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General abstract

Forecasting the time, location, nature, and scale of volcanic eruptions is one of the most

urgent aspects of modern applied volcanology. The reliability of probabilistic forecasting

procedures is strongly related to the reliability of the input information provided, implying

objective criteria for interpreting the historical and monitoring data. For this reason both,

detailed analysis of past data and more basic research into the processes of volcanism, are

fundamental tasks of a continuous information-gain process; in this way the precursor events

of eruptions can be better interpreted in terms of their physical meanings with correlated

uncertainties. This should lead to better predictions of the nature of eruptive events.

In this work we have studied different problems associated with the long- and short-term

eruption forecasting assessment. First, we discuss different approaches for the analysis of the

eruptive history of a volcano, most of them generally applied for long-term eruption forecast-

ing purposes; furthermore, we present a model based on the characteristics of a Brownian

passage-time process to describe recurrent eruptive activity, and apply it for long-term, time-

dependent, eruption forecasting (Chapter 1).

Conversely, in an effort to define further monitoring parameters as input data for short-

term eruption forecasting in probabilistic models (as for example, the Bayesian Event Tree

for eruption forecasting -BET EF-), we analyze some characteristics of typical seismic activity

recorded in active volcanoes; in particular, we use some methodologies that may be applied

to analyze long-period (LP) events (Chapter 2) and volcano-tectonic (VT) seismic swarms

(Chapter 3); our analysis in general are oriented toward the tracking of phenomena that can

provide information about magmatic processes. Finally, we discuss some possible ways to

integrate the results presented in Chapters 1 (for long-term EF), 2 and 3 (for short-term EF)

in the BET EF model (Chapter 4).
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Introduction

Forecasting the time, location, nature, and scale of volcanic eruptions is one of the most

urgent aspects of modern applied volcanology. However, volcanoes are complex physical sys-

tems in which a completely deterministic description of the processes occurring before or

during an eruption is practically impossible. Studies on active volcanoes involve different

approaches that, in function of the time scale of interest, may provide useful information

for eruption forecasting. For example, research that deals with documentation of the past

eruptive activity by historic records, geologic mapping, stratigraphic studies, etc., may be the

base for long-term eruption-forecasting and volcanic-hazard studies, as e.g., Wickman (1976);

Klein (1982); Mulargia et al. (1985); De la Cruz-Reyna (1991); Ho (1991); Burt et al. (1994);

Bebbington and Lai (1996b); Marzocchi and Zaccarelli (2006). This is a typical problem in

which we do not have direct access to the physical processes, but we can have a record of the

response of the system; in particular, if some characteristic properties of the response of the

system (e.g. repose times) can be associated with a random variable, and if it is possible to

express a probability function for the random variable, then it is possible to define a proba-

bilistic model for the response of the considered system.

Conversely, if we are interested in short-term eruption forecasting, the use of monitoring

information is fundamental since it may allow to identify changes in geophysical and geo-

chemical parameters before, during, and after volcanic eruptions. Within this area we can

find the bulk of geophysical research on volcanoes, including applications from different ar-

eas as volcano seismology, geodesy, geochemistry, etc. A general description of the most used

geophysical and geochemical monitoring techniques may be found, for example, in texts as

Gasparini et al. (1992); Scarpa and Tilling (1996); Marzocchi and Zollo (2008).

Given the extreme complexities and nonlinearities of volcanic processes, the combination of

both –past activity records and monitoring data– provides the most comprehensive and logi-

cal basis to achieve the maximum possible level of knowledge about specific volcanic systems,

but also for the forecasting in a probabilistic framework of their future activity. Some physical

processes (e.g. planetary mechanics) are so regular that their histories can be successfully

extrapolated into the future, and predictions can thus be done just based on a deterministic
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basis. Conversely, physical phenomena such as volcanic eruptions are much more variable in

nature, and in most of the cases extrapolating their past and current processes into the future

can only be done (if possible at all) on a probabilistic basis; however, deterministic rules can

be introduced in probabilistic models to improve predictions, then in this context probabilis-

tic and deterministic approaches are not incompatible since the former, more general, can

include information from deterministic models.

Beyond the natural scientific interest that volcanoes arise, there is a social fact that high-

lights the importance of the research on volcanoes. Millions of people around the world live

close to an active volcano, and authorities in many places are becoming aware of the problem;

for this reason there is an urgent need of reliable quantitative models for long- and short-term

eruption forecasting and for volcanic hazard assessment.

Preamble of the thesis: The Bayesian Event Tree Model for Erup-

tion Forecasting

The Bayesian Event Tree model (BET) of Marzocchi et al. (2004, 2008) is a quantitative tool

to calculate and visualize probabilities related to eruption forecasting (EF) and volcanic haz-

ard (VH) assessment. It is based on a fully probabilistic Bayesian scheme and introduces a

Fuzzy approach to manage monitoring measurements, which provides the advantage of being

applicable at different time scales. For example, during a quiet period of the volcano, long-

term EF is estimated by accounting mainly for the past activity of the volcano; conversely,

during unrest, the method allows mid- to short-term EF to be estimated by considering dif-

ferent patterns of pre-eruptive phenomena (e.g., Newhall and Hoblitt, 2002; Marzocchi et al.,

2004, 2008). Short- and long-term concepts refer to the expected characteristic time in which

the volcanic processes show significant variations (and must not be confused with the fore-

casting time window): for instance, during unrest the time variations occur in time scales

much shorter than the changes expected during a quiet phase of the volcano (for details

see, e.g., Marzocchi et al., 2008). In summary, BET applied to EF (BET EF) can handle both

volcanological and monitoring information, and may be dynamically used for long- and short-

term eruption forecasting; furthermore, it takes properly and explicitly into account the epis-

temic (data- or knowledge-limited) and aleatory (stochastic) uncertainties: this guarantees

reliable outputs, given reliable input information. For a general overview of the mathemati-

cal background, see Appendix A, and/or the electronic supplementary material in Marzocchi

et al. (2008).

Aims and Outline of the thesis

The reliability of probabilistic forecasting procedures is strongly related to the reliability of

the input information provided, implying objective criteria for interpreting the historical and

monitoring data. For this reason both, detailed analysis of past data and more basic research
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into the processes of volcanism, are fundamental tasks of a continuous information-gain pro-

cess so that the precursor events of eruptions can be better interpreted in terms of their

physical meanings with correlated uncertainties. This should lead to better predictions of the

nature, time, location, and magnitude of eruptive events.

In this work we have studied different problems associated with the long- and short-term

eruption forecasting assessment. The topics discussed in this Ph.D. thesis are the result of a

close collaboration with many scientists, in particular: Dr. Warner Marzocchi (tutor, INGV-

Roma), Dr. Jacopo Selva (INGV-Bologna), Dr. Laura Sandri (INGV-Bologna), Dr. Anna Maria

Lombardi (INGV-Roma), and Dr. Eisuke Fujita (NIED-Japan); each one of them are coau-

thors of at least one of the research topics produced (paper-drafts already submitted or in

preparation).

• Long-term Eruption Forecasting

In Chapter 1 we discuss different approaches for the analysis of the eruptive history of

a volcano, most of them generally applied for long-term eruption forecasting purposes;

in particular we compare and test different models as time-predictable, size-predictable,

Poisson, Lognormal, Gamma, Weibull, and Inverse Gaussian. We present a model to de-

scribe recurrent eruptive activity, and apply it for long-term, time-dependent, eruption

forecasting. This physically-motivated probabilistic model is based on the characteris-

tics of the Brownian passage-time distribution; the physical process defining this model

can be described by the steady rise of a state variable from a ground state to a failure

threshold; adding Brownian perturbations to the steady loading produces a stochastic

load-state process (a Brownian relaxation oscillator) in which an eruption relaxes the

load state to begin a new eruptive cycle. The Brownian relaxation oscillator and Brown-

ian passage-time distribution connect together physical notions of unobservable loading

and failure processes of a point process with observable response statistics. The Brown-

ian passage-time model is parameterized by the mean rate of event occurrence, µ, and

the aperiodicity about the mean, α. We apply this model to analyze the eruptive history

of Miyakejima volcano, Japan, and conclude that it provides a satisfactory description

of the data, with better performance respect to other models often used in literature.

Furthermore, since it is a physically-motivated model, it provides also an insight into

the macro-mechanical processes driving the system. The work presented in Chapter 1

has been submitted (December 2009) to the Bulletin of Volcanology.

• Volcano Seismology and Short-term Eruption Forecasting

In an effort to define further monitoring parameters as input data for short-term erup-

tion forecasting in probabilistic models as BET, we analyze some characteristics of typi-

cal seismic activity recorded in active volcanoes; in particular, we use some methodolo-

gies that may be applied to analyze long-period (LP) events (Chapter 2) and volcano-
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tectonic (VT) seismic swarms (Chapter 3); our analysis in general are oriented toward

the tracking of phenomena that can provide information about magmatic processes.

The rationale behind the choice of volcano seismology data for our analysis is because

nearly every recorded volcanic eruption has been preceded and/or accompanied by seis-

mic activity beneath or near the volcano (e.g., Aki, 1992; McNutt, 1996). Seismology

may be considered as one of the most important tools for monitoring volcanoes since it

can provide information (i.e. strong seismic parameters) that, considered together with

other monitoring parameters, can help volcanologists both to improve their understand-

ing of some physical processes occurring inside volcanoes, and to produce better data to

feed probabilistic eruption forecasting models. In this context, volcano seismology has

a fundamental role since (1) it is probably the geophysical tool more widely used for

the monitoring of active volcanoes, and (2) one of its central objectives is to understand

the nature and dynamics of seismic sources associated with the injection and transport

of magma and related hydrothermal fluids.

Active volcanoes are the source of a great variety of seismic signals, this is because

volcanic seismic sources involve different kinds of physical processes. Two basic fami-

lies of processes can usually be established to classify volcanic seismicity (e.g., Chouet,

1996): the first family consists of volumetric sources in which the fluids play an active

role in the generation of elastic waves (that in a rough generalization we call Long-

Period (LP) family), and the second consists of shear or tensile sources involving brittle

rock failure (Volcano-Tectonic (VT) family).

In Chapter 2 we consider LP seismicity; the source mechanisms associated with LP

seismic events and volcanic tremor are intimately associated with fluids contained in a

solid rock matrix. Both the frequency content and the characteristic long-lasting coda

of these seismic signals are of fundamental importance since they represent evidences

of the characteristic properties of the source, as have been highlighted by many authors

using diverse models (e.g., Aki et al., 1977; Chouet, 1981, 1982, 1985, 1988; Ferrazzini

and Aki, 1987; Fujita et al., 1995; Neuberg et al., 2000; Morrissey and Chouet, 2001;

Fujita and Ida, 2003). In particular, in Chapter 2 we present an alternative method

based on probabilistic inverse theory to estimate the parameters of a simple concep-

tual model (presented by Kumazawa et al. (1990) about twenty years ago) as a method

for physically-based spectral analysis. The probabilistic formulation leads to the defi-

nition of a (posterior) probability distribution in the model space σ(m) which results

of combining prior information (on data and model parameters) with new information

obtained by measurements (the time series). This kind of formulation may be helpful

for different kinds of geophysical problems, specially when it exists a nonlinear rela-

tionship between the observed data and the parameters of a given model. Using this

formulation we have performed some numerical tests using synthetic time series, and

we did apply the method to analyze the waveforms of Long-Period events from two
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volcanoes: Cotopaxi (Ecuador) and Miyakejima (Japan). The procedure described may

be an important tool for objectively monitor the characteristic complex frequencies of

volcanic LP events; in this way, changes in the volcanic activity may be highlighted and

families of events of particular interest could be identified for further analysis. Beyond

this possible application for monitoring, our approach can also be used to analyze in-

dividual events as an alternative to the existent methodologies. The work presented in

Chapter 2 has been submitted (January 2010) to the Geophysical Journal International.

On the other hand, in Chapter 3 we analyze some properties of VT seismic swarms

using a non-stationary epidemic-type, aftershock sequences (ETAS) modeling; we fol-

low a procedure based on the model proposed by Lombardi et al. (2006) to analyze

complex seismic swarms. We analyze seismic swarms in both tectonic and volcanic

environments, in order to extract information useful to characterize (VT) swarms di-

rectly associated with dike migration. The final goal of this analysis is to get insights

for a quantitative tool useful to interpret VT swarms in almost real-time during mon-

itoring procedures, yielding physical constrains of the driving processes. To explore

possible characteristic properties of VT swarms during dike intrusions, we analyze and

compare different earthquake swarms selected from three general groups: (1) swarms

from purely tectonic environments, (2) swarms occurred in volcanic areas but that did

not preceded nor accompany eruptive activity, and (3) swarms in volcanic areas be-

fore/during an eruptive process. Then we characterize VT swarms of the third group in

terms of the parameters of a non-stationary ETAS model in which both the background

seismicity rate (λ0) and p-value are allowed to change through time. The work pre-

sented in Chapter 3 at the moment is in preparation to be submitted to a international

JCR journal.

• Integration in the Bayesian Event Tree (BET EF)

In Chapter 4 we discuss some possible ways to integrate the results presented in Chap-

ters 1 (for long-term EF), 2, and 3 (for short-term EF) in the BET EF model. As discussed

before, BET is a probabilistic model that merges all kinds of volcanological information

to obtain probability of any relevant volcanic event, and handles both volcanological

and monitoring information which allows to use it dynamically for long- and short-term

eruption forecasting. For this reason BET is a valid platform to integrate the results

of this work; for instance, the Brownian model described on Chapter 1 is an example

of how a time-dependent, long-term probabilistic model based on the eruptive history

of the volcano can be derived, which could be integrated within the long-term analy-

sis of BET. On the other hand, the results obtained from volcano seismology analysis

in Chapters 2 and 3, may be integrated as monitoring parameters that, together with

parameters from other disciplines, may provide information to improve the short-term

eruption forecasting assessment during a volcanic crisis. The strategy adopted here

to introduce the information in the monitoring part of BET is based on the Fuzzy set
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theory; in this way, two monitoring parameters are defined, which are the result of the

respective analysis performed on LP and VT data, and the use of both theoretical models

for interpretation, and Fuzzy logic to translate this information into degrees of anomaly

for BET.



Chapter 1
A Brownian Model for Recurrent

Volcanic Eruptions: an Application to

Miyakejima Volcano (Japan)

“We have knowledge of the past, but we

can’t control it. We can control the future,

but we have no knowledge of it”.

Claude Shannon (1960)

Abstract

The definition of probabilistic models as mathematical structures to describe the response of

a volcanic system is a plausible approach to characterize the temporal behavior of volcanic

eruptions, and constitutes a tool for long-term eruption forecasting. This kind of approach is

motivated by the fact that volcanoes are complex systems in which a completely determin-

istic description of the processes preceding eruptions is practically impossible. To describe

recurrent eruptive activity we apply a physically-motivated probabilistic model based on the

characteristics of the Brownian passage-time distribution; the physical process defining this

model can be described by the steady rise of a state variable from a ground state to a failure

threshold; adding Brownian perturbations to the steady loading produces a stochastic load-

state process (a Brownian relaxation oscillator) in which an eruption relaxes the load state to

begin a new eruptive cycle. The Brownian relaxation oscillator and Brownian passage-time

distribution connect together physical notions of unobservable loading and failure processes

of a point process with observable response statistics. The Brownian passage-time model is

parameterized by the mean rate of event occurrence, µ, and the aperiodicity about the mean,

α. We apply this model to analyze the eruptive history of Miyakejima volcano, Japan, and con-

clude that it provides a satisfactory description of the data, with better performance respect to
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other models often used in literature (e.g. Weibull, Gamma, Lognormal, etc.). Furthermore,

since it is a physically-motivated model, it provides also an insight into the macro-mechanical

processes driving the system.

1.1 Introduction

Volcanoes can be viewed as complex physical systems in which a completely deterministic

description of the processes occurring before or during an eruption is practically impossible.

This fact motivates the definition and development of probabilistic models as mathematical

structures to describe physical phenomena: this is a typical problem in which we do not have

direct access to the physical processes, but we can have a record of the response of the sys-

tem. In particular, if some characteristic properties of the response of the system (e.g. event

times) can be associated with a random variable, and if it is possible to express a probability

function for the random variable, then it is possible to define a probabilistic model for the

response of the considered system.

A time series of eruptions from a single volcano can be treated as a stochastic point pro-

cess with individual eruptions as (random) independent events in time. Statistical analysis

of both repose time and erupted volume catalogs have been performed for a large number of

volcanoes (e.g., Wickman, 1976; Klein, 1982; Mulargia et al., 1985, 1987; De la Cruz-Reyna,

1991; Burt et al., 1994; Marzocchi and Zaccarelli, 2006), mainly for those with frequent erup-

tive activity and where detailed catalogs exist. The main objective of this kind of analysis is

to develop probabilistic models to understand the past eruptive activity of the volcano and

to forecast its future behavior. Despite some general models for eruption occurrences exist,

we argue that a more skillful forecast can be achieved trying also to capture the peculiarities

that characterize the behavior of each single volcano. For this reason it is often necessary to

perform tests for different trial models in order to identify which one explains better our data.

When treating eruptions as events in time, several simplifying assumptions must be made

(Klein, 1982; Ho, 1991): although the onset date of an eruption is generally well constrained,

the duration is harder to determine. In our analysis, we ignore eruption duration since we

take the onset date as the most physically meaningful, and measure repose times from one

onset date (of an eruptive cycle) to the next. In this way, our modeling intends to describe the

waiting times of the long-term physical processes governing renewed volcanic activity (under-

stood as episodes of new magmatic intrusions entering in the volcanic system and triggering

new eruptive cycles). Once the volcanic system has been perturbed and a new eruptive cycle

has started, the short-term behavior of the eruptive activity may follow different patterns dur-

ing the gradual decline of activity; in this context, sporadic eruptive episodes in a short time

window (respect to the repose time) after the onset of a new eruptive cycle cannot be de-

scribed using the former long-term model. Thus, the definition of repose time from this point

of view is not exactly equivalent to the classic concept of non-eruptive period; this assumption

seems justified because most eruption durations are much shorter that typical effective repose
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intervals (e.g., Klein, 1982).

Up to now distinct conceptual models have been proposed to describe the eruptive behavior

of different volcanoes around the world. The most frequent solutions describe the eruptive

activity in terms of (1) a homogeneous Poisson processes in time domain (e.g., Klein, 1982;

De la Cruz-Reyna, 1991; Marzocchi and Zaccarelli, 2006), (2) Time-Predictable processes (e.g.,

Burt et al., 1994; Sandri et al., 2005) or (3) Size-Predictable processes (e.g., Burt et al., 1994;

Marzocchi and Zaccarelli, 2006). In our analysis, none of these existing models successfully

explains the eruptive activity of Miyakejima volcano, which seems to show a more regular

behavior. A Non-homogeneous Poisson process modeled using a Weibull process (e.g., Ho,

1991; Bebbington and Lai, 1996a,b) provides a quite better explanation of the observed data,

however the Weibull process possesses some undesirable features that are difficult to explain

in volcanological applications (e.g., Bebbington and Lai, 1996a).

In this chapter we present an analysis of the time series of repose times (as defined before),

τ , and eruption volumes of Miyakejima volcano. In the first part we perform a completeness

analysis of the catalog to define the period of uniformity in the data. Then we test differ-

ent physically-based, trial models to evaluate which one provides the best description of the

observations, and discuss their features for practical applications in eruption forecasting.

1.2 Miyakejima volcano and data set

1.2.1 Miyakejima volcano

Miyakejima island, located about 200 km south of Tokyo (Fig. 1.1), is one of the most active

basaltic volcanoes in Japan. Its recurrent eruptive behavior has been suspected but up to now

a detailed quantitative analysis based on its past activity has not been performed. In most

historical eruptions, basaltic magma and scoria erupted mainly from flank fissures (Tsukui

and Suzuki, 1998) and most eruptions lasted a short time (a day to a month). The latest

eruptive cycle started in June 2000 and a caldera was formed at the submit; Since then, the

volcano has been showing high activity levels for more than 9 years by now. On the basis

of surface phenomena observed, many authors have divided this eruptive period in at least

four stages (e.g., Nakada et al., 2005; Ueda et al., 2005): (1) magmatic intrusion (1 day), (2)

summit subsidence (10 days), (3) Explosion (40 days), and (4) gas emissions accompanied

by small seismic swarms, deformation and explosions (>9 years). The total volume of tephra

erupted was about 0.009km3(DRE), which is much smaller than the volume of the resulting

caldera (0.6km3) (Nakada et al., 2005).

Here we analyze a data set containing the repose periods and volumes of lava and tephra

emitted by Miyakejima volcano based on the data published by Tsukui and Suzuki (1998)

and from the Global Volcanism Program catalog (Simkin and Siebert, 2002-). The data set

was updated introducing information of the last eruption (June 2000) from Nakada et al.
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Figure 1.1: Map of the Miyakejima volcano and location in the Izu island group, Japan.
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(2005). Table 1.1 is a summary of the eruptive history of Miyakejima merging all sources of

information (Tsukui and Suzuki, 1998; Nakada et al., 2005; Simkin and Siebert, 2002-).

Table 1.1: Summary of the eruptive history of Miyakejima

(this table updates the catalog provided by Tsukui and Suzuki

(1998). The volume of the 2000 eruption is from Nakada

et al. (2005); some dates missing in Tsukui and Suzuki (1998)

are from the Global Volcanism Program (Simkin and Siebert,

2002-). The VEI values are calculated based on the DRE vol-

umes using the criteria defined by Newhall and Self (1982).

Eruption numbers accompanied by (∗) mark are those consid-

ered in the present study (after the completeness analysis).

No. Kind Date Volume+ VEI

29∗ 2000 Scoria 2000 Jun 27 (AD) 0.009 3

28∗ 1983 Scoria + Lava 1983 Oct 03 (AD) 0.007 2

27∗ 1962 Scoria + Lava 1962 Aug 24 (AD) 0.006 2

26∗ 1940 Scoria + Lava 1940 Jul 12 (AD) 0.015 3

25∗ 1874 Scoria + Lava 1874 Jul 03 (AD) 0.010 3

24∗ 1835 Lava 1835 Nov 11 (AD) <0.001 <2

23∗ 1811 Scoria 1811 Jan 27 (AD) <<0.010 2

1769 (?) Lava 0.001

22∗ 1763 (?) Lava 1763 Aug 17 (AD) 0.001 3

Shinmio Explosion Breccia (SMB) 0.031

1763 Scoria 0.033

21∗ 1712 Lava 1712 Feb 04 (AD) 0.001 2

20∗ 1643 Scoria 1643 Mar 31 (AD) 0.009 3

1643 Lava 0.003

19∗ Kamakata Lava (KKL) 1595 Nov 22 (AD) <0.001 <2

18∗ Benkenezaki Lava (BKL) 1535 Mar (AD) 0.003 2

17∗ Enokizawa Lava (EZL) 1469 Dec 24 (AD) 0.002 2

16 Son-ei Bokujo Ash (SBA) 1154 AD (?) 0.040 3

1154 Scoria <<0.010

15 Nanto Lava (NTL) 1085 AD (?) 0.012 2

Kamane Scoria (KMS) 10-11C AD (?) 0.010

14 Miike Explosion Breccia (MKB) 838-886 AD 0.040 3

Oyama Scoria 0.030

Oyama Lava 0.012

13 Kazahaya Scoria (KHS) 832 AD 0.007 2

12 Mitoribata Scoria (MBS) 1290 yBP 0.007 2

11 Daihannya-yama Scoria (DHS) 500 AD 0.010 3

Anegakata Lava 0.001

Table 1.1: continues in next page
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Table 1.1: (continued)

No. Kind Date Volume+ VEI

10 Sabigahama Explosion Breccia (SHB) 320 AD (?)<0.010 2

Togahama-south Lava (TSL) <0.001

9 Togataira Ash (TGA) 260 AD 0.040 3

Togataira Scoria (TGS) 0.005

Usuki-west Scoria (UWS) n.d

Igayazawa Scoria 0.010

8 Tairayama Lava (TYL) 2050 yBP 0.001 3

Tairayama Scoria (TYS) 0.020

7 Izu Scoria (IZS) 600 BC 0.050 3

6 Hatchodaira Accretionary Lapilli (HCA) 2500-3000 yBP 0.200 4

Furumio Explosion Breccia (FMB)

Hatchodaira Scoria (HCS) 0.170

Nagane Scoria (NGS) 1450 BC n.d.

5 Tsubota Scoria (TBS) 3000 yBP(?) 0.010 2

4 Mizutamari Explosion Breccia (MZB) 3500 yBP(?) 0.062 3

3 Igaya-east Scoria (IES) 3660 yBP <<0.010 2

2 Igaya Accretionary Lapilli (IGA) 4000 yBP 0.090 3

Izushita Lava (ISL) (?)0.001

1 Ofunato Explosion Breccia (OFB) 7000-8000 yBP 0.150 4
+ DRE Volumes, in km3

1.2.2 Data set of eruptions and completeness of the catalog

In order to extract unbiased information from a catalog it is necessary to check for its com-

pleteness. This issue is well known in seismology where the completeness of catalogs is often

checked by analyzing the Gutenberg-Richter law and/or the time evolution of the rate of

occurrence of events. In volcanology however, the incompleteness of a catalog of eruptions

may be more difficult to evaluate because there are just some weak indications that a general

power law can hold (Simkin and Siebert, 2002-), and also because we know that volcanoes

may have different eruptive regimes in their history and then the eruptive rate may change

with time (e.g., Ho, 1991; Marzocchi and Zaccarelli, 2006; Coles and Sparks, 2006). Due to

this dichotomy, when we talk about the completeness of a given eruptive sequence, we under-

stand it as a period of “uniformity” in the data set.

To analyze the completeness of the catalog we plot the cumulative number of eruptions in

time, as seen in Figure 1.2a, and identify changes in the statistics of the repose times. Changes

in the statistics of the sequence are identified applying a change point strategy (CHPT). The

change point hunting methods aim to find one or more statistically significant change points

in a sequence of data. Here we use a method based on the two-sample Kolmogorov-Smirnov
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Figure 1.2: (a) Cumulative number of eruptions with time, and Change Point analysis,

Miyakejima volcano. (b) The cumulative volume of erupted material is also shown for refer-

ence.

statistics (a non-parametric test for equal distributions), which has been proposed and tested

by Mulargia and Tinti (1985) and Mulargia et al. (1987).

The cumulative plot in Fig. 1.2a shows a curve with a slope changing with time. Changes

in the slope may be due to different factors as changes in the eruptive regime and/or under-

reporting of eruptions in past time (incompleteness of the catalog). Applying the CHPT strat-

egy, we identify one change point (with 0.01 s.l. threshold) between the eruptions 16 and

17 of the catalog (1154 and 1469 AD respectively, see table 1.1). It means that we can con-

sider the catalog to be “uniform” in the period from 1469 up to now (13 eruptive episodes),

and then our analysis is oriented to describe the eruptive regime of the volcano within this

period. It is important to remark that volcanoes may change eruptive regime through time:

our analysis and the derived eruption forecasting assessment is based on the eruptive regime

shown by the volcano in the last (around) 540 years, and is valid only under the assumption

that in the next future it will behave in the same way.



14 Long-term Eruption Forecasting: A Brownian model

1.3 Test Models

Most of the models considered are based on generic distributions that characterize renewal

processes that in general may have some physical meaning and applicability. A renewal

process has the property that the inter-occurrence times are independent and identically-

distributed, positive, random variables having a common distribution F (τ). We have also con-

sidered not renewal processes as the size-predictable (SPM) and the time-predictable (TPM)

models as possible models to describe the activity of the volcano.

Our analysis consists of different test which can be summarized as: (1) test of a SPM and

a TPM; (2) test of a homogeneous Poisson process in the time domain, (3) test of other possi-

ble renewal models describing different processes (e.g. recurrent, non-homogeneous Poisson,

etc.); in this case we have considered the Lognormal, Gamma, Weibull, and Inverse Gaussian

as possible candidate distributions.

1.3.1 Time predictable (TPM) and Size predictable (SPM) models

TPM and SPM are widely used in both seismological and volcanological literature. Both of

them imply a functional relationship between size (of eruptions) and repose times. In the

case of TPM, the time to the next eruption depends on the time required for magma entering

the storage system to reach the eruptive level (Burt et al., 1994). It can be described using

a general definition of the form τi ∝ [Vi]
β (Sandri et al., 2005). A reliable application of a

TPM requires that the size (e.g. erupted volume, explosivity index, etc.) of the eruptions

has to be significantly correlated to the logarithm of the time to the next eruption (Marzocchi

and Zaccarelli, 2006). The applicability of this model relies on two main assumptions: (1)

eruptions occur when a threshold of the magma volume in the storage system is reached, and

(2) the magma input in the storage system is a well defined function of the reservoir to be

filled to reach that threshold; for example, the specific case of β = 1 means that the input

rate is constant (Marzocchi and Zaccarelli, 2006).

On the other hand, in a SPM the duration of the repose time of the volcano (i.e. the time

since the last eruption) is the parameter useful to forecast the size of the next eruption. As for

the TPM case, the most general functional relationship between volumes and repose times

for a SPM is of the form Vi ∝ τβ
i (e.g., Marzocchi and Zaccarelli, 2006). In this case, the

model relies on two main assumptions: (1) the output of each eruption is determined only by

the magma accumulated since the last eruption, and (2) as in the previous case, the magma

enters in the plumbing system at a rate described by a well defined function of the magma

volume in the reservoir.
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1.3.2 Poisson Process in the time domain: random model of eruption occur-

rences

The Poisson process is an important model often used to describe the patterns of eruption

occurrences in volcanoes (e.g., Klein, 1982; Mulargia et al., 1985). It is mainly applicable to

major eruptive activity involving a significant release of mass and energy (De la Cruz-Reyna,

1991). In a Poisson process the repose times follow an Exponential distribution. It char-

acterizes a random volcano, which is one that is ready to erupt at any time. An alternative

possibility is that the volcano is in some sense periodic, and that a certain repose time is fa-

vored; if eruptions were periodic, the distribution of repose times would be peaked instead of

containing an exponentially decreasing number of larger times, as predicted by the Exponen-

tial model. In order to explore the degree of departure from a homogeneous Poisson process,

we calculate the coefficient of variation, η, given by

η =
σ

µτ
(1.1)

where µτ and σ are, respectively, the average and standard deviation of the repose times τ

(Marzocchi and Zaccarelli, 2006). The coefficient η may help us to quantify if and how much

the statistical distribution of τ differs from a Poisson process: for a Poisson process (and then

an Exponential distribution of τ), η = 1; more clustered distributions have η > 1 and for more

regular recurrent times η < 1 (e.g., Cox and Lewis, 1966; Marzocchi and Zaccarelli, 2006).

