly adopted forte
hni
al reasons; in fa
t, the use of 
onjugate distributions (i.e. normal and inverse gammadistributions) for ea
h level in data model, pro
ess model and parameters model, makes the
al
ulations mu
h easier. The log-normal distribution has a fat tail, so when we generatesyntheti
 data by drawing independent samples from su
h distribution, we obtain large values(both for volumes and interevent times). In this way, in ea
h 
atalog generated, there isat least a syntheti
 eruption with unreasonably large erupted volume. Consequently, thereis systemati
ally at least one very large interevent time, implying an overestimate of themaximum. An analogous problem arises for the minimum. We attribute the la
k-of-�t forthe minimum again to the tail behavior of the log-normal distribution 
lose to zero. Likely,the log-normal is not the optimal 
hoi
e to 
apture the behavior of the extreme values of thedata in Table 1.1. Further developments of the model will drop the assumption of 
onjuga
yin order to improve the model. For now, we argue that these dis
repan
ies do not a�e
tthe 
on
lusions about the existen
e of a time predi
table model behind the eruption pro
ess.Most important, as we will see in the next se
tion, they do not a�e
t too mu
h the fore
astingperforman
es of the model.1.3.3 Fore
astsThe last 
he
k on the reliability of the model 
onsists of 
omparing the fore
asting perfor-man
es of BH_TPM against others model already present in literature. We endeavor to
ompare the fore
ast 
apability of BH_TPM with those of a Poisson model (Klein, 1982),Log-Normal model (Bebbington & Lai, 1996b) and Generalized Time Predi
table Model(GTPM) (Sandri et al., 2005). The test mainly 
onsists of 
al
ulating the gain in proba-bility of BH_TPM with respe
t to the 
ited models, under the framework of a probabilisti
fore
ast made on the observed data.The homogeneous Poisson model is a totally random and memoryless model and it isthe simplest model to des
ribe the eruptive pro
ess (e.g., Klein, 1982; Marzo

hi, 1996).
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urren
e: anappli
ation to Kilauea Vol
anoIf the events follow a Poisson distribution, then the interevent times follow an exponentialdistribution (see Klein 1982; Mulargia et al. 1985; Bebbington & Lai 1996a).A Log-Normal model has been proposed by Bebbington & Lai (1996b) as a best �t dis-tribution for Kilauea data. A

ording to those authors, a log-normal distribution should takeinto a

ount the possible eruption 
y
li
ity at Kilauea vol
ano. The authors test intereventtime distribution at Kilauea vol
ano on �all� data available (i.e. period 1823 to 1977 AD )trying di�erent possible distributions. The best �t is given by a log-normal one. At the sametime, the authors also state that the hypothesis of an exponential interevent time distribution(Poisson pro
ess) 
an not be reje
ted when fo
using only on data from 1918 to 1977 AD. Thislatter results is in agreement with Klein (1982). This may mean that for our dataset (onlyeruption form 1923 to 1983, see Table 1.1) a Poisson model 
ould be preferred. Nevertheless,we 
ompare our model both with Poisson and Log-Normal models.The GTPM proposed by Sandri et al. (2005) is substantially the non-hierar
hi
al versionof the present model (i.e. BH_TPM). Those authors have applied a regression analysis onthe logarithm of the interevent time and volume data at Mount Etna vol
ano, �nding atime predi
tability for this vol
ano. However, in that model there is no possibility to use theinformation given by the volume errors; volume data in GTPM are assumed to be a�e
ted onlyby the s
atter around the regression line. Here, we also 
ompare BH_TPM to GTPM. In thisway we point out some justi�
ations for our 
hoi
e of introdu
ing a hierar
hy to better 
apturethe time predi
table behavior, whi
h in turn is mainly due to the ne
essity of a

ounting forthe volume errors.To this purpose, following the s
heme proposed in seismology by Kagan & Knopo� (1997),we 
al
ulate the probability gain of BH_TPM versus Poisson, and Log-Normal and GTPMmodels as the di�eren
e between the log-likelihood of the two models. Be
ause of the 
om-plexity of BH_TPM, we do not have a 
lassi
al analyti
al likelihood fun
tion, but equation(1.6) 
ontains the sample information and the pro
ess information, therefore we 
onsider thisequation as the likelihood of our model. The probability gain is 
al
ulated over the datafollowing the learning phase (see Figure 1.6). For ea
h of these eruptions, we 
al
ulate theprobability of having an event in a time window of one month around the observed intereventtime. For the BH_TPM su
h probability is obtained by equation (1.6) with the observedvolume datum and parameters estimated from the previous data. For example, in fore
asting
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asting 23the 20th interevent time,we use the volume erupted in event number 20 in the 
atalog andthe parameters inferred from the �rst 19 events. For the other models, we use the likelihoodfun
tion to 
al
ulate the probability in the same one month time window around observeddata.For sake of 
larity, this pro
edure deserves further explanation. To 
al
ulate the prob-ability for BH_TPM we �rst simulate 10000 interevent times from the posterior predi
tivedistribution, then we 
al
ulate the empiri
al 
umulative distribution fun
tion for the simu-lated interevent times and �nally we 
al
ulate the probability from the empiri
al distributions.For Poisson, and Log-Normal models, we instead use the analyti
al 
umulative distributionfun
tion. We �t the parameters of those distributions via Maximum Likelihood Estimationusing the same forward pro
edure used for BH_TPM. For GTPM we �rst 
al
ulate the re-gression line following the forward pro
edure des
ribed above, then we fore
ast the intereventtime using the regression parameters and the volume datum. The probability here is 
al
u-lated from the 
umulative normal distribution on the logarithm of the data with mean equalto the log-interevent time fore
asted and varian
e equal to the residual mean sum of square.Probability is always 
al
ulated as the di�eren
e in the one month time window around theobserved interevent time.The results are displayed in Figure (1.8), where we show the probability gain for ea
hevent (the so 
alled �pun
tual probability gain�), and its total value obtained summing upall pun
tual probability gains. If the probability gain is greater than zero, our model makesbetter fore
ast than others. Figure (1.8) shows that not all the pun
tual probability gains arepositive, although the total probability gain is positive for all tests. In parti
ular, BH_TPMdoes better fore
ast than all the other models we tested. Our 
hoi
e of introdu
ing this kindof hierar
hy is 
orroborated by the highest probability gain value whi
h is obtained againstGTPM. In order to 
he
k if there are some systemati
 
o-variation between the pun
tualprobability gain and the interevent times, we 
he
k a possible 
orrelation between these twoquantities. We show only for the probability gain against the Poisson pro
ess, be
ause thismodel represents a totally random and memoryless eruptive behavior for Kilauea. Comparisonwith a Poisson model allows us to spe
ulate on the physi
al pro
esses possibly involved in theeruption dynami
s.Figure 1.9 shows the relationship between interevent times and pun
tual probability gains.
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hi
al Time Predi
table Model for eruption o

urren
e: anappli
ation to Kilauea Vol
anoThe inverse linear relationship (the slope is signi�
antly less than zero, P-value≤ 0.01) meansthat, for very long interevent times, BH_TPM performs worse than Poisson model. Per-forming the same analysis for the pun
tual probability gain against the Log-Normal model,it shows a weaker but still signi�
ant, inverse relationship. The slope is less than zero withP-value=0.0125.There are di�erent possible explanations for the inverse linear relationship: 1) for long in-terevent times, Kilauea vol
ano be
omes memoryless in its eruptive behavior (see Marzo

hi& Za

arelli, 2006); 2) our assumption on the time predi
table model as a dynami
 eruptivebehavior is too simple to des
ribe events with long repose time; 3) the assumption used to 
on-sider eruption as a point event in time without taking into a

ount the eruption duration maybe
ome distorting for the model fore
ast purposes (see Bebbington, 2008); 4)with BH_TPMat Kilauea, we negle
t magma intrusions not followed by an eruption (Takada, 1999, Dvorak& Dzurisin, 1993); 5) also we negle
t possible 
hanges in magma 
hamber geometry after aneruption (see Gudmundsson, 1986). Further explanations 
ould be derived fo
using on thevolumes instead of the interevent times. The volume erupted may 
hange the physi
al and
hemi
al 
onditions of the magma 
hamber and the magma 
onduit. However performing thesame regression analysis as in Figure 1.9, but for the volumes instead of interevent times, itdoes not provide any signi�
ative 
orrelation.1.4 Con
lusionsIn this work we have developed a time predi
table model embedded in a hierar
hi
al Bayesianstru
ture (BH_TPM), to des
ribe the behavior of eruptive 
atalog of open 
onduit vol
anoes.The use of a Bayesian stru
ture allows to expli
itly and formally in
lude in the analysis anykind of un
ertainty (relative to data, models, and parameters). We have applied the model toKilauea eruptive 
atalog from 1923 to 1983 AD. The results show that interevent times dependon the previous erupted volume, as in a generalized time predi
table model (Sandri et al. 2005;Marzo

hi & Za

arelli 2006). The model shows a reasonable �t with the data observed atKilauea vol
ano, although it is not able to 
apture all the features and variability of the real
atalog. We �nd also that the Kilauea vol
ano has a weak time predi
table eruptive behavior;likely this model 
ould work better when applied to other �open� 
onduit vol
anoes. However,these dis
repan
ies do not seem to a�e
t the fore
asting 
apability of BH_TPM, that remains
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lusions 25superior to the fore
asting 
apability of a stationary Poisson model, a Log-Normal model andGeneralized Time Predi
able Model. We suggest that the present model 
ould be in
luded ina long-term Probabilisti
 Vol
ani
 Hazard Assessment as a basi
 
omponent for modelling theo

urren
e of eruptions in time at Kilauea Vol
ano.
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30 TablesEruption # Onset Interevent time Volumeyyyymmdd [days℄ lava e tephra [106m3℄1 1923 08 25 259 0.0732 1924 05 10 70 0.793 1924 07 19 1083 0.2344 1927 07 07 594 2.305 1929 02 20 155 1.406 1929 07 25 482 2.607 1930 11 19 399 6.208 1931 12 23 988 7.009 1934 09 06 6504 6.9010 1952 06 27 703 46.7011 1954 05 31 273 6.2012 1955 02 28 1720 87.6013 1959 11 14 60 37.2014 1960 01 13 408 113.2015 1961 02 24 7 0.02216 1961 03 03 129 0.2617 1961 07 10 74 12.6018 1961 09 22 441 2.2019 1962 12 07 257 0.3120 1963 08 21 45 0.8021 1963 10 05 517 6.6022 1965 03 05 294 16.8023 1965 12 24 681 0.8524 1967 12 05 291 80.3025 1968 08 22 46 0.1326 1968 10 07 138 6.6027 1969 02 22 91 16.1028 1969 05 24 812 185.00



Tables 31Eruption # Onset Interevent time Volumeyyyymmdd [days℄ lava e tephra [106m3℄29 1971 08 14 41 9.1030 1971 09 24 132 7.7031 1972 02 03 457 162.0032 1973 05 05 189 1.2033 1973 11 10 251 2.7034 1974 07 19 62 6.6035 1974 09 19 103 10.2036 1974 12 31 333 14.3037 1975 11 29 654 0.2238 1977 09 13 794 32.9039 1979 11 16 896 0.5840 1982 04 30 148 0.5041 1982 09 25 100 3.0042 1983 01 03 ongoingTable 1.1: Catalog of eruptive events at Kilauea vol
ano



32 TablesData Model Pro
ess Model Parameter Model
Dri

∼ N(Ri, σ
2
Dri

) Ri ∼ N(bVi + K,σ2
R) b ∼ N(µb, σ

2
b )

Dvi
∼ N(Vi, σ

2
Dvi

) Vi ∼ N(µv, σ
2
v) K ∼ N(µK , σ2

K)

σ2
Dvi

= known µv ∼ U(−∞,+∞) * µb ∼ U(−∞,+∞) *
σ2

Dri
= known σ2

R ∼ Γ−1(ασR
, βσR

)* µK ∼ U(0,+∞)*
σ2

V ∼ Γ−1(ασV
, βσV

)* σ2
b ∼ Γ−1(ασb

, βσb
)*

σ2
K ∼ Γ−1(ασK

, βσK
)*Table 1.2: Overview of distributions used in BH_TPM. The distributions highlighted with* are prior distributions for the BH_TPM. The prior distribution parameters for inversegamma's (i.e. Γ−1) are taken equal to 1. U means uniform distribution.
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Figure 1.1: Plot of the 
umulative number of eruptive events listed in Kilauea 
atalog. Onthe right side of the dashed line there are the events that have been used in BH_TPM. Thisplot shows that the 
atalog is 
omplete from 1918, but we have taken only eruptions from 1923be
ause 1919 and 1922 eruptions have missing volume data.
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Figure 1.2: Posterior distributions of relevant parameters of BH_TPM using a syntheti
 
at-alog with b=0.5. The �rst plot on the left represents the syntheti
 data sets (i.e. volumes andinterevent times); the other sub-plots show the parameters inferred by BH_TPM. For moreinformation see the text.
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Figure 1.3: Constru
ted Markov Chains for ea
h variable and parameter of the BH_TPM. For
R and V we show just one of the 41 
hains relative to ea
h variable. In panel a, ea
h 
hain(i.e. ea
h subplot) rea
hes the 
onvergen
e after few iterations, forgetting the initial guess veryqui
kly. In this 
ase the starting values is 
hosen to be 10 for all quantities. Iterations in panela represent only the �rst 100 iteration of the burn-in phase, for more details please refer tothe text. The remaining iterations (i.e. from 1001 to 10000), shown in b panel, represent the
onditional posterior distributions for BH_TPM variables and parameters.
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Figure 1.4: Posterior distribution for relevant parameters simulated using all data in 
atalog.In panel a it is shown the posterior distribution of parameter b; in panel b the posteriordistribution for parameter K and in panel 
 the posterior distribution for parameter σ2
R.
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Figure 1.5: Blue stars show the posterior distributions of pairs of simulated variables (in-terevent times Ri and volumes Vi). These variables are simulated via MCMC-Gibbs samplingusing all data in the 
atalog. Panel a is relative to Ri and Vi from 1 to 20 and panel b from21 to 41. Red plus is the observed data.
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Figure 1.6: Posterior distributions of: b parameter in panel a, K parameter in panel b and σ2
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ulated using the forward pro
edure dis
ussed in the text. Bla
k dashed linerepresents the learning phase. Red triangles are the mean of the distributions for b and K andthe median for σ2
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Figure 1.7: Distributions of syntheti
 interevent times (blue bars) 
ompared with observed val-ues (red line) using des
riptive statisti
. This goodness-of-�t test (for more detail see the text)shows that our BH_TPM predi
ts unreasonably long and short interevent times for Kilaueavol
ano.
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Figure 1.8: �Pun
tual probability gain� of the BH_TPM for ea
h event after the learning phaseagainst: in panel a Poisson Model (Klein, 1982), in panel b Log-Normal Model (Bebbington &Lai, 1996b) and in panel 
 Generalized Time Predi
table Model (Sandri et al., 2005). Valuesgreater than zero indi
ate when BH_TPM model performs better fore
ast than the referen
emodels. The inset in ea
h panel is the total Probability gain, i.e. the sum of the pun
tualprobability gains.



