
Alma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA IN

Elettronica, Informatica e delle Telecomunicazioni

Ciclo XXI

Settore/i scientifico-disciplinare/i di afferenza: ING-INF/05

Security control brought back to the user

Presentata da: Juri Luca De Coi

Coordinatore Dottorato Relatori

Chiar.ma prof. P. Mello Chiar.mo prof. A. Natali

Chiar.mo prof. W. Nejdl

Esame finale anno 2010

ii

Ringraziamenti – Danksagung – Acknowledgments

A joint Ph.D. is a challenge not only for the Ph.D. candidate, who has both the

privilege and the burden to get in touch with different ways of thinking, but also for

people assisting her, who sometimes have to face non-trivial (bureaucratic) problems.

For this reason, I owe my gratitude to

∙ my supervisors Antonio Natali and Wolfgang Nejdl

∙ my further referees Evelina Lamma and Matthew Smith

∙ the Ph.D. student managers Paolo Bassi and Paola Mello

I would also like to thank Daniel Olmedilla (resp. Peter Fankhauser), who led an

inexperienced (resp. not completely inexperienced) Ph.D. student along his way, as

well as the colleagues with whom I shared ideas, visions and work, especially Philipp

Kärger, Arne Wolf Kösling and Sergej Zerr.

Dass in mir der Wunsch überhaupt entstanden ist ins Ausland zu ziehen, ver-

danke ich Julija Samsonova. Einen unentbehrlichen Beitrag zur Erfüllung dieses

Wunsches trug Doris Anita Höhmann. Per l’assistenza nei primi tempi del mio

soggiorno in terra straniera il mio ringraziamento va a Katia Cappelli.

Ein ruhiges Privatleben ist eine notwendige Voraussetzung um eine Promo-

tion durchzuführen. Dafür bin ich vor allem Yuliyana Dimitrova und Anna Schulze

dankbar. Se il significato dell’espressione “vita sociale” ancora mi è noto, lo devo in

gran parte a Carla Conte e Gian Luca Volpato.

Meine analytische Denkweise hat es mir nicht ermöglicht Giorgia Cremonese

zu entschlüsseln, wobei Karen Stöckers synthetische Denkweise deren geistliche Ver-

wandtschaft unverzüglich erkannt hat. Es liegt vielleicht daran, dass ich mich mit

beiden so wohl gefühlt habe. Il mio approccio analitico non mi ha permesso di venire

a capo di Giorgia Cremonese, mentre l’approccio sintetico di Karen Stöcker non ha

esitato a ravvisarne l’affinità spirituale. Sarà per questo che mi sono trovato cos̀ı

bene con ambedue.

iii

A
A

iv

CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

Riassunto . ix

Zusammenfassung . x

Abstract . xi

List of publications . xii

1. Introduction . 1

1.1 The concept of policy . 2

1.2 From uid/psw-based authentication to trust negotiation 6

2. A Review of the State-of-the-art . 8

2.1 Related work . 8

2.2 Considered policy languages . 9

2.3 Comparison criteria . 10

2.3.1 Core policy properties . 11

2.3.2 Contextual properties . 12

2.4 Comparison . 14

2.5 Discussion . 21

3. The Protune Policy Language . 24

3.1 Protune’s conceptual space . 24

3.1.1 The user interface . 26

3.1.2 The communication channel 26

3.1.3 Protune policies . 27

3.1.4 Evaluation strategies . 28

3.2 A gentle introduction to Protune’s syntax 29

3.3 A gentle introduction to Protune’s semantics 34

3.3.1 Provisional atoms . 36

3.3.2 Comparison atoms . 38

3.3.3 Value-assignment atoms . 41

v

3.4 Protune’s syntax . 42

3.4.1 Terms . 42

3.4.2 Atoms . 43

3.4.3 Goals and rules . 44

3.4.4 Metaatoms . 46

3.4.5 Metarules . 47

3.4.6 Policy . 48

3.5 (Toward) Protune’s semantics . 48

3.5.1 Basic definitions . 48

3.5.2 Terms . 49

3.5.3 Atoms . 50

3.5.4 Goals and rules . 51

3.5.5 Metaatoms . 52

3.5.6 Metarules . 52

3.5.7 Policy . 52

3.6 What’s new . 53

4. Using Policies in a Natural Way . 58

4.1 Controlled natural languages . 60

4.1.1 Attempto Controlled English 61

4.1.2 ACE as a natural language . 62

4.1.3 Discourse Representation Structure 63

4.2 Mapping DRS to Protune . 66

4.2.1 Mapping requirements . 67

4.2.2 Mapping . 67

4.3 Usability issues . 72

4.3.1 A predictive authoring tool 73

4.3.2 Editor’s features . 74

4.3.3 Evaluation . 75

4.4 Related work . 79

5. Access Control across Desktops . 81

5.1 The general-purpose strategy . 82

5.1.1 The conceptual framework . 82

5.1.2 A näıve general-purpose strategy 84

vi

5.1.3 The general-purpose strategy revisited 87

5.2 The special-purpose strategy . 89

5.2.1 The Datalog case . 89

5.2.2 The Protune case . 100

5.3 Experimental results . 101

5.4 Related work . 108

6. Access Control in RDF Stores . 110

6.1 Related work . 111

6.2 Policy-based query expansion . 113

6.2.1 RDF queries . 113

6.2.2 Specifying policies over RDF data 116

6.2.3 Policy evaluation and query expansion 119

6.3 Implementation . 129

6.3.1 Architecture . 129

6.3.2 Experiments and evaluation 132

7. Conclusions and Outlook . 135

BIBLIOGRAPHY . 136

Acknowledgments . 145

Lebenslauf . 146

vii

LIST OF TABLES

1.1 Example policies . 4

2.1 Policy language comparison . 22

3.1 Comparisons supported by default . 39

4.1 A standard NLP tool’s processing steps vs. APE’s ones 62

4.2 An example DRS . 64

4.3 A pretty-printed DRS . 66

4.4 DRSs representing Protune rules . 69

4.5 DRS→Protune mapping examples . 70

4.6 Sentences exploited in the user study 76

5.1 Relaxation of condition P1 ∣= p(x⃗)∨̇P2 ∣= p(x⃗) 93

5.2 Relaxation of condition P1 ∣= �BR∨̇P2 ∣= �BR 95

6.1 Policies for RDF statements . 118

6.2 Application of policies to triple patterns 122

6.3 Application of function policyF iltering 127

viii

LIST OF FIGURES

3.1 Example Protune policy . 30

4.1 Example Protune policy . 59

4.2 A predictive authoring tool . 76

5.1 A basic diagram of a generic authorization framework 85

5.2 The diagram of our authorization framework 86

5.3 Algorithm to compute the modified change function 97

5.4 Beagle++ architecture and semantic data sharing 102

5.5 Schema of the database used in our evaluation 103

5.6 Overhead of adding/removing resources 104

5.7 Overhead of adding/removing policies 105

5.8 Optimized vs. non-optimized policy evaluation 106

5.9 Algorithm to find the policy applicable to a given resource 107

6.1 Example RDF query . 115

6.2 Expanded RDF query . 130

6.3 Architecture of AC4RDF . 131

6.4 Response time when increasing the number of literals 134

ix

Riassunto

L’attività di ricerca dell’Ing. Juri Luca De Coi può essere suddivisa in tre parti. La

prima parte ha riguardato l’indagine dello stato dell’arte in policy language ed ha

prodotto i seguenti contributi:

∙ Identificazione dei requisiti di un moderno policy language;

∙ Definizione di un linguaggio che soddisfa tali requisiti (Protune);

∙ Implementazione di un framework per l’attuazione di Protune policy.

La seconda parte si è focalizzata sulla semplificazione del processo di definizione di

policy ed ha prodotto i seguenti contributi:

∙ Identificazione di un sottoinsieme del linguaggio naturale controllato ACE1

adatto ad esprimere Protune policy ;

∙ Implementazione del mapping tra ACE policy e Protune policy ;

∙ Creazione di un editor in grado di guidare gli utenti passo-passo nella definizio-

ne di Protune policy.

La terza parte ha testato la fattibilità dell’approccio scelto mediante l’applicazione

a scenari di concreta rilevanza, tra cui:

∙ Controllo d’accesso basato su policy per metadata store;

∙ Sviluppo di una sovrastruttura di sicurezza per RDF store.

L’attività di ricerca è stata svolta in forte collaborazione con la Leibniz Universität

Hannover e altri partner europei all’interno dei progetti REWERSE2, TENCompe-

tence3 ed OKKAM4.

