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List of Figures
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IntrodutionIn this dissertation we present the three projets we have been involved during the threeyears of the PhD program in Geophysis at University of Bologna. The �rst two projets (inChapters 1 and 2) are losely related, one being the enhanement of the other. They fouson the development and arrying out of two Bayesian Hierarhial Models for foreastingvolani eruption of open onduit volanoes, with appliation to Kilauea volano, Hawaii,and Mount Etna volano, Siily. We have apitalized on the Bayesian methodology to testif these volanoes are ompatible with a time preditable eruptive model, and to implementa proedure for probabilisti foreast assessment. The third and last projet (in Chapter 3)onerns the two main observables time-sales of the dynamis of eruptive proesses, i.e. theinterevent time or repose time and the magma run-up time. We have investigated the inter-relationship of these two quantities onsidering 26 di�erent volanoes around the world relativeto 54 di�erent eruptions with magma omposition ranging from basalti to daiti. The �nalgoal is to investigate the inter-relationship between the interevent time and repose time tryingto onstrain the role of magma visosity in ontrolling these two physial observables.In order to make the reading easier, we organize this introdution setion keeping separatedthe two main topis reported above. So we will introdue �rst the main argumentation on thephysial and statistial reasonings behind the two statistial models for eruption foreast. Inthe last part we will disuss widely of the last projet.One of the main hallenges in modern volanology is to foreast volani eruptions withthe aim of mitigating the risk assoiated with. The extreme omplexity, non linearity, limitedknowledge and the large number of degrees of freedom of a volani system make deterministipredition of the evolution of volani proesses rather impossible (e.g. Marzohi 1996; Sparks2003). Volani systems are intrinsially stohasti. In general, eruption foreasting involvestwo di�erent time sales: i) a short-term foreasting, mostly based on monitoring measuresobserved during an episode of unrest (e.g., Newhall & Hoblitt 2002, Marzohi et al 2008among others), and mostly related to a statistial desription of the past eruptive atalogs(e.g. Klein, 1982, Bebbington, 1996a among others). Here, we fous our attention only on thelong term foreast.



2 IntrodutionAn inisive and useful foreast should be made before the onset of a volani eruption,using the data available at that time. Models implemented with foreast purposes have totake into aount the possibility to provide �forward� foreasts and should avoid the ideaof a merely �retrospetive� �tting of the data available. Although several statistial modelshave been proposed in the past years aiming at the identi�ation of possible reurrene ororrelation in the volani time and/or volume data, none of those models has been arriedout with a robust proedure ating to test the foreast performane of the model (see forexample Klein 1982, Mulargia et al 1985, Bebbington & Lai 1996a and 1996b, Salvi et al,2006, among others). The idea behind these works was to make e�orts in best-�tting thedata disregarding to hek the foreast apability of the model. Here we want to takle thisproblem onstruting a model where the probabilisti foreast has to be one of the main goalsin a perspetive of probabilisti volani hazard assessment .In addition, a statistial model should inlude a physial eruptive proess and related in-formation, if there is any, to give a better understanding of the overall phenomenon. Theseonvitions lead us to use Bayesian methods in whih the posterior distribution for the param-eter vetor is a ompromise between the likelihood and the prior distribution (see for exampleGelman et al., 2000). While the likelihood quanti�es the probability of observation varyingthe parameters, the prior distribution, expresses in terms of probability density funtion somea priori belief about parameters. So, there is the possibility of assigning probability on thehypotheses using prior distributions together with the inferential use of the data as in a merelikelihood analysis. Therefore, probability distributions an be used to model and onstrainextra-sample information in the prior distribution settings. We believe this possibility ouldbe a suitable and helpful tool to get enhanement in foreasting geophysial system when theinformation provided by data are poor ( for small or heterogeneous dataset for instane).Here, following the aforementioned ideas, we will apply the Generalized Time Preditablemodel as presented by Sandri et al (2005) and Marzohi & Zaarelli (2006) for the eruptiveproess. The lassial Time Preditable Model (De La Cruz-Reyna, 1991, Burt et al 1994)assumes eruptions our when the volume in the storage system reahes a threshold valuebeing reharged at onstant rate from deeper rust. The size of eruptions is a random variablefollowing some kind of statistial distribution. Mathematially, this implies that the intereventtime, the time between two onseutive onset of eruption events (i.e. ri = ti+1− ti), is linearlydependent on the volume erupted during the ith eruption. Here we will use the generalizationof the lassial time preditable model, proposed by Sandri et al (2005), where the input ratein the magma shallow reservoir ould be variable in time, implying a power law relationshipbetween interevent time and volume erupted.In Sandri et al (2005), the authors have found that Mount Etna eruptions (both summit



Introdution 3and lateral events sine 1970 AD) follow a time preditable behavior. Marzohi & Zaarelli(2006) have also showed that the Kilauea volano eruptions are time preditable. Both models,however, do not take into aount the measurement errors for interevent times and volumes,sine volume data are a�eted by a large unertainty.As we will show in Chapter 1, using the Generalized Time Preditable model, we havebuilt up the model for foreasting volani eruption with appliation to Kilauea volano. Wehave used a Bayesian Hierarhial framework where variables and parameters of the proessare desribed used log-normal and inverse-gamma distributions with the aim of using theinformation relative to the measurement error. The hoies of this partiular type of distribu-tion, orroborated by goodness-of-�t tests, have ome out for tehnial reasons making easiernumerial simulations within the model. This model has showed problems in �tting data,while we have found the time-preditability of Kilauea volano and have made probabilistiforeast as we will show later in Chapter 1. Attributing this disrepany in data �tting withlog-normal distributions, we have hosen to develop a further version of hierarhial modelwith more appropriate and general probability density funtion for interevent times and vol-umes. This hoie was made in order to improve foreasts. We have hosen exponential-wisedistributions for interevent times and volumes aording with Klein (1982), Mulargia (1985),Marzohi (1996) and Bebbington & Lai (1996a) and (1996b). We will present this seondmodel in Chapter 2 with appliation to Kilauea eruption and Mount Etna �ank eruptions.This projet has been performed in ollaboration with prof Bruno Sansò at Dept. of AppliedMathematis and Statistis at University of California, Santa Cruz under the Maro Poloexhange program of the University of Bologna.Finally we will present in Chapter 3, the projet developed with prof. Emily Brodskyat the Dept. of Earth and Planetary Sienes at University of California, Santa Cruz. Theidea behind this exploratory work is that volanoes usually show signs of unrest before aneruption. The intensity of these signals during the pre-eruptive phase varies greatly. So,establishing physial ontrols on the duration of preursory ativity, i.e. run-up time, ouldimprove understanding of the dynamis of magma asent from a shallow magma reservoirto the surfae. We also foused on another observable indiative of eruption dynamis: theinterevent time or repose time, i.e., the time between magmati eruptions. For sake of larity,in Chapter 3 we will use repose time with the same meaning of interevent time. The reposetime ould be assoiated with the mehanism that reharges the magmati system. Both ofthese dynami quantities are strongly dependent on magma omposition and hene magmavisosity. In this preliminary work, we have investigated the inter-relationship between run-up time, repose time and visosity by olleting together a database of 54 eruptions from 26di�erent volanoes around the world. The data ranges from basalti to daiti systems, so we



4 Introdutionould investigate the gross in�uene of visosity by using the silia ontent as a proxy.This dissertation is organized as follows: in Chapter 1 we will present �Bayesian Hierar-hial Time Preditable Model for eruption ourrene: an appliation to Kilauea Volano� ,in Chapter 2 we will present �A new Bayesian Time-Preditable Model for Open Conduit Vol-anoes: The Case of Mt Etna and Kilauea�, in Chapter 3 we will introdue �The CorrelationBetween Run-Up and Repose Times of Volani Eruptions �. We will give referenes, tablesand �gures at the end of eah hapter, while the bibliography of this introdution setion willbe at the end of the dissertation.



Chapter 1Bayesian Hierarhial TimePreditable Model for eruptionourrene: an appliation to KilaueaVolano AbstratThe physial proesses responsible for volani eruptions are haraterized by a large numberof degrees of freedom, often non-linearly oupled. This extreme omplexity leads to an in-trinsi deterministi unpreditability of suh events that an be satisfatorily desribed by astohasti proess. Here, we address the long-term eruption foreasting of open onduit vola-noes through a Bayesian Hierarhial Modeling information in the atalog of past eruptions,suh as the time of ourrene and the erupted volumes. The aim of the model is twofold: 1)to get new insight about the physis of the proess, using the model to test some basi phys-ial hypotheses of the eruptive proess; 2) to build a stohasti model for long-term eruptionforeasting; this is the basi omponent of Probabilisti Volani Hazard Assessment that isused for rational land use planning and to design emergeny plans. We apply the model toKilauea eruption ourrenes and hek its feasibility to be inluded in Probabilisti VolaniHazard Assessment.1.1 IntrodutionThe extreme omplexity, non linearity, limited knowledge, and the large number of degrees offreedom of a volani system make deterministi predition of the evolution of volani pro-



6 Bayesian Hierarhial Time Preditable Model for eruption ourrene: anappliation to Kilauea Volanoesses impossible. Volani systems are intrinsially stohasti (e.g. Marzohi 1996; Sparks2003), and hazardous volani phenomena involve so many unertainties that a probabilistiapproah is pratially always needed (e.g. Newhall & Hoblitt 2002; Sparks 2003; Marzohiet al. 2004).In general, eruption foreasting an be takled in two di�erent ways, related to two di�erenttime sales: i) a short-term foreasting, mostly based on monitoring measures observed duringan episode of unrest (e.g., Marzohi et al. 2008); ii) a long-term foreasting, usually madeduring a quiet period of the volano, and mostly related to a statistial desription of the pasteruptive atalogs. Here, we fous our attention only on this seond issue.In a reent paper, Marzohi & Zaarelli (2006) found di�erent behavior for volanoeswith �open� onduit regime (i.e., volanoes with high frequeny of eruption and repose periodsless than few tens of years) ompared to those with �losed� onduit regime (i.e., volanoeswith periods of quiesene longer than 30-40 years). Aording to that paper, open onduitvolanoes tested there (i.e. Mt Etna, Kilauea volano) seem to follow a so-alled Time Pre-ditable Model, i.e. a model where the time to the next eruption depends on the size of the lasteruption (De La Cruz-Reyna, 1991, Burt et al. 1994). Closed onduit volanoes, tested byMarzohi & Zaarelli (2006) , onversely seem to follow mostly a Poisson distribution. Theseresults have been used to build general probabilisti models for volani hazard assessment ofopen and losed onduit systems.Di�erent methods have been presented in the past years aiming at the identi�ation ofpossible reurrene or orrelation in the volani time and/or volume data. Klein (1982) andBebbington & Lai (1996b) study the hanges in volani regimes looking at the mean rateof ourrene of the volani events. Sandri et al. (2005) apply a generalized form of timepreditable model to Mount Etna eruptions. De La Cruz-Reyna (1991) proposed a load-and-disharge model for eruptions in whih the time preditable model ould be seen as a partiularase. Bebbington (2008) presented a stohasti version of the general load-and-disharge modelalso inluding a way to take into aount of the history of the volano disharging behavior.In this paper the author studied the time preditability as a partiular ase of his modelwith appliation to Mount Etna and Mauna Loa and Kilauea data series. Finally a di�erenthierarhial approah has been presented by Bebbington (2007) using Hidden Markov Modelto study eruption ourrenes with appliation to Mount Etna �ank eruptions. This model isable to �nd any possible underlying volano ativity resulting in volani regime hanges.Here, our goal is to improve signi�antly the modeling of open onduit systems throughthe implementation of a Bayesian Hierarhial Time Preditable Model (hereafter BH_TPM)for eruption ourrene. The model is a formal generalization of the Time Preditable Modelin a full Bayesian framework. The Bayesian perspetive allows aounting for stohasti



1.2 Bayesian Hierarhial Model 7�utuations in eah parameter of the model and in eah reorded measurement (Wikle 2003).In this way, eah parameter of the model is desribed through a probability density funtionwhose posterior distribution is onditioned by the available data. The numerial solution isobtained via MCMC-Gibbs sampling (Gelman et al., 2000). The BH_TPM is then appliedto the eruption reord of Kilauea Volano sine 1923 published by the Hawaiian VolanoObservatory (see Table 1.1). The outomes for model variables and parameters show goodonvergene properties for all model parameters and errors.After desribing the model in detail, we fous our attention on some spei� issues: 1) todisuss the volanologial impliations of the model parameters obtained; 2) to verify if themodel desribes the data satisfatorily; 3) to ompare the foreasting apability of BH_TPMwith other models in the literature; i.e. Poisson model (Klein, 1982) and Log-Normal model(Bebbington & Lai, 1996b) and Generalized Time Preditable Model (Sandri et al., 2005). Wewould like to remark point 3) under a probabilisti foreast perspetive. As we will show laterin the text, we will use BH_TPM for foreasting purposes mimiking probabilisti eruptionforeasts using Kilauea volano dataset. In order to do this, we will use the �rst third part ofthe atalog as a learning phase for the model, and we will make probabilisti eruption foreaston the remaining part using a forward proedure disussed later in the text. This allows totest and use this model as a omponent of Probabilisti Volani Hazard Assessment (PVHA).1.2 Bayesian Hierarhial ModelThe formal ideas of hierarhial modelling arise from simple probability rules. Hierarhialmodelling is based on the simple fat that the joint distribution of a olletion of randomvariables an be deomposed into a series of onditional models (Wikle, 2002). That is, if X,
Y , and Z are random variables, we an write the joint distribution in terms of a fatorizationsuh as [X,Y,Z] = [Z|Y,X][Y |X][X]. We make use of the braket notation for probabilitydistribution in whih [Y ] refers to the distribution of Y and [Y |X] refers to the onditionaldistribution of Y given X. This simple formula is the basi idea of hierarhial thinking. Ingeneral it is easier to speify the distribution of the relevant onditional models than to workwith marginal distributions of variables involved in suh models. In this ase, the produt ofa series of relatively simple onditional models leads to a joint distribution that an be quiteompliated.In order to build the model, we follow the framework outlined by Wikle (2002; see alsoreferenes therein). The idea is to approah the problem by breaking it into three primarystages:� Data model : [data|process, parameters]



8 Bayesian Hierarhial Time Preditable Model for eruption ourrene: anappliation to Kilauea Volano� Proess model : [process|parameters]� Parameter model : [parameters]The �rst stage regards the observational proess or data model, whih spei�es the distributionof the observed data given the proess generating them and the parameters desribing it.The seond stage desribes the proess, onditional on its parameters. Finally, the thirdstage aounts for the unertainty in the parameters. Ultimately, we are interested in thedistribution of the proess and parameters updated by the data. We obtain the joint posteriordistribution for the proess and parameters using Bayes' rule:
[process, parameters|data] ∝ [data|process, parameters][process|parameters][parameters] (1.1)In order to make inferene about the proess and parameters governing the ourrene ofvolani eruptions for the ase of �open� onduit volano, we apply this simple approah. Inthe next subsetions we will illustrate eah stage that we have performed for our hierarhialmodel.1.2.1 Data modelThe dataset reported in Table 1.1 is taken from the Hawaiian Volano Observatory web site(http://hvo.wr.usgs.gov/kilauea/history/historytable.html). The full atalog starts from 1823but only the 42 volani events having ourred after 1922 are onsidered in our analysis,beause only this latter part of the atalog an be onsidered omplete in terms of ourrenetime and erupted volume data. Figure 1.1 reports the umulative number of events versus time,where the eruptive rate sine 1923 is approximately onstant exept for a major quieseneperiod around the 40's. The atalog reports the onset of eah eruption, the total volume ofmaterial ejeted (lava and tephra) and the interevent time. The volume of the 1924/05/10event is taken from http://www.volano.si.edu/ and is only the tephra volume. For moredetails regarding the de�nition of interevent times see Klein (1982). Sine the interevent timefollowing the last eruption annot be available, we have 41 pairs of data of interevent time (i.e.the time between the onset of ith and the onset of (i + 1)th eruptions) and volume erupted(in the ith eruption), that from now on we indiate with dri

and dvi
respetively.In testing the independene of data via orrelation funtion, the only signi�ant orrelation(P-value=0.06) appears between the volume and the subsequent interevent time. Thereforewe assume that eah pair of data (dri

,dvi
) is independent from the other pairs. In a Bayesianframework, the at of measurement does not lead simply to an observed value, but to a state ofinformation desribed by a distribution where the single measurement is a random realizationof this distribution.In this paper, we assume that the logarithm of the data, made dimensionless by two gaugeonstant (i.e. R̂ = 1day and V̂ = 1 × 106 m3), i.e. Dri

= ln(dri
/R̂) and Dvi

= ln(dvi
/V̂ ),



1.2 Bayesian Hierarhial Model 9are respetively random draws from normal distributions, with the means Ri = ln(ri/R̂) forthe interevent times and Vi = ln(vi/V̂ ) for the volumes, where ri's are the interevent timevariables and vi's are the volume variables. We test whether or not Dri
and Dvi

are normallydistributed using Anderson-Darling test (Anderson and Darling, 1952). The null hypothesisis that logarithm of the data omes from a normal distribution. We an not rejet the nullhypothesis of normality for Dri
and Dvi

with P-value=0.625 and P-value=0.715 respetively(Trujillo-Ortiz et al., 2007). We an onlude that normal distributions �t reasonably thelogarithm of the data.The variables ri and vi, and their natural logarithm, represent the variables of our model.The varianes of suh normal distributions are the data measurement errors for the intereventtimes σ2
Dri

and for the volumes σ2
Dvi

. In this view, eah single pair is:
Dri

∼ N(Ri, σ
2
Dri

) and Dvi
∼ N(Vi, σ

2
Dvi

) i = 1, . . . , 41where from now on N(a, b2) indiate a normal distribution with mean a and variane b2 andthe symbol ∼ means "is distributed as".In order to give appropriate varianes for Ri and Vi to eah distribution, we use the errorpropagation. We assume two di�erent values for measurement errors on volume data beforeand after 1960. Suh division arises by onsidering that, after 1960, the measurements weretaken by the Hawaiian Volano Observatory, and we assume that these measurements aremore aurate. Systemati and diret measurement of lava �ow or modern measurement us-ing satellite tehniques should give a more preise estimation of the volume erupted. Indiretmeasurement on historial lava �ow, inferred with geologial �eld methodology probably un-derestimates the real erupted volume (e.g. Behnke et al., 2005). This is the reason why weassume the relative error (∆vi/vi) equal to 25% for the volumes before 1960 and equal to15% for more reent data. For the interevent times we hoose an error measurement equal to
∆ri = 1day. Therefore, applying the error propagation rule, we get:

σDri
=

∂Ri

∂ri
∆ri =

∆ri

ri
i = 1, . . . , 41

σDvi
=

∂Vi

∂vi
∆vi =

∆vi

vi
= 0.25 i = 1, . . . , 13

σDvj
=

∂Vj

∂vj
∆vj =

∆vj

vj
= 0.15 j = 14, . . . , 41The error σDri

is oinident with the relative error on the interevent time, while σDvi
isindependent from the data value and error.At this point we are able to write the joint distributions for the data model, assuming



10 Bayesian Hierarhial Time Preditable Model for eruption ourrene: anappliation to Kilauea Volanoindependene among the pairs of data, as:
[Dr|R,σ2

Dr] =

41
∏

i=1

N(Ri, σ
2
Dri

) (1.2)
[Dv |V, σ2

Dv] =

41
∏

i=1

N(Vi, σ
2
Dvi

) (1.3)1.2.2 Proess modelBefore displaying our statistial onsiderations for the proess model, we have to introduethe underlying physial eruptive proess. We use a very simple stohasti proess to explainthe eruptive dynami proess. It is the Generalized Time-Preditable Model (GTPM, seeSandri et al. 2005) for volani eruptions, assuming that eruptions our when the volume inthe storage system reahes a threshold value, given that magma enters in the magma storagesystem with a variable rate and that the size of eruptions is a random variable, followingsome kind of statistial distribution. Under these assumptions, we have a generalized time-preditable system with longer/shorter interevent time following large/small volume outputeruptions. In fat, for suh a model, the time to the next eruption is determined by the timerequired for the magma entering the storage system to reah the eruptive level. In this viewthe more general form for a time-preditable model is a power law between the erupted volumeand the interevent time:
ri = cvb

i (1.4)that we want to linearize by logarithmi transformation. For this reason we need dimensionlessvariables and so we introdue two gauge onstants (i.e. R̂ and V̂ that are the same of previoussetion) in order to make ri and vi dimensionless. Therefore we hoose R̂ = 1day and
V̂ = 1 × 106 m3 and we de�ne:

r∗i =
ri

R̂
and v∗i =

vi

V̂that we introdue in the previous equation and we obtain:
r∗i = αv∗biwhere α = (cV̂ b)/R̂ is a new onstant. Now we an take the logarithm of this equation andwe have:

Ri = K + bVi (1.5)where K = ln α is a onstant and Ri = ln r∗i and Vi = ln v∗i . This dimensionless transformationdoes not in�uene the following numerial solutions, but it is only an algebrai solution tomake dimensionless the argument of the logarithms.