Figures 41

0 1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

P
uc

tu
al

 p
ro

ba
bi

lit
y 

ga
in

 

Log−Interevent Times [days]

Regression interevent times−punctual probability gain

pg =−0.52D
r
 +2.9

R2=0.74

Figure 1.9: Regression analysis for BH_TPM �pun
tual probability gain� against PoissonModel versus observed interevent times. The signi�
ant inverse linear relationship, whose best�t regression 
oe�
ients and R2 are given, indi
ates a systemati
 negative probability gainfor long interevent times. As dis
ussed in the text, this means an additional 
omplexity forlong interevent times 
ompared to the time predi
table eruptive behavior. This 
auses a worseability of our BH_TPM, 
ompared to Poisson model, to fore
ast long interevent times.
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Chapter 2
A new Bayesian Time-Predi
tableModel for Open Conduit Vol
anoes:The Case of Mt Etna and Kilauea

Abstra
tOne of the main goals in vol
anology is to fore
ast vol
ani
 eruptions. A tren
hant fore
astshould be made before the onset of a vol
ani
 eruption, using the data available at thattime, with the aim of mitigating the vol
ani
 risk asso
iated to the vol
ani
 event. In otherwords, models implemented with fore
ast purposes have to take into a

ount the possibilityto provide �forward� fore
asts and should avoid the idea of a merely �retrospe
tive� �ttingof the data available. In this perspe
tive, the main idea of the present model is to fore
astthe next vol
ani
 eruption after the end of the last one, using only the data available atthat time. We fo
us our attention on vol
anoes with open 
onduit regime and high eruptionfrequen
y. We assume a generalization of the 
lassi
al time predi
table model to des
ribe theeruptive behavior of open 
onduit vol
anoes and we use a Bayesian hierar
hi
al model to makeprobabilisti
 fore
ast. We apply the model to Kilauea vol
ano eruptive data and Mount Etnavol
ano �ank eruption data.The aims of this model are: 1) to test whether or not the Kilauea and Mount Etna vol-
anoes follow a time predi
table behavior; 2) to dis
uss the vol
anologi
al impli
ations of thetime predi
table model parameters inferred; 3) to 
ompare the fore
ast 
apabilities of this



44 A new Bayesian Time-Predi
table Model for Open Conduit Vol
anoes: TheCase of Mt Etna and Kilaueamodel with other models present in literature. The results obtained using the MCMC sam-pling algorithm show that both vol
anoes follow a time predi
table behavior. The numeri
alvalues inferred for the parameters of the time predi
table model suggest that the amount ofthe erupted volume 
ould 
hange the dynami
s of the magma 
hamber re�lling pro
ess duringthe repose period. The probability gain of this model 
ompared with other models alreadypresent in literature is appre
iably greater than zero. This means that our model providesbetter fore
ast than previous models and it 
ould be used in a probabilisti
 vol
ani
 hazardassessment s
heme.Keywords. E�usive vol
anism, Bayesian modeling, Mount Etna, Kilauea, Probabilisti
 fore-
asting, Vol
ani
 hazards and risks.2.1 Introdu
tionOne of the main goals in modern vol
anology is to provide reliable fore
ast of vol
ani
 eruptionswith the aim of mitigating the risk asso
iated with. The extreme 
omplexity and non linearityof a vol
ani
 system make deterministi
 predi
tion of the evolution of vol
ani
 pro
esses ratherimpossible (e.g. Marzo

hi 1996; Sparks 2003). Vol
ani
 systems are intrinsi
ally sto
hasti
.In general, eruption fore
asting involves two di�erent time s
ales: i) a short-term fore
asting,mostly based on monitoring measures observed during an episode of unrest (e.g., Newhall &Hoblitt 2002, Marzo

hi et al. 2008 among others); ii) a long-term fore
asting, usually madeduring a quiet period of the vol
ano, and mostly related to a statisti
al des
ription of the pasteruptive 
atalogs (e.g. Klein, 1982, Bebbington, 1996a among others). Here, we fo
us ourattention only on this se
ond issue. An in
isive and useful fore
ast should be made before theonset of a vol
ani
 eruption, using the data available at that time, with the aim of mitigatingthe vol
ani
 risk asso
iated. In other words, models implemented with fore
ast purposes haveto take into a

ount the possibility to provide �forward� fore
asts and should avoid the ideaof a merely �retrospe
tive� �tting of the data available.Di�erent methods have been presented in the past years aiming at the identi�
ation of pos-sible re
urren
e or 
orrelation in the vol
ani
 time and/or volume data for long-term eruptionfore
ast. Klein (1982), Bebbington & Lai (1996a and 1996b) and Mulargia et al (1985) studiedthe time series of vol
ani
 events looking at the mean rate of o

urren
e. Sandri et al. (2005)applied a generalized form of time predi
table model to Mount Etna eruptions using regression



2.1 Introdu
tion 45analysis. Marzo

hi & Za

arelli (2006) found di�erent behavior for vol
anoes with �open�
onduit regime 
ompared to those with �
losed� 
onduit regime. Open 
onduit vol
anoes ( MtEtna, Kilauea vol
ano there tested) seem to follow a so-
alled Time Predi
table Model. While
losed 
onduit vol
anoes seem to follow a homogeneous Poisson pro
ess. De La Cruz-Reyna(1991) proposed a load-and-dis
harge model for eruptions in whi
h the time predi
table model
ould be seen as a parti
ular 
ase. Bebbington (2008) presented a sto
hasti
 version of thegeneral load-and-dis
harge model also in
luding a way to take into a

ount of the history ofthe vol
ano dis
harging behavior. In this paper the author studied the time predi
tability asa parti
ular 
ase of his model with appli
ation to Mount Etna and Mauna Loa 3and Kilaueadata series. A di�erent hierar
hi
al approa
h has been presented by Bebbington (2007) usingHidden Markov Model to study eruption o

urren
es with appli
ation to Mount Etna �ankeruptions. This model is able to �nd any possible underlying vol
ano a
tivity resulting in
hanges of the vol
ani
 regime. Salvi et al (2006) 
arried out analysis for Mt Etna �ank erup-tion using an Non Homogeneous Poisson pro
ess with a power law intensity, while Smethurstet al (2009) applied a Non Homogeneous Poisson pro
ess with a pie
ewise linear intensity toMt Etna �ank eruptionsIn a re
ent paper Passarelli et al (2010) (in Chapter 1) proposed a Bayesian Hierar
hi
alModel for interevent time-volumes distribution using the time predi
table pro
ess with ap-pli
ation to Kilauea vol
ano. The model presents a new Bayesian methodology for an open
onduit vol
ano that allows to take into a

ount un
ertainties in observed data. Besides, theauthors present and test the fore
ast ability of the model retrospe
tively on the data througha forward sequential pro
edure. While the model seems to perform better fore
ast 
omparedwith others model in literature, it produ
ed �ts to eruption volumes and interevent times thatwere too large and this redu
es the fore
ast performan
es. This is due to the use of normaldistributions for the log-transformed data. This is a restri
tive distributional assumption that
reates very long tails. Here we propose a more general modeling strategy that allows for more�exible distributions for the interevent times and volumes data.Using the same framework of Passarelli et al (2010), we will model the interevent timesand volumes data through distributions with exponential de
ay (Klein, 1982, Mulargia, 1985,Marzo

hi, 1996, Bebbington, 1996a, 1996b and 2007, Salvi et al, 2006, Smethurst et al,2009). This provide a general treatment of the volume and interevent time series, hopefully



46 A new Bayesian Time-Predi
table Model for Open Conduit Vol
anoes: TheCase of Mt Etna and Kilaueaimproving the fore
ast 
apability of the model. As a eruptive behavior we use the GeneralizedTime Predi
table Model (Sandri et al, 2005 and Marzo

hi & Za

arelli, 2006). This modelassumes: 1) eruptions o

ur when the volume of magma in the storage system rea
hes athreshold value, 2) magma re
harging rate of the shallow magma reservoir 
ould be variableand 3) the size of eruptions is a random variable, following some kind of statisti
al distribution.Under these assumptions, the time to the next eruption is determined by the time required forthe magma entering the storage system to rea
h the eruptive threshold. The more general formfor a time-predi
table model is a power law between the erupted volume and the intereventtime:
ri = cvb

i (2.1)where, if the parameter b is equal to unity we are in a 
lassi
al time predi
table system (see DeLa Cruz Reyna 1991, Burt et al. 1994). If b is equal to 0 the system is not time predi
table.If b > 1 or 0 < b < 1 we have a non-linear relationship implying a longer or shorter intereventtime after a large volume eruption 
ompared to a 
lassi
al time predi
table system. The goalof the present work is to infer the parameters of Generalized Time Predi
table equation (2.1).In the remainder part of the paper, we fo
us our attention on some spe
i�
 issues: 1) todis
uss the physi
al meaning and impli
ations of parameters inferred; 2) to verify if the modeldes
ribes the data satisfa
torily; 3) to 
ompare the fore
asting 
apability of the present modelwith other models previously published in literature using the sequential forward pro
eduredis
ussed in Passarelli et al (2010) (see se
tion 1.3 in Chapter 1). In the �rst part of thispaper, we will introdu
e the generality of the model by 
onsidering three stages: 1) a modelfor the observed data; 2) a model for the pro
ess and 3) a model for the parameters (Wikle,2003). Then we will dis
uss how: 1) to simulate the variables and parameters of the model,2) to 
he
k the model �t, 3) to use the model to assess probabilisti
 fore
ast in 
omparisonwith other statisti
al published models. The last part of the paper 
ontains the appli
ationof the model to Kilauea vol
ano and Mount Etna eruptive data.2.2 A Bayesian Hierar
hi
al Model for Time-Predi
tabilityIn the following se
tions we present a detailed des
ription of our proposed model. We willdenote it as Bayesian Hierar
hi
al Time Predi
table Model II (BH_TPM II), while the model



2.2 A Bayesian Hierar
hi
al Model for Time-Predi
tability 47proposed in Passarelli et al (2010) will be denoted as BH_TPM. In Se
tion 2.2.1 we dis
ussthe modeling the measurement errors. In Se
tion 2.2.2 we 
onsider a model for the underlyingpro
ess (equation (2.1)), whi
h is based on the exponential distribution. In Se
tion 2.2.3we dis
uss the distributions that are pla
ed on the parameters that 
ontrol the previous twostages of the model. In Se
tion 2.2.4 we introdu
e the simulation pro
edure and in Se
tion2.2.5 we 
onsider model assessment and fore
asting of vol
ani
 eruptions.2.2.1 Data ModelThe dataset for this model has n observations with two 
omponents: erupted volumes andinterevent times. We will denote the volumes as dvi
and the interevent times as dri

. Weassume independen
e between the measurement errors of interevent times and volumes. Thisis justi�ed by the fa
t that these two quantities are measured using separate pro
edures. De-penden
e between interevent times and volumes will be handled at the pro
ess stage, followingthe power law in (2.1). In addition, we assume that, 
onditional on the pro
ess parameters,the interevent times or volumes are independent within their group. This is a natural assump-tion within a hierar
hi
al model framework. It is equivalent to assuming that the volumes(times) are ex
hangeable between them. Ex
hangeability implies that all permutations of thearray of volumes (times) will have the same joint distribution. Ex
hangeability is weaker thanindependen
e, and it is implied by it.Our measurement error model assumes a multipli
ative error for the observations. Thisfollows from BH_TPM where it was assumed that
log(dri

) = log ri + log ǫri
(2.2)with log ǫri

∼ N(0, σ2
Dri

) where σ2
Dri

= (
∆dri

dri
)2 ( Passarelli et al 2010, data model in Chapter1). The analogous assumption log(dvi

) = log vi + log ǫvi
and log ǫvi

∼ N(0, σ2
Dvi

) where
σ2

Dvi
= (

∆dvi

dvi
)2, was 
onsidered for the volumes. Exponentiating on both sides of Equation(2.2) we have

dri
= ǫri

ri (2.3)whi
h is the data stage model we propose in BH_TPM II.The error in Equation (2.3) follows a probability distribution with positive support. We
hoose an inverse gamma distribution. This is a �exible distribution de�ned by two parameters
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table Model for Open Conduit Vol
anoes: TheCase of Mt Etna and Kilaueawhi
h will provide 
omputational advantages. We �x the two de�ning parameters by assumingE(ǫri
) = 1 and 
al
ulating var(ǫri

) using a delta method approximation. Spe
i�
ally, from theassumption that log ǫri
∼ N(0, σ2

Dri
)), we have that E(log ǫri

) = 0 and var (log ǫri
) = σ2

Dri
=

(
∆dri

dri
)2. Thus var (ǫri

) = σ2
Dri

[

g′
(E(∆dri

dri

))]2

=

(

∆dri

dri

)2where g(x) = exp(x) and g′ is the �rst derivative. At this point, remembering that a ran-dom variable X that follows an inverse gamma distribution with parameters αri
and βri

hasexpe
ted value is E(X) =
βri

αri
−1 and varian
e var(X) =

β2
ri

(αri
−1)2(αri

−2) , we then have that










βri

αri
−1 = 1

β2
ri

(αri
−1)2(αri

−2) =
(

∆dri

dri

)2
.Solving for αri

and βri
gives αri

= (
dri

∆dri
)2 +2 and βri

= (
dri

∆dri
)2 +1 where ∆dri

dri
is the relativeerror. Analogous 
al
ulations 
an be done for the volumes. The joint distributions for themeasurement errors ǫr = (ǫr1 , . . . , ǫrn) and ǫv = (ǫv1 , . . . , ǫvn) result in

[ǫr|αri
, βri

] =
n
∏

i=1

Γ−1(αri
, βri

) and [ǫv|αvi
, βvi

] =
n
∏

i=1

Γ−1(αvi
, βvi

) (2.4)where αvi
=
(

dvi

∆dvi

)2
+ 2 and βvi

=
(

dvi

∆dvi

)2
+ 1. We use [X] to denote a distribution ofrandom variable X and Γ−1 to denote an inverse gamma.The distribution for the observed variables dri

and dvi

an be obtained from the errordistributions spe
i�ed by the expression in (2.4). Noting that ∣∣
∣

dǫri

d(dri
)

∣

∣

∣
= 1

ri
we have from the
hange of variables formula for probability density fun
tions that

[dr|αri
, βri

, ri] =
n
∏

i=1

Γ−1(αri
, βri

ri) and [dv|αvi
, βvi

, vi] =
n
∏

i=1

Γ−1(αvi
, βvi

vi). (2.5)The expression in (2.5) will be used to obtain the likelihood fun
tion for our data. For sakeof 
larity, assuming X is a random variable with 
ontinuous probability density fun
tion f .Suppose that Y = r(X) , where r is a di�erentiable fun
tion, then the 
hange variables formulagives g(y) = f(r−1(y)) | d r−1(y)/dy |, where g is the probability density fun
tion of Y .2.2.2 Pro
ess modelThe starting point for the model pertaining the unobserved quantities ri is the assumptionthat vol
ani
 eruptions 
orrespond to a homogeneous Poisson pro
ess. A homogeneous Poisson
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ess in times has the property that the number of events that o

ur during a given timeinterval follow a Poisson distribution with mean proportional to the length of the interval.Additionally the time between 
onse
utive events is distributed as an exponential randomvariable (Klein, 1982, Mulargia, 1985, Marzo

hi, 1996, Bebbington & Lai, 1996a, 1996b).Thus we assume that ri ∼ Exp(λ) implying that the joint distribution of r = (r1, . . . , rn)is given by [r|λ] =
∏n

i=1 Exp(λ). Given the distributional assumption for the intereventtimes we 
an obtain the distribution of the volumes vi using Equation (2.1). Re
alling that
ri = cvb

i and ∣∣
∣

dri

dvi

∣

∣

∣
= cbvb−1

i . the 
hange of variable formula for probability density fun
tionsyields [vi] = cbλvb−1
i e−λcvb

i Written in distributional form we have: vi ∼ Wb(b, ( 1
λc

)
1
b

) where
Wb(·, ·) denotes a Weibull distribution. The joint distribution for the volumes v = (v1, . . . , vn)is given as

[v|λ, b, c] =

n
∏

i=1

Wb(b,

(

1

λc

)
1
b

)

. (2.6)This 
ompletes the spe
i�
ation of the se
ond stage of our model.2.2.3 Parameters modelTo 
omplete our model we need to spe
ify distributions for the parameters b, c and λ. Our
hoi
es are based on prior information obtained from previous modeling e�orts. In a Bayesiansetting, like the one proposed in this work, we have the ability to in
lude stru
tural informa-tion, like the one used to build the se
ond stage model, as well as prior information. The �nalprodu
t 
onsists of the posterior distribution of all model parameters. This 
ontains a blendof the information provided by all the stages of the model: data, pro
ess and prior knowledge.We 
hoose for λ a gamma distributions with known parameters, from now on hyperpa-rameters. This is denoted as have: λ ∼ Ga(αλ, βλ) where αλ and βλ are 
al
ulated by �ttingthe interevent times data with a gamma distribution, via maximum likelihood estimation.For the time predi
table equation parameters, i.e. b and c, we use normal distributions withmoments 
al
ulated using the posterior distributions taken from BH_TPM (Passarelli et al.,2010). Thus [b] = N(µb, σ
2
b ) and [c] = N(µc, σ

2
c ).By 
hoosing the values of the hyperparameters we are introdu
ing a 
ertain degree ofsubje
tivity in our modeling. We believe that this is a desirable feature of the Bayesianapproa
h, as it allows to in
orporate knowledge from similarly behaved open 
onduit vol
anoes.We remark the subje
tive approa
h allowed in Bayesian Statisti
s 
ould be a suitable tool in
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table Model for Open Conduit Vol
anoes: TheCase of Mt Etna and Kilaueamodeling geophysi
al phenomena where available data are s
ar
e. This provides the possibilityof in
orporating knowledge obtained from other sour
es in a probabilisti
 way, through theprior distributions. This allows for the introdu
tion of physi
al and/or statisti
al 
onstraints,when available, on the parameters governing the examined phenomenon. In prin
iple thismethodology 
ould be helpful to improve the understanding of a parti
ular system. We wantto point out, though, that subje
tive statisti
al modeling 
hoi
es need 
areful justi�
ation,possibly relying on physi
al or phenomenologi
al 
onstraints.2.2.4 Posterior and full 
onditional distributionsThe three stage model spe
i�
ation developed in the previous se
tions produ
es a posteriordistribution for the model parameters r, v, b, c and λ that, using Bayes theorem, 
an be writtenas
[r, v, b, c, λ|dr , dv∆dr∆dv] ∝ (2.7)

[dr|αdr
, βdr

, r][dv |αdv
, βdv

, v][v|c, λ, b][r|λ][λ][b][c] .To make inferen
e about the posterior distribution spe
i�ed by Equation (2.7) we draw samplesfrom it using Monte Carlo Markov Chain (MCMC) methods (Gelman et al, 2000, Gilks etal, 1996 ). This requires the full 
onditional distributions for ea
h parameter in the model.In the equations below we spe
ify ea
h of them using the notation [X| . . .] to indi
ate thedistribution of variable X 
onditional on all other variables.
[ri| . . .] ∝ r

αri

i exp

{

−ri

(

λ +
βri

dri

)}

= Ga(αr + 1 , λ +
βr

dri

)