1http://attempto.ifi.uzh.ch/site/
2http://rewerse.net/
3http://www.tencompetence.org/
4http://www.okkam.org/

x

Zusammenfassung

Die im Laufe der Promotion von Herrn Juri Luca De Coi durchgeführten Forschungs-

arbeiten befassten sich mit dem Gebiet der policy languages und lassen sich in

drei Teile gliedern. Im ersten Teil wurde der Stand der Technik im Bereich policy

languages untersucht und erweitert, mit den folgenden Ergebnissen:

∙ Identifizierung der Anforderungen, die von modernen Policy-Sprachen erfüllt

werden sollten;

∙ Definition der Policy-Sprache Protune, die diese Anforderungen erfüllt;

∙ Implementierung einer Infrastruktur, die Protune Policies interpretiert.

Der zweite Teil der Arbeit fokussierte die Vereinfachung des Definitionsverfahrens

von Protune Policies, mit den folgenden Ergebnissen:

∙ Identifizierung einer zur Formulierung von Protune-Policies geeigneten Un-

termenge der kontrollierten natürlichen Sprache ACE1;

∙ Implementierung einer automatischen Übersetzung von ACE-Policies in Pro-

tune-Policies;

∙ Erweiterung des ACE-Editors für die automatisierte Unterstützung von Be-

nutzern bei der Definition von ACE-Policies.

Im dritten Teil wurde die Anwendung der in den ersten beiden Teilen vorgestellten

Ansätze auf realistische Szenarien untersucht. Dazu zählt

∙ der leistungsfähige und skalierbare Policy-basierte Zugriff auf Metadaten und

∙ die Entwicklung einer Sicherheitebene für RDF-Datenbanken.

Die Forschungen wurden in enger Zusammenarbeit mit der Alma Mater Studiorum

– Università di Bologna als auch mit weiteren europäischen Partnern innerhalb der

Projekte REWERSE2, TENCompetence3 und OKKAM4 durchgeführt.

1http://attempto.ifi.uzh.ch/site/
2http://rewerse.net/
3http://www.tencompetence.org/
4http://www.okkam.org/

xi

Abstract

The activity of the Ph.D. student Juri Luca De Coi involved the research field of

policy languages and can be divided in three parts. The first part of the Ph.D. work

investigated the state of the art in policy languages, ending up with

∙ identifying the requirements up-to-date policy languages have to fulfill

∙ defining a policy language able to fulfill such requirements (namely, the Pro-

tune policy language)

∙ implementing an infrastructure able to enforce policies expressed in the Pro-

tune policy language

The second part of the Ph.D. work focused on simplifying the activity of defining

policies and ended up with

∙ identifying a subset of the controlled natural language ACE1 to express Pro-

tune policies

∙ implementing a mapping between ACE policies and Protune policies

∙ adapting the ACE Editor to guide users step by step when defining ACE

policies

The third part of the Ph.D. work tested the feasibility of the chosen approach by

applying it to meaningful real-world problems, among which

∙ efficient policy-aware access to metadata stores

∙ development of a security layer on top of RDF stores

The research activity has been performed in tight collaboration with European part-

ners within the projects REWERSE2, TENCompetence3 and OKKAM4.

1http://attempto.ifi.uzh.ch/site/
2http://rewerse.net/
3http://www.tencompetence.org/
4http://www.okkam.org/

xii

List of publications

[1] Fabian Abel, Juri Luca De Coi, Nicola Henze, Arne Wolf Koesling, Daniel

Krause, and Daniel Olmedilla. Enabling advanced and context-dependent

access control in RDF stores. In ISWC/ASWC, pages 1–14, 2007.

[2] Fabian Abel, Juri Luca De Coi, Nicola Henze, Arne Wolf Koesling, Daniel

Krause, and Daniel Olmedilla. A user interface to define and adjust policies

for dynamic user models. In WEBIST, pages 184–191, 2009.

[3] Piero A. Bonatti, Juri Luca De Coi, Daniel Olmedilla, and Luigi Sauro. A

rule-based trust negotiation system. Accepted for TDKE.

[4] Piero A. Bonatti, Juri Luca De Coi, Daniel Olmedilla, and Luigi Sauro.

Policy-driven negotiations and explanations: Exploiting logic-programming for

trust management, privacy & security. In ICLP, pages 779–784, 2008.

[5] Piero A. Bonatti, Juri Luca De Coi, Daniel Olmedilla, and Luigi Sauro.

Rule-based policy representations and reasoning. In REWERSE, pages

201–232. 2009.

[6] Juri Luca De Coi, Peter Fankhauser, Tobias Kuhn, Wolfgang Nejdl, and

Daniel Olmedilla. Controlled natural language policies. In CCS, 2009.

[7] Juri Luca De Coi, Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn.

Controlled English for reasoning on the Semantic Web. In REWERSE, pages

276–308. 2009.

[8] Juri Luca De Coi, Eelco Herder, Arne Kösling, Christoph Lofi, Daniel

Olmedilla, Odysseas Papapetrou, and Wolf Siberski. A model for competence

gap analysis. In WEBIST, 2007.

[9] Juri Luca De Coi, Philipp Kärger, Arne Wolf Koesling, and Daniel Olmedilla.

Exploiting policies in an open infrastructure for lifelong learning. In EC-TEL,

pages 26–40, 2007.

xiii

[10] Juri Luca De Coi, Philipp Kärger, Arne Wolf Koesling, and Daniel Olmedilla.

Control your eLearning environment: Exploiting policies in an open

infrastructure for lifelong learning. TLT, 1(1):88–102, 2008.

[11] Juri Luca De Coi, Philipp Kärger, Daniel Olmedilla, and Sergej Zerr.

Semantic Web policies for security, trust management and privacy in social

networks. In ICAIL, pages 112–119, 2009.

[12] Juri Luca De Coi, Philipp Kärger, Daniel Olmedilla, and Sergej Zerr. Using

natural language policies for privacy control in social platforms. In SPOT,

pages 112–119, 2009.

[13] Juri Luca De Coi and Daniel Olmedilla. A flexible policy-driven trust

negotiation model. In IAT, pages 450–453, 2007.

[14] Juri Luca De Coi and Daniel Olmedilla. A review of trust management,

security and privacy policy languages. In SECRYPT, pages 483–490, 2008.

[15] Juri Luca De Coi, Daniel Olmedilla, Piero A. Bonatti, and Luigi Sauro.

Protune: A framework for Semantic Web policies. In International Semantic

Web Conference (Posters & Demos), 2008.

[16] Juri Luca De Coi, Daniel Olmedilla, Sergej Zerr, Piero A. Bonatti, and Luigi

Sauro. A trust management package for policy-driven protection &

personalization of web content. In POLICY, pages 228–230, 2008.

[17] Ekaterini Ioannou, Juri Luca De Coi, Arne Wolf Koesling, Daniel Olmedilla,

and Wolfgang Nejdl. Access control for sharing Semantic Data across

desktops. In PEAS, 2007.

[18] Arne Wolf Koesling, Eelco Herder, Juri Luca De Coi, and Fabian Abel.

Making legacy LMS adaptable using policy and policy templates. In LWA,

pages 35–40, 2008.

[19] Piero A. Bonatti, Juri Luca De Coi, Wolfgang Nejdl, Daniel Olmedilla, Luigi

Sauro, and Sergej Zerr. Policy based protection and personalized generation

of web content. In LA-WEB, 2009.

xiv

CHAPTER 1

Introduction

Security management is a foremost issue in large-scale networks like the World

Wide Web. In such a scenario, traditional assumptions for establishing and enforc-

ing access-control regulations do not hold anymore. In particular, identity-based

access-control mechanisms have proved to be ineffective, since in decentralized and

multicentric environments the requester and the service provider are often unknown

to each other.

Policies are a well-known approach to protecting security and privacy of users

in the context of the Semantic Web: policies specify who is allowed to perform

which action on which resource depending on properties of the requester and of the

resource as well as parameters of the action and environmental factors (e.g., time).

In the last years many languages have been proposed which allow to express policies

in a formal way (policy languages). Some of them came together with software

components (policy engines) able to enforce policies written in the corresponding

policy language.

The potential policies have proved to own is not fully exploited yet, since

nowadays their usage is mainly restricted to specific application areas and the policy

languages proposed so far can be expected to be used only by security experts or

other computer scientists: common users cannot profit from them, since almost no

policy framework offers facilities or tools to meet the needs of users without a strong

background in computer science.

Being usability a major issue in moving toward a policy-aware Web, this work

tackles it by providing the following contributions.

1. The first complete description of the semantics of the policy language Pro-

tune [19, 67] is provided

2. An extension of the Protune language toward the Semantic Web vision is

presented: a Protune program is not self-contained anymore but points to

1

2

resources available on the Semantic Web which are automatically identified,

located, deployed and finally exploited at policy evaluation time

3. The natural language front-end for the Protune policy framework is de-

scribed

4. A description how the Protune engine can be used in order to create a

security level on top of metadata stores and RDF repositories is provided.