1.2 Bayesian Hierarhial Model 11In the last equation, if the parameter b is equal to unity we are in a lassial time preditablesystem (see De La Cruz Reyna 1991, Burt et al. 1994). If b is equal to 0 the system is nottime preditable. If b > 1 we have a non-linear relationship implying a longer interevent timeafter a large volume eruption ompared to a lassial time preditable system. If 0 < b < 1 westill have a non-linear relationship but for a big volume eruption it implies a shorter intereventtime ompared to a lassial time preditable system. Assuming this proess as a dynamieruptive behavior for the volano, we proeed to show our statistial onsideration about thispart of the hierarhial model implementation.In building up the proess model, we have to onnet the model variables (Ri and Vi) withthe physial model, i.e., with equation (1.5). Here, we assume that the Ri's are independentand eah of them is normally distributed, with mean given by the generalized time-preditablemodel and unknown variane representing the model error. Hene:
Ri ∼ N(bVi + K,σ2

R) i = 1, . . . , 41and for the all variables Ri the resulting joint distribution given the model parameters is:
[R|V, b,K, σ2

R] =
41
∏

i=1

N(bVi + K,σ2
R) (1.6)In order to assign the distribution for the volume variables (Vi) we have to exert a little e�ort.We do not have information about the real size distribution of Kilauea eruptions. However,aording to the Anderson and Darling test performed in the previous sub-setion, the setof volume data, i.e. Dvi

(i = 1, . . . , 41), is satisfatorily �tted by a log-normal distribution.Beause of this goodness-of-�t test, we assume that also the volume variables (i.e., vi) in theBH_TPM have a log-normal distribution. The logarithm of variables, i.e. Vi, are thereforenormally distributed with unknown mean µv and variane σ2
v , and for eah of them we anwrite:

Vi ∼ N(µv, σ
2
v) i = 1, . . . , 41and the joint distribution is:

[V |µv, σ
2
v ] =

41
∏

i=1

N(µv, σ
2
v) (1.7)In addition, we assume that the parameter µv has uniform non informative vague priordistribution. A non informative prior expresses vague or general information about a variable.Non informative priors an express objetive information (e.g., "the variable is positive")assigning equal probabilities to all possibilities within the de�ned domain (e.g., for all x > 0).The simplest ase of non informative vague prior distribution is the uniform distribution with



12 Bayesian Hierarhial Time Preditable Model for eruption ourrene: anappliation to Kilauea Volanounlimited domain (e.g., −∞ < x < +∞). In this text when we refer to non informative vagueprior distribution, we always use uniform distribution with unlimited domain, see Table 1.2.The distribution of variane parameters, i.e. σ2
R and σ2

v , are onstruted from inversegamma family, whih is the natural onjugate family for the normal distribution (see Gelmanet al., 2000). The property of onjugay is very useful in Bayesian prior to posterior analysis.The onjugay is formally de�ned in this way: for a given vetor of data y = y1, . . . , ynand a parameter vetor θ = θ1, . . . , θn, if Φ is a lass of likelihood [y | θ], and Ψ is a lassof prior distribution for θ, then the lass Ψ is onjugate for Φ if [θ | y] ∈ Ψ for all [y |

θ] ∈ Φ and [θ] ∈ Ψ where data and parameters are linked by Bayes' theorem, i.e. [θ |

y] ∝ [θ][y | θ]. In our ase, if we model the prior distribution for variane by an inversegamma distribution, the likelihood is normal (i.e. equation (1.6) and (1.7)), thus the posteriordistribution (for the variane) beomes an inverse gamma distribution.Therefore, the prior distributions for varianes are:
[σ2

R] = Γ−1(ασR
, βσR

)

[σ2
v ] = Γ−1(ασv , βσv )where Γ−1 indiates the inverse gamma distribution with mean µ = β(·)/(α(·) − 1) for α(·) > 1and variane s = β2

(·)/(α(·) − 1)2(α(·) − 2) for α(·) > 2, and ασR
and ασv are shape parametersand βσR

and βσv are sale parameters.1.2.3 Parameter modelIn a Bayesian perspetive, we have to assign a distribution for the parameters (b and K) fromequation (1.5), desribing the physial model. From a Bayesian point of view, and for reasonsof onjugay properties of the distributions used, we simply assign a normal distribution tothe parameters that we want to make inferene on. The means (µb and µk) and varianes (σband σk) of those distribution are alled hyperparameters. Hene we have:
[b|µb, σ

2
b ] = N(µb, σ

2
b ) (1.8)

[K|µk, σ
2
k] = N(µk, σ

2
k) (1.9)The prior distributions for the hyperparameters are assumed to be independent. We assumenon informative vague uniform prior distributions for the means (see Table 1.2), and theinverse-gamma prior distributions for the varianes; the latter are

[σb] = Γ−1(ασb
, βσb

)

[σK ] = Γ−1(ασK
, βσK

)



1.2 Bayesian Hierarhial Model 13where ασb
and ασK

are shape parameters and βσb
and βσK

are sale parameters (see previoussetion).1.2.4 Posterior distribution for variables and parametersIn Table 1.2 there is a summary of the all distributions assigned. The last step, now, isto alulate the joint posterior distribution as a produt of data model, proess model andparameters model. The posterior distribution is the proess and parameters distributionupdated by the observed data. Remembering equation (1.1) and the Bayes' rule, we have:
[R,V, b,K, µb.µk, µv, σ

2
R, σ2

v , σ
2
k, σ

2
b |Dr,Dv ] ∝ (1.10)

[Dr|R,σ2
Dr][Dv |V, σ2

Dv][R|V, b,K, σ2
R][V |µv, σ

2
v ]

[b|µb, σ
2
b ][K|µk, σ

2
k][µv][µb][µk][σ

2
v ][σ

2
b ][σ

2
k][σ

2
R]The relevant BH_TPM parameters that we want to simulate from equation (2.7) are theparameters of the physial model b and K, and the error σ2

R. Also, we want to simulate thevariables Ri and Vi, in order to ompare them with the observations. Finally we simulate µvand σ2
v for model hek purpose, that will be explained in the following setion. In order tosimulate these parameters and variables, we have to integrate the joint posterior distributiongiven by equation 2.7.We use a Monte Carlo integration using Markov Chain (MCMC), where the Markov Chainare onstruted using Gibbs sampler (Gilks et al. 1996 and referenes therein).The Gibbs sam-pling algorithm generates an instane from the distribution of eah variable in turn, onditionalon the urrent values of the other variables/parameters. Therefore Gibbs sampling works byiteratively drawing samples from the full onditional distribution of eah quantity of interest(i.e., variable or parameter); thus we alulate the full onditional distribution for every vari-able Ri and Vi, and every parameter b, K, σ2

R, µv and σ2
v . The analyti expression for eahfull onditional distribution alulated and used for sampling proedure is:

[R | rest] ∝ 41
∏

i=1

[N(Dri
| Ri, σ

2
Dri

)N(Ri | bVi + K , σ2
R)
]

∝N( 41
∑

i=1

Dri

σ2
Dri

+

41
∑

i=1

bVi + K

σ2
R

)

,

(

41
∑

i=1

1

σ2
Dri

+
1

σ2
R

)−1
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[V | rest] ∝ 41

∏

i=1

[N(Dvi
| Vi, σ

2
Dvi

)N(Ri | bVi + K,σ2
R)N (Vi | µv, σv)

]

∝ N( 41
∑

i=1

Dvi

σ2
Dvi

+

41
∑

i=1

b(Ri − K)

σ2
R

+
µv

σ2
v

)

,

(

41
∑

i=1

1

σ2
Dvi

+
1

σ2
v

+
1

σ2
R

)−1




[b | rest] ∝ 41
∏

i=1

[N (Ri | bVi + K,σ2
R

)]N (b | µb, σ
2
b

)

∝ N( 41
∑

i=1

(RiVi − KVi)

σ2
R

+
µb

σ2
b

)

,

(

41
∑

i=1

V 2
i

σ2
R

+
1

σ2
b

)−1




[K | rest] ∝ 41
∏

i=1

[N (Ri | bVi + K,σ2
R

)]N (K | µk, σ
2
k

)

∝ N(( 41
∑

i=1

(Ri − bVi)

σ2
R

+
µk

σ2
k

)

,

(

41

σ2
R

+
1

σ2
k

)−1
)

[µv | rest] ∝ 41
∏

i=1

[N(Vi | µv, σ
2
v)
]U (µv | −∞,+∞)

∝ N(( 41
∑

i=1

Vi

σ2
v

)

,

(

41

σ2
v

)−1
)

[σ2
R | rest] ∝ 41

∏

i=1

[N (Ri | bVi + K,σ2
R

)]

Γ−1
(

σ2
R | ασR

, βσR

)

∝ Γ−1

(

(

41

2
+ ασR

)

,

(

1

βσR

+

41
∑

i=1

(Ri − (bVi + K))2

2

))

[σ2
v | rest] ∝ 41

∏

i=1

[N(Vi | µv, σ
2
v)
]

Γ−1
(

σ2
v | ασv , βσv

)

∝ Γ−1

(

(

41

2
+ ασv

)

,

(

1

βσv

+

41
∑

i=1

(Vi − µv)
2

2

))



1.2 Bayesian Hierarhial Model 15where the symbol U(a, b) indiate a uniform distribution on the domain [a, b].To implement the Gibbs algorithm, we have to set the starting values for eah quantity ofinterest. The numerial solutions, obtained after 11000 iterations, exhibit good onvergeneproperties for all model variables and parameters. Figure 1.3 shows the onstruted MarkovChain using Monte Carlo integration for all values of BH_TPM. We disard the �rst 1000iterations as the burn-in phase. For readers are not familiar with MCMC simulations, the burn-in phase is the number of iterations or the time steps needed by hains to reah onvergene.After that burn-in phase, the onstruted hain an be onsidered stationary. In Figure 1.3eah hain onverges after very few iterations. Anyway, for sake of preision, we run eahhain longer than needed (i.e., 11000 time steps), disarding the �rst 1000 iterations as theburn-in phase (mainly beause the longer is the hain, the better is the approximation of thetarget stationary distribution, and moreover the Gibbs sampler simulation ode is very fastto run ). Hene the last 10000 Gibbs sampled time steps set up the posterior distributions forBH_TPM parameters and variables.In order to ensure the onvergene of eah hain, regardless of starting values and thenumber of time steps (i.e. iterations) used, we �nally alulate the Gelman and Rubin statistis(for a more detailed desription of this method see Gelman et al. 2000, 331-332). For thisreason we perform a number of di�erent parallel simulations with di�erent starting values,to hek that the stationary distributions obtained are not sensitive to the random hoie ofstarting values. We perform 10 parallel simulation of 15000 runs with di�erent starting valuesand we monitor the onvergene only for parameters b, K, σ2
r , µv and σ2

v . We use a highernumber of simulations to avoid slow onvergene problems related to extreme starting values.The Gelman and Rubin approah is substantially based on omparing di�erent simulatedsequenes by omputing the between-sequene (i.e. B) and within-sequene (i.e. W ) variane(using the same notation present in Gelman et al. 2000). For a general salar φij with
i = 1, . . . , n and j = 1, . . . , J , where n is the number of the simulations (i.e. 15000 in ourase) and J is the number of parallel sequenes (i.e. 10 in our ase), we ompute:

B =
n

J − 1

J
∑

j=1

(

φ.j − φ..

)2where φ.j = 1
n

∑n
i=1 φij is the mean of the j-th sequene and φ.. = 1

J

∑J
j=1 φ.j is the grand
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W =

1

J

J
∑

j=1

s2
jwhere s2

j = 1
n−1

∑n
i=1

(

φij − φ.j

)2 is the variane within sequene j.Hene we an estimate var(φ | data), the marginal posterior variane of the estimand, bya weighted average of W and B, namely:var(φ | data) =
n − 1

n
W +

1

n
BFor a �nite number of simulations n, the variane W should be an underestimate of var(φ |data) beause the individual sequenes do not over all the range of target distribution and,as a result, will have less variability; in the limit n → ∞, the expetation of W approahesvar(φ | data). Therefore the aim is to monitor onvergene by means of the fator

R =

√var(φ | data)
Wthat has to be lose to the unity. For the all parameters in our model, this R-fator estimandis in pratie equal to the unity. Therefore we have heked that the onstruted Markovhain for BH_TPM parameters are independent of the starting values, then we an use thelast 10000 sampling values as posterior distribution for the parameters b, K, σr, µv and σv.1.3 Parameters estimation and foreastingIn this setion we examine the results obtained via MCMC-Gibbs Sampling for the modelvariables and parameters. We explain the physial meaning of the simulated quantities andtheir reliability to reprodue observational data. We test the foreast apability of this modelompared with some appropriate models previously published in the literature.Before disussing the results obtained for Kilauea Volano, we test the BH_TPM and itsreliability by analyzing syntheti data. To this purpose, we generate a sample of 50 synthetivalues vi

synt from a log-normal distribution with zero mean and unit variane. By de�nitionof log-normal distribution, we have that Vsynt = log(vi
synt) are normally distributed. This setof 50 Vsynt are random draws from a normal distribution and they mimi a syntheti atalogof volume erupted. These syntheti volume data are substituted into the Time Preditableequation (1.5), setting di�erent values for the parameters b and K, in order to obtain a �purely"



1.3 Parameters estimation and foreasting 17time preditable atalog of syntheti interevent times Ri
synt. Then, we add a white noise ateah syntheti interevent time Ri

synt using the following equation:
Ri

synt = K + bV i
synt + εwhere ε ∼ N(0, 1) is a stohasti noise term.Thus we generate three di�erent syntheti data sets of Ri

synt and V i
synt eah one with adi�erent value of b, i.e. b = 0.5, b = 1 and b = 1.5, and the same value of K = 5, in order toreprodue three di�erent eruptive regimes ahievable with a Time Preditable equation (1.4),i.e. 0 < b < 1, b = 1 and b > 1. With this proedure we build up three syntheti data setsonsisting eah of 50 pairs of intervent times and volumes. The idea is to use them to test ourBH_TPM. Eventually, if the model is robust, we expet to �nd as outomes the same b and

K values used to obtain the syntheti interevent times Ri
synt for eah data sets. The resultsof this syntheti test show a good reproduibility of the model respet to the parameters usedgenerating the Rsynt's. In Figure 1.2 there are the BH_TPM simulations for the parameters

b, K and σ2
r when the syntheti interevent time Rsynt's are generated with b = 0.5 and K = 5.We obtain similar results in the other ases (i.e. b = 1 and b = 1.5); we do not show them toavoid redundany. It is even interesting in Figure 1.2 that the numerial value of the varianeof interevent times distribution of BH_TPM, i.e. σ2

r , is omparable with the noise term ε.Yet, we aknowledge that the three data sets do not ontain outliers, so there is a very smallvariability inside them. Finally, as the model seems to be robust, we apply it to a �real�dataset.1.3.1 Parameters estimationUsing the great �exibility of the implemented Markov Chain, we obtain the numerial valuesfor model variables and parameters in two ways:1. using all the �rst 41 events in the atalog (Table 1.1), but disarding the 42nd beauseit is ongoing, to obtain the distributions of the variables R and V and the parameters
b, K and σ2

R, see Figure 1.4, 1.5;2. sampling b, K and σ2
R through a forward proedure. At �rst, we use only the �rst eventin the atalog (see Table 1.1), and we add one pair of volume and interevent time dataat a time. Then, we simulate the distribution of eah sampled parameter. Therefore we



18 Bayesian Hierarhial Time Preditable Model for eruption ourrene: anappliation to Kilauea Volanoobtain 41 distributions for the model parameters, eah one with an inreasing numberof data used (see Figure 1.6. In this ase, the last distribution in Figure 1.6 is the sameof the one in Figure 1.4.Note that the seond proedure provides interesting information; for example, it allowsus to investigate whih is the minimum amount of data neessary to have an aurate andinformative distribution for model parameters. In other words we an ontrol the amountof data neessary to orretly perform the learning phase for the model. Moreover, thisproedure is partiularly suitable to mimi a realisti eruption foreasting, sine it uses onlydata available at a spei� time to foreast what will happen in the next future.As it is shown in Figure 1.4, the inferred slope parameter b of the GTPM equation (1.5)has a well de�ned distribution. First, we test the null hypothesis H0:b ≤0 and we rejet itat 5% level of signi�ane, stating that b has a distribution of values signi�antly greaterthan zero. Its numerial values are between 0 and 0.5, with mean b = 0.21 and standarddeviation σb = 0.10. This means that GTPM works out for eruptive behavior at KilaueaVolano. Moreover its numerial value less than one implies a non-linear relationship inequation (1.4) between interevent times and erupted volumes. Suh non-linear relationshipimplies the possibility of having a non ostant input rate in the magma storage system.Therefore, after a large erupted volume, we expet a shorter interevent time ompared with alassi Time Preditable System where the magma input rate is assumed onstant in time.A possible explanation might be represented by an inrement in the magma input rate fromthe depth to the shallow magma storage system after an eruption haraterized by a largevolume. This might be due to an additional pressure gradient inside the magma hamberought to magma disharging proess, beause a large eruption drains the magma hamberand dereases the e�etive pressure inside it (see Aki & Ferrazzini, 2001). This redution ofpressure inside the magma storage system may trigger an inreasing of magma buoyany and,obviously, an inrease of the magma input rate. In addition, Takada, 1999 shows, as a result ofhis deterministi model for dike migrations and stationing in the level of neutral buoyany, thepossibility to have a onstant supply rate with osillations or �utuations beneath intraplatevolanoes (i.e. Mauna Loa and Kilauea volanoes).Another result is reported in Figure (1.4), where we show the distribution of interept Kin equation (1.5). In terms of its physial meaning, we an onsider it as a gauge parameter



1.3 Parameters estimation and foreasting 19(see equation (1.4)) that links together two non-homogeneous quantities, i.e. interevent timeand erupted volume. As it is shown in Figure 1.4, the mean and standard deviation of theparameter K are respetively K = 5.27 and σk = 0.22. The main result is that K has aproper �nite distribution, that represents the appropriate dimensional onstant for equation(1.4). The parameter K an also be seen as a funtion of the average reharge rate: inequation (1.5) K = ln α, where α = (cV̂ b)/R̂, and α = r∗i /v
∗b
i from equation (1.4). So thedimensionless α parameter, or better the dimensional parameter c is funtion of the inverseaverage reharge rate. However, due to the fat that b is di�erent from 1, the term vb

i makesit di�ult to ompare physially 1/c with the average reharge rate at Kilauea volano for theperiod 1923-1983.The parameter σ2
R (see Figure 1.4) depends on the quantity Ri − (bVi + K) and it an beseen as a measure of the disrepany between the simulated interevent times and the TimePreditable equation. This error is a measure of how lose the BH_TPM model realizationsfor R and V �t the data (Dr and Dv) when the variables simulated are onstrained by thedata in the MCMC-Gibbs Sampling. In the proess model distribution for interevent times(i.e. equation (1.6)) errors are additive on the logarithm. After an exponential transformation,this error beomes multipliative respet to ri. The median of the distribution in Figure 1.4is 1.33, and so an error of about 4 times the relative interevent time omes out. Neverthelesswe annot onsider σ2
R as a measure of goodness-of-�t for BH_TPM to the data; this aspetis disussed in the next subsetion when we simulate and ompare syntheti datasets withobservational data. This feature of the model in reproduing data with relatively small errorsis shown in Figure 1.5. The various panels in Figure 1.5 represent the simulated volumesand interevent times (blue stars), plotted together with the observed data (red plus) that arealways within the simulated distributions.As mentioned above, Figure 1.6 represents the distributions for model parameters b, K and

σ2
R using the sampling forward proedure desribed above at the point 2. Those �gures showthe learning phase, before the dashed line, and the remaining part used to model hekingand foreasting. We hoose the �rst third part of the atalog, i.e �rst 14 events, as a learningphase; this means that we test the model on the remaining 27 events. We test again the nullhypothesis H0:b ≤0 and we an rejet it a 5% level of signi�ane for all b distributions afterthe learning phase. The physial interpretation is the same as it was given before in desribing



20 Bayesian Hierarhial Time Preditable Model for eruption ourrene: anappliation to Kilauea Volanoresults obtained using all atalog.In partiular we want to point out that results in Figure 1.6 are important to understandthe framework of the forward proedure to infer parameters distribution. This kind of sam-pling, i.e. adding one pair of data at a time, will be partiularly useful when we make foreastfor future interevent times (see below).1.3.2 Model hekingThe �nal goal is to hek if the model is apable to reprodue satisfatorily the observeddata. To this purpose, we follow the approah suggested by Gelman et al. (2000,161), andwe ompare the syntheti realizations given by BH_TPM with the real data via desriptivestatistis. We hoose this approah instead of the lassial goodness-of-�t tests, beause in thisway we an ontrol diretly the possible model failures omputing the disrepany betweenthe syntheti realizations (the so alled posterior preditive distribution) and data. This isan easy task in Bayesian statistis, beause it is always possible to simulate the quantities ofinterest from their posterior distribution.In order to ompare model realizations and data, we simulate a 10000 syntheti atalogsfrom BH_TPM. The �rst step is to draw a random volume V from the proess equation(1.7) using its own mean µv and variane σ2
v already simulated via MCMC-Gibbs samplingusing all data. The seond step is to simulate an interevent time relative to the simulatedvolume V from equation (1.6), using the parameters b, K and σ2

R in Figure 1.4. We iteratethis pattern to repliate the 41 pairs of interevent times and volumes, ending up with a newsyntheti atalog. By repliating this sheme 10000 times, we obtain 10000 atalogs eahone ontaining 41 events. The last step is to ompare real atalog (41 observed intereventtimes) with the 10000 repliated by BH_TPM, using desriptive statistis. For both real andsyntheti atalogs, we alulate the mean number of events (or mean rate of ourrene) λ,the maximum, the minimum, the median and the standard deviation of the interevent times.The results are displayed in Figure (1.7), where we show the distributions for the abovequantities both for the syntheti realizations (blue bars) and for the real data (red line in�gure). The �gures suggest that the model generates syntheti data that are reasonably inagreement with real data, even though with some important disrepanies. In partiular, themodel tends systematially to overestimate the maximum of Ri and, as a onsequene, it tends



1.3 Parameters estimation and foreasting 21to underestimate the mean rate of ourrene. Owing to the overestimate of the maximum,the standard deviation is overestimated too. Besides, the minimum is underestimated. Inspite of this lak-of-�t, however the median of the distribution shows a better agreement.A possible explanation of these disrepanies may be linked to the use of log-normaldistribution for inter-event times and volumes. This hoie has been mostly adopted fortehnial reasons; in fat, the use of onjugate distributions (i.e. normal and inverse gammadistributions) for eah level in data model, proess model and parameters model, makes thealulations muh easier. The log-normal distribution has a fat tail, so when we generatesyntheti data by drawing independent samples from suh distribution, we obtain large values(both for volumes and interevent times). In this way, in eah atalog generated, there isat least a syntheti eruption with unreasonably large erupted volume. Consequently, thereis systematially at least one very large interevent time, implying an overestimate of themaximum. An analogous problem arises for the minimum. We attribute the lak-of-�t forthe minimum again to the tail behavior of the log-normal distribution lose to zero. Likely,the log-normal is not the optimal hoie to apture the behavior of the extreme values of thedata in Table 1.1. Further developments of the model will drop the assumption of onjugayin order to improve the model. For now, we argue that these disrepanies do not a�etthe onlusions about the existene of a time preditable model behind the eruption proess.Most important, as we will see in the next setion, they do not a�et too muh the foreastingperformanes of the model.1.3.3 ForeastsThe last hek on the reliability of the model onsists of omparing the foreasting perfor-manes of BH_TPM against others model already present in literature. We endeavor toompare the foreast apability of BH_TPM with those of a Poisson model (Klein, 1982),Log-Normal model (Bebbington & Lai, 1996b) and Generalized Time Preditable Model(GTPM) (Sandri et al., 2005). The test mainly onsists of alulating the gain in proba-bility of BH_TPM with respet to the ited models, under the framework of a probabilistiforeast made on the observed data.The homogeneous Poisson model is a totally random and memoryless model and it isthe simplest model to desribe the eruptive proess (e.g., Klein, 1982; Marzohi, 1996).