[vi| . . .] ∝ v
αvi

+b−1
i exp

{(

λcvb
i +

βvi
vi

dvi

)}

[λ| . . .] ∝ λ2n+αλ−1 exp

{

−λ

(

βλ + c

n
∑

i=1

vb
i +

n
∑

i=1

ri

)}

=Ga(αλ + 2n , βλ + c
n
∑

i=1

vb
i +

n
∑

i=1

ri

)
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[c| . . .] ∝ cn exp

{

−cλ

n
∑

i=1

vb
i +

µcc

2σ2
c

−
c2

2σ2
c

}

[b| . . .] ∝
n
∏

i=1

(

bvb−1
)

exp

{

−λc
n
∑

i=1

vb
i +

µbb

2σ2
b

−
b2

σ2
b

}

The full 
onditional distributions of ri, i = 1, . . . , n and λ 
an be sampled from dire
tly, asthey 
orrespond to gamma distributions. So those parameters 
an be sampled using Gibbssteps. The full 
onditionals of the other parameter do not have standard forms. So we useMetropolis steps to obtain samples from them. On
e samples from the MCMC are obtainedwe dis
ard the �rst part of the 
hain as a burn-in phase (see for example Gilks et al, 1996 );then we do a �thinning� of the 
hain by subsampling the simulated values at a �xed lag k. Thisstrategy ensures that, setting k to some value high enough, su

essive draws of the parametersare approximately independent (Gelman, 1996). To de�ne the lag we use the auto-
orrelationfun
tion as we will show afterwards in the text.2.2.5 Model Che
king and Fore
asting pro
edureWe have presented, so far, the hierar
hi
al stru
ture of the model and the �tting pro
edurefor the model parameter, based on MCMC sampling. We now address the issues of (1) testingthe goodness of the proposed model and (2) fore
asting future interevent times.Bayesian model 
he
king is based on the idea that predi
tions obtained from the modelshould be 
ompatible with a
tual data. So our strategy 
onsists of simulating data from thepredi
tive posterior distribution and 
ompare them to a
tual observations. The predi
tiveposterior distribution quanti�es the un
ertainty in future observations given the observeddata. By denoting r̃ future values of interevent times we have that the posterior predi
tive is
[r̃ | Data] =

∫

R+

[r̃ | λ][λ | Data]dλ (2.8)To obtain samples from the expression in Equation (2.8) we start from the MCMC sample of
λ. Suppose we have N of them and denote them as λj . Conditional on λj, for j = 1, . . . , N wesimulate r̃j from [r̃ | λj ], whi
h are produ
ts of exponential. In this way we obtain N syntheti

atalogs ea
h one with n pairs of interevent time and volume data. These are 
ompared to
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anoes: TheCase of Mt Etna and Kilaueathe observed data using des
riptive statisti
s. As des
riptive statisti
s we 
hoose the meannumber of events, maximum, minimum, median and standard deviation for both real andsyntheti
 data.To test the ability of the model to fore
ast future volumes and interevent times we usea sequential approa
h. We pro
eed by �tting the model to the �rst data pair, then we addthe data of the se
ond event to the model �tting. We 
ontinue adding data sequentially untilthe last event. This provides an assessment of the number of data needed for the modelto e�e
tively �learn� the model parameters. Using this sequential approa
h, we are able tode
ide the minimum amount of data needed to de�ne the learning phase for the model. Forthe remaining part of data (i.e. voting phase), we use the sequentially sampled parametersto generate the distribution for the next event (interevent time). In this way we 
an 
omparethe fore
asted interevent times with the observed data and with other other possible modelsalready present in literature (see forward pro
edure dis
ussed in Passarelli et al., 2010, seeSe
tion 1.3 this volume).A 
lose look at Equation (2.8) reveals a pra
ti
al fore
asting problem. We observe thatthe posterior predi
tive distribution of the interevent times depends on the distribution of theinterevent times given the parameter λ. While this is statisti
ally 
orre
t, it is not a realisti
fore
asting pro
edure. In fa
t, in a generalized time predi
table system the time to the nexteruption is strongly dependent on the volume of the previous eruption. More expli
itly, inour 
urrent framework, after the end of the n-th eruption we have samples of λ that aresimulated using only the information up to (dr(n−1)
, dv(n−1)

). We would like to in
orporatethe information on dvn . We do this by resampling the posterior realizations of λ using theSampling Importan
e Resampling algorithm (hereafter SIR), (Rubin,1988, Smith and Gelfand,1992) together with the Bayes theorem.Let θn−1 = b, c, λ the samples obtained from our model using the �rst n− 1 data. For the
n-the interevent time we have

[r̃n | dvn ] =

∫

R+

[r̃n | dvn , vn−1, θn−1][θn−1 | dvn , vn−1]dθn−1 (2.9)Obtaining samples from the predi
tive distribution in Equation (2.9) requires samples of
[θn−1 | dvn , vn−1], whi
h are not available. Our MCMC algorithm produ
es samples of
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[θn−1 | dvn−1 , vn−1] instead. Using Bayes theorem we have that

[θn−1 | dvn , vn−1] ∝ [dvn | vn−1, θn−1][θn−1 | vn−1] . (2.10)In Equation (2.10) we re
ognize [dvn | vn−1, θn−1] as the inverse gamma distribution used forvolume data in Equation (2.5). [θn−1 | vn−1] is the posterior distribution for parameters λ, band c up to the �rst n − 1 events. The SIR algorithm 
onsists of resampling the output fromthe MCMC, say θj
n−1, with repla
ement, using the normalized weights de�ned as

w∗(θi
n−1) =

w(θi
n−1)

∑m
j=1 w(θj

n−1)where w(θi
n−1) = [dvn | vi

n−1, θ
i
n−1]. The weights w 
orrespond to the inverse gamma distribu-tion in Equation (2.5) for the observed volume of the n-th event 
onditional on the sampledvolumes of the previous event and the remaining parameter, as simulated by the MCMC.The output from the SIR algorithm 
an be used within Equation (2.9) to obtain the desiredsamples of the n interevent time. A brief des
ription of the SIR algorithm is in Appendix A.Finally we make expli
it 
omparison for the probability of eruption 
al
ulating the prob-ability gain or information 
ontent as proposed by Kagan & Knopo� (1987). We 
al
ulatethe information gain for the present model with respe
t to other statisti
al models previouslypublished, sharing the sequential approa
h above dis
ussed and only on the voting phase. LetA and B two statisti
al models, the probability gain is simply de�ned as the di�eren
e betweenthe log-likelihood distributions, i.e.:
PG =

n
∑

i=m

lA(δdri
) −

n
∑

i=m

lB(δdri
) (2.11)where lA is the natural logarithm of the likelihood of the model A and lB of the model B
al
ulated in a temporal window δdri

of one month around the observed interevent time inthe voting phase (i.e. on the n − m events).If PG is greater than zero, model A performs better fore
ast than model B, if PG iszero the two models provide the same information to the fore
ast. Together with the totalprobability gain given by equation (2.11), we 
an 
al
ulate the �pun
tual� probability gain,i.e. the probability for ea
h event lA(δdri
)− lB(δdri

) with i = m, . . . , n (Passarelli et al, 2010).
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table Model for Open Conduit Vol
anoes: TheCase of Mt Etna and KilaueaAppli
ation to Kilauea vol
ano, Hawaii, and Mount Etna vol-
ano, Si
ilyWe apply the BH_TPM II to Kilauea vol
ano and Mt Etna vol
ano eruption data. Marzo

hiand Za

arelli (2006) found that Kilauea vol
ano and Mt. Etna vol
ano follow a time pre-di
table eruptive behavior. They also stated that these vol
anoes are in open 
onduit regimebe
ause their high eruptive frequen
y and 
onsequently short duration of interevent times.Bebbington (2007) showed eviden
e of the time-predi
table 
hara
ter of Mt. Etna �ank erup-tions using a 
atalog sin
e 1610 AD. The same results on time-predi
tability are attained bySandri et al (2005) only fo
using on the Mt Etna �ank eruptions in the period 1971-2002.Passarelli et al (2010) (in Chapter 1) found time-predi
tability of Kilauea vol
ano for eruptive
atalog sin
e 1923 AD.These �ndings led us to use Kilauea and Mt Etna as the best 
andidate for the model.In applying the model to these two vol
anoes we will able to test: 1) whether or not theyfollow a time predi
table behavior; 2) the reliability of the assumptions used in the model; 3)improvements in using the information given by the volume measurement errors; 4) the abilityin �tting the observed data and 5) the fore
ast 
apability of the model 
ompared with modelspreviously published in literature for Kilauea and Mt Etna.2.3 Kilauea vol
anoKilauea vol
ano is the youngest vol
ano on the Big Island of Hawaii. The subaerial part ofKilauea is a domelike ridge rising to a summit elevation of about 1200 m, it is about 80 kmlong and 20 km wide, and 
overs an area of about 1500 km2. Kilauea had a nearly 
ontinuoussummit eruptive a
tivity during the 19th 
entury and the early part of the 20th 
entury.During the following years, Kilauea's eruptive a
tivity had shown little 
hange. After 1924,summit a
tivity had be
ome episodi
 and after a major quies
en
e period during 1934-1952,the rift a
tivity raised in
reasing the vol
ani
 hazard (Hol
omb, 1987). It is widely a

eptedthat Kilauea has its own magma plumbing system extending from the surfa
e to about 60 kmdeep in the Earth, with a summit shallow magma reservoir at about 3 km depth. The shallowmagma reservoir is an aseismi
 zone beneath the South zone of the Kilauea 
aldera and it issurrounded on two sides by a
tive rift 
onduits (Klein et al 1987).
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ano 55The eruption history of Kilauea vol
ano dire
tly do
umented dates ba
k to 18th 
entury,however before the 1923 the re
orded eruptions are spotty and in most of the events the volumeerupted is unknown. Therefore, in our analysis we 
onsider all 42 events after 1923 AD (pleaserefer to Passarelli et al., 2010 for more details on the Kilauea 
atalog 
ompleteness, Chapter1). The data are listed in Table 2.1 where we report the onset date of ea
h eruption togetherwith the erupted volume (lava + tephra) and the relative interevent time. The volume of the1924/05/10 event is taken from http://www.vol
ano.si.edu/ and is only the tephra volume.Sin
e the eruption that began in 1983 is still ongoing with a volume erupted greater than 3km3, we have 41 pairs of data of interevent time (i.e. the time between the onset of i-th andthe onset of (i+1)-th eruptions) and erupted volume (in the i-th eruption).In the next two subse
tions we will present the results of the model for the Kilauea dataset.We will show �rst the results obtained for the model parameters both using all data and thesequential pro
edure dis
ussed in se
tion 2.2.5, together with the ability of the model in �ttingthe data (model 
he
king). Then we will show the fore
asts obtained using this model; wewill 
ompare it with fore
asts provided by other models previously published.2.3.1 Results for variables and parametersBefore to embark on the dis
ussion of the results a
hieved, we need �rst to spe
ify the valuesfor the measurement errors (∆dri
,∆dvi

) and the hyperparameters (µb, σ
2
b , µc and σ2

c ) of theprior distributions of b and c. For interevent times we 
hoose an error (∆dri
) of 1 day forall data in the 
atalog; for volumes errors we assign a relative errors (∆dvi

/dvi
) of 0.25 fordata before the 1960 AD (i.e. i = 1, . . . , 13) and of 0.15 for data after the 1960 AD (i.e.

i = 14, . . . , 41) (see dis
ussion in Passarelli et al, 2010, Se
tion 1.2.1 in this volume). Thevalues for the hyperparameters are taken running the BH_TPM and 
al
ulating the meanand standard deviation of the posterior distribution for b and c, i.e. µb = 0.2, σb = 0.1,
µc = 200 and σc = 50 (see Passarelli et al, 2010, see Figure 1.4 in Chapter 1).We simulate the variables and parameters from the posterior distribution (2.7) usingMCMC algorithm. As stated in the se
tion 2.2.4, we use both Metropolis-Hastings and Gibbssampling algorithms. Those simulation te
hniques do not provide independent samples; su
-
essive values for ea
h 
hain (i.e. ea
h full 
onditional distribution) are potentially highly
orrelated. The optimal number of iterations needed to obtain independent draws from the
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table Model for Open Conduit Vol
anoes: TheCase of Mt Etna and Kilaueaposterior distribution is determined by using the auto
orrelation fun
tion. We 
al
ulate theauto
orrelation fun
tion to determine at whi
h lag the values for variables and parametersare independent. In Figure 2.1 is plotted the auto
orrelation fun
tion for lag 1 to 20 for theparameters b, c and λ, we do not show the same plot for the 41 variables ri's and 41 vi'sbe
ause they give zero 
orrelation almost at the �rst lags. It is easy to see that the auto-
orrelation fun
tion is 
lose to zero when lag is equal to 20. Hen
e we run ea
h 
hain in theMCMC algorithm for 201000 iteration and we thin it with every 20 iteration dis
arding the�rst 1000 iteration as a burn-in phase. At the end we have that ea
h variable and parameteris 
omposed by 10000 simulations.Simulations obtained are presented in Figures 2.2 and 2.3. In Figure 2.2 we show theMCMC realizations for the model variables ri and vi (blue stars) 
ompared with the observeddata (red pluses). Those variables are 
al
ulated using all data in the 
atalog and are repre-sentative of how the model 
an reprodu
e the data. The data reprodu
tion is optimal whenthe variables are 
onstrained into their full 
onditionals by the data. It is worth to under-line, looking at the s
ale for x-axis and y-axis, how the model is able to reprodu
e errorsmeasurements, simulating interevent times with little errors and volumes with bigger ones.In Figure 2.3 we present the results for the model parameters b, c and λ using all data.A 
lose look at their value gives that Kilauea vol
ano has a time predi
table behavior, sin
e
b (top left panel) is less than 1 and greater than zero with mean b = 0.45 and standarddeviation σb = 0.05. This results are similar to those a
hieved by Passarelli et al (2010),however there the mean value for b distribution is lower. The dis
repan
y 
ould be imputedat two fa
tor: a di�erent parametrization used in the models and the fa
t that here we do notuse the logarithm of the interevent times and volumes. For the distribution for c (top rightpanel), whi
h is fun
tion of the average magma re
harge pro
ess, we �nd a mean value c = 164days/106 m3 with error (1 standard deviation) σc = 24 days/106 m3. In the bottom left panelwe have the posterior distribution for λ, the rate of o

urren
e or the number of events overthe length of the 
atalog. Their mean value is λ = 2.0 × 10−3 days−1 and standard deviation
σλ = 0.3×10−3 days−1 whi
h are totally 
ompatible to the o

urren
e time 
al
ulated dire
tlyby the data with Maximum Likelihood Estimation (MLE) te
hnique, i.e. λMLE = 1.9 × 10−3days−1 with 95 % 
on�den
e interval [1.4, 2.5] × 10−3 days−1.In the Figure 2.4 we present the parameters b, c and λ using the sequential approa
h dis-
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ussed in se
tion 2.2.5.The bla
k dashed lines determine the division between the learning andvoting phases. In parti
ular the events on the left of the dashed line are the learning phase(�rst third of the 
atalog, i.e. 14 events), while we use the remaining part to test the eruptionfore
asts (i.e. 27 events). We will use these realizations into the fore
ast pro
edure and wewill dis
uss it in the next se
tion.The results obtained imply a power law relationship between interevent times and volumes.As dis
ussed in Passarelli et al (2010) this non linear relationship underlines the role playedby magma dis
harging pro
ess onto the eruption frequen
y. Su
h relationship implies thepossibility of having a non 
ostant input rate in the magma storage system. Therefore, largeerupted volume may trigger the in
reasing of the magma upwelling pro
ess inside a shallowreservoir. We expe
t a shorter quies
en
e period after an eruption 
hara
terized by a largevolume 
ompared with a pro
ess where the magma re
harging rate is 
onstant (i.e. Classi
alTime Predi
table model). A simple explanation 
ould be thought as an additional gradientof pressure ought to the drainage pro
ess of the shallow magma system by a large eruptedvolume. This pressure gradient may in
rease the magma upwelling pro
ess from the deep
rust. Non 
onstant magma input rate for the shallow magma reservoir for Kilauea vol
anohas been found by Aki & Ferrazzini (2001) and Takada, (1999). This possible non-stationarityshould be taken into a

ount in modeling the magma 
hamber dynami
s at Kilauea vol
ano.2.3.2 Model 
he
king and Fore
astsThe model 
he
k is a way to assess the �t of the model to the data. This sensitivity analysisquantify the un
ertainties of the model in regard to future observations; on the other hand, itis a way to understand the limits of the model in reprodu
ing data. In 
he
king the model,we simulate 10000 syntheti
 
atalogs using the pro
edure des
ribed in Se
tion 2.2.5. Then we
al
ulate for both syntheti
 
atalogs and observed data, the rate of o

urren
e, the maximum,the minimum, the median and the standard deviation. In Figure 2.5 we plot the syntheti
data as histograms (blue bars) and the relative quantities 
al
ulated over the real dataset (redline). For ea
h plotted quantity the p-value (i.e. fra
tion of syntheti
 simulations with valuegreater than the observed quantity) is indi
ated. It is easy to see a good agreement for the rateof o

urren
e, the minimum and the median. The are some dis
repan
ies for the maximumand 
onsequently for the standard deviation. In these 
ases the observed value falls in the
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anoes: TheCase of Mt Etna and Kilaueatails of the predi
tive distributions. This is due to the fa
t that the maximum 
orresponds tothe 18 years of quies
en
e of the Kilauea vol
ano (i.e. 1934-1952 AD). This is a extraordinarylong period of rest for the Kilauea and it 
ould be 
onsidered as an extreme value. The se
ondlongest interevent time is about 5 years of quies
en
e (i.e. 1955-1959 AD). Su
h value fallsright at the 
enter of the distribution with p-value=0.7. In summary, the model is 
apableof reprodu
ing the data, with the ex
eption of future extreme events that 
orrespond to thetails of the predi
tive distribution.The last 
he
k on the reliability of the model is to evaluate its fore
ast performan
es and
ompare them with already published models for the Kilauea vol
ano interevent times. Wemake probabilisti
 fore
ast 
omparison of this model with homogeneous Poisson pro
ess (Kleinet al, 1982), Log-Normal model (Bebbington & Lai, 1996b), Generalized Time Predi
tableModel (GTPM) (Sandri et al., 2005) and BH_TPM (Passarelli et al, 2010, Chapter 1 in thisvolume) using the sequential pro
edure des
ribed in Se
tion 2.2.5.The homogeneous Poisson pro
ess was proposed by Klein (1982) to des
ribe the Kilaueainterevent time data. This model implies a totally random and memoryless eruptive behavior;while the number of events in time is distributed a

ording with a Poisson distribution, thetime intervals between two 
onse
utive events has exponential distribution. The Log-Normalmodel was proposed by Bebbington & Lai (1996b); in this model interevent times are des
ribedusing a log-normal distribution. The mode of a log-normal distribution 
ould reveal a 
ertaindegree of 
y
li
ity in the eruptive behavior for Kilauea vol
ano. The GTPM was proposed bySandri et al., 2005. It is a linear regression among pairs of logarithm of interevent times andof volumes. The BH_TPM is a hierar
hi
al model where the interevent times and volumesare des
ribed via log-normal distributions and uses the logarithm of the generalized timepredi
table model equation as eruptive behavior.We 
al
ulate the probability for BH_TPMII drawing simulations from equation (2.9),where the λj are resampled with the SIR algorithm using the information given by volumedata. The results of the SIR pro
edure are plotted in Figure 2.6 where the blues stars referto the MCMC's output and the red ones are the resampled. It is worth to underline thatthe information provided by the volume data into the SIR pro
edure shrinks and shifts the λdistributions. Besides the mode of the resampled λ's has a higher value than the mode of thenon resampled ones. Now, using the resampled λ's, we 
an 
al
ulate the probability gain.