1.3.3 Renewal models described by Weibull, Gamma and Lognormal distribu-

tions

Different probabilistic models are often used in studies in the area of life-testing or reliability

theory, in general when the random variable τ represents the lifetime or time to failure of a

system. To analyze the intrinsic characteristics of this kind of probabilistic models, it is often

more informative to consider the hazard function (also known as hazard rate, or intensity

function) of the model than to look at the shape of the PDF or CDF directly; for this rea-

son we make extensive use of the hazard function to compare the different renewal models

considered. The hazard function describes the instantaneous failure rate, or the conditional

density of failure at a given time, considering the information that no event occurred until

that time. A more detailed description of the hazard function concept can be found in section

1.5.

The Exponential distribution (and then its implicit homogeneous Poisson process) has a con-

stant hazard function, highlighting its characteristic no-memory property. However, when

processes like wearing, improvement, learning, growth, etc. are implicit in the physical sys-

tem, then it is necessary to consider models where the hazard function must be a decreasing

or increasing function of time. The Weibull, Gamma, Lognormal and Inverse Gaussian (the

last one is described in the next section) are models with those characteristics that are widely

used in literature.



16 Long-term Eruption Forecasting: A Brownian model

The Weibull is one of the models most used in volcanological applications (e.g., Ho, 1991,

1996; Bebbington and Lai, 1996a,b). The Weibull process (WEI(ν,θ)) is one of the possible

generalizations of the Exponential case. If the volcanism is waning or developing, the model is

generalized to allow the rate of volcanic events (which is constant in the homogeneous case)

to be a decreasing or increasing function of time (Ho, 1996). This can be defined as a non-

homogeneous Poisson process (Bain, 1978). The Gamma distribution (GAM(ν,θ)) provides

an alternative generalization of the Exponential distribution but with different characteristics

respect to the Weibull; in fact, if we consider the hazard function for the Gamma model, the

event rate may increase some initially, but after some time the system would reach a stable

condition and from then on would be as likely to fail in one time interval as in another (Bain,

1978). This is considerably different in the Weibull model where, for θ > 1, the hazard func-

tion tends to infinity as the time tends to infinity. Finally, we also consider the possibility of

a Lognormal model, which has been considered for periodicity tests by some authors (e.g.,

Bebbington and Lai, 1996a). In this case, the hazard function has a similar behavior as the

Gamma model but with the difference that the asymptotic event-rate goes to zero as the time

goes to infinity.

1.3.4 Brownian Passage-Time Model

A particularly interesting renewal model is the Brownian passage-time Model. It was origi-

nally introduced by Matthews et al. (2002) and Ellsworth et al. (1999) to provide a physically-

motivated renewal model for earthquake recurrence. It is based on the properties of the

Brownian relaxation oscillator (BRO). A Brownian passage-time model considers an event

(earthquakes in Matthews’ model or renewed eruptive activity in our case) as a realization

of a point process in which new eruptive activity will occur when a state variable (or a set of

them) reaches a threshold (Xf) and at which time the state variable returns to a base ground

level (X0). Adding Brownian perturbations to steady loading of the state variable X produces

a stochastic load-state process. An eruption relaxes the load state to the characteristic ground

level and begins a new cycle. The load-state process is a BRO, while intervals between events

have a distribution known as Brownian passage-time distribution. Note that this is the name

used in physics literature; in statistics literature it is often known as Inverse Gaussian or Wald

distribution (Matthews et al., 2002).

In the conceptual Model of Matthews et al. (2002), the loading of the system has two com-

ponents: (1) a constant-rate loading component, λt, and (2) a random component, ǫ(t) =

σW (t), that is defined as a Brownian motion (where W is a standard Brownian motion and σ

is a nonnegative scale parameter). Standard Brownian motion is simply integrated stationary

increments where the distribution of the increments is Gaussian (which might be motivated by

central-limit arguments if we consider perturbations as the sum of many small, independent

contributions), with zero mean and constant variance. The Brownian perturbation process

for the state variable X(t) is defined as (Fig. 1.3):

X(t) = λt + σW (t) (1.2)



1.4 Data Analysis and Results 17

An event will occur when X(t) ≥ Xf ; event times are seen as “first passage” or “hitting” times

of Brownian motion with drift (Matthews et al., 2002). The BRO are a family of stochastic

renewal processes defined by four parameters: the drift or mean loading (λ), the perturba-

tion rate (σ2), the ground state (X0), and the failure state (Xf ). On the other hand, the

recurrence properties of the BRO (repose times) are described by a Brownian passage-time

distribution which is characterized by two parameters: (1) the mean time or period between

events, (µ), and (2) the aperiodicity of the mean time, α, which is equivalent to the familiar

coefficient of variation (defined in equation 1.1). The probability density for the Brownian

passage-time model is given by:

f(t;µ;α) =
( µ

2πα2t3

) 1
2

e



− (t−µ)2

2α2µt

ff

(1.3)

The state variable X(t) is a formal parameter of a point process model and represents a

constant-rate mean path that embodies a macroscopic view of a uniform loading of the vol-

canic system. It may summarize the macro-mechanics of the volcanic system controlled by

one or more physical variables. An explicit definition of the driving physical parameters may

be unrealistic and impossible to demonstrate from our analysis. Independently of its physical

nature, the state variable should be a parameter that accumulates with time during repose

episodes, up to a critical value beyond which the system becomes perturbed enough and a

new eruptive process may be triggered. Then, the eruptive process relaxes the system and the

state variable returns to a ground level and a new cycle starts. The perturbation factor ǫ(t)

represents the total sum of all other factors which may play a role in the recurrent eruptive

process considered and/or that may randomly disturb the state variable producing the aperi-

odicity of the mean time between eruptions (e.g. effects from tectonic environment, changes

in the magma rate supply, compositional changes, etc.). Fig. 1.3(a to d) exhibits four simu-

lated BRO paths (Eq. 1.2) with λ = 1, [Xf −X0] = 1, and σ = 0.1, 0.3, 0.5, 1.0. In particular,

let’s consider the typical length of a time interval between “failures” (jumps in X(t)) and

random variations in the lengths of these intervals. The load state X(t) must traverse the

distance [Xf − X0] and does so at average rate λ, so recurrence intervals will have average

length µ = [Xf − X0]/λ (e.g., Matthews et al., 2002). As can be seen in Fig. 1.3, relatively

small values of σ produce quite regular paths that closely resemble the deterministic relax-

ation oscillator and generate nearly µ-periodic recurrence; on the other hand, as σ grows, the

periodicity of the system may be hidden due to the effect of random perturbations.

1.4 Data Analysis and Results

In order to find which of the trial models described in section 1.3 better explains our data,

we estimate the model parameters for each candidate model (using a Maximum Likelihood

-MLE- approach) and use the Akaike Information criteria -AIC- (Akaike, 1974) to provide a

measure of the goodness of fit of each model. The AIC is a tool for model selection based
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Figure 1.3: Load-state paths for a Brownian relaxation oscillator with λ = 1, and [Xf −X0 =

1]: (a) σ = 0.1; (b) σ = 0.3; (c) σ = 0.5; (d) σ = 1.0.
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Figure 1.4: Plot of times since previous eruption (a) and times to the following one (b) against

the erupted volume (in km3) of Miyakejima volcano, to test a Size Predictable Model (a) and

a Time Predictable Model (b), respectively.

on the concept of entropy, and offers a relative measure of the information lost when a given

model is used to describe some data (a trade off between accuracy and complexity of the

model). On the other hand, SPM and TPM models are tested by regression analysis of repose

times and sizes (erupted volumes and VEI).

1.4.1 Finding the best model fitting the observed data

Fig. 1.4 shows the plots of erupted volumes against the time since the last eruption (Fig.

1.4a) for a SPM, and against the time to next eruption (Fig. 1.4b) for a TPM. In those figures

we cannot see any clear relationship between sizes (i.e. volumes) and the times (from last

eruption or to the next one). This is confirmed by the R-square statistic (reported in each

panel), which in both cases is very low (R2 < 0.06). Furthermore, if we consider the slope

of the best fitted line and the associated errors (see Fig. 1.4), in both cases the slope of the

fitted line does not significantly differs from zero; using a F-test (Ho : slope = 0), the hypoth-

esis Ho cannot be rejected (at a significance level of 0.05). Then there is no strong evidence

suggesting either a SPM or TPM as a successful model for Miyakejima, so at least from these

data we cannot extract any information, even if we group sizes using the VEI.

Next we test the hypothesis of a homogeneous Poisson process, in which the repose times τ

follow an Exponential distribution. Fig. 1.5 shows the empirical cumulative distribution of

observed data and the best (maximum likelihood) Exponential distribution fitting the data. A

one-sample Kolmogorov-Smirnov test rejects this hypothesis (at a significance level of 0.05).

Furthermore, if we calculate the coefficient of variation η (equation 1.1) we get η = 0.51,

which confirms the non-random distribution and the possibility of a recurrent behavior (i.e.
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Figure 1.5: Cumulative distribution function (CDF) of the best fitting Exponential distribu-

tion, and the empirical CDF of the observed repose times.

η < 1).

Now we test a set of trial probabilistic models (which were briefly described in section 1.3) to

find which provides a better explanation of the repose times observed in the eruptive history

of Miyakejima volcano (during the last 540 years). In this part we evaluate models that can

describe more regular (recurrent) repose times. The characteristic parameters of each model

(Lognormal, Gamma, Weibull and Brownian passage-time -BPT-) were estimated using a max-

imum likelihood approach. Table 1.2 summarizes the functional form of the PDF, estimated

(MLE) parameters (and uncertainties), and the AIC (Akaike, 1974) for all the probabilis-

tic models considered. Using a Kolmogorov-Smirnov test, we cannot reject the Lognormal,

Gamma, Weibull and BPT hypothesis (at s.l. of 0.05), which means that, from a statistical

point of view, all these probability models could explain the observed data. Fig. 1.6 shows

the Cumulative Distribution Function (CDF) of the candidate distributions and the empirical

CDF of the observed data (τ); as reference, the CDF of the Exponential distribution is also

included. As we can see in the plot, many of the candidate distributions may successfully

explain the data, however, based on the maximum likelihood value and the AIC, it is possible

to select our preferred model (lower AIC) which can be considered as the one that provides

the best explanation of the observed data (table 1.2).
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Figure 1.6: Plot of the Cumulative Distribution Function (CDF) of Brownian passage-Time,

Lognormal, Gamma and Weibull models, and the empirical CDF of the observed repose times.

The CDF of the Exponential model is also included for reference.

Based on parameters listed in table 1.2, our preferred model is the Brownian passage-time.

This result is very important since the BPT model may be directly linked to a physical system

which may provide significant insights for the interpretation of the observed eruptive behav-

ior. For instance, the mean repose time µ of the BPT (44.2 ± 6.5 years), or its reciprocal, the

mean rate of occurrence, is the natural scale parameter of first-order interest, as it measures

the typical frequency at which eruptions occur. Changing the mean re-scales time but does not

otherwise alter the shape of the probability distribution. The aperiodicity (α = 0.51 ±0.01) is

chosen as a second parameter because (1) it is a natural shape parameter of the BPT family,

and (2) it is a dimensionless measure of irregularity in the event sequence (Matthews et al.,

2002); in other words, it is a measure of the aperiodicity of the mean. As α tends to 0, the se-

quence tends to be perfectly periodic, while as α grows, the sequence tends to a “Poisson-like”

process. Somehow, the BPT model may be regarded as a delayed Poisson process (Ellsworth

et al., 1999), for which the failure rate is zero for a finite time following an event and then

steps up to an approximately constant failure rate at all succeeding times; then, as α grows,

this kind of delay time tends to be smaller (for a given µ).

Due to its intrinsic characteristics the BPT model can be considered as a powerful tool to

characterize volcanic systems since, -given that there exists a homogeneous (uniform) cata-

log of past eruptive episodes-, it could be used to characterize a wide range of processes that
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Table 1.2: Candidate distributions, PDF, estimated (MLE) model parameters and uncertain-

ties, and Akaike Information Criteria (AIC)

Model Probability Parameters AIC

Density (MLE)

Brownian
( µ

2πα2t3

) 1
2 e



− (t−µ)2

2α2µt

ff

µ = 44.2 (±6.5) 86.8842

Passage-time α = 0.51 (±0.01)

(µ, α)

Weibull θνθtθ−1 e{−νθtθ} ν−1 = 49.9 (±5.6) 107.3074

(ν, θ) θ = 2.7 (±0.7)

Gamma νθtθ−1

Γ(θ) e−νt ν−1 = 9.1 (±3.8) 108.2612

(ν, θ) θ = 4.9 (±1.9)

Lognormal 1
σt

√
2π

e



− (ln(t)−µ)2

2σ2

ff

µ = 3.68 (±0.15) 109.1462

(µ, σ) σ = 0.51 (±0.11)

Exponential ν e−νt ν−1 = 44.2 (±12.8) 116.9338

(ν)
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span from “Poisson-like” (i.e. completely random) up to “perfectly periodic” processes. On

the other hand, the direct link with a conceptual physical system may provide insights into

the physical processes associated with the eruptive behavior of the volcano. Furthermore, if

we analyze the hazard function of the BPT model (see section 1.5), some interesting features

may be discussed for a time-dependent, long-term eruption forecasting.

1.4.2 Distribution analysis of erupted volumes

Based on the results described in previous sections we reject the hypothesis of a Poissonian

process as the model explaining the eruptive behavior of Miyakejima volcano. The probabilis-

tic model providing the best explanation of the data is a Brownian passage-time, which allows

us to infer some kind of periodicity in the eruptive process. Furthermore, from the eruption

size data (volumes and VEI), it was not possible to find any evidence of a TPM or SPM. The

question that arises is then, within this framework, how should the erupted volumes be dis-

tributed? We perform an analysis of the erupted volumes (within the period of completeness

of the catalog) and the results are summarized in Fig. 1.7. A Lognormal distribution provides

a good explanation of the erupted volumes data (hypothesis not rejected using a one sample

Kolmogorov-Smirnov test at a s.l. of 0.05); it means that there exists a preferred or more

common erupted volume (the mean erupted volume is 0.012 ±0.004 km3). In other words,

we can consider that the logarithm of the erupted volumes are normally distributed. This

result can support the hypothesis of a recurrent source model, as suggested by the Brownian

passage-time distribution for the repose times, and may also explain the poor resolution of

the TPM, since if there is a preferred size and a preferred repose time, then the data in a time-

size space should tend to group in a cluster. From this point of view our BPT model would

not be incompatible with a TPM model, as is discussed in section 1.6.

1.5 Implications of a Brownian model for Eruption Forecasting

Assessment

Repose times for recurrent eruptive activity that follows a Brownian passage-time distribution

may be used to define a model for time-dependent, long-term eruption forecasting. This dis-

tribution has some noteworthy properties as (1) the probability of having renewed eruptive

activity at time t = 0 is 0 (i.e. just after the last eruptive period); (2) as t → ∞ the hazard

function is finite. In other words, it increases steadily from zero at t = 0 to a finite maxi-

mum near the mean recurrence time. The first property should be analyzed carefully since

it may lead to misunderstanding if used improperly. As described in the introductory part,

in our analysis we ignore eruption duration since we take the onset date as the most physi-

cally meaningful; then we measure repose times from one onset date to the next. Following

this approach, our modeling intends to describe the waiting times of the long-term physical

processes governing the onset of new volcanic activity defined as episodes of renewed mag-

matic intrusions entering in the volcanic system and triggering new eruptive cycles. When
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Figure 1.7: CDF (empirical and Lognormal distribution) of the erupted volumes in Miyake-

jima volcano from 1469.
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an eruption starts, the short-term behavior of eruptive activity might follow different patterns

during the gradual decline of activity; then, sporadic eruptive episodes in a short time window

after the onset of a new eruptive cycle cannot be described using the former long-term model.

Let’s consider the random series of events t1 < t2 < . . . < ti . . ., and then the repose times

τi = ti+1 − ti, (i = 1, 2, . . .). If the sequence of random variables {τ} is independent and

distributed according to a function F (τ), then the original series of events {ti} is called a

renewal process. For a history-dependent point process, the conditional intensity function

λ(t|Ht) of the form

λ(t|Ht) = h(x) =
f(x)

1 − F (x)
=

f(x)

S(x)
(1.4)

for x = (t − tL), defines the hazard function. Here, Ht is a history of occurrence times

{ti; ti < t} before time t, including the information that no event occurred neither in the

intervals (t, ti+1) nor in the interval (tL, t), and where tL is the last occurrence before the

considered time t (e.g., Bain, 1978; Ogata, 1999). Then h(x) is the ratio of the probability

density function f(x) to the survival function S(x) and it may be defined as the event rate at

time t conditional on survival until time t (or later).

The hazard function describes instantaneous failure rate, or the conditional density of failure

at time x given that no event occurred until time x. An increasing hazard function at time x

indicates that an event is more likely to occur in a given increment of time (x, x+ ∆x) than it

would be in the same increment of time in an earlier age. It is also useful in the specification

of a point process since it may be directly linked with the probabilistic forecast of an event

occurrence.

Fig. 1.8 shows the hazard function of the BPT model for Miyakejima volcano (see also Fig.

1.6 for the corresponding cumulative distribution functions). Hazard functions of the other

candidate models are also included for comparison. For the BPT model, the failure rate is

zero (0) immediately after an event, then it grows to a peak and then asymptotically tends

to a finite value at long times compared to the mean time. Fig. 1.8 can help to understand

the different behavior of the different candidate models and to compare them with the BPT

model. The main characteristic of the Exponential model is the constant hazard function,

implying a random occurrence of volcanic eruptions in time. All the other models are more

or less similar up to the mean recurrence time, at which point their behavior diverges. For

example, the hazard function of the Weibull model starts at zero and increases to infinity,

while for the Lognormal model, the asymptotic failure rate goes to zero. The Gamma model

also has a finite asymptotic failure rate, but the function grows more smoothly.

We can calculate the conditional probability Pr(x, x+∆t) that an eruption will happen in a

time interval (x, x + ∆t], given an interval of x = (t − tL) years since the occurrence of the

previous eruption. Let T be the time to the next eruption, then Pr(x, x+∆t) = P (x < T ≤
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Figure 1.9: Eruption Forecasting for Miyakejima volcano, using a Brownian passage-Time

model. Probability of eruption from 2001 (just after the last eruption) evaluated for ∆t in the

interval [1, 100]

(x + ∆t) | T > x) (for x being the time since last eruption, as defined before).

If F (τ) denotes the (cumulative) distribution function of the repose times τ , then F (x) =

Pr(T ≤ x), and F (x + ∆t) = Pr(T ≤ (x + ∆t)) for x ≥ 0, while the survival time function

S(x) is S(x) = 1 − F (x) = Pr(T > x), for x ≥ 0. Then, the probability that an eruption

occurs in the next ∆t interval is (e.g., Bowers et al., 1997)

Pr(x, x+∆t) =
R x+∆t
x

f(s)ds

1−F (x)

≈ F (x+∆t)−F (x)
1−F (x)

(1.5)

The approximation in equation 1.5 is valid for small ∆t; it can be interpreted as the condi-

tional probability that an eruption will occur in the time interval (x, x+∆t], given an interval

of x years since the occurrence of the last event. We can use this equation to calculate prob-

abilities of eruption and forecast future events. For example, Fig. 1.9 is the evolution of

Pr(x, x+∆t) as seen from the time immediately after the last eruption in 2000 for different

values of ∆t.
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1.6 Discussion

Renewal processes characterized by five different probabilistic models, plus a TPM and a SPM,

have been applied to analyze the repose times between eruptive episodes of Miyakejima vol-

cano during the last 540 years (when the catalog has been considered complete). From our

analysis we conclude that the probabilistic model that better explains the observed data is a

Brownian passage-time. This model is based upon a simple physical model resembling the

characteristic cycles of volcanic activity, the Brownian relaxation oscillator, and is parameter-

ized by the mean rate of event occurrence, µ, and the aperiodicity about the mean, α.

The Brownian passage-time family differs from other usual candidate distributions for long-

term eruption forecasting in that it may reflect physical properties of the macro-mechanics

of volcanic processes. The Brownian relaxation oscillator and Brownian passage-time distri-

bution connect together physical notions of unobservable loading and failure processes of a

point process with observable response statistics (i.e. event recurrence in time).

Up to now, the definition of a general model to describe eruptive activity has been a difficult

task due to different factors as the intrinsic complexity of eruptive processes and the difficulty

of getting complete catalogs with sufficient observations. Even if we do not pretend to define

it as a general model, the BPT may be considered as a first-order approximation to describe

different kinds of volcanic systems, which can span from random volcanoes (Poisson-like pro-

cesses), up to perfectly periodic systems. The non-homogeneous Poisson process model of

Ho (1991) characterized by a Weibull distribution has been a first attempt of generalization

to describe with a single model different kind of processes. However, the Weibull is a rather

empirical model that possesses some intrinsic undesirable features difficult to support from a

physical point of view in volcanological applications. For example, hazard rate functions of

Weibull variates (e.g. see Fig. 1.8) either start at zero and increase to infinity or start at a fi-

nite value and decrease to zero. This asymptotic behavior may be unrealistic in many physical

systems and specifically in a volcanological application may lead to unnecessary assumptions.

Conversely, the BPT model possesses many interesting features which make it a plausible

model to describe the activity of different volcanoes. If we consider its hazard function, the

failure rate is zero immediately after an event. Then it grows to a peak and then declines to

a finite asymptotic rate at times long compared to the mean rate. These are unique proper-

ties among the set of candidate models considered. These properties provide a more realistic

asymptotic behavior of the failure rate. The BPT model may be regarded as a delayed Poisson

process (Ellsworth et al., 1999), for which the failure rate is zero for a finite time following

an event and then steps up to an approximately constant failure rate at all succeeding times.

To measure how much the BPT model approaches whether a Poisson-like or a periodic pro-

cess, we can consider the α parameter. As we did mention before, the more periodic the

process, the more α approaches zero. The value α = 0.51 ± 0.01 found in this work for

the aperiodicity in Miyakejima volcano indicates probably for the first time a clear recurrent
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behavior in a volcanic system. To compare eruptive activity of different volcanoes with the

results obtained in Miyakejima, we did analyze some catalogs from published works in other

volcanic areas: for instance, we considered the data from (1) Mt Ruapehu and (2) Mt. Ngau-

ruhoe -New Zealand- (tables 2 and 3 in Bebbington and Lai (1996b)), (3) Kilauea and (4)

Mauna Loa -Hawaii- (tables 1 and 2, respectively, in Klein (1982)), and (5) Mt. Etna (Mar-

zocchi and Zaccarelli, 2006).

Fig. 1.10 is a plot of the estimated parameters α and µ assuming a BPT model for the volca-

noes cited before. The µ (y axis) is just an scale parameter measuring the mean recurrence

time. However, the (dimensionless) α parameter (x axis) may provide a good framework to

compare different volcanic systems; for instance, if we consider the results in Fig. 1.10 it

is evident that all considered volcanoes but Miyakejima have α > 1. This is very consistent

with the different results provided by the authors; for example, if we consider Mauna Loa

(α = 1.28 ± 0.4) and Kilauea (α = 3.02 ± 1.49) volcanoes, α parameter indicates that those

volcanoes have more Poisson-like behavior, which is in agreement with the results of Klein

(1982) who concluded that Hawaiian eruptions are largely random phenomena displaying

no periodicity. For Ruapehu (α = 1.26 ± 0.36) and Ngauruhoe (α = 1.4 ± 0.33) volcanoes, α

parameter indicates also a Poisson-like behavior, which is also in agreement with the results

of Bebbington and Lai (1996b); in those cases, the authors examined both the homogeneous

Poisson and Weibull as possible models to describe the eruptive patterns of both volcanoes,

concluding that both of them are more Poisson-like processes even if they are satisfactorily

modeled by a Weibull renewal process.

Another important consideration should be done with respect to the TPM/SPM models. As

discussed in section 1.4.1, it is not possible to define a clear relationship between repose

times and eruption sizes from Miyakejima volcano; additionally, in section 1.4.2 we found

that there is a preferred erupted volume. Given the recurrent behavior of Miyakejima volcano

(inferred from the α value of the BPT model), we argue that it is coherent that for preferred

repose times it is possible to have preferred erupted volumes. It means that it is possible that a

TPM or SPM model could coexist within our BPT model for recurrent volcanic activity. In fact,

The BRO may be extended to models that are no renewal processes; in particular stochastic

versions of TPM and SPM may be derived from randomization boundary conditions in the

Brownian oscillator (Matthews et al., 2002).

1.7 Concluding remarks

The intrinsic complexity of volcanic systems motivates the definition of probability models

as mathematical structures to describe the response of the considered systems. The analysis

of the past eruptive activity of Miyakejima volcano suggests that the probability model that

provides the best description of the observed repose times is a Brownian passage-time model.

The BPT family of distributions describes the response of a conceptual physical system defined
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Figure 1.10: Estimated parameters (α and µ) of the Brownian passage-time model for differ-

ent volcanoes: Miyakejima (Japan), Etna (Italy), Ruapehu and Ngauruhoe (New Zealand),

Mauna Loa and Kilauea (Hawaii). For the source of the data see the text.



1.7 Concluding remarks 31

as a Brownian relaxation oscillator (BRO). BRO and BPT together connect physical notions

of unobservable loading and failure processes of a point process with observable event-time

statistics. BPT model is characterized by two parameters: the mean repose time (µ) and the

aperiodicity of the mean (α). While µ is just an scale parameter that provides information

about the typical frequency at which events occur, α is a dimensionless parameter that mea-

sures the aperiodicity of the mean response of the system, and for this reason this parameter

may be useful to compare different volcanoes spanning from periodic-like to Poisson-like sys-

tems.

For the Miyakejima volcano, the mean repose time is µ = 44.2 ± 6.5 years, while the di-

mensionless aperiodicity parameter is α = 0.51 ± 0.01. This value for α parameter is an

evidence of recurrent eruptive activity of Miyakejima volcano; furthermore, this is probably

the first documented case of periodic behavior in a volcanic system.

BPT model provides some insights for time-dependent, long-term eruption forecasting. For

instance, if we consider the hazard function, some noteworthy properties can be defined: the

probability of having renewed eruptive activity just after an eruptive cycle is very low, then it

increases steadily from zero to a finite maximum near the mean recurrence time. Finally, for

times greater than the mean recurrence time the hazard function tends to a finite constant

value, indicating that for long repose times the system tends to behave as a Poisson process.

In Chapter4 (section 4.2), we propose a methodology to consider any time-dependent or

time-independent, long-term, eruption forecasting model based on the eruptive history of the

volcano (as for example the Brownian passage-time model described here) into the Bayesian

Event Tree model for eruption forecasting (BET EF) of Marzocchi et al. (2008).





Chapter 2
Application of probabilistic inverse

theory to physically-based spectral

analysis of Long-Period seismicity, and

its possible use for volcano monitoring

“Whenever a theory appears to you as the

only possible one, take this as a sign that

you have neither understood the theory

nor the problem which it was intended to

solve.”

Karl Popper

(Objective Knowledge: An Evolutionary

Approach, 1972)

Abstract

We present an alternative method based on probabilistic inverse theory to estimate the pa-

rameters of a simple conceptual model (presented by Kumazawa et al. (1990) about twenty

years ago) as a method for physically-based spectral analysis. The probabilistic formulation

leads to the definition of a (posterior) probability distribution in the model space σ(m) which

results of combining prior information (on data and model parameters) with new information

obtained by measurements (the time series). This kind of formulation may be helpful for dif-

ferent kind of geophysical problems, specially when it exists a nonlinear relationship between

the observed data and the parameters of a given model. Using this formulation we have

performed some numerical tests using synthetic time series, and we did apply the method to

analyze the waveforms of Long-Period (LP) events from two volcanoes: Cotopaxi (Ecuador)
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and Miyakejima (Japan). The procedure described may be an important tool for objectively

monitor the characteristic complex frequencies of volcanic LP events; in this way, changes in

the volcanic activity may be highlighted and families of events of particular interest could be

identified for further analysis. Beyond this possible application for monitoring, our approach

can also be used to analyze individual events as an alternative to the existent methodologies.

2.1 Introduction

Active volcanoes are the source of a great variety of seismic signals, this is because volcanic

seismic sources involve different kinds of physical processes. Moreover, nearly every recorded

volcanic eruption has been preceded and/or accompanied by seismic activity beneath or near

the volcano (e.g., Aki, 1992; McNutt, 1996), then seismology may be considered as one of the

most important tools for monitoring volcanoes since it can provide information (i.e. strong

seismic parameters) that considered together with other monitoring parameters, can help

volcanologists to improve their understanding of the physical processes inside volcanoes and

to produce better probabilistic eruption forecasting models (e.g., Marzocchi et al., 2008).

The source mechanisms associated with Long-Period (LP, also known as Low-Frequency LF)

seismic events and volcanic tremor are intimately associated with fluids contained in a solid

rock matrix. Both the frequency content and the characteristic long-lasting coda of these

seismic signals are of fundamental importance since they represent evidences of the char-

acteristic properties of the source, as have been highlighted by many authors using diverse

models (e.g., Aki et al., 1977; Chouet, 1981, 1982, 1985, 1988; Ferrazzini and Aki, 1987; Fu-

jita et al., 1995; Fujita and Ida, 2003; Neuberg et al., 2000; Morrissey and Chouet, 2001).

The observed waveform includes both source mechanism and path effects, however, we nor-

mally deal with data of observation stations located close to the source (few wavelengths)

and then we assume that most of the waveform characteristics are mainly associated with

source processes. In fact, in the recorded signals we can distinguish some properties that

support such assumption. The waveforms normally show an emergent onset, which means

a gradually increasing amplitude, until reach a maximum. Amplitude then diminishes with

a decay rate that change from event to event, generating coda waves which can last from

few seconds up to even some minutes. Their spectra are sharply peaked, showing generally

a dominant peak and, sometimes, several subdominant peaks (harmonics). Spectral analysis

of the signals also shows that there is little variation of the dominant frequency with station

location, and during a period of steady activity (where normally many events take place in

relatively short time intervals), the wide variation in amplitude of the events does not corre-

sponds with any evident variation in the dominant frequency, suggesting that the amplitude

of the signal is more related to the force generating the signal rather than the size of the

source region. The relative consistency of the spectrum of this kind of events observed at

various locations may indicate that many of the waveform properties observed in the records

are due to a source effect rather than path and site effects (Aki and Koyanagi, 1981). Obser-



2.2 Physically-based spectral analysis and representation of LP events 35

vations made at different volcanoes have shown that this type of events can not be explained

by a simple instantaneous faulting but are rather interpreted as oscillations of a resonator in

relation to both magmatic and hydrothermal activity (e.g., Aki et al., 1977; Aki and Koyanagi,

1981; Ferrazzini and Aki, 1987; Chouet, 1988; Neuberg et al., 2000; Fujita and Ida, 2003).