22 Bayesian Hierarhial Time Preditable Model for eruption ourrene: anappliation to Kilauea VolanoIf the events follow a Poisson distribution, then the interevent times follow an exponentialdistribution (see Klein 1982; Mulargia et al. 1985; Bebbington & Lai 1996a).A Log-Normal model has been proposed by Bebbington & Lai (1996b) as a best �t dis-tribution for Kilauea data. Aording to those authors, a log-normal distribution should takeinto aount the possible eruption yliity at Kilauea volano. The authors test intereventtime distribution at Kilauea volano on �all� data available (i.e. period 1823 to 1977 AD )trying di�erent possible distributions. The best �t is given by a log-normal one. At the sametime, the authors also state that the hypothesis of an exponential interevent time distribution(Poisson proess) an not be rejeted when fousing only on data from 1918 to 1977 AD. Thislatter results is in agreement with Klein (1982). This may mean that for our dataset (onlyeruption form 1923 to 1983, see Table 1.1) a Poisson model ould be preferred. Nevertheless,we ompare our model both with Poisson and Log-Normal models.The GTPM proposed by Sandri et al. (2005) is substantially the non-hierarhial versionof the present model (i.e. BH_TPM). Those authors have applied a regression analysis onthe logarithm of the interevent time and volume data at Mount Etna volano, �nding atime preditability for this volano. However, in that model there is no possibility to use theinformation given by the volume errors; volume data in GTPM are assumed to be a�eted onlyby the satter around the regression line. Here, we also ompare BH_TPM to GTPM. In thisway we point out some justi�ations for our hoie of introduing a hierarhy to better apturethe time preditable behavior, whih in turn is mainly due to the neessity of aounting forthe volume errors.To this purpose, following the sheme proposed in seismology by Kagan & Knopo� (1997),we alulate the probability gain of BH_TPM versus Poisson, and Log-Normal and GTPMmodels as the di�erene between the log-likelihood of the two models. Beause of the om-plexity of BH_TPM, we do not have a lassial analytial likelihood funtion, but equation(1.6) ontains the sample information and the proess information, therefore we onsider thisequation as the likelihood of our model. The probability gain is alulated over the datafollowing the learning phase (see Figure 1.6). For eah of these eruptions, we alulate theprobability of having an event in a time window of one month around the observed intereventtime. For the BH_TPM suh probability is obtained by equation (1.6) with the observedvolume datum and parameters estimated from the previous data. For example, in foreasting



1.3 Parameters estimation and foreasting 23the 20th interevent time,we use the volume erupted in event number 20 in the atalog andthe parameters inferred from the �rst 19 events. For the other models, we use the likelihoodfuntion to alulate the probability in the same one month time window around observeddata.For sake of larity, this proedure deserves further explanation. To alulate the prob-ability for BH_TPM we �rst simulate 10000 interevent times from the posterior preditivedistribution, then we alulate the empirial umulative distribution funtion for the simu-lated interevent times and �nally we alulate the probability from the empirial distributions.For Poisson, and Log-Normal models, we instead use the analytial umulative distributionfuntion. We �t the parameters of those distributions via Maximum Likelihood Estimationusing the same forward proedure used for BH_TPM. For GTPM we �rst alulate the re-gression line following the forward proedure desribed above, then we foreast the intereventtime using the regression parameters and the volume datum. The probability here is alu-lated from the umulative normal distribution on the logarithm of the data with mean equalto the log-interevent time foreasted and variane equal to the residual mean sum of square.Probability is always alulated as the di�erene in the one month time window around theobserved interevent time.The results are displayed in Figure (1.8), where we show the probability gain for eahevent (the so alled �puntual probability gain�), and its total value obtained summing upall puntual probability gains. If the probability gain is greater than zero, our model makesbetter foreast than others. Figure (1.8) shows that not all the puntual probability gains arepositive, although the total probability gain is positive for all tests. In partiular, BH_TPMdoes better foreast than all the other models we tested. Our hoie of introduing this kindof hierarhy is orroborated by the highest probability gain value whih is obtained againstGTPM. In order to hek if there are some systemati o-variation between the puntualprobability gain and the interevent times, we hek a possible orrelation between these twoquantities. We show only for the probability gain against the Poisson proess, beause thismodel represents a totally random and memoryless eruptive behavior for Kilauea. Comparisonwith a Poisson model allows us to speulate on the physial proesses possibly involved in theeruption dynamis.Figure 1.9 shows the relationship between interevent times and puntual probability gains.



24 Bayesian Hierarhial Time Preditable Model for eruption ourrene: anappliation to Kilauea VolanoThe inverse linear relationship (the slope is signi�antly less than zero, P-value≤ 0.01) meansthat, for very long interevent times, BH_TPM performs worse than Poisson model. Per-forming the same analysis for the puntual probability gain against the Log-Normal model,it shows a weaker but still signi�ant, inverse relationship. The slope is less than zero withP-value=0.0125.There are di�erent possible explanations for the inverse linear relationship: 1) for long in-terevent times, Kilauea volano beomes memoryless in its eruptive behavior (see Marzohi& Zaarelli, 2006); 2) our assumption on the time preditable model as a dynami eruptivebehavior is too simple to desribe events with long repose time; 3) the assumption used to on-sider eruption as a point event in time without taking into aount the eruption duration maybeome distorting for the model foreast purposes (see Bebbington, 2008); 4)with BH_TPMat Kilauea, we neglet magma intrusions not followed by an eruption (Takada, 1999, Dvorak& Dzurisin, 1993); 5) also we neglet possible hanges in magma hamber geometry after aneruption (see Gudmundsson, 1986). Further explanations ould be derived fousing on thevolumes instead of the interevent times. The volume erupted may hange the physial andhemial onditions of the magma hamber and the magma onduit. However performing thesame regression analysis as in Figure 1.9, but for the volumes instead of interevent times, itdoes not provide any signi�ative orrelation.1.4 ConlusionsIn this work we have developed a time preditable model embedded in a hierarhial Bayesianstruture (BH_TPM), to desribe the behavior of eruptive atalog of open onduit volanoes.The use of a Bayesian struture allows to expliitly and formally inlude in the analysis anykind of unertainty (relative to data, models, and parameters). We have applied the model toKilauea eruptive atalog from 1923 to 1983 AD. The results show that interevent times dependon the previous erupted volume, as in a generalized time preditable model (Sandri et al. 2005;Marzohi & Zaarelli 2006). The model shows a reasonable �t with the data observed atKilauea volano, although it is not able to apture all the features and variability of the realatalog. We �nd also that the Kilauea volano has a weak time preditable eruptive behavior;likely this model ould work better when applied to other �open� onduit volanoes. However,these disrepanies do not seem to a�et the foreasting apability of BH_TPM, that remains



1.4 Conlusions 25superior to the foreasting apability of a stationary Poisson model, a Log-Normal model andGeneralized Time Prediable Model. We suggest that the present model ould be inluded ina long-term Probabilisti Volani Hazard Assessment as a basi omponent for modelling theourrene of eruptions in time at Kilauea Volano.



26 Bayesian Hierarhial Time Preditable Model for eruption ourrene: anappliation to Kilauea Volano
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30 TablesEruption # Onset Interevent time Volumeyyyymmdd [days℄ lava e tephra [106m3℄1 1923 08 25 259 0.0732 1924 05 10 70 0.793 1924 07 19 1083 0.2344 1927 07 07 594 2.305 1929 02 20 155 1.406 1929 07 25 482 2.607 1930 11 19 399 6.208 1931 12 23 988 7.009 1934 09 06 6504 6.9010 1952 06 27 703 46.7011 1954 05 31 273 6.2012 1955 02 28 1720 87.6013 1959 11 14 60 37.2014 1960 01 13 408 113.2015 1961 02 24 7 0.02216 1961 03 03 129 0.2617 1961 07 10 74 12.6018 1961 09 22 441 2.2019 1962 12 07 257 0.3120 1963 08 21 45 0.8021 1963 10 05 517 6.6022 1965 03 05 294 16.8023 1965 12 24 681 0.8524 1967 12 05 291 80.3025 1968 08 22 46 0.1326 1968 10 07 138 6.6027 1969 02 22 91 16.1028 1969 05 24 812 185.00



Tables 31Eruption # Onset Interevent time Volumeyyyymmdd [days℄ lava e tephra [106m3℄29 1971 08 14 41 9.1030 1971 09 24 132 7.7031 1972 02 03 457 162.0032 1973 05 05 189 1.2033 1973 11 10 251 2.7034 1974 07 19 62 6.6035 1974 09 19 103 10.2036 1974 12 31 333 14.3037 1975 11 29 654 0.2238 1977 09 13 794 32.9039 1979 11 16 896 0.5840 1982 04 30 148 0.5041 1982 09 25 100 3.0042 1983 01 03 ongoingTable 1.1: Catalog of eruptive events at Kilauea volano
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)*Table 1.2: Overview of distributions used in BH_TPM. The distributions highlighted with* are prior distributions for the BH_TPM. The prior distribution parameters for inversegamma's (i.e. Γ−1) are taken equal to 1. U means uniform distribution.
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Figure 1.1: Plot of the umulative number of eruptive events listed in Kilauea atalog. Onthe right side of the dashed line there are the events that have been used in BH_TPM. Thisplot shows that the atalog is omplete from 1918, but we have taken only eruptions from 1923beause 1919 and 1922 eruptions have missing volume data.
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Figure 1.2: Posterior distributions of relevant parameters of BH_TPM using a syntheti at-alog with b=0.5. The �rst plot on the left represents the syntheti data sets (i.e. volumes andinterevent times); the other sub-plots show the parameters inferred by BH_TPM. For moreinformation see the text.
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Figure 1.3: Construted Markov Chains for eah variable and parameter of the BH_TPM. For
R and V we show just one of the 41 hains relative to eah variable. In panel a, eah hain(i.e. eah subplot) reahes the onvergene after few iterations, forgetting the initial guess veryquikly. In this ase the starting values is hosen to be 10 for all quantities. Iterations in panela represent only the �rst 100 iteration of the burn-in phase, for more details please refer tothe text. The remaining iterations (i.e. from 1001 to 10000), shown in b panel, represent theonditional posterior distributions for BH_TPM variables and parameters.
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Figure 1.4: Posterior distribution for relevant parameters simulated using all data in atalog.In panel a it is shown the posterior distribution of parameter b; in panel b the posteriordistribution for parameter K and in panel  the posterior distribution for parameter σ2
R.
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Figure 1.5: Blue stars show the posterior distributions of pairs of simulated variables (in-terevent times Ri and volumes Vi). These variables are simulated via MCMC-Gibbs samplingusing all data in the atalog. Panel a is relative to Ri and Vi from 1 to 20 and panel b from21 to 41. Red plus is the observed data.
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Figure 1.7: Distributions of syntheti interevent times (blue bars) ompared with observed val-ues (red line) using desriptive statisti. This goodness-of-�t test (for more detail see the text)shows that our BH_TPM predits unreasonably long and short interevent times for Kilaueavolano.
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Figure 1.8: �Puntual probability gain� of the BH_TPM for eah event after the learning phaseagainst: in panel a Poisson Model (Klein, 1982), in panel b Log-Normal Model (Bebbington &Lai, 1996b) and in panel  Generalized Time Preditable Model (Sandri et al., 2005). Valuesgreater than zero indiate when BH_TPM model performs better foreast than the referenemodels. The inset in eah panel is the total Probability gain, i.e. the sum of the puntualprobability gains.
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Figure 1.9: Regression analysis for BH_TPM �puntual probability gain� against PoissonModel versus observed interevent times. The signi�ant inverse linear relationship, whose best�t regression oe�ients and R2 are given, indiates a systemati negative probability gainfor long interevent times. As disussed in the text, this means an additional omplexity forlong interevent times ompared to the time preditable eruptive behavior. This auses a worseability of our BH_TPM, ompared to Poisson model, to foreast long interevent times.
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Chapter 2
A new Bayesian Time-PreditableModel for Open Conduit Volanoes:The Case of Mt Etna and Kilauea

AbstratOne of the main goals in volanology is to foreast volani eruptions. A trenhant foreastshould be made before the onset of a volani eruption, using the data available at thattime, with the aim of mitigating the volani risk assoiated to the volani event. In otherwords, models implemented with foreast purposes have to take into aount the possibilityto provide �forward� foreasts and should avoid the idea of a merely �retrospetive� �ttingof the data available. In this perspetive, the main idea of the present model is to foreastthe next volani eruption after the end of the last one, using only the data available atthat time. We fous our attention on volanoes with open onduit regime and high eruptionfrequeny. We assume a generalization of the lassial time preditable model to desribe theeruptive behavior of open onduit volanoes and we use a Bayesian hierarhial model to makeprobabilisti foreast. We apply the model to Kilauea volano eruptive data and Mount Etnavolano �ank eruption data.The aims of this model are: 1) to test whether or not the Kilauea and Mount Etna vol-anoes follow a time preditable behavior; 2) to disuss the volanologial impliations of thetime preditable model parameters inferred; 3) to ompare the foreast apabilities of this



44 A new Bayesian Time-Preditable Model for Open Conduit Volanoes: TheCase of Mt Etna and Kilaueamodel with other models present in literature. The results obtained using the MCMC sam-pling algorithm show that both volanoes follow a time preditable behavior. The numerialvalues inferred for the parameters of the time preditable model suggest that the amount ofthe erupted volume ould hange the dynamis of the magma hamber re�lling proess duringthe repose period. The probability gain of this model ompared with other models alreadypresent in literature is appreiably greater than zero. This means that our model providesbetter foreast than previous models and it ould be used in a probabilisti volani hazardassessment sheme.Keywords. E�usive volanism, Bayesian modeling, Mount Etna, Kilauea, Probabilisti fore-asting, Volani hazards and risks.2.1 IntrodutionOne of the main goals in modern volanology is to provide reliable foreast of volani eruptionswith the aim of mitigating the risk assoiated with. The extreme omplexity and non linearityof a volani system make deterministi predition of the evolution of volani proesses ratherimpossible (e.g. Marzohi 1996; Sparks 2003). Volani systems are intrinsially stohasti.In general, eruption foreasting involves two di�erent time sales: i) a short-term foreasting,mostly based on monitoring measures observed during an episode of unrest (e.g., Newhall &Hoblitt 2002, Marzohi et al. 2008 among others); ii) a long-term foreasting, usually madeduring a quiet period of the volano, and mostly related to a statistial desription of the pasteruptive atalogs (e.g. Klein, 1982, Bebbington, 1996a among others). Here, we fous ourattention only on this seond issue. An inisive and useful foreast should be made before theonset of a volani eruption, using the data available at that time, with the aim of mitigatingthe volani risk assoiated. In other words, models implemented with foreast purposes haveto take into aount the possibility to provide �forward� foreasts and should avoid the ideaof a merely �retrospetive� �tting of the data available.Di�erent methods have been presented in the past years aiming at the identi�ation of pos-sible reurrene or orrelation in the volani time and/or volume data for long-term eruptionforeast. Klein (1982), Bebbington & Lai (1996a and 1996b) and Mulargia et al (1985) studiedthe time series of volani events looking at the mean rate of ourrene. Sandri et al. (2005)applied a generalized form of time preditable model to Mount Etna eruptions using regression



2.1 Introdution 45analysis. Marzohi & Zaarelli (2006) found di�erent behavior for volanoes with �open�onduit regime ompared to those with �losed� onduit regime. Open onduit volanoes ( MtEtna, Kilauea volano there tested) seem to follow a so-alled Time Preditable Model. Whilelosed onduit volanoes seem to follow a homogeneous Poisson proess. De La Cruz-Reyna(1991) proposed a load-and-disharge model for eruptions in whih the time preditable modelould be seen as a partiular ase. Bebbington (2008) presented a stohasti version of thegeneral load-and-disharge model also inluding a way to take into aount of the history ofthe volano disharging behavior. In this paper the author studied the time preditability asa partiular ase of his model with appliation to Mount Etna and Mauna Loa 3and Kilaueadata series. A di�erent hierarhial approah has been presented by Bebbington (2007) usingHidden Markov Model to study eruption ourrenes with appliation to Mount Etna �ankeruptions. This model is able to �nd any possible underlying volano ativity resulting inhanges of the volani regime. Salvi et al (2006) arried out analysis for Mt Etna �ank erup-tion using an Non Homogeneous Poisson proess with a power law intensity, while Smethurstet al (2009) applied a Non Homogeneous Poisson proess with a pieewise linear intensity toMt Etna �ank eruptionsIn a reent paper Passarelli et al (2010) (in Chapter 1) proposed a Bayesian HierarhialModel for interevent time-volumes distribution using the time preditable proess with ap-pliation to Kilauea volano. The model presents a new Bayesian methodology for an openonduit volano that allows to take into aount unertainties in observed data. Besides, theauthors present and test the foreast ability of the model retrospetively on the data througha forward sequential proedure. While the model seems to perform better foreast omparedwith others model in literature, it produed �ts to eruption volumes and interevent times thatwere too large and this redues the foreast performanes. This is due to the use of normaldistributions for the log-transformed data. This is a restritive distributional assumption thatreates very long tails. Here we propose a more general modeling strategy that allows for more�exible distributions for the interevent times and volumes data.Using the same framework of Passarelli et al (2010), we will model the interevent timesand volumes data through distributions with exponential deay (Klein, 1982, Mulargia, 1985,Marzohi, 1996, Bebbington, 1996a, 1996b and 2007, Salvi et al, 2006, Smethurst et al,2009). This provide a general treatment of the volume and interevent time series, hopefully



46 A new Bayesian Time-Preditable Model for Open Conduit Volanoes: TheCase of Mt Etna and Kilaueaimproving the foreast apability of the model. As a eruptive behavior we use the GeneralizedTime Preditable Model (Sandri et al, 2005 and Marzohi & Zaarelli, 2006). This modelassumes: 1) eruptions our when the volume of magma in the storage system reahes athreshold value, 2) magma reharging rate of the shallow magma reservoir ould be variableand 3) the size of eruptions is a random variable, following some kind of statistial distribution.Under these assumptions, the time to the next eruption is determined by the time required forthe magma entering the storage system to reah the eruptive threshold. The more general formfor a time-preditable model is a power law between the erupted volume and the intereventtime:
ri = cvb

i (2.1)where, if the parameter b is equal to unity we are in a lassial time preditable system (see DeLa Cruz Reyna 1991, Burt et al. 1994). If b is equal to 0 the system is not time preditable.If b > 1 or 0 < b < 1 we have a non-linear relationship implying a longer or shorter intereventtime after a large volume eruption ompared to a lassial time preditable system. The goalof the present work is to infer the parameters of Generalized Time Preditable equation (2.1).In the remainder part of the paper, we fous our attention on some spei� issues: 1) todisuss the physial meaning and impliations of parameters inferred; 2) to verify if the modeldesribes the data satisfatorily; 3) to ompare the foreasting apability of the present modelwith other models previously published in literature using the sequential forward proeduredisussed in Passarelli et al (2010) (see setion 1.3 in Chapter 1). In the �rst part of thispaper, we will introdue the generality of the model by onsidering three stages: 1) a modelfor the observed data; 2) a model for the proess and 3) a model for the parameters (Wikle,2003). Then we will disuss how: 1) to simulate the variables and parameters of the model,2) to hek the model �t, 3) to use the model to assess probabilisti foreast in omparisonwith other statistial published models. The last part of the paper ontains the appliationof the model to Kilauea volano and Mount Etna eruptive data.2.2 A Bayesian Hierarhial Model for Time-PreditabilityIn the following setions we present a detailed desription of our proposed model. We willdenote it as Bayesian Hierarhial Time Preditable Model II (BH_TPM II), while the model



2.2 A Bayesian Hierarhial Model for Time-Preditability 47proposed in Passarelli et al (2010) will be denoted as BH_TPM. In Setion 2.2.1 we disussthe modeling the measurement errors. In Setion 2.2.2 we onsider a model for the underlyingproess (equation (2.1)), whih is based on the exponential distribution. In Setion 2.2.3we disuss the distributions that are plaed on the parameters that ontrol the previous twostages of the model. In Setion 2.2.4 we introdue the simulation proedure and in Setion2.2.5 we onsider model assessment and foreasting of volani eruptions.2.2.1 Data ModelThe dataset for this model has n observations with two omponents: erupted volumes andinterevent times. We will denote the volumes as dvi
and the interevent times as dri

. Weassume independene between the measurement errors of interevent times and volumes. Thisis justi�ed by the fat that these two quantities are measured using separate proedures. De-pendene between interevent times and volumes will be handled at the proess stage, followingthe power law in (2.1). In addition, we assume that, onditional on the proess parameters,the interevent times or volumes are independent within their group. This is a natural assump-tion within a hierarhial model framework. It is equivalent to assuming that the volumes(times) are exhangeable between them. Exhangeability implies that all permutations of thearray of volumes (times) will have the same joint distribution. Exhangeability is weaker thanindependene, and it is implied by it.Our measurement error model assumes a multipliative error for the observations. Thisfollows from BH_TPM where it was assumed that
log(dri

) = log ri + log ǫri
(2.2)with log ǫri

∼ N(0, σ2
Dri

) where σ2
Dri

= (
∆dri

dri
)2 ( Passarelli et al 2010, data model in Chapter1). The analogous assumption log(dvi

) = log vi + log ǫvi
and log ǫvi

∼ N(0, σ2
Dvi

) where
σ2

Dvi
= (

∆dvi

dvi
)2, was onsidered for the volumes. Exponentiating on both sides of Equation(2.2) we have

dri
= ǫri

ri (2.3)whih is the data stage model we propose in BH_TPM II.The error in Equation (2.3) follows a probability distribution with positive support. Wehoose an inverse gamma distribution. This is a �exible distribution de�ned by two parameters



48 A new Bayesian Time-Preditable Model for Open Conduit Volanoes: TheCase of Mt Etna and Kilaueawhih will provide omputational advantages. We �x the two de�ning parameters by assumingE(ǫri
) = 1 and alulating var(ǫri

) using a delta method approximation. Spei�ally, from theassumption that log ǫri
∼ N(0, σ2