Such use cases have been addressed in order to test feasibility, efficacy and

efficiency of the Protune engine w.r.t. real-world scenarios

This Ph.D. thesis is organized as follows. Chapter 1 presents an overall picture of the

research field: in particular, Section 1.1 introduces the concept of policy, whereas

Section 1.2 outlines the historical evolution of policy languages. Chapter 2 presents

the state-of-the-art in policy languages. Chapter 3 describes syntax and semantics

of the last version of the Protune language and especially focuses on its differences

and improvements w.r.t. the previous version. Chapter 4 presents Protune’s ACE

front-end which allows to define Protune policies in natural language. Chapters 5

and 6 describe applications of the Protune engine to real-world scenarios, namely

how it can be used in order to create a security level on top of metadata stores and

RDF repositories respectively. Finally, Chapter 7 presents open issues and further

work, and concludes.

1.1 The concept of policy

According to [77]’s well-known definition, policies are “rules governing the

choices in the behavior of a system”, i.e., statements which describe which decision

the system must take or which actions it must perform according to specific circum-

stances. Policy languages are special-purpose programming languages which allow

to specify policies, whereas policy engines are software components able to enforce

policies expressed in some policy language.

Policies are encountered in many situations of our daily life: the following

example is an extract of a return policy of an on-line shop1.

1http://www.fancydressking.co.uk/returns-policy/info_5.html

3

Any item for return must be received back in its original shipped con-

dition and original packing. The item must be without damage or use

and in a suitable condition for resale. All original packaging should ac-

company any returned item. We cannot accept returns for exchange or

refund if such items have been opened from a sealed package.

With the digital era, the specification of policies has emerged in many Web-related

contexts and software systems. E-mail client filters like the following one are a

typical example of policy.

If the header of an incoming message contains a field X-Spam-Flag whose

value is YES then move the message into the folder INBOX.Spam. More-

over, if this rule matches, do not check any other one.

Some of the main application areas where policies have been lately used are security

and privacy as well as specific business domains, where they take on the name of

“business rules” (but cf. [62, 63, 80] for other application areas).

A security policy defines security restrictions for a system, organization or

any other entity. It may define which resources a system should regard as security

relevant, in which way the resources should be protected and how the system should

proceed, if access to those resources is requested by a third party. A privacy policy

is a declaration made by an organization regarding its use of customers’ personal

information (e.g., whether third parties may have access to customer data and how

that data will be used). Finally, business rules describe the operations, definitions

and constraints that apply to an organization in achieving its goals. Tab. 1.1 presents

excerpts of a security policy2, a privacy policy3 and a business rule4 (in the business

domain of a tax collection agency).

The use of formal policies yields many advantages compared to other ap-

proaches: formal policies are usually dynamic, declarative, have a well-defined se-

mantics and allow to be reasoned over. In the following, all above-mentioned prop-

erties will be thoroughly described.

2http://www.sans.org/resources/policies/DMZ_Lab_Security_Policy.doc
3http://www.siteprocentral.com/contracts/privacy_policy_sample.html
4http://law.onecle.com/texas/tax/11.145.00.html

4

1. Original firewall configurations and any changes thereto
must be reviewed and approved by InfoSec (including both
general configurations and rule sets). InfoSec may require
additional security measures as needed.

2. Our site users can choose to electronically forward a link,
page, or documents to someone else by clicking “e-mail
this to a friend”. The user must provide their email
address, as well as that of the recipient. This information
is used only in the case of transmission errors and, of
course, to let the recipient know who sent the email. The
information is not used for any other purpose.

3. A person is entitled to an exemption from taxation of the
tangible personal property the person owns that is held or
used for the production of income if that property has a
taxable value of less than $500.

Table 1.1: Example policies: (1) a security policy; (2) a privacy policy;
(3) a business rule

Dynamicity If the description of the behavior of an agent or other software com-

ponent is built in the component itself, whenever the need for a different behavior

arises, new code for that behavior must be written, compiled and deployed. A more

reusable design choice provides the component with the ability of adapting itself ac-

cording to some dynamically configurable description of the desired behavior (i.e.,

a policy). This way, as soon as the need for a different behavior arises, only the

policy and not the whole component must be replaced.

Declarativeness The traditional (imperative) programming paradigm requires

programmers to explicitly specify an algorithm to achieve a goal. On the other hand,

the declarative approach simply requires programmers to specify the goal, whereas

the implementation of the algorithm is left to the support engine. This difference

is commonly expressed by resorting to the sentence “declarative programs specify

what to do, whereas imperative programs specify how to do it”. For this reason,

declarative languages are commonly considered a step closer to the final user than

imperative ones. Policy languages are typically declarative and policies are typically

declarative statements: as such, common users should be able to define them in an

easier way.

5

Well-defined semantics A language’s semantics is well-defined if the meaning of

a program written in that language is independent of the particular implementation

of the language interpreter. Programs written in a language provided with well-

defined semantics can be easily exchanged among different parties since each party

understands them in the same way. Policy languages are usually based on some

mathematical formalism (like Logic Programming [64] or Description Logic [9]),

which ensures policies expressed in such languages to have a well-defined semantics.

Formal policies have hence advantages over policies expressed by means of natural

language sentences, which tend to be ambiguous and lend themselves to different

interpretations.

Reasoning The term “reasoning” refers to the possibility of combining known

information in order to infer new one, like in the following example.

If it is known that “all humans are mortal” and that “Socrates is human”

one can infer that “Socrates is mortal”.

On the one hand it is true that the sentence “Socrates is mortal” is different than

the ones preceding it, but on the other one it is clear that, according to the common

sense, one can deduce (i.e., infer) the third sentence out of the first two. The

inferred information is referred to as implicit knowledge, since it was not explicitly

available before. In the context of declarative programs (and in particular of policy

languages), statements a program consists of can be reasoned over in order to infer

new statements. For instance, reasoning applied to the third policy in Tab. 1.1

allows to infer that, if

∙ John is a person

∙ John owns a car

∙ the car is a tangible personal property

∙ John uses the car in his daily work (and therefore he uses it for the production

of income) and

∙ the car has a taxable value of less than $500

6

then John is entitled to an exemption from taxation of the car.

1.2 From uid/psw-based authentication to trust negotiation

Traditional access-control mechanisms (like the ones exploited in usual oper-

ating systems) make authorization decisions based on the identity of the requester:

the user must provide a pair (username, password) and, if this pair matches any of

the entries in some static table kept by the system (e.g., the file /etc/pwd in Unix),

the user is granted with some privileges. However, in decentralized and multicentric

environments, peers are often unknown to each other and access control based on

identities may be ineffective.

In order to address this scenario, role-based access-control mechanisms have

been developed. In a role-based access-control system every user is assigned with

one or more roles which are in turn exploited in order to take authorization deci-

sions. Since the number of roles is typically much smaller than the number of users,

role-based access-control systems reduce the number of access-control decisions. A

thorough description of role-based access control can be found in [46].

In a role-based access-control system the authorization process is split in two

steps, namely assignment of one or more roles and check whether a member of the

assigned role(s) is allowed to perform the requested action. Role-based languages

usually provide support only to one of the two steps, moreover role-based authen-

tication mechanisms require that the requester provides some information in order

to map her to some role(s). In the easiest case this information can be once again

a (uid, pwd) pair, but systems which need a stronger authentication usually exploit

credentials, i.e., digital certificates representing statements certified by given entities

(certification authorities) which can be used in order to establish properties of their

holder.

More modern approaches (cf. Chapter 2) directly exploit the properties of

the requester in order to make authorization decisions, i.e., they do not split the

authorization process in two steps like role-based languages. Nevertheless, they do

not use credentials in order to certificate the properties of the requester.

Credentials, as well as declarations (i.e., non-signed statements about proper-

7

ties of the holder), are however building blocks of languages designed to support the

trust negotiation [60] vision: trust between peers is established by exchanging sets

of credentials between them in a negotiation which may consist of several steps.

CHAPTER 2

A Review of the State-of-the-art in Policy Languages

In the last years many policy languages have been proposed, targeting different

application scenarios and provided with different features and expressiveness: goal

of this chapter is to compare most of such languages in order to outline the features

an up-to-date policy language should provide. Such features have been used as a

guideline when defining the Protune policy language we will describe in Section 3.

Comparisons among policy languages have been already provided in the lit-

erature. However existing comparisons either do not consider a relevant number

of available solutions or mainly focused on the application scenarios their authors

worked with (e.g., trust negotiation in [75] or ontology-based systems in [81]). More-

over, policy-based security management is a rapidly evolving field and most of this

comparison work is now out-of-date.