2.3 Kilauea vol
ano 59The results are plotted in Figure 2.7 where we show the � pun
tual� probability gain andwe report the total probability gain as 
al
ulated using equation (2.11). The model shows animprovement in fore
asting 
apability respe
t to the other models be
ause the total probabilitygain is always greater than zero in all tests. The best results is for the test against the Poissonmodel (panel a) where the model performs better fore
asts for 20 out of 27 eruptions. Goodresults are those against the Log-Normal model (panel 
) and the highest probability gain isobtained testing against the GTPM (panel d). This latter result implies that the informationon the error measurements are helpful in the model budget. The test against the 
ounterpartof this model, i.e. BH_TPM (panel b), shows a weaker results, however the total probabilitygain is greater than zero. BH_TPMII gives better fore
asts over 19 out of 27 events. PG,here, is in�uen
ed by two events (i.e. the 1st and 11th in Figure 2.7) where the �pun
tual�probability gain is parti
ularly negative. It seems that, despite of some lo
al dis
repan
ies,the BH_TPMII shows a better behavior in fore
asting the eruptive events. Eviden
e towardthis statement is the fa
t that in all tests BH_TPMII gives better fore
ast for more than 50%of events manifesting a higher reliability in 
ase of its potential use in probabilisti
 vol
ani
hazard assessment.Finally we investigate some possible 
orrelation between the �pun
tual� probability gainsand the interevent times or volumes using linear regression analysis. We do not �nd any
orrelation between volumes and probability gain. The only signi�
ant linear dependen
e (p-value≤ 0.01) we �nd is between �pun
tual � probability gain 
al
ulated against homogeneousPoisson pro
ess and observed interevent times, as in Figure 2.8. The inverse relationship implythat systemati
ally we perform worse fore
ast for long interevent times. We 
an justify thisresults stating that for long quies
en
e period the Kilauea vol
ano be
omes memoryless (seeMarzo

hi & Za

arelli, 2006). In addition, 
onsidering the events as points in time 
ouldbe distorting when eruptions last months to years (see Bebbington, 2008), together with thefa
t that we do not 
onsider intrusions not followed by eruptions (Takada, 1999, Dvorak &Dzurisin, 1993). Finally another possible explanation 
ould be related to possible modi�
ationof the shallow magma reservoir geometry after an eruption ( Gudmundsson, 1986).
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table Model for Open Conduit Vol
anoes: TheCase of Mt Etna and Kilauea2.4 Mount Etna vol
anoMount Etna vol
ano is a basalti
 stratovol
ano lo
ated in the North-Eastern part of the Si
ilyIsland. It is one of the best known and monitored vol
ano in the world and re
ords of itsa
tivity date ba
k to several 
enturies B.C. The sub-aerial part of Mount Etna is 3300 m high
overing an area of approximately 1200 km2. Two styles of a
tivity o

ur at Mt Etna: a quasi-
ontinuous paroxysmal summit a
tivity, often a

ompanied with explosions, lava fountains andminor lava emission; a less frequent �ank eruptive a
tivity, typi
ally with higher e�usion rateoriginate from �ssures that open downward from the summit 
raters. The �ank a
tivity issometimes a

ompanied by explosions and lava spattering; re
ently, two �ank eruptions havebeen highly explosive and destru
tive, the 2001 and 2002-2003 events (Behn
ke & Neri, 2003,Androni
o et al, 2005, Allard et al, 2006).At present there are petrologi
al, geo
hemi
al and geophysi
al eviden
es for a 20-30 kmdeep reservoir 
ontrolling the vol
ani
 a
tivity (Tanguy et al, 1997), but it is still debatedwhether or not Mt Etna has one o more shallower plumbing systems. Results from seismi
tomography do not reveal any low velo
ity zone in the uppermost part of the vol
ani
 edi�
e,while a high-velo
ity body at depth of < 10 km b.s.l. is interpreted as a main solidi�edintrusive body (Chiarabba et al, 2000, Patanè et al, 2003). However, a near-verti
al shallowerplumbing system has been re
ently inferred at about 4.5 km b.s.l. using deformation data(Bonforte et al, 2008 for a review). It is widely a

epted that a 
entral magma 
onduit feedsthe near-
ontinuous summit a
tivity, while lateral eruption are triggered by lateral draining ofmagma from its 
entral 
onduit. Only few events appear to be independent from the 
entral
onduit being fed by peripheral dikes (see A
o
ella & Neri, 2003 among others).The re
orded eruptive a
tivity for Mt Etna dates ba
k to 1500 B.C. (Tanguy et al, 2007).Unfortunately, the eruptive 
atalog 
an be 
onsidered 
omplete only sin
e 1600 AD for �ankeruptions (Mulargia et al, 1985). Instead summit a
tivity, was re
orded 
arefully only afterthe World War II (Androni
o & Lodato, 2005) and only after 1970 all summit eruptions weresystemati
ally registered (Wadge, 1975, Mulargia et al, 1987). Thus the Mt Etna 
atalog is
onsidered 
omplete sin
e 1970 AD for summit eruptions. There are several 
atalogs for MtEtna eruptions available in literature, the most re
ent ones being those 
ompiled by Behn
keet al (2005), Bran
a & Del Carlo (2005) and Tanguy et al (2007); the Androni
o & Lodato(2005) 
atalog is detailed only for events in the 20th 
entury. In this study we use only the
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ano 61�ank eruptions sin
e 1600 AD using the Behn
ke et al (2005) 
atalog as it appears the most
omplete, at least for volume data. We also integrate and double-
he
k the volume data forthe 20th 
entury events with the Androni
o & Lodato (2005) 
atalog. The Behn
ke et al(2005) 
atalog lists events up to 2004/09/07 eruption, so we update it for 2006 AD and 2008AD eruptions using information available in Burton et al (2005) and Behn
ke et al (2008). Araw estimation for the volume of the 2008/05/13 eruption was kindly provided by Mar
o Neri(Mar
o Neri personal 
ommuni
ation, 2010).The 
hoi
e of using only lateral eruptions needs quali�
ation. Although it 
ould be ar-guable and 
ould explain only one aspe
t of the eruption a
tivity at Mt Etna vol
ano, we arepushed in this dire
tion by the quality of data available. Besides, from a statisti
al point ofview, it is better not to use an in
omplete dataset with the awareness of the risk of losingone pie
e of information, than using in
omplete data and �nd false 
orrelations (Bebbington,2007). Flank eruptions, however, 
onstitute one of the most important threat for a vol
ani
hazard assessment at Mt Etna (see Behn
ke et al, 2005 and Salvi et al, 2006 among others).Thus, in our opinion, the 
hoi
e of using only �ank eruptions seems the best available in avol
ani
 hazard assessment perspe
tive. In Table 2.2 the data of �ank eruptions at Mt Etnaare reported; we indi
ate the onset date, interevent times (dri
) and volumes (dvi

). The are 63eruptive events and 
onsequently 62 pairs of interevent time and volume data.The next two subse
tions are organized as follows: we �rst show the results obtained forthe model parameters both using all data and the sequential pro
edure dis
ussed in Se
tion2.2.5, then the ability of the model in �tting the data (model 
he
king) and the fore
astobtained. Finally, we will 
ompare them with fore
ast provided by other models previouslypublished (when the 
omparison is possible).2.4.1 Results for variables and parametersIn order to apply the model to the Mt Etna �ank eruptions, �rst we need to spe
ify themeasurements errors (∆dri
,∆dvi

) and the hyperparameters (µb, σ
2
b , µc and σ2

c ) for the priorsdistribution for b and c. In the Behn
ke et al (2005) 
atalog there is no mention about theinterevent time errors whereas relative errors are given for volume data. Therefore, we assignan error of 1 day for ∆dri
for interevent times. A

ording to Behn
ke et al (2005) we assignrelative errors as follows: ∆dvi

/dvi
= 0.25 for i = 1, . . . , 43 (eruptions from 1607 to 1970AD),
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∆dvi

/dvi
= 0.05 for i = 44, . . . , 60 (eruptions form 1970 to 2004 AD) and ∆dvi

/dvi
= 0.25 for

i = 61, 62. The latter errors are relative to the 2006 and 2008 AD events not in Behn
ke etal (2005) 
atalog; whose volumes are �rst raw estimate not reparametrized yet (Mar
o Neripersonal 
ommuni
ation, 2010).The MCMC simulations here are performed following the thinning pro
edure already dis-
ussed. In Figure 2.9 there are the auto
orrelation fun
tion results from lag 1 to 20 for theparameters b, c and λ, we do not show the same �gures for the 62 variables ri's and 62 vi'sbe
ause they provide zero 
orrelation at almost the �rst lags. The auto
orrelation fun
tion ispra
ti
ally zero at lag 20 for all parameters. Therefore we run 201000 simulations dis
ardingthe �rst 1000, as a burn-in, and than thinning the 
hains every 20 iterations. In this way weobtain posterior distributions for variables and parameters of 10000 simulation ea
h. For thehyperparameters we 
hoose the same parameters as the Kilauea 
ase, i.e.µb = 0.2, σb = 0.1,
µc = 200 and σc = 50.Simulations obtained are presented in Figures 2.10 and 2.11. The data reprodu
tion hereis optimal when the variables are 
onstrained in their full 
onditionals by data, see Figure2.10 where simulation are blue stars and data red pluses. Also here, as in the Kilauea 
ase,the model reprodu
es reliably the measurement errors assigned. In Figure 2.3 we present theresults for the model parameters b, c and λ using all data. The value obtained for b (topleft panel in Figure 2.11) suggests that Mt Etna �ank eruptions follow a time predi
tableeruptive behavior. The numeri
al value for 0 < b < 1 implies a power law time predi
tablebehavior, the mean and standard deviation are b = 0.35 and σb = 0.04 respe
tively. For thedistribution for c (top right panel), whi
h is fun
tion of the average magma re
harge pro
ess,we �nd a mean value c = 330 days/106 m3 with error (1 standard deviation) σc = 40 days/106m3. In the bottom left panel we have the posterior distribution for the rate of o

urren
e
λ. The mean value and standard deviation are λ = 5.4 × 10−4 days−1 and σλ = 0.6 × 10−4days−1 respe
tively, and are totally 
ompatible with the rate of o

urren
e 
al
ulated dire
tlyby the data with MLE te
hnique, i.e. λMLE = 4.2 × 10−4 with 95 % 
on�den
e interval
[3.2, 5.4] × 10−4.In the Figure 2.12, we present the parameters b, candλ using the sequential approa
hdis
ussed in se
tion 2.2.5. The bla
k dashed lines determine the division between the learningand voting phase; the events on the left of the dashed line 
onstitute the learning phases (�rst
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ano 63third of the 
atalog, i.e. 20 events), while we use the remaining part to test the eruptionfore
asts (i.e. 42 events). We will use these realizations into the fore
ast pro
edure and wewill dis
uss it in the next se
tion.By looking at the out
omes of the MCMC simulations for the parameters b and c, it is
lear that �ank eruptions at Mt Etna follow a time predi
table eruptive behavior. The valueof b less than one implies a non-linear relationship between interevent times and volumes. Thetime predi
table equation (2.1) is a power law similar to the one we infer for Kilauea vol
ano.These �ndings lead to spe
ulate about the role played by the magma 
hamber feeding systemin the eruption frequen
y as we have spe
ulated in Se
tion 2.3.1. Under this perspe
tive theMt Etna vol
ano seems to a
t as a non-stationary vol
ano (Mulargia et al, 1987), and thenon-stationarity 
ould also imply some sort of 
y
li
ity in the eruption frequen
y (Behn
ke &Neri, 2003, Allard et al, 2006). This possible non-stationarity should be taken into a

ount inmodeling the magma 
hamber dynami
s at Kilauea vol
ano.2.4.2 Model 
he
king and Fore
astsThe results of the model 
he
k are presented in Figure 2.13. It is immediate to realize theagreement of the syntheti
 simulations (blue bars) with values 
al
ulated from the data (redbar) for the rate of o

urren
e, maximum, minimum and median. For the rate of o

urren
ewhere the p-value=0.87, we 
an spe
ulate that the model predi
ts interevent times slightlylonger that the observed one. Although the model works well for minimum, median and rate, itis less satisfa
torily for the maximum and as a 
onsequen
e for the standard deviation. Againhere as for Kilauea, the model 
an reprodu
e the maximum only within the tail behaviorof the syntheti
 realizations. A 
lose look at Mt Etna 
atalog reveals that the maximuminterevent time is relative to a long quies
en
e period from 1702 to 1755 AD. This value 
ouldbe 
onsidered an extreme value (53 years) be
ause the se
ond longest interevent time is only 20years, being the quies
en
e period from 1614 AD to 1634 AD. This se
ond longest intereventtime is 
ompatible with the syntheti
s maximum simulation with p-value=0.7. As we veri�edin 
he
king the model for Kilauea data, BH_TPMII model is able to 
apture the main datafeatures ex
ept for the extreme value, or better, is able to reprodu
e the extreme value onlywithin the tail of the distribution for the syntheti
 
atalogs.The �nal task, now, is to test the fore
ast performan
e of the model and 
ompare it with
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table Model for Open Conduit Vol
anoes: TheCase of Mt Etna and Kilaueaother models for Mt Etna interevent times already present in literature using the sequentialapproa
h dis
ussed in Se
tion 2.2.5. Before to embark in this 
omparison, we present theresults of the SIR pro
edure used to resample the λj 's in the right side of equation (2.9).In Figure 2.14 the λj are plotted as they are from the MCMC simulation (blue stars) withsuperimposed the out
ome of the resampling pro
edure (red stars). The information providedby the volume data in the SIR pro
edure shrinks and shifts the λj distributions and as a resultsthe mode of the distributions for the resampled quantities is higher than the non resampledones. Now, as soon as we get the resampled λj's, we 
an use them to simulate the integral inequation (2.9).There are several statisti
al model in literature des
ribing statisti
ally the eruptive dataseries for Mt Etna. The model are: BH_TPM proposed by Passarelli et al (2010) (Chapter1), a Non Homogeneous Poisson pro
ess with a power law intensity proposed by Salvi et al(2006), a Non homogeneous Poisson pro
ess with pie
ewise linear intensity by Smethurst etal (2009); the GTPM by Sandri et al (2005) and the Hidden Markov Models of Bebbington(2007). The latter model is a model that allows to identify 
hange in vol
ani
 a
tivity usingHidden Markov Models. In this work the a
tivity level of Mt Etna vol
ano is tested throughthe onset 
ount data, the interevent time data and the quies
en
e time data (interonset in theBebbington 2007 terminology) together with time and size-predi
table model. To be honest,we are not able to apply the sequential pro
edure to the Bebbington (2007) model due to itsintrinsi
 
omputational 
omplexity, so we do not perform the probability gain test against it.We have already dis
ussed the BH_TPM and GTPM in the previous se
tions (see Se
tion2.3.2), thus we present the main pe
uliarity of the Salvi et al (2006) model and the Smethurstet al (2009) model. Salvi et al (2006) model is an Non Homogeneous Poisson model. Theintensity of the pro
ess has a power law time dependen
e whose parameters 
an be estimatedusing MLE. This model implies that the intensity 
an in
rease or de
rease with time, dependingon the value of the exponent. In this way the model 
an take into a