Dri
)), we have that E(log ǫri

) = 0 and var (log ǫri
) = σ2

Dri
=

(
∆dri

dri
)2. Thus var (ǫri

) = σ2
Dri

[

g′
(E(∆dri

dri

))]2

=

(

∆dri

dri

)2where g(x) = exp(x) and g′ is the �rst derivative. At this point, remembering that a ran-dom variable X that follows an inverse gamma distribution with parameters αri
and βri

hasexpeted value is E(X) =
βri

αri
−1 and variane var(X) =

β2
ri

(αri
−1)2(αri

−2) , we then have that










βri
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)2
.Solving for αri

and βri
gives αri

= (
dri

∆dri
)2 +2 and βri

= (
dri

∆dri
)2 +1 where ∆dri

dri
is the relativeerror. Analogous alulations an be done for the volumes. The joint distributions for themeasurement errors ǫr = (ǫr1 , . . . , ǫrn) and ǫv = (ǫv1 , . . . , ǫvn) result in

[ǫr|αri
, βri

] =
n
∏
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) and [ǫv|αvi
, βvi

] =
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∏

i=1

Γ−1(αvi
, βvi

) (2.4)where αvi
=
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)2
+ 2 and βvi

=
(

dvi
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)2
+ 1. We use [X] to denote a distribution ofrandom variable X and Γ−1 to denote an inverse gamma.The distribution for the observed variables dri

and dvi
an be obtained from the errordistributions spei�ed by the expression in (2.4). Noting that ∣∣
∣

dǫri

d(dri
)

∣

∣

∣
= 1

ri
we have from thehange of variables formula for probability density funtions that

[dr|αri
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∏
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Γ−1(αri
, βri

ri) and [dv|αvi
, βvi

, vi] =
n
∏

i=1

Γ−1(αvi
, βvi

vi). (2.5)The expression in (2.5) will be used to obtain the likelihood funtion for our data. For sakeof larity, assuming X is a random variable with ontinuous probability density funtion f .Suppose that Y = r(X) , where r is a di�erentiable funtion, then the hange variables formulagives g(y) = f(r−1(y)) | d r−1(y)/dy |, where g is the probability density funtion of Y .2.2.2 Proess modelThe starting point for the model pertaining the unobserved quantities ri is the assumptionthat volani eruptions orrespond to a homogeneous Poisson proess. A homogeneous Poisson



2.2 A Bayesian Hierarhial Model for Time-Preditability 49proess in times has the property that the number of events that our during a given timeinterval follow a Poisson distribution with mean proportional to the length of the interval.Additionally the time between onseutive events is distributed as an exponential randomvariable (Klein, 1982, Mulargia, 1985, Marzohi, 1996, Bebbington & Lai, 1996a, 1996b).Thus we assume that ri ∼ Exp(λ) implying that the joint distribution of r = (r1, . . . , rn)is given by [r|λ] =
∏n

i=1 Exp(λ). Given the distributional assumption for the intereventtimes we an obtain the distribution of the volumes vi using Equation (2.1). Realling that
ri = cvb

i and ∣∣
∣

dri

dvi

∣

∣

∣
= cbvb−1

i . the hange of variable formula for probability density funtionsyields [vi] = cbλvb−1
i e−λcvb

i Written in distributional form we have: vi ∼ Wb(b, ( 1
λc

)
1
b

) where
Wb(·, ·) denotes a Weibull distribution. The joint distribution for the volumes v = (v1, . . . , vn)is given as

[v|λ, b, c] =

n
∏

i=1

Wb(b,

(

1

λc

)
1
b

)

. (2.6)This ompletes the spei�ation of the seond stage of our model.2.2.3 Parameters modelTo omplete our model we need to speify distributions for the parameters b, c and λ. Ourhoies are based on prior information obtained from previous modeling e�orts. In a Bayesiansetting, like the one proposed in this work, we have the ability to inlude strutural informa-tion, like the one used to build the seond stage model, as well as prior information. The �nalprodut onsists of the posterior distribution of all model parameters. This ontains a blendof the information provided by all the stages of the model: data, proess and prior knowledge.We hoose for λ a gamma distributions with known parameters, from now on hyperpa-rameters. This is denoted as have: λ ∼ Ga(αλ, βλ) where αλ and βλ are alulated by �ttingthe interevent times data with a gamma distribution, via maximum likelihood estimation.For the time preditable equation parameters, i.e. b and c, we use normal distributions withmoments alulated using the posterior distributions taken from BH_TPM (Passarelli et al.,2010). Thus [b] = N(µb, σ
2
b ) and [c] = N(µc, σ

2
c ).By hoosing the values of the hyperparameters we are introduing a ertain degree ofsubjetivity in our modeling. We believe that this is a desirable feature of the Bayesianapproah, as it allows to inorporate knowledge from similarly behaved open onduit volanoes.We remark the subjetive approah allowed in Bayesian Statistis ould be a suitable tool in



50 A new Bayesian Time-Preditable Model for Open Conduit Volanoes: TheCase of Mt Etna and Kilaueamodeling geophysial phenomena where available data are sare. This provides the possibilityof inorporating knowledge obtained from other soures in a probabilisti way, through theprior distributions. This allows for the introdution of physial and/or statistial onstraints,when available, on the parameters governing the examined phenomenon. In priniple thismethodology ould be helpful to improve the understanding of a partiular system. We wantto point out, though, that subjetive statistial modeling hoies need areful justi�ation,possibly relying on physial or phenomenologial onstraints.2.2.4 Posterior and full onditional distributionsThe three stage model spei�ation developed in the previous setions produes a posteriordistribution for the model parameters r, v, b, c and λ that, using Bayes theorem, an be writtenas
[r, v, b, c, λ|dr , dv∆dr∆dv] ∝ (2.7)

[dr|αdr
, βdr

, r][dv |αdv
, βdv

, v][v|c, λ, b][r|λ][λ][b][c] .To make inferene about the posterior distribution spei�ed by Equation (2.7) we draw samplesfrom it using Monte Carlo Markov Chain (MCMC) methods (Gelman et al, 2000, Gilks etal, 1996 ). This requires the full onditional distributions for eah parameter in the model.In the equations below we speify eah of them using the notation [X| . . .] to indiate thedistribution of variable X onditional on all other variables.
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The full onditional distributions of ri, i = 1, . . . , n and λ an be sampled from diretly, asthey orrespond to gamma distributions. So those parameters an be sampled using Gibbssteps. The full onditionals of the other parameter do not have standard forms. So we useMetropolis steps to obtain samples from them. One samples from the MCMC are obtainedwe disard the �rst part of the hain as a burn-in phase (see for example Gilks et al, 1996 );then we do a �thinning� of the hain by subsampling the simulated values at a �xed lag k. Thisstrategy ensures that, setting k to some value high enough, suessive draws of the parametersare approximately independent (Gelman, 1996). To de�ne the lag we use the auto-orrelationfuntion as we will show afterwards in the text.2.2.5 Model Cheking and Foreasting proedureWe have presented, so far, the hierarhial struture of the model and the �tting proedurefor the model parameter, based on MCMC sampling. We now address the issues of (1) testingthe goodness of the proposed model and (2) foreasting future interevent times.Bayesian model heking is based on the idea that preditions obtained from the modelshould be ompatible with atual data. So our strategy onsists of simulating data from thepreditive posterior distribution and ompare them to atual observations. The preditiveposterior distribution quanti�es the unertainty in future observations given the observeddata. By denoting r̃ future values of interevent times we have that the posterior preditive is
[r̃ | Data] =

∫

R+

[r̃ | λ][λ | Data]dλ (2.8)To obtain samples from the expression in Equation (2.8) we start from the MCMC sample of
λ. Suppose we have N of them and denote them as λj . Conditional on λj, for j = 1, . . . , N wesimulate r̃j from [r̃ | λj ], whih are produts of exponential. In this way we obtain N synthetiatalogs eah one with n pairs of interevent time and volume data. These are ompared to



52 A new Bayesian Time-Preditable Model for Open Conduit Volanoes: TheCase of Mt Etna and Kilaueathe observed data using desriptive statistis. As desriptive statistis we hoose the meannumber of events, maximum, minimum, median and standard deviation for both real andsyntheti data.To test the ability of the model to foreast future volumes and interevent times we usea sequential approah. We proeed by �tting the model to the �rst data pair, then we addthe data of the seond event to the model �tting. We ontinue adding data sequentially untilthe last event. This provides an assessment of the number of data needed for the modelto e�etively �learn� the model parameters. Using this sequential approah, we are able todeide the minimum amount of data needed to de�ne the learning phase for the model. Forthe remaining part of data (i.e. voting phase), we use the sequentially sampled parametersto generate the distribution for the next event (interevent time). In this way we an omparethe foreasted interevent times with the observed data and with other other possible modelsalready present in literature (see forward proedure disussed in Passarelli et al., 2010, seeSetion 1.3 this volume).A lose look at Equation (2.8) reveals a pratial foreasting problem. We observe thatthe posterior preditive distribution of the interevent times depends on the distribution of theinterevent times given the parameter λ. While this is statistially orret, it is not a realistiforeasting proedure. In fat, in a generalized time preditable system the time to the nexteruption is strongly dependent on the volume of the previous eruption. More expliitly, inour urrent framework, after the end of the n-th eruption we have samples of λ that aresimulated using only the information up to (dr(n−1)
, dv(n−1)

). We would like to inorporatethe information on dvn . We do this by resampling the posterior realizations of λ using theSampling Importane Resampling algorithm (hereafter SIR), (Rubin,1988, Smith and Gelfand,1992) together with the Bayes theorem.Let θn−1 = b, c, λ the samples obtained from our model using the �rst n− 1 data. For the
n-the interevent time we have

[r̃n | dvn ] =

∫

R+

[r̃n | dvn , vn−1, θn−1][θn−1 | dvn , vn−1]dθn−1 (2.9)Obtaining samples from the preditive distribution in Equation (2.9) requires samples of
[θn−1 | dvn , vn−1], whih are not available. Our MCMC algorithm produes samples of
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[θn−1 | dvn−1 , vn−1] instead. Using Bayes theorem we have that

[θn−1 | dvn , vn−1] ∝ [dvn | vn−1, θn−1][θn−1 | vn−1] . (2.10)In Equation (2.10) we reognize [dvn | vn−1, θn−1] as the inverse gamma distribution used forvolume data in Equation (2.5). [θn−1 | vn−1] is the posterior distribution for parameters λ, band c up to the �rst n − 1 events. The SIR algorithm onsists of resampling the output fromthe MCMC, say θj
n−1, with replaement, using the normalized weights de�ned as

w∗(θi
n−1) =

w(θi
n−1)

∑m
j=1 w(θj

n−1)where w(θi
n−1) = [dvn | vi

n−1, θ
i
n−1]. The weights w orrespond to the inverse gamma distribu-tion in Equation (2.5) for the observed volume of the n-th event onditional on the sampledvolumes of the previous event and the remaining parameter, as simulated by the MCMC.The output from the SIR algorithm an be used within Equation (2.9) to obtain the desiredsamples of the n interevent time. A brief desription of the SIR algorithm is in Appendix A.Finally we make expliit omparison for the probability of eruption alulating the prob-ability gain or information ontent as proposed by Kagan & Knopo� (1987). We alulatethe information gain for the present model with respet to other statistial models previouslypublished, sharing the sequential approah above disussed and only on the voting phase. LetA and B two statistial models, the probability gain is simply de�ned as the di�erene betweenthe log-likelihood distributions, i.e.:
PG =

n
∑

i=m

lA(δdri
) −

n
∑

i=m

lB(δdri
) (2.11)where lA is the natural logarithm of the likelihood of the model A and lB of the model Balulated in a temporal window δdri

of one month around the observed interevent time inthe voting phase (i.e. on the n − m events).If PG is greater than zero, model A performs better foreast than model B, if PG iszero the two models provide the same information to the foreast. Together with the totalprobability gain given by equation (2.11), we an alulate the �puntual� probability gain,i.e. the probability for eah event lA(δdri
)− lB(δdri

) with i = m, . . . , n (Passarelli et al, 2010).



54 A new Bayesian Time-Preditable Model for Open Conduit Volanoes: TheCase of Mt Etna and KilaueaAppliation to Kilauea volano, Hawaii, and Mount Etna vol-ano, SiilyWe apply the BH_TPM II to Kilauea volano and Mt Etna volano eruption data. Marzohiand Zaarelli (2006) found that Kilauea volano and Mt. Etna volano follow a time pre-ditable eruptive behavior. They also stated that these volanoes are in open onduit regimebeause their high eruptive frequeny and onsequently short duration of interevent times.Bebbington (2007) showed evidene of the time-preditable harater of Mt. Etna �ank erup-tions using a atalog sine 1610 AD. The same results on time-preditability are attained bySandri et al (2005) only fousing on the Mt Etna �ank eruptions in the period 1971-2002.Passarelli et al (2010) (in Chapter 1) found time-preditability of Kilauea volano for eruptiveatalog sine 1923 AD.These �ndings led us to use Kilauea and Mt Etna as the best andidate for the model.In applying the model to these two volanoes we will able to test: 1) whether or not theyfollow a time preditable behavior; 2) the reliability of the assumptions used in the model; 3)improvements in using the information given by the volume measurement errors; 4) the abilityin �tting the observed data and 5) the foreast apability of the model ompared with modelspreviously published in literature for Kilauea and Mt Etna.2.3 Kilauea volanoKilauea volano is the youngest volano on the Big Island of Hawaii. The subaerial part ofKilauea is a domelike ridge rising to a summit elevation of about 1200 m, it is about 80 kmlong and 20 km wide, and overs an area of about 1500 km2. Kilauea had a nearly ontinuoussummit eruptive ativity during the 19th entury and the early part of the 20th entury.During the following years, Kilauea's eruptive ativity had shown little hange. After 1924,summit ativity had beome episodi and after a major quiesene period during 1934-1952,the rift ativity raised inreasing the volani hazard (Holomb, 1987). It is widely aeptedthat Kilauea has its own magma plumbing system extending from the surfae to about 60 kmdeep in the Earth, with a summit shallow magma reservoir at about 3 km depth. The shallowmagma reservoir is an aseismi zone beneath the South zone of the Kilauea aldera and it issurrounded on two sides by ative rift onduits (Klein et al 1987).



2.3 Kilauea volano 55The eruption history of Kilauea volano diretly doumented dates bak to 18th entury,however before the 1923 the reorded eruptions are spotty and in most of the events the volumeerupted is unknown. Therefore, in our analysis we onsider all 42 events after 1923 AD (pleaserefer to Passarelli et al., 2010 for more details on the Kilauea atalog ompleteness, Chapter1). The data are listed in Table 2.1 where we report the onset date of eah eruption togetherwith the erupted volume (lava + tephra) and the relative interevent time. The volume of the1924/05/10 event is taken from http://www.volano.si.edu/ and is only the tephra volume.Sine the eruption that began in 1983 is still ongoing with a volume erupted greater than 3km3, we have 41 pairs of data of interevent time (i.e. the time between the onset of i-th andthe onset of (i+1)-th eruptions) and erupted volume (in the i-th eruption).In the next two subsetions we will present the results of the model for the Kilauea dataset.We will show �rst the results obtained for the model parameters both using all data and thesequential proedure disussed in setion 2.2.5, together with the ability of the model in �ttingthe data (model heking). Then we will show the foreasts obtained using this model; wewill ompare it with foreasts provided by other models previously published.2.3.1 Results for variables and parametersBefore to embark on the disussion of the results ahieved, we need �rst to speify the valuesfor the measurement errors (∆dri
,∆dvi

) and the hyperparameters (µb, σ
2
b , µc and σ2

c ) of theprior distributions of b and c. For interevent times we hoose an error (∆dri
) of 1 day forall data in the atalog; for volumes errors we assign a relative errors (∆dvi

/dvi
) of 0.25 fordata before the 1960 AD (i.e. i = 1, . . . , 13) and of 0.15 for data after the 1960 AD (i.e.

i = 14, . . . , 41) (see disussion in Passarelli et al, 2010, Setion 1.2.1 in this volume). Thevalues for the hyperparameters are taken running the BH_TPM and alulating the meanand standard deviation of the posterior distribution for b and c, i.e. µb = 0.2, σb = 0.1,
µc = 200 and σc = 50 (see Passarelli et al, 2010, see Figure 1.4 in Chapter 1).We simulate the variables and parameters from the posterior distribution (2.7) usingMCMC algorithm. As stated in the setion 2.2.4, we use both Metropolis-Hastings and Gibbssampling algorithms. Those simulation tehniques do not provide independent samples; su-essive values for eah hain (i.e. eah full onditional distribution) are potentially highlyorrelated. The optimal number of iterations needed to obtain independent draws from the



56 A new Bayesian Time-Preditable Model for Open Conduit Volanoes: TheCase of Mt Etna and Kilaueaposterior distribution is determined by using the autoorrelation funtion. We alulate theautoorrelation funtion to determine at whih lag the values for variables and parametersare independent. In Figure 2.1 is plotted the autoorrelation funtion for lag 1 to 20 for theparameters b, c and λ, we do not show the same plot for the 41 variables ri's and 41 vi'sbeause they give zero orrelation almost at the �rst lags. It is easy to see that the auto-orrelation funtion is lose to zero when lag is equal to 20. Hene we run eah hain in theMCMC algorithm for 201000 iteration and we thin it with every 20 iteration disarding the�rst 1000 iteration as a burn-in phase. At the end we have that eah variable and parameteris omposed by 10000 simulations.Simulations obtained are presented in Figures 2.2 and 2.3. In Figure 2.2 we show theMCMC realizations for the model variables ri and vi (blue stars) ompared with the observeddata (red pluses). Those variables are alulated using all data in the atalog and are repre-sentative of how the model an reprodue the data. The data reprodution is optimal whenthe variables are onstrained into their full onditionals by the data. It is worth to under-line, looking at the sale for x-axis and y-axis, how the model is able to reprodue errorsmeasurements, simulating interevent times with little errors and volumes with bigger ones.In Figure 2.3 we present the results for the model parameters b, c and λ using all data.A lose look at their value gives that Kilauea volano has a time preditable behavior, sine
b (top left panel) is less than 1 and greater than zero with mean b = 0.45 and standarddeviation σb = 0.05. This results are similar to those ahieved by Passarelli et al (2010),however there the mean value for b distribution is lower. The disrepany ould be imputedat two fator: a di�erent parametrization used in the models and the fat that here we do notuse the logarithm of the interevent times and volumes. For the distribution for c (top rightpanel), whih is funtion of the average magma reharge proess, we �nd a mean value c = 164days/106 m3 with error (1 standard deviation) σc = 24 days/106 m3. In the bottom left panelwe have the posterior distribution for λ, the rate of ourrene or the number of events overthe length of the atalog. Their mean value is λ = 2.0 × 10−3 days−1 and standard deviation
σλ = 0.3×10−3 days−1 whih are totally ompatible to the ourrene time alulated diretlyby the data with Maximum Likelihood Estimation (MLE) tehnique, i.e. λMLE = 1.9 × 10−3days−1 with 95 % on�dene interval [1.4, 2.5] × 10−3 days−1.In the Figure 2.4 we present the parameters b, c and λ using the sequential approah dis-



2.3 Kilauea volano 57ussed in setion 2.2.5.The blak dashed lines determine the division between the learning andvoting phases. In partiular the events on the left of the dashed line are the learning phase(�rst third of the atalog, i.e. 14 events), while we use the remaining part to test the eruptionforeasts (i.e. 27 events). We will use these realizations into the foreast proedure and wewill disuss it in the next setion.The results obtained imply a power law relationship between interevent times and volumes.As disussed in Passarelli et al (2010) this non linear relationship underlines the role playedby magma disharging proess onto the eruption frequeny. Suh relationship implies thepossibility of having a non ostant input rate in the magma storage system. Therefore, largeerupted volume may trigger the inreasing of the magma upwelling proess inside a shallowreservoir. We expet a shorter quiesene period after an eruption haraterized by a largevolume ompared with a proess where the magma reharging rate is onstant (i.e. ClassialTime Preditable model). A simple explanation ould be thought as an additional gradientof pressure ought to the drainage proess of the shallow magma system by a large eruptedvolume. This pressure gradient may inrease the magma upwelling proess from the deeprust. Non onstant magma input rate for the shallow magma reservoir for Kilauea volanohas been found by Aki & Ferrazzini (2001) and Takada, (1999). This possible non-stationarityshould be taken into aount in modeling the magma hamber dynamis at Kilauea volano.2.3.2 Model heking and ForeastsThe model hek is a way to assess the �t of the model to the data. This sensitivity analysisquantify the unertainties of the model in regard to future observations; on the other hand, itis a way to understand the limits of the model in reproduing data. In heking the model,we simulate 10000 syntheti atalogs using the proedure desribed in Setion 2.2.5. Then wealulate for both syntheti atalogs and observed data, the rate of ourrene, the maximum,the minimum, the median and the standard deviation. In Figure 2.5 we plot the synthetidata as histograms (blue bars) and the relative quantities alulated over the real dataset (redline). For eah plotted quantity the p-value (i.e. fration of syntheti simulations with valuegreater than the observed quantity) is indiated. It is easy to see a good agreement for the rateof ourrene, the minimum and the median. The are some disrepanies for the maximumand onsequently for the standard deviation. In these ases the observed value falls in the



58 A new Bayesian Time-Preditable Model for Open Conduit Volanoes: TheCase of Mt Etna and Kilaueatails of the preditive distributions. This is due to the fat that the maximum orresponds tothe 18 years of quiesene of the Kilauea volano (i.e. 1934-1952 AD). This is a extraordinarylong period of rest for the Kilauea and it ould be onsidered as an extreme value. The seondlongest interevent time is about 5 years of quiesene (i.e. 1955-1959 AD). Suh value fallsright at the enter of the distribution with p-value=0.7. In summary, the model is apableof reproduing the data, with the exeption of future extreme events that orrespond to thetails of the preditive distribution.The last hek on the reliability of the model is to evaluate its foreast performanes andompare them with already published models for the Kilauea volano interevent times. Wemake probabilisti foreast omparison of this model with homogeneous Poisson proess (Kleinet al, 1982), Log-Normal model (Bebbington & Lai, 1996b), Generalized Time PreditableModel (GTPM) (Sandri et al., 2005) and BH_TPM (Passarelli et al, 2010, Chapter 1 in thisvolume) using the sequential proedure desribed in Setion 2.2.5.The homogeneous Poisson proess was proposed by Klein (1982) to desribe the Kilaueainterevent time data. This model implies a totally random and memoryless eruptive behavior;while the number of events in time is distributed aording with a Poisson distribution, thetime intervals between two onseutive events has exponential distribution. The Log-Normalmodel was proposed by Bebbington & Lai (1996b); in this model interevent times are desribedusing a log-normal distribution. The mode of a log-normal distribution ould reveal a ertaindegree of yliity in the eruptive behavior for Kilauea volano. The GTPM was proposed bySandri et al., 2005. It is a linear regression among pairs of logarithm of interevent times andof volumes. The BH_TPM is a hierarhial model where the interevent times and volumesare desribed via log-normal distributions and uses the logarithm of the generalized timepreditable model equation as eruptive behavior.We alulate the probability for BH_TPMII drawing simulations from equation (2.9),where the λj are resampled with the SIR algorithm using the information given by volumedata. The results of the SIR proedure are plotted in Figure 2.6 where the blues stars referto the MCMC's output and the red ones are the resampled. It is worth to underline thatthe information provided by the volume data into the SIR proedure shrinks and shifts the λdistributions. Besides the mode of the resampled λ's has a higher value than the mode of thenon resampled ones. Now, using the resampled λ's, we an alulate the probability gain.