Currently, a broad and up-to-date overview covering most of the relevant avail-

able policy languages is lacking. In this chapter we intend to fill this gap by providing

an extensive comparison covering eleven policy languages. Such a comparison will

be carried out on the strength of ten criteria, partly already known in the literature

and partly introduced in our work for the first time.

This chapter is organized as follows. In Section 2.1, related work is accounted

for. Sections 2.2 and 2.3 introduce the languages which will be compared and the

criteria according to which the comparison will be carried out respectively. The

actual comparison takes place in Section 2.4, whereas Section 2.5 presents overall

results and draws some conclusions.

2.1 Related work

The paper of Seamons et al. [75] is the basis of our work: some of the insights

they provided have proved to be still valuable right now and as such they are recalled

in our work as well. Nevertheless, in over seven years the research field has consid-

erably changed and nowadays many aspects of [75] are out of date: new languages

8

9

have been developed and new design paradigms have been taken into account, what

makes the comparison performed in [75] obsolete and many criteria according to

which they were evaluated not suitable anymore.

The pioneer paper of Seamons et al. paved the way to further research on pol-

icy language comparisons like Tonti et al. [81], Anderson [7] and Duma et al. [38]. Al-

though [81] actually presents a comparison of two ontology-based languages (namely,

KAoS and Rei) with the Object-oriented language Ponder, the work is rather an

argument for ontology-based systems, since it clearly shows the advantages of on-

tologies.

Because of the impressive amount of details it provides, [7] restricts the com-

parison to only two (privacy) policy languages, namely EPAL and XACML, therefore

a comprehensive overview of the research field is not provided, and features which

neither EPAL nor XACML support are not taken into account at all among the

comparison criteria.

Finally, [38] provides a comparison specifically targeted to giving insights

and suggestions to policy authors (designers). Therefore, the criteria according to

which the comparison is carried out are mainly practical ones and scenario-oriented,

whereas more abstract issues are considered out of scope and hence not addressed.

2.2 Considered policy languages

To date, a bunch of policy languages have been developed and are currently

available: we have chosen those which at present seem to be the most popular

ones, namely Cassandra [13], EPAL [8, 10], KAoS [82, 83], PeerTrust [42], Pon-

der [35], PSPL [21], Rei [48], RT [61], TPL [46], WSPL [6] and XACML [65, 43].

The information we will provide about the aforementioned languages is based on

the referenced documents. Whenever a feature is not addressed in the considered

literature nor is it known to the author in other way, that feature will be supposed

not to be provided by the language.

The number and variety of policy languages proposed so far is justified by the

different requirements they had to accomplish and the different use cases they were

designed to support. Ponder is meant to help local security policy specification and

10

security management activities, therefore typical addressed application scenarios in-

clude registration of users or logging and audit events, whereas firewalls, operating

systems and databases belong to the applications targeted by the language. WSPL’s

name itself (namely, Web Services Policy Language) suggests its goal: supporting

the description and control of various aspects and features of a Web Service. Web

Services are addressed by KAoS too, as well as general-purpose grid computing,

although it was originally oriented to software agent applications where dynamic

runtime policy changes need to be supported. Rei’s design was primarily concerned

with support to pervasive computing applications in which people and devices are

mobile and use wireless networking technologies to discover and access services and

devices. EPAL (Enterprise Privacy Authorization Language) was proposed by IBM

to support enterprise privacy policies. Some years before, IBM had already intro-

duced the pioneer role-based policy language TPL (Trust Policy Language), which

paved the way to other role-assignment policy languages like Cassandra and RT

(Role-based Trust-management framework), both of which aim to address access-

control and authorization problems which arise in large-scale decentralized systems

when independent organizations enter into coalitions whose membership and very

existence change rapidly. The main goal of PSPL (Portfolio and Service Protection

Language) was to provide a uniform formal framework for regulating service access

and information disclosure in an open, distributed network system like the Web;

support to negotiations and private policies were among the basic reasons which

led to its definition. PeerTrust is a simple yet powerful language for trust ne-

gotiation on the Semantic Web based on a distributed request evaluation. Finally,

XACML (eXtensible Access-Control Markup Language) was meant to be a standard

general-purpose access-control policy language, ideally suitable to the needs of most

authorization systems.

2.3 Comparison criteria

We acknowledge the remark made by [38], according to which a comparison

among policy languages on the basis of the criteria presented in [75] is only par-

tially satisfactory for a designer, since general features do not help in understanding

11

which kind of policies can be practically expressed with the constructs available in a

language. Therefore, in our comparison we selected a good deal of criteria having a

concrete relevance (e.g., whether actions can be defined within a policy and executed

during its evaluation, how the result of a request looks like, whether the language

provides extensibility mechanisms and to which extent). On the other hand, since

we did not want to come short on theoretical issues, we selected four additional cri-

teria, basically taken from [75], and somehow reworked and updated them. We call

these more theoretical criteria core policy properties, whereas more practical issues

have been grouped under the label contextual properties.

2.3.1 Core policy properties

Well-defined semantics As we already mentioned in Section 1.1, we consider a

policy language’s semantics to be well-defined if the meaning of a policy written in

that language is independent of the particular implementation of the language. Logic

Programs and Description Logic knowledge bases have a mathematically defined

semantics, therefore we assume policy languages based on either of the formalisms

to have well-defined semantics.

Monotonicity In the sense of logic, a system is monotonic if the set of conclusions

which can be drawn from the current knowledge base does not decrease by adding

new information to the knowledge base. In the sense of [75], a policy language is

considered to be monotonic if an accomplished request would also be accomplished

if accompanied by additional disclosure of information by the actors involved in the

transaction: in other words, disclosure of additional evidences and policies should

result in granting additional privileges. Policy languages may be non-monotonic in

the sense of logic (as it happens with Logic Programming-based languages) but still

be monotonic in the sense of [75].

Condition expressiveness A policy language must allow to specify under which

conditions the request of the user (e.g., to perform an action or to disclose a creden-

tial) should be accomplished. Policy languages differ in the expressiveness of such

conditions: some of them allow to set constraints on properties of the requester

12

but not on parameters of the requested action. Moreover, constraints on environ-

mental factors (e.g., time) are not always supported. Cassandra’s expressiveness

can be even tuned by varying the constraint domain it is equipped with. This cri-

terion subsumes “credential combinations”, “constraints on attribute values” and

“inter-credential constraints” in [75].

Underlying formalism A good deal of policy languages base on some well-known

formalism: PSPL bases on Logic Programming, whereas Cassandra, Peer-Trust and

RT on a subset of it (namely, Constrained Datalog) and KAoS on Description Logic.

Knowledge about the formalism a language bases upon can be useful in order to un-

derstand some features of the language itself: e.g., the fact that a language is based

on Logic Programming with negation (as failure) entails consequences regarding the

monotonicity of the language (in the sense of logic), whereas knowing that Descrip-

tion Logic knowledge bases may contain contradictory statements could induce to

infer that Description Logic-based languages needs to deal with such contradictions.

2.3.2 Contextual properties

Action execution During the evaluation of a policy, some actions may have to

be performed: one may want to retrieve the current system time (e.g., in case au-

thorization should be allowed only in a specific time frame), to send a query to a

database or to record some information in a log file. Cassandra, equipped with a

suitable constraint domain, allows to specify side-effect free actions, whereas Ponder

and XACML support particular kinds of actions. It is worth noticing that this crite-

rion evaluates whether a language enables the policy author to specify actions within

a policy: during the evaluation of a policy the engine may carry out non-trivial ac-

tions on its own (e.g., both RT and TPL engines provide automatic resolution of

credential chains) but such actions are not considered in our investigation.

Delegation Delegation is often used in access-control systems to cater for tempo-

rary transfer of access rights to agents acting on behalf of other ones (e.g., passing

write rights to a printer spooler in order to print a file). The right of delegating is a

right as well and as such can be delegated, too. Some languages provide a means for

13

cascaded delegations up to a certain length, whereas others allow unbounded del-

egation chains. In order to support delegation, many languages provide a specific

built-in construct, whereas others exploit finer-grained features of the language in

order to simulate high-level constructs. The latter approach allows to support more

flexible delegation policies and is hence better suited for expressing the subtle but

significant semantic differences which appear in real-world applications.

Evidences During the evaluation of authentication policies, the requester might

have to provide credentials (cf. Section 1.2), i.e., digital certificates representing

statements certified by given entities (certification authorities) which can be used

in order to establish properties of their holder. Credentials are not supported by

languages not targeting authentication policies (e.g., Ponder) nor by e.g., EPAL or

KAoS. PeerTrust and PSPL provide another kind of evidence, namely declara-

tions which are non-signed statements about properties of the holder (e.g., credit-

card numbers).