ount and �t any trend ineruptive a
tivity. In Smethurst et al (2009), authors study di�erent Non Homogeneous Poissonpro
esses, �nding the best model is one with a pie
ewise linear intensity. In other words, �ttingthe model via numeri
al MLE, the intensity of the pro
ess is 
onstant (Homogeneous Poissonpro
ess) for eruption before 1970 AD, and then it starts to in
rease linearly with time. Thisis a pro
ess with a 
hange point and is not easy to handle under our sequential pro
edure.
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ano 65The 
hange point found by Smethurst et al. (2009) works only if the numeri
al MLE is doneusing all data (with the bene�t of hindsight). On the other hand, applying the sequentialpro
edure, i.e. adding one data at a time after the learning phase, does not guarantee to �ndthe same 
hange point and not even to �nd exa
tly one 
hange point (see Gasperini et al,1990). In addition, the parameters of the pro
ess in the Smethurst et al (2009) model are notin 
losed form, so the stability of the numeri
al maximization 
ould produ
es further problemsin applying the sequential approa
h.To ta
kle this 
ompli
ated 
hange point problem and 
ompute �forward� probabilities oferuptions, we 
hoose to employ two di�erent approa
hes. The �rst one is to keep the 
hangepoint (i.e. 1964 AD) found by Smethurst et al (2009) using all data and simulate sequentiallythe other two parameters of the model. In this way we 
al
ulate the probability gain inequation (2.11) assuming a 
onstant intensity up to the 
hange point, and then assuming alinearly in
reasing intensity. Anyway, in the forward sequential approa
h perspe
tive we wantto use, this is not a fair game to get eruption probabilities, as we are using the value of the
hange point 
al
ulated using all data.The se
ond approa
h is instead based on the empiri
al estimation of the trend for theintensity of the pro
ess 
al
ulated under the sequential pro
edure. As we show in Figure2.15, after the learning phase, we examine and evaluate the trend for the intensity λMLE(blue stars in the graph), 
al
ulated by adding one data at a time, assuming a homogeneousPoisson pro
ess. We �nd that the intensity shows a slow in
rease with important �u
tuationsup to the 
hange point found by Smethurst et al. (2009) (bla
k dashed line). Then, after the
hange point, the intensity rises more markedly. To �gure out whether or not the intensity afterea
h event is in
reasing with time, we estimate its trend with linear regression. In parti
ular,we perform linear regression on the intensity sin
e the datum before the last 
hange of signin its trend assessing the goodness of the regression (F-test on the slopes at 1% signi�
an
elevel). In Figure 2.15, we show positive slopes with signi�
ant regression with green lines, andnegative slopes or positive ones with not signi�
ant regression with red lines. It is 
lear fromthe graph that intensity does not show any signi�
ant trend up to four events after the 
hangepoint found by Smethurst et al (2009). This is something widely known, that is to say, inorder to re
ognize a signi�
ant trend in a forward study, one needs several data points (see forexample Cornelius & Voight, 1995).Hen
e, in 
al
ulating the parameters under the forward
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table Model for Open Conduit Vol
anoes: TheCase of Mt Etna and Kilaueasequential pro
edure, we keep a homogeneous Poisson pro
ess on the events where the aboveregressions are not signi�
ant (i.e. four events after the Smethurst et al, 2009 
hange point),then we use the Non Homogeneous Poisson pro
ess with linearly in
reasing intensity.Finally we present the results for the probability gain in Figure 2.16. As it is shown in theinset of ea
h panel, PG's are always greater than zero, showing the present model performsbetter fore
ast 
ompared to the others. In parti
ular, the fore
asting test against the homoge-neous Poisson pro
ess (panel a) shows only 14 eruptions out of 42 with a negative �pun
tual�probability gain, 
orroborating the fa
t that Mt Etna �ank eruptions are non stationary intime (Mulargia et al 1987, Bebbington, 2007, Salvi et al 2006 and Smethurst et al, 2009).While in testing against BH_TPM (panel b), only 17 eruptions have a negative probabilitygain indi
ating that modeling Mt Etna interevent times with log-normal distributions doesnot seem to be the best 
hoi
e. The result in panel 
 against the GTPM is the best one andremarks the limitation of a regression te
hnique in modeling linear relationship between thelogarithm of interevent times and of volumes, without using measurement errors. Salvi et al(2006) model, in panel d, performs worse fore
asts 
ompared with BH_TPMII, 
on�rmingthat a power law intensity is not appropriate for Mt Etna eruption o

urren
es (Smethurst etal 2009). In panel e, the test against the Smethurst et al (2009) model, with �xed 
hange pointas they found, is the worse one, although the PG is still slightly positive. On one hand, thistest shows that modeling the intensity with a linear in
reasing fun
tion for events in the last40 years seems more appropriate. At the same time, it shows some limitations: a 
lose lookto the subplot e shows that event 38 have a very high gain in favor of the BH_TPMII. Thisevent is the 2001 AD eruption, started after 10 years of quies
en
e. Therefore, the Smethurstet al (2009) model, with the ad ho
 �tted pie
ewise linear intensity, 
ould be misleading forreal fore
asting purposes as the observed eruption frequen
y de
reases in the future. Finallywe present, in panel f, the probability gain against the modi�ed Smethurst et al (2009) modelfollowing the spe
i�
ation dis
ussed in the previous se
tion for the �forward� appli
ation. Re-spe
t to panel e, here the probability gain is 
onsiderably higher although the linear intensity�ts better the last part of the 
atalog.It seems that, despite some lo
al dis
repan
ies, the BH_TPMII shows a better overallbehavior in fore
asting the eruptive events providing better fore
ast for more than 50% ofevents and manifesting a higher reliability if used in probabilisti
 vol
ani
 hazard assessment.



2.5 Con
lusions 67To get geophysi
al insights, we investigate some possible 
orrelation between the �pun
tual�probability gains and the interevent times or volumes using linear regression analysis. We donot �nd any 
orrelation between volumes and probability gain. The only signi�
ant linearrelationship (p-value≤ 0.01) we �nd, as in the Kilauea 
ase, is between �pun
tual � probabilitygain 
al
ulated against the homogeneous Poisson pro
ess and interevent times, as in Figure2.17. The inverse relationship implies that we systemati
ally perform worse fore
ast for longinterevent times. We 
an justify this results stating that for long quies
en
e periods the vol
anobe
omes memoryless with transition from open and 
losed 
onduit regime (see Marzo

hi& Za

arelli, 2006 and Bebbington, 2007). An other explanation 
ould be related to the
omplexity of the vol
ano eruption system not 
onsidered in this model. The time predi
tablemodel seems to be more appropriate when the eruption are 
lose in time, 
onversely, whenthe quies
en
e period are extremely long, other 
ompelling physi
al pro
esses may 
ontrol thevol
ani
 a
tivity. Finally, negle
ting the summit a
tivity, we lose one pie
e of informationrelated to the amount of erupted volume from summit 
rater during the quies
en
e period.This may introdu
e a bias that 
ould explain this inverse relationship.2.5 Con
lusionsIn this work we have 
arried out a Bayesian Hierar
hi
al model to test time predi
table modelfor open 
onduit vol
anoes (BH_TPMII). The use of Bayesian Hierar
hi
al modeling providesa suitable tool to take into a

ount the physi
al un
ertainties related to the eruption pro
essand relative to the data, parameters and variables. We have applied the model to Kilaueaeruptive 
atalog from 1923 to 1983 AD and to Mount Etna �ank eruptions from 1607 to2008 AD. The results show that both vol
anoes have a generalized time predi
table eruptivebehavior where interevent times depend on the previous volume erupted. The numeri
alvalues of the time predi
table model parameters inferred suggest that the amount of theerupted volume 
ould 
hange the dynami
s of the magma 
hamber re�lling pro
ess during thesubsequent repose period.The model shows a good �t with the observed data for both vol
anoes and is also ableto 
apture extreme values as a tail behavior of the distributions. The fore
asts obtained byBH_TPM II are superior to those provided by other statisti
al models for both vol
anoes.In parti
ular we have improved the fore
ast performan
e 
ompared with those of BH_TPM,
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orroborating the hypotheses of building up the present model. We want to point out thatan Non Homogeneous Poisson pro
ess, as the one developed in Smethurst et al (2009), 
ouldprovide better fore
ast if the �ank eruptive a
tivity on Mt Etna keeps in
reasing in time as itdid in the last 40 years. We suggest that the present model 
ould be in
luded in a long-termProbabilisti
 Vol
ani
 Hazard Assessment as a basi
 
omponent for modeling the o

urren
eof eruptions in time at Kilauea Vol
ano and Mount Etna vol
ano.



Appendix 69A Sampling Importan
e Resampling algorithmThe Sampling Importan
e Resampling (SIR) is a non iterative pro
edure proposed by Ru-bin (1988). The SIR algorithm generates an approximately independent and identi
ally dis-tributed (i.i.d.) sample of size m from the target probability density fun
tion f(x). It starts bygenerating M (m ≤ M) random numbers from a probability density fun
tion h(x) as inputsto the algorithm. The output is a weighted sample of size m drawn from the M inputs, withweights being the importan
e weights w(x). As expe
ted, the output of the SIR algorithm isgood if the inputs are good (h(x) is 
lose to f(x)) or M is large 
ompared to m.The SIR 
onsists of two steps: a sampling step and an importan
e resampling step as givenbelow:1. (Sampling step) generate X1, . . . ,XM i.i.d. from the density h(x) with support in
ludingthat of f(x);2. (Importan
e Resampling Step) draw m values Y1, . . . , Ym from X1, . . . ,XM with prob-ability given by the importan
e weights:
w∗(X1, . . . ,XM ) =

w(Xi)
∑M

j=1 w(Xj)
for i = 1, . . . ,M.where w(Xj) = f(Xj)/h(Xj) for all j.The resampling pro
edure 
an be done with or without repla
ement.
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76 TablesTable 2.1: Catalog of eruptive events at Kilauea vol
anoEruption# Onset Interevent time Volume(yyyy mm dd) [days℄ lava e tephra [106m3℄1 1923 08 25 259 0.0732 1924 05 10 70 0.793 1924 07 19 1083 0.2344 1927 07 07 594 2.305 1929 02 20 155 1.406 1929 07 25 482 2.607 1930 11 19 399 6.208 1931 12 23 988 7.009 1934 09 06 6504 6.9010 1952 06 27 703 46.7011 1954 05 31 273 6.2012 1955 02 28 1720 87.6013 1959 11 14 60 37.2014 1960 01 13 408 113.2015 1961 02 24 7 0.02216 1961 03 03 129 0.2617 1961 07 10 74 12.6018 1961 09 22 441 2.2019 1962 12 07 257 0.3120 1963 08 21 45 0.8021 1963 10 05 517 6.6022 1965 03 05 294 16.8023 1965 12 24 681 0.8524 1967 12 05 291 80.3025 1968 08 22 46 0.1326 1968 10 07 138 6.6027 1969 02 22 91 16.1028 1969 05 24 812 185.0029 1971 08 14 41 9.1030 1971 09 24 132 7.7031 1972 02 03 457 162.0032 1973 05 05 189 1.2033 1973 11 10 251 2.7034 1974 07 19 62 6.6035 1974 09 19 103 10.2036 1974 12 31 333 14.3037 1975 11 29 654 0.2238 1977 09 13 794 32.9039 1979 11 16 896 0.5840 1982 04 30 148 0.5041 1982 09 25 100 3.0042 1983 01 03 ongoing



Tables 77Table 2.2: Catalog of eruptive events at Mount Etna vol
anoEruption # Onset Interevent time Volumeyyyymmdd [days℄ lava e tephra [106m3℄1 1607 06 28 954 158.002 1610 02 06 86 30.003 1610 05 03 1520 91.714 1614 07 01 7476 1071.005 1634 12 19 2985 203.036 1643 02 20 1369 4.127 1646 11 20 1519 162.458 1651 01 17 6628 497.539 1669 03 11 7308 1247.5010 1689 03 14 4741 20.0011 1702 03 08 19359 16.9412 1755 03 09 2891 4.7313 1763 02 06 132 21.0814 1763 06 18 197 149.9615 1764 01 01 847 117.2016 1766 04 27 5135 137.2517 1780 05 18 4391 29.3518 1792 05 26 3824 90.1319 1802 11 15 2324 10.4320 1809 03 27 944 38.1921 1811 10 27 2769 54.3322 1819 05 27 4906 47.9223 1832 10 31 4034 60.7424 1843 11 17 3199 55.7025 1852 08 20 4519 134.0026 1865 01 03 3525 94.3327 1874 08 29 1731 1.47



78 TablesEruption # Onset Interevent time Volumeyyyymmdd [days℄ lava e tephra [106m3℄28 1879 05 26 1396 41.9329 1883 03 22 1154 0.2530 1886 05 19 2243 42.5231 1892 07 09 5772 130.5832 1908 04 29 693 2.2033 1910 03 23 536 65.2034 1911 09 10 2638 56.6035 1918 11 30 1660 1.2036 1923 06 17 1965 78.5037 1928 11 02 4988 42.5038 1942 06 30 1700 1.8039 1947 02 24 1012 11.9040 1949 12 02 358 10.2041 1950 11 25 1923 152.0042 1956 03 01 4329 0.5043 1968 01 07 1184 1.0044 1971 04 05 1031 78.0045 1974 01 30 40 4.4046 1974 03 11 350 3.2047 1975 02 24 278 11.8048 1975 11 29 882 29.4049 1978 04 29 118 27.5050 1978 08 25 90 4.0051 1978 11 23 253 11.0052 1979 08 03 592 7.5053 1981 03 17 741 33.3054 1983 03 28 713 100.0055 1985 03 10 599 30.0356 1986 10 30 1106 60.00



Tables 79Eruption # Onset Interevent time Volumeyyyymmdd [days℄ lava e tephra [106m3℄57 1989 11 09 765 38.4058 1991 12 14 3503 250.0059 2001 07 17 467 40.9060 2002 10 27 681 131.5061 2004 09 07 675 40.0062 2006 07 14 669 25.0063 2008 05 13 35.00
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Figure 2.1: Auto
orrelation fun
tion for MCMC realizations for parameters: b top left panel,
c top right panel and λ bottom left panel. The auto
orrelation fun
tion is zero at lag 20, sowe run ea
h MCMC 
hain for 201000 iterations thinning it every 20 MCMC-steps. We obtain10000 independent realizations for ea
h 
hain.
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Figure 2.2: Blue stars show the posterior distributions of pairs of simulated variables (in-terevent times ri and volumes vi). These variables are simulated via MCMC Gibbs sampling(ri's) and Metropolis Hastings (vi's) using all data in the 
atalog. The top panel is relative to
ri's and vi's from 1 to 20 and the bottom panel from 21 to 41. Red plus is the observed data.
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Figure 2.3: Posterior distributions for BH_TPMII parameters obtained using all data in the
atalog: top left panel refers to b, top right to c and bottom left to λ.
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Figure 2.4: Posterior distributions of: b parameter in top left panel, c parameter in top rightpanel and λ in the bottom left panel, all 
al
ulated using the sequential pro
edure dis
ussed inthe text. Bla
k dashed line represents the learning phase. Red triangles are the mean of ea
hdistribution.
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Figure 2.5: Distributions of syntheti
 interevent times (blue bars) 
ompared with observedvalues (red line) using des
riptive statisti
. This goodness-of-�t test (for more detail see thetext) shows that BH_TPMII predi
ts syntheti
 interevent times in good agreement with theobserved data, ex
ept for the maximum and standard deviation where the observed quantitiesare reprodu
ed in the tail behavior.
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Figure 2.6: Results for the SIR pro
edure applied to posterior distribution of λ's. In this plotwe indi
ate with blue stars the posterior MCMC-realizations for λj while red stars refer to theresampled ones with SIR algorithm. Using the SIR pro
edure, des
ribed in Appendix A, weupdate ea
h posterior distribution of λ with the information given by the observed volume underthe sequential pro
edure dis
ussed in the text. The SIR pro
edure is applied on λ's obtainedafter the learning phase as required in the sequential approa
h used (i.e. events from 14 to 41in Table 2.1).
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Figure 2.7: �Pun
tual probability gain� of the BH_TPMII for ea
h event after the learningphase against: in panel a Poisson Model (Klein, 1982), in panel b BH_TPM (Passarelli etal, 2010), in panel 
 Log-Normal Model (Bebbington & Lai, 1996b) and in panel 
 Gener-alized Time Predi
table Model (Sandri et al., 2005). Values greater than zero indi
ate whenBH_TPM model performs better fore
ast than the referen
e models. The inset in ea
h panelis the total Probability gain, i.e. the sum of the pun
tual probability gains.
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Figure 2.8: Regression analysis for BH_TPMII �pun
tual probability gain� against PoissonModel versus observed interevent times. The signi�
ant inverse linear relationship, whose best�t regression 
oe�
ients and R2 are given, indi
ates a systemati
 negative probability gainfor long interevent times. As dis
ussed in the text, this means an additional 
omplexity forlong interevent times 
ompared to the time predi
table eruptive behavior. This 
auses a worseability of our model, 
ompared to Poisson model, to fore
ast long interevent times.
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Figure 2.9: Auto
orrelation fun
tion for MCMC realizations for parameters: b top left panel,
c top right panel and λ bottom left panel. The auto
orrelation fun
tion is zero at lag 20. So,to obtain 10000 independent realizations for ea
h 
hain, we run ea
h MCMC 
hain for 201000iterations thinning every 20 steps.
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Figure 2.10: Blue stars show the posterior distributions of pairs of simulated variables (in-terevent times ri and volumes vi). These variables are simulated via MCMC Gibbs sampling(ri's) and Metropolis Hastings (vi's) using all data in the 
atalog. From top to bottom the �rstpanel is relative to ri and vi from 1 to 20, the se
ond panel from 21 to 40 and the third panelfrom 40 to 62. Red plus is the observed data.
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Figure 2.11: Posterior distributions for BH_TPMII parameters obtained using all data in the
atalog: top left panel refers to b, top right to c and bottom left to λ.
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Figure 2.12: Posterior distributions of: b parameter in top panel, c parameter in middle paneland λ in the bottom panel, all 
al
ulated using the sequential pro
edure dis
ussed in the text.Bla
k dashed line represents the learning phase. Red triangles are the mean
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Figure 2.13: Distributions of syntheti
 interevent times (blue bars) 
ompared with observedvalues (red line) using des
riptive statisti
. This goodness-of-�t test (for more detail see thetext) shows that BH_TPMII predi
ts syntheti
 interevent times in good agreement with theobserved data, ex
ept for the maximum and standard deviation where the observed quantitiesare reprodu
ed in the tail behavior.
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Figure 2.14: Results for the SIR pro
edure applied to posterior distribution of λ's. In this plotwe indi
ate with blue stars the posterior MCMC-realizations for λj while red stars refer to theresampled ones with SIR algorithm. Using the SIR pro
edure, des
ribed in Appendix A, weupdate ea
h posterior distribution of λ with the information given by the observed volume underthe sequential pro
edure dis
ussed in the text. The SIR pro
edure is applied on λ's obtainedafter the learning phase as required in the sequential approa
h used (i.e. events from 20 to 62in Table 1.1).
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Figure 2.15: Plot to dete
t the trend of intensity of a homogeneous Poisson pro
ess under thesequential pro
edure. Blue stars are the intensity λMLE 
al
ulated sequentially via MLE addingone data at a time plotted versus the time of ea
h event. The λMLE's are 
al
ulated after thelearning phase. To �gure out whether or not the intensity is in
reasing with time, we estimateits trend with linear regression, please refer to the text for more details. Red lines representnon signi�
ant regressions (at 1% level), green lines represents signi�
ant regressions. Thebla
k dashed line is the 
hange point found by Smethurst et al 2009. Estimating sequentiallythe trend, one is able to dete
t the in
reasing trend only four events after the 
hange pointfound by Smethurst et al., 2009, say, only after the 1975 AD eruption.
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Figure 2.16: �Pun
tual probability gain� of the BH_TPMII for ea
h event after the learningphase against: in panel a Poisson Model (Klein, 1982), in panel b BH_TPM (Passarelli etal, 2010), in panel 
 GTPM (Sandri et al, 2005), in panel d Salvi et al, 2006 model, in panele Smethurst et al, 2009 model and in panel f modi�ed pie
ewise linear model of Smethurst etal, 2009 under the sequential pro
edure (please see the text for more details). Values greaterthan zero indi
ate when BH_TPM model performs better fore
ast than the referen
e models.The inset in ea
h panel is the total Probability gain, i.e. the sum of the pun
tual probabilitygains.
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Figure 2.17: Regression analysis for BH_TPMII �pun
tual probability gain� against PoissonModel versus observed interevent times. The signi�
ant inverse linear relationship, whose best�t regression 
oe�
ients and R2 are given, indi
ates a systemati
 negative probability gainfor long interevent times. As dis
ussed in the text, this means an additional 
omplexity forlong interevent times 
ompared to the time predi
table eruptive behavior. This 
auses a worseability of our model, 
ompared to Poisson model, to fore
ast long interevent times.