2.3 Kilauea volano 59The results are plotted in Figure 2.7 where we show the � puntual� probability gain andwe report the total probability gain as alulated using equation (2.11). The model shows animprovement in foreasting apability respet to the other models beause the total probabilitygain is always greater than zero in all tests. The best results is for the test against the Poissonmodel (panel a) where the model performs better foreasts for 20 out of 27 eruptions. Goodresults are those against the Log-Normal model (panel ) and the highest probability gain isobtained testing against the GTPM (panel d). This latter result implies that the informationon the error measurements are helpful in the model budget. The test against the ounterpartof this model, i.e. BH_TPM (panel b), shows a weaker results, however the total probabilitygain is greater than zero. BH_TPMII gives better foreasts over 19 out of 27 events. PG,here, is in�uened by two events (i.e. the 1st and 11th in Figure 2.7) where the �puntual�probability gain is partiularly negative. It seems that, despite of some loal disrepanies,the BH_TPMII shows a better behavior in foreasting the eruptive events. Evidene towardthis statement is the fat that in all tests BH_TPMII gives better foreast for more than 50%of events manifesting a higher reliability in ase of its potential use in probabilisti volanihazard assessment.Finally we investigate some possible orrelation between the �puntual� probability gainsand the interevent times or volumes using linear regression analysis. We do not �nd anyorrelation between volumes and probability gain. The only signi�ant linear dependene (p-value≤ 0.01) we �nd is between �puntual � probability gain alulated against homogeneousPoisson proess and observed interevent times, as in Figure 2.8. The inverse relationship implythat systematially we perform worse foreast for long interevent times. We an justify thisresults stating that for long quiesene period the Kilauea volano beomes memoryless (seeMarzohi & Zaarelli, 2006). In addition, onsidering the events as points in time ouldbe distorting when eruptions last months to years (see Bebbington, 2008), together with thefat that we do not onsider intrusions not followed by eruptions (Takada, 1999, Dvorak &Dzurisin, 1993). Finally another possible explanation ould be related to possible modi�ationof the shallow magma reservoir geometry after an eruption ( Gudmundsson, 1986).



60 A new Bayesian Time-Preditable Model for Open Conduit Volanoes: TheCase of Mt Etna and Kilauea2.4 Mount Etna volanoMount Etna volano is a basalti stratovolano loated in the North-Eastern part of the SiilyIsland. It is one of the best known and monitored volano in the world and reords of itsativity date bak to several enturies B.C. The sub-aerial part of Mount Etna is 3300 m highovering an area of approximately 1200 km2. Two styles of ativity our at Mt Etna: a quasi-ontinuous paroxysmal summit ativity, often aompanied with explosions, lava fountains andminor lava emission; a less frequent �ank eruptive ativity, typially with higher e�usion rateoriginate from �ssures that open downward from the summit raters. The �ank ativity issometimes aompanied by explosions and lava spattering; reently, two �ank eruptions havebeen highly explosive and destrutive, the 2001 and 2002-2003 events (Behnke & Neri, 2003,Andronio et al, 2005, Allard et al, 2006).At present there are petrologial, geohemial and geophysial evidenes for a 20-30 kmdeep reservoir ontrolling the volani ativity (Tanguy et al, 1997), but it is still debatedwhether or not Mt Etna has one o more shallower plumbing systems. Results from seismitomography do not reveal any low veloity zone in the uppermost part of the volani edi�e,while a high-veloity body at depth of < 10 km b.s.l. is interpreted as a main solidi�edintrusive body (Chiarabba et al, 2000, Patanè et al, 2003). However, a near-vertial shallowerplumbing system has been reently inferred at about 4.5 km b.s.l. using deformation data(Bonforte et al, 2008 for a review). It is widely aepted that a entral magma onduit feedsthe near-ontinuous summit ativity, while lateral eruption are triggered by lateral draining ofmagma from its entral onduit. Only few events appear to be independent from the entralonduit being fed by peripheral dikes (see Aoella & Neri, 2003 among others).The reorded eruptive ativity for Mt Etna dates bak to 1500 B.C. (Tanguy et al, 2007).Unfortunately, the eruptive atalog an be onsidered omplete only sine 1600 AD for �ankeruptions (Mulargia et al, 1985). Instead summit ativity, was reorded arefully only afterthe World War II (Andronio & Lodato, 2005) and only after 1970 all summit eruptions weresystematially registered (Wadge, 1975, Mulargia et al, 1987). Thus the Mt Etna atalog isonsidered omplete sine 1970 AD for summit eruptions. There are several atalogs for MtEtna eruptions available in literature, the most reent ones being those ompiled by Behnkeet al (2005), Brana & Del Carlo (2005) and Tanguy et al (2007); the Andronio & Lodato(2005) atalog is detailed only for events in the 20th entury. In this study we use only the



2.4 Mount Etna volano 61�ank eruptions sine 1600 AD using the Behnke et al (2005) atalog as it appears the mostomplete, at least for volume data. We also integrate and double-hek the volume data forthe 20th entury events with the Andronio & Lodato (2005) atalog. The Behnke et al(2005) atalog lists events up to 2004/09/07 eruption, so we update it for 2006 AD and 2008AD eruptions using information available in Burton et al (2005) and Behnke et al (2008). Araw estimation for the volume of the 2008/05/13 eruption was kindly provided by Maro Neri(Maro Neri personal ommuniation, 2010).The hoie of using only lateral eruptions needs quali�ation. Although it ould be ar-guable and ould explain only one aspet of the eruption ativity at Mt Etna volano, we arepushed in this diretion by the quality of data available. Besides, from a statistial point ofview, it is better not to use an inomplete dataset with the awareness of the risk of losingone piee of information, than using inomplete data and �nd false orrelations (Bebbington,2007). Flank eruptions, however, onstitute one of the most important threat for a volanihazard assessment at Mt Etna (see Behnke et al, 2005 and Salvi et al, 2006 among others).Thus, in our opinion, the hoie of using only �ank eruptions seems the best available in avolani hazard assessment perspetive. In Table 2.2 the data of �ank eruptions at Mt Etnaare reported; we indiate the onset date, interevent times (dri
) and volumes (dvi

). The are 63eruptive events and onsequently 62 pairs of interevent time and volume data.The next two subsetions are organized as follows: we �rst show the results obtained forthe model parameters both using all data and the sequential proedure disussed in Setion2.2.5, then the ability of the model in �tting the data (model heking) and the foreastobtained. Finally, we will ompare them with foreast provided by other models previouslypublished (when the omparison is possible).2.4.1 Results for variables and parametersIn order to apply the model to the Mt Etna �ank eruptions, �rst we need to speify themeasurements errors (∆dri
,∆dvi

) and the hyperparameters (µb, σ
2
b , µc and σ2

c ) for the priorsdistribution for b and c. In the Behnke et al (2005) atalog there is no mention about theinterevent time errors whereas relative errors are given for volume data. Therefore, we assignan error of 1 day for ∆dri
for interevent times. Aording to Behnke et al (2005) we assignrelative errors as follows: ∆dvi

/dvi
= 0.25 for i = 1, . . . , 43 (eruptions from 1607 to 1970AD),



62 A new Bayesian Time-Preditable Model for Open Conduit Volanoes: TheCase of Mt Etna and Kilauea
∆dvi

/dvi
= 0.05 for i = 44, . . . , 60 (eruptions form 1970 to 2004 AD) and ∆dvi

/dvi
= 0.25 for

i = 61, 62. The latter errors are relative to the 2006 and 2008 AD events not in Behnke etal (2005) atalog; whose volumes are �rst raw estimate not reparametrized yet (Maro Neripersonal ommuniation, 2010).The MCMC simulations here are performed following the thinning proedure already dis-ussed. In Figure 2.9 there are the autoorrelation funtion results from lag 1 to 20 for theparameters b, c and λ, we do not show the same �gures for the 62 variables ri's and 62 vi'sbeause they provide zero orrelation at almost the �rst lags. The autoorrelation funtion ispratially zero at lag 20 for all parameters. Therefore we run 201000 simulations disardingthe �rst 1000, as a burn-in, and than thinning the hains every 20 iterations. In this way weobtain posterior distributions for variables and parameters of 10000 simulation eah. For thehyperparameters we hoose the same parameters as the Kilauea ase, i.e.µb = 0.2, σb = 0.1,
µc = 200 and σc = 50.Simulations obtained are presented in Figures 2.10 and 2.11. The data reprodution hereis optimal when the variables are onstrained in their full onditionals by data, see Figure2.10 where simulation are blue stars and data red pluses. Also here, as in the Kilauea ase,the model reprodues reliably the measurement errors assigned. In Figure 2.3 we present theresults for the model parameters b, c and λ using all data. The value obtained for b (topleft panel in Figure 2.11) suggests that Mt Etna �ank eruptions follow a time preditableeruptive behavior. The numerial value for 0 < b < 1 implies a power law time preditablebehavior, the mean and standard deviation are b = 0.35 and σb = 0.04 respetively. For thedistribution for c (top right panel), whih is funtion of the average magma reharge proess,we �nd a mean value c = 330 days/106 m3 with error (1 standard deviation) σc = 40 days/106m3. In the bottom left panel we have the posterior distribution for the rate of ourrene
λ. The mean value and standard deviation are λ = 5.4 × 10−4 days−1 and σλ = 0.6 × 10−4days−1 respetively, and are totally ompatible with the rate of ourrene alulated diretlyby the data with MLE tehnique, i.e. λMLE = 4.2 × 10−4 with 95 % on�dene interval
[3.2, 5.4] × 10−4.In the Figure 2.12, we present the parameters b, candλ using the sequential approahdisussed in setion 2.2.5. The blak dashed lines determine the division between the learningand voting phase; the events on the left of the dashed line onstitute the learning phases (�rst



2.4 Mount Etna volano 63third of the atalog, i.e. 20 events), while we use the remaining part to test the eruptionforeasts (i.e. 42 events). We will use these realizations into the foreast proedure and wewill disuss it in the next setion.By looking at the outomes of the MCMC simulations for the parameters b and c, it islear that �ank eruptions at Mt Etna follow a time preditable eruptive behavior. The valueof b less than one implies a non-linear relationship between interevent times and volumes. Thetime preditable equation (2.1) is a power law similar to the one we infer for Kilauea volano.These �ndings lead to speulate about the role played by the magma hamber feeding systemin the eruption frequeny as we have speulated in Setion 2.3.1. Under this perspetive theMt Etna volano seems to at as a non-stationary volano (Mulargia et al, 1987), and thenon-stationarity ould also imply some sort of yliity in the eruption frequeny (Behnke &Neri, 2003, Allard et al, 2006). This possible non-stationarity should be taken into aount inmodeling the magma hamber dynamis at Kilauea volano.2.4.2 Model heking and ForeastsThe results of the model hek are presented in Figure 2.13. It is immediate to realize theagreement of the syntheti simulations (blue bars) with values alulated from the data (redbar) for the rate of ourrene, maximum, minimum and median. For the rate of ourrenewhere the p-value=0.87, we an speulate that the model predits interevent times slightlylonger that the observed one. Although the model works well for minimum, median and rate, itis less satisfatorily for the maximum and as a onsequene for the standard deviation. Againhere as for Kilauea, the model an reprodue the maximum only within the tail behaviorof the syntheti realizations. A lose look at Mt Etna atalog reveals that the maximuminterevent time is relative to a long quiesene period from 1702 to 1755 AD. This value ouldbe onsidered an extreme value (53 years) beause the seond longest interevent time is only 20years, being the quiesene period from 1614 AD to 1634 AD. This seond longest intereventtime is ompatible with the synthetis maximum simulation with p-value=0.7. As we veri�edin heking the model for Kilauea data, BH_TPMII model is able to apture the main datafeatures exept for the extreme value, or better, is able to reprodue the extreme value onlywithin the tail of the distribution for the syntheti atalogs.The �nal task, now, is to test the foreast performane of the model and ompare it with



64 A new Bayesian Time-Preditable Model for Open Conduit Volanoes: TheCase of Mt Etna and Kilaueaother models for Mt Etna interevent times already present in literature using the sequentialapproah disussed in Setion 2.2.5. Before to embark in this omparison, we present theresults of the SIR proedure used to resample the λj 's in the right side of equation (2.9).In Figure 2.14 the λj are plotted as they are from the MCMC simulation (blue stars) withsuperimposed the outome of the resampling proedure (red stars). The information providedby the volume data in the SIR proedure shrinks and shifts the λj distributions and as a resultsthe mode of the distributions for the resampled quantities is higher than the non resampledones. Now, as soon as we get the resampled λj's, we an use them to simulate the integral inequation (2.9).There are several statistial model in literature desribing statistially the eruptive dataseries for Mt Etna. The model are: BH_TPM proposed by Passarelli et al (2010) (Chapter1), a Non Homogeneous Poisson proess with a power law intensity proposed by Salvi et al(2006), a Non homogeneous Poisson proess with pieewise linear intensity by Smethurst etal (2009); the GTPM by Sandri et al (2005) and the Hidden Markov Models of Bebbington(2007). The latter model is a model that allows to identify hange in volani ativity usingHidden Markov Models. In this work the ativity level of Mt Etna volano is tested throughthe onset ount data, the interevent time data and the quiesene time data (interonset in theBebbington 2007 terminology) together with time and size-preditable model. To be honest,we are not able to apply the sequential proedure to the Bebbington (2007) model due to itsintrinsi omputational omplexity, so we do not perform the probability gain test against it.We have already disussed the BH_TPM and GTPM in the previous setions (see Setion2.3.2), thus we present the main peuliarity of the Salvi et al (2006) model and the Smethurstet al (2009) model. Salvi et al (2006) model is an Non Homogeneous Poisson model. Theintensity of the proess has a power law time dependene whose parameters an be estimatedusing MLE. This model implies that the intensity an inrease or derease with time, dependingon the value of the exponent. In this way the model an take into aount and �t any trend ineruptive ativity. In Smethurst et al (2009), authors study di�erent Non Homogeneous Poissonproesses, �nding the best model is one with a pieewise linear intensity. In other words, �ttingthe model via numerial MLE, the intensity of the proess is onstant (Homogeneous Poissonproess) for eruption before 1970 AD, and then it starts to inrease linearly with time. Thisis a proess with a hange point and is not easy to handle under our sequential proedure.



2.4 Mount Etna volano 65The hange point found by Smethurst et al. (2009) works only if the numerial MLE is doneusing all data (with the bene�t of hindsight). On the other hand, applying the sequentialproedure, i.e. adding one data at a time after the learning phase, does not guarantee to �ndthe same hange point and not even to �nd exatly one hange point (see Gasperini et al,1990). In addition, the parameters of the proess in the Smethurst et al (2009) model are notin losed form, so the stability of the numerial maximization ould produes further problemsin applying the sequential approah.To takle this ompliated hange point problem and ompute �forward� probabilities oferuptions, we hoose to employ two di�erent approahes. The �rst one is to keep the hangepoint (i.e. 1964 AD) found by Smethurst et al (2009) using all data and simulate sequentiallythe other two parameters of the model. In this way we alulate the probability gain inequation (2.11) assuming a onstant intensity up to the hange point, and then assuming alinearly inreasing intensity. Anyway, in the forward sequential approah perspetive we wantto use, this is not a fair game to get eruption probabilities, as we are using the value of thehange point alulated using all data.The seond approah is instead based on the empirial estimation of the trend for theintensity of the proess alulated under the sequential proedure. As we show in Figure2.15, after the learning phase, we examine and evaluate the trend for the intensity λMLE(blue stars in the graph), alulated by adding one data at a time, assuming a homogeneousPoisson proess. We �nd that the intensity shows a slow inrease with important �utuationsup to the hange point found by Smethurst et al. (2009) (blak dashed line). Then, after thehange point, the intensity rises more markedly. To �gure out whether or not the intensity aftereah event is inreasing with time, we estimate its trend with linear regression. In partiular,we perform linear regression on the intensity sine the datum before the last hange of signin its trend assessing the goodness of the regression (F-test on the slopes at 1% signi�anelevel). In Figure 2.15, we show positive slopes with signi�ant regression with green lines, andnegative slopes or positive ones with not signi�ant regression with red lines. It is lear fromthe graph that intensity does not show any signi�ant trend up to four events after the hangepoint found by Smethurst et al (2009). This is something widely known, that is to say, inorder to reognize a signi�ant trend in a forward study, one needs several data points (see forexample Cornelius & Voight, 1995).Hene, in alulating the parameters under the forward



66 A new Bayesian Time-Preditable Model for Open Conduit Volanoes: TheCase of Mt Etna and Kilaueasequential proedure, we keep a homogeneous Poisson proess on the events where the aboveregressions are not signi�ant (i.e. four events after the Smethurst et al, 2009 hange point),then we use the Non Homogeneous Poisson proess with linearly inreasing intensity.Finally we present the results for the probability gain in Figure 2.16. As it is shown in theinset of eah panel, PG's are always greater than zero, showing the present model performsbetter foreast ompared to the others. In partiular, the foreasting test against the homoge-neous Poisson proess (panel a) shows only 14 eruptions out of 42 with a negative �puntual�probability gain, orroborating the fat that Mt Etna �ank eruptions are non stationary intime (Mulargia et al 1987, Bebbington, 2007, Salvi et al 2006 and Smethurst et al, 2009).While in testing against BH_TPM (panel b), only 17 eruptions have a negative probabilitygain indiating that modeling Mt Etna interevent times with log-normal distributions doesnot seem to be the best hoie. The result in panel  against the GTPM is the best one andremarks the limitation of a regression tehnique in modeling linear relationship between thelogarithm of interevent times and of volumes, without using measurement errors. Salvi et al(2006) model, in panel d, performs worse foreasts ompared with BH_TPMII, on�rmingthat a power law intensity is not appropriate for Mt Etna eruption ourrenes (Smethurst etal 2009). In panel e, the test against the Smethurst et al (2009) model, with �xed hange pointas they found, is the worse one, although the PG is still slightly positive. On one hand, thistest shows that modeling the intensity with a linear inreasing funtion for events in the last40 years seems more appropriate. At the same time, it shows some limitations: a lose lookto the subplot e shows that event 38 have a very high gain in favor of the BH_TPMII. Thisevent is the 2001 AD eruption, started after 10 years of quiesene. Therefore, the Smethurstet al (2009) model, with the ad ho �tted pieewise linear intensity, ould be misleading forreal foreasting purposes as the observed eruption frequeny dereases in the future. Finallywe present, in panel f, the probability gain against the modi�ed Smethurst et al (2009) modelfollowing the spei�ation disussed in the previous setion for the �forward� appliation. Re-spet to panel e, here the probability gain is onsiderably higher although the linear intensity�ts better the last part of the atalog.It seems that, despite some loal disrepanies, the BH_TPMII shows a better overallbehavior in foreasting the eruptive events providing better foreast for more than 50% ofevents and manifesting a higher reliability if used in probabilisti volani hazard assessment.



2.5 Conlusions 67To get geophysial insights, we investigate some possible orrelation between the �puntual�probability gains and the interevent times or volumes using linear regression analysis. We donot �nd any orrelation between volumes and probability gain. The only signi�ant linearrelationship (p-value≤ 0.01) we �nd, as in the Kilauea ase, is between �puntual � probabilitygain alulated against the homogeneous Poisson proess and interevent times, as in Figure2.17. The inverse relationship implies that we systematially perform worse foreast for longinterevent times. We an justify this results stating that for long quiesene periods the volanobeomes memoryless with transition from open and losed onduit regime (see Marzohi& Zaarelli, 2006 and Bebbington, 2007). An other explanation ould be related to theomplexity of the volano eruption system not onsidered in this model. The time preditablemodel seems to be more appropriate when the eruption are lose in time, onversely, whenthe quiesene period are extremely long, other ompelling physial proesses may ontrol thevolani ativity. Finally, negleting the summit ativity, we lose one piee of informationrelated to the amount of erupted volume from summit rater during the quiesene period.This may introdue a bias that ould explain this inverse relationship.2.5 ConlusionsIn this work we have arried out a Bayesian Hierarhial model to test time preditable modelfor open onduit volanoes (BH_TPMII). The use of Bayesian Hierarhial modeling providesa suitable tool to take into aount the physial unertainties related to the eruption proessand relative to the data, parameters and variables. We have applied the model to Kilaueaeruptive atalog from 1923 to 1983 AD and to Mount Etna �ank eruptions from 1607 to2008 AD. The results show that both volanoes have a generalized time preditable eruptivebehavior where interevent times depend on the previous volume erupted. The numerialvalues of the time preditable model parameters inferred suggest that the amount of theerupted volume ould hange the dynamis of the magma hamber re�lling proess during thesubsequent repose period.The model shows a good �t with the observed data for both volanoes and is also ableto apture extreme values as a tail behavior of the distributions. The foreasts obtained byBH_TPM II are superior to those provided by other statistial models for both volanoes.In partiular we have improved the foreast performane ompared with those of BH_TPM,



68 A new Bayesian Time-Preditable Model for Open Conduit Volanoes: TheCase of Mt Etna and Kilaueaorroborating the hypotheses of building up the present model. We want to point out thatan Non Homogeneous Poisson proess, as the one developed in Smethurst et al (2009), ouldprovide better foreast if the �ank eruptive ativity on Mt Etna keeps inreasing in time as itdid in the last 40 years. We suggest that the present model ould be inluded in a long-termProbabilisti Volani Hazard Assessment as a basi omponent for modeling the ourreneof eruptions in time at Kilauea Volano and Mount Etna volano.