The description of the oscillation frequencies of LP signals is fundamental for the inference of

the characteristic properties of the resonator system. The fast Fourier transform (Cooley and

Tukey, 1965) is one of the most commonly used techniques for spectral analysis. In order to

provide a physically-based method for spectral analysis, Kumazawa et al. (1990) proposed an

alternative method with higher spectral resolution which is based on the characteristic prop-

erties of a linear dynamic system. This method provides both the decay characteristics and

the oscillation period of individual signal components. Yokoyama et al. (1997) extended the

Sompi method to the inhomogeneous equation of motion including an external force term,

and Nakano et al. (1998) presented a method to quantify the source excitation function and

characteristic frequencies of LP events based on the former inhomogeneous model.

Our objective in this chapter is to present an alternative method for the estimation of the

characteristic parameters of the homogeneous model of Kumazawa et al. (1990). Our main

interest is pointed toward the analysis of the tails of exponentially-decaying harmonic LP

waveforms. Our approach is based on a probabilistic formulation of inverse problems in

which prior models (randomly generated) are combined with the information provided by the

physical theory (forward model) and the measurements (data) in order to define a probabil-

ity density representing the posterior information. This posterior probability density describes

all the information we have about the problem (model and data). It may be multimodal, or

not have a mathematical expectation, have infinite variances or some other pathologies, but

it constitutes the complete solution to the problem. To obtain samples of the posterior proba-

bility distribution (and then information about the model parameters) we use Markov-chain

Monte Carlo (MCMC) techniques. This approach, even if it may require more computer time

to obtain results, may provide some important benefits respect to the classical maximum like-

lihood approach, specially due to the nonlinear relationship between the observed data and

the model parameters of the problem.

2.2 Physically-based spectral analysis and representation of LP

events

It is widely accepted that the source of LP events consists of excitation and the subsequent res-

onance of a volcanic fluid system in the source region. To produce monotonic and harmonic

waveforms, it is reasonable to take as possible resonators fluid-filled structures like dykes,

cracks, sills, etc. The excitation itself is still not well understood and it may be due to differ-

ent mechanisms as pressure or stress perturbations caused by migration of fluids, vesiculation

and collapse of bubbles, small ruptures close to the fluid-filled structure, etc. If the excita-
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tion is a time-localized function present only during a short time interval at the beginning

of the event (e.g., Nakano et al., 1998) then, in many cases the resonance of the fluid-filled

structure should be the source process producing the dominant spectral peaks observed in

the tail of the signals. To describe the main characteristics of the tails of LP events (i.e. fre-

quencies and decay rate), we can approximate it as a function generated by a superposition of

simple decaying sinusoids (e.g., Nakano et al., 1998; Kumagai and Chouet, 1999, 2000, 2001).

Spectral analysis, as the discrete Fourier transform, is performed decomposing a given func-

tion into a linear combination of a complete set of orthogonal basis functions, where unique-

ness of the decomposition is guaranteed. Harmonic oscillations are widely observed in phys-

ical phenomena, then it is reasonable that the decomposition of a time series into Fourier

components has a great popularity among spectral analysis methods. Due to the inevitable

presence of random noise in the observed signal, statistical modeling has been also success-

fully introduced in many spectral estimation theories (e.g., Kay and Marple, 1981). However,

as in many other physical systems, the LP waveforms show a clear trend of amplitude to de-

cay with time, then the decomposition of the time series into purely harmonic components

may be translated into a loss of information. Since the ultimate purpose of spectral analysis

of time series is in general to obtain information on the physical system which generated the

signal, Kumazawa et al. (1990) introduced an spectral analysis method that is based not only

on mathematics or information theory but also on physical concepts. The method (called

‘Sompi’) is based on the Autoregressive (AR) model, and consist of extracting a set of de-

terministic and coherent signals from a data set of finite length, which are regarded as the

observed samples of the realization of a hypothetical linear dynamic system (Kumazawa et al.,

1990).

In the approach proposed by Kumazawa et al. (1990), a given time series {x(t)} is decom-

posed into a linear combination of finite-number coherent sinusoids with amplitudes expo-

nentially decaying (or growing) with time such as

x(t) =
nw∑

i=1

Aie
γitcos(ωit + θi) + ǫ(t) (2.1)

where nw is the (finite) number of sinusoids (wave elements), and ωi, γi, Ai and θi are

real constants, and ǫ(t) is incoherent noise. The method uses individual spectral lines in the

complex frequency space to provide both the decay properties (characterized by γ) and the

oscillation frequency (characterized by ω) of individual signal components.

In this kind of spectral analysis, the signal in the given time series is represented by the

superposition of “wave elements” (Kumazawa et al., 1990). Each wave element is specified

by the four real parameters outlined before, where ω and γ correspond to the real and imag-

inary parts of the complex angular frequency, respectively (positive and negative γ indicate

that the instantaneous amplitude of the relevant wave element grows or decays exponentially

with time), and A and the phase angle θ represent the complex amplitude.
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The ordinary (real) frequency f is defined by

f =
ω

2π
(2.2)

and the “growth rate” (or “gradient”) parameter g is defined by (Kumazawa et al., 1990)

g =
γ

2π
(2.3)

then, the dissipation factor Q−1 (e.g., O’connell and Budiansky, 1978)) is given by

Q−1 ≃
2γ

ω
=

2g

f
(2.4)

for small values of Q−1.

In the last years this approach has been used to analyze different kinds of data; some ex-

amples are the applications to the Earth’s free oscillations (Hori et al., 1989) and to nuclear

magnetic resonance spectroscopy (Matsuura et al., 1990). Specifically, it starts to be widely

used by many authors in volcano seismology to describe spectral characteristics of LP seismic

signals from different volcanoes (e.g., Nakano et al., 1998; Kumagai et al., 2002; Molina et al.,

2004; Kumagai et al., 2005; De Angelis, 2006) specially after the works of Kumagai and Chouet

(1999, 2000, 2001) where the authors performed the link between a volcanic physical sys-

tem (a fluid-filled crack) and the characteristic complex frequencies of the simulated signals

(by forward modeling), opening the way to use the characteristic complex frequencies of LP

events (determined with the Sompi method of Kumazawa et al. (1990)) to infer the acoustic

properties of a crack containing magmatic or hydrothermal fluids at the source.

In the original work of Kumazawa et al. (1990), the parameters of the model were calcu-

lated based on a Maximum likelihood approach. In that paper there is a complete description

of the analog physical system at the base of the model. In the next sections we will describe an

alternative setting of the problem to determine the parameters of the model in a framework

based on probabilistic inverse theory; we then perform inference on model parameters using

Monte Carlo techniques. As pointed out by Kumazawa et al. (1990), we also highlight here

that this kind of spectral analysis is different of the spectral decomposition into orthogonal

basis functions. It should be understood as a physical spectral analysis where time series are

modeled based on the characteristic properties of a linear dynamic system with no external

forces acting on it.
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2.3 Probabilistic Inverse Theory: Overview and Setting of the

Problem

2.3.1 Probabilistic Inverse Theory

Given a physical system, the forward or direct problem consists, by definition, in using a phys-

ical theory to predict the outcome of possible experiments, which in classical physics have

a unique solution. The inverse problem arises when we do not have a perfect model but we

have a valid set of data. Following the approach proposed by Tarantola (2005), the inverse

problem is seen as a problem of conjunction of states of information (theoretical, experimental

and prior information, generally on model parameters) taking a probabilistic point of view.

The axioms of probability theory apply to different situations. One is the traditional statistical

analysis of random phenomena, another one is the description of (more or less) subjective

states of information on a system. For instance, estimation of the uncertainties attached to

any measurement usually involves both uses of probability theory: some uncertainties con-

tributing to the total uncertainty are estimated using statistics, while some other uncertainties

are estimated using informed scientific judgement (e.g. the quality of an instrument, effects

not explicitly taken into account, etc.).

The most general way to describe an state of information is to define a probability density

over the parameter space; it follows that the results of the measurements (data), the a priori

information on model parameters, and the information on the physical correlations between

observable and model parameters can all be described using probability densities. The gen-

eral problem can be set as a problem of combining all of this information (Tarantola, 2005).

Using this kind of approach, the solution of the problem and the analysis of uncertainty can be

performed in a fully nonlinear way; in all usual cases, the results obtained with this method

may reduce to those obtained using more conventional approaches.

Purely probabilistic formulations of inverse theory started to be proposed around 1970 (e.g.,

Kimeldorf and Wahba, 1970). Jackson (1979) explicitly introduced prior information in the

context of linear inverse problems, an approach that was generalized by Tarantola and Valette

(1982a,b) to nonlinear problems.

If we have a physical theory that can be used to solve the forward problem, i.e., that given

an arbitrary model m it allows us to predict the theoretical data values dcalc that an ideal

measurement should produce (if m was the actual system), the generally non linear function

that associates to any model m the theoretical data values d is a (generally not unique) pa-

rameterization of the system. Independently of any particular parameterization, it is possible

to introduce an abstract space of points (M), each of which represents a conceivable model

of the system. Once a particular parameterization has been chosen, with each point m of the

model space M a set of numerical values {m1, ...,mn} is associated. This corresponds to the

definition of a kind of system of coordinates over the model space (Tarantola, 2005; Menke,

1989).
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On the other hand, to obtain information on model parameters, we perform some mea-

surements of some observable parameters, so it is possible to define a data space (D); any

conceivable (exact) result of the measurement then corresponds to a particular point d on

the space D. The coordinates d= {d1, ..., di} (where i belongs to some discrete and finite

index set) are then the components in the data space.

The physical theory can be used to solve the direct problem, i.e., that given an arbitrary

model m, it allows us to predict the theoretical (error-free) data values dcalc that an ideal

measurement should produce. The function that associates to any model m the theoretical

data values dcalc can be denoted as:

di
calc = f i(m1,m2, . . .) , or : dcalc = g(m) (2.5)

for i = 1, 2, . . .. The (usually nonlinear) operator g(·) is called the forward operator and it

expresses our mathematical model of the physical system. The predicted values in general

cannot be identical to the observed ones because of measurement uncertainties and modeling

imperfections. These two sources of error generally produce uncertainties of the same order

of magnitude. The proper way of putting together measurements and physical predictions –

each with its own uncertainties– is still a matter in progress (Tarantola, 2005). In Tarantola’s

approach, it is proposed to treat both sources of information symmetrically, stating that the

more general way of describing any state of information is to define a probability density. In

this context, the error-free equation 2.5 is replaced with a probabilistic correlation between

model parameters m and observable parameters d.

The joint probability density describing the correlations that correspond to our physical the-

ory together with the inherent uncertainties of the theory (due to imperfect parameterization

or any fundamental lack of knowledge) will be denoted as Θ(d, m). Nontrivial complications

arise when the relation between d and m is not linear, which appear when trying to properly

define the notion of conditional probability density. This topic is affronted in Mosegaard and

Tarantola (2002). In general, in some situations it is possible, for every model m, do slightly

better than to exactly predict an associated value d: one may, for every model m, exhibit

a probability density for d, denoted as θ(d | m). Then, the joint probability density can be

written as the product of a conditional and a marginal. Taking for the marginal of the model

parameters the homogeneous probability density µM (for details see Tarantola (2005)) then

gives:

Θ(d, m) = θ(d | m) µM (m) (2.6)

On the other hand, the observations are represented by the set of parameters d (data). How-

ever, the result of a measurement is not just a set of “observed values” but a state of infor-

mation acquired on some observable parameter. If d = {d1, d2, . . . , dn} represents the set of



40 Long-Period seismicity: Physically-based spectral analysis

observable parameters, the result of the measurement can be represented by a probability

density ρD(d). Although the instrumental errors are an important source of data uncertain-

ties, in geophysical measurements there are other sources of relevant uncertainty as, for ex-

ample, the environmental noise. In the same way, the prior information on model parameters

can be described by a probability density in the model space ρM (m). As by definition the prior

information on model parameters is independent of observations, the whole information we

have in both model and observable parameters can then be described by the joint probability

density:

ρ(d, m) = ρD(d) ρM (m) (2.7)

The states of information defined by equation 2.6 (which represents the information on the

physical correlations between d and m as obtained by a physical model) and equation 2.7

(which represents both information obtained on observable parameters (data) and prior infor-

mation on model parameters), combine to produce the posterior state of information σ(d, m).

Following Tarantola (2005), the probability density representing the posterior information is

defined as

σ(d, m) = k
ρ(d, m) Θ(d, m)

µ(d, m)
(2.8)

where µ(d, m) and k represent the homogeneous state of information and a normalization

constant, respectively.

With the posterior information σ(d, m) defined in the space D × M, the marginal probabil-

ity density σM (m) provide the posterior information in the model space M (Tarantola, 2005),

and can be considered as the most general solution (for model parameters) of a given prob-

lem:

σM (m) =

∫

D

dd σ(d, m) = k ρM (m)

∫

D

dd
ρD(d) θ(d|m)

µD(d)
(2.9)

2.3.2 Setting the Problem and General Solution

The forward operator g(·), which links the model parameters m = {Ai, γi, ωi, θi}, i =

(1, 2, . . . , nw) with the observed waveform d = {x(t)}, is the linear combination of coherent

sinusoids with amplitudes exponentially decaying or growing with time such as defined by

Kumazawa et al. (1990):

d = g(m) =

nw∑

i=1

Aie
γitcos(ωit + θi) (2.10)
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If we assume that modeling uncertainties are negligible compared to observational uncertain-

ties, and that the data space is a linear space (which implies that the homogeneous probability

density over the data space is constant, for details see Tarantola (2005), and Menke (1989)),

then θ(d|m) = δ(d − g(m)), where d = g(m) is the exact solution of the forward problem.

Then, equation 2.9 gives:

σM(m) = k′ ρM (m) ρD( g(m) ) (2.11)

where k′ is a constant, and ρD( g(m) ) = L(m) is the likelihood function giving a measure of

how good a model m is explaining the data.

There are three important elements in equation 2.11: (a) the prior probability density in

the model space, ρM (m), which can be replaced by its homogeneous limit µM (m) if no prior

information is available, (b) the probability density ρD(d) which describe the results of our

measurements and the attached uncertainties, and (c) the nonlinear function g(m) solving

the direct problem.

Now we can replace the function defining our forward operator (equation 2.10) in equa-

tion 2.11 to define the general solution for the posterior distribution in the model space. To

do it, we need to assign a probability function to ρD(d) to describe the measurements and un-

certainties of observed data. Due to the nature of seismic records, seismic noise is overlapped

to the signals of interest; in our specific problem (as in all applications that use the seismic

waveforms in time domain) the noise perturbing the signal of interest may be of different

nature and difficult to describe; in general terms we arbitrarily can decompose it in two wide

components: (1) a random component which may be associated, e.g., with measurement

uncertainties, and (2) an “autocorrelated” component, which may be described as coherent

oscillations whose source is not the same as the source of the target event analyzed (e.g. wave

oscillations from other seismic events or from activity at the Earth’s surface, etc.). In our anal-

ysis, the probability function ρD(d) represents the random, non-autocorrelated component of

the seismic noise; if there is an autocorrelated component (e.g. coherent waves overlapping

the signal of interest), they probably will be considered as spurious wave elements in the so-

lution; in section 2.5 we discuss a strategy to select an optimum number of wave elements to

describe the observed data in order to avoid to over-fit the signal with this kind of spurious

wave elements.

In this part we concentrate in the definition of a probability function to describe the ran-

dom component of the noise; in many geophysical problems (and also in the case of the

Kumazawa’s solution in the Sompi method) the noise in measurements is generally described

using a Gaussian distribution. In our approach we do not have any constrain and then we

can introduce a general description of the data using a more general family of distribution

functions.
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Let’s consider the probability density function defined by:

fp(x) =
p1−1/p

2σpΓ(1/p)
exp

{

−
1

p

|x − x0|
p

(σp)p

}

(2.12)

which defines a Generalized Gaussian family of well known functions centered at x0; it de-

fines a generalized family of error distribution that includes, e.g., the symmetric Exponential

(p = 1) and Gaussian (p = 2) distributions, and as limiting cases (as p → ∞) it includes all

continuous uniform distributions (box function) on bounded intervals of the real line (e.g.,

Varanasi and Aazhang, 1989; Tarantola, 2005).

Plugging equations 2.12 for ρD(d) and 2.10 for the direct model, in equation 2.11, the gen-

eral equation to define the posterior information σM(m) in the model space for our problem is

σM (m) = K ρM (m) exp






−

1

pσp
p

s∑

j=1

|dj
cal − d

j
obs|

p






(2.13)

where m = {Ai, γi, ωi, φi ; i = 1, 2, . . . , nw}, are the {4 × nw} model parameters for nw

wave elements, s the number of samples of the waveform, and p the order of the Generalized

Gaussian, which can be chosen analyzing a noise sample (before or after the specific event) to

select the distribution function from that family which best describes the noise characteristics;

d
j
cal is the prediction of the j − th sample due to a model m using the direct model defined in

equation 2.10, and d
j
obs is the j − th sample effectively observed.

Equation 2.13 represents the posterior joint probability density for the model parameters

and constitutes the general solution to our problem. In section 2.4 we show an strategy based

on a Markov-chain Monte Carlo method to sample the posterior distribution σM (m) in order

to get information about model parameters.

2.4 Exploring the Posterior Distribution using a Markov-chain Monte

Carlo Approach

When the number of model parameters is small and the computation of σM (m) for any ar-

bitrary m does not consume too much computer time, it is feasible to define a grid over the

model space, sample it systematically, and use those results directly to discuss the informa-

tion obtained on model parameters. However, as the number of model parameters grows, the

number of required points increases too rapidly since more dimensions are added, then the

systematic exploration of the model space must be replaced with a random exploration. In

this section we discuss a strategy to solve our problem by exploring the model space using a

Markov-chain Monte Carlo (MCMC) approach based on the Metropolis algorithm (Metropo-

lis and Ulam, 1949; Metropolis et al., 1953; Hastings, 1970), and the implementation of a
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Simulated Annealing strategy (Kirkpatrik et al., 1983) to improve the process of finding the

maximum of the posterior distribution.

2.4.1 Implementation of a Metropolis algorithm

A MCMC method attempts to simulate direct draws from some complex distributions of in-

terest. It is random (Monte Carlo) and has no memory, since each step depends only on the

previous step (Markov chain). The basic idea of the Metropolis algorithm is to perform a ran-

dom walk that, sampling some initial (proposal) probability ρ(m) and using a probabilistic

rule, modifies the walk (some proposed moves are accepted, some are rejected) in such a way

that the guided random walk samples the target distribution.

Our goal is to draw samples from a distribution of the form σM (m) = κL(m) (e.g. Eq..

2.13), where the normalizing constant κ may not be known (generally it is very difficult to

compute). The Metropolis algorithm (Metropolis and Ulam, 1949; Metropolis et al., 1953)

generates a sequence of draws from this distribution as follows: (1) start with an initial value

m0 satisfying L(m0) > 0; (2) using the current mt value, sample a candidate point m∗ from

the proposal (symmetric) distribution ρ(m); (3) given the candidate point m∗, calculate the

ratio (α) of the density at the candidate (m∗) and current (mt) points:

α =
L(m∗)
L(mt)

(2.14)

note that the normalizing constant κ cancels out. If the move increases the density (i.e.

α > 1) then the candidate point is accepted (then mt+1 = m∗) and return to step 2. If the

jump decreases the density (i.e. α < 1), then with probability α accept or reject randomly the

candidate point and return to step 2. This generates a Markov chain {m0, m1, . . . , mν , . . .},

as the transition probabilities (from mt to mt+1) depends only on mt. Following a sufficient

burn-in period (e.g. ν steps), the chain approaches its stationary distribution (as the number

of iterations goes to infinity) and then the samples {mν+1, mν+2, . . . , mν+i} are samples from

the target distribution σM (m) (e.g., Tierney, 1994; Sambridge and Mosegaard, 2002). In our

application, we implemented the Metropolis algorithm in a single-component configuration,

which means that just one component of m is updated at a time; thus each updating step

produces a move in the direction of a coordinate axis if the candidate is accepted.

In the algorithm to solve the problem, we have also included an optimization technique based

on a Simulated Annealing process (Kirkpatrik et al., 1983). This approach is often used for

finding the maximum (or minima) of complex functions with multiple peaks. The idea is that

when the space of model parameters is sampled, a reasonable number of down-hill moves are

accepted; it consents to perform a wide exploration of the space during the first iterations.

As the number of iterations increases, the probability of accepting down-hill movements is

smaller up to a limit beyond which it behaves as the Metropolis algorithm. The analogy (and
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hence the term) is the annealing of a crystal as temperature decreases: when the temperature

parameter T (n) is gradually lowered, it is simulated an annealing process in which the system

is taken from a disordered high-temperature state to a well-ordered low temperature state.

Simulated annealing is very closely related to Metropolis sampling, differing only in that the

probability α of a move is given by

αSA = min

[

1,

(
L(m∗)
L(mt)

)1/T (n)
]

(2.15)

where the function T (n) is called the cooling schedule and typically is a function with geomet-

ric decay, and n = 1, 2, 3, . . . is the number of the iteration. For T (n) we use a function which

starts at T0 > 1 and cools down to Tf = 1 (in order to get the Metropolis algorithm) after nc

iterations, as follows (e.g. Kirkpatrik et al., 1983):

T (n) = max

(

T0

(
Tf

T0

)n/nc

, Tf

)

(2.16)

A key issue in the implementation of a MCMC sampler is the number of runs (steps) until

the chain approaches the stationary distribution (i.e. the length of the burn-in period). In

our tests using real signals, the first 10000 to 15000 elements were typically discharged as

burn-in period, and chains generally ran up to about 30000 to 40000 steps. The velocity at

which chains converge depends on many factors. For example, a poor choice of starting val-

ues and/or proposal distribution, can increase the required burn-in time. A brief discussion

about the convergence assessment is performed in section 2.4.2.

2.4.2 Computing central and dispersion estimators

Strictly speaking, the general solution of the inverse problem following this probabilistic ap-

proach is the posterior distribution σM (m) in the model space. Since the distribution of

samples obtained by the MCMC algorithm will indeed converge to σM (m) as the number of

iterations goes to infinity, the most complete solution that we can provide about each spe-

cific model parameter are the probability distributions (e.g. empirical CDF or PDF) inferred

from the samples of the Markov chains, which should approach the marginal distributions

of σM (m). However, if we are interested on using the information of some of the estimated

model parameters (for instance, the frequency, f , and the growth rate, g) for volcano mon-

itoring purposes, we can compute some central estimators and estimators of dispersion that

characterize the probability distributions. Since we are not constrained by any particular as-

sumption, we can calculate any kind of estimators (mean, median) to indicate our best guess

for the model parameter. Then, in order to characterize the distribution of each parame-

ter of the model, we arbitrarily use the median of the distribution as the best guess, while

an error interval is defined using the 10th (lower bound) and 90th (upper bound) percentiles.
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Before using a MCMC sequence for estimating information about parameters of interest, it

is generally necessary to perform convergence tests to assess whether stationarity has indeed

been reached. To do it, we follow the next approach: (1) first, we define a burn-in period,

which corresponds with the first part of the chain to be discharged; (2) we try to reduce the

possible autocorrelation of the chains; in general, we can expect adjacent members from a

Metropolis sequence to be positively correlated, and we can quantify the nature of this cor-

relation by using an autocorrelation function. To reduce autocorrelation of the chain, we

perform a thinning procedure, which means to re-sample the chain taking one point every τ

points from the output after the burn-in period. To select the optimum value of τ , we plot

the autocorrelation as a function of the time lag, which should show a geometric decay as

the time lag increases. (2) To test the convergence of the sequences, there are different diag-

nostic checks (e.g., Geweke, 1992; Geyer, 1992; Gelman and Rubin, 1992); we use the simple

test proposed by Geweke (1992) in which the sequence (after removing a burn-in period) is

sampled in two parts (e.g. the first 30% and the last 50%). If the chain is at stationarity, the

statistics of both samples should be similar. For this scope, it is often used the z-test: a value

larger that 2 indicates that the mean of the series is still drifting (it is often referred as the

Geweke-z-score) and then a longer burn-in is required.

2.5 Model selection and minimum number of wave elements to

fit the observed data

The forward operator defined in equation 2.10 includes the parameter nw which should be

also determined. It defines the number of wave elements to be used in order to obtain the

best fit of the data. In general we do not know a priori the number of wave elements that

conform a given data set, and we do not have any physical constrain to determine this pa-

rameter; this is a difficulty often found in statistical inference and inverse problems. To select

a particular model out of a set of candidate models, it is often used the so called Akaike’s

Information Criteria - AIC (Akaike, 1974), which states that model selection should be done

in terms of unbiased estimate of the maximum log-likelihood of the model, penalizing this

value with the number of independently adjustable parameters. However, due to different

factors as e.g., the fact that noise overlapped to the real signals may not be exactly random

(which means that it may be reasonably autocorrelated and could be modeled in terms of

realizations of some dynamical system which is not the target physical system generating the

signal of interest), it is reasonably expected that AIC indicate a minimum at a relatively high

number of wave elements respect to those affectively required to describe the true signal of

interest, resulting in the coexistence of several spurious wave elements describing the noise

component (Kumazawa et al., 1990). In the Sompi method (Kumazawa et al., 1990; Hori

et al., 1989) such a problem has been addressed in a somewhat empirical way; after some

numerical experiments, the authors have found that after some minimal AR order, estimates

of characteristic frequencies for true signals tend to be stationary with respect to the change
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in AR order (the AIC often takes also a stationary value or gradually and slowly decreases).

Therefore, the authors state that the characteristic solutions which are more likely the true

ones can be determined by plotting cumulatively the estimated characteristic frequencies of

all near equi-AIC models in a f − g diagram (plot of the complex frequencies on a 2D-plane

with (real) frequency and growth rate axes).

We propose to calculate a residual value (∆) between the original and calculated (for a given

model) time series (since we do not perform maximum likelihood estimations of model pa-

rameters). In our numerical tests we have observed that the residual ∆ has a similar behavior

as AIC (see section 2.6). The residual can be defined as:

∆(m) =

∑s
j=1 (d(m)

j
cal − d

j
obs)

2

∑s
j=1 (dj

obs)
2

(2.17)

where d(m)
j
cal and d

j
obs are the j − th samples of the synthetic and observed waveforms,

respectively, and m is the specific model considered (e.g., Ohminato et al., 1998). What we

can see is that as the number of wave elements (nw) increases, the residual calculated with

equation 2.17 decreases, first with a steep slope up to a limit (in general, when the residual

value is lesser than about 0.1) beyond which it continues whether to decrease with a much

more gentle slope or it oscillates around low residual values (e.g. see Figs 2.1a and c).

This behavior is an important observation, since it may give further empirical constrains in

order to define an interval of optimum values for nw, a kind of boundary in the number of

wave elements to accurately describe the signal, below which the signal is probably sparsely

reconstructed, and above which an abnormal number of spurious wave elements could be

included, which probably improve the fit of the recorded signal but mainly contributing in

the fit of auto-correlated seismic noise. To obtain the residual it is necessary to build a syn-

thetic waveform (to compare with the original signal) which may also provide an additional

tool to check how well a given model is describing the data. In section 2.6 there are some

examples performed with synthetic signals, and further discussion about the definition of this

optimum number of wave elements; later, in section 2.7, there is a discussion of a practical

problem where the concept of the optimal number of wave elements may be useful for both the

monitoring of characteristic complex frequencies of LP events in a given time interval, and

also to speed up calculations.

2.6 Numerical test using synthetic waveforms

We now illustrate the methodology described in this chapter analyzing some synthetic wave-

forms. Two synthetic waveforms were created using known model parameters, and the
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Figure 2.1: Solutions (frequency and growth rate) of synthetic examples SYNA and SYNB.

Example SYNA (3 wave elements): (a) residuals in function of the number of wave elements

of the model; (b) stacked solutions (circles) of models with nw from 1 to 10 in a f-g diagram.

Black lines represent iso-values of Q. Original values of the parameters are plotted with

plus marks, and the solutions with selected optimum nw are plotted with diamond marks.

Example SYNB (8 wave elements): (c) residuals in function of the number of wave elements

of the model; (d) stacked solutions (circles) of models with nw from 1 to 16 in a f-g diagram.

Symbols are the same as for example SYNA.
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methodology described in previous chapters was used to determine those model parame-

ters. Tables 2.1 and 2.2 summarize the parameter values used to generate the synthetic data

sets SYNA and SYNB, respectively.

Table 2.1: Wave elements used to create synthetic data SYNA. Each wave element is specified

by four real parameters: (real) frequency, growth rate, amplitude and phase.

frequency growth rate amplitude phase

(Hz) (s−1) (rad)

1.200 -0.050 10.900 0.900

2.400 -0.020 12.000 1.500

3.600 -0.030 11.500 2.100

In general, as a previous step before the inversion process, the time series are resampled and

band-pass filtered using a second-order Butterworth filter. Then, model parameters are deter-

mined using the methodology described before in an iterative process in which the number

of wave elements is increased in one at each step. Fig. 2.1 shows the results obtained for the

SYNA (2.1a and 2.1b) and SYNB (2.1c and 2.1d) data sets, respectively. The simple exam-

ple SYNA has been created using three wave elements (Table 2.1) with overlapped Gaussian

noise. Fig. 2.1(a) is a plot of the residuals calculated using equation (2.17) against the num-

ber of wave elements. It is evident that the residual value monotonically decays up to reach

the original number of wave elements. For solutions with a higher number of wave elements,

the residual remains in a low value, suggesting that the point around the original number of

wave elements represents an evident change point in the slope of the residual values. The first

panel in Fig. 2.1(b) is a cumulative plot of all the solutions (for different number of wave el-

ements) in a f-g diagram (error bars have been omitted for simplicity) while the second panel

is the FFT spectrum. Circles correspond to all overlapped solutions (for nw = 1, 2, . . . , 10),

diamonds are the solutions for nw = 3 (selected as the optimum nw), and plus-marks are the

original values (Table 2.1) used to create the signal. The overlapped solutions show a higher

density of points (recurrent solutions) around the original (true) parameter values. Note that

if we just consider a solution with nw around the change point in the residual plot (e.g. nw =

3 or 4), most of the high density areas in the f-g plot (and then the more likely solutions) are

successfully sampled.

Similar observations can be done in the solutions for the example SYNB, which has been cre-

ated using eight wave elements (Table 2.2) plus some overlapped Gaussian noise. Fig. 2.1(c)

is a plot of the residuals calculated using equation 2.17 against the number of wave elements,

and Fig. 2.1(d) is a plot of the frequency and growth rate solutions in a f-g diagram. Symbols

are the same as in previous example. In this case, we can define an interval around the correct

number of wave elements (e.g. [7, 10]) to define the optimum number of wave elements to

correctly describe the data, and whose solutions successfully sample most of the areas where

the true values are located.
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Table 2.2: Wave elements used to create synthetic data SYNB. Each wave element is specified

by four real parameters: (real) frequency, growth rate, amplitude and phase.

frequency growth rate amplitude phase

(Hz) (s−1) (rad)

1.000 -0.050 10.900 0.900

1.500 -0.020 12.000 1.500

2.000 -0.010 11.500 0.100

2.500 -0.035 9.500 1.100

3.000 -0.050 13.500 0.500

3.500 -0.043 8.500 0.700

4.000 -0.011 9.500 1.900

4.500 -0.026 7.500 0.200

To give some numerical values as results of model parameters estimated for examples SYNA

and SYNB, Tables 2.3 and 2.4 summarize, respectively, the values of central estimators (me-

dian) and errors (defined using the 10th and 90th percentiles) of the empirical distributions

associated with each parameter of the model, as calculated for the optimal number of wave

elements selected for each example (3 and 8, respectively).