Negotiation support [6] adopts a broad notion of “negotiation”. A negotiation

is supposed to happen between two actors whenever: (i) both actors are enabled

to define a policy; and (ii) both policies are taken into account when processing a

request. According to this definition, WSPL supports negotiations as well. In this

work we adopt a narrower definition of negotiation by adding a third prerequisite

stating that: (iii) the evaluation of the request must be distributed, i.e., both actors

must evaluate the request locally and either decide to terminate the negotiation or

send a partial result to the other actor who will go on with the evaluation. Whether

the evaluation is local or distributed may be considered an implementation issue

as long as policies can be freely disclosed. Distributed evaluation is required under

a conceptual point of view as soon as the need for keeping policies private arises:

indeed, if policies were not private, simply merging the actors’ policies would reveal

possible compatibilities between them.

Policy engine decision The result of the evaluation of a policy must be notified

to the requester. The result sent back by the policy engine may carry information

14

to different extents: in the easiest case a boolean answer may be sent (allowed vs.

denied). Some languages (e.g., EPAL, WSPL and XACML) support error messages,

whereas Cassandra returns a set of constraints which is a subset of the one in the

requester’s query.

Extensibility Since experience shows that each system needs to be updated and

extended with new features, a good programming practice requires to keep things

as general as possible in order to support future extensions. Almost every language

provides some support to extensibility. RT may be regarded as an exception since,

as pointed out by [13], the need for more advanced features was handled by releasing

a new flavor of the language (available RT flavors can be obtained by combining

RT0 and RT1 on the one hand with RT T and/or RTD on the other one). In the

following we provide a description of the mechanisms languages adopt in order to

support extensibility.

2.4 Comparison

In this section the considered policy languages will be compared according

to the criteria outlined in Section 2.3. The overall result of the comparison is

summarized in Tab. 2.4.

Well-defined semantics As mentioned in Section 2.3.1, a policy language’s se-

mantics is well-defined if the meaning of a policy written in that language is indepen-

dent of the particular implementation of the language. We assume policy languages

based on Logic Programming or Description Logic to have well-defined semantics.

The formalisms underlying the considered policy languages will be accounted for in

the following. So far we restrict ourselves to listing the languages provided with a

well-defined semantics, namely, Cassandra, EPAL, KAoS, PeerTrust, PSPL, Rei

and RT .

Monotonicity In the sense of [75], a policy language is considered to be monotonic

if disclosure of additional evidences and policies only results in granting additional

privileges. Therefore, the concept of “monotonicity” does not apply to languages

15

which do not provide support for evidences, namely EPAL, Ponder, WSPL and

XACML. All other languages are monotonic, with the exception of TPL, which

explicitly supports negative certificates, stating that a user can be assigned a role

R if there exists no credential of some type claiming something about her. The

authors of TPL acknowledge that it is almost impossible proving that there does

not exist such a credential somewhere. Therefore, they interpret their statement in

a restrictive way, i.e., they assume that such a credential does not exist if it is not

present in the local repository. Despite this restrictive definition, the language is

still non-monotonic since, as soon as such a credential is released and stored in the

local repository, consequences which could be drawn previously cannot be drawn

anymore.

Condition expressiveness A role-based policy language maps requesters to roles.

The assigned role is afterwards exploited in order (not) to authorize the requester

to execute some action. The mapping to a role might in principle be performed ac-

cording to the identity or other properties of the requester (to be stated by some evi-

dence) and possibly environmental factors (e.g., current time). Cassandra, equipped

with a suitable constraint domain, supports both scenarios.

Environmental factors are not taken into account by TPL, where the map-

ping to a role is only performed according to the properties of the requester. Such

properties can be combined by using boolean operators, moreover a set of built-in

operators (e.g., >, =) is provided in order to set constraints on their values.

Environmental factors are not taken into account by RT0 either, where role

membership is identity-based, meaning that a role must explicitly list its members.

Nevertheless, since: (i) roles are allowed to express sets of entities having a certain

property; and (ii) conjunctions and disjunctions can be applied to existing roles in

order to create new ones; then role membership is eventually based on properties of

the requester. RT1 goes a step beyond and, by adding the notion of parametrized

role, allows to set constraints not only on properties of the requester but also on the

ones of the resource on which the requested action should be performed. This feature

makes the second step traditional role-based policy languages consist of unnecessary.

16

For this reason, RT1, as well as the other RT flavors basing on it, may be considered

to lay on the border between role-based and non role-based policy languages.

A non role-based policy language does not split the authentication process

in two different steps but directly provides an answer to the question whether the

requester should be allowed to execute some action. In this case, the authorization

decision can in principle be made not only according to properties of the requester

or the environment, but also according to the ones of the resource on which the

action would be performed as well as parameters of the action itself. EPAL intro-

duces the further notion of “purpose” for which a request was issued and allows

to set conditions on it. Some non role-based languages make a distinction between

conditions which must be fulfilled in order for the request to be at all taken into

consideration (which we call prerequisites, according to the terminology introduced

by [21]) and conditions which must be fulfilled in order for the request to be satisfied

(requisites, according to [21]): not always both kinds of conditions have the same

expressiveness.

Let start checking whether and to which extent the non role-based policy lan-

guages we consider support prerequisites: WSPL and XACML only support a simple

set of criteria to determine a policy’s applicability to a request, whereas Ponder pro-

vides a complete solution which allows to set prerequisites involving properties of

requester, resource, environment and parameters of the action. Prerequisites can

be set in EPAL and PSPL as well: the expressiveness of PSPL prerequisites is the

same as the one of its requisites, which we will discuss later.

With the exception of Ponder, which allows to set restrictions on environmental

properties only for delegation policies, each other language supports requisites (Rei

is even redundant in this respect): KAoS allows to set constraints on properties

of the requester and the environment, Rei also on action parameters and PSPL,

WSPL and XACML also on properties of the resource. EPAL supports conditions

on the purpose for which a request was issued but not on environmental properties.

Attributes must be typed in EPAL, WSPL, XACML and typing can be considered

a constraint on the values the attribute can assume, anyway the definition of the

semantics of such attributes is outside WSPL’s scope. Finally, in PeerTrust

17

conditions can be expressed by setting guards on policies: each policy consists of a

guard and a body, the body is not evaluated until the guard is satisfied.

Underlying formalism The most part of languages provided with a well-defined

semantics rely on some kind of Logic Programming or Description Logic. Logic

Programming is the semantic foundation of PSPL, whereas a subset of it, namely

Constraint Datalog, is the basis for Cassandra, PeerTrust and RT . KAoS relies

on Description Logic, whereas Rei combines features of Description Logic (ontolo-

gies are used in order to define domain classes and properties associated with the

classes), Logic Programming (Rei policies are actually particular Logic Programs)

and Deontic Logic (in order to express concepts like rights, prohibitions, obligations

and dispensations). EPAL exploits Predicate Logic without quantifiers. Finally,

no formalisms underly Ponder (which only bases on the Object-oriented paradigm),

TPL, WSPL and XACML.

Action execution Ponder allows to access system properties (e.g., time) from

within a policy. Moreover, it supports obligation policies, asserting which actions

should be executed if some event happens: examples of such actions are printing a

file, tracking some data in a log file and enabling/disabling user accounts. XACML

allows to specify actions within a policy: these actions are collected during the policy

evaluation and executed before sending a response back to the requester. A similar

mechanism is provided by EPAL and of course by WSPL, which is indeed a specific

profile of XACML. The only actions the policy author can specify in PeerTrust

and PSPL are related to the sending of evidences. Cassandra (equipped with a

suitable constraint domain) allows to call side-effect free functions (e.g., to access

the current time). It is worth noticing that languages which allow to specify actions

within policies can to some extent simulate obligation policies, as long as the trig-

gering event is the reception of a request, although in such languages the flexibility

provided by Ponder is not met. Finally, KAoS, Rei, RT and TPL do not support

the execution of actions.

18

Delegation Ponder defines a specific kind of policies in order to deal with delega-

tion: the field valid allows positive delegation policies to specify constraints (e.g.,

time restrictions) to limit the validity of the delegated access rights. Rei allows to

define not only policies delegating rights but also policies delegating the right to del-

egate (some other right). Delegation is supported by RTD (“D” stands indeed for

“delegation”): being RT a role-based language, the right which can be delegated is

the one of activating a role, i.e., the possibility of acting as a member of such a role.