Appendix 69A Sampling Importane Resampling algorithmThe Sampling Importane Resampling (SIR) is a non iterative proedure proposed by Ru-bin (1988). The SIR algorithm generates an approximately independent and identially dis-tributed (i.i.d.) sample of size m from the target probability density funtion f(x). It starts bygenerating M (m ≤ M) random numbers from a probability density funtion h(x) as inputsto the algorithm. The output is a weighted sample of size m drawn from the M inputs, withweights being the importane weights w(x). As expeted, the output of the SIR algorithm isgood if the inputs are good (h(x) is lose to f(x)) or M is large ompared to m.The SIR onsists of two steps: a sampling step and an importane resampling step as givenbelow:1. (Sampling step) generate X1, . . . ,XM i.i.d. from the density h(x) with support inludingthat of f(x);2. (Importane Resampling Step) draw m values Y1, . . . , Ym from X1, . . . ,XM with prob-ability given by the importane weights:
w∗(X1, . . . ,XM ) =

w(Xi)
∑M

j=1 w(Xj)
for i = 1, . . . ,M.where w(Xj) = f(Xj)/h(Xj) for all j.The resampling proedure an be done with or without replaement.
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76 TablesTable 2.1: Catalog of eruptive events at Kilauea volanoEruption# Onset Interevent time Volume(yyyy mm dd) [days℄ lava e tephra [106m3℄1 1923 08 25 259 0.0732 1924 05 10 70 0.793 1924 07 19 1083 0.2344 1927 07 07 594 2.305 1929 02 20 155 1.406 1929 07 25 482 2.607 1930 11 19 399 6.208 1931 12 23 988 7.009 1934 09 06 6504 6.9010 1952 06 27 703 46.7011 1954 05 31 273 6.2012 1955 02 28 1720 87.6013 1959 11 14 60 37.2014 1960 01 13 408 113.2015 1961 02 24 7 0.02216 1961 03 03 129 0.2617 1961 07 10 74 12.6018 1961 09 22 441 2.2019 1962 12 07 257 0.3120 1963 08 21 45 0.8021 1963 10 05 517 6.6022 1965 03 05 294 16.8023 1965 12 24 681 0.8524 1967 12 05 291 80.3025 1968 08 22 46 0.1326 1968 10 07 138 6.6027 1969 02 22 91 16.1028 1969 05 24 812 185.0029 1971 08 14 41 9.1030 1971 09 24 132 7.7031 1972 02 03 457 162.0032 1973 05 05 189 1.2033 1973 11 10 251 2.7034 1974 07 19 62 6.6035 1974 09 19 103 10.2036 1974 12 31 333 14.3037 1975 11 29 654 0.2238 1977 09 13 794 32.9039 1979 11 16 896 0.5840 1982 04 30 148 0.5041 1982 09 25 100 3.0042 1983 01 03 ongoing



Tables 77Table 2.2: Catalog of eruptive events at Mount Etna volanoEruption # Onset Interevent time Volumeyyyymmdd [days℄ lava e tephra [106m3℄1 1607 06 28 954 158.002 1610 02 06 86 30.003 1610 05 03 1520 91.714 1614 07 01 7476 1071.005 1634 12 19 2985 203.036 1643 02 20 1369 4.127 1646 11 20 1519 162.458 1651 01 17 6628 497.539 1669 03 11 7308 1247.5010 1689 03 14 4741 20.0011 1702 03 08 19359 16.9412 1755 03 09 2891 4.7313 1763 02 06 132 21.0814 1763 06 18 197 149.9615 1764 01 01 847 117.2016 1766 04 27 5135 137.2517 1780 05 18 4391 29.3518 1792 05 26 3824 90.1319 1802 11 15 2324 10.4320 1809 03 27 944 38.1921 1811 10 27 2769 54.3322 1819 05 27 4906 47.9223 1832 10 31 4034 60.7424 1843 11 17 3199 55.7025 1852 08 20 4519 134.0026 1865 01 03 3525 94.3327 1874 08 29 1731 1.47



78 TablesEruption # Onset Interevent time Volumeyyyymmdd [days℄ lava e tephra [106m3℄28 1879 05 26 1396 41.9329 1883 03 22 1154 0.2530 1886 05 19 2243 42.5231 1892 07 09 5772 130.5832 1908 04 29 693 2.2033 1910 03 23 536 65.2034 1911 09 10 2638 56.6035 1918 11 30 1660 1.2036 1923 06 17 1965 78.5037 1928 11 02 4988 42.5038 1942 06 30 1700 1.8039 1947 02 24 1012 11.9040 1949 12 02 358 10.2041 1950 11 25 1923 152.0042 1956 03 01 4329 0.5043 1968 01 07 1184 1.0044 1971 04 05 1031 78.0045 1974 01 30 40 4.4046 1974 03 11 350 3.2047 1975 02 24 278 11.8048 1975 11 29 882 29.4049 1978 04 29 118 27.5050 1978 08 25 90 4.0051 1978 11 23 253 11.0052 1979 08 03 592 7.5053 1981 03 17 741 33.3054 1983 03 28 713 100.0055 1985 03 10 599 30.0356 1986 10 30 1106 60.00



Tables 79Eruption # Onset Interevent time Volumeyyyymmdd [days℄ lava e tephra [106m3℄57 1989 11 09 765 38.4058 1991 12 14 3503 250.0059 2001 07 17 467 40.9060 2002 10 27 681 131.5061 2004 09 07 675 40.0062 2006 07 14 669 25.0063 2008 05 13 35.00
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Figure 2.1: Autoorrelation funtion for MCMC realizations for parameters: b top left panel,
c top right panel and λ bottom left panel. The autoorrelation funtion is zero at lag 20, sowe run eah MCMC hain for 201000 iterations thinning it every 20 MCMC-steps. We obtain10000 independent realizations for eah hain.
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Figure 2.2: Blue stars show the posterior distributions of pairs of simulated variables (in-terevent times ri and volumes vi). These variables are simulated via MCMC Gibbs sampling(ri's) and Metropolis Hastings (vi's) using all data in the atalog. The top panel is relative to
ri's and vi's from 1 to 20 and the bottom panel from 21 to 41. Red plus is the observed data.
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Figure 2.3: Posterior distributions for BH_TPMII parameters obtained using all data in theatalog: top left panel refers to b, top right to c and bottom left to λ.
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Figure 2.4: Posterior distributions of: b parameter in top left panel, c parameter in top rightpanel and λ in the bottom left panel, all alulated using the sequential proedure disussed inthe text. Blak dashed line represents the learning phase. Red triangles are the mean of eahdistribution.
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Figure 2.5: Distributions of syntheti interevent times (blue bars) ompared with observedvalues (red line) using desriptive statisti. This goodness-of-�t test (for more detail see thetext) shows that BH_TPMII predits syntheti interevent times in good agreement with theobserved data, exept for the maximum and standard deviation where the observed quantitiesare reprodued in the tail behavior.
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Figure 2.6: Results for the SIR proedure applied to posterior distribution of λ's. In this plotwe indiate with blue stars the posterior MCMC-realizations for λj while red stars refer to theresampled ones with SIR algorithm. Using the SIR proedure, desribed in Appendix A, weupdate eah posterior distribution of λ with the information given by the observed volume underthe sequential proedure disussed in the text. The SIR proedure is applied on λ's obtainedafter the learning phase as required in the sequential approah used (i.e. events from 14 to 41in Table 2.1).
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Figure 2.7: �Puntual probability gain� of the BH_TPMII for eah event after the learningphase against: in panel a Poisson Model (Klein, 1982), in panel b BH_TPM (Passarelli etal, 2010), in panel  Log-Normal Model (Bebbington & Lai, 1996b) and in panel  Gener-alized Time Preditable Model (Sandri et al., 2005). Values greater than zero indiate whenBH_TPM model performs better foreast than the referene models. The inset in eah panelis the total Probability gain, i.e. the sum of the puntual probability gains.
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Figure 2.8: Regression analysis for BH_TPMII �puntual probability gain� against PoissonModel versus observed interevent times. The signi�ant inverse linear relationship, whose best�t regression oe�ients and R2 are given, indiates a systemati negative probability gainfor long interevent times. As disussed in the text, this means an additional omplexity forlong interevent times ompared to the time preditable eruptive behavior. This auses a worseability of our model, ompared to Poisson model, to foreast long interevent times.
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Figure 2.9: Autoorrelation funtion for MCMC realizations for parameters: b top left panel,
c top right panel and λ bottom left panel. The autoorrelation funtion is zero at lag 20. So,to obtain 10000 independent realizations for eah hain, we run eah MCMC hain for 201000iterations thinning every 20 steps.
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Figure 2.10: Blue stars show the posterior distributions of pairs of simulated variables (in-terevent times ri and volumes vi). These variables are simulated via MCMC Gibbs sampling(ri's) and Metropolis Hastings (vi's) using all data in the atalog. From top to bottom the �rstpanel is relative to ri and vi from 1 to 20, the seond panel from 21 to 40 and the third panelfrom 40 to 62. Red plus is the observed data.
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Figure 2.11: Posterior distributions for BH_TPMII parameters obtained using all data in theatalog: top left panel refers to b, top right to c and bottom left to λ.
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Figure 2.12: Posterior distributions of: b parameter in top panel, c parameter in middle paneland λ in the bottom panel, all alulated using the sequential proedure disussed in the text.Blak dashed line represents the learning phase. Red triangles are the mean
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Figure 2.13: Distributions of syntheti interevent times (blue bars) ompared with observedvalues (red line) using desriptive statisti. This goodness-of-�t test (for more detail see thetext) shows that BH_TPMII predits syntheti interevent times in good agreement with theobserved data, exept for the maximum and standard deviation where the observed quantitiesare reprodued in the tail behavior.
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Figure 2.14: Results for the SIR proedure applied to posterior distribution of λ's. In this plotwe indiate with blue stars the posterior MCMC-realizations for λj while red stars refer to theresampled ones with SIR algorithm. Using the SIR proedure, desribed in Appendix A, weupdate eah posterior distribution of λ with the information given by the observed volume underthe sequential proedure disussed in the text. The SIR proedure is applied on λ's obtainedafter the learning phase as required in the sequential approah used (i.e. events from 20 to 62in Table 1.1).
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Figure 2.15: Plot to detet the trend of intensity of a homogeneous Poisson proess under thesequential proedure. Blue stars are the intensity λMLE alulated sequentially via MLE addingone data at a time plotted versus the time of eah event. The λMLE's are alulated after thelearning phase. To �gure out whether or not the intensity is inreasing with time, we estimateits trend with linear regression, please refer to the text for more details. Red lines representnon signi�ant regressions (at 1% level), green lines represents signi�ant regressions. Theblak dashed line is the hange point found by Smethurst et al 2009. Estimating sequentiallythe trend, one is able to detet the inreasing trend only four events after the hange pointfound by Smethurst et al., 2009, say, only after the 1975 AD eruption.
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Figure 2.16: �Puntual probability gain� of the BH_TPMII for eah event after the learningphase against: in panel a Poisson Model (Klein, 1982), in panel b BH_TPM (Passarelli etal, 2010), in panel  GTPM (Sandri et al, 2005), in panel d Salvi et al, 2006 model, in panele Smethurst et al, 2009 model and in panel f modi�ed pieewise linear model of Smethurst etal, 2009 under the sequential proedure (please see the text for more details). Values greaterthan zero indiate when BH_TPM model performs better foreast than the referene models.The inset in eah panel is the total Probability gain, i.e. the sum of the puntual probabilitygains.
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Figure 2.17: Regression analysis for BH_TPMII �puntual probability gain� against PoissonModel versus observed interevent times. The signi�ant inverse linear relationship, whose best�t regression oe�ients and R2 are given, indiates a systemati negative probability gainfor long interevent times. As disussed in the text, this means an additional omplexity forlong interevent times ompared to the time preditable eruptive behavior. This auses a worseability of our model, ompared to Poisson model, to foreast long interevent times.



Chapter 3
The Correlation Between Run-Up andRepose Times of Volani Eruptions

AbstratVolanoes usually show signs of unrest before an eruption. The intensity of these signals duringthe pre-eruptive phase varies greatly. Establishing physial ontrols on the duration of preur-sory ativity, i.e. run-up time, ould improve understanding of the dynamis of magma asentfrom a shallow magma reservoir to the surfae. Another observable indiative of eruption dy-namis is the interevent repose time, i.e., the time between magmati eruptions. The reposetime ould be assoiated with the mehanism that reharges the magmati system. Both ofthese dynami quantities are strongly dependent on magma omposition and hene magmavisosity. In this work we investigate the inter-relationship between run-up time, repose timeand visosity by olleting together a database of 54 eruptions from 26 di�erent volanoesaround the world. Run-up time and repose are strongly orrelated with 60% of the varianein the data well-explained by a linear orrelation with repose time equal to approximately 104times the run-up time. The probability of the data being unorrelated is <0.1%. The dataranges from basalti to daiti systems, so we an investigate the gross in�uene of visosityby using the silia ontent as a proxy. High silia, and thus by inferene high visosity, sys-tems have longer repose times and run-up times. The run-up time observations are onsistentwith model where timesales are ontrolled by �ow proesses suh as diking. The observedrepose times are onsistent with reharge rates inferred in other studies and thus appears to bere�eting the dynamis of deep rustal magma �ow. The observed interrelationships provide



98 The Correlation Between Run-Up and Repose Times of Volani Eruptionsa new tool for onstraining physial and probabilisti models for volani hazard mitigation.3.1 IntrodutionVolani eruptions ommonly have geophysially observable preursors. Before an eruption,seismiity, ground deformation and gas emission may inrease. The intensity of those preur-sory phenomena varies substantially in size and temporal duration for di�erent volanoes, yetmost eruptions have at least some sign of the impending eruption.The preursors are thought to be related to magma asent beneath the volani edi�e.For instane, at a variety of volanoes the seismiity and ground deformation are assoiatedwith magmati pressure, �uids exsolving from the magma hamber, and heat perturbing thestress distributions and pore �uids in surrounding host roks (Lipman & Mullineaux, 1981;Tokarev, 1985; Yokoyama, 1988; Yokoyama et al, 1992; Cornelius & Voight, 1994; Druitt &Kokelaar, 2002; Newhall & Punongbayan, 1996; Aki & Ferrazzini, 2000; Yokoyama & Seino,2000; Kilburn 2003; Cervelli et al, 2006; De La Cruz-Reyna et al, 2008). Therefore, the time ofpreursory ativity, or run-up time, should re�et the physial properties of the magma. Mostnotably, visosity should have a major e�et of the dynamis of diking and thus the run-uptime of ativity (Rubin, 1995). However, diserning suh a relationship on a single volanois relatively di�ult, in large part beause of the lak of detailed onstraints on the visosityand state of the magma at depth.Sine the details of the magma visosity are subjet to large unertainties, we need touse a large dataset whih enompasses extreme variations. For that reason we fous on well-doumented eruptions around the world during the last 70 years using all material availablefor pre-eruptive and eruptive period. Therefore, if we ompare eruptions from a large varietyof volanoes with di�erent silia-ontent, we an assemble a data set where visosity of themagma varies by 7 orders of magnitude and thus beomes the most dominant parameter inthe system.In addition, magma visosity may play a role in ontrolling another observable of thesystem: inter-event repose time. The time between eruptions is ontrolled by the rehargeof the magma hamber and the aumulation of pressure. Both of these proesses are alsosensitive to magma visosity and thus might be expeted to vary from volano to volano.Again, a study at a single edi�e would be di�ult, but apitalizing on the large visosity



3.2 De�nitions 99variations from edi�e to edi�e might be instrutive.In this paper we investigate the interrelationships among run-up time, reurrene intervaland visosity by using 54 eruptions. Repose time, run-up times and silia ontent of eahevent are listed in Table 3.1. First, we take some time to arefully de�ne and disuss theoperational de�nitions of repose time and run-up time. Next we observe a strong orrelationbetween reurrene time and repose time along with a dependeny on petrology. We will thentranslate the petrologi onstraints into visosity using a rough proxy model based on siliaontent. Finally we interpret our results as manifestations of the ontrol of visosity via dikingon the preursory proess and magma reharge rate on the inter-eruptive proesses.3.2 De�nitionsWe de�ne the time assoiated with a preursory phase before a magmati eruption as the run-up time. The run-up time trun−up is the time elapsed from the onset of observed magmatiunrest to the onset of a magmati eruption. The run-up time de�ned in this way shouldbe related to the time taken by the magma to move from a magma hamber to the surfae.Although this de�nition of run-up seems a very straightforward one, it leads us to deal withvery ompliated questions: 1) How do you de�ne a starting point for a magmati eruption?2) How do you de�ne the starting point of magmati unrest?To answer question (1), we de�ne the start of an eruption as when juvenile magma materialis deteted at the surfae. Despite this simple de�nition, sometimes this information is noteasily available for explosive eruptions beause phreati and phreato-magmati ativity anobsure when juvenile material is �rst ejeted. We takle this problem using informationavailable in literature about petrography and petrology of the eruptive produts. In Table3.1 there are also indiates referenes for the magmati omposition and petrography of eaheruption.For most eruptions the onset time is well known with an error of at least 1 day, but forsome historial eruptions it is impossible to know when juvenile material is ejeted �rst. Foreruptions without a lear onset in the literature we use the start date given by SmithsonianInstitution-Global Volanism Program datasets. In ases both day and month of an eventare unknown we use 01 January as the onset date together with the given year. The relativeerror introdued by this approximation is always <1% and thus we an neglet it for all ases.



100 The Correlation Between Run-Up and Repose Times of Volani EruptionsWhen only year and month are spei�ed we use the 15th day of the month as a onset date.Answering question (2) is a di�ult matter. The de�ned starting point for volani unrestdepends on the ability to detet preursory volani signals above variable bakground levels,and it is unavoidably related to a partiular type of volano. Signs of pre-eruptive unrestvary and eruptions in this study inlude both examples of elevated seismiity and inreasedground deformation (See below). In addition the data for preursory ativity usually are noteasily available, are often strongly heterogeneous and in some ases are only qualitative (seeNewhall & Dzurisin, 1988, Simkin & Siebert, 1994, Benoit & MNutt, 1996). This makes itvery di�ult to set a omprehensive sheme for de�ning the onset date of magmati unrestand the relative run-up time for volani eruptions.Our strategy in dealing with this ompliated problem has arisen from reading the sien-ti� work and reports about eruptions around the world. Given the great variability amongeruptions and sarity of detailed pre-eruptive data available for diret interpretation, wehave deferred to the authors of eah study and used the loal de�nition of run-up time forthis work. This strategy is inherently dangerous both beause it does not use a quantitativeor preise de�nition of bakground and beause it uses a posteriori interpretation given by au-thors about volani signs. For instane, it does not aount for the highly variable ability todetet preursory ativity depending on the frequeny of visual observation and the proximityto geophysial monitoring instrumentation. However, it is the only easily aessible methodsine there is no worldwide volani geophysial database available.In many studies made after an eruption, authors desribe the harateristis and durationof preursory ativity well. For example in Aki & Ferrazzini (2000, Table 3), the authorsgive lear information about the preursory ativity for eruptions from 1985 to 1996 at Pitonde la Fournaise, a well-monitored volano. This single dataset allows omparison of multipleeruptions in a onsistent way. Another very helpful work about Popoatepetl Volano 1994eruption and its very long preursory ativity is made by De la Cruz-Reyna et al (2008). Inthis ase, the doumentation is su�ient to make reasonable statements about the preursoryativity for even a single event. Similar quantitative studies we found elsewhere in the litera-ture identify the starting point for a magmati unrest. The preise soures of doumentationfor eah eruption in this study are listed in Table 3.1.In most of these studies the time for the preursory ativity is indiated by preursory



3.2 De�nitions 101seismiity (see for example Tokarev, (1985); Yokoyama, (1988); Yokoyama et al, (1992); GilCruz & Chouet, (1997); Yokoyama & Seino, (2000); Soosalu et al, (2005) Table 1); a few aseshave ground deformation and seismiity (for example Lokwood et al, (1987)) and one asehas only ground deformation (Cervelli et al, 2006). To double hek the information takenfrom the literature, we used the monthly and weekly report of Global Volanism Program(www.volano.si.edu) as a soure of information. For example in the ase of the 1999 eruptionof Tungurahua Volano there is no literature regarding the preursory ativity, so we integratethe information from monthly report BGVN 24:11 from Global Volanism Program web sites(http://www.volano.si.edu). For suh events where we found some disrepany betweenseismiity and deformation as preursory signals, we always refer to the seismiity for therun-up time value. When only the month of preursory ativity is known, we onventionallyuse the 15th day of the month as a starting date.We also olleted data on the relative repose time or interevent time trepose de�ned as thetime elapsed between two subsequent eruptions. As stated before, we onsider the onset ofan eruption as the time when �rst juvenile material is present in volani ejeta. We use theonset time rather than duration to de�ne the time between eruptions (Klein, 1982, Mulargia,1985, De la Cruz-Reyna, 1991, Burt et al, 1994, Bebbington & Lai 1996, Sandri et al, 2005,Marzohi & Zaarelli, 2006). The ited literature was supplemented by the Global VolanismProgram reords to determine the eruptive history (See Table 3.1 for detailed onset times).Finally we olleted information for magma omposition and silia ontent. However notall eruptions onsidered have diret petrologi data. In ases where we do not know the exatmagma omposition for a partiular eruption, we use the magma omposition informationfrom the most reent eruption of that volano. When more than one magma omposition isgiven for a partiular eruption we use the mean. Finally, we reserve a speial mention forthe 18 Piton de la Fournaise events. Diret ompositional information from Villeneuve et al(2008) was available only for 1983, 1986 and 1998 eruptive event. Hene for all events between1985 and 1998 we use the 1986 silia ontent whih appears reasonable as Peltier et al (2009)suggest that there is no strong variations in the magma omposition in the last 30 years (SeeTable 3.2).For eah eruption inluded in this analysis we report the volano name, silia ontent,run-up time, repose or interevent time, volume erupted (tephra and lava) and referene list in



102 The Correlation Between Run-Up and Repose Times of Volani EruptionsTable 3.1.3.3 ObservationsThe data we have olleted are shown in Figure 3.1. The log-log plot shows the repose andrun-up times together with their magma omposition. Petrologial types are ategorized bysilia ontent using the standard lassi�ation of Le Bas et al (1986).At �rst glane it is easy to see that both run-up and repose times vary over about six orderof magnitude. For basalti volanoes repose times are of the order of months to a few yearsand run-up times are of the order of minutes to a few days. For high silia volanoes reposetimes are of the order of several years up to several enturies and run-up time of the order ofdays to several months. The ratio between the run-up and repose times is always less than1% exept for 8 events whih are less than 10%. Run-up time is always muh shorter thanrepose time, so the �rst phenomenologial evidene here is that the pre-eruptive ativity isa small fration of the time between two eruptions, whih is onsistent with our operationalde�nitions.The main physial insight from this plot is that repose times and run-up times are positivelyorrelated. This is orroborated by the simple linear �t of the logarithmi data (Figure 3.1).The high value of R2=0.60 in log-log spae means 60% of the data are explained by the linearregression model. The value of R2 allows us to rejet the hypothesis of unorrelated values(i.e. slope equal to zero) with an error of <0.001 (i.e. P-value of the hypotheses testing),aording to an F-test (Draper & Smith, 1998). The P-value is the risk assoiated withrejeting the hypothesis, so in this ase the probability that we have inappropriately rejetedthe unorrelated hypothesis is less than 0.1%. The observed ratio of the repose times andrun-up time in Figure 1 ranges between 10 and 105.However, a regression is not su�ient to fully prove the signi�ane of the orrelation forthese data. In regression analysis the data are assumed to have onstant variane. In this asewe an not say easily that run-up times have onstant variane, beause we an not know theirexat errors. The error assoiated with run-up times is strongly dependent on the resolutionwith whih one volano is monitored and varies over time. Therefore, the goodness of �ttest ould be biased by the assumption of onstant variane. So to orroborate our analysis,we perform a bootstrap regression analysis with 1000 data permutations and without any