The optimal number of wave elements defined in this way, provide us insights about the range

of plausible models which could be used to successfully explain the data. The wave elements

that make up the solution are a combination of highly likely signal components and some

(hopefully few) random wave elements describing autocorrelated noise. The accuracy of the

optimum solution may be also evaluated plotting the observed data and the synthetic wave-

form calculated (equation 2.10) using the estimated parameters of the optimum nw solution

selected. In Fig. 2.2 are plotted the observed (original) and synthetic (reconstructed) wave-

forms of the examples SYNA (2.2a) and SYNB (2.2b). Using this plot it is possible to inspect

how well our model describes the data.

Additionally, and due to the non-linear relation between observed data and model parame-

ters, a histogram of accepted solutions and/or a plot of the empirical cumulative distributions

(CDF) for each model parameter may help in the evaluation of the quality of a specific solution

and/or the possibility of multiple solutions (i.e. if the distribution is multimodal). Examples

of the frequency histograms for each model parameter of example SYNA are plotted in Fig.

2.3, and the empirical CDFs for the same data set are plotted in Fig. 2.4.

Those two synthetic examples provide some important information about the efficiency of

the solutions obtained using the probabilistic approach proposed in this work. On the other

hand, it is possible to get some insights to address (at least empirically) the difficult problem
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Table 2.3: Results of spectral analysis for the synthetic data SYNA. The best guess is defined using the median of the distribution, while

an error interval is defined using the 10th and 90th percentiles

frequency (Hz) growth rate (s−1) amplitude phase (rad)

median 10th. 90th. median 10th. 90th. median 10th. 90th. phase 10th. 90th.

1.200 1.200 1.203 -0.050 -0.050 -0.051 10.984 10.945 11.098 0.900 0.877 0.902

2.399 2.399 2.400 -0.020 -0.020 -0.021 12.021 12.015 12.197 1.535 1.513 1.539

3.599 3.583 3.599 -0.030 -0.030 -0.035 11.488 11.470 11.690 2.125 2.114 2.247
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Table 2.4: Results of spectral analysis for the synthetic data SYNB. The best guess is defined using the median of the distribution, while

an error interval is defined using the 10th and 90th percentiles

frequency (Hz) growth rate (s−1) amplitude phase (rad)

median 10th. 90th. median 10th. 90th. median 10th. 90th. phase 10th. 90th.

0.000 0.000 0.377 -0.299 -0.196 -0.299 1.133 0.964 1.466 0.654 -1.297 1.182

1.000 1.000 1.004 -0.053 -0.052 -0.054 11.445 9.770 11.686 0.893 0.874 0.912

1.500 1.491 1.500 -0.021 -0.015 -0.021 12.311 6.821 12.334 1.509 1.505 1.976

1.999 1.994 2.000 -0.010 -0.010 -0.010 11.541 11.541 11.708 0.155 0.127 0.395

2.500 2.474 2.500 -0.038 -0.038 -0.062 10.423 10.351 11.693 1.145 1.130 1.356

2.990 1.560 2.996 -0.051 -0.050 -0.051 13.404 13.104 13.452 0.729 0.670 0.800

4.000 4.000 4.028 -0.010 -0.010 -0.018 8.737 8.541 8.789 1.873 1.132 1.877

4.503 4.503 4.504 -0.028 -0.028 -0.031 8.067 8.014 8.841 0.099 0.091 0.100
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Figure 2.2: Numerical tests: waveforms of the original examples (solid lines) and the re-

constructed signals using the optimum nw models (dashed lines), for the synthetic examples

SYNA (a) and SYNB (b).
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Figure 2.3: Frequency histograms of solutions for the model parameters (amplitude, fre-

quency growth rate and phase angle) for the (three) wave elements of the solutions of exam-

ple SYNA. The frequency histograms are plotted using the MCMC data, after removing the

burn-in period and after the thinning procedure.

of selecting a kind of optimum number of wave elements to accurately describe the data. In

section 2.7, further discussion about the importance of this optimum number of wave ele-

ments is performed, in order to propose a possible use of this information for monitoring LP

activity in active volcanoes.

2.7 Strategy for routinely use characteristic complex frequencies

of LP events for monitoring volcanoes

In recent years, characteristic complex frequencies (CF) of LP events became popular in vol-

cano seismology due to its direct link to physical properties of the source resonator. After the

works of Kumagai and Chouet (1999, 2000, 2001), its main use have been oriented toward

the inference of some physical properties of fluids at the source of particular events.

It is important to consider here that the general theory at the source of this kind of time

series analysis is based on the estimation of parameters linked to a dynamical system (which

hypothetically generated the time series) in the most simple configuration described by a lin-

ear homogeneous differential equation. This may limit the kind of time series data suitable

to be analyzed using this approach; for example, when the excitation function is present at
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Figure 2.4: Empirical Cumulative Distributions (CDF) of the model parameters (amplitude,

frequency growth rate and phase angle) for the (three) wave elements of the solutions of

example SYNA. The CDFs are calculated from the MCMC data, after removing the burn-in

period and after the thinning procedure.
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all times in the signal, the analogous linear system should be described by an inhomogeneous

differential equation and then its realization will not be represented simply by a linear com-

bination of coherent wave elements (e.g., Kumazawa et al., 1990); in this case an alternative

method should be applied (e.g., Yokoyama et al., 1997; Nakano et al., 1998). This may become

more critical in the case we want to use this information to make some inferences about fluid

properties. For this reason we assume that the excitation is a time-localized function present

only during a short time interval at the beginning of the event, and then the analysis should

be performed in the tails of the events, to minimize the possibility of including the excitation

function.

Beyond the valuable application of characteristic complex frequencies of LP events to explore

fluid composition, which have provided an extraordinary tool for quantitative volcano seis-

mology research, we consider that it could be possible to make use of LP complex frequencies

in a more general way, specially oriented to quantitatively provide monitoring information in

order to improve our ability to detect generic changes in the volcanic system. Let’s consider

the volcano as a system, where each pre-existent fracture able to contain or to drive fluids

may be considered as a potential source of LP signals. This set as a whole represents all the

possible structures that could generate events (Fig. 2.5a). During a given interval of time ∆τ

(hours, days, months, etc.), just some specific structures (one or more) of that set are effec-

tively excited and generate signals (Fig. 2.5b), then, if we consider the subset of LP events

occurring during the time interval ∆τ and cumulatively plot their characteristic complex fre-

quencies in a f-g diagram, then we get a map of points which will represent the characteristic

f-g values from signals generated by the subset of sources active during that specific time

interval. Areas with high density of points represent more frequent solutions; for example,

let’s suppose that there exist just one structure (e.g. a crack, or a cylindrical conduit, etc.)

with unmodified dimensions and fluid properties (i.e. density and acoustic velocity), which

is repeatedly excited generating a subset of individual LP events, then the cumulative plot

of the characteristic complex frequencies estimated for that subset of LP events should be

represented by a few, well constrained, high-density (of points) regions. On the other hand,

if during the time interval considered there are many different sources (different geometrical

configurations, dimensions, fluid compositions, etc), then we could observe many different

areas with significant concentration of solutions. This kind of plots may be used to perform a

selective filtering of the solutions to generate time series of f , g and Q, which would represent

the time evolution of the most likely characteristic solutions for the LP seismicity occurring

in a given period of time. To pursue this objective we could use the stacked solutions of each

event (as in Sompi analysis), or we could use a single solution (for each event) selected from

the defined optimum nw interval. This second option may be useful since it would prevent fill

the space with spurious points, and also because the time required to process the data would

be optimized.

Using this approach it is possible to systematically monitor the most significant characteristic

complex frequencies and then get samples of the most active sources triggering LP events dur-
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(a) (b)

Figure 2.5: Schematic view of a volcanic system. (a) All existent structures which potentially

could contain or drive fluids. (b) During a given time interval ∆τ , just some specific structures

are effectively excited and generate LP signals.
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ing a given time interval. In this way it would be possible to comprehensively identify changes

in the characteristic complex frequencies of LP seismicity which may indicate generic changes

in the physics of the source. Note that the objective of this analysis is completely different of

the usual application oriented toward the inference of fluid properties. Our main interest is

to find significant changes in the characteristic values of frequency (f), growth rate (g), and

then the value of Q calculated using the former parameters (equation 2.4). To illustrate how

this strategy could work, in section 2.8 we apply the overall methodology and this alternative

monitoring strategy to real data from two active volcanoes: (1) Cotopaxi (Ecuador) and (2)

Miyakejima (Japan) volcanoes.

2.8 Application to LP data

We applied the described methodology to LP data from two volcanoes: Cotopaxi (Ecuador)

and Miyakejima (Japan). Cotopaxi is a huge, ice-capped, stratovolcano which had an im-

portant unrest in 2001-2002 characterized by swarms of both VT earthquakes and LP events,

accompanied also by a small deformation localized in the NNE flank (Molina et al., 2008). On

the other hand, Miyakejima is a basaltic volcano located in the Izu islands, Japan, which in

2000 had an eruption characterized by strong deformation accompanied by VT and VLP seis-

mic swarms. The eruption was also characterized by the migration of magmatic dikes toward

the NW of the volcano, and by the formation of a 0.6km3 collapse caldera in the summit of

the volcano (e.g., Nakada et al., 2005; Ueda et al., 2005; Kobayashi et al., 2009).

2.8.1 Case study 1: Cotopaxi Volcano (2001 - 2002)

Cotopaxi volcano (lat. 0.684S; long. 78.437W) is located in the Eastern Cordillera of the

Ecuadorian Andes, 60 km south of Quito. This 5879 m high active volcano is notable for

its relief (2000 - 3000 m), conical form, massive size (22-km diameter), and its glacier-clad

steep flanks. Cotopaxi is instrumentally monitored since 1977 by the Instituto Geof́ısico - Es-

cuela Politécnica Nacional (Quito), that provided us the waveforms. Renewed seismic activity

of Cotopaxi began in January 2001 with the increased number of LP events, followed by a

swarm of VT earthquakes in November 2001. In late June 2002, VLP events accompanying

LP signals began beneath the volcano (Molina et al., 2008). We analyzed the most important

LP events occurred from December 2001 up to November 2002. We used the waveform data

recorded at station COV1 featuring a Mark Products L-4C-3D three-component seismometer

with a natural frequency of 1 Hz. This station is the closest to the summit crater of the volcano

(1.7 km from the summit), and provided the best quality waveform data in the permanent

seismic network operating at that time.

Fig. 2.6 shows some examples of solutions obtained for LP data from Cotopaxi volcano.

Fig. 2.6(a) shows four waveforms (solid lines) and their synthetic model fits (dashed lines).
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Figure 2.6: (a) Recorded waveforms (solid line) and the synthetic signal reconstructed using

the optimum nw models (dashed line), for four LP signals from Cotopaxi volcano. (b) f-g

diagram with the stacked solutions (LP event from September 24, 2002, 16h44 GMT) for

models with nw between 3 and 20 (circles). The selected optimum nw solutions (14) are

shown with diamond marks, and error bars correspond to the 10th and 90th percentile of the

distribution of the growth rate parameters. (c) Fourier spectra of the signal.

Using this kind of plots it is possible to control how well a specific model explains the recorded

data. The residual for each fit is also reported. The synthetic waveforms plotted are gener-

ated using the model with the optimum number of wave elements selected for each signal.

Fig. 2.6(b) is an example of a f-g diagram for the third waveform in Fig. 2.6(a), where the

solutions for the models with wn = 3 to 20 are plotted (solid circles). The solutions for the

optimum number of wave elements (nw = 14) are plotted using diamond symbols, with the

respective error bars. Fig. 2.6(b) shows how the model with the selected optimum number of

wave elements successfully samples the areas with higher density of points in the f-g diagram.

In order to provide a further tool to control the quality of the frequency solution, a Fourier

spectra is also plotted (Fig. 2.6c). In this way we did calculate f-g solutions and the respec-

tive optimum models for 617 LP events recorded in Cotopaxi volcano between December 22,

2001 and November 14, 2002.

Following the approach described in section 2.7, optimum solutions were stacked (using win-

dows of 50 events) in order to find the most recurrent values and then to identify the most

probable solutions indicating the most active sources during a given time interval. Fig. 2.7

shows the cumulative f-g diagrams for six different time intervals within the time period of

available data. Fig. 2.7(a) shows the cumulative solutions (solid points) for the time interval
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December 22, 2001 - March 23, 2002. Contours indicate the areas with higher density of

points (warmer colors). The areas with higher concentration of points in this plot indicates

that the most frequent solutions for LP events in this period are in the frequency interval from

2 to 4 Hz, and growth rate from about -0.05 to -0.01 s−1 (S1). These parameters indicate Q

values which range from 50 to 100 approximately. It is noteworthy that these solutions are

present almost all the time in the whole period of analysis, indicating one or more sources of

LP events which are probably active almost permanently. Figs 2.7(b) and (c) show another

cluster of solutions (S2) in a frequency range 0.8 - 1.5 Hz approximately and growth rate

from about -0.15 up to -0.07 s−1, present in a time interval from June 28 up to the end of

August 2002. During this period, VLP signals (0.5 to 0.9 Hz) accompanying LP events were

recorded at Cotopaxi, and solutions S2 are some evidence of that as seen in the short period

seismometers. Analyzes of those VLP events from broad band records were performed by

Molina et al. (2008) and have been interpreted as volumetric changes of a sub-vertical crack

located beneath the NNE flank of the volcano. A very interesting set of solutions (S4) can

be seen in Figs 2.7(e) and (f). This set of solutions corresponds with long-lasting coda LP

events (known in volcanological literature as tornillo-type) which were recorded at Cotopaxi

between September and November 2002. The solutions are in a frequency interval between

3 and 4 Hz and with growth rate > −0.02 s−1, corresponding to signals with Q values in

the interval 100 to 400. This subset of solutions corresponds to the LP events analyzed by

Molina et al. (2008) using Sompi method (i.e. see Fig. 8 in Molina et al. (2008)), which based

on the model proposed by Kumagai and Chouet (1999, 2000, 2001), were interpreted as the

resonance of a crack above the magmatic system triggered by the release of particle-laden gas.

Figs 2.7(a to f) are examples of how the f-g parameters and derived Q values could be system-

atically used to monitor changes in some properties of the LP seismicity recorded in a specific

volcano, during a given time interval. The f-g diagrams may be useful to filter the most likely

solutions in order to generate time series of frequency, growth rate and Q values, as in Fig.

2.8. Subsets of solutions S1, S2, S3, and S4 highlighted in Fig. 2.7 have been also included.

Once some events of interest are identified, conventional techniques and models could be

used to make physical interpretations about the source properties. It is important to point out

here that if this information is going to be used to make inferences about the source properties

(e.g. properties of fluids), it is necessary to correctly analyze signals from resonant systems,

and avoid taking in consideration effects from the triggering mechanisms (i.e. the excitation

function). An analytical explanation of this point may be found in Kumazawa et al. (1990),

while an approach to simultaneously inversions of both characteristic complex frequencies

and the source time function can be found in Nakano et al. (1998).
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Figure 2.8: Time series of characteristic growth rate, frequency and Q parameters of LP events

from Cotopaxi volcano, resulting from filtering points from high density areas in f-g diagrams

from different time intervals.

2.8.2 Case study 2: Miyakejima Volcano (2000)

Miyakejima island (lat. 34.079N; long. 139.529E), located about 200 km south of Tokyo,

Japan, is one of the most active basaltic volcanoes in Japan. The latest eruption started in

2000 and lasts for more than 9 years by now. A collapse caldera at the summit of the volcano

was generated during this eruptive cycle. On the basis of surface phenomena observed, many

authors have divided this eruptive period in at least four stages (e.g., Nakada et al., 2005;

Ueda et al., 2005): (1) magmatic intrusion, (2) summit subsidence, (3) Explosions, and (4)

degassing stage. For our test, we did analyze the waveforms of LP and VLP events occurred

from 27 June to 07 July, 2000, which covers the magmatic intrusion stage and the beginning

of the summit subsidence. The data used was provided by the National Research Institute

for Earth Sciences and Disaster Prevention (NIED), Japan, from a seismic network composed

by 4 Broad-Band observation points. The reference station chosen for data analysis is MKTB,

featuring a STS-2 seismometer.

The main features of the VLP events analyzed have been summarized by Kobayashi et al.

(2009). The VLP events are constituted of two parts: the initial part, an impulsive pulse

which is dominant in the horizontal components, and the later part, a very long period os-

cillation with 0.2 or 0.4 Hz in dominant frequency. The source mechanisms of those VLP

events have been studied by different authors. Kobayashi et al. (2009) analyzed the source

mechanism of VLP events for the same period as our analysis. They performed waveform

inversions and obtained both the location and the source time functions (STF), finding that
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the initial part of the signals can be explained by a northward single force of about 1.5 × 108

N working at a depth of 2 km beneath the summit, while the later part is produced by a mo-

ment tensor solution at about 5 km depth and 2 km SW of the summit, with about 1012 Nm.

Their interpretation has been that the single force was generated when magma containing

rock blocks suddenly began to move in a choked subsurface magma path, and the resultant

pressure waves propagated and excited a resonance oscillation of an axially symmetric struc-

ture; for this reason the shallow impulsive source is thought to trigger the deep oscillatory

source.

Fig. 2.9 shows some examples of solutions obtained for VLP/LP data from Miyakejima vol-

cano. Fig. 2.9(a) shows five waveforms (solid lines) and their synthetic model fits (dashed

lines). Using this kind of plots it is possible to control how well a specific model explains the

recorded data. The residual for each fit is also reported. The synthetic waveforms plotted are

generated using the model with the optimum number of wave elements selected for each sig-

nal. Fig. 2.9(b) is an example of a f-g diagram for the fourth waveform in Fig. 2.9(a), where

the solutions for the models with wn = 3 to 20 are plotted (solid circles). The solutions for

the optimum number of wave elements (nw = 9) are plotted using diamond symbols, with

the respective error bars. Fig. 2.9(b) shows how the model with the selected optimum num-

ber of wave elements successfully samples the areas with higher density of points in the f-g

diagram. In order to provide a further tool to control the quality of the frequency solution, a

Fourier spectra is also plotted (Fig. 2.9c). In this way we did calculate f-g solutions and the

respective optimum models for 240 VLP and LP events recorded in Miyakejima volcano from

June 27 to July 08, 2000.

Following the approach described in section 2.7, optimum solutions were stacked (using win-

dows of 50 events) in order to find the most recurrent values and then to identify the most

probable solutions indicating the most active sources in a given time interval. Fig. 2.10 shows

the cumulative f-g diagrams for six different time intervals within the time period of available

data. Figs 2.7(a to d) shows the cumulative solutions (solid points) for different periods in

the time interval June 27 to July 07, 2000. Contours indicate the areas with higher density of

points (warmer colors). The areas with higher concentration of points in this plot indicates

that the most frequent solutions for LP events in this period are in the frequency interval from

0.2 to 0.5 Hz, and growth rate from about -0.04 to -0.001 s−1 (S1). These values indicate

Q values lower than 50. In the sequence from Figs 2.10(d to f), it is possible to see how the

solutions S1 vanishes while a subset of higher-frequency solutions appears (S2). S2 solutions

are in the frequency interval 1 to 3 Hz, while the growth rates range between -0.03 and -0.01

s−1, which corresponds to Q values from about 50 to 300. Again in this example, it is possible

to see how the characteristic complex frequencies of LP activity can be monitored to detect

changes in the characteristics of the signals. The time evolution of the solutions, as filtered

selecting solutions from high density areas, can be better seen in Fig. 2.11.
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Figure 2.9: (a) Recorded waveforms (solid line) and the synthetic signal reconstructed using

the optimum nw models (dashed line), for four LP signals from Miyakejima volcano. (b) f-g

diagram with the stacked solutions (LP event from July 07, 2000, 05h21 L.T.) for models

with nw between 3 and 20 (circles). The selected optimum nw solutions (9) are shown with

diamond marks, and error bars correspond to the 10th and 90th percentile of the distribution

of the growth rate parameters. (c) Fourier spectra of the signal.
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Figure 2.10: Stacked solutions of characteristic complex frequencies of LP events from

Miyakejima volcano (white points) plotted in f-g diagrams for six different time intervals

from the period June 27 - July 08, 2000. Contours enclose areas with high density of points

(warmer colors). Lines in the diagram correspond with iso-values of Q.
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Figure 2.11: Time series of characteristic growth rate, frequency and Q parameters of LP

events from Miyakejima volcano, resulting from filtering points from high density areas in f-g

diagrams from different time intervals. Error bars correspond with 10th and 90th percentiles

of distributions for each single parameter.
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2.9 Discussion and concluding remarks

In this chapter we present an alternative method to estimate the parameters of a simple con-

ceptual model presented by Kumazawa et al. (1990) as a method for physically-based spectral

analysis. The basic idea of this method originates on the physical concept of the characteristic

properties of a linear dynamic system described by a linear differential equation; for instance,

the time series modeling using this approach consists essentially of estimating the governing

differential equation of the hypothetical linear dynamic system that has yielded the given

time series (Kumazawa et al., 1990). This method takes the form of the familiar autoregres-

sive (AR) method, however, the basic concept of the AR methods and the exact formulation

based on the maximum likelihood principle have led to Kumazawa et al. (1990) to a model

estimation algorithm different from previous AR methods.

To estimate the parameters of the model, we performed a probabilistic formulation of the

problem. This kind of formulation leads to the definition of a (posterior) probability distri-

bution in the model space σ(m) which results of combining prior information (on data and

model parameters) with new information obtained by measurements (the time series). When

the theory linking the observable data with the parameters of the model is nonlinear, the

posterior probability distribution in the model space may be a complex function difficult to

describe; in this case a maximum likelihood solution may be insufficient and sometimes un-

reliable, and often we may not have information about the resolution power of the data.

The nature of the problem that we analyze in this chapter involves the definition of a con-

siderable number of model parameters, so the posterior distribution is defined on a high-

dimensional space; in this case an inspection of the marginal probability densities of interest

may be impractical. This fact pushes us to apply Monte Carlo methods to explore σ(m), which

implies that a large collection of models should be pseudo-randomly generated with the sup-

port of the posterior probability distribution. To do this task we have implemented a simple

Metropolis algorithm; the input to the algorithm consists of random models generated ac-

cording to the prior distribution ρ(m) and the corresponding values of the likelihood function

that carries information from measurements and the theory linking observed data and model

parameters; the output from the algorithm are pseudo-random realizations of the posterior

distribution σ(m) that contains all information about the parameterized model. From this

output we can get information about model parameters: even if the most general solution

would be the definition of an empirical probability distribution (CDF or PDF) for each model

parameter, it may be possible (where possible) to compute any kind of central and dispersion

estimator to produce both best-guess values and associated uncertainties (however, note that

computing standard deviations or covariances may be meaningless if the posterior probability

density is far from Gaussian, which may be the case in many nonlinear problems; in such a

case it may be useful to adopt cluster analysis techniques to assess the nature of the possible

solutions).

In this way we have set the problem in a fully probabilistic formulation providing a frame-
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work in which restrictive assumptions are avoided and not-unique solutions are possible. We

consider that this kind of formulation may be helpful for different kind of problems, specially

when it exists a nonlinear relationship between the observed data and the parameters of the

model; the alternative may be an uncertain parameter estimation and of course an uncertain

estimation of uncertainties.

Using our formulation we have performed some numerical tests with synthetic time series,

where it was possible to assess the resolution power and the reliability of the solutions (e.g.,

see Figs 2.1 and 2.2). An important factor in the model is the definition of the number of

wave elements to properly describe the data. Unfortunately there are not physical constrains

to establish the “true” number of wave elements that successfully describes the data, then an

empirical approach must be used. In our approach, we propose to define an “optimum” num-

ber (or interval) of wave elements which may be determined based on a residual function that

measures the misfit between the original time series and the created by the specific model;

for instance, we have observed that as the number of wave elements increases, the residual

value decreases with a strong slope, and after a generally sharp change point in the slope, it

remains more or less constant (or may continue to decrease with a much more gentle slope,

e.g., see Figs 2.1a and c). We consider that the number of wave elements associated with the

change point in the slope of the residuals may indicate an “optimum” number of components

to describe the data; fits with a smaller number of wave elements would produce high resid-

uals and poor explanation of the data; on the other hand, adding more wave elements does

not substantially improve the solution which results in over-fitting the observations; in this

way spurious wave elements are included in the solution.

We did apply this method to analyze the waveforms of long-period events from two vol-

canoes: Cotopaxi (Ecuador) and Miyakejima (Japan). We did perform the analysis to each

single LP event (617 for Cotopaxi, and 240 for Miyakejima) and the solutions for the opti-

mum number of wave elements were extracted and stacked for different time intervals. This

procedure may be an important tool for objectively monitor the characteristic complex fre-

quencies of the LP events (e.g., see Figs 2.7 and 2.10); in this way, changes in the volcanic

activity may be highlighted and families of events of particular interest could be identified for

supplementary analysis. The information obtained using this methodology could be also used

to feed probabilistic models as BET; for instance, in Chapter 4 (section 4.3), we discuss a pos-

sible strategy to integrate the information obtained from LP events using this approach into

the Bayesian Event Tree model for eruption forecasting (BET EF) of Marzocchi et al. (2008).

Further this possible application for monitoring, our approach can also be used to analyze

individual events as an alternative to the existent methodologies.





Chapter 3
Characterizing Volcano-Tectonic Seismic

Swarms with non-stationary,

Epidemic-Type Aftershock Sequences

(ETAS) Modeling

“We have to remember that what we

observe is not nature herself, but nature

exposed to our method of questioning.”

Werner Heisenberg

(Physics and Philosophy, 1958)

Abstract

We perform an analysis of volcano-tectonic (VT) seismic swarms using a non-stationary,

epidemic-type, aftershock sequences (ETAS) model, in which two parameters of the model

(the background seismicity, λ0, and the p-value) can vary through time. Our results have

evidenced some important characteristics of the VT swarms associated with magmatic intru-

sions, in particular, they present remarkably high p-values respect to VT swarms in cases in

which no evident shallow magmatic activity has been observed, and also respect to earth-

quake swarms in purely tectonic environments. We consider that the stochastic modeling of

VT swarms using a non-stationary ETAS model may be used for a quick analysis of VT activity

in active volcanoes in order to identify and discriminate swarms which may be more likely

associated with the physical response of the volcanic edifice to a magmatic intrusions.
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3.1 Introduction

Nearly every recorded volcanic eruption has been preceded and/or accompanied by an in-

crease in earthquake activity beneath or near the volcano; for this reason seismology is one

of the most important and effective tools for monitoring volcanoes and can provide valuable

information for short-term eruption forecasting. Active volcanoes are the source of a great

variety of seismic signals, this is because volcanic seismic sources involve different physical

processes whose mechanisms may include shear failure, tensile failure, and both active and

passive fluid involvement (e.g., Aki, 1992; McNutt, 1996). Two basic families of processes

can usually be established to classify volcanic seismicity (e.g., Chouet, 1996): the first fam-

ily consist of volumetric sources in which the fluids play an active role in the generation of

elastic waves (that in a rough generalization we call Long-Period (LP) family), and the sec-

ond consists of shear or tensile sources involving brittle rock failure (that hereinafter we call

Volcano-Tectonic (VT) family).

A volcanic unrest has a complex nature, involving different interactive processes; some au-

thors have tried to identify common pre-eruptive patterns during volcanic unrest analyzing

data from different worldwide volcanoes (e.g., McNutt, 1996; Sandri et al., 2004). Following

these authors, we can roughly consider that a seismic crisis during a volcanic unrest may be

composed of some or all of the following components: (1) background activity; (2) swarms of

VT events; (3) relative quiescence after the peak rate of seismicity; (4) swarms of LP and VT

events; (5) volcanic tremor; (6) eruption; and (7) deep earthquakes following eruption. Each

component may reflect a different stage during the volcanic activity, and deep understanding

of the physical phenomena that they are reflecting should be the basis to feed probabilistic

models (e.g., Marzocchi et al., 2008) for short-term forecasting of eruptions. We are interested

in exploring some characteristics of VT swarms; in general, VT swarms are often one of the

earliest detectable precursors to volcanic activity, but often they are also present during the

intrusive period before or accompanying the eruptive stage. This duality make them difficult

to interpret and their use for forecasting purposes may lead to a high false alarm rate. For

this reason it is necessary to improve our knowledge about the characteristics of VT swarms

in order to better characterize their origin and to produce better interpretations.

Most VT events are thought to be caused by shear failure or slip on faults and fractures, and

differ from purely tectonic activity mainly in their patterns of occurrence, which, at volcanoes,

are typically in swarms rather than a clear mainshock-aftershock sequence. For instance, we

can define a seismic swarm as a group of many earthquakes of similar magnitude character-

ized by the lack of clear mainshock signatures. In general, seismic swarms feature complex

spatiotemporal patterns probably linked to the contribution of different sources that in gen-

eral may be related to the presence of magma/fluids and to seismic interactions (Lombardi

et al., 2006).

Some conceptual models have been proposed to explain the generation of earthquake swarms

in volcanic environments; Hill (1977) proposed a model in which VT earthquakes occur on
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shear planes connecting the edges of offset and inflating dikes; Ukawa and Tsukahara (1996)

proposed a model in which VT earthquakes occur in a zone of inflation-induced tension ahead

of the tip of a propagating dike; Toda et al. (2002) described the spatiotemporal evolution of

a swarm at the Izu Islands through the co-seismic stress variations induced by a constantly

growing dike emplaced at the beginning of the swarm; Roman (2005) proposed that VT earth-

quakes occur in the walls (away from the tips and edges) of a dike inflating in the direction

of regional minimum compressive stress. Some characteristics of those models are confirmed

by some analytical and numerical models (e.g., Bonafede and Danesi, 1997).

All those models provide valid descriptions of physical processes that can generate VT events

during dike intrusions, starting from the basis of an ongoing intrusion. However, we want

to go one step behind and start from the question, given that we have a generic swarm of

earthquakes in a given volcanic region, is it directly associated with dike migration processes

or is it driven by other (e.g. tectonic) factors? to answer this question we explore some char-

acteristics of seismic swarms based on a non-stationary epidemic-type, aftershock sequences

(ETAS) modeling.

ETAS (Ogata, 1988) is a stochastic model that describes the short-time clustering features

of earthquakes as a superposition of modified Omori functions (Utsu, 1961) shifted in time.

At its origins, ETAS was applied to analyze typically tectonic mainshock-aftershock sequences,

but a generalization of this model that allows time variations of one or more parameters pro-

posed by Hainzl and Ogata (2005) and Lombardi et al. (2006), has opened a new window to

characterize complex seismic swarms.