Chapter 3
The Correlation Between Run-Up andRepose Times of Vol
ani
 Eruptions

Abstra
tVol
anoes usually show signs of unrest before an eruption. The intensity of these signals duringthe pre-eruptive phase varies greatly. Establishing physi
al 
ontrols on the duration of pre
ur-sory a
tivity, i.e. run-up time, 
ould improve understanding of the dynami
s of magma as
entfrom a shallow magma reservoir to the surfa
e. Another observable indi
ative of eruption dy-nami
s is the interevent repose time, i.e., the time between magmati
 eruptions. The reposetime 
ould be asso
iated with the me
hanism that re
harges the magmati
 system. Both ofthese dynami
 quantities are strongly dependent on magma 
omposition and hen
e magmavis
osity. In this work we investigate the inter-relationship between run-up time, repose timeand vis
osity by 
olle
ting together a database of 54 eruptions from 26 di�erent vol
anoesaround the world. Run-up time and repose are strongly 
orrelated with 60% of the varian
ein the data well-explained by a linear 
orrelation with repose time equal to approximately 104times the run-up time. The probability of the data being un
orrelated is <0.1%. The dataranges from basalti
 to da
iti
 systems, so we 
an investigate the gross in�uen
e of vis
osityby using the sili
a 
ontent as a proxy. High sili
a, and thus by inferen
e high vis
osity, sys-tems have longer repose times and run-up times. The run-up time observations are 
onsistentwith model where times
ales are 
ontrolled by �ow pro
esses su
h as diking. The observedrepose times are 
onsistent with re
harge rates inferred in other studies and thus appears to bere�e
ting the dynami
s of deep 
rustal magma �ow. The observed interrelationships provide



98 The Correlation Between Run-Up and Repose Times of Vol
ani
 Eruptionsa new tool for 
onstraining physi
al and probabilisti
 models for vol
ani
 hazard mitigation.3.1 Introdu
tionVol
ani
 eruptions 
ommonly have geophysi
ally observable pre
ursors. Before an eruption,seismi
ity, ground deformation and gas emission may in
rease. The intensity of those pre
ur-sory phenomena varies substantially in size and temporal duration for di�erent vol
anoes, yetmost eruptions have at least some sign of the impending eruption.The pre
ursors are thought to be related to magma as
ent beneath the vol
ani
 edi�
e.For instan
e, at a variety of vol
anoes the seismi
ity and ground deformation are asso
iatedwith magmati
 pressure, �uids exsolving from the magma 
hamber, and heat perturbing thestress distributions and pore �uids in surrounding host ro
ks (Lipman & Mullineaux, 1981;Tokarev, 1985; Yokoyama, 1988; Yokoyama et al, 1992; Cornelius & Voight, 1994; Druitt &Kokelaar, 2002; Newhall & Punongbayan, 1996; Aki & Ferrazzini, 2000; Yokoyama & Seino,2000; Kilburn 2003; Cervelli et al, 2006; De La Cruz-Reyna et al, 2008). Therefore, the time ofpre
ursory a
tivity, or run-up time, should re�e
t the physi
al properties of the magma. Mostnotably, vis
osity should have a major e�e
t of the dynami
s of diking and thus the run-uptime of a
tivity (Rubin, 1995). However, dis
erning su
h a relationship on a single vol
anois relatively di�
ult, in large part be
ause of the la
k of detailed 
onstraints on the vis
osityand state of the magma at depth.Sin
e the details of the magma vis
osity are subje
t to large un
ertainties, we need touse a large dataset whi
h en
ompasses extreme variations. For that reason we fo
us on well-do
umented eruptions around the world during the last 70 years using all material availablefor pre-eruptive and eruptive period. Therefore, if we 
ompare eruptions from a large varietyof vol
anoes with di�erent sili
a-
ontent, we 
an assemble a data set where vis
osity of themagma varies by 7 orders of magnitude and thus be
omes the most dominant parameter inthe system.In addition, magma vis
osity may play a role in 
ontrolling another observable of thesystem: inter-event repose time. The time between eruptions is 
ontrolled by the re
hargeof the magma 
hamber and the a

umulation of pressure. Both of these pro
esses are alsosensitive to magma vis
osity and thus might be expe
ted to vary from vol
ano to vol
ano.Again, a study at a single edi�
e would be di�
ult, but 
apitalizing on the large vis
osity



3.2 De�nitions 99variations from edi�
e to edi�
e might be instru
tive.In this paper we investigate the interrelationships among run-up time, re
urren
e intervaland vis
osity by using 54 eruptions. Repose time, run-up times and sili
a 
ontent of ea
hevent are listed in Table 3.1. First, we take some time to 
arefully de�ne and dis
uss theoperational de�nitions of repose time and run-up time. Next we observe a strong 
orrelationbetween re
urren
e time and repose time along with a dependen
y on petrology. We will thentranslate the petrologi
 
onstraints into vis
osity using a rough proxy model based on sili
a
ontent. Finally we interpret our results as manifestations of the 
ontrol of vis
osity via dikingon the pre
ursory pro
ess and magma re
harge rate on the inter-eruptive pro
esses.3.2 De�nitionsWe de�ne the time asso
iated with a pre
ursory phase before a magmati
 eruption as the run-up time. The run-up time trun−up is the time elapsed from the onset of observed magmati
unrest to the onset of a magmati
 eruption. The run-up time de�ned in this way shouldbe related to the time taken by the magma to move from a magma 
hamber to the surfa
e.Although this de�nition of run-up seems a very straightforward one, it leads us to deal withvery 
ompli
ated questions: 1) How do you de�ne a starting point for a magmati
 eruption?2) How do you de�ne the starting point of magmati
 unrest?To answer question (1), we de�ne the start of an eruption as when juvenile magma materialis dete
ted at the surfa
e. Despite this simple de�nition, sometimes this information is noteasily available for explosive eruptions be
ause phreati
 and phreato-magmati
 a
tivity 
anobs
ure when juvenile material is �rst eje
ted. We ta
kle this problem using informationavailable in literature about petrography and petrology of the eruptive produ
ts. In Table3.1 there are also indi
ates referen
es for the magmati
 
omposition and petrography of ea
heruption.For most eruptions the onset time is well known with an error of at least 1 day, but forsome histori
al eruptions it is impossible to know when juvenile material is eje
ted �rst. Foreruptions without a 
lear onset in the literature we use the start date given by SmithsonianInstitution-Global Vol
anism Program datasets. In 
ases both day and month of an eventare unknown we use 01 January as the onset date together with the given year. The relativeerror introdu
ed by this approximation is always <1% and thus we 
an negle
t it for all 
ases.



100 The Correlation Between Run-Up and Repose Times of Vol
ani
 EruptionsWhen only year and month are spe
i�ed we use the 15th day of the month as a onset date.Answering question (2) is a di�
ult matter. The de�ned starting point for vol
ani
 unrestdepends on the ability to dete
t pre
ursory vol
ani
 signals above variable ba
kground levels,and it is unavoidably related to a parti
ular type of vol
ano. Signs of pre-eruptive unrestvary and eruptions in this study in
lude both examples of elevated seismi
ity and in
reasedground deformation (See below). In addition the data for pre
ursory a
tivity usually are noteasily available, are often strongly heterogeneous and in some 
ases are only qualitative (seeNewhall & Dzurisin, 1988, Simkin & Siebert, 1994, Benoit & M
Nutt, 1996). This makes itvery di�
ult to set a 
omprehensive s
heme for de�ning the onset date of magmati
 unrestand the relative run-up time for vol
ani
 eruptions.Our strategy in dealing with this 
ompli
ated problem has arisen from reading the s
ien-ti�
 work and reports about eruptions around the world. Given the great variability amongeruptions and s
ar
ity of detailed pre-eruptive data available for dire
t interpretation, wehave deferred to the authors of ea
h study and used the lo
al de�nition of run-up time forthis work. This strategy is inherently dangerous both be
ause it does not use a quantitativeor pre
ise de�nition of ba
kground and be
ause it uses a posteriori interpretation given by au-thors about vol
ani
 signs. For instan
e, it does not a

ount for the highly variable ability todete
t pre
ursory a
tivity depending on the frequen
y of visual observation and the proximityto geophysi
al monitoring instrumentation. However, it is the only easily a

essible methodsin
e there is no worldwide vol
ani
 geophysi
al database available.In many studies made after an eruption, authors des
ribe the 
hara
teristi
s and durationof pre
ursory a
tivity well. For example in Aki & Ferrazzini (2000, Table 3), the authorsgive 
lear information about the pre
ursory a
tivity for eruptions from 1985 to 1996 at Pitonde la Fournaise, a well-monitored vol
ano. This single dataset allows 
omparison of multipleeruptions in a 
onsistent way. Another very helpful work about Popo
atepetl Vol
ano 1994eruption and its very long pre
ursory a
tivity is made by De la Cruz-Reyna et al (2008). Inthis 
ase, the do
umentation is su�
ient to make reasonable statements about the pre
ursorya
tivity for even a single event. Similar quantitative studies we found elsewhere in the litera-ture identify the starting point for a magmati
 unrest. The pre
ise sour
es of do
umentationfor ea
h eruption in this study are listed in Table 3.1.In most of these studies the time for the pre
ursory a
tivity is indi
ated by pre
ursory



3.2 De�nitions 101seismi
ity (see for example Tokarev, (1985); Yokoyama, (1988); Yokoyama et al, (1992); GilCruz & Chouet, (1997); Yokoyama & Seino, (2000); Soosalu et al, (2005) Table 1); a few 
aseshave ground deformation and seismi
ity (for example Lo
kwood et al, (1987)) and one 
asehas only ground deformation (Cervelli et al, 2006). To double 
he
k the information takenfrom the literature, we used the monthly and weekly report of Global Vol
anism Program(www.vol
ano.si.edu) as a sour
e of information. For example in the 
ase of the 1999 eruptionof Tungurahua Vol
ano there is no literature regarding the pre
ursory a
tivity, so we integratethe information from monthly report BGVN 24:11 from Global Vol
anism Program web sites(http://www.vol
ano.si.edu). For su
h events where we found some dis
repan
y betweenseismi
ity and deformation as pre
ursory signals, we always refer to the seismi
ity for therun-up time value. When only the month of pre
ursory a
tivity is known, we 
onventionallyuse the 15th day of the month as a starting date.We also 
olle
ted data on the relative repose time or interevent time trepose de�ned as thetime elapsed between two subsequent eruptions. As stated before, we 
onsider the onset ofan eruption as the time when �rst juvenile material is present in vol
ani
 eje
ta. We use theonset time rather than duration to de�ne the time between eruptions (Klein, 1982, Mulargia,1985, De la Cruz-Reyna, 1991, Burt et al, 1994, Bebbington & Lai 1996, Sandri et al, 2005,Marzo

hi & Za

arelli, 2006). The 
ited literature was supplemented by the Global Vol
anismProgram re
ords to determine the eruptive history (See Table 3.1 for detailed onset times).Finally we 
olle
ted information for magma 
omposition and sili
a 
ontent. However notall eruptions 
onsidered have dire
t petrologi
 data. In 
ases where we do not know the exa
tmagma 
omposition for a parti
ular eruption, we use the magma 
omposition informationfrom the most re
ent eruption of that vol
ano. When more than one magma 
omposition isgiven for a parti
ular eruption we use the mean. Finally, we reserve a spe
ial mention forthe 18 Piton de la Fournaise events. Dire
t 
ompositional information from Villeneuve et al(2008) was available only for 1983, 1986 and 1998 eruptive event. Hen
e for all events between1985 and 1998 we use the 1986 sili
a 
ontent whi
h appears reasonable as Peltier et al (2009)suggest that there is no strong variations in the magma 
omposition in the last 30 years (SeeTable 3.2).For ea
h eruption in
luded in this analysis we report the vol
ano name, sili
a 
ontent,run-up time, repose or interevent time, volume erupted (tephra and lava) and referen
e list in
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ani
 EruptionsTable 3.1.3.3 ObservationsThe data we have 
olle
ted are shown in Figure 3.1. The log-log plot shows the repose andrun-up times together with their magma 
omposition. Petrologi
al types are 
ategorized bysili
a 
ontent using the standard 
lassi�
ation of Le Bas et al (1986).At �rst glan
e it is easy to see that both run-up and repose times vary over about six orderof magnitude. For basalti
 vol
anoes repose times are of the order of months to a few yearsand run-up times are of the order of minutes to a few days. For high sili
a vol
anoes reposetimes are of the order of several years up to several 
enturies and run-up time of the order ofdays to several months. The ratio between the run-up and repose times is always less than1% ex
ept for 8 events whi
h are less than 10%. Run-up time is always mu
h shorter thanrepose time, so the �rst phenomenologi
al eviden
e here is that the pre-eruptive a
tivity isa small fra
tion of the time between two eruptions, whi
h is 
onsistent with our operationalde�nitions.The main physi
al insight from this plot is that repose times and run-up times are positively
orrelated. This is 
orroborated by the simple linear �t of the logarithmi
 data (Figure 3.1).The high value of R2=0.60 in log-log spa
e means 60% of the data are explained by the linearregression model. The value of R2 allows us to reje
t the hypothesis of un
orrelated values(i.e. slope equal to zero) with an error of <0.001 (i.e. P-value of the hypotheses testing),a

ording to an F-test (Draper & Smith, 1998). The P-value is the risk asso
iated withreje
ting the hypothesis, so in this 
ase the probability that we have inappropriately reje
tedthe un
orrelated hypothesis is less than 0.1%. The observed ratio of the repose times andrun-up time in Figure 1 ranges between 10 and 105.However, a regression is not su�
ient to fully prove the signi�
an
e of the 
orrelation forthese data. In regression analysis the data are assumed to have 
onstant varian
e. In this 
asewe 
an not say easily that run-up times have 
onstant varian
e, be
ause we 
an not know theirexa
t errors. The error asso
iated with run-up times is strongly dependent on the resolutionwith whi
h one vol
ano is monitored and varies over time. Therefore, the goodness of �ttest 
ould be biased by the assumption of 
onstant varian
e. So to 
orroborate our analysis,we perform a bootstrap regression analysis with 1000 data permutations and without any