3.3 Observations 103assumption on the data. The bootstrap mean for the slope is 1.1 ± 0.1 and for interept is-3.5 ± 0.3 where the error bars are 1 standard deviation. These values are again resolvablypositive and we onlude that the positive orrelation is robust.Another observation in Figure 3.1 is that the magma omposition seems to be orrelatedwith run-up and repose times. Beause the SiO2 for Piton de la Fournaise eruptions hasthe same value for several eruptions, a di�erent test of orrelation is neessary than before.The repeated values will bias a regression and therefore we diretly ompute the orrelationoe�ient ρ from the raw data rather than embarking on a �t and interpreting R2. Thedistintion is that R2 tests the orrelation between the predition of a linear �t and theobserved data, while ρ is simply a measure of the orrelation between the variables, i.e., theovariane divided by the standard deviation of eah individually (Draper & Smith, 1998).We found ρ=0.35 (P-value =0.01, null hypotheses is orrelation oe�ient equal to zero )for repose times and silia ontent and ρ=0.31 (P-value=0.02 null hypotheses is orrelationoe�ient equal to zero) for run-up times and silia ontent. The signi�antly greater thanzero orrelation value implies a relationship between the parameters, although it is not asstrong as the relationship between repose and run-up times. The observation indiates thatusing the silia ontent as a fundamental parameter in desribing the pre-eruption dynamismay be produtive. But it is also a warning that other physial parameters like the rystalontent in magma, magma temperature, tetoni and loal stress distribution must be takeninto aount to fully model the pre-eruptive dynamis.3.3.1 Unusual Individual EruptionsMuh of the satter in Figure 3.1 is likely due to the great variability of individual eruptiveirumstanes. It is helpful to outline the limits of the proposed relationships by reviewingsome of the peuliarities of the individual data points that lead to signi�ant departures fromthe trend.Shishaldin Volano 1999 eruption shows a very long pre-eruption ativity ompared withother basalti volano with a run-up time that is 1/4 the repose time. This unusual ratio goeswith an unusual sequene that inludes a hiatus in the middle of the preursory ativity. Thepreursory ativity we onsider here starts in late June 1998 with a series of small low-frequenyearthquakes that ontinued until the end of Otober 1998. After Otober, the volano beame



104 The Correlation Between Run-Up and Repose Times of Volani Eruptionsquiet until the new inrease in the preursory ativity in early February, possibly indiatinga new or renewed intrusion (Nye et al, 2002; Moran et al, 2002). Measuring the preursoryinterval from February results in a ratio of 1/40, whih is still di�erent from the mean, but lessextraordinary. In Figure 3.1 and subsequent interpretations, we maintain onsisteny with theoperational de�nition of Setion 3.2 by hoosing June 15, 1998 as the onset time, although itis possible that a shorter one would have been more appropriate physially.Less easy to explain are Hekla and Okmok eruptions. These voluminous basalti andesiteeruptions have repose times onsistent with their moderate siliate omposition, but run-up times more typial of low silia systems, i.e., shorter than expeted. The anomalouslyshort warning was anedotally noted for both systems as a ause for onsternation to loalobservatories (Soosalu et al, 2005; Prejean et al, 2008). We speulate that in these systems, latestage evolution may have dropped the visosity resulting in relatively fast magma migrationto the surfae.3.4 Interpretation in terms of visosityTo interpret the observations, we �rst need to translate the data into a likely physial ontrollike visosity. In order to do this, we will use the most important ontrol on gross visosity,silia ontent, as a means to delineate the variations between eruptive systems. One thistranslation is omplete, we will then model the run-up time in terms of visous proesses. Thetest of the model will be whether or not it predits the observed ratio of run-up to visosityfor a reasonable set of model parameters. For repose time, we will not embark on a full-salemodel but will rather onnet the data to previous observations and models of inter-eruptiveintervals.3.4.1 Visosity based on Silia ontentStarting from the petrologi information available, we alulate the visosity of magma for17 events in atalog using the Con�ow software pakage (Mastin & Ghiorso, 2000). Thenwe �nd a best-�t relationship between the visosity and the relative silia ontent assumingthat the log-visosity varies linearly with silia ontent. Finally, we use this �t to infer thevisosity for all data in Table 3.1 from the silia ontent. Details about eruptions, magma



3.4 Interpretation in terms of visosity 105ompositions and temperatures setting for Con�ow are in Table 3.2. For all eruptions wehoose to use a melt omposition with 0 wt % of water owing to the lak of information aboutthe magma melt water ontent. This dry visosity may be an overestimate by as muh asan order of magnitude. Sine we are fousing on the gross variations of visosity assoiatedwith silia ontent, this assumption will need to su�e. In the proess of inferring visosity,we are negleting several other signi�ant ontrols suh as rystallinity and vesiularity. Thejusti�ation for relying solely of silia ontent as a proxy is that silia ontent is the mostreliably measurable parameter for the dataset and thus allows us to generate a reasonablyuniform approximation. Furthermore, sine eruptive temperature and silia ontent o-vary,regressing with respet to silia ontent aptures the �rst-order visosity signal robustly. Theresults for the linear best �t are in Figure 3.2. Again, we perform the F-test on the slope ofthe regression under the null hypotheses that the slope is equal to zero, and we rejet withP-value<0.01. As stated before, we use the regression line to estimate the visosity for all 54events in the atalog from their SiO2 ontent. This result is similar to Hulme (1976). Theresultant visosity for all events varies over 7 orders of magnitude from 101 to 108 Pa-s (Table3.2). The alulated visosity an now be used to study the ompatibility of a simple physialmodel and the data. Performing the translation between silia ontent and inferred visosityleads to Figure 3.3. Here the trends of inreasing run-up and repose time with inreasingsilia ontent beome learly tied to inreasing visosity. The run-up time in seonds is onthe order of 10−4 to 103 times the visosity in Pa-s (or time in days is 10−9 to 10−2 timesvisosity). The repose time in seonds is 101 to 105 times the visosity in Pa-s (or time in daysis 10−4 to 10 times the visosity). We do not further quantify the orrelation between reposetime and run-up time with respet to visosity simply beause we will obtain the same resultdisussed for the orrelation with silia ontent. Therefore, we will proeed to investigatephysial models for the ontrol of visosity on both times.3.4.2 Model for Run-up TimesWe de�ned run-up time as a proxy for the time neessary for magma to travel from the magmahamber to the surfae. We now model this proess as a dike intrusion event. We will preditdike propagation time (and hene run-up time) as a funtion of visosity by onsidering themovement of a pressure-driven, magma-�lled rak. The observed run-up time to visosity



106 The Correlation Between Run-Up and Repose Times of Volani Eruptionsratio α = trun−up/η is between 10−4 Pa−1 and 103 Pa−1, with mean value approximately equalto 10 Pa−1 . The mean value a is alulated as the mean ratio of the run-up time and thevisosity in logarithmi spae. We use here the arithmeti mean of logarithm of run-up's andvisosities beause these quantities vary over seven order of magnitude. The test of the modelwill be whether or not we an suessfully predit this mean value for realisti parameters. Thedike will be modeled as a 2-D planar pressure-driven rak with elliptial shape and minoraxis w muh smaller than the major axis and height L, propagating in an elasti mediumsubjeted to a regional stress (Rubin, 1995). By analyzing the Poiseuille �ow for a visous�uid in a elliptial rak where the perturbation to the host rok stresses and the displaementdue to the dike opening depend only upon the di�erene between internal magma pressureand the ambient ompressive stress, Rubin (1995) alulates the veloity of the dike (Rubin,1995). The order of magnitude dike propagation veloity under a linear pressure gradient
p0/L, assuming a laminar �ow in the height diretion, is given by:

u =
1

3
(

p3
0

M2
)L (3.1)where η is the visosity, p0 is the magma pressure at the dike entrane, M is the elastisti�ness, L is the dike height and w = (p3

0/M
2)L is the half dike thikness (see Rubin, 1995).The time neessary for asent from the magma hamber to the surfae is the propagationtime of a dike with height L equal to the depth of magma hamber below the surfae (Figure3.4). Therefore,

trun−up =
L

u
(3.2)Combining equation (3.1) and (3.2) we an evaluate the run-up time in terms of thevisosity
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trun−up

η
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3M2

p3
o

∼ 10Pa−1 (3.3)when the pressure is p0 = 6 MPa and the elasti sti�ness is M = 3 × 1010Pa. For thesereasonable parameters, the result is idential to the mean value of the observations. At thispoint the run-up times seem to be ompatible with the dynamis of magma asent, eventhough we are using a very simple model.



3.4 Interpretation in terms of visosity 1073.4.3 Model for Repose TimesBetween eruptions, the magma hamber is reharged by a series of intrusions from depth.The speed of eah individual intrusion is again related to visosity through some ombinationof diking, diapirism and porous media �ow (Annen et al 2006; Karlstorm et al, 2009). Inall of these proesses, reharge rate is inversely proportional to visosity, therefore the highersilia systems are expeted to take longer to �ll a magma hamber and aumulate su�ientoverpressure for an eruption. Studies of the duration of magma transfer in the rust based onuranium-series disequilibria show that magma di�erentiation time (i.e. ooling and rystal-liquid separation) is a funtion of silia ontent with high silia magma having greater intervalsstorage in rustal magma reservoir than low silia magma (Reid, 2003). Storage time fromrystal ages for basalti system are generally longer or equal to repose times; for higher siliasystems the storage times are omparable or slightly shorter than repose times (White etal, 2006). A omplete model of magma hamber reharge proesses is beyond the sope ofthis paper. One simple oneptualization of magma reservoir is a storage system to whihmass enters with a partiular rate Qi and is extrated at partiular rate Qe. In suh aseswhen input and output are equal, i.e. Qi = Qe, it may attain quasi-steady-state onditionand the magma residene time ould be de�ned as V xQ−1
e (Reid, 2003). Only fewer than30% or likely the 10% of the sub-aerial volanoes approximate these onditions (Pyle, 1992).For other volanoes eruption is not the only output of magma reservoir: there is also sub-surfae magma solidi�ation as plutonism. In these non-steady-state ases, Qi ≤ Qe and therelationship between residene times and volumes is only approximate (Reid, 2003).Here, we simply show that the observed repose time trend is onsistent with reharge ratesinferred by other means and thus appears to be re�eting the dynamis of deep rustal magma�ow. We an make this onnetion by onverting the repose time information into volanieruption extrusion rates, whih is a quantity previously studied. The repose time is related tothe extrusion rate Qe by

Qe = V/trepose (3.4)where V is the volume of an individual eruption. From the information in Table 3.1, theaverage Qe for the basalti volanoes is (3.8 ± 0.1) × 10−2Km3/yr , for basalti andesites is
(3.7±0.9)×10−2Km3/yr for andesites is (7.6±2.0)×10−3Km3/yr and daites is (5.1±1.0)×

10−3Km3/yr . Errors for extrusion rate are alulated using the error propagation formula



108 The Correlation Between Run-Up and Repose Times of Volani Eruptionsassuming a relative error for repose times and volumes equal to 1% and 25% respetively.White et al (2006) inferred values for the output rate for a wide lass of volanism world-wide grouping volanoes in only three lass: basaltis, andesites and rhyolites. For thoselass of volanoes they alulate average extrusion rates equal to (2.6 ± 1.0) × 10−2km3/yr,
(2.3±0.8)×10−3km3/yr and (4.0±1.4)×10−3km3/yr, respetively. The average output rateshere alulated are ompatible within the error bars those presented by White et al (2006) ex-ept for the the output rate of andesite volanoes (Figure 3.5). The mean values are somewhathigher in this study. The disrepany may in part be due to a di�erene in dataset de�nitions.White et al (2006) de�ned �repose time� as the duration between harateristi sized eruptionswhile here we study the interval between eruptions of any size and de�ne Qe based on thevolume erupted after the repose interval. Despite the di�erene in absolute values, Figure3.5 in both datasets shows a dereasing trend with silia ontent. This trend is ompatiblewith the fat that high silia systems show longer repose times ompared with basalti ones.As a �rst order approximation, it should be seen as the role played by the visosity in themagma reservoir reharging proess (Reid, 2003). Finally this simple omparison highlightshow the low silia systems take shorter time to re�ll the magma reservoir than high siliasystem, assuming the output rate as a rough measure of the magma reharge rate. For lowsilii volanoes with relatively low visosity the reharge rate is higher; high silia systemsshow very low reharge rate ompatible with their higher visosity.3.5 Conlusions and Impliations for Eruption ForeastsIn this work we show the interrelationship between repose time, run-up time and visosity.The data presented suggest a strong positive orrelation between repose time and run-up timefor all lasses of magma omposition volanoes. In addition, both times seem to orrelatewith silia ontent and, therefore with gross variations in magma visosity. Using extremelysimpli�ed models of magma asent immediately before an eruption, we suessfully maththe observed dependenies of the run-up time times on visosity. Propagation of a single,pressure-balaned dike from the hamber is onsistent with the run-up time data. Usingthe relationships between run-up and repose time observed here provides a way to design apredition window appropriate to a partiular magmati system. For instane, if unrest beginson a low silia system with short quiesent period, one should expet an eruption to our



3.5 Conlusions and Impliations for Eruption Foreasts 109within hours to days, if it is going to happen. On the other hand, for a high silia system thathas experiened a very long quiesent time, an alert period should remain open for a muhlonger period of time from days to years.
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Tables 115Volano Magma Run-up Repose time VolumeSiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3℄HHMMSS HHMMSS1 AUGUSTINE Andesite 2005-11-17 00:00:00 2006-01-11 00:00:00(AU) 2006 60.001% 1986-03-27 00:00:00 2006-01-11 00:00:002 BEZYMIANNY andesite/daite 1955-09-29 00:00:00 950-01-15 00:00:00* t:2800(Bz) 1956 59.90% 1956-03-30 00:00:00 1956-03-30 00:00:003 EL CHICHON Andesite 1981-01-15 00:00:002,** 1432-01-01 00:00:00 t:2300(EC) 1982 55.88% 1982-03-28 00:00:00 1982-03-28 00:00:00(∼550 years)4 GALERAS andesite/daite 1988-06-15 00:00:00** 1936-08-27 00:00:00(Ga) 1992 59.40% 1991-10-09 00:00:00 1991-10-09 00:00:005 GRIMSVOTN basalti/andesite 2004-10-31 21:00:00 1998-12-18 00:00:00(Gr) 2004 50.003% 2004-11-01 00:00:00 2004-11-01 00:00:00(3 hour) 46 GUAGUA PICHINCHA daite 1998-09-15 00:00:00 5 1660-11-27 00:00:00 l:> 61999 (GP) 64.50% 1999-09-26 00:00:00 1999-09-26 00:00:007 HEKLA basalti andesite 1980-08-16 23:35:00 1970-05-05 00:00:00 l: 200(Hk1) 1980 54.90% 1980-08-17 00:00:00 1980-08-17 00:00:00 t: 70(25 min)8 HEKLA basalti andesite 1981-04-16 23:37:00 1980-08-17 00:00:00 l:120(Hk2) 1981 55.40% 1981-04-17 00:00:00 1981-04-09 00:00:00 t: 60(23 min)9 HEKLA basalti andesite 1991-01-16 23:30:00 1981-04-09 00:00:00 l: 150(Hk3) 1991 54.70% 1991-01-17 00:00:00 1991-01-17 00:00:00 t: 20(30 min)10 HEKLA basalti andesite 2000-02-25 22:41:00 1991-01-17 00:00:00 l:286(Hk4) 2000 55.00% 2000-02-26 00:00:00 2000-02-26 00:00:00 t: 10(79 min)11 MAUNA LOA basalt 1974-08-15 00:00:00** 1950-06-01 00:00:00 l:3(ML1) 1975 52.04% 1975-07-06 00:00:00 1975-07-06 00:00:0012 MAUNA LOA Basalt 1984-03-24 21:30:00 1975-07-06 00:00:00 l: 220(ML2) 1985 51.37% 1984-03-25 00:00:00 1984-03-25 00:00:00(∼2 h 30m )13 MIYAKEJIMA basalti andesite 2000-06-26 00:00:00 1983-10-03 00:00:00 t:9.3(My) 2000 54.00% 2000-06-27 00:00:00 2000-06-27 00:00:00
1Based on 1986 eruption where range of SiO2 is 56-64%wt2From Yokoyama [1988℄3From BGVN and Sigmarsson et al 2000 for previous eruption in 1998.4Swarm 3 hours before eruption, probably inreasing seismiity from 5-7 am Nov 1(from BGVN 29:10)5From Garia et al (2007), onset is mid-September



116 TablesVolano Magma Run-up Repose time VolumeSiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3℄HHMMSS HHMMSS14 Mt. S. HELENS Daite 1980-03-20 00:00:00 1850-03-15 00:00:00 6 l: 74(MSH1)1980 62.00% 1980-05-18 00:00:00 1980-05-18 00:00:00 t:120015 Mt. S.HELENS Daite 2004-09-23 00:00:00 1980-05-18 00:00:00 l:93(MSH2) 2004 64.85% 2004-10-01 00:00:00 2004-10-01 00:00:0016 Mt. SPURR Andesite 1991-08-15 00:00:00** 1953-07-09 00:00:00 t: 150(MSp) 1992 56.00% 1992-06-27 00:00:00 1992-06-27 00:00:0017 OKMOK Basalti andesite7 2008-07-12 19:00:00 1997-02-11 00:00:00(Ok) 2008 56.00% 2008-07-12 19:43:008 2008-07-12 19:43:00( 43 minutes)18 PAVLOF basalti andesite 1996-09-13 00:00:00 1986-04-16 00:00:00(Pv1) 1996 53.009% 1996-09-16 00:00:00 1996-09-16 00:00:0019 PAVLOF basalti andesite 2007-08-14 00:00:00 1996-09-16 00:00:00(Pv1) 2007 53.00% 2007-08-15 00:00:00 2007-08-15 00:00:0020 PINATUBO Daite 1991-03-15 00:00:00** 1491-01-01 00:00:00 t:(1.1±0.5)(Pi) 1991 64.00% 1991-06-07 00:00:00 1991-06-07 00:00:00 x104( 500years) l: 421 PITON Basalt 1983-12-03 21:40:00 1981-02-03 00:00:00 l:8de la FOURNAISE 48.74% 1983-12-04 00:00:00 1983-12-04 00:00:00(PF1) (∼ 3 hr)22 PITON Basalt 1983-12-03 23:00:00 1983-12-04 00:00:00 l: 1de la FOURNAISE 47.78% 1983-12-03 00:00:00 1985-06-14 00:00:00(PF2) (∼ 1 hrs)23 PITON basalt 1985-08-13 21:23:00 1985-06-14 00:00:00 l:7de la FOURNAISE 47.78% 1985-06-14 00:00:00 1985-08-05 00:00:00(PF3) (2 h 37 min)24 PITON Basalt 1985-09-05 22:48:00 1985-08-05 00:00:00 l:14de la FOURNAISE 47.78% 1985-09-05 00:00:00 1985-09-06 00:00:00(PF4) (1h 12 min)25 PITON basalt 1985-11-30 23:43:00 1985-09-06 00:00:00 l: 0.7de la FOURNAISE 47.78% 1985-12-01 00:00:00 1985-12-01 00:00:00(PF5) (17 min)26 PITON Basalt 1985-12-27 23:46:00 1985-12-01 00:00:00 l: 7de la FOURNAISE 47.78% 1985-12-28 00:00:00 1985-12-28 00:00:00(PF6) (14 min)
6Data taken from www.volano.si.edu7Personal ommuniation Jessia Larsen (2009), Geophysial Institute, Fairbanks, AK8Real onset time for run-up is known (see aption)9Magma omposition not available for 1996 eruption, so used the 2007 magma omposition



Tables 117Volano Magma Run-up Repose time VolumeSiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3℄HHMMSS HHMMSS27 PITON Basalt 17-03-1986 14:36:00 1985-12-28 00:00:00 l: 14de la FOURNAISE 47.78% 1986-03-18 00:00:00 1986-03-18 00:00:00(PF7) (9h 24 min)28 PITON basalt 1987-07-18 21:47:00 1987-06-10 00:00:00 l: 0.8de la FOURNAISE 47.78% 1987-07-19 00:00:00 1987-07-19 00:00:00(PF8) (2 h 13 min)29 PITON Basalt 1987-11-29 22:30:00 1987-11-06 00:00:00 l: 10de la FOURNAISE 47.78% 1987-11-30 00:00:00 1987-11-30 00:00:00(PF9) (1h30)30 PITON basalt 1988-02-06 21:55:00 1987-11-30 00:00:00 l:8de la FOURNAISE 47.78% 1988-02-07 00:00:00 1988-02-07 00:00:00(PF10) (2 h 05 min)31 PITON basalt 1988-05-17 23:29:00 1988-02-07 00:00:00 l: 15de la FOURNAISE 47.78% 1988-05-18 00:00:00 1988-05-18 00:00:00(PF11) (31 min)32 PITON basalt 1988-08-30 21:35:00 1988-05-18 00:00:00 l: 7de la FOURNAISE 47.78% 1988-08-31 00:00:00 1988-08-31 00:00:00(PF12) (2 h 25 min)33 PITON basalt 1988-12-13 19:29:00 1988-08-31 00:00:00 l: 8de la FOURNAISE 47.78% 1988-12-14 00:00:00 1988-12-14 00:00:00(PF13) (4h 31 min)34 PITON basalt 1990-01-17 23:13:00 1988-12-14 00:00:00 l: 0.5de la FOURNAISE 47.78% 1990-01-18 00:00:00 1990-01-18 00:00:00(PF14) (47 min)35 PITON basalt 1990-04-17 17:15:00 1990-01-18 00:00:00 l: 8de la FOURNAISE 47.78% 1990-04-18 00:00:00 1990-04-18 00:00:00(PF15) 6h 45 min36 PITON basalt 1991-07-17 23:08:00 1990-04-18 00:00:00 l: 2.8de la FOURNAISE 47.78% 1991-07-18 00:00:00 1991-07-18 00:00:00(PF16) (52 min)37 PITON basalt 1992-08-26 23:03:00 1991-06-18 00:00:00 l: 5.5de la FOURNAISE 47.78% 1992-08-27 00:00:00 1992-08-27 00:00:00(PF17) 57 min38 PITON basalt 1998-03-07 12:00:00 1992-08-27 00:00:00 l:60de la FOURNAISE 48.74% 1998-03-09 00:00:00 1998-03-09 00:00:00(PF18) ( 36 h)39 POPOCATEPETL andesite/daite 1990-06-03 00:00:00 1919-02-19 00:00:00 l: > 28(Pp) 1996 62.41% 1996-03-01 00:00:00 1996-03-01 00:00:001010Onset of dome extrusion, no information on previous juvenile material