In this chapter we apply a general stochastic non-stationary ETAS modeling to analyze com-

plex seismic swarms in both tectonic and volcanic environments, in order to extract infor-

mation useful to characterize the swarms directly associated with dike migration. The final

goal is to get insights for a quantitative tool useful to interpret VT swarms during monitoring

procedures, yielding physical constrains of the driving processes.

3.2 Stochastic modeling of a seismic swarm

The epidemic-type aftershock sequences (ETAS) model is a stochastic point process in which

each earthquake has some magnitude-dependent ability to trigger its own Omori law type

aftershocks (Ogata, 1988; Ogata et al., 1993; Ogata, 1998). The total occurrence rate can be

described, in time, as the superposition of a background uncorrelated seismicity λ0 and the

events triggered by another earthquake:

λ(t) = λ0 +
∑

i:ti<t

λi(t) (3.1)
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where λi(t) is the rate of aftershocks induced by an event occurred at time ti with magnitude

Mi, defined as (for details see Ogata, 1988)

λi(t) =
κ

(c + t − ti)p
eα(Mi−Mc) (3.2)

for t > ti. The parameter κ measures the productivity of the aftershock activity; α defines the

relation between triggering capability and magnitude mi of a triggering event; c measures

the incompleteness of the catalog in the earliest part of each cluster; the parameter p con-

trols the temporal decay of triggered events; Mc is the completeness magnitude of the catalog.

We use a generalized version of the ETAS model by considering a non-stationary behavior

(understood as a process/model whose parameters vary through time) of some model param-

eters. In particular, we consider the time variations of λ0 and p (λ0(tj) and p(tj), respectively,

for the j-th time window) as suggested by Lombardi et al. (2006), but using overlapping win-

dows. Those parameters are thought to be the most clearly linked to variations of the physical

system due to dike intrusions; specifically, time variations in the λ0(tj) parameter have been

interpreted as indicator of seismicity associated with fluid flow which initiate seismicity that

cannot be explained without considering complex patterns resulting from both pore pres-

sure variations and earthquake-connected stress field changes (e.g., Hainzl and Ogata, 2005;

Lombardi et al., 2006); on the other hand, the p(tj) values have been found to be positively

correlated with crustal temperature, which controls stress release and therefore aftershocks

decay (e.g., Mogi, 1967; Kisslinger and Jones, 1991; Lombardi et al., 2006).

To explore possible characteristic properties of VT swarms during dike intrusions, we analyze

different earthquake swarms selected from three general groups: (1) swarms from purely

tectonic environments, (2) swarms occurred in volcanic areas but that did not preceded nor

accompany eruptive activity , and (3) swarms in volcanic areas during an eruptive process.

The estimation of model parameters {κ, c, α, λ0(tj), p(tj)} is carried out by the Maximum

Likelihood method (Dalay and Vere-Jones, 1988), and we use the Davidon-Fletcher-Powell

optimization procedure (Fletcher and Powell, 1963), which provides also a numerical approx-

imation of errors (Lombardi et al., 2006). We fit the ETAS model in a moving overlapping

time window of length τ (in days), the length of which is selected based on two basic re-

quirements: (1) the need to include enough data for the calculations, and (2) to have the

minimum possible time window to follow the details of the time evolution of the process.

The time window is moved forward in time at steps of 1 day. At each time interval j we esti-

mate the updated value of the parameters allowed to change with time (i.e. λ0(tj) and p(tj)),

setting all the other parameters to the values estimated for the whole sequence. In computing

the model parameters for each time window we take in account all past occurrence history, to

include the possibility that an event has been triggered by an earthquake occurred at a time

before the start time of the considered j-th window.
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3.3 Data

We analyze different earthquake swarms selected from three general groups as: (1) VT

swarms in volcanic areas before/during an eruptive process; (2) VT swarms occurred in vol-

canic areas where no eruption happened, and (3) Earthquake swarms from purely tectonic

environments.

3.3.1 Sequences from erupting volcanic areas

In this group we have selected data from three volcanic regions: Guagua Pichincha (Ecuador),

Miyakejima (Japan), and Pinatubo (Philippines), which have experienced VT seismic swarms

preceding and/or accompanying volcanic eruptions (see table 3.1).

(1) Guagua Pichincha volcano is a dacitic stratovolcano located 12 km west of Quito, Ecuador.

Holocene eruption styles at Guagua Pichincha have been dominantly explosive and include

phreatic explosions, dome growth and collapse, Vulcanian eruptions, Plinian ash falls, and

pyroclastic flows (e.g., Hall, 1977; Barberi et al., 1992). The most recent unrest period be-

gan in 1981 with small seismic swarms and episodes of phreatic activity that included small

phreatic explosions and gas emissions. A second phase of activity initiated on August 1998

with the onset of larger phreatic explosions preceded and accompanied by volcanic tremor

and swarms of LP and VT seismic events. Intense VT and LP swarms occurred before and

during the emplacement of dacitic lava domes within the calderic crater (Garcia-Aristizabal

et al., 2007). The database, provided by the Instituto Geof́ısico - Escuela Politécnica Na-

cional (Quito, Ecuador), consists of more than 650 VT events recorded from January 1998 to

November 1999; the catalog is considered complete for magnitudes larger than M1.6.

(2) Miyakejima is an active basaltic volcano located in the northern Izu islands, Japan, that

produced a noteworthy eruption in 2000 after an interval of 2,500 years without erupting

a large quantity of magma (e.g., Nakada et al., 2005; Amma-Miyasaka et al., 2005). During

the initial stage of the eruption, magma moved in a dike system westward from the volcano

(e.g. Fujita and Ukawa, 2002) and 12 days after the intrusion, the summit of the volcano

began to collapse to from a new caldera (e.g., Nakada et al., 2005; Amma-Miyasaka et al.,

2005). The volcanic unrest started on 26 June 2000 (around 18:00 local time) with an in-

tense seismic swarm. The earthquakes initially occurred beneath the SW flank of the volcano,

but at around 21:30 they jumped to the W flank and continued an initially westward and,

later, northwestward migration (Uhira et al., 2005). Epicenters moved progressively away

from the island, and a submarine flank eruption occurred near the west coast of Miyakejima

next morning (e.g., Uhira et al., 2005). The hypocenters continued to migrate northwestward

and intense earthquake swarms occurred intermittently between Miyakejima and Kozushima

until September 2000, including five M6.0 earthquakes. New swarms occurred beneath the

volcanic edifice on 4 July, which have been interpreted as caused by instability of the volcanic

edifice, and associated with the caldera formation process (Uhira et al., 2005). We analyzed

a data set provided by the National Research Institute for Earth Science and Disaster Preven-
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tion, Japan, and from Toda et al. (2002), which consists of more than 5000 events recorded

from June to December 2000; the catalog is considered complete for magnitudes larger than

M3.0 (Lombardi et al., 2006).

(3) Mount Pinatubo is a part of the Luzon arc, whose volcanism is related to the activity of

the Manila trench, located about 120 km West of the volcano. The NW-trending, left-lateral

Philippine fault passes NE of Mount Pinatubo, and on July, 16, 1990, a 125-km-long segment

of this fault ruptured and produced a Ms7.8 earthquake. The epicenter of this earthquake

was about 100 km NE of Mount Pinatubo (Bautista et al., 1996). The cataclysmic eruption

of Mount Pinatubo on June 15, 1991, was preceded by at least 10 weeks of unrest character-

ized by increasing seismic activity (a complex sequence comprising VT earthquakes and LP

events), high SO2 emissions, emplacement of a lava dome, and numerous smaller explosive

eruptions (e.g., Power et al., 1996). We analyzed a data set distributed as annexed material

in Newhall and Punongbayan (1996), which consists of more than 380 events recorded from

May to June, 1991 (before the cataclysmic eruption on June 15), and more than 900 events

recorded from June to August, 1991. The catalogs are considered complete for magnitudes

larger than M0.6 for the period before the main eruption, and larger than M0.8 for for the

period post cataclysmic eruption.

Table 3.1: Summary of the seismic sequences analyzed in this work: (1) VT sequences from

erupting volcanoes, (2) VT sequences from non-erupting volcanoes, and (3) earthquake se-

quences from tectonic environments.

Sequence Period Completeness τ

of time Magnitude (days)

1. Erupting volcanoes

Guagua Pichincha 1998-1999 1.6 20

Miyakejima June-December 2000 3.0 5

Pinatubo - before May-June 1991 0.6 2

Pinatubo - after June-August 1991 0.8 2

2. Non-erupting volcanoes

Campi Flegrei 1982-1984 0.4 5

Cotopaxi 1996-2007 3.2 10

Mt. Fuji 1997-2006 0.2 150

Long Valley 1997-1998 1.5 10

3. Tectonic

Landers 1992-1993 3.0 5

Umbria-Marche 1997-1998 2.5 10
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3.3.2 Sequences from non-erupting volcanic areas

In this group we have selected data from four volcanic regions: Campi Flegrei (Italy), Co-

topaxi (Ecuador), Mt. Fuji (Japan), and Long Valley caldera (California), which have ex-

perienced VT seismic activity that not preceded, accompanied or concluded with a volcanic

eruption (see table 3.1). (1) At Campi Flegrei, the 1982-84 unrest episode is the most signifi-

cant activity recorded in recent times, and the recorded seismicity has been widely studied in

literature (e.g., De Natale et al., 1984; De Natale and Zollo, 1986; De Natale et al., 1995; Troise

et al., 1997; Orsi et al., 1999; Marzocchi et al., 2001; Troise et al., 2003). The seismic database

consists of more than 13,000 events that were recorded during a seismic crisis occurred from

January 1983 to December 1984 (De Natale and Zollo, 1986; Marzocchi et al., 2001); the

catalog is considered complete for magnitudes larger than 0.4 (Marzocchi et al., 2001). (2)

At Cotopaxi, we have considered the VT seismic swarms occurred between 2001 and 2005

during the most important seismic unrest occurred since the volcano is instrumentally moni-

tored. Renewed seismic activity of Cotopaxi began in January 2001 with an increased number

of LP events which were followed by a swarm of VT earthquakes in November 2001 (Molina

et al., 2008). After that, the rate of VT events showed high levels (respect to the background

activity) for about three years. The database, provided by the Instituto Geof́ısico - Escuela

Politécnica Nacional (Quito, Ecuador), consists of more than 1800 events recorded from Jan-

uary 1996 to December 2007; the catalog is considered complete for magnitudes larger than

M3.2.

(3) Mount Fuji is the largest active stratovolcano in Japan, and in recent times its seismic

activity has been relatively low; the most significant seismic activity occurred in 2001-2002

which was mainly characterized by swarm-like mid-crustal low-frequency (DLF) earthquakes

(e.g., Ukawa, 2005). The DLF events have been located at 2-4 km NE of the summit and in the

depth range 10-20 km, and in the active period of DLF events, tectonic-like of mainly strike

slip mechanisms earthquake activity in the Mt. Fuji area increased slightly (Ukawa, 2005).

We extract the information of high-frequency seismicity around Mt. Fuji from a database

provided by the National Research Institute for Earth Science and Disaster Prevention, Japan

(Ukawa, 2005), which consists of more than 340 events recorded from January 1997 to De-

cember 2006; the catalog is considered complete for magnitudes larger than M0.2. (4) For

the Long Valley caldera, we considered 9111 seismic events occurred in the July 1997 - March

1998 swarm, which is one of the most energetic seismic swarm in recent years (Hill, 2006).

After nearly a year of relative quiescence within the caldera, seismicity gradually increased

in mid 1997 with earthquake-swarm activity concentrated at depths between 3 and 8 km

beneath a broad 15-km-long zone, and it included more than 12000 M > 1.2, 120 M > 3.0,

and 8 M > 4.0 recorded earthquakes. The 1997 seismic-moment release was dominated by

right-lateral slip along the WNW-trending fault zone beneath the south moat (Hill, 2006).

The catalog is considered complete for magnitudes larger than M1.5 (Marzocchi et al., 2001).
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3.3.3 Sequences from purely tectonic environments

We have selected two well known seismic sequences occurred in tectonic areas: The 1992-

1993 Landers (California) sequence, and the 1997-1998 Umbria-Marche (Italy) sequence.

(1) The Landers earthquake sequence began on April 23, 1992 with a MW 6.1 event (Joshua

Tree preshock); this sequence ruptured almost 100 km of both superficial and concealed

faults and caused aftershocks over an area 100 km wide by 180 km long (Hauksson et al.,

1993). The MW 7.3 Landers mainshock occurred on June 28, 1992, its focal mechanism

showed a right-lateral strike-slip faulting, and was preceded for 12 hours by 25 small M ≤ 3

earthquakes at the mainshock epicenter (Hauksson et al., 1993); mapping showed that the

rupture occurred on five overlapping, curved fault segments with the cumulative length of 85

km (Sieh et al., 1993); Numerous M > 4 aftershocks occurred near the mainshock rupture

zone. We analyzed the data set of Hauksson and Shearer (2005) which consists of more

than 1800 events recorded from April 1992 to December 1993 (see table 3.1); the catalog

is considered complete for magnitudes larger than M3.2. (2) The Umbria-Marche is a long

seismic sequence which started on September 3, 1997 with a MW 4.5 foreshock followed

by several small events in the following two weeks. The three largest shocks occurred on

September 26 close to Colfiorito (MW 5.7 and 6.0) and on October 14 a MW 5.6 in the Sellano

area (e.g., Murru et al., 2004). The seismogenic structure consist of a NW-SE elongated fault

zone extending for about 40 km and the focal mechanism of the largest shock reveal normal

faulting with NE-SW extension perpendicular to the trend of the Apennines, consistently with

the Quaternary tectonic setting revealed by previous earthquakes in adjacent regions (e.g.,

Amato et al., 1998); for instance, stress tensor solutions obtained for the six main shock

focal mechanisms of the sequence are in agreement with the tectonic stress active in the

inner chain of the Apennines, and also the aftershock focal mechanisms show a consistent

extensional kinematics (e.g., Chiaraluce et al., 2003). We analyzed a data set from the CSI1.1

(Catalogo della Sismicità Italiana, Castello et al., 2005, 2007) which consists of more than

800 events recorded from May 1997 to December 1998; the catalog is considered complete

for magnitudes larger than M2.5.

3.4 Results

3.4.1 VT swarms in erupting volcanoes

We fit the non-stationary ETAS model with both λ0(tj) and p(tj) varying through time for all

the cases described in section 3.3. In this section we analyze some VT swarms that preceded

and/or accompanied eruptions in 3 different volcanic areas: Guagua Pichincha, Miyakejima,

and Pinatubo.

In Fig. 3.1 we report the time evolution of λ0 (3.1a), p (3.1b) and the number of events/window

(3.1c, τ = 20 days), for the seismic activity at Guagua Pichincha volcano, from February to

September 1999. This period includes 3 seismic swarms: the first one from February to March

1999, characterized by a peak in the background seismicity and p-values around 1.3 (±10%)
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which tends to drop at the end of the swarm; the second swarm is characterized by a peak

in the background seismicity which tends to decrease with time, as the p values show an

opposite trend, with the lower values at the beginning of the swarm (but with big uncertain-

ties in the parameter determination), growing up to a value around 1.5 (±6%) at the end

of May and during the first weeks of June 1999. This swarm was characterized by fewer

events and larger magnitudes (M > 3.0) than those in the first swarm in February-March

(Garcia-Aristizabal et al., 2007). This swarm was also accompanied by ash-rich explosions,

which at the moment was an important observation if we consider that in the months before

the activity at the crater was characterized by vapor-rich phreatic emissions. This may indi-

cate that an important perturbation of the volcanic system was going on. The third swarm

(August-September 1999) is characterized by a clear increase in the background seismicity

(Fig. 3.1a) up to a maximum (about two times respect to the swarms before) at the end of

August, which was followed by a trend toward lower values until the end of the swarm. On

the other hand, the p-values at the beginning of the swarm range around 1.5 (±5%) which is

about the same value as the p-values at the end of the second swarm on June. In September

1999 the most intense VT seismicity took place; this period was characterized by the highest

p-values measured during the whole unrest period, reaching values of 1.7 (±2%) at the end

of the VT swarm. The maximum of the VT seismicity rate occurred on September 23, and

on September 25 the first intense LP swarm occurred in association with the intrusion of the

first dacitic lava dome; for instance, following an explosion containing juvenile magma on

September 26, the first dome grew into the crater, the LP swarm almost ceased on September

30, and the first dome was destroyed by Vulcanian-type magmatic explosions that occurred

on October 5 and 7, 1999 (Garcia-Aristizabal et al., 2007).

In Fig. 3.2 we report the time evolution of λ0 (3.2a), p (3.2b) and the number of events/window

(3.2c, τ = 5 days), for the seismic activity at Miyakejima volcano, in the period June - August

2000. The non-stationary ETAS modeling was applied by Lombardi et al. (2006) to this swarm

and somehow this chapter may be considered as an extension of that work. Our results show

a trend similar to the trend found by Lombardi et al. (2006); for instance, The background ac-

tivity (λ0) shows two important peaks: the first one at the beginning of the sequence (around

June 26 - July 4) and the second about a week later; these two peaks of λ0 reach values re-

markably high respect to the cases described before. Two smaller peaks can be distinguished

at the end of July and beginning August. On the other hand, p-values for this sequence show

values around 2.4 (±1%) without evident changes up to July 29 (which corresponds with a

change point identified by Lombardi et al. (2006) using a two-sample Kolmogorov-Smirnov

test (Mulargia and Tinti, 1985; Mulargia et al., 1987)); after that, the p-value slightly de-

creases and shows some long-period oscillations up to the end of the sequence.

In summary, the 2000 Miyakejima sequence is characterized by wide oscillations of λ0 at the

beginning of the sequence, accompanied by a rather stable and remarkably high value of p.
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Figure 3.1: Time evolution of the non-stationary parameters of the ETAS model: Background

activity λ0(tj) (a), p-value (b), and number of events/window (c; τ = 20 days), during the

1999 unrest and eruption of Guagua Pichincha volcano, Ecuador; grey areas show ±1σ error

interval in all plots.
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Figure 3.2: Time evolution of the non-stationary parameters of the ETAS model: Background

activity λ0(tj) (a), p-value (b), and number of events/window (c; τ = 5 days), during the

2000 unrest and eruption of Miyakejima volcano, Japan; grey areas show ±1σ error interval

in all plots.
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The first and most important peak (in number of events/day) in λ0 corresponds with the in-

trusive phase (June 26 - July 8) defined in Nakada et al. (2005). The intrusive phase was

characterized by a high seismicity rate around Miyakejima; tilt changes suggest that horizon-

tal propagation was dominant in magma migration at this phase (e.g., Fujita et al., 2004;

Ueda et al., 2005). The second peak in λ0 (July 8 to 15) corresponds with the start of the

summit subsidence stage. The collapse of the summit area began suddenly on the evening

of July 8 accompanied by the first (and rather small) explosion. During the subsidence, two

phreatomagmatic explosions occurred on July 14 and 15, which were preceded by a slight

inflation of the volcano, as observed in GPS data (Nakada et al., 2005). During the sum-

mit subsidence stage, the p-value was at the same levels (about 2.4) as during the intrusive

stage. Subsidence of the summit area continued through early August, and after August 10

the main explosive phase started and continued intermittently through August 29 (Nakada

et al., 2005). The main explosive phase was characterized by an evident reduction in λ0 and

oscillations in the p-values, which in general show a decreasing trend.

Some authors (e.g., Nakada et al., 2005) suggest that phreatic explosions of middle July may

have been triggered by interaction of magma with hydrothermal fluids. In the model pro-

posed, roof rocks gravitationally unstable above the foamy magma collapsed into the reservoir

as magma migrates through dikes, generating caldera subsidence. Cavities formed became

reservoirs of hydrothermal fluids, into which magmatic gases were absorbed (Nakada et al.,

2005). Then, magma ascent was accelerated after the end of the caldera subsidence and the

most explosive magmatic event occurred on August 18; a cool pyroclastic surge was gener-

ated on August 29, probably due to boiling of hydrothermal fluids sealed inside the vent after

August 18. The explosive stage may imply a significant stress release in the volcanic edifice,

and phreatomagmatic explosions may be an efficient mechanism of heat transport to cool

down the system; those processes may be coherent respectively with both the decrease in the

λ0 values, and the general decreasing trend of p-values during this phase.

Fig. 3.3 shows the results for the data set of Mt. Pinatubo volcano. Time evolution of λ0

(3.3a and d), p (3.3b and e) and the number of events/window (3.3c and f, τ = 2 days) are

plotted for both a period (3 to 10 June) before the cataclysmic eruption on June 15, 1991 (a,

b, and c) and also for a period from June 29 to August 17, 1991, after that eruptive phase

(d,e, and f). Even if the analyzed data set of VT activity before the main eruptive phase

contains information from about a week (up to the 10th of June), the volcano was seriously

restless for at least 2 months before (instrumental monitoring started on April 5, for details

see Harlow et al. (1996)). For instance, Between April and May VT swarms (many events felt

by local population) took place 5 km NW of the summit and 5 km deep (e.g. Newhall and

Punongbayan, 1995). Some authors divide the period April 5 to June 15, prior to the climac-

tic eruption, into five phases based on the level, type, character, and intensity of the seismic

activity (e.g., Harlow et al., 1996); the precursory phases are (1) Meta-stable: through May

31; (2) Pre-dome: June 1 to 7, (3) Pre-explosive Buildup: June 8 to 12, (4) Long-Period

Buildup: June 12 to 14, and (5) Pre-climactic: June 14 to 15 (for details see, e.g., Harlow
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Figure 3.3: Time evolution of the non-stationary parameters of the ETAS model: Background

activity λ0(tj) (a and d), p-value (b and e), and number of events/window (c and f; τ = 2

days), before (a, b, c) and after (d,e,f) the cataclysmic eruption of Mt. Pinatubo, Philippines,

on June 15, 1991; grey areas show ±1σ error interval in all plots.

et al., 1996). It means that the pre-eruption catalog that we analyze here (Fig. 3.3a, b, and

c) corresponds with the predome period. The time evolution of λ0 shows a peak around June

4-5, while the p-value shows a rather stable values around 2.1 to 2.2 (±1%). Distinct changes

in seismic activity began in early June that included an increase in the number of localized VT

earthquakes beneath the active fumaroles, an increase in small explosions, and an increase

in the intensity and durations of episodes of tremor (Harlow et al., 1996). Seismic activity

during this phase eventually evolved into an intense swarm of shallow VT earthquakes that

heralded the beginning of dome growth on the northwest flank of the volcano (Hoblitt et al.,

1996).

The results for the data after the main eruptive period (June 29 - August 17, 1991) show a

still high rate of background seismicity (Fig. 3.3d), but p-values have decreased respect to the

pre-eruptive period: for instance, at the end of June the p-value was around 1.4 (±5%) and

up to the end of the period it showed a decreasing trend. In summary, the most remarkable

observation of these results is that even if the background seismicity shows still high rates

(i.e. comparable with the activity before the main eruptive period), the p-values show an

evident drop respect to the values found during the predome phase.
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Figure 3.4: Time evolution of the non-stationary parameters of the ETAS model: Background

activity λ0(tj) (top panels), p-value (central panels), and number of events/window (bottom

panels), during the 1997 Umbria-Marche (a, b, and c; τ = 10 days), and 1992 Landers (d, e,

and f; τ = 5 days) seismic sequences; grey areas show ±1σ error interval in all plots.

3.4.2 Tectonic sequences and VT swarms in non-erupting volcanoes

In this section we analyze both the tectonic sequences and the VT swarms occurred in non-

erupting volcanoes. In Fig. 3.4 we report the time evolution of the model parameters for the

seismic sequences of tectonic origin considered. The time evolution of λ0, p and the seismicity

rate (number of events per time window τ) for the Umbria-Marche sequence are reported in

Fig. 3.4a, b and c, respectively, while results for the Landers sequence are reported, in the

same order, in Fig. 3.4d, e, and f.

Both sequences have some similar features; for instance, an increase in the background seis-

micity (λ0) is observed at the same time or just after the mainshock event of the sequence;

then, it decreases gently showing some oscillations which in general are contained within the

error intervals (see Fig. 3.4a and d). Note that the increase in λ0 observed for the Landers

sequence is less significant if we consider the error in the parameter estimation. On the other

hand, the p parameter does not show any evident variation neither at the beginning of the

sequence nor during the development of the aftershocks. Another remarkable feature is the

value of p of around 1.2 (±4%) in both sequences for the period around the mainshock (June

28, 1992 for Landers, and September 26, 1997 for the Umbria-Marche, see Fig. 3.4b and e,

respectively). Hereinafter, uncertainties in parameter estimations are relative errors equiva-

lent to ±1σ.
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During few weeks after the mainshocks, low frequency oscillations in the p-value are ob-

served, but those variations are accompanied by larger error intervals suggesting that they

could be probably caused by instabilities in the parameter estimation.

Now we analyze the VT swarms occurred on volcanic areas in periods in which no erup-

tive activity was observed. In most cases, the origin of this kind of unrest activity remains

unknown or not well understood; for instance, their origin may range from deep magmatic

activity that succeed in disturbing the shallower volcanic system, or it may just be the ev-

idence of mechanical response of the volcanic edifice to other (e.g. tectonic, gravity, etc.)

factors. What they have in common is that neither during nor after the VT activity the vol-

cano experienced an eruption. The results for the Campi Flegrei unrest are plotted in Fig.

3.5. The temporal behavior of the background activity (λ0, Fig. 3.5a) shows variations both

at high frequencies (i.e. in quite short times), and at low frequencies (i.e. its overall trend

has a bell shape, that means a smooth onset as well as a smooth end of the energy release).

The p-value (Fig. 3.5b), despite it has small oscillations close to 1, is fairly constant all over

the crisis (there is no any clear trend). The lower values at the beginning of the swarm are

affected by strong errors due to the small number of events.

The results for the Cotopaxi unrest are summarized in Fig. 3.6. The most intense VT activity

in this data set took place from November 2001 to January 2002, and at least two peaks on λ0

can be identified within this time interval: one from November to mid-December 2001, and

the second during the first week of January 2002. At the beginning of the crisis, the p-value

is around 1 (±5%), then it reach a value around 1.2 (±5%) at the end of the first peak of λ0.

The second peak of λ0 (January 2002) is accompanied by a decrease in the p-value, as the

seismicity rate also decrease to lower levels. The VT activity in the following two months was

characterized by some low-frequency oscillations in the temporal behavior of λ0, but reaching

peaks with lower amplitude respect to those observed at the beginning of the crisis. At the

same time, the p-value showed small variations around 1. In summary, the period of most in-

tense VT activity at Cotopaxi is more correlated to increases in the background activity rather

than evident changes in the p-value; this period of intense VT swarms occurred about 10

months after the start of the volcanic unrest (which was mainly characterized by high rates of

LP activity) and preceded a period of important LP and VLP activity started about 5 months

latter and never observed before during the unrest (e.g., Molina et al., 2008).

Fig. 3.7 shows the results for the data set from Mount Fuji volcano. VT activity in Mt. Fuji

is remarkably low, reaching few events a day in the period of most intense activity (around

February 2001). We explore the behavior of ETAS parameters for this period and find a re-

markable stability in both λ0 (Fig. 3.7a) and p (Fig. 3.7b) parameters. Note that this stability

may be influenced by the long temporal window used for the parameter estimation. In con-
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Figure 3.5: Time evolution of the non-stationary parameters of the ETAS model: Background

activity λ0(tj) (a), p-value (b), and number of events/window (c; τ = 5 days), during the

1983-1984 unrest at Campi Flegrei caldera, Italy; grey areas show ±1σ error interval in all

plots.
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Figure 3.6: Time evolution of the non-stationary parameters of the ETAS model: Background

activity λ0(tj) (a), p-value (b), and number of events/window (c; τ = 10 days), during the

2001-2002 unrest at Cotopaxi volcano, Ecuador; grey areas show ±1σ error interval in all

plots.
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trast, the most important seismic activity recorded at Fuji since it is instrumentally monitored

is characterized by deep low frequency events, which increased sharply in number in the pe-

riod from October 2000 to May 2001. Some authors (e.g., Ukawa, 2005) suggest that the

sharp increase of DLF activity at Mount Fuji began soon after magma discharge and intrusion

events in the Miyakejima and Kozu-shima region in July and August 2000; then, these events

may have modified the state of the deep magmatic system beneath Mount Fuji, thus trig-

gering the DLF earthquake swarm (Ukawa, 2005). Nevertheless, no volcanic tremors, large

earthquake swarm activity or abnormal crustal deformations were detected in or around Mt.

Fuji in this period, for this reason we agree that the VT events probably indicate minor stress

changes beneath the volcano and that abnormal activity was limited to the mid-crustal depth

beneath the volcano, as suggested by some authors (e.g., Ukawa, 2005); then, no magma

migrated upwards into the shallower crust, which is coherent with the stability in λ0 and also

the quite constant (close to 1 ±4%) p-values.

In Fig. 3.8 we report the results for the Long Valley caldera unrest. The background activity

λ0 shows some variations with at least three major peaks which are correlated with periods

of intense seismicity: two peaks in λ0 occur between the end of October and the beginning

of November 1997, and a third peak is located between the end of December 1997 and Jan-

uary 1998. On the other hand, no evident changes in the p-value are observed during the

changes in λ0. A very-low frequency trend is observed in the p-value, which shows a rather

stationary value (around 1.3) during the first two peaks of high background activity (October-

November), and a decreasing trend during the third peak (December 1997 - January 1998)

toward a value around 1. In summary, the first period of more intense seismicity is character-

ized by the most intense background activity λ0, and corresponds with no evident changes in

the p-value; this period is also correlated with the greatest velocity of uplift observed in the

caldera, and strong degassing processes (Dreger et al., 2000; Hill, 2006). It is interesting to

observe that the second seismicity peak at the end of December 1997 corresponds with low

λ0 values, suggesting that the bulk of that activity could probably be conformed by aftershock

events.