Ponder delegation chains have length 1, whereas RT delegation chains always have

unbounded length. Cassandra provides a more flexible mechanism which allows to

explicitly set the desired length of a delegation chain (as well as other properties

of the delegation): in order to obtain such a flexibility, Cassandra does not pro-

vide high-level constructs to deal with delegation but simulates them by exploiting

finer-grained features of the language. Delegation (of authority) can be expressed

in PeerTrust by exploiting the operator @. Finally, EPAL, KAoS, PSPL, TPL,

WSPL and XACML do not support delegation.

Type of evaluation The most part of the considered languages require that all

policies to be evaluated are collected in some place before starting the evaluation,

which is hence performed locally: this is the way EPAL, KAoS, Ponder, RT and

TPL work. Cassandra, Rei, WSPL and XACML perform policy evaluation locally,

nevertheless they provide some facility in order to collect policies or policy fragments

which are spread across the network. For instance, in XACML combining algorithms

define how to collect results of the evaluation of multiple policies and derive a single

result, whereas Cassandra allows policies to refer to policies of other entities, so that

policy evaluation may trigger requests for remote policies (possibly the requester’s

one) over the network. Policies can be collected in a single place if they can be freely

disclosed, therefore the languages mentioned so far do not address the possibility

that policies may have to be kept private themselves. Protection of sensitive policies

can be granted only by providing support to distributed policy evaluation, like the

one carried out by PeerTrust or PSPL.

19

Evidences The result of a policy’s evaluation may depend on the identities or

other properties of the actor who requested its evaluation: a means needs hence

to be provided in order for the actors involved in the transaction to communicate

such properties to each other. Such information is usually provided in the form

of digital certificates signed by trusted entities (certification authorities) and called

credentials. Credentials are a key element in Cassandra, RT and TPL, whereas

they are unnecessary in Ponder, whose policies are concerned with limiting the

activity of users who have already been successfully authenticated. The authors of

PSPL were the first ones advocating for the need of non-signed statements (e.g.,

credit card numbers), which they called declarations. Declarations are supported

by PeerTrust as well. Finally, EPAL, KAoS, Rei, WSPL and XACML do not

support evidences.

Negotiation support As stated in Section 2.3.2, we use a narrower definition

of negotiation than the one provided in [6], into which WSPL does not fit. There-

fore, only pretty few languages support negotiation in the sense we specified above,

namely Cassandra, PeerTrust and PSPL.

Policy engine decision The evaluation of a policy should end up with a result

to be sent back to the requester. In the easiest case such result is a boolean stating

whether the request was (not) fulfilled: KAoS, PeerTrust, Ponder, PSPL, RT and

TPL conform to this pattern. Beside permit and deny, WSPL and XACML provide

two other result values to cater for particular situations: not applicable is returned

whenever no applicable policies or rules could be found, whereas indeterminate

accounts for some error which occurred during the processing. In the latter case,

optional information is made available to explain the error.

A boolean value, stating whether the request was (not) fulfilled, does not

make sense in the case of an obligation policy, which simply describes the actions

which must be executed as soon as an event (e.g., the reception of a request) hap-

pens. Therefore, beside the so-called rulings allow and deny, EPAL defines a third

value (don’t care) to be returned by obligation policies. One of the elements an

EPAL policy consists of is a global condition which is checked at the very begin-

20

ning of the policy evaluation: not fulfilling such a condition is considered an error

and a corresponding error message (policy error) is returned. A further message

(scope error) is returned in case no applicable policies were found.

Cassandra’s request format contains (among other things) a set of constraints

c belonging to some constraint domain: the response consists of a subset c′ of c

which satisfies the policy. In case c′ = c (resp. c′ = ∅) true (resp. false) is

returned. Rei obligation policies enable the requester to decide whether to complete

the obligation by comparing the effects of meeting the obligation (MetEffects) and

the effects of not meeting it (NotMetEffects).

Extensibility Extensibility is a fuzzy concept: almost all languages provide some

extension points to let the user adapt it to her specific needs. Nevertheless, the

extension mechanisms greatly vary from language to language: here we briefly sum-

marize the means the various languages provide in order to address extensibility.

Extensibility is described as one of the criteria taken into account when de-

signing Ponder: in order to smoothly provide support to new types of policies which

may arise in the future, inheritance was considered a suitable solution and Ponder

was hence implemented as an Object-oriented language.

XACML’s support to extensibility is two-fold: (i) on the one hand, new

datatypes, as well as functions for dealing with them, may be defined in addition to

the built-in ones. Datatypes and functions must be specified in XACML requests,

which indeed consist of typed attributes associated with the requester, the resource

acted upon, the action being performed and the environment; (ii) as we mentioned

above, XACML policies can consist of any number of distributed rules. XACML

already provides a number of combining algorithms which define how to collect re-

sults of the evaluation of multiple policies and derive a single result. Nevertheless,

a standard extension mechanism is available to define new algorithms.

Using non-standard user-defined datatypes would lead to wasting one of the

strong points of WSPL, namely the standard algorithm for merging two policies into

a single one which subsumes both of them (assuming that such a policy exists), since

there can be no standard algorithm for merging policies which exploit user-defined

21

attributes (except in case the only comparison operators supported are = and ∕=).

The use of non-standard algorithms would in turn mean that WSPL policies could

not be supported by a standard policy engine. Being standardization the main

goal of WSPL, no wonder that it comes short on the topic “extensibility”, which is

not necessarily a drawback, if the assertion of [6] holds: “most Web Services will

probably use fairly simple policies in their service definitions”.

Ontologies are the means to cater for extensibility in KAoS and Rei: the use of

ontologies facilitates a dynamic adaptation of the policy framework by specifying the

ontology of a given environment and linking it with the generic framework ontology.

Both KAoS and Rei define basic built-in ontologies, which are supposed to be further

extended for a given application.

Extensibility was the main issue taken into account in the design of Cassandra.

Its authors realized that standard policy idioms (e.g., role hierarchy or role delega-

tion) occur in real-world policies in many subtle variants. Instead of embedding such

variants in an ad hoc way, they decided to define a policy language able to express

this variety of features smoothly. In order to achieve this goal, the key element is

the notion of constraint domain, an independent module which is plugged into the

policy engine in order to adjust the expressiveness of the language. The advantage

of this approach is that the expressiveness (and hence the computational complex-

ity) of the language can be chosen depending on the requirements of the application

and can be easily changed without having to change the language semantics.

Finally, PeerTrust, PSPL, RT and TPL do not provide extension mecha-

nisms.

2.5 Discussion

By carrying out the task of comparing a considerable amount of policy lan-

guages, we came to believe that they can be classified in two main groups collecting,

so to say, standard-oriented and research-oriented languages respectively.

EPAL, WSPL and XACML can be considered standard-oriented languages

since they provide a well-supported but restricted set of features. Although it is

likely that this set will be extended as long as the standardization process proceeds,

22

C
a
ss

a
n

d
r
a

E
P

A
L

K
A

o
S

P
e
e
r
T

r
u

st
P

o
n

d
e
r

P
S

P
L

R
e
i

R
T

T
P

L
W

S
P

L
X

A
C

M
L

W
e
ll

-d
e
fi

n
e
d

se
m

a
n
ti

c
s

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

N
o

N
o

N
o

M
o
n

o
to

n
ic

it
y

Y
es

–
Y

es
Y

es
–

Y
es

Y
es

Y
es

N
o

–
–

U
n

d
e
r
ly

in
g

fo
r
m

a
li

sm
C

o
n

st
ra

in
t

D
a
ta

lo
g

P
re

d
ic

a
te

L
o
g
ic

w
it

h
o
u

t
q
u

a
n
ti

fi
er

s

D
es

cr
ip

ti
o
n

L
o
g
ic

C
o
n

st
ra

in
t

D
a
ta

lo
g

O
b

je
ct

-
o
ri

en
te

d
p

a
ra

d
ig

m

L
o
g
ic

P
ro

-
g
ra

m
m

in
g

D
eo

n
ti

c
lo

g
ic

,
L

o
g
ic

P
ro

g
ra

m
-

m
in

g
,

D
es

cr
ip

ti
o
n

L
o
g
ic

C
o
n

st
ra

in
t

D
a
ta

lo
g

–
–

–

A
c
ti

o
n

e
x
e
c
u

ti
o
n

Y
es

(s
id

e-
eff

ec
t

fr
ee

)
Y

es
N

o
Y

es
(o

n
ly

se
n

d
in

g
ev

id
en

ce
s)

Y
es

(a
cc

es
s

to
sy

st
em

p
ro

p
er

ti
es

)

Y
es

(o
n

ly
se

n
d

in
g

ev
id

en
ce

s)

N
o

N
o

N
o

Y
es

Y
es

D
e
le

g
a
ti

o
n

Y
es

N
o

N
o

Y
es

Y
es

N
o

Y
es

Y
es

(R
T

D
)