118 TablesVolano Magma Run-up Repose time VolumeSiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3℄HHMMSS HHMMSS40 RABAUL andesite/daite 1994-09-17 21:00:00 1943-12-23 00:00:00 l: 0.4(Rb1) 1994 61.66% 1994-09-19 00:00:00 1994-09-19 00:00:00(27hours)41 RABAUL andesite/daite 1995-11-27 00:00:00 1994-09-19 00:00:00 l: 4.5±0.5(Rb2) 1995 61.40% 1995-11-28 00:00:00 1995-11-28 00:00:00(24 hours)42 REDOUBT Andesite 1989-12-13 01:00:00 1967-12-06 00:00:00 l: 88(Rd) 1989 61.0011% 1989-12-14 00:00:00 1989-12-14 00:00:00 t: 210(∼ 23h)43 RUAPEHU Andesite 1995-04-15 00:00:0012 1977-07-16 00:00:00 t: 30±20(Rh1) 1995 58.50% 1995-09-17 00:00:00 1995-09-17 00:00:0044 RUAPEHU Andesite 1996-06-14 08:00:00 1995-09-17 00:00:00 t:4(Rh2) 1996 57.47 % 1996-06-16 00:00:00 1996-06-16 00:00:00(40 hours)45 SHISHALDIN Basalt 1998-06-15 00:00:00** 1995-12-23 00:00:00 l: 14(Shis) 1999 51.94% 1999-04-17 00:00:00 1999-04-17 00:00:0046 SHIVELUCH andesite/daite 1964-02-24 00:00:00 1944-11-05 00:00:00 t:750±50(Shiv) 1964 60.00% 1964-11-11 00:00:00 1964-11-11 00:00:0047 SOUFRIERE Andesite 1994-06-15 00:00:00 13 1650-01-15 00:00:00* l:1.2 x 102HILLS 1995 (SHV) 60.02% 1995-09-25 00:00:00 1995-09-25 00:00:0048 TOKACHI andesite 1962-05-01 00:00:0014 1924-05-24 00:00:00 t: 72(Tk2) 1962 52.78% 1962-06-30 00:00:00 1962-06-30 00:00:0049 TOKACHI Andesite 1988-09-15 00:00:0015 1962-06-30 00:00:00 t: 0.75(Tk1) 1988 53.15% 1988-12-19 00:00:00 1988-12-19 01:00:0050 TUNGURAHUA andesite 1999-05-15 00:00:00 1916-03-03 00:00:00(Tg) 1999 58.58% 1999-10-15 00:00:00 16 1999-10-15 00:00:0051 UNZEN daite 1989-11-15** 00:00:00 1792-02-10 00:00:00 l:150(Uz) 1990 65.31% 1991-02-12 00:00:00 1991-02-12 00:00:00 t:>4.752 USU daite/rhyolite 1943-12-28 00:00:00 1853-03-06 00:00:00 l: 70?1943 (Us1) 70.24% 1944-08-15 00:00:00 1944-08-15 00:00:00 17 t:411Range of SiO2 ontent is 58.5-64%wt12In Christenson [2000℄ the onset is not lear, but from www.volano.si.edu BGVN(20:05) onset mid April13from Kokelaar 2002, mid June, 1995-07-18 beginning of phreati ativity, poor information from seismiitybefore.14from Yokoyama, 196415problemati onset run up time, hoose mid September, but inrease seismiity started in july 88 fromOkada et al.,199016onset of both run up and repose time are from www.volano.si.edu17from Showa-Shinzan diary Aug, 17, 1944 with some ambiguity, so hose 08/15



Tables 119Volano Magma Run-up Repose time VolumeSiO2 wt% yyyy-mm-dd yyyy-mm-dd [106m3℄HHMMSS HHMMSS53 USU daite 1977-08-05 16:00:00 1944-08-15 00:00:00 t:1001977 (Us2) 69.65% 1977-08-07 00:00:00 1977-08-07 00:00:00(32 hrs)54 USU daite 2000-03-27 08:00:00 18 1977-08-07 00:00:002000 (Us3) 68.89% 2000-03-31 13:10:00 2000-03-31 00:00:00Table 3.1: Data set of run-up times, repose times, silia ontent and volume erupted. For someeruptions the run-up time duration is also braketed together with the onset date. In thoseases we only found the spei�ation of the duration of the preursory ativity and not thepreise start time. The start date for those eruptions is a onvention that allows us to usea homogeneous notation for all event and easily onvert into Julian days. In nearly all asesthe eruption start point is assumed to be at 00:00:00. The exeptions are Usu 2000 eruptionand Okmok 2008 eruption where the real onset time for both preursory ativity and eruptionstart are known. When eruptions are marked with * this means that month and day of onsetare set as 01-15 by onvention in absene of other information, while those marked with **,day of onset is set as 15th day of month by onvention in absene of other information. Involume olumn l means lava and t tephra. The referenes list is given below with the samealphabetial order as in this table.

18real onset times



120 TablesVolano SiO2 T Crystal Main rystal Visosity [Pa s℄wt % [0C℄ volume % of melt phase (melt + rystal)Tokahi 1962 52.78 1000 48 Plagiolase 7.784 x 105Tokahi 1988 53.15 1000 42 Plagiolase 2.981 x 105Piton de la 48.74 1200 22 Olivine 6.707 x 101Fournaise 1983Piton de la 47.78 1200 12 Olivine 2.100 x 101Fournaise 1986Piton de la 48.74 1200 20 Olivine 6.795 x 101Fournaise 1998El Chihon 55.88 850 53 Plagiolase 5.366 x 107Galeras 59.90 900 50 Plagiolase 2.718 x 107Mauna Loa 1975 52.04 1200 20 Olivine 1.321 x 102Mauna Loa 1984 51.37 1200 20 Olivine 1.008 x 102Popoatepetl 62.41 900 39 Plagiolase 3.650 x 106Usu 1943 70.24 900 13 Plagiolase 4.914 x 107Usu 1977 69.65 900 4 Plagiolase 2.074 x 107Usu 2000 68.89 900 4 Plagiolase 1.769 x 107Hekla 1970 54.90 1100 10 Plagiolase 2.111 x 102Hekla 2000 55.00 1100 10 Plagiolase 4.475 x 103Guagua Pihinha 65.79 900 10 Plagiolase 4.204 x 106Soufriere Hills 60.02 900 40 Plagiolase 4.042 x 106Table 3.2: Data used to alulate the visosity, last olumn on the right using the softwareprogram Con�ow (Mastin and Ghiorso, 2000). For the melt omposition used as input,please refers to referene list of Table 1. Pressure is always hosen equal to 26 MPa andthe melt water ontent is always zero. The value of visosity refers to melt + rystal.



Referene for database in Table 3.1 121Referene list for Table 3.1Augustine 2006BGVN, Bulletin Global Volanism Network monthly report 30:12 and 31:01http://www.volano.si.edu/.Cervelli, P.F., Fournier,T., Freymueller,J. & Power,J.A., 2006. Ground deformationassoiated with the preursory unrest and early phases of the January 2006 eruption ofAugustine Volano, Alaska, Geophys Res Lett, 33, L18304, doi:10.1029/2006GL027219.Roman,D.C., Cashman,K.V., Gardner,C.A., Wallae,C.A. & Donovan,C.A., 2006. Stor-age and interation of ompositionally heterogeneous magmas from the 1986 eruption ofAugustine Volano, Alaska, Bull Volanol, 68, 240�254.BezymiannyBogoyavlenskaya, G. E., Braitseva, O.A., Melekestsev, I.V., Kiriyanov, V.YU. & Miller,D.C., 1985. Catastrophi eruptions of the direted-blast type at Mount Saint Helens,Bezymianny and Shiveluh volanoes, J of Geodynamis, 3, 189�218.Tokarev, P.I. , 1985. The predition of large explosions of andesiti volanoes, J ofGeodynamis, 3, 219�244. El ChihonDe la Cruz-Reyna, S. & and Martin Del Pozzo, A.L. , 2009. The 1982 eruption ofEl Chihon volano, Mexio: eyewitness of the disaster, Geo�sia Internaional 48, 1,21�31.Havskov, J., De la Cruz-Reyna, S., Singh, S.K., Medina, F. & Gutierrez, C., 1983. Seis-mi ativity related to the Marh-April, 1982 eruptions of El Chihon volano, Chiapas,Mexio. Geophys Res Lett, 10, 4 293-296.Jimenez, Z., Espindola, V. H. & Espindola, J.M. , 1999. Evolution of the seismi ativityfrom the 1982 eruption of El Chihon Volano, Chiapas, Mexio, Bull Volanol, 61, 411�422, 1999.



122 Referene for database in Table 3.1Luhr, J., Carmihael, I.S.E. & Varekamp, J. C., 1984. The 1982 eruptions of El Chihonvolano, Chiapas, Mexio: mineralogy and petrology of the anhydrite-bearing pumies,J Volanol Geotherm Res, 23, 69�108.Maias, J. L. , Are, J. L., Mora, J. C., Espindola, J. M., Sauedo,R. & Manetti,P. , 2003. A 550-year-old Plinian eruption at El Chihon Volano, Chiapas, Mexio:Explosive volanism linked to reheating of the magma reservoir, J Geophys Res, 108,B122569, doi:10.1029/2003JB002551.Tilling, R. I., 2009. El Chihon �surprise� eruption 1982: lessons for reduing volanorisk, Geo�sia Internaional, 48, 1, 3�19.Yokoyama, I., 1988. Seismi energy release from volanoes, Bull Volanol 50,1�13.Yokoyama, I., De la Cruz-Reyna, S. & Espindola, J.M., 1992. Energy partition in the1982 eruption of E1 Chihon volano, Chiapas, Mexio, J Volanol Geotherm Res, 51,1�21. GalerasCalvahe, M.L. & Williams, S.N., 1997. Emplaement and petrologial evolution of theandesiti dome of Galeras Volano, 1990-1992, J Volanol Geotherm Res, 77, 57�69.Calvahe, M.L., Cortes, G.P. & Williams, S.N., 1997. Stratigraphy and hronology ofthe Galeras volani omplex, Colombia, J Volanol Geotherm Res, 77, 5�19.Cortes, G.P. & Raigosa J.A., 1997. A synthesis of the reent ativity of Galeras volano,Colombia: Seven years of ontinuous surveillane, 1989-1995, J Volanol Geotherm Res,77, 101�114.Gil Cruz, F. & Chouet, B., 1997. Long-period events, the most harateristi seismi-ity aompanying the emplaement and extrusion of a lava dome in Galeras Volano,Colombia, in 1991, J Volanol Geotherm Res, 77, 121�158.Grimsvotn 2004BGVN, Bulletin Global Volanism Network monthly report 29:10 http://www.volano.si.edu/.



Referene for database in Table 3.1 123Hjaltadottir,S., Geirsson,H. & Skaftadottir,Þ., 2005. Seismi ativity in Ieland dur-ing 2004, Jökull, 55,107-119 http://en.vedur.is/earthquakes-and-volanism/reports-and-publiations/.Sigmarsson,O., Karlsson, H. R. & Larsen, G. 2000. The 1996 and 1998 subglaial erup-tions beneath the Vatnajökull ie sheet in Ieland: ontrasting geohemial and geo-physial inferenes on magma migration, Bull Volanol , 61, 468�476.Sturkell,E , Einarsson P, Sigmundsson,F., Geirsson, H., Olafsson,H., , Pedersen, R., deZeeuw-van Dalfsen,E, Linde, A.T., Saks, S.I. & Stefansson R, 2006. Volano geodesyand magma dynamis in Ieland, J Volanol Geotherm Res 150, 14 � 34Guagua PihinhaBGVN, Bulletin Global Volanism Network monthly report from 23:08 to 24:10http://www.volano.si.edu/ .Garia-Aristizabal,A., Kumagai, H. , Samaniego,P. , Mothes,P., Yepes, H. & Monzier,M., 2007. Seismi, petrologi, and geodeti analyses of the 1999 dome-forming eruptionof Guagua Pihinha volano, Euador, J Volanol Geothem Res, 161, 333�351.Wright, H. M. N., Cashman,K.V., Rosi, M. & Cioni, R., 2007. Breadrust bombs asindiators of Vulanian eruption dynamis at Guagua Pihinha volano, Euador, BullVolanol 69, 281�300. HeklaMoune, S., Gauthier, P.J., Gislason, S.R. & Sigmarsson, O., 2006. Trae element de-gassing and enrihment in the eruptive plume of the 2000 eruption of Hekla volano,Ieland, Geohim Cosmohim Ata 70, 461�479.Sverrisdottir,G., 2007. Hybrid magma generation preeding Plinian silii eruptions atHekla, Ieland: evidene from mineralogy and hemistry of two zoned deposits, GeolMag 144, 4 ,643�659.Soosalu, H., Einarsson,P., Þorbjarnardottir,B.S., 2005. Seismi ativity related to the2000 eruption of the Hekla volano, Ieland, Bull Volanol, 68, 21�36.Mauna Loa



124 Referene for database in Table 3.1Lokwood, J.P., Dvorak, J.J., English, T.T., Koyanagi, R.Y., Okamura, A.T., Summers,M.L. & Tanigawa, W.R., 1987. Mauna Loa 1974-1984: a deade of intrusive and extru-sive ativity, In: in Deker, R.W, Wright, T.L., and Stau�er, P.H., (eds.), Volanism inHawai`i, U.S. Geologial Survey Professional Paper 1350, 537�570.MiyakejimaNakada, S., Nagai, M., Kaneko, T., Nozawa, A. & Suzuki-Kamata, K., 2005. Chronologyand produts of the 2000 eruption of Miyakejima Volano, Japan, Bull Volanol, 67, 219�230.Saito, G., Uto, K., Kazahaya, K., Satoh, H., Kawanabe, Y. & Shinohara, H., 2005.Petrologial harateristis and volatile ontent of magma from the 2000 eruption ofMiyakejima Volano, Bull Volanol 67, 268�280.Uhira, K., Baba, T., Mori, H., Katayama, H. & Hamada, N., 2005. Earthquake swarmspreeding the 2000 eruption of Miyakejima volano, Japan, Bull Volanol, 67, 219-230.Mount Saint HelensChristiansen, R.L. & Peterson, D.W., 1981. Chronology of the 1980 eruptive ativity,In: The 1980 eruptions of Mount St. Helens, Washington, Lipman, P.W., Mullineaux,D.R., U.S. Geologial Survey Professional Paper 1250, 3�17.Endo, T.E., Malone, S.D., Noson, L. L. & Weaver, C.S., 1981. Loations, magnitude,and statistis of the Marh 20 - May 18 earthquake sequene, In: The 1980 eruptionsof Mount St. Helens, Washington, Lipman, P.W., Mullineaux, D.R., U.S. GeologialSurvey Professional Paper 1250, 93�108.Lipman, P.W., Norton, D.R., Taggart, Jr, J.E., Brandt, E. L. & Engleman, E. E.,1981. Compositional variations in 1980 magmati deposits, In: The 1980 eruptionsof Mount St. Helens, Washington, Lipman, P.W., Mullineaux, D.R., U.S. GeologialSurvey Professional Paper 1250, 631-649.Moran, S.C., Malone, S.D., Qamar, A.I., Thelen, W.A., Wright, A.K. & Caplan-Auerbah,J., 2008. Seismiity assoiated with renewed dome building at Mount St.Helens, 2004-2005, In: A volano rekindled; the renewed eruption of Mount St. Helens, 2004-2006,



Referene for database in Table 3.1 125Sherrod, D.R., Sott, W.E., and Stau�er, P.H., U.S. Geologial Survey ProfessionalPaper 1750, 2, 27�54.Pallister, J.S., Thornber, C.R., Cashman, K.V., Clynne, M.A., Lowers, H.A., Mandev-ille, C.W., Brown�eld, I.K. & Meeker, G.P., 2008. Petrology of the 2004-2006 MountSt. Helens lava dome-impliations for magmati plumbing and eruption triggering, In:A volano rekindled; the renewed eruption of Mount St. Helens, 2004-2006, Sherrod,D.R., Sott, W.E., and Stau�er, P.H., U.S. Geologial Survey Professional Paper 1750,30, 647-702. Mount SpurrGardner, C.A., Cashman, K.V. & Neal, C.A., 1998. Tephra-fall deposits from the 1992eruption of Crater Peak, Alaska: impliations of last textures for eruptive proesses,Bull Volanol 59, 537�555.Power, J.A., Jolly, A.D., Nye, C.J. & Harbin, M.L., 2002. A oneptual model of theMount Spurr magmati system from seismi and geohemial observations of the 1992Crater Peak eruption sequene, Bull Volanol 64, 206�218.OkmokBGVN, Bulletin Global Volanism Network monthly report 33:06http://www.volano.si.edu/ .Silia ontent Jessia Larsen personal ommuniation.PavlofAlaskan Volanoes Observatory, Reported ativity about Pavlof volano 2007 eruptionhttp://www.avo.alaska.edu/volanoes/volat.php?volname=Pavlof.BGVN, Bulletin Global Volanism Network monthly report from 32:08http://www.volano.si.edu/ .Roah, A.L., Benoit, J.P., Dean, K.G. & MNutt, S.R., 2001. The ombined use ofsatellite and seismi monitoring during the 1996 eruption of Pavlof volano, Alaska,Bull Volanol 62, 385�399.
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Figure 3.1: Repose time versus run-up time data. The error assoiate with the slope of theregression is equal to 0.3 and with the interept is 0.1. Labels of individual points orrespondto eah eruption doumented in Table 1. Magma omposition is based on the Le Bas et al(1986) lassi�ation.
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Figure 3.2: Regression analysis to infer an empirial relationship between silia ontent and vis-osity. Visosity is alulated using Con�ow with reported ompositional information (Mastin& Ghiorso, 2000). Please refer to Table 2 for more details.
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Figure 3.3: Repose time versus run-up time with visosity alulated using the regression linein Figure 2 for eah eruption.
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Figure 3.4: Shemati illustration of the physial model used in the text. Qi is the magmasupply rate. For more details, please refer to the text.

Figure 3.5: Average extrusion rate Qe, red ones, are alulated using repose times and volumesin Table 1 and ompared with those from White et al (2006), blue ones. The Qe's are alulatefor di�erent lass of magma omposition. For more detail please refer to the text.



Conlusions
In this dissertation we presented the three projet developed during my PhD studies. Wehave arried out two time preditable models embedded in a hierarhial Bayesian struture(BH_TPM and BH_TPMII), to desribe the behavior of eruptive atalog of open onduitvolanoes. The use of a Bayesian struture allows to expliitly and formally inlude in theanalysis any kind of unertainty (relative to data, models, and parameters). While in thelast hapter we have presented the inter-relationship between repose time, run-up time andvisosity.We have applied the BH_TPM to Kilauea eruptive atalog from 1923 to 1983 AD. Theresults have shown that interevent times depend on the previous erupted volume, as in aGeneralized Time Preditable Model (Sandri et al. 2005; Marzohi & Zaarelli 2006). Themodel has shown a reasonable �t with the data observed at Kilauea volano, although itwas not able to apture all the features and variability of the real atalog. We have foundalso that the Kilauea volano has a weak time preditable eruptive behavior. However, thesedisrepanies do not seem to a�et the foreasting apability of BH_TPM, that remainssuperior to the foreasting apability of a stationary Poisson model, a Log-Normal model andGeneralized Time Prediable Model.In the seond hapter we have arry out, as improvement of the BH_TPM, a new BayesianHierarhial model to test time preditability, the BH_TPMII. We have applied the modelto Kilauea eruptive atalog from 1923 to 1983 AD and to Mount Etna �ank eruptions from1607 to 2008 AD. The results have shown both volanoes having time preditable eruptivebehavior. The model have shown a good �t with the observed data for both volanoes andis also able to apture extreme values as a tail behavior of the distributions. In addition, theBH_TPMII have improved the data �tting ompared with those of BH_TPM. The foreastsobtained by BH_TPM II are superior to those provided by other statistial models for both



138 Conlusionvolanoes. In partiular we have improved the foreast performane ompared with those ofBH_TPM whih orroborate the hypotheses of building up the present model.The numerial values of the time preditable model parameters, inferred in both models,suggest the amount of the erupted volume ould hange the dynamis of the magma hamberre�lling proess during the repose period. This is an important feature that should be takeninto aount in modeling the magma hamber reharging proess for both Kilauea and MtEtna volanoes.Both BH_TPM and BH_TPMII have shown some limits in foreasting eruptions afterlong quiesene periods ompared with a Poisson proess. This feature ould be interpretedan additional omplexity for long interevent times ompared to the time preditable eruptivebehavior. A possible explanation may be addressed in the transition between open onduitregime and losed onduit regime where the time preditable assumption may fails (Marzohi& Zaarelli, 2006).Finally, in the last hapter looking at the inter-relationship between repose time, run-uptime and visosity, data have shown a strong positive orrelation between repose time andrun-up time for all lasses of magma omposition volanoes. In addition, both times reason-ably orrelated with silia ontent and, therefore with gross variations in magma visosity.Using extremely simpli�ed models of magma asent immediately before an eruption, we havesuessfully mathed the observed dependenies of the run-up time times on visosity. Thispreliminary results for the relationships between run-up and repose time observed here pro-vides a way to design a predition window appropriate to a partiular magmati system. Forinstane, if unrest begins on a low silia system with short quiesent period, one should expetan eruption to our within hours to days, if it is going to happen. On the other hand, fora high silia system that has experiened a very long quiesent time, an alert period shouldremain open for a muh longer period of time from days to years.
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