3.5 Discussion

We have analyzed different seismic sequences through a stochastic non-stationary ETAS mod-

eling. in particular, the non-stationary ETAS model with both background seismicity and

p-value varying through time, provides a satisfactory description of complex seismic swarms,

as pointed out by Lombardi et al. (2006). In our analysis we compare the time evolution of

these two parameters for different seismic swarms which we group in 3 cases: VT swarms in

volcanic areas before and/or during an eruptive process, VT swarms in non-erupting volcanic

areas, and seismic swarms in tectonic areas.
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Figure 3.7: Time evolution of the non-stationary parameters of the ETAS model: Background

activity λ0(tj) (a), p-value (b), and number of events/window (c; τ = 150 days), Mount Fuji

volcano, Japan; grey areas show ±1σ error interval in all plots.
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Figure 3.8: Time evolution of the non-stationary parameters of the ETAS model: Background

activity λ0(tj) (a), p-value (b), and number of events/window (c; τ = 10 days), during the

1997-1998 unrest at Long Valley caldera, California; grey areas show ±1σ error interval in

all plots.
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The studied VT swarms that have preceded or accompanied eruptive activity have some re-

markable common features that have not been observed in the other two groups (i.e. tectonic

and swarms in non-erupting volcanoes). In the case of Guagua Pichincha volcano, the period

of most intense VT seismicity (September 1999) was characterized by the higher p-values

measured during the whole unrest period, reaching values of 1.7 (±2%) at the end of the

VT swarm. The period of high p-values is correlated with a peak in the background seismic-

ity. The maximum of the VT seismicity rate occurred on September 23, and on September

25 the first intense LP swarm occurred in association with the intrusion of the first dacitic

lava dome; for instance, following an explosion containing juvenile magma on September 26,

the first dome grew into the crater up to October 5 and 7, 1999, when it was destroyed by

Vulcanian-type magmatic explosions (Garcia-Aristizabal et al., 2007). In the case of Miyake-

jima volcano, the seismic sequence is characterized by wide oscillations of λ0 at the beginning

of the sequence (intrusion stage), accompanied by a rather stable, high value of p (around

2.4), as was already pointed out by Lombardi et al. (2006). Finally, the pre-eruption catalog

that we analyze for Pinatubo volcano corresponds with the predome period defined by Har-

low et al. (1996). The time evolution of λ0 shows a peak around June 4-5, while the p-value

shows a rather stable values around 2.1 to 2.2 (±1%). The seismic activity during this phase

preceded the beginning of dome growth on the northwest flank of the volcano (e.g., Hoblitt

et al., 1996). In summary, the analyzed swarms of VT events that preceded or accompanied

volcanic eruptions indicate that (1) they are characterized by high p-values (respect to both

tectonic sequences and VT swarms in non-erupting volcanoes); in the analyzed cases the p-

values range from 1.7 to 2.4; (2) the background seismicity generally shows wide variations

during the period of maximum seismicity rate and the maximum peaks normally corresponds

with the periods of maximum values of p.

To assess if a non-stationary ETAS model with both λ0 and p-values is indeed the best model

describing the observed data, we calculate the Akaike information criterion values (AIC,

Akaike, 1974) for this model and also for an alternative model with just λ0 as free parameter.

The AIC statistic is defined by AIC(κ) = 2κ − 2LogL, where κ is the number of parameters,

and LogL is the log-likelihood of the model computed for the best parameters. In comparing

models with different number of parameters, the quantity 2κ roughly compensates for the

additional flexibility that the extra parameters provide. The lower values of AIC identifies the

model that better represents the data. The results obtained for the sequences from erupting

volcanoes (Guagua Pichincha, Miyakejima, and Pinatubo), are summarized on table 3.2, in-

dicating that the model with both {λ0(τ) and p(τ)} varying through time is the best one to

describe the data.

Conversely, from the tectonic sequences analysis we could conclude that (1) an increase in

the background seismicity may occur contemporarily with the period in which the main-

shocks take place, and (2) no evident temporal changes in the p value are observed during

the seismic swarms. The p-value is stationary around 1.2 in both Landers (1992-1993) and

Umbria-Marche (1997-1998) sequences analyzed in this study. Further analysis should be
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Table 3.2: AIC values for two non-stationary ETAS models with 1 free parameter (λ0(τ),

model 1), and 2 free parameters (λ0(τ), p(τ), model 2), for the erupting volcanoes data sets.

Data set AIC - Model 1 AIC - Model 2

λ0(τ) λ0(τ), p(τ)

Guagua Pichincha 1983.6 1581.1

Miyakejima -8800.4 -8821.8

Pinatubo (before) -940.6 -1125.5

performed to establish the origin of the observed increase in λ0 in these cases, since it could

also be a bias due to incompleteness of the catalog (for small events) just after the mainshock

events.

On the other hand, VT swarms in non-erupting volcanoes show a little more complex behav-

ior of the analyzed parameters. In the case of Cotopaxi volcano, the period of most intense

VT activity corresponds with increases in the background activity and no evident changes

in the p-value; the maximum p-value found during this crisis was around 1.2. In the case

of Mt. Fuji activity, some authors (e.g., Ukawa, 2005) suggest that the VT events analyzed

probably indicate minor stress changes beneath the volcano and that abnormal activity was

limited to the mid-crustal depth beneath the volcano, then no magma migrated upwards into

the shallower crust, which is coherent with the quite constant (close to 1 ±4%) p-values. In

the Long Valley case, the period of more intense seismicity is characterized by the most in-

tense background activity λ0, and corresponds with no evident changes in the p-value (which

is rather stationary around a value of 1.3). In summary, the analyzed swarms of VT events

that occurred on volcanic areas in absence of eruptive activity indicate that (1) the periods

of more intense seismicity are mainly correlated with increases in the background seismicity

(λ0), even if the temporal behavior of λ0 is not necessarily a proxy of the seismicity rate; (2)

the p-value, which for the analyzed cases range from 1 to 1.3, does not show evident changes

correlated with variations of λ0.

Those observations can give us some insights on the mechanics of the seismic swarms on

volcanic areas. The overall impression is that changes in the background seismicity (λ0) may

be observed in all the cases, even in tectonic environments. However, the p-value have some

substantial differences that may be a helpful tool to characterize VT swarms. For example, the

tectonic sequences analyzed show in general a rather stationary value of p, which in general

is ≤ 1.2 in the analyzed cases; the VT sequences in non-erupting volcanic areas have some

similar features as the tectonic cases, with stable values or showing small, high and low fre-

quency oscillations. In the analyzed cases the p-value was always p ≤ 1.3. Conversely, the VT

swarms during eruptive episodes have p-values that in general are higher respect to the cases

described before, being in general p ≥ 1.7.
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The results of this stochastic non-stationary ETAS model yield important clues to interpret

the temporal evolution of complex seismic swarms. The phenomenological description of

the temporal behavior of λ0 and p parameters may be accompanied by a more detailed in-

terpretation of the results in terms of the physical processes at the source of the swarms.

Despite analytical definition of the physical meaning associated with λ0 and p is not possible,

some insights of the processes driving the changes may be deducted, specially from the rel-

ative changes in the parameter values and their possible correlation with other geophysical

observations or with the eruptive activity itself. In general terms, VT seismic activity may

be controlled both by fluid intrusion and stress triggering, and then it is possible to observe

mixed occurrence of mainshock-aftershocks sequences and magma-related swarms. As con-

sequence, background (λ0) as well as induced activity could show evident non-stationarities.

Time variations of the background seismicity, λ0, are usually associated to the time evolution

of the energy source (e.g., see Hainzl and Ogata, 2005; Lombardi et al., 2006). In particular,

Hainzl and Ogata (2005) analyzed a large earthquake swarm that occurred in 2000 in Vogt-

land Bohemia, central Europe, and by fitting a non-stationary ETAS model (where λ0 was the

only free parameter) and modeling the 3D elastic stress changes in the crust, they found that

stress triggering is dominant in creating the observed seismicity patterns, but external forcing,

identified with pore pressure changes due to fluid intrusions, is found to directly trigger part

of the activity, specially during the first days of the swarm.

It is possible to find fluids in both tectonic and volcanic regions, for this reason it is pos-

sible to find time variations of λ0 in both purely tectonic and volcano-tectonic seismic se-

quences. Physical constrains to understand temporal changes in λ0 associated with fluid

activity may be explored, as highlighted by Hainzl and Ogata (2005); for example, stress

triggering, a mechanism based on the well-known Coulomb failure stress (CFS) criterion

(CFS ≡ τ − µ(σ − P ′) ≥ 0, e.g., Harris, 1998), has been identified as a possible mechanism

for aftershock sequences (e.g., Stein, 1999). The CFS criterion states that a positive Coulomb

failure stress could promote failures; here, τ defines the shear and σ the normal stress on

the failure plane (positive for compression), µ is the coefficient of friction, and P ′ is the pore

pressure. In presence of fluids, the pore pressure has to be taken in account; for instance,

in regions where fluids may migrate through fractures (i.e. volcanoes), the effective normal

stress (σ − P ′) may decrease during fluid injections (as pore pressure increases) and then a

positive variation of CFS may promote failure. In this case, the background rate λ0 changes

may be related to activity forced by pore pressure changes.

In the other hand, the p-value, which controls the temporal decay of triggered events, is

found to be positively correlated with crustal temperature; for instance it controls stress re-

lease and therefore aftershocks decay (e.g., Mogi, 1967; Kisslinger and Jones, 1991; Lombardi

et al., 2006). Physical constrains to interpret time variations of p are more difficult to define

quantitatively. The studied cases indicate that VT swarms that precede or accompany dike

intrusions are characterized by relatively high p-values (p ≥ 1.7 in the cases analyzed here).
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High p-values, that indicate a sharp decaying aftershock activity, in general are correlated

to maximum peaks in the background seismicity, which in turn may be stimulated by fluid

migration. Fluid migration may be an effective mechanism of heat transfer by transport,

then even if characteristic times associated with dike intrusion may be relatively short re-

spect to the characteristic times for heat transfer by conduction (e.g. the Miyakejima case),

hyper-heated fluids that escape from magma as it decompresses during the ascent toward

the surface may effectively transport and transfer heat to the country rock and shallower hy-

drothermal fluids.

3.6 Concluding remarks

We perform a retrospective analysis of volcano-tectonic seismic swarms using a non-stationary,

epidemic-type, aftershock sequences model in which both the background seismicity and the

p-value can vary through time, which has evidenced some important characteristics of the

VT swarms associated with magmatic intrusions. In particular, swarms of VT events that

precede or accompany magmatic intrusions (i.e. before or during eruptive activity) present

remarkably high p-values respect to both, VT swarms in cases with no evident shallow mag-

matic activity, and swarms in purely tectonic environments. From a practical point of view,

the stochastic modeling of VT swarms using a non-stationary ETAS model may be potentially

used for a quick analysis of VT swarms to identify and discriminate those which are more

likely associated with the physical response of the volcanic edifice to a magmatic intrusion.

Routinely monitoring of both λ0 and p parameters using a moving and overlapping temporal

window as used in this work may produce a valuable seismic parameter for both volcano

monitoring and for short-term eruption forecasting purposes. In Chapter 4 (section 4.4), we

discuss a possible strategy to integrate this information into the Bayesian Event Tree model

for eruption forecasting (BET EF) of Marzocchi et al. (2008).



Chapter 4
Integration of Parameters in a Bayesian

Event Tree model for Eruption

Forecasting

“The more we learn about the world, and

the deeper our learning, the more

conscious, clear, and well-defined will be

our knowledge of what we do not know,

our knowledge of our ignorance. The

main source of our ignorance lies in the

fact that our knowledge can only be finite,

while our ignorance must necessarily be

infinite.”

Karl Popper

(Conjectures and Refutations: The

Growth of Scientific Knowledge, 1963)

4.1 Introduction

In previous Chapters, some specific analysis have been discussed in order to provide further

tools for the short- and long-term eruption forecasting (EF) assessment. The main objective

of this Chapter is to provide a general methodology to integrate the most important results

obtained in Chapters 1 (for long-term EF), 2 and 3 (for short-term EF) to improve the setup of

the Bayesian Event Tree model for eruption forecasting (BET EF, e.g., Marzocchi et al., 2008).

In particular, we are interested in considering the next topics:

• Integrate, into the non-monitoring part of BET EF, information derived from time-

dependent or time-independent, long-term eruption forecasting models based on any
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renewal process, as for example the Brownian passage-time described in Chapter 1.

• Integrate, into the monitoring part of BET EF, information derived from geophysical

measurements; in particular, we are interested in provide some insights for the inter-

pretation and further inclusion in BET of the specific analysis performed in this work

(i.e. spectral characteristics of LP events and characteristics of VT swarms)

• Provide a general approach for the quantitative determination of thresholds of anoma-

lous seismicity rates.

The Bayesian Event Tree (BET) is a flexible tool to provide probabilities of any specific event

which we are interested in, considering both volcanological and monitoring information; fur-

thermore, it may be dynamically used for long- and short-term eruption forecasting (for a

general overview of the mathematical background, see electronic supplementary material in

Marzocchi et al. (2008), and Appendix A). The non monitoring part of BET applied to EF

(BET EF) uses mainly information from the past unrest episodes, eruptive history of the vol-

cano, theoretical and empirical models based on similar volcanoes, etc. All the temporal

considerations in BET are implicit at the Node 1 (e.g. see Appendix A), where the proba-

bility of a generic unrest in a given time window τ is defined. However, available catalogs

of eruptions are more common than catalogs of unrest, then in some cases it can be easier

to construct a probabilistic model based on past eruptive activity than based on past unrest

episodes. For instance, as seen in Chapter 1, when a catalog of eruptions is available, time-

dependent (or time-independent) probabilistic models for long-term eruption forecasting may

be constructed; in section 4.2 of this chapter we propose a methodology to consider any time-

dependent or time-independent, long-term, eruption forecasting model based on the eruptive

history of the volcano (as for example the Brownian passage-time model described on Chap-

ter 1) into the BET model structure.

On the other hand, monitoring information is used in BET for the short-term eruption fore-

casting assessment. At each node (see electronic supplementary material in Marzocchi et al.

(2008), and/or Appendix A for details), strong monitoring parameters should be defined to

detect changes in the volcanic system that may potentially indicate generic unrest (node 1),

magmatic unrest (node 2), and eruption (node 3). The monitoring parameters defined to feed

the event tree are fundamental tools to identify and characterize unrest episodes, and con-

tribute information that BET translates in short-term probabilities of a given event of interest.

However, this task is not easy and the parameters should be carefully defined. Volcanoes are

monitored using a wide range of geophysical and geochemical techniques (e.g. seismology,

geodesy, acoustic, thermal (IR), gas and water chemistry, etc.), each of them providing infor-

mation which could be potentially considered. In general terms, multidisciplinary parameters

should be identified for each node, since information from a single discipline or a single mea-

surement may be meaningless if considered alone for forecasting purposes.

Two main problems should be considered to define monitoring parameters in BET: (1) the

definition of the physical measurement to be considered (and in which node); and (2) the
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thresholds (generally two, for the Fuzzy approach) to define the anomaly values of the param-

eter. Of course, there is not a magic setting of BET and many parameters and thresholds are

specific for each particular case. In BET applications to some volcanic areas as Mt. Vesuvius

(Marzocchi et al., 2004; Sandri et al., 2009) and the Aukland Volcanic Field (Lindsay et al.,

2010), the monitoring parameters have been established mainly using elicitation procedures;

in this way experiences of past unrest episodes (from the same volcano or a similar one)

and expert opinion (based on basic research on each specific area) are the main information

sources to define both parameters and thresholds.

Within this context, it is clear that geophysical research oriented to measure and understand

physical processes during volcanic unrest episodes, magma movement, etc., is a source of

information from which strong and reliable monitoring parameters may be discovered and

used to feed probabilistic models for eruption forecasting (as BET). In this work, some topics

from volcano seismology have been analyzed in order to explore further seismological pa-

rameters that could provide valuable information to feed some nodes of BET model, specially

the node 2 (magmatic unrest), that is probably the most important source of epistemic uncer-

tainty in the model. In Chapter 2 we have briefly described some characteristics of volcanic

long-period (LP) seismicity, defined an alternative methodology for LP spectral analysis, and

proposed a new approach to use it for volcano monitoring; likewise, in Chapter 3 we ana-

lyzed some characteristics of the volcano-tectonic earthquake swarms by non-stationary ETAS

modeling. In this chapter (sections 4.3 and 4.4) we make a general discussion of the physical

implications of the information extracted using the described methodologies, and we suggest

some procedures to include this information as parameters to feed the monitoring part for

short-term eruption forecasting in the BET model.

The last section of this Chapter is a brief discussion about the analysis of background lev-

els of activity; in particular, one of the most natural and intuitive seismological parameters

often used to identify a volcanic unrest is the seismicity rate. Anomalous levels of seismic-

ity respect to a background level are often one of the first indications of the beginning of

an unrest episode. However, the determination of thresholds of anomalous seismicity may

be an empirical task in which a complete database and the opinion of experienced volcano-

seismologist (on the activity of a specific volcano) are normally the source of information. In

an attempt to give some general guidelines for a quantitative determination of the thresh-

olds of anomalous seismicity rates, in section 4.5 we discuss a generic approach to model

the background seismicity, which can be straightforward extended to other kinds of available

data.
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4.2 Setting BET parameters according to the results of long-term,

time-dependent or time-independent eruption forecasting mod-

els

The temporal analysis in BET is done at node 1 (probability of unrest) and it is defined

through a static setting of its parameters, i.e., the average and the equivalent number of data

of the prior model (Θ1 and Λ1 respectively), and past data y
(1)
i (for details see Marzocchi

et al., 2008). For the definition of the equivalent number of data concept, see Appendix A: sec-

tions A.0.5 and A.0.6, and equations A.10 and A.11. Once defined the parameters of BET at

node 1, the probability estimation is set and does not change through time. In general terms,

the BET EF model is neither completely time-dependent nor completely time-independent; in

fact, the statistical assessment simply refers to the next time window defined (τ), and both

prior model(s) and past data may change through time, and making consequently change

also the BET statistical assessments. In this way, time-dependent analysis may be represented

with BET through a series of repeated static analysis whose parameters change through time.

In practice, the results of a time-dependent model assessing the probability of a specific event

may enter into the BET model through a continuous update of the BET parameters. For this

reason, in this section we will refer to the analysis done at a generic time t and, being this

method repeatable at any given time, the results will be valid for both time-dependent and

time-independent models.

Mainly for short-term practical utility, the first node of the Event Tree defined in the BET EF

model defines the probability of unrest in the next time window τ . Since, as mentioned

above, data about past unrest episodes are available almost only for the last decades, most of

long-term assessments are based on the analysis of past eruptions (e.g. see Chapter 1). This

means that a possible output variable of such models may be the absolute probability of erup-

tion in the next time window τ , i.e., θE. The goal of this section is to write the parameters

of the BET model in order to fit the values of θE as obtained by a given external long-term

model (that hereinafter we call θ
(model)
E ). This allows including the information provided by

a given model into the more general framework of eruption forecasting provided by BET, in

order (1) to extend forward the model’s forecast to vent location and eruption size forecasts,

and (2) to infer backward forecasts about unrest and magmatic unrest episodes.

Referring to BET symbols (for details see Marzocchi et al. (2008), or the Appendix A), the

distribution relative to the absolute probability of eruption in the next time window τ is:

[θE] = [θ1][θ2][θ3] (4.1)

where θ1 represents the probability of an unrest episode in τ , θ2 the probability of a magmatic

unrest, given an unrest episode, and θ3 the probability of eruption, given a magmatic unrest,

and the brackets [a] means the probability distribution of the variable a. Therefore, the abso-

lute probability of eruption simultaneously depends on the probability distributions at nodes

1, 2 and 3.
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In principle, the [θ2] and [θ3] distributions must be assumed valid only for the time win-

dow τ , but their parameters are usually set using all past data (Marzocchi et al., 2004, 2008),

implying that all the time-dependence of the probabilistic assessment is relied to node 1. This

simply means that the relative proportion of eruptions from magmatic unrest (node 3) and

the proportion of magmatic unrest from generic unrest (node 2) is considered constant over

time, and based on time independent considerations. Here, we will follow the same philos-

ophy, assuming the distribution [θ2] and [θ3] as constant through time. Therefore, the BET

parameters to be set from θ
(model)
E are the parameters of the [θ1] distribution, i.e., its average

Θ1 and its variance through Λ1. On the other hand, the distributions [θ2] and [θ3] and their

parameters will be considered here as known.

Most of probabilistic models does not provide the analytic form of [θ
(model)
E ]; instead, only

the best guess value of θ
(model)
E is evaluated, i.e., E([θ

(model)
E ]). Sometimes, also other param-

eters defining [θE] are provided, i.e., its variance or several percentiles, based on statistical

analysis and/or bootstrap procedures. On the other hand, in the BET model, the statistical

distributions [θ1], [θ2] and [θ3] are Beta distributions, while the statistical distribution of θE

is generally not set or is obtained numerically. This imply that in most of the applications,

the analytical form of [θE] will not be known, and the inversion must be done numerically.

However, this also implies that equation 4.1 cannot be simply inverted for [θ1], since each

realization of θE strictly depends on specific (and unknown) realizations of θ2 and θ3.

The mean of [θE] in BET can be expressed in terms of the means of [θ1], [θ2] and [θ3], i.e.,

Θ1, Θ2 and Θ3 respectively, being [θ1], [θ2] and [θ3] Beta distributions:

E([θE ]) = E([θ1])E([θ2])E([θ3]) = Θ1Θ2Θ3 (4.2)

where Θ2 and Θ3 are known. Therefore, we can set Θ1 using our best guess value of E([θE ]),

that is E([θ
(model)
E ]). In practice, we set

Θ1 =
E([θ

(model)
E ])

Θ2Θ3
(4.3)

Since Θ1 must be smaller than 1, we have that

Θ2Θ3 > E([θ
(model)
E )]) (4.4)

that is always true for well defined assessments, since the probability that an unrest episode

leads to an eruption (Θ2Θ3) must be greater than the absolute probability of eruption.

To set the other free parameter, the equivalent number of data at node 1 (Λ1), we must do

several considerations. First, we must have an explicit estimate on the variance of [θ
(model)
E ]

(or, equivalently, a confidence interval through percentiles), which in most of the applications

is not evaluated; in this case, Λ1 may be set according to the (subjective) evaluation of the

reliability of the model. Second, when the variance is estimated, we must consider whether
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such variance correctly represents the entire epistemic uncertainty related to the physical pro-

cess.

If the variance of [θ
(model)
E ] is provided and it is assumed be representative of the entire epis-

temic uncertainty, Λ1 can be set using this information. Unfortunately, an analytic relationship

like the one for averages (Eq. 4.2) does not exist; therefore, Λ1 must be inferred using an

inverse procedure, that is, evaluate [θE ] for different values of Λ1 (forward modeling with

BET) and compare its variance (or percentiles) with the variance (or percentiles) of [θ
(model)
E ].

A possible procedure might be:

Vi =
∥
∥variance

(

[θ
(model)
E ]

)

− variance
(

[θE ](λi)
) ∥
∥ (4.5)

in which [θE](λi) is obtained using equation 4.1, where [θ1] is a Beta distribution whose pa-

rameters are set with Θ1 from Eq. 4.3, and Λ1 = λi, for {λi = 1, 2, . . . , λi ∈ N}. In this

case, the best guess value for Λ1 will be the value λi (i.e. the equivalent number of data) that

minimize Vi.

With the selected values of Θ1 and Λ1, the parameters of the BET model will be completely de-

fined, and its long-term probability of eruption assessment will be coherent with the forecast

provided by external probabilistic models based on eruptive catalogs (see Eq. 4.1). Moreover,

this procedure intrinsically allows the estimation of the probability of unrest ([θ1)]), that, in

principle is more testable (i.e. verifiable/falsifiable) than the probability of eruptions, being

unrest episodes more frequent than eruptions. Moreover, through BET, it is possible to assess

the probability of occurrence of any possible path within the event tree, i.e., the probability of

an eruption of a given size and with vent in a given location (Marzocchi et al., 2004, 2008).

4.3 Potential use of Complex Frequencies of LP events as input

monitoring parameter in BET

In recent years, there has been considerable interest in the origin of LP events and volcanic

tremor, and some quantitative models to describe physical mechanisms of their source have

been proposed. Several attempts have been made to explain the tremor signals involving

source or path effects; for example, Omer (1950) in the 1950s attributed tremor to the vibra-

tion of shallow volcanic layers caused by surging magma, while Shima (1958) thought that

the dominant tremor frequency was due to the spherically symmetric, fundamental mode of

vibration of a liquid sphere. In the 1960s it was considered to be an eigen-frequency of a

vibrating cylindrical magma column (Shimozuru, 1961; Steinberg, 1965). In the seventies,

Steinberg and Steinberg (1975) took a different view and associated the tremor with the self-

oscillations of gases in the volcanic vent generated by the transition of subsonic to supersonic

flow. However, these models failed to provide a unified theory accounting for the driving

force in the fluid and the elastic radiation from the source, and failed to explain not only
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the observed frequency but also the amplitude as well as the duration of the tremor (Chouet,

1981).

Aki et al. (1977) proposed three possible models of a fluid-filled tensile crack driven by ex-

cess fluid pressure to explain shallow tremor in terms of physical parameters related to the

source, offering at the same time an adequate geometry for mass transport. In these models

the sudden extension of the crack or opening of the channel is the source of the seismic waves.

Chouet (1981) presented a model of a fluid-filled crack driven by excess fluid pressure and

investigated the effects of depth of burial, fluid characteristics, and medium structure on the

ground response in the near-field of the crack. Sustained tremor can be viewed as resulting

from the superposition of many individual sources triggered randomly in time. The spatial

and temporal characteristics of tremor and in particular the occurrence of spasmodic tremor

can be directly related to fluid supply and excess pressure in the model (Chouet, 1981). A

model of the resonance of a fluid-driven crack induced by an impulsive pressure transient

was found to explain many of the observed characteristics associated with long-period (or

low-frequency) events and harmonic tremor. The main feature of this model is the existence

of a very slow wave in the fluid-filled crack (what he called “crack wave”), the wave speed of

which decreases with increasing wavelength and with increasing values of the crack stiffness

parameter (C, e.g., Aki et al., 1977). This crack wave provides a harmonious explanation for

the observation of very long period tremor without requiring an unrealistically large magma

container (Chouet, 1988). The fluid-driven crack models fully analyze the coupling between

the fluid and the solid, leading to quantitative results that allow a direct comparison with

seismic observations. In these models, the equations of mass and momentum transfer in

the fluid are solved simultaneously with the equations of elastodynamics in the solid using

a finite-difference approach (Chouet, 1988, 1992). Ferrazzini and Aki (1987) followed an

elegant analytical approach and derived the dispersion relation of what they called “slow

waves”, concluding that low-frequency resonances can be generated in fluid-filled containers

such as cracks, dykes and conduits, if the width of the container is small relative to the seismic

wavelength.

Both spherical and cylindrical geometries have been also considered as possible source ge-

ometries: Fujita et al. (1995) and Fujita and Ida (2003) analyzed the eigen-oscillations of a

fluid sphere and defined a model for the source of harmonic volcanic tremor and LP events;

on the other hand, using a 2D finite difference method, Neuberg et al. (2000) modeled major

features of low-frequency seismic signatures on Montserrat volcano and compared them with

observations, discussing some features of both fluid (magma) properties and geometrical ef-

fects of the conduit.

Beside the specific model characteristics, the common feature of most proposed models is that

we can consider that the source mechanisms associated with LP events and volcanic tremor

are intimately associated with fluids contained in a solid rock matrix. Both the frequency

content and the characteristic long-lasting coda of these seismic signals are of fundamental
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importance since they represent evidences of characteristic properties (e.g. geometrical and

fluid physical properties) of the source, as have been highlighted by many authors (e.g., Aki

et al., 1977; Chouet, 1981, 1982, 1985, 1988; Ferrazzini and Aki, 1987; Fujita et al., 1995;

Fujita and Ida, 2003; Neuberg et al., 2000; Morrissey and Chouet, 2001).

Spectral analysis in the complex frequency domain opened a window to try to understand

some of the source properties. Despite of the importance of this argument, not so many

papers have been produced trying to analyze and quantify the link between the spectral char-

acteristics (i.e. frequency, growth rate, and Q factor, for details see Chapter 2) and source

properties of LP events. Aki et al. (1977) derived a formula for Q for the fundamental radial

mode of a sphere; further developments of the fluid-filled crack model accounting for various

mixtures of liquid, gas, and solids have been carried out by Kumagai and Chouet (1999, 2000,

2001), in which a discussion of the acoustic properties of a crack containing magmatic or

hydrothermal fluids is performed for a fixed (crack-like) geometry. Other analyses attempt to

quantify both geometrical effects and acoustic properties of fluids (e.g. conduit length (Stur-

ton and Neuberg, 2006), or sphere radius (Fujita and Ida, 1999, 2003)) and its influence on

the waveforms and spectral characteristics of recorded events.

In summary, even if it seems clear that the spectral characteristics of LP events in terms

of frequency, growth rate, and Q factor are key parameters for the inference of some source

properties, non univocal interpretations are possible at the moment. In Chapter 2 we pre-

sented an alternative method to use this information for the systematic monitoring of possi-

ble changes in these values. However, if we were interested on the interpretation of source

properties and to perform inferences about fluids at the source, then a quantitative exercise

can be done using the results of some papers (those with more detailed results) just as a first

order approximation to define some intervals for the spectral parameters; in this way, we

can provide the possible interpretations up to the current knowledge, considering always that

those values and interpretations are merely approximative and subject to significant epistemic

uncertainties.

Assuming that the source of LP events consists of a time-localized excitation (present only

during a short time interval at the beginning of the event) and a subsequent resonance of a

(crack-like) volcanic fluid system in the source region, and that the recorded waveform may

be described by a superposition of simple decaying sinusoids, we can use the results of Kuma-

gai and Chouet (1999, 2000, 2001) to give some insights for the interpretation of the results

of the spectral analysis in the complex frequency domain.

The observed Q of the LP event may be expressed as Q−1 = Q−1
r + Q−1

i , where Q−1
r and

Q−1
i represent the radiation and intrinsic losses, respectively (Aki, 1984; Kumagai and Chouet,

1999, 2000, 2001). In the simulations performed by Kumagai and Chouet (1999, 2000, 2001)

using the crack model of Chouet (1986, 1988, 1992), predictions of the expected Q−1
r were

obtained for different values of α/a and ρf/ρs, where α is the compressional wave velocity
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in the rock matrix, a is the acoustic velocity in the fluid, and ρf and ρs are the fluid and rock

matrix densities, respectively.

Kumagai and Chouet (1999, 2000, 2001) found that Qr almost monotonically increases with

increasing α/a and slightly increases with decreasing ρf/ρs; therefore, Qr increases with the

impedance contrast Z (where Z = αρs/aρf ), as suggested by Aki et al. (1977), but they argue

that Qr more strongly depends on α/a and on the geometry of the resonator than on Z (e.g.,

Kumagai and Chouet, 2000). On the other hand, the dimensionless frequency ν (defined as

fL/α, where f is the frequency and L is the crack length), decreases with increasing both

α/a and ρf/ρs and depends equally on both of these parameters.