3.3 Observations 103assumption on the data. The bootstrap mean for the slope is 1.1 ± 0.1 and for inter
ept is-3.5 ± 0.3 where the error bars are 1 standard deviation. These values are again resolvablypositive and we 
on
lude that the positive 
orrelation is robust.Another observation in Figure 3.1 is that the magma 
omposition seems to be 
orrelatedwith run-up and repose times. Be
ause the SiO2 for Piton de la Fournaise eruptions hasthe same value for several eruptions, a di�erent test of 
orrelation is ne
essary than before.The repeated values will bias a regression and therefore we dire
tly 
ompute the 
orrelation
oe�
ient ρ from the raw data rather than embarking on a �t and interpreting R2. Thedistin
tion is that R2 tests the 
orrelation between the predi
tion of a linear �t and theobserved data, while ρ is simply a measure of the 
orrelation between the variables, i.e., the
ovarian
e divided by the standard deviation of ea
h individually (Draper & Smith, 1998).We found ρ=0.35 (P-value =0.01, null hypotheses is 
orrelation 
oe�
ient equal to zero )for repose times and sili
a 
ontent and ρ=0.31 (P-value=0.02 null hypotheses is 
orrelation
oe�
ient equal to zero) for run-up times and sili
a 
ontent. The signi�
antly greater thanzero 
orrelation value implies a relationship between the parameters, although it is not asstrong as the relationship between repose and run-up times. The observation indi
ates thatusing the sili
a 
ontent as a fundamental parameter in des
ribing the pre-eruption dynami
smay be produ
tive. But it is also a warning that other physi
al parameters like the 
rystal
ontent in magma, magma temperature, te
toni
 and lo
al stress distribution must be takeninto a

ount to fully model the pre-eruptive dynami
s.3.3.1 Unusual Individual EruptionsMu
h of the s
atter in Figure 3.1 is likely due to the great variability of individual eruptive
ir
umstan
es. It is helpful to outline the limits of the proposed relationships by reviewingsome of the pe
uliarities of the individual data points that lead to signi�
ant departures fromthe trend.Shishaldin Vol
ano 1999 eruption shows a very long pre-eruption a
tivity 
ompared withother basalti
 vol
ano with a run-up time that is 1/4 the repose time. This unusual ratio goeswith an unusual sequen
e that in
ludes a hiatus in the middle of the pre
ursory a
tivity. Thepre
ursory a
tivity we 
onsider here starts in late June 1998 with a series of small low-frequen
yearthquakes that 
ontinued until the end of O
tober 1998. After O
tober, the vol
ano be
ame
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ani
 Eruptionsquiet until the new in
rease in the pre
ursory a
tivity in early February, possibly indi
atinga new or renewed intrusion (Nye et al, 2002; Moran et al, 2002). Measuring the pre
ursoryinterval from February results in a ratio of 1/40, whi
h is still di�erent from the mean, but lessextraordinary. In Figure 3.1 and subsequent interpretations, we maintain 
onsisten
y with theoperational de�nition of Se
tion 3.2 by 
hoosing June 15, 1998 as the onset time, although itis possible that a shorter one would have been more appropriate physi
ally.Less easy to explain are Hekla and Okmok eruptions. These voluminous basalti
 andesiteeruptions have repose times 
onsistent with their moderate sili
ate 
omposition, but run-up times more typi
al of low sili
a systems, i.e., shorter than expe
ted. The anomalouslyshort warning was ane
dotally noted for both systems as a 
ause for 
onsternation to lo
alobservatories (Soosalu et al, 2005; Prejean et al, 2008). We spe
ulate that in these systems, latestage evolution may have dropped the vis
osity resulting in relatively fast magma migrationto the surfa
e.3.4 Interpretation in terms of vis
osityTo interpret the observations, we �rst need to translate the data into a likely physi
al 
ontrollike vis
osity. In order to do this, we will use the most important 
ontrol on gross vis
osity,sili
a 
ontent, as a means to delineate the variations between eruptive systems. On
e thistranslation is 
omplete, we will then model the run-up time in terms of vis
ous pro
esses. Thetest of the model will be whether or not it predi
ts the observed ratio of run-up to vis
osityfor a reasonable set of model parameters. For repose time, we will not embark on a full-s
alemodel but will rather 
onne
t the data to previous observations and models of inter-eruptiveintervals.3.4.1 Vis
osity based on Sili
a 
ontentStarting from the petrologi
 information available, we 
al
ulate the vis
osity of magma for17 events in 
atalog using the Con�ow software pa
kage (Mastin & Ghiorso, 2000). Thenwe �nd a best-�t relationship between the vis
osity and the relative sili
a 
ontent assumingthat the log-vis
osity varies linearly with sili
a 
ontent. Finally, we use this �t to infer thevis
osity for all data in Table 3.1 from the sili
a 
ontent. Details about eruptions, magma
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ompositions and temperatures setting for Con�ow are in Table 3.2. For all eruptions we
hoose to use a melt 
omposition with 0 wt % of water owing to the la
k of information aboutthe magma melt water 
ontent. This dry vis
osity may be an overestimate by as mu
h asan order of magnitude. Sin
e we are fo
using on the gross variations of vis
osity asso
iatedwith sili
a 
ontent, this assumption will need to su�
e. In the pro
ess of inferring vis
osity,we are negle
ting several other signi�
ant 
ontrols su
h as 
rystallinity and vesi
ularity. Thejusti�
ation for relying solely of sili
a 
ontent as a proxy is that sili
a 
ontent is the mostreliably measurable parameter for the dataset and thus allows us to generate a reasonablyuniform approximation. Furthermore, sin
e eruptive temperature and sili
a 
ontent 
o-vary,regressing with respe
t to sili
a 
ontent 
aptures the �rst-order vis
osity signal robustly. Theresults for the linear best �t are in Figure 3.2. Again, we perform the F-test on the slope ofthe regression under the null hypotheses that the slope is equal to zero, and we reje
t withP-value<0.01. As stated before, we use the regression line to estimate the vis
osity for all 54events in the 
atalog from their SiO2 
ontent. This result is similar to Hulme (1976). Theresultant vis
osity for all events varies over 7 orders of magnitude from 101 to 108 Pa-s (Table3.2). The 
al
ulated vis
osity 
an now be used to study the 
ompatibility of a simple physi
almodel and the data. Performing the translation between sili
a 
ontent and inferred vis
osityleads to Figure 3.3. Here the trends of in
reasing run-up and repose time with in
reasingsili
a 
ontent be
ome 
learly tied to in
reasing vis
osity. The run-up time in se
onds is onthe order of 10−4 to 103 times the vis
osity in Pa-s (or time in days is 10−9 to 10−2 timesvis
osity). The repose time in se
onds is 101 to 105 times the vis
osity in Pa-s (or time in daysis 10−4 to 10 times the vis
osity). We do not further quantify the 
orrelation between reposetime and run-up time with respe
t to vis
osity simply be
ause we will obtain the same resultdis
ussed for the 
orrelation with sili
a 
ontent. Therefore, we will pro
eed to investigatephysi
al models for the 
ontrol of vis
osity on both times.3.4.2 Model for Run-up TimesWe de�ned run-up time as a proxy for the time ne
essary for magma to travel from the magma
hamber to the surfa
e. We now model this pro
ess as a dike intrusion event. We will predi
tdike propagation time (and hen
e run-up time) as a fun
tion of vis
osity by 
onsidering themovement of a pressure-driven, magma-�lled 
ra
k. The observed run-up time to vis
osity



106 The Correlation Between Run-Up and Repose Times of Vol
ani
 Eruptionsratio α = trun−up/η is between 10−4 Pa−1 and 103 Pa−1, with mean value approximately equalto 10 Pa−1 . The mean value a is 
al
ulated as the mean ratio of the run-up time and thevis
osity in logarithmi
 spa
e. We use here the arithmeti
 mean of logarithm of run-up's andvis
osities be
ause these quantities vary over seven order of magnitude. The test of the modelwill be whether or not we 
an su

essfully predi
t this mean value for realisti
 parameters. Thedike will be modeled as a 2-D planar pressure-driven 
ra
k with ellipti
al shape and minoraxis w mu
h smaller than the major axis and height L, propagating in an elasti
 mediumsubje
ted to a regional stress (Rubin, 1995). By analyzing the Poiseuille �ow for a vis
ous�uid in a ellipti
al 
ra
k where the perturbation to the host ro
k stresses and the displa
ementdue to the dike opening depend only upon the di�eren
e between internal magma pressureand the ambient 
ompressive stress, Rubin (1995) 
al
ulates the velo
ity of the dike (Rubin,1995). The order of magnitude dike propagation velo
ity under a linear pressure gradient
p0/L, assuming a laminar �ow in the height dire
tion, is given by:

u =
1

3
(

p3
0

M2
)L (3.1)where η is the vis
osity, p0 is the magma pressure at the dike entran
e, M is the elasti
sti�ness, L is the dike height and w = (p3

0/M
2)L is the half dike thi
kness (see Rubin, 1995).The time ne
essary for as
ent from the magma 
hamber to the surfa
e is the propagationtime of a dike with height L equal to the depth of magma 
hamber below the surfa
e (Figure3.4). Therefore,

trun−up =
L

u
(3.2)Combining equation (3.1) and (3.2) we 
an evaluate the run-up time in terms of thevis
osity

α =
trun−up

η
=

3M2

p3
o

∼ 10Pa−1 (3.3)when the pressure is p0 = 6 MPa and the elasti
 sti�ness is M = 3 × 1010Pa. For thesereasonable parameters, the result is identi
al to the mean value of the observations. At thispoint the run-up times seem to be 
ompatible with the dynami
s of magma as
ent, eventhough we are using a very simple model.



3.4 Interpretation in terms of vis
osity 1073.4.3 Model for Repose TimesBetween eruptions, the magma 
hamber is re
harged by a series of intrusions from depth.The speed of ea
h individual intrusion is again related to vis
osity through some 
ombinationof diking, diapirism and porous media �ow (Annen et al 2006; Karlstorm et al, 2009). Inall of these pro
esses, re
harge rate is inversely proportional to vis
osity, therefore the highersili
a systems are expe
ted to take longer to �ll a magma 
hamber and a

umulate su�
ientoverpressure for an eruption. Studies of the duration of magma transfer in the 
rust based onuranium-series disequilibria show that magma di�erentiation time (i.e. 
ooling and 
rystal-liquid separation) is a fun
tion of sili
a 
ontent with high sili
a magma having greater intervalsstorage in 
rustal magma reservoir than low sili
a magma (Reid, 2003). Storage time from
rystal ages for basalti
 system are generally longer or equal to repose times; for higher sili
asystems the storage times are 
omparable or slightly shorter than repose times (White etal, 2006). A 
omplete model of magma 
hamber re
harge pro
esses is beyond the s
ope ofthis paper. One simple 
on
eptualization of magma reservoir is a storage system to whi
hmass enters with a parti
ular rate Qi and is extra
ted at parti
ular rate Qe. In su
h 
aseswhen input and output are equal, i.e. Qi = Qe, it may attain quasi-steady-state 
onditionand the magma residen
e time 
ould be de�ned as V xQ−1
e (Reid, 2003). Only fewer than30% or likely the 10% of the sub-aerial vol
anoes approximate these 
onditions (Pyle, 1992).For other vol
anoes eruption is not the only output of magma reservoir: there is also sub-surfa
e magma solidi�
ation as plutonism. In these non-steady-state 
ases, Qi ≤ Qe and therelationship between residen
e times and volumes is only approximate (Reid, 2003).Here, we simply show that the observed repose time trend is 
onsistent with re
harge ratesinferred by other means and thus appears to be re�e
ting the dynami
s of deep 
rustal magma�ow. We 
an make this 
onne
tion by 
onverting the repose time information into vol
ani
eruption extrusion rates, whi
h is a quantity previously studied. The repose time is related tothe extrusion rate Qe by

Qe = V/trepose (3.4)where V is the volume of an individual eruption. From the information in Table 3.1, theaverage Qe for the basalti
 vol
anoes is (3.8 ± 0.1) × 10−2Km3/yr , for basalti
 andesites is
(3.7±0.9)×10−2Km3/yr for andesites is (7.6±2.0)×10−3Km3/yr and da
ites is (5.1±1.0)×

10−3Km3/yr . Errors for extrusion rate are 
al
ulated using the error propagation formula



108 The Correlation Between Run-Up and Repose Times of Vol
ani
 Eruptionsassuming a relative error for repose times and volumes equal to 1% and 25% respe
tively.White et al (2006) inferred values for the output rate for a wide 
lass of vol
anism world-wide grouping vol
anoes in only three 
lass: basalti
s, andesites and rhyolites. For those
lass of vol
anoes they 
al
ulate average extrusion rates equal to (2.6 ± 1.0) × 10−2km3/yr,
(2.3±0.8)×10−3km3/yr and (4.0±1.4)×10−3km3/yr, respe
tively. The average output rateshere 
al
ulated are 
ompatible within the error bars those presented by White et al (2006) ex-
ept for the the output rate of andesite vol
anoes (Figure 3.5). The mean values are somewhathigher in this study. The dis
repan
y may in part be due to a di�eren
e in dataset de�nitions.White et al (2006) de�ned �repose time� as the duration between 
hara
teristi
 sized eruptionswhile here we study the interval between eruptions of any size and de�ne Qe based on thevolume erupted after the repose interval. Despite the di�eren
e in absolute values, Figure3.5 in both datasets shows a de
reasing trend with sili
a 
ontent. This trend is 
ompatiblewith the fa
t that high sili
a systems show longer repose times 
ompared with basalti
 ones.As a �rst order approximation, it should be seen as the role played by the vis
osity in themagma reservoir re
harging pro
ess (Reid, 2003). Finally this simple 
omparison highlightshow the low sili
a systems take shorter time to re�ll the magma reservoir than high sili
asystem, assuming the output rate as a rough measure of the magma re
harge rate. For lowsili
i
 vol
anoes with relatively low vis
osity the re
harge rate is higher; high sili
a systemsshow very low re
harge rate 
ompatible with their higher vis
osity.3.5 Con
lusions and Impli
ations for Eruption Fore
astsIn this work we show the interrelationship between repose time, run-up time and vis
osity.The data presented suggest a strong positive 
orrelation between repose time and run-up timefor all 
lasses of magma 
omposition vol
anoes. In addition, both times seem to 
orrelatewith sili
a 
ontent and, therefore with gross variations in magma vis
osity. Using extremelysimpli�ed models of magma as
ent immediately before an eruption, we su

essfully mat
hthe observed dependen
ies of the run-up time times on vis
osity. Propagation of a single,pressure-balan
ed dike from the 
hamber is 
onsistent with the run-up time data. Usingthe relationships between run-up and repose time observed here provides a way to design apredi
tion window appropriate to a parti
ular magmati
 system. For instan
e, if unrest beginson a low sili
a system with short quies
ent period, one should expe
t an eruption to o

ur



3.5 Con
lusions and Impli
ations for Eruption Fore
asts 109within hours to days, if it is going to happen. On the other hand, for a high sili
a system thathas experien
ed a very long quies
ent time, an alert period should remain open for a mu
hlonger period of time from days to years.
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Tables 115Vol
ano Magma Run-up Repose time VolumeSiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3℄HHMMSS HHMMSS1 AUGUSTINE Andesite 2005-11-17 00:00:00 2006-01-11 00:00:00(AU) 2006 60.001% 1986-03-27 00:00:00 2006-01-11 00:00:002 BEZYMIANNY andesite/da
ite 1955-09-29 00:00:00 950-01-15 00:00:00* t:2800(Bz) 1956 59.90% 1956-03-30 00:00:00 1956-03-30 00:00:003 EL CHICHON Andesite 1981-01-15 00:00:002,** 1432-01-01 00:00:00 t:2300(EC) 1982 55.88% 1982-03-28 00:00:00 1982-03-28 00:00:00(∼550 years)4 GALERAS andesite/da
ite 1988-06-15 00:00:00** 1936-08-27 00:00:00(Ga) 1992 59.40% 1991-10-09 00:00:00 1991-10-09 00:00:005 GRIMSVOTN basalti
/andesite 2004-10-31 21:00:00 1998-12-18 00:00:00(Gr) 2004 50.003% 2004-11-01 00:00:00 2004-11-01 00:00:00(3 hour) 46 GUAGUA PICHINCHA da
ite 1998-09-15 00:00:00 5 1660-11-27 00:00:00 l:> 61999 (GP) 64.50% 1999-09-26 00:00:00 1999-09-26 00:00:007 HEKLA basalti
 andesite 1980-08-16 23:35:00 1970-05-05 00:00:00 l: 200(Hk1) 1980 54.90% 1980-08-17 00:00:00 1980-08-17 00:00:00 t: 70(25 min)8 HEKLA basalti
 andesite 1981-04-16 23:37:00 1980-08-17 00:00:00 l:120(Hk2) 1981 55.40% 1981-04-17 00:00:00 1981-04-09 00:00:00 t: 60(23 min)9 HEKLA basalti
 andesite 1991-01-16 23:30:00 1981-04-09 00:00:00 l: 150(Hk3) 1991 54.70% 1991-01-17 00:00:00 1991-01-17 00:00:00 t: 20(30 min)10 HEKLA basalti
 andesite 2000-02-25 22:41:00 1991-01-17 00:00:00 l:286(Hk4) 2000 55.00% 2000-02-26 00:00:00 2000-02-26 00:00:00 t: 10(79 min)11 MAUNA LOA basalt 1974-08-15 00:00:00** 1950-06-01 00:00:00 l:3(ML1) 1975 52.04% 1975-07-06 00:00:00 1975-07-06 00:00:0012 MAUNA LOA Basalt 1984-03-24 21:30:00 1975-07-06 00:00:00 l: 220(ML2) 1985 51.37% 1984-03-25 00:00:00 1984-03-25 00:00:00(∼2 h 30m )13 MIYAKEJIMA basalti
 andesite 2000-06-26 00:00:00 1983-10-03 00:00:00 t:9.3(My) 2000 54.00% 2000-06-27 00:00:00 2000-06-27 00:00:00
1Based on 1986 eruption where range of SiO2 is 56-64%wt2From Yokoyama [1988℄3From BGVN and Sigmarsson et al 2000 for previous eruption in 1998.4Swarm 3 hours before eruption, probably in
reasing seismi
ity from 5-7 am Nov 1(from BGVN 29:10)5From Gar
ia et al (2007), onset is mid-September