N
o

N
o

N
o

T
y
p

e
o
f

e
v
a
lu

a
ti

o
n

D
is

tr
ib

u
te

d
p

o
li
ci

es
,

L
o
ca

l
ev

a
lu

a
ti

o
n

L
o
ca

l
L

o
ca

l
D

is
tr

ib
u

te
d

L
o
ca

l
D

is
tr

ib
u

te
d

D
is

tr
ib

u
te

d
p

o
li
ci

es
,

L
o
ca

l
ev

a
lu

a
ti

o
n

L
o
ca

l
L

o
ca

l
D

is
tr

ib
u

te
d

p
o
li
ci

es
,

L
o
ca

l
ev

a
lu

a
ti

o
n

D
is

tr
ib

u
te

d
p

o
li
ci

es
,

L
o
ca

l
ev

a
lu

a
ti

o
n

E
v
id

e
n

c
e
s

C
re

d
en

ti
a
ls

N
o

N
o

C
re

d
en

ti
a
ls

,
D

ec
la

ra
-

ti
o
n

s

–
C

re
d

en
ti

a
ls

,
D

ec
la

ra
-

ti
o
n

s

–
C

re
d

en
ti

a
ls

C
re

d
en

ti
a
ls

N
o

N
o

N
e
g
o
ti

a
ti

o
n

Y
es

N
o

N
o

Y
es

N
o

Y
es

N
o

N
o

Y
es

N
o

(p
o
li
cy

m
a
tc

h
in

g
su

p
p

o
rt

ed
)

N
o

R
e
su

lt
fo

r
m

a
t

A
/
D

a
n

d
a

se
t

o
f

co
n

st
ra

in
ts

A
/
D

,
s
c
o
p
e

e
r
r
o
r
,

p
o
l
i
c
y

e
r
r
o
r

A
/
D

A
/
D

A
/
D

A
/
D

A
/
D

a
A

/
D

A
/
D

A
/
D

,
n
o
t

a
p
p
l
i
c
a
b
l
e
,

i
n
d
e
t
e
r
m
i
-

n
a
t
e

A
/
D

,
n
o
t

a
p
p
l
i
c
a
b
l
e
,

i
n
d
e
t
e
r
m
i
-

n
a
t
e

E
x
te

n
si

b
il

it
y

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

N
o

N
o

N
o

Y
es

T
a
b
le

2
.1

:
P

o
li

cy
la

n
g
u
a
g
e

co
m

p
a
ri

so
n

(“
–
”

=
n
o
t

a
p
p
li

ca
b
le

)

a
C

f.
S

ec
ti

on
2.

4
fo

r
R

ei
’s

ob
li

ga
ti

on
p

ol
ic

ie
s.

23

so far the burden of providing advanced features is charged on the user who needs

them. Standard-oriented languages are hence a good choice for users who do not

need advanced features but for whom compatibility with standards is a foremost

issue.

Ponder, RT and TPL lay somehow in between. On the one hand, Ponder pro-

vides a complete authorization solution, which however takes place after a previously

overcome authentication step. Therefore, Ponder cannot be applied to contexts (like

pervasive environments) where users cannot be accurately identified. On the other

hand, RT and TPL do not provide a complete authorization solution, since they

can only map requesters to roles and need to rely on some external component to

perform the actual authentication (although parametrized roles available in RT1 and

the other RT flavors basing on it make the previous statement no longer true).

Finally research-oriented languages strive toward generality and extensibility

and provide a number of more advanced features in comparison with standard-

oriented languages (e.g., conflict harmonization in KAoS and Rei, negotiations in

Cassandra, PeerTrust and PSPL). Therefore, they should be the preferred choice

for users who do not mind about standardization issues but require the advanced

functionalities which research-oriented languages provide.

CHAPTER 3

The Protune Policy Language

This chapter describes the syntax and semantics of the Protune policy language.

An engine able to enforce Protune policies has been implemented and can be freely

downloaded from http://skydev.l3s.uni-hannover.de/gf/project/protune/w

iki/?pagename=Evaluation. The Protune language specifications are partially

an original contribution of this work (cf. Section 3.6 for a description of the im-

provements w.r.t. the previous version) as is the reasoning-related part of the

Protune engine. Language specifications and engine are just two building blocks

of the Protune framework, which also comprises a policy-filtering module [19],

an explanation-generation module [20], a natural language front-end [30], a wrap-

per for Web applications [17, 32] and an editor (available at http://policy.l3s.

uni-hannover.de:9080/policyFramework/protune/demo.html). None of these

further modules (but the natural language front-end described in Chapter 4) are

original contributions of and will be described in this work.

This chapter is organized as follows: Section 3.1 introduces Protune’s con-

ceptual space. Protune’s syntax and semantics are informally introduced in Sec-

tions 3.2 and 3.3 respectively and formalized in Sections 3.4 and 3.5 respectively.

Finally, Section 3.6 outlines original contributions and improvements of the version

of the Protune language described in this work w.r.t. the previous version.

3.1 Protune’s conceptual space

A typical access-control scenario involves two actors : the one which issues a

request to access some resource or service and the one which accepts or rejects such

request.

Note 1 With “actors” we mean “logical actors”, which do not need to be physically

separated entities: access requests can be issued by one component of a concentrated

system to another component of the same system. However, it is often the case

24

25

that actors are independent entities residing on different nodes of a network which

seldom come across each other for the purpose of accessing resources or services.

Note 2 The handling of access requests might involve more than two actors. In a

typical scenario (cf. Section 2.3.2), the actor to which the access request has been

issued cannot or does not want to take the access decision and therefore delegates

a third entity to take it. In another typical scenario, certification authorities (cf.

Section 1.2) are consulted in order to check the authenticity of a certificate provided

by some actor. However, except in case the opposite is explicitly stated, we will

assume in the following that the handling of access requests involves exactly two

actors.

For this reason, Protune assumes that two actors are available whenever an access

request takes place. We will call client the one issuing the access request and server

the one taking the access decision.

Note 3 As we will see in the following, the communication between actors can

evolve to a negotiation (cf. Section 2.3.2) in which, when handling an access re-

quest, the server can issue counter-requests to the client and therefore, in some

sense, it becomes a client as well. For this reason, in Protune the meaning of the

terms “client” and “server” is relative to the most deeply nested counter-request. In

Protune counter-requests can nest to arbitrary depth.

In order to issue a request, the client must know

1. which request it wants to issue

2. whom it wants to issue the request to

In order to handle a request, the server must know

3. the policy in force

4. according to which strategy the policy should be evaluated

Items 1., 2., 3., and 4. will be discussed in Sections 3.1.1, 3.1.2, 3.1.3 and 3.1.4

respectively.

26

3.1.1 The user interface

As described in Section 2.4, many policy languages base on some mathemat-

ically defined logical formalism in order to provide a well-defined semantics. Pro-

tune is no exception, since it bases on (a subset of) Logic Programming [64] (LP

in the following). In particular, an access request is modeled as a (Protune) goal.

For this reason, Protune natively supports two kinds of requests

∙ yes/no requests (e.g., am I allowed to access resource res1?)

∙ multiple-answer requests (e.g., which resources am I allowed to access?)

Like usual LP-engines (e.g., SWI-Prolog1, tuProlog2, YAP-Prolog3), the Protune

engine implements the answer to a goal as an iterator [41]: the iterator is empty if

the requesting actor is not allowed to access the resource (for yes/no requests) or if

there is no resource it is allowed to access (for multiple-answer requests). Otherwise,

the different elements of the iterator can be retrieved one by one.

Note 4 The Protune engine’s user interface also provides a commodity to retrieve

all accessable resources at once. Because of the possibly considerable increment of

computational resources required as well as of sensitive information disclosed, users

are strongly encouraged to rely on the iterator-based interface and to resort to the

above-mentioned commodity only if all accessable resources have to be retrieved.

3.1.2 The communication channel

A communication channel must be provided between the actors of an access-

control scenario which, as mentioned in Note 1, often reside on different nodes of a

network. The Protune engine provides an abstraction layer over the communica-

tion medium, so that users willing to issue a request to an actor are only required to

provide the name or address of the host on which the actor resides. The Protune

engine will check automatically and in a transparent way through which medium

the communication with the actor can be established.

1http://www.swi-prolog.org/
2http://alice.unibo.it/xwiki/bin/view/Tuprolog/
3http://www.dcc.fc.up.pt/˜vsc/Yap/

27

Note 5 In case of a negotiation (cf. Note 3), the medium through which counter-

requests are issued and answered does not have to be the one through which the

original request is issued and answered.