To interpret these properties in terms of a crack containing hydrothermal fluids, Kumagai

and Chouet (2000) examined various mixtures of gas, liquid and solid including gas-gas mix-

tures (H2O − CO2 and H2O − SO2), liquid-gas mixtures (water−H2O and basalt−H2O),

and dusty and misty gases (ash-SO2 and water droplet-H2O); the acoustic properties of some

of these fluid mixtures are summarized in Morrissey and Chouet (2001). The results of the

model proposed by Kumagai and Chouet (2000) are summarized as follows: (1) Qr in the

gas-gas mixtures ranges from 10 to 90 and Q−1
i in such mixtures is negligibly small com-

pared to Q−1
r ; (2) Qr may range from nearly unity in pure liquid water and pure liquid basalt

to 70 and 110 in bubbly water and bubbly basalt, respectively, at a gas-volume fraction of

10%, but in this kind of bubbly fluids the Q−1
i factors strongly depend on the bubble radius

(for instance, Q−1
i in bubbly fluids becomes comparable to or larger than Q−1

r in presence of

bubbles whose radii are larger than 1mm); (3) Qr in liquid-gas foams is larger than Qr in

bubbly fluids and ranges up to 140 in water-gas mixtures, and 210 in basalt-gas mixtures;

(4) Qr in dusty and misty gases ranges up to several hundred due to the higher velocity con-

trast between fluid and rock matrix; in general, Q−1
i is negligibly small compared to Q−1

r for

small-size particles (≤ 1µm), but it can be larger than Q−1
r for large-size particles (≥ 100µm).

As can be seen, a crack filled with different types of fluids may produce similar values of

Q, so multiple interpretations of possible fluid types are plausible based on the observed Q,

specially for values of Q in the range 10 ≤ Q ≤ 100. The expected Q values and the most

likely fluid mixtures (according to the model of Kumagai and Chouet (2000)) are summarized

in Fig. 4.1. Four general intervals of Q values have been subjectively created (I1 to I4, see

Fig. 4.1) in order to provide some general guidelines for the interpretation of the analysis of

LP data; the likely fluid mixtures for each Q interval are summarized in table 4.1.

Our main interest is to individuate the cases in which the LP data could be more informative

to identify activity associated with magma; this information may be potentially used as moni-

toring parameter in a probabilistic model (e.g., node 2 in BET, Marzocchi et al., 2004, 2008).

Interpretations based just in the Q value may be manifold, but in some cases the depth of

the LP event may provide a further constrain to identify cases in which the most likely fluid

composition may be associated with magma; for instance, liquid water is present in some of
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Table 4.1: Summary of expected values of Qr for different mixtures of fluids at the source of

LP events, following the model and proposed values of Kumagai and Chouet (2000): intervals

arbitrarily selected, possible fluid mixtures, and discriminant criteria using the depth of the

event (for details, see the text).

Interval Range of Likely fluid mixtures Event depth Event depth

name Q values z < ζc z ≥ ζc

I1 Q ≤ 10 - Pure liquid water *

- Pure liquid basalt * *

I2 10 < Q ≤ 100 - Gas-Gas mixtures * *

(H2O-CO2 and H2O-SO2)

- Pure liquid or bubbly H20
(1) *

- Water-gas foam *

- Pure liquid or bubbly basalt (1) * *
(1) ≤10% gas volume

I3 100 < Q ≤ 150 - Water-Gas foams *

- Bubbly basalt or basalt-Gas foams * *

- Misty (water droplet) gases *

- Dusty (ash) gases (2) * *

I4 Q > 150 - Basalt-gas foam * *

- Dusty (ash) gases (2) * *

- Misty (water droplet) gases *
(2) small−size particles
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Figure 4.1: Intervals of expected values of Qr for different mixtures of fluids at the source of

LP events, following the model and proposed values of Kumagai and Chouet (2000).

the possible fluid mixtures (i.e. pure liquid water, bubbly H2O, water-gas foams, and misty

gas). If we consider the critical point for the water in terms of temperature and pressure

(647◦K and 22MPa, respectively, see, e.g., Palmer et al. (2004)), then a critical depth (ζc)

may be defined in a specific volcanic zone, in function of both the geothermal gradient and

the lithostatic pressure. Unfortunately, it is nor easy to find detailed quantitative information

about the geothermal gradient for specific areas, but in a first order approximation we can

consider that values ranging from ∼30◦K/km up to ∼200◦K/km or higher may be found in

volcanic regions (e.g., Ingebritsen and Sanford, 1998; Plummer et al., 2001; Turcotte and Schu-

bert, 2002; Arnorsson et al., 2008); roughly, these values may indicate a range of about 2 to

12 km for ζc. For example, in the Campi Flegrei caldera, Italy, temperatures of ∼ 670◦K have

been reported at about 3 km depth (Chelini and Sbrana, 1987; Agip, 1987).

ζc would represent a limit value: LP events localized deeper than the critical depth will be

less likely to contain liquid water in the fluid mixture at the source, and then this information

combined with the Q estimates could help to identify LP events that are more informative to

identify magmatic activity. For example, a LP event with Q < 10 and located at depth z >> ζc,

would be more likely interpreted as the resonance of a structure containing magmatic fluids.

To combine both Depth (z) of LP source and Q values in a single parameter useful in BET

(specifically for the monitoring part in node 2), we can define a combined parameter P(z,Q)

whose value will depend on both the input values of z and Q, and on certain logic rules.

Specifically, a flexible approach based on Fuzzy logic (Zadeh, 1965) may be applied to this

kind of problems: this is an approach often used to model and deal with imprecise informa-

tion such as inexact measurements, imprecise concepts, imprecise dependencies, modeling of
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expert knowledge, or representation of information extracted from inherent imprecise data

(e.g. Berthold and Hand, 2003).

Fuzzy sets, introduced by Zadeh (1965) as an extension of the classical notion of set, are

sets whose elements have degrees of membership. In classical set theory, the membership of

elements in a set is assessed in boolean terms according to a bivalent condition (an element

either belongs or does not belong to the set); by contrast, Fuzzy set theory permits the grad-

ual assessment of the membership of elements in a set, which is described with the aid of a

membership function valued in the real interval [0, 1].

The membership function is a representation of the magnitude of participation of each in-

put. It associates a weighting with each of the inputs that are processed (defining the degree

of membership - DOM), and ultimately determines an output response (e.g., Zadeh, 1965;

Klir and Folger, 1987). For the combined analysis of z and Q parameters, two membership

functions may be created: the first membership function, µz, mapping information from the

depth of the LP event, and the second membership function, µQ, mapping the information of

the quality factor Q. To discriminate LP events that can potentially be associated with mag-

matic activity (or magmatic-induced activity), we can define basic logic rules based on z and

Q values in order to consider the most informative combinations indicating the possibility

of magmatic fluids at the source. In general terms, we consider that the most informative

combination (for magmatic fluids at the source) of z and Q values of LP events is (1) events

localized at depth z > ζc, and (2) Q values in the range Q / 10 or Q ' 100. For instance,

deep LP events (i.e. z > ζc) with low Q values Q / 10 may be more likely interpreted as

perturbations on magma-filled structures; on the other hand, deep events with Q ' 100 may

be interpreted as magma-gas foams, or dusty (ash) gases.

Using these indicative critical values, we define the membership function µz for the depth

of the LP event as:

µz(z) =







0 if z < ζ l
c

1
2

{

sin
[

π
(

z−ζl
c

ζu
c −ζl

c

)

− π
2

]

+ 1
}

if ζ l
c ≤ z < ζu

c

1 if z ≥ ζu
l

(4.6)

where ζ l
c and ζu

c define a confidence interval around the critical depth ζc; note that between

ζ l
c and ζu

c a sinusoidal function has been defined in order to reproduce a smooth transition,

however, a linear function may be also defined (as often found in Fuzzy logic applications).

On the other hand, for the membership function for the Q values, two critical points Qc1

and Qc2 must be defined; if we consider uncertainty intervals [Ql
c1, Q

u
c1] for the critical Qc1,

and [Ql
c2, Q

u
c2] for the critical Qc2, the membership function may be defined as:
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µQ(Q) =







1 if Q < Ql
c1 or Q > Qu

c2

1
2

{

sin
[

π
(

Q−Ql
c1

Qu
c1−Ql

c1

)

+ π
2

]

+ 1
}

if Ql
c1 ≤ Q < Qu

c1

0 if Qu
c1 ≤ Q < Ql

c2

1
2

{

sin
[

π
(

Q−Ql
c2

Qu
c2−Ql

c2

)

− π
2

]

+ 1
}

if Ql
c2 ≤ Q < Qu

c2

(4.7)

The functional form of both µz(z) and µQ(Q) are plotted on Fig. 4.2a and b, respectively. The

critical values ζ l
c and ζu

c in Fig. 4.2a can be defined as the depth at which liquid water cannot

exits in the fluids and may be estimated for each volcanic region considering the most likely

geothermal gradient for the zone. The two critical values Qc1 and Qc2 (and corresponding

uncertainty intervals) in Fig. 4.2b have been selected (considering the results of Kumagai and

Chouet (2000)) as Qc1 ≈ 10, ±10% and Qc2 ≈ 100, ±10%.

In practice, for a given LP data analyzed, input values zj and Qj are provided; then, the

degree of membership may be defined as DOMz = µz(zj), and DOMQ = µQ(Qj) for both z

and Q sets, respectively. The inputs are combined logically using the conjunction (∧) opera-

tor to produce output values of the combined parameter P(z,Q) = {µz(zj) ∧ µQ(Qj)}. In the

Fuzzy logic framework, the conjunction operation may be performed using two approaches:

(1) the Min/Max-norm, in which P{zj∧Qj} = min [µz(zj), µQ(Qj)] (e.g., Mamdani, 1974),

implying the most significant variable influence the results; and (2) the Product/Bounded-

sum, in which P{zj∧Qj} = [µz(zj) · µQ(Qj)] (e.g., Mizumoto, 1995)), implying that all input

variables can influence the results. Fig. 4.3 shows bidimensional contour plots of P{zj∧Qj}
generated using both Min/Max-norm (Fig. 4.3a) and Product/Bounded-sum (Fig. 4.3b).

P{zj∧Qj} is a function valued in the real interval [0, 1] that maps all possible input values

(measures) of Q and z. Events with values of z and Q for which P{zj∧Qj} is close or equal

to one are events likely belonging to the set of interest (in our case, magmatic or magmatic-

induced LP activity). To integrate P{zj∧Qj} as a monitoring parameter in BET (see electronic

supplementary material in Marzocchi et al. (2008), and Appendix A for details), one or two

thresholds (i.e. t, or tl and tu) should be selected in order to measure and quantify the infor-

mation provided by the parameter; for instance, BET uses tl and tu to construct a membership

function µ{LP} and quantify the degree of anomaly indicated by the parameter. For example,

Fig. 4.4 is a representation of the membership function µ{LP} in BET, in which tl = 0.8 and

tu = 0.95.

In a generic example, we apply this scheme described to the LP solutions obtained in Chap-

ter 2 for the LP events of Miyakejima volcano. We did combine the Q solutions plotted in

Fig. 2.10 with the source locations (depth) obtained and provided by the National Research

Institute for Earth Sciences and Disaster Prevention (NIED), Japan. The results obtained are

plotted in Fig. 4.5; for this analysis, the critical depth ζc has been set (subjectively) to 2km.

No references were found for the geothermal gradient in Miyakejima; the only information

found for reference comes from the magnetic measurements of Sasai et al. (e.g., 2001), who



106 Integration of Parameters in a BET Scheme

0

0.2

0.4

0.6

0.8

1

Depth (Km)

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

Q value

d
e

g
re

e
 o

f 
m

e
m

b
e

rs
h

ip
 (

µ
z
)

d
e

g
re

e
 o

f 
m

e
m

b
e

rs
h

ip
 (

µ
Q

)

"Shallow"

events

ζcζl
c ζu

c

"Deep"

events

"High"

Q values

"Intermediate"

Q values

"L
o

w
" 

Q
 v

a
lu

e
s

Q
c1

Q
c2

Figure 4.2: Membership functions of both Depth (z) and Q-values, to measure the degree of

information bearing about magmatic unrest.



4.4 Non-stationary ETAS modeling of VT swarms as monitoring parameter in BET 107

µ
p
 AND µ

Q
  (Min/Max Norm)

Q value

S
o
u
rc

e
 D

e
p
th

 (
z
)

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

µ
p
 AND µ

Q
  (Product/Bounded Sum)

Q value

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LIKELY
MAGMATIC-INDUCED

ACTIVITY

LIKELY
MAGMATIC-INDUCED

ACTIVITY

L
IK

E
L
Y

 M
A

G
M

A
T

IC
 I

N
D

U
C

E
D

 A
C

T
IV

IT
Y

L
IK

E
L
Y

 M
A

G
M

A
T

IC
 I

N
D

U
C

E
D

 A
C

T
IV

IT
Y

MANIFOLD 

SOURCE 

INTERPRETATION

MANIFOLD 

SOURCE 

INTERPRETATION

ζc

ζu
c

ζl
c

Qc1 Qc2 Qc1 Qc2

MANIFOLD 

SOURCE 

INTERPRETATION

MANIFOLD 

SOURCE 

INTERPRETATION

MANIFOLD 

SOURCE 

INTERPRETATION

MANIFOLD 

SOURCE 

INTERPRETATION

ζc

ζu
c

ζl
c

S
o
u
rc

e
 D

e
p
th

 (
z
)

h
ig

h
 d

e
g

re
e

o
f 

m
e

m
b

e
rs

h
ip

lo
w

 d
e

g
re

e

o
f 

m
e

m
b

e
rs

h
ip

h
ig

h
 d

e
g

re
e

o
f 

m
e

m
b

e
rs

h
ip

lo
w

 d
e

g
re

e

o
f 

m
e

m
b

e
rs

h
ip

Figure 4.3: Bidimensional plot of the conjunction {µz ∧ µQ} using (a) the Min/Max Norm,

and (b) the Product/Bounded Sum; green zones (light colors) show areas where the resulting

parameter (P{µz∧µQ}) is informative for magmatic-induced activity.

detected a shallow thermally demagnetized area before the 2000 eruption. Fig. 4.5a shows

the values of the membership function µz mapping the depth information; Fig. 4.5b shows

the values of µQ obtained using the Q-values obtained (Chapter 2, section 2.8); and Fig. 4.5c

shows the values of P(z, Q) after the conjunction {µz ∧ µQ}. In a BET EF scheme, the val-

ues P(z, Q) could be used as monitoring parameter which BET would integrate, for example,

through a membership function (e.g. µ{LP}) as that shown in Fig. 4.4. To obtain a single value

of the parameter for BET (in a given time window), values of P(z, Q) may be grouped for fixed

time intervals, and the empirical CDF of the values in the time interval may be obtained;

then, a selected percentile (e.g. 95th percentile) may be defined to represent the solutions of

that time interval. For example, Fig. 4.5d shows the 95th percentile of the CDF of the P(z, Q)

values obtained in the Miyakejima example, grouped in time intervals of two days.

4.4 Potential use of non-stationary ETAS modeling of VT swarms

as input monitoring parameter in BET

In Chapter 3 we have applied a general stochastic non-stationary ETAS modeling to analyze

complex seismic swarms in both tectonic and volcanic environments, in order to extract in-

formation useful to characterize the swarms directly associated with migration of magmatic

dikes. In our analysis we compare the time evolution of both background seismicity λ0 and

p-value (as suggested by Lombardi et al., 2006) for different seismic swarms grouped in 3
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Figure 4.5: Membership function µ{LP} evaluated for the LP events from Miyakejima volcano,

Japan, analyzed in Chapter 2. (a) Membership function for the depth, µz; (b) Membership

function for the Q-values, µQ; (c) values of P(z, Q) after the conjunction {µz ∧ µQ}; (d) 95th

percentile of the empirical CDF of the solutions obtained, grouped in intervals of two days.
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cases: (1) seismic swarms in tectonic areas, (2) VT swarms in non-erupting volcanic areas,

and (3) VT swarms in volcanic areas before and/or during an eruptive process.

The obtained results of the stochastic non-stationary ETAS model can give us some insights on

the mechanics of the seismic swarms on volcanic areas. As discussed on Chapter 3, the overall

impression is that changes in the background seismicity (λ0) may be observed in all the cases,

even in tectonic environments. However, the p-value have some substantial differences that

may be used as a tool to characterize VT swarms. The results obtained in Chapter 3 may

be summarized as: (1) the tectonic sequences analyzed show in general a rather stationary

value of p, which in general is ≤ 1.2 in the analyzed cases; (2) the VT sequences in non-

erupting volcanic areas have some similar features as the tectonic cases, with stable values

or showing small, high and low frequency oscillations. In the analyzed cases the p-value was

always p ≤ 1.3; (3) the VT swarms during eruptive episodes have p-values that in general are

higher respect to the cases described before, being in general p ≥ 1.7, and normally positively

correlated to increased background seismicity rates λ0.

The results of the stochastic non-stationary ETAS model yield important clues to interpret

the temporal evolution of complex seismic swarms. The phenomenological description of the

temporal behavior of λ0 and p parameters may be accompanied by a more detailed interpre-

tation of the results in terms of the physical processes at the source of the swarms (for details

see Chapter 3). We can use this information to construct a monitoring parameter to feed the

monitoring part of node 2 (magmatic unrest) in BET. Again as in section 4.3, Fuzzy logic

may provide a valid framework to build both a decision scheme and a quantitative parameter

to translate the information of non-stationary ETAS modeling in a monitoring tool to feed

probabilistic eruption forecasting models as BET (e.g., Marzocchi et al., 2004, 2008). Based

on the results summarized in the previous paragraph, we can conclude that to detect swarms

associated with magma migration, increased values of λ0 is a not informative parameter; just

p-values may bear some information: for instance, VT swarms directly associated with shal-

low dike intrusions are directly correlated with high p values; in the cases analyzed in Chapter

3 we have found that p-values < 1.3 were associated with both tectonic and volcano-tectonic

seismic swarms, the last without eruptive activity associated, while p-values > 1.7 were found

for VT sequences just before and/or during eruptive episodes. Then, to construct a member-

ship function we can use those values as reference for the anomaly thresholds: for example,

we select tl = 1.5 and tu = 1.7 as lower and upper thresholds, respectively, and then, the

membership function µ{N-ETAS} in BET (Fig. 4.6) would be of the form (see electronic supple-

mentary material in Marzocchi et al. (2008), and Appendix A for details):

µ{N-ETAS}(p-value) =







0 if p-value < 1.5
1
2

{

sin
[

π
(

p-value−1.5
0.2

)

− π
2

]

+ 1
}

if 1.5 ≤ p-value < 1.7

1 if p-value ≥ 1.7

(4.8)
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Figure 4.6: Membership function µ{N-ETAS} in BET, to consider the non-stationary ETAS mod-

eling as monitoring parameter for short-term eruption forecasting.

4.5 Guidelines for quantitative determination of seismicity-rate

thresholds for BET

Volcanoes with permanent monitoring systems have often databases containing information

of many years of geophysical observations in which a record of the background activity level

(i.e. repose periods) may be determined. The definition of anomaly thresholds may be quite

controversial and even non univocal values may be selected. In this section we analyze the

case of background seismicity-rate databases, and try to define some simple guidelines to

quantitatively establish the thresholds required in BET.

As a general approach to quantitatively define the thresholds (1 or 2) required in BET, the

next procedure is proposed:

1. Select the data from repose periods in the data set (background seismic activity);

2. Divide the background activity in time intervals of length τ , and create a data set of

number of events/τ ;

3. Fit the best statistical distribution describing the data set, and test the hypothesis (e.g.

using a 1 sample Kolmogorov-Smirnov (K.S.) test);

4. use the Cumulative Distribution Function (CDF) of the fitted distribution to select the
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required threshold values (tl and tu); this may be done selecting (subjectively) two

percentiles: in our applications we consider the 90th and 95th percentiles of the CDF.

Note that if tl = tu, a boolean logic is reproduced.

In the case of seismicity catalogs, one of the probability distributions that better fits seismicity

rate data is the Poisson distribution; however, volcano seismicity (VT, or LP) is generally

clustered and then the use of a Generalized Poisson model may provide a more accurate

description of the observed data.

4.5.1 Brief introduction to the Generalized Poisson Process (GPP)

The Generalized Poisson model assumes that the events occur grouped in time (clusters) and

that the number of clusters follows a Poisson distribution. In other words, this approach in-

tends to solve the problem of estimating a cluster size distribution, assuming some model for

the occurrence of these clusters, to derive the distribution of the number of events in a time

interval in terms of the cluster size distribution.

The GPP distribution is characterized by two parameters: K and E (for details, see Shlien

and Toksoz (1970); Zollo et al. (2002). It is assumed that the clusters are distributed in time

according to a Poisson process with (mean) rate K, while E is a free parameter which de-

scribes the degree of clustering of the sequence.

The GPP distribution parameters are derived by maximizing the likelihood ratio l:

l = W W
W∏

i=1

pq(ni, τ)

f(ni, τ)
(4.9)

where pq(ni, τ) is a theoretical probability (see below), f(ni, τ) is the observed frequency of

occurrence on ni events in the time window τ , ni is the number of events in the i-th time

window, and W is the total number of time windows.

The theoretical probability pq(ni, τ) is calculated with the recursive formula

pq(n, τ) =
Kτ

n

n−1∑

j=0

(n − j) q (n − j) pq (j, τ) (4.10)

starting with

pq(0, τ) = e−Kτ (4.11)

In equation (4.10), q(n) is the Z distribution or discrete Pareto distribution; it represents the

theoretical distribution of the number of grouped events (which is generally observed to have

an inverse power form) and is defined as

q(n) =
1

ζ(E)
n−E (4.12)
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where E describes the degree of clustering of the sequence, and ζ(E) is the Zeta-Riemann

function, a normalization factor.

To find the parameters K and E of the GPP, we created a code to perform a grid search

in the {E, K} space to find the maximum value of the likelihood defined in equation 4.9.

Then, using the estimated values of K and E, the generalized Poisson distribution is con-

structed and tested using a K.S. 1-sample test.

4.5.2 Example 1: Modeling the distribution of the monthly number of VT

events during repose periods at Cotopaxi volcano, and threshold deter-

mination

The determination of the theoretical (generalized Poisson) distribution for the VT catalog

is used to define the thresholds necessary to feed the BET (generally at node 1 or 2). The

analysis was performed using the events of the background activity grouped in intervals of

τ = 1 month; the background activity was select using a Change Point analysis (e.g., Mulargia

et al., 1985, 1987). The time series of monthly number of VT events (Fig. 4.7a), is successfully

described by a generalized Poisson distribution with parameters (Fig. 4.8):

K = 7.8 (±0.3)

E = 2.5 (±0.1) (4.13)

K = 7.8 means that the mean rate of clusters of VT events is about 7.8 cluster/month. The

K.S. test result is that the null hypothesis (data fits the theoretical distribution) cannot be

rejected, at a significance level of 0.01.

The next step is to define the thresholds (one or two values) of number of events to be used

as the limits to determine if the seismicity is indicating a rest/unrest period. These threshold

values help BET in determining if a selected monitoring measure (in this case VT seismicity)

can be considered anomalous and are used using the Fuzzy set theory (Zadeh, 1965) that

quantitatively emulates the expert-like flexible judgment of the anomalous state of a moni-

toring parameter (for details see Marzocchi et al. (2008)). For this reason, it is necessary to

define two thresholds for each monitoring parameter: a lower tl and a upper tu threshold.

Note that if tl = tu, a boolean login is reproduced.

The thresholds are selected as the 90th and 95th percentiles of the distribution for tl and

tu, respectively. This means that we consider that under tl the parameter indicates non-

unrest; over tu it indicates unrest, and for values between tl and tu there is a relative degree

of anomaly calculated by a membership function µ{VT-rate} (for details see Marzocchi et al.

(2008), and Appendix A).
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1989 to April 2008 (data from Instituto Geof́ısico - EPN, Quito, Ecuador), and Change Point
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For the VT events, the thresholds (obtained through random sampling) defined by the 90th

and 95th percentiles of the distribution are:

tl = 24 VT events/month

tu = 32 VT events/month
(4.14)

4.5.3 Example 2: Modeling the distribution of the monthly number of LP events

during the repose periods at Cotopaxi volcano, and threshold determina-

tion

The determination of the theoretical (generalized Poisson) distribution of the LP seismicity

is used to define the thresholds which will be used in BET (generally at node 1). The time

series of monthly number of LP events (Fig. 4.7b) during the period previous to the start

of the unrest defined, is successfully described by a generalized Poisson distribution with

parameters (Fig. 4.9):

K = 23.0 (±1.0)

E = 2.0 (±0.1) (4.15)

K = 23 means that the mean rate of clusters of LP events is about 23 cluster/month. The K.S.

test result is that the null hypothesis (data fits the theoretical distribution) cannot be rejected,

with a significance level of 0.01. The next step is to define the thresholds (two values: tl and

tu) of number of events to be used as the limits to determine if the seismicity is indicating a

rest/unrest period.

The thresholds are selected as the 90th and 95th percentiles of the distribution for tl and tu,

respectively, as in the previous example. For the LP events, the thresholds (obtained through

random sampling) defined by the 90th and 95th percentiles of the distribution are:

tl = 205 LP events/month

tu = 335 LP events/month
(4.16)
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Chapter 5
General Conclusions

This Ph.D. thesis explores the past eruptive activity and the pre-eruptive phase of volcanoes,

using both empirical and physical methods. Such a modeling provides new insights on under-

standing the physics of pre- and sin-eruptive processes and it can be used to improve short-

and long-term eruption forecasting (EF) assessments. For this purpose, the results obtained

have been integrated in a homogeneous scheme for EF provided by the Bayesian Event Tree

model for Eruption Forecasting (BET EF, e.g., Marzocchi et al., 2008). Specifically, guidelines

to use our results to improve the setup of BET EF have been proposed, highlighting how new

models may be successfully integrated in BET for a comprehensive analysis of all the available

information existing for a volcano.

Beyond this general objective achieved, the most remarkable concluding remarks from each

specific analysis performed can be summarized as follows:

1. For long-term eruption forecasting:

(a) The intrinsic complexity of volcanic systems motivates the definition of proba-

bility models as mathematical structures to describe the response of the consid-

ered systems. This kind of models may be the basis for time-dependent or time-

independent, long-term, eruption forecasting models based on the past eruptive

activity of a volcano.

(b) Renewal processes characterized by five different probabilistic models, plus a TPM

and a SPM, have been applied to analyze the repose times between eruptive episodes

of Miyakejima volcano. From our analysis we conclude that the probabilistic model

that better explains the observed data is a Brownian passage-time (BPT). This

model is based upon a simple physical model resembling the characteristic cycles

of volcanic activity, the Brownian relaxation oscillator, and is parameterized by the

mean rate of event occurrence, µ, and the aperiodicity about the mean, α.

(c) The Brownian passage-time family differs from other usual candidate distributions

for long-term eruption forecasting in that it may reflect physical properties of the
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macro-mechanics of volcanic processes. The Brownian relaxation oscillator and

Brownian passage-time distribution connect together physical notions of unob-

servable loading and failure processes of a point process with observable response

statistics (i.e. event recurrence in time).

(d) In the BPT model, µ is an scale parameter that provides information about the

typical frequency at which events occur, and α is a dimensionless parameter that

measures the aperiodicity of the mean response of the system, and for this reason

this parameter may be useful to compare the behavior of different volcanoes, span-

ning from periodic-like to Poisson-like systems; for instance, the more periodic the

process, the more α approaches zero. The value α = 0.51 ±0.01 found in this work

for the aperiodicity in Miyakejima volcano indicates probably for the first time a

clear recurrent behavior in a volcanic system.

(e) The BPT model provides some insights for time-dependent, long-term eruption

forecasting; for instance, if we consider its hazard function, some noteworthy prop-

erties can be defined: the probability of having renewed eruptive activity just after

an eruptive cycle is very low, then it increases steadily from about zero to a finite

maximum near the mean recurrence time. Finally, for times greater than the mean

recurrence time the hazard function tends to a finite constant value, indicating

that for long repose times the system tends to behave as a Poisson process. These

are unique properties among the set of candidate models considered, and provide

a more realistic asymptotic behavior of the failure rate.

2. For short-term eruption forecasting:

(a) Volcano Seismology can provide useful monitoring parameters to feed probabilistic

models for short-term eruption forecasting. Both long-period (LP) and volcano-

tectonic (VT) seismic events may be analyzed to track some physical processes

inside active volcanoes.

(b) Spectral analysis of LP events may provide information about the source properties

of this kind of seismic events often observed on active volcanoes. We propose a

probabilistic formulation of the physically-based, spectral analysis method of Ku-

mazawa et al. (1990), which leads to the definition of a (posterior) probability

distribution in the model space σ(m) that results of combining prior information

(on data and model parameters) with the new information obtained by measure-

ments (the time series).

(c) We implemented a Monte Carlo method to explore σ(m), in which a large collec-

tion of models are pseudo-randomly generated with the support of the posterior

probability distribution. To do this task we have implemented a simple Metropo-

lis algorithm; the input to the algorithm consists of random models generated

according to the prior distribution ρ(m) and the corresponding values of the likeli-

hood function (that carries information from measurements and the theory, linking
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observed data and model parameters); the output from the algorithm are pseudo-

random realizations of the posterior distribution σ(m) that contains all informa-

tion about the parameterized model. From this output we get information about

model parameters: even if the most general solution would be the definition of

an empirical probability distribution (CDF or PDF) for each model parameter, it is

possible (where possible) to compute any kind of central and dispersion estimators

to produce both best-guess values and associated uncertainties; it is also possible

to adopt cluster analysis techniques to assess the nature of the possible solution(s).

(d) We have set the problem in a fully probabilistic formulation, providing a frame-

work in which restrictive assumptions are avoided and not-unique solutions are

possible. We consider that this kind of formulation may be helpful for different

kind of problems, specially when it exists a nonlinear relationship between the

observed data and the parameters of the model.

(e) We did apply this method to analyze LP waveforms from two volcanoes: Cotopaxi

(Ecuador) and Miyakejima (Japan). We did perform the analysis to each single

LP event (617 for Cotopaxi, and 240 for Miyakejima) and the solutions for the

optimum number of wave elements where extracted and stacked for different time

intervals. This procedure may be an important tool for objectively monitor the

characteristic complex frequencies of the LP events; in this way, changes in the

volcanic activity may be highlighted and families of events of particular interest

could be identified for supplementary analysis. Further this possible application

for monitoring, our approach can also be used to analyze individual events as an

alternative to the existent methodologies.

(f) We perform a retrospective analysis of volcano-tectonic seismic swarms using a

non-stationary, epidemic-type, aftershock sequences (ETAS) model in which both

the background seismicity and the p-value can vary through time, which has evi-

denced some important characteristics of the VT swarms associated with magmatic

intrusions. In particular, swarms of VT events that precede or accompany mag-

matic intrusions (i.e. before or during eruptive activity) present remarkably high

p-values respect to both, VT swarms in cases with no evident shallow magmatic

activity, and swarms in purely tectonic environments. From a practical point of

view, the stochastic modeling of VT swarms using a non-stationary ETAS model

may be used for a quick and almost automatic analysis of VT swarms to identify

and discriminate those which are more likely associated with the physical response

of the volcanic edifice to a magmatic intrusion.

(g) Fuzzy logic, provides a valid framework to quantitatively consider information

from geophysical parameters whose physical interpretation may be manifold, or

in which no clear or sharp anomaly thresholds may be defined. We did create

monitoring parameters based on the analysis performed on both LP and VT events,

which may be straightforward integrated into the BET model.