116 TablesVol
ano Magma Run-up Repose time VolumeSiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3℄HHMMSS HHMMSS14 Mt. S. HELENS Da
ite 1980-03-20 00:00:00 1850-03-15 00:00:00 6 l: 74(MSH1)1980 62.00% 1980-05-18 00:00:00 1980-05-18 00:00:00 t:120015 Mt. S.HELENS Da
ite 2004-09-23 00:00:00 1980-05-18 00:00:00 l:93(MSH2) 2004 64.85% 2004-10-01 00:00:00 2004-10-01 00:00:0016 Mt. SPURR Andesite 1991-08-15 00:00:00** 1953-07-09 00:00:00 t: 150(MSp) 1992 56.00% 1992-06-27 00:00:00 1992-06-27 00:00:0017 OKMOK Basalti
 andesite7 2008-07-12 19:00:00 1997-02-11 00:00:00(Ok) 2008 56.00% 2008-07-12 19:43:008 2008-07-12 19:43:00( 43 minutes)18 PAVLOF basalti
 andesite 1996-09-13 00:00:00 1986-04-16 00:00:00(Pv1) 1996 53.009% 1996-09-16 00:00:00 1996-09-16 00:00:0019 PAVLOF basalti
 andesite 2007-08-14 00:00:00 1996-09-16 00:00:00(Pv1) 2007 53.00% 2007-08-15 00:00:00 2007-08-15 00:00:0020 PINATUBO Da
ite 1991-03-15 00:00:00** 1491-01-01 00:00:00 t:(1.1±0.5)(Pi) 1991 64.00% 1991-06-07 00:00:00 1991-06-07 00:00:00 x104( 500years) l: 421 PITON Basalt 1983-12-03 21:40:00 1981-02-03 00:00:00 l:8de la FOURNAISE 48.74% 1983-12-04 00:00:00 1983-12-04 00:00:00(PF1) (∼ 3 hr)22 PITON Basalt 1983-12-03 23:00:00 1983-12-04 00:00:00 l: 1de la FOURNAISE 47.78% 1983-12-03 00:00:00 1985-06-14 00:00:00(PF2) (∼ 1 hrs)23 PITON basalt 1985-08-13 21:23:00 1985-06-14 00:00:00 l:7de la FOURNAISE 47.78% 1985-06-14 00:00:00 1985-08-05 00:00:00(PF3) (2 h 37 min)24 PITON Basalt 1985-09-05 22:48:00 1985-08-05 00:00:00 l:14de la FOURNAISE 47.78% 1985-09-05 00:00:00 1985-09-06 00:00:00(PF4) (1h 12 min)25 PITON basalt 1985-11-30 23:43:00 1985-09-06 00:00:00 l: 0.7de la FOURNAISE 47.78% 1985-12-01 00:00:00 1985-12-01 00:00:00(PF5) (17 min)26 PITON Basalt 1985-12-27 23:46:00 1985-12-01 00:00:00 l: 7de la FOURNAISE 47.78% 1985-12-28 00:00:00 1985-12-28 00:00:00(PF6) (14 min)
6Data taken from www.vol
ano.si.edu7Personal 
ommuni
ation Jessi
a Larsen (2009), Geophysi
al Institute, Fairbanks, AK8Real onset time for run-up is known (see 
aption)9Magma 
omposition not available for 1996 eruption, so used the 2007 magma 
omposition



Tables 117Vol
ano Magma Run-up Repose time VolumeSiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3℄HHMMSS HHMMSS27 PITON Basalt 17-03-1986 14:36:00 1985-12-28 00:00:00 l: 14de la FOURNAISE 47.78% 1986-03-18 00:00:00 1986-03-18 00:00:00(PF7) (9h 24 min)28 PITON basalt 1987-07-18 21:47:00 1987-06-10 00:00:00 l: 0.8de la FOURNAISE 47.78% 1987-07-19 00:00:00 1987-07-19 00:00:00(PF8) (2 h 13 min)29 PITON Basalt 1987-11-29 22:30:00 1987-11-06 00:00:00 l: 10de la FOURNAISE 47.78% 1987-11-30 00:00:00 1987-11-30 00:00:00(PF9) (1h30)30 PITON basalt 1988-02-06 21:55:00 1987-11-30 00:00:00 l:8de la FOURNAISE 47.78% 1988-02-07 00:00:00 1988-02-07 00:00:00(PF10) (2 h 05 min)31 PITON basalt 1988-05-17 23:29:00 1988-02-07 00:00:00 l: 15de la FOURNAISE 47.78% 1988-05-18 00:00:00 1988-05-18 00:00:00(PF11) (31 min)32 PITON basalt 1988-08-30 21:35:00 1988-05-18 00:00:00 l: 7de la FOURNAISE 47.78% 1988-08-31 00:00:00 1988-08-31 00:00:00(PF12) (2 h 25 min)33 PITON basalt 1988-12-13 19:29:00 1988-08-31 00:00:00 l: 8de la FOURNAISE 47.78% 1988-12-14 00:00:00 1988-12-14 00:00:00(PF13) (4h 31 min)34 PITON basalt 1990-01-17 23:13:00 1988-12-14 00:00:00 l: 0.5de la FOURNAISE 47.78% 1990-01-18 00:00:00 1990-01-18 00:00:00(PF14) (47 min)35 PITON basalt 1990-04-17 17:15:00 1990-01-18 00:00:00 l: 8de la FOURNAISE 47.78% 1990-04-18 00:00:00 1990-04-18 00:00:00(PF15) 6h 45 min36 PITON basalt 1991-07-17 23:08:00 1990-04-18 00:00:00 l: 2.8de la FOURNAISE 47.78% 1991-07-18 00:00:00 1991-07-18 00:00:00(PF16) (52 min)37 PITON basalt 1992-08-26 23:03:00 1991-06-18 00:00:00 l: 5.5de la FOURNAISE 47.78% 1992-08-27 00:00:00 1992-08-27 00:00:00(PF17) 57 min38 PITON basalt 1998-03-07 12:00:00 1992-08-27 00:00:00 l:60de la FOURNAISE 48.74% 1998-03-09 00:00:00 1998-03-09 00:00:00(PF18) ( 36 h)39 POPOCATEPETL andesite/da
ite 1990-06-03 00:00:00 1919-02-19 00:00:00 l: > 28(Pp) 1996 62.41% 1996-03-01 00:00:00 1996-03-01 00:00:001010Onset of dome extrusion, no information on previous juvenile material



118 TablesVol
ano Magma Run-up Repose time VolumeSiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3℄HHMMSS HHMMSS40 RABAUL andesite/da
ite 1994-09-17 21:00:00 1943-12-23 00:00:00 l: 0.4(Rb1) 1994 61.66% 1994-09-19 00:00:00 1994-09-19 00:00:00(27hours)41 RABAUL andesite/da
ite 1995-11-27 00:00:00 1994-09-19 00:00:00 l: 4.5±0.5(Rb2) 1995 61.40% 1995-11-28 00:00:00 1995-11-28 00:00:00(24 hours)42 REDOUBT Andesite 1989-12-13 01:00:00 1967-12-06 00:00:00 l: 88(Rd) 1989 61.0011% 1989-12-14 00:00:00 1989-12-14 00:00:00 t: 210(∼ 23h)43 RUAPEHU Andesite 1995-04-15 00:00:0012 1977-07-16 00:00:00 t: 30±20(Rh1) 1995 58.50% 1995-09-17 00:00:00 1995-09-17 00:00:0044 RUAPEHU Andesite 1996-06-14 08:00:00 1995-09-17 00:00:00 t:4(Rh2) 1996 57.47 % 1996-06-16 00:00:00 1996-06-16 00:00:00(40 hours)45 SHISHALDIN Basalt 1998-06-15 00:00:00** 1995-12-23 00:00:00 l: 14(Shis) 1999 51.94% 1999-04-17 00:00:00 1999-04-17 00:00:0046 SHIVELUCH andesite/da
ite 1964-02-24 00:00:00 1944-11-05 00:00:00 t:750±50(Shiv) 1964 60.00% 1964-11-11 00:00:00 1964-11-11 00:00:0047 SOUFRIERE Andesite 1994-06-15 00:00:00 13 1650-01-15 00:00:00* l:1.2 x 102HILLS 1995 (SHV) 60.02% 1995-09-25 00:00:00 1995-09-25 00:00:0048 TOKACHI andesite 1962-05-01 00:00:0014 1924-05-24 00:00:00 t: 72(Tk2) 1962 52.78% 1962-06-30 00:00:00 1962-06-30 00:00:0049 TOKACHI Andesite 1988-09-15 00:00:0015 1962-06-30 00:00:00 t: 0.75(Tk1) 1988 53.15% 1988-12-19 00:00:00 1988-12-19 01:00:0050 TUNGURAHUA andesite 1999-05-15 00:00:00 1916-03-03 00:00:00(Tg) 1999 58.58% 1999-10-15 00:00:00 16 1999-10-15 00:00:0051 UNZEN da
ite 1989-11-15** 00:00:00 1792-02-10 00:00:00 l:150(Uz) 1990 65.31% 1991-02-12 00:00:00 1991-02-12 00:00:00 t:>4.752 USU da
ite/rhyolite 1943-12-28 00:00:00 1853-03-06 00:00:00 l: 70?1943 (Us1) 70.24% 1944-08-15 00:00:00 1944-08-15 00:00:00 17 t:411Range of SiO2 
ontent is 58.5-64%wt12In Christenson [2000℄ the onset is not 
lear, but from www.vol
ano.si.edu BGVN(20:05) onset mid April13from Kokelaar 2002, mid June, 1995-07-18 beginning of phreati
 a
tivity, poor information from seismi
itybefore.14from Yokoyama, 196415problemati
 onset run up time, 
hoose mid September, but in
rease seismi
ity started in july 88 fromOkada et al.,199016onset of both run up and repose time are from www.vol
ano.si.edu17from Showa-Shinzan diary Aug, 17, 1944 with some ambiguity, so 
hose 08/15



Tables 119Vol
ano Magma Run-up Repose time VolumeSiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3℄HHMMSS HHMMSS53 USU da
ite 1977-08-05 16:00:00 1944-08-15 00:00:00 t:1001977 (Us2) 69.65% 1977-08-07 00:00:00 1977-08-07 00:00:00(32 hrs)54 USU da
ite 2000-03-27 08:00:00 18 1977-08-07 00:00:002000 (Us3) 68.89% 2000-03-31 13:10:00 2000-03-31 00:00:00Table 3.1: Data set of run-up times, repose times, sili
a 
ontent and volume erupted. For someeruptions the run-up time duration is also bra
keted together with the onset date. In those
ases we only found the spe
i�
ation of the duration of the pre
ursory a
tivity and not thepre
ise start time. The start date for those eruptions is a 
onvention that allows us to usea homogeneous notation for all event and easily 
onvert into Julian days. In nearly all 
asesthe eruption start point is assumed to be at 00:00:00. The ex
eptions are Usu 2000 eruptionand Okmok 2008 eruption where the real onset time for both pre
ursory a
tivity and eruptionstart are known. When eruptions are marked with * this means that month and day of onsetare set as 01-15 by 
onvention in absen
e of other information, while those marked with **,day of onset is set as 15th day of month by 
onvention in absen
e of other information. Involume 
olumn l means lava and t tephra. The referen
es list is given below with the samealphabeti
al order as in this table.

18real onset times



120 TablesVol
ano SiO2 T Crystal Main 
rystal Vis
osity [Pa s℄wt % [0C℄ volume % of melt phase (melt + 
rystal)Toka
hi 1962 52.78 1000 48 Plagio
lase 7.784 x 105Toka
hi 1988 53.15 1000 42 Plagio
lase 2.981 x 105Piton de la 48.74 1200 22 Olivine 6.707 x 101Fournaise 1983Piton de la 47.78 1200 12 Olivine 2.100 x 101Fournaise 1986Piton de la 48.74 1200 20 Olivine 6.795 x 101Fournaise 1998El Chi
hon 55.88 850 53 Plagio
lase 5.366 x 107Galeras 59.90 900 50 Plagio
lase 2.718 x 107Mauna Loa 1975 52.04 1200 20 Olivine 1.321 x 102Mauna Loa 1984 51.37 1200 20 Olivine 1.008 x 102Popo
atepetl 62.41 900 39 Plagio
lase 3.650 x 106Usu 1943 70.24 900 13 Plagio
lase 4.914 x 107Usu 1977 69.65 900 4 Plagio
lase 2.074 x 107Usu 2000 68.89 900 4 Plagio
lase 1.769 x 107Hekla 1970 54.90 1100 10 Plagio
lase 2.111 x 102Hekla 2000 55.00 1100 10 Plagio
lase 4.475 x 103Guagua Pi
hin
ha 65.79 900 10 Plagio
lase 4.204 x 106Soufriere Hills 60.02 900 40 Plagio
lase 4.042 x 106Table 3.2: Data used to 
al
ulate the vis
osity, last 
olumn on the right using the softwareprogram Con�ow (Mastin and Ghiorso, 2000). For the melt 
omposition used as input,please refers to referen
e list of Table 1. Pressure is always 
hosen equal to 26 MPa andthe melt water 
ontent is always zero. The value of vis
osity refers to melt + 
rystal.
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Figure 3.1: Repose time versus run-up time data. The error asso
iate with the slope of theregression is equal to 0.3 and with the inter
ept is 0.1. Labels of individual points 
orrespondto ea
h eruption do
umented in Table 1. Magma 
omposition is based on the Le Bas et al(1986) 
lassi�
ation.
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Figure 3.2: Regression analysis to infer an empiri
al relationship between sili
a 
ontent and vis-
osity. Vis
osity is 
al
ulated using Con�ow with reported 
ompositional information (Mastin& Ghiorso, 2000). Please refer to Table 2 for more details.
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Figure 3.3: Repose time versus run-up time with vis
osity 
al
ulated using the regression linein Figure 2 for ea
h eruption.
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Figure 3.4: S
hemati
 illustration of the physi
al model used in the text. Qi is the magmasupply rate. For more details, please refer to the text.

Figure 3.5: Average extrusion rate Qe, red ones, are 
al
ulated using repose times and volumesin Table 1 and 
ompared with those from White et al (2006), blue ones. The Qe's are 
al
ulatefor di�erent 
lass of magma 
omposition. For more detail please refer to the text.



Con
lusions
In this dissertation we presented the three proje
t developed during my PhD studies. Wehave 
arried out two time predi
table models embedded in a hierar
hi
al Bayesian stru
ture(BH_TPM and BH_TPMII), to des
ribe the behavior of eruptive 
atalog of open 
onduitvol
anoes. The use of a Bayesian stru
ture allows to expli
itly and formally in
lude in theanalysis any kind of un
ertainty (relative to data, models, and parameters). While in thelast 
hapter we have presented the inter-relationship between repose time, run-up time andvis
osity.We have applied the BH_TPM to Kilauea eruptive 
atalog from 1923 to 1983 AD. Theresults have shown that interevent times depend on the previous erupted volume, as in aGeneralized Time Predi
table Model (Sandri et al. 2005; Marzo

hi & Za

arelli 2006). Themodel has shown a reasonable �t with the data observed at Kilauea vol
ano, although itwas not able to 
apture all the features and variability of the real 
atalog. We have foundalso that the Kilauea vol
ano has a weak time predi
table eruptive behavior. However, thesedis
repan
ies do not seem to a�e
t the fore
asting 
apability of BH_TPM, that remainssuperior to the fore
asting 
apability of a stationary Poisson model, a Log-Normal model andGeneralized Time Predi
able Model.In the se
ond 
hapter we have 
arry out, as improvement of the BH_TPM, a new BayesianHierar
hi
al model to test time predi
tability, the BH_TPMII. We have applied the modelto Kilauea eruptive 
atalog from 1923 to 1983 AD and to Mount Etna �ank eruptions from1607 to 2008 AD. The results have shown both vol
anoes having time predi
table eruptivebehavior. The model have shown a good �t with the observed data for both vol
anoes andis also able to 
apture extreme values as a tail behavior of the distributions. In addition, theBH_TPMII have improved the data �tting 
ompared with those of BH_TPM. The fore
astsobtained by BH_TPM II are superior to those provided by other statisti
al models for both



138 Con
lusionvol
anoes. In parti
ular we have improved the fore
ast performan
e 
ompared with those ofBH_TPM whi
h 
orroborate the hypotheses of building up the present model.The numeri
al values of the time predi
table model parameters, inferred in both models,suggest the amount of the erupted volume 
ould 
hange the dynami
s of the magma 
hamberre�lling pro
ess during the repose period. This is an important feature that should be takeninto a

ount in modeling the magma 
hamber re
harging pro
ess for both Kilauea and MtEtna vol
anoes.Both BH_TPM and BH_TPMII have shown some limits in fore
asting eruptions afterlong quies
en
e periods 
ompared with a Poisson pro
ess. This feature 
ould be interpretedan additional 
omplexity for long interevent times 
ompared to the time predi
table eruptivebehavior. A possible explanation may be addressed in the transition between open 
onduitregime and 
losed 
onduit regime where the time predi
table assumption may fails (Marzo

hi& Za

arelli, 2006).Finally, in the last 
hapter looking at the inter-relationship between repose time, run-uptime and vis
osity, data have shown a strong positive 
orrelation between repose time andrun-up time for all 
lasses of magma 
omposition vol
anoes. In addition, both times reason-ably 
orrelated with sili
a 
ontent and, therefore with gross variations in magma vis
osity.Using extremely simpli�ed models of magma as
ent immediately before an eruption, we havesu

essfully mat
hed the observed dependen
ies of the run-up time times on vis
osity. Thispreliminary results for the relationships between run-up and repose time observed here pro-vides a way to design a predi
tion window appropriate to a parti
ular magmati
 system. Forinstan
e, if unrest begins on a low sili
a system with short quies
ent period, one should expe
tan eruption to o

ur within hours to days, if it is going to happen. On the other hand, fora high sili
a system that has experien
ed a very long quies
ent time, an alert period shouldremain open for a mu
h longer period of time from days to years.
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