This design choice has both advantages and drawbacks. Up to now, sockets4 are

the only communication medium supported. As soon as other media (like, e.g.,

secure sockets5, RMI6 or Web Services7) are supported, the required changes to the

Protune engine will not affect the network interface. However, as it is often the

case in computer science, as soon as the abstraction level is risen, a bigger user-

friendliness is obtained to the detriment of flexibility. Our approach is user-friendly

in the sense that nothing but name or address of the actor’s host has to be provided

by the user. On the other hand, only one single Protune engine (and hence one

single policy) per host is possible. Since we did not find any reasonable scenario

yet for which this restriction could be a limitation, we do not plan to change our

approach yet.

3.1.3 Protune policies

Trust is the top of the well-known Semantic Web stack [76] and Protune has

been proposed within the Semantic Web community in order to become a building

block of the Semantic Web vision. As such, Protune fosters interoperability among

resources spread across different nodes of the Semantic Web. For this reason, a

Protune policy is a distributed program: the policy residing on the host of either

of the communicating actors is supposed to be only an entry point which refers to

other resources, namely, further policies and executable files (specifically, jar files).

The policies which are referred to can in turn refer to other ones, so that in general

the evaluation of a Protune policy requires to evaluate a graph of resources, all

of which are automatically identified, located, deployed and finally exploited by the

Protune engine.

4http://java.sun.com/docs/books/tutorial/networking/sockets/index.html
5http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide

.html
6http://java.sun.com/javase/6/docs/technotes/guides/rmi/index.html
7http://java.sun.com/webservices/technologies/index.jsp

28

A policy can refer to an external resource by exploiting a predicate (cf. follow-

ing sections) which is not defined within the policy itself but in a different package.

The concept of package has been inspired by Java packages, which indeed share some

similarities with Protune packages: the pair (package, predicateName) univocally

identifies a Protune predicate, just like the pair (package, className) univocally

identifies a Java class. However, the two concepts do not overlap: in the following

we account for the main differences.

∙ Java packages are simply namespaces introduced in order to avoid conflicts

when defining classes with the same name. Protune packages are URIs8

pointing to actual information (stored in a manifest file) about the type and

the location of the external resource

∙ The Java Virtual Machine is able to understand whether a required class is

missing, but it cannot automatically retrieve it. The Protune engine is able

to understand whether a required predicate is missing and to identify, locate,

deploy and exploit in an automatic way the external resource defining it

Note 6 A Protune manifest file contains exactly two entries, namely, the type

and the location of the external resource. The type is either logical (for Protune

policies) or provisional (for executable files), whereas the location is a URI.

Note 7 Undiscriminated import of external policies can lead to security leakage.

Therefore, special care was taken when designing the importing process. Importing

an allow rule allow(⟨atom⟩) ← ⟨body⟩. (cf. following sections) would add to the

importing policy a further condition enabling the requesting actors which fulfill ⟨body⟩
to know whether ⟨atom⟩ holds, and it might be the case that this behavior does not

match the intention of the author of the importing policy. For this reason, the

Protune engine automatically filters allow rules out of the policies to be imported.

3.1.4 Evaluation strategies

It is often the case that there is more than one single way to fulfill a request.

For instance, in order to access some resource an identity card or a student id might

8http://tools.ietf.org/html/rfc3986

29

have to be disclosed. Moreover, it might be the case that some actor possesses both

an identity card and a student id but prefers to disclose one of them over the other.

Different alternatives can be followed at the same time. This might be mean-

ingful in case of negotiations (cf. Note 3), where the disclosure of sensitive informa-

tion does not guarantee per se access to the requested resource, which also depends

on the successful evaluation of counter-requests. If time is an issue, following dif-

ferent alternatives with the hope that at least one of them leads to a successful

negotiation might be more meaningful than trying an alternative, waiting until it

fails and trying the next one, even if more sensitive information must be disclosed.

Identifying in an automatic way the best set of sensitive resources to be dis-

closed according to some optimality criterion as well as enabling the user to de-

fine herself which resources should be disclosed by means of a preference language

(e.g., [34]) are research fields on their own (cf. [84, 85, 86, 87] for a general account)

and are orthogonal to the topic of this work. The Protune engine provides sup-

port to evaluation strategies by supplying the well-known eager and parsimonious

strategies [84] as well as a general interface which can be extended by third parties

in order to define customized evaluation strategies.

3.2 A gentle introduction to Protune’s syntax

Fig. 3.1 shows an excerpt of the Protune policy of the fictitious on-line

bookstore “Happy Book”. We will make use of such excerpt in order to introduce

Protune’s syntax in an informal way: the formal specification of Protune’s syn-

tax is provided in Section 3.4. Fig. 3.1 shows keywords and other tokens of the

Protune language in italics. The policy should be self-explanatory because of the

comments which exemplify Protune’s conventions for single-line (cf. lines 5, 8, 12,

14 and 36) and multiple-line (cf. lines 21-27) comments.

Protune is based on Datalog [2] and, as such, it is an LP-based policy lan-

guage (cf. Section 2.3.1). A Protune program is basically a set of normal Logic

Program rules [64] A ← L1, . . . Ln where n ≥ 0, A is an atom (called the head of

the rule) and L1, . . . Ln (the body of the rule) are literals, i.e., ∀i : 1 ≤ i ≤ n Li

equals either Bi or ∼ Bi (where the symbol ∼ denotes the negation-as-failure [64]

30

1: import <www.happy-book.com/policies/module.mf!/retrieve/2>
2: import <www.protune.com/modules/basics.mf!/date/1>
3: import <www.protune.com/modules/credentials.mf!/send/2>
4: import <www.visa.com/policies/creditCard.mf!/chargedOn/2>

5: % The client can retrieve a resource if it is public.
6: allow(retrieve(Id,Resource))←
7: public(Id).
8: // The client can retrieve a non-public resource if it buys it.
9: allow(retrieve(Id,Resource))←
10: not public(Id),
11: buy(Resource).

12: % Resource res1 is public.
13: public(res1).
. . .

14: // The following lines define the properties type, . . . date of resource res1.
15: res1[“type”] = book.
16: res1[“title”] = “De Agri Cultura”.
17: res1[“author”] = “M. Porcius Cato”.
18: res1[“author”] = “A. Mazzarino”.
19: res1[“isbn”] = 3598711328.
20: res1[“date”] = ‘July 1998’.
. . .

21: /∗
22: The client buys a resource if it
23: * sends a credit card and
24: * (assuming that CurrentDate denotes the current date)
25: * the credit card has not expired yet and
26: * the price of the resource has been charged on the credit card
27: ∗/
28: buy(Resource)←
29: [1] send(
30: “SELECT id FROM credentials WHERE type = ‘creditCard’”,
31: CreditCard
32:),
33: date(CurrentDate),
34: CreditCard[“expirationDate”] ≥ CurrentDate,
35: chargedOn(Resource[“price”], CreditCard).

36: % The literal labeled [1] (lines 29-32) must be evaluated by the client.
37: [1]→ actor : peer.

Figure 3.1: Example Protune policy

31

operator) for some atom Bi. Lines 6-7, 9-11 and 28-35 show rules whose body is not

empty, whereas lines 13 and 15-20 show facts, i.e., rules whose body is empty.

The vocabulary of the atoms occurring in Protune rules is partitioned into

the following categories.

Allow Have the form allow(atom), where atom is a non-allow atom (cf. lines 6,

9). Allow atoms are the entry points of Protune policies, in the sense that a

goal atom can be successfully evaluated only if it matches the non-allow atom

in the head of some allow rule (cf. Note 8)

Classical Have the form p(t1, . . . ta), where a ≥ 0 (cf. lines 7, 10-11, 13, 28-33,

35). p and a are called the name and the arity respectively of the predicate

exploited in the atom, whereas ∀i : 1 ≤ i ≤ a ti is a term (cf. below). Classical

atoms are further partitioned into logical and provisional atoms, according to

whether they exploit logical or provisional predicates (cf. Note 6 and below)

Comparison Have the form t1 ∘ t2, where t1 and t2 are terms and ∘ is a comparison

operator (cf. line 34). Protune supports the following comparison operators:

=, ∕=, >, ≥, <, ≤

Value-assignment Have the form ct = t, where ct is a complex term (cf. below)

and t is a term (cf. lines 15-20). Value-assignment atoms owe their name to

the fact that, when appearing in the head of a rule whose body is fulfilled,

they assign a value to a given attribute of an object (cf. below)

Note 8 All of allow, . . . value-assignment atoms (but provisional atoms) can appear

both in rule heads and bodies. Rules in whose head an allow, . . . value-assignment

atom appears are called allow, . . . value-assignment rules respectively.

By definition, provisional atoms cannot appear in rule heads