Appendix A
Brief introduction to the Bayesian Event

Tree Model for Probabilistic Eruption

Forecasting (BET EF)

As for any generic complex system (intrinsically unpredictable from a deterministic point of

view), the description of eruptive processes in terms of probability is particularly a suitable

procedure. Beyond the extreme complexity, nonlinearities, and the large number of degrees

of freedom of a volcanic system (aleatory uncertainty), also our still limited knowledge of the

processes involved (epistemic uncertainty) make deterministic prediction of the evolution of

volcanic processes practically impossible (Marzocchi et al., 2008).

Bayesian statistics is a suitable framework for producing an EF in a rational, probabilistic

form. The Bayesian approach (BET) used by Marzocchi et al. (2004, 2008) starts from mod-

eling the statistical distribution using our basic knowledge (or complete ignorance), and then

it refines the distribution as long as new information come in as in a sort of data assimilation

procedure Marzocchi et al. (2008).

Basically, BET translates volcanological input (it means any kind of relevant information such

as theoretical/empirical models, geological and historical data, and/or monitoring informa-

tion, etc.) into probability of any possible volcano-related event. Such probabilities represent

an homogeneous and quantitative synthesis of the present knowledge about the volcano.

A.0.4 Event Tree Scheme

BET is based on a branching scheme in which individual branches are alternative steps from

a general prior event, state, or condition, and which evolve into increasingly specific sub-

sequent events (intermediate outcomes) up to a final outcome. This is called an event tree

(ET), and in this way it shows all relevant possible outcomes of volcanic unrest at progres-

sively higher degrees of detail. The points on the graph where new branches are created are
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referred to as nodes (Newhall and Hoblitt, 2002; Marzocchi et al., 2004, 2008). At each node

we have the following states:

• Node 1: (Unrest / No unrest) in the time interval (t0, t0 + τ ], where t0 is the present

time and τ is the time window considered.

• Node 2: (Origin) the Unrest is due to magma or other causes (e.g. hydrothermal, tec-

tonics, etc.), given that an unrest has been detected.

• Node 3: (Outcome) the magma will reach the surface (i.e. the volcano will erupt), or

not, in the time interval τ , provided that the unrest has a magmatic origin.

• Node 4: (Location) the eruption will occur in a specific location (e.g. crater, a flank,

etc.), provided that there is an eruption.

• Node 5: (Magnitude) the eruption will be of a certain magnitude/size (e.g. VEI), pro-

vided that there is an eruption in a certain location.

For a further quantification of volcanic hazard (VH) there exist other nodes:

• Node 6: (Phenomena) the occurrence of a specific threatening event (pyroclastic flows,

lahars, tephra fall, lava flows, etc.), provided that there is an eruption of certain size

and in a certain location.

• Node 7: (Area) the threatening event reaches an specific area, given that the phe-

nomenon has occurred.

• Node 8: (Overcoming threshold) the overcoming of a threshold related to a certain

threatening event in a certain area, given the threatening event has reached this area.

• Node 9: (Exposure) an individual or a building will be present at the specified sector

reached by a phenomenon.
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• Node 10: (Vulnerability) a hypothetical individual will be killed/injured or a building

will be destroyed/damaged at the specific sector, given that the phenomenon arrives

there and that persons and/or buildings are present.

At each of these nodes a probability density function (PDF) is assigned; the use of these prob-

ability functions (characteristic of the Bayesian approach) allows BET to estimate aleatory

and epistemic uncertainties.

θj
k is the probability of the conditional event j at the k-th node, then for each one of the

nodes we have: [θ
(unrest)
1 ], [θ

(magma)
2 ], [θ

(eruption)
3 ], [θ

(location)
4 ], [θ

(size)
5 ], [θ

(threat)
6 ], [θ

(area)
7 ],

[θ
(threshold)
8 ], where the square brackets stand for a generic PDF.

Given all the PDF at each node, BET combines them in order to obtain the absolute prob-

ability of each event which we are interested in. For example, the PDF φ1 of the probability of

having an eruption of type m in the time interval (t0, t0+τ ] at the n-th vent location would be:

[φ1] = [θ
(unrest)
1 ] [θ

(magma)
2 ] [θ

(eruption)
3 ] [θ

(n)
4 ] [θ

(m)
5 ]

The functional form of [φ] is not determined analytically, but through a Monte Carlo sim-

ulation (Marzocchi et al., 2008). Each PDF is sampled 1000 times and the calculation is per-

formed using each sample, obtaining 1000 values of [φ]; then, using these values, a functional

form of [φ] is determined numerically. In this way, both aleatory and epistemic uncertainties

are properly propagated at all nodes and the best guess (i.e. the average) and errors (the

standard deviation) of the absolute probability (of any possible vent) are estimated (Marzoc-

chi et al., 2008).

A.0.5 Estimating the probabilities at the nodes: (1) General aspects

To estimate the PDF at each node is the main technical problem in BET but the most im-

portant part of the procedure since it translates volcanological information into probability.

Estimating a value for a probability always involves a subjective element; for this reason a

Bayesian approach, in which a probability distribution is associated with each event of a node,

is adopted (rather than a single value). In this way it is possible to estimate uncertainties of

these event probabilities (Marzocchi et al., 2004).

The distribution [θj
k] has to be unimodal and with domain [0,1] (since the random variable is

a probability). A suitable distribution with these requirements is the Beta distribution. The

PDF associated with θj
k is calculated following three steps: (1) design of a generic Bayesian

Event Tree, (2) estimate the conditional probability at each node, and (3) combine the proba-

bilities of each node to obtain probability distribution of any relevant event (Marzocchi et al.,
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2004, 2008).

The Dirichlet distribution and the Beta distribution

In the Bayesian model of Marzocchi et al. (2004, 2008), it is assumed that [θk] is a random

variable with Dirichlet distribution:

[θk] =
Γ(α1 + . . . + αm)

Γ(α1) . . . Γ(αm)

[

θ
(1)
k

]α1−1
. . .
[

θ
(m)
k

]αm−1
(A.1)

where αj > 0 (j = 1, 2, . . . ,m), θ
(1)
k , . . . , θ

(m)
k > 0,

∑m
j=1 θ

(j)
k = 1, and m is the number of

possible mutually exclusive and exhaustive events.

The first two moments of the distribution (mean and variance) are:

E
[

θ
(j)
k

]

=
αj

α0
(A.2)

V ar
[

θ
(j)
k

]

=
αj(α0 − αj)

α2
0(α0 + 1)

(A.3)

where α0 =
∑k

j=1 αj .

In the case m = 2 and for events mutually exclusive (e.g. magma or not), the Dirichlet

distribution becomes a Beta distribution:

[θk] = Beta(α, β) =
Γ(α + β)

Γ(α)Γ(β)
θα−1
k (1 − θk)

β−1 (A.4)

where α, β > 0, and a sufficient condition to have a finite PDF is α, β ≥ 1 (e.g., Gelman

et al., 1995; Marzocchi et al., 2004).

Often (but not necessarily) α and β are integers related to the number of available data:

in this case, α − 1 is the number of successes and β − 1 is the number of failures.

The first two moments of the Beta distribution are:

E [θk] =
α

α + β
(A.5)

E
[
θ2
k

]
= V ar [θk] = αβ

(α+β)2 (α+β+1)

= E [θk] (1 − E [θk])
1

α+β+1

(A.6)

In general, the first moment of the Beta distribution represents an estimation of the aleatory

uncertainty, i.e., the intrinsic random variability due to the complexity of the process. The

dispersion around the central value (i.e. the variance) instead represents an estimation of the
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epistemic uncertainty due to our limited knowledge of the process.

The Beta distribution has two important limiting cases. The case of α = β = 1 repre-

sents the Uniform distribution, and in this case the mean and variance are E [θk] = 1/2 and

V ar [θk] = 1/12, respectively. On the other hand, when α (or β) → ∞, then V ar [θk] → 0

which means that the Beta distribution tends to a Dirac’s δ distribution centered around the

average. In practice, this means that when we have a large amount of information the epis-

temic uncertainty becomes negligible.

Accounting for monitoring and non-monitoring information

In order to perform Eruption Forecasting, there are two broad classes of information to

consider: (1) measurements from monitoring (data set M) and (2) all the other kinds of

data/information (data set M̄). This subdivision is due because usually these two types of

information have different weights in different states of a volcano; for example, monitoring

data may be the most relevant information for short-term EF purposes, while non-monitoring

information may be more useful for long-term EF (Marzocchi et al., 2008). In BET the PDF of

the j-th event at the generic k-th node
[

θ
(j)
k

]

is a linear combination of the probabilities based

on these two types of knowledge:

[

θ
(j)
k

]

= γk

[

θ
(j)M
k

]

+ (1 − γk)
[

θ
(j)M̄
k

]

(A.7)

where γk, a variable in the interval [0, 1], sets the degree at which monitoring data control the

posterior probabilities with respect to the non-monitoring part,
[

θ
(j)M
k

]

and
[

θ
(j)M̄
k

]

have the

same meaning as
[

θ
(j)
k

]

but they are defined using only monitoring information and all the

other kind of information, respectively. Through γk BET switches dynamically from long-term

(when volcano is found to be at rest) to short-term (during unrest) probabilities.

For the nodes where monitoring parameters are informative, γk is a function of the “state

of information” η which in turn, is a fuzzy parameter (Zadeh, 1965) in the interval [0, 1] that

indicates the degree at which unrest is detected by the monitoring observations at t = t0.

The monitoring term in equationA.7 is the leading term in short-term probability evaluation

and is determined through Bayes’ rule by combining estimated probabilities from monitoring

measures at time t0 and monitoring measurements from past episodes of unrest (if any). On

the other hand, the non-monitoring part in equation A.7 is the leading term in long-term

probability evaluation and is determined through Bayes’ rule by combining estimated proba-

bilities from all our knowledge based on theoretical models and/or beliefs, and past data.

The estimation of these three unknowns requires the use of two concepts: (1) the Bayesian

Inference and the Fuzzy approach. For details on these concepts, see Marzocchi et al. (2008)
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(electronic supplementary material).

A.0.6 Estimating the probabilities at the nodes: (2) Specific calculations

In this part, the details for the conditional probability assessment for each node are explained

following the methodology described by Marzocchi et al. (2008) (electronic supplementary

material). More details and some examples can be found in Marzocchi et al. (2004) and Mar-

zocchi et al. (2006).

Node 1: Rest/Unrest - [θ1]

The first node has two possible outcomes: the presence or not of unrest in a time interval

(t0, t0 + τ ]. The definition of the state of unrest is still a very subjective matter, as is the choice

of the parameters used to define it. In general, any specific case (i.e. each volcano) has its

own, not fixed, behavior, and then the parameters and information chosen is not a rule but

will be defined according with the particular case.

- Parameter γ1

At this node, γ1 = η, where η is the so called state of unrest, which defines the degree at

which the volcano is found in unrest at time t = t0 (for details, see Marzocchi et al. (2008),

electronic supplementary material). This means that monitoring measurements are consid-

ered fully informative during an unrest.

- The posterior distribution
[
θM1
]

(monitoring part)

The distribution
[
θM1
]

is the PDF of the posterior probability to have an unrest in the time

interval (t0, t0 + τ ] using the monitoring data when, at time t = t0 the volcano is in unrest

(i.e. η = 1). In this case Bayes’ rule is not used, but it is set that:

[
θM1
]

= δ
(
[θM1 ] − 1

)
(A.8)

where δ(·) indicates the Dirac Function. It means that, if at t = t0 the volcano is in unrest,

then it is assumed that it will also be at unrest in the time interval (t0, t0 + τ ].

- The posterior distribution
[

θM̄1

]

(non-monitoring part)

The prior distribution for θ1 is defined as the Beta distribution:

[

θM̄1
]

= Beta (α1, β1) (A.9)
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where parameters α1 and β1 are determined by

α1 = ΘM̄
1

(

ΛM̄
1 + 1

)

(A.10)

β1 =
(

ΛM̄
1 + 1

)

− α1 (A.11)

where ΘM̄
1 is the central value inferred by a priori information (models, theoretical beliefs,

etc.) and ΛM̄
1 is the so called equivalent number of data (for details see Marzocchi et al. (2008),

electronic supplementary material) and controls the confidence at which ΘM̄
1 is considered a

reliable value. Both ΘM̄
1 and ΛM̄

1 are input parameters of the BET model.

To write the likelihood for node 1, the two possible outcomes can be treated as success (un-

rest) and failure (non-unrest) using a binomial model under some specific conditions. If we

define n∗ as the total number of non-overlapping time windows (of length τ) of the available

catalog of data, we obtain a sequence of non-unrest (let’s say 0) and unrest (1). However,

this sequence could be autocorrelated if the duration of an unrest is larger than the time win-

dow τ considered. To remove this autocorrelation and therefore to use the binomial model,

Marzocchi et al. (2008) proposed to consider n1 as the total number of non-overlapping time

windows in a state of non-unrest, and y1 as a variable that counts the number of (non-

overlapping) time windows which contain an onset of unrest, in a set of n1 observations. It

means that each unrest episode counts as one, regardless its duration.

Using the binomial function, the likelihood function is defined as:

[

y1|θ
M̄
1

]

= Bin(y1, n1; θ1) (A.12)

The choice of the Beta and Binomial (or Dirichlet and Multinomial in the multivariate

case) distributions simplifies the computation because they are conjugate distributions (Gel-

man et al., 1995). A Dirichlet multiplied by a Multinomial is still a Dirichlet. Then, the

posterior distribution for
[

θM̄1

]

is:

[

θM̄1
]

=
[

θM̄1 |y1

]

= Beta (α1 + y1, β1 + n1 − y1) (A.13)

Node 2: Origin: Magmatic or not-magmatic - [θ2]

As in node 1, node 2 has two possible outcomes: Given that an unrest has occurred, is it of

magmatic origin (success), or is not a magmatic unrest (failure)? Theoretical information that

can be used to assign a probability at this node is practically nonexistent. Unrest can be due

to different factors and it is practically impossible to a priori anticipate the origin of unrest on

theoretical grounds.

- Parameter γ2

At this node, γ2 = η, which again means that monitoring measures are fully informative



130 Introduction to BET EF

during an unrest.

- The posterior distribution
[
θM2
]

(monitoring part)

At this point it is necessary to select the monitoring parameters which could be indicative

of magmatic origin for the unrest. . These parameters are quite subjective and could change

from volcano to volcano, and could even be a combination of different measures.

For each monitored variable x
(i)
2 selected (i = 1, . . . , L), where L is the number of selected

monitored variables), it is necessary to define the membership function (i.e. lower and upper

thresholds, and trends, for details see Marzocchi et al. (2008)). At each monitoring variable

x
(i)
2 it is possible to associate a weighting factor ω

(i)
2 , ω

(·)
2 ≥ 1 that ranks the relative impor-

tance of each parameter respect to the others.

Once the parameters have been selected, the next step is to translate this information in

probabilities. First, using the fuzzy approach, the degrees of anomaly (z
(i)
2 ) at t = t0 are esti-

mated (for details see Marzocchi et al. (2008)) for all the parameters considered at this node.

Using this information, it is possible to estimate a kind of index of magmatic unrest Z2 which

is calculated as (Marzocchi et al., 2004, 2008):

Z2 =

L∑

i=1

ω
(i)
2 z

(i)
2 (A.14)

Then, Z2 is defined as a linear combination of the weighted membership functions, and repre-

sents the degree of anomaly of the monitored parameters as measured at time t0. The higher

value of Z2, the higher probability to have a magmatic unrest. The next problem is to trans-

late this information in terms of probability. Again, it is assumed that the a priori distribution

is a Beta distribution, with mean ΘM
2 and the maximum variance allowed (then ΛM

2 = 1).

Marzocchi et al. (2008) proposed a functional relationship that links Z2 with ΘM
2 using an

exponential relationship like:

ΘM
2 = 1 − a e−bZ2 (A.15)

where a and b are positive parameters defined by means of Bayesian inference. The choice

of this kind of function is due to fit the next requirements: (1) It should be a monotonically

increasing function, so that the larger Z2, the larger ΘM
2 ; (2) the largest increase in proba-

bility mean occurs when one of the monitoring variables shows some degree of anomaly, but

as more monitored variables become anomalous, the probability mean keeps on rising, but

slower (this is to give a higher weight to the first change in a strong indicator).

Parameters a and b are assumed independent and their prior distribution is a uniform; the

domain of a and b is chosen to have reliable both prior distribution and probability values:

for instance, the domain of a could be [0, 1], but, in order to account for the so called damping

effect (Marzocchi et al., 2004) (when Z2 = 0), Marzocchi et al. (2008) have defined an interval
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[0.5, 1] as the reliable domain for parameter a. On the other hand, parameter b could assume

values in the interval [0, ∞) but as b grows, the sensibility to changes in Z2 (for Z2 > 0) is

attenuated; then, parameter b has been calibrated to take values in the domain [0, 2] (Mar-

zocchi et al., 2008).

The prior distribution for the parameter θM2 is set as the marginal distribution of θM2 by

integrating over a and b the joint prior distribution of θM2 , a, and b:

[θM2 ]prior =

∫ 1

0.5
da

∫ 2

0
db [θM2 , a, b]prior

=

∫ 1

0.5
da

∫ 2

0
db [θM2 | a, b] [a, b]prior (A.16)

Since a and b are assumed independent and with prior uniform distribution, then: [a, b]prior =

[a]prior [b]prior = 2 · 0.5. On the other hand, [θM2 | a, b] is a Beta distribution with parameters

α and β (equations A.10 and A.11) (2 − 2ae−bZ2) and (2ae−bZ2), respectively. Then, from eq.

A.16:

[θM2 ]prior =

∫ 1

0.5
da

∫ 2

0
db Beta(2 − 2ae−bZ2 , 2ae−bZ2) · 2 · 0.5 (A.17)

The posterior distribution of the parameters a and b is based on Bayesian inference. At node

2, it is assumed that past monitoring data can modify the prior distribution for θM2 only by

refining the values of a and b (Marzocchi et al., 2008). In Bayesian terms, given nM
2 past

monitored episodes of unrest, each with an observed Z2i
and with outcome y2i

(where y2 is

1 if the unrest was magmatic, and 0 on the opposite), the joint posterior distribution of θM2 ,

a, and b, is:

[
θM2 , a, b | Z2, {Z2i

}, {y2i
}
]

∝
[
θM2 | a, b, Z2, {Z2i

}, {y2i
}
]

[a, b | Z2, {Z2i
}, {y2i

}]

∝
[
θM2 | a, b, Z2

]
[a, b | {Z2i

}, {y2i
}]

∝
[
θM2 | a, b, Z2

]
[a, b]prior [{y2i

} | a, b, {Z2i
}]

(A.18)

where {Z2i
} and {y2i

} are the data sets of Z2i
(from past monitored unrest episodes) and y2i

(of their outcomes), respectively, for i = 1, . . . , nM
2 , and the sign ∝ stands for proportionality,

since the term on the right side is not normalized to 1.

Assuming independent past data, the likelihood [{y2i
} | a, b, {Z2i

}] is given by the product

(Marzocchi et al., 2008):
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[{y2i
} | a, b, {Z2i

}] =

nM
2∏

i=1

(

1 − a−bZ2i

)y2i

︸ ︷︷ ︸

A

(

a−bZ2i

)1−y2i

︸ ︷︷ ︸

B

(A.19)

When the i-th event has been cataloged as magmatic, (i.e., if y2i
= 1), in eq. A.19 remains

only the first term (A). Indeed, this term represents the probability that the i-th event is of

magmatic origin, as computed with a given set of a, b, {Z2i
}. On the opposite, when the event

has been cataloged as not-magmatic, (i.e., if y2i
= 0), it remains only the second term (B = 1

- A). Indeed, this term represents the probability that the i-th event is not of magmatic origin,

as computed with a given set of a, b, {Z2i
}.

This likelihood resembles the so called dose-response relationship based on the multinomial

scheme (Gelman et al., 1995; Marzocchi et al., 2008). It means that the most likely values of

a and b are those maximizing the probability of having observed those monitoring data.

Finally, the posterior distribution of θM2 is given by:

[
θM2
]

=

∫ 1

0.5
da

∫ 2

0
db
[
θM2 , a, b | Z2, {Z2i

}, {y2i
}
]

∝

∫ 1

0.5
da

∫ 2

0
db Beta(2 − 2ae−bZ2 , 2ae−bZ2) · 2 · 0.5

·

nM
2∏

i=1

(

1 − a−bZ2i

)y2i
(

a−bZ2i

)1−y2i
(A.20)

In BET, parameters a and b are determined by sampling randomly 1000 pairs of (a, b) from

their posterior bivariate joint distribution [a, b | {Z2i
}, {y2i

}] (in eq. A.18) with likelihood as

in eq. A.19 and prior [a, b] distribution as a bivariate uniform on the defined domains. Then,

each pair is used in eq. A.16 to build up 1000 different Beta (prior) distributions. From each

of them, a single random sampling is performed and the obtained 1000 samples represent

the posterior [θM2 ] searched.

- The posterior distribution
[

θM̄2

]

(non-monitoring part)

[

θM̄2

]

is the expected value of the probability for the unrest being magmatic, given that there

is an unrest, provided by theoretical models and beliefs. The formulation of
[

θM̄2

]

is identical

to the one of
[

θM̄1

]

(but obviously with index k = 2). ΛM̄
2 is the number of equivalent data

that we assign to our prior model; y2 is the number of observed magmatic unrest episodes at

the volcano in the past; n2 is the total number of observed unrest episodes at the volcano in

the past, whose source process (magmatic or not) is known. It implies that n2 ≤ y1.
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Then, the posterior
[

θM̄2

]

is (Marzocchi et al., 2008):

[

θM̄2
]

=
[

θM̄2 | y2, y1

]

= Beta(α2 + y2, β2 + y1 − y2) (A.21)

Node 3: Outcome: Occurrence or not occurrence or eruption - [θ3]

Node 3 has also two possible outcomes: the occurrence (success, i.e. the magma will reach

the surface) or not (failure) of an eruption, in a time interval (t0, t0 + τ ], provided that the

unrest has a magmatic origin.

- Parameter γ3

At this node, γ3 = η, which again means that monitoring measures are fully informative dur-

ing an unrest.

- The posterior distribution
[
θM3
]

(monitoring part)

The treatment of the monitored variables to compute the probability distribution for the mon-

itoring part at node 3 is exactly the same of node 2, except that the variables used
(
x3

i

)
should

be indicative of magma erupting. Then, at this node the posterior distribution of
[
θM3
]

is give

by:

[
θM3
]

=

∫ 1

0.5
da

∫ 2

0
db
[
θM3 , a, b | Z3, {Z3i

}, {y3i
}
]

∝

∫ 1

0.5
da

∫ 2

0
db Beta(2 − 2ae−bZ3 , 2ae−bZ3) · 2 · 0.5

·

nM
3∏

i=1

(

1 − a−bZ3i

)y3i
(

a−bZ3i

)1−y3i
(A.22)

where nM
3 is the number of past monitored episodes of magmatic unrest, {Z3i

}, (i = 1, . . . , nM
3 )

is the data set of Z3i
from past monitored of magmatic unrest (equation A.14 with index 3);

{y3i
}, (i = 1, . . . , nM

3 ) is the set of outcomes of the past monitored magmatic unrest (0 for

no eruption, 1 for eruption), and the parameters a and b determined in the same way as in

node 2 (note that their posterior distributions are different from the ones at node 2).

- The posterior distribution
[

θM̄3

]

(non-monitoring part)

[

θM̄3

]

is the expected value of the probability of eruption, given that there is a magmatic

unrest, provided by theoretical models and beliefs. The formulation of
[

θM̄3

]

is also identical
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to the one of
[

θM̄1

]

(but obviously with index k = 3). ΛM̄
3 is the number of equivalent data

that we assign to our prior model; y3 is the number of observed eruptions at the volcano in

the past; n3 is the total number of observed magmatic unrest at the volcano in the past, whose

outcome (magmatic or not) is known. It implies that n3 ≤ y2.

Then, the posterior
[

θM̄3

]

is (Marzocchi et al., 2008):

[

θM̄3
]

=
[

θM̄3 | y3, y2, y1

]

= Beta(α3 + y3, β3 + y2 − y3) (A.23)

Node 4: Location - [θ4]

Node 4 considers if the eruption will occur in a specific location (e.g. crater, a flank, etc.),

provided that there is an eruption. If we define J4 possible areas where the eruption can take

place, then node 4 has J4 possible outcomes, each one related to a specific location of the

eruption.

- Parameter γ4

Several phenomena observed in monitoring (i.e. apparent migration of seismic events) may

lead to false interpretations to individuate possible localizations of future vents (Marzocchi

et al., 2008), then at node 4 the monitoring information should not completely control the

probability [θj
4]. In BET it has been established that both monitoring and non-monitoring

parts should have the same weight, even in the case of a clear unrest (η = 1) (Marzocchi

et al., 2008). Then, γ4 is set like:

γ4 = min(η, 0.5) (A.24)

and in this way, during an unrest, the probability of a specific vent opening accounts for both

monitoring and non-monitoring information.

- The posterior distribution
[

θ
(j)M
4

]

(monitoring part)

When it is possible to localize relevant monitored measurements, BET calculates the frac-

tion of the measured parameter occurring in the specific J4-th vent location. Then, for every

monitored parameter, the sum of these fractions on all the vent locations defined must give

1. All the localized monitoring measures are combined to form the monitoring probability

distribution.

In this case, since no other data is going to be used to compute the posterior distribution,

then
[
θM4
]

posterior
≡
[
θM4
]

prior
=
[
θM4
]
, which is defined as:

[
θM4
]

= DiJ4

(

α
(1)
4 , α

(2)
4 , α

(3)
4 , . . . , α

(J4)
4

)

(A.25)
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where

α
(j)
4 =

J4

L4

L4∑

n=1

f (j)
n , for j = 1, 2, 3, . . . , J4 (A.26)

f
(j)
n is the fraction of the n-th localized monitoring parameter in the j-th vent location, L4

is the number of monitoring parameters considered, and DiJ4(·) is the Dirichlet distribution.

Then for the j-th vent location, the j-th posterior distribution for the monitoring part is the

marginal distribution
[

θ
(j)M
4

]

of eq. A.25 which is:

[

θ
(j)M
4

]

= Beta
(

α
(j)
4 , J4 − α

(j)
4

)

(A.27)

Then, the mean of the j-th vent location is

E
[

θ
(j)M
4

]

≡ Θ
(j)M
4 =

∑L4
n=1 f

(j)
n

L4
(A.28)

which means that at each location, the distribution mean is the average of the fractions of all

localized monitoring measures at that vent location. On the other hand, the variance of the

probability distribution is taken as the maximum allowed, then ΛM
4 = 1.

- The posterior distribution
[

θ
(j)M̄
4

]

(non-monitoring part)

At this node, the prior distribution is defined as a Dirichlet distribution with J4 parameters

α
(j)
4 (Marzocchi et al., 2008):

[

θM̄4
]

prior
= DiJ4

(

α
(1)
4 , α

(2)
4 , . . . , α

(J4)
4

)

(A.29)

where

α
(j)
4 = Θ

(j)M̄
4

(

ΛM̄
4 + J4 − 1

)

(A.30)

and where Θ
(j)M̄
4 and ΛM̄

4 are parameters that depend on the expected value and variance

of the theoretical models and/or beliefs (note that the α
(j)
4 ) used here are different from the

ones used used in the monitoring part).

For the likelihood, it is used a multinomial distribution with J4 possible outcomes (one for

each vent). Using Bayes theorem and adopting the results of the conjugate families, the next

posterior distribution is obtained:

[

θM̄4
]

≡
[

θM̄4 | y4, y3, y2, y1

]

= DiJ4

(

α
(1)
4 + y

(1)
4 , α

(2)
4 + y

(2)
4 , . . . , α

(J4)
4 + y

(J4)
4

)

(A.31)

where y
(j)
4 is the number of eruptions observed in the past at the j-th location; then

∑J4
j=1 y

(j)
4

is the total number of eruptions at the volcano with known localization, which should repre-

sent a complete eruption catalog of the period considered.
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For the j-th vent location, the posterior distribution for the non-monitoring part is the marginal

distribution
[

θ
(j)M̄
4

]

in eq. A.31:

[

θ
(j)M̄
4

]

= Beta

(

α
(j)
4 ,

{(
J4∑

i=1

α
(i)
4

)

− α
(j)
4

})

, for j = 1, 2, . . . , J4 (A.32)

Node 5: Magnitude - [θ5]

Node 5 considers the possibility that the eruption will be of a certain magnitude/size, pro-

vided that there is an eruption in a certain location. If we define J5 classes generically defined

of sizes, magnitudes, or even types of eruptions, then node 5 has J5 possible outcomes, each

one related to a specific class of eruption defined. The definition of sizes/types is a generic

matter since it may depend on the goal of the specific BET application, and on the character-

istics of the target volcano, and even on the available information.

Often such a size can be quantified through the Volcanic Explosivity Index - VEI (Newhall

and Self , 1982) and then often is the most common information available to quantify erup-

tion size. However, it should be noticed that is not the only possible choice.

In BET, it is assumed that the size distribution is independent from bent location. This means

that in all possible vent locations the probability estimations of sizes are identical (Marzocchi

et al., 2008)

- Parameter γ5

Until now there is no reliable precursor monitored parameters to infer the eruption size (San-

dri et al., 2004; Marzocchi et al., 2008), then BET does not use monitoring information to

improve the probability estimation at this node. Therefore, at this node γ5 = 0, and then

[θ
(j)M
5 ] is not computed.

- The posterior distribution
[

θ
(j)M̄
5

]

(non-monitoring part)

[

θM̄5

]

is the expected value of the probability of eruption of j-th size, given that there is

an eruption, provided by theoretical models and beliefs. The formulation of
[

θM̄5

]

is identical

to the one of
[

θM̄4

]

(but obviously with index k = 5). ΛM̄
5 is the number of equivalent data

that we assign to our prior model and defines the variance of the distribution; y
(j)
5 is the

number of observed eruptions of the j-th size at the volcano in the past; n5 =
∑J5

j=1 y
(j)
5 is the

total number of observed eruptions at the volcano in the past with known size. Those events

must represent a complete eruption catalog of the period considered.
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Then, the posterior
[

θM̄5

]

is (Marzocchi et al., 2008):

[

θM̄5
]

≡
[

θM̄5 | y5, y3, y2, y1

]

= DiJ5

(

α
(1)
5 + y

(1)
5 , α

(2)
5 + y

(2)
5 , . . . , α

(J5)
5 + y

(J5)
5

)

(A.33)

and for the j-th class, the posterior distribution for the non-monitoring part is the marginal

distribution
[

θM̄5

]

, from eq. A.33

[

θ
(j)M̄
5

]

= Beta

(

α
(j)
5 ,

{(
J5∑

i=1

α
(i)
5

)

− α
(j)
5

})

, for j = 1, 2, . . . , J5 (A.34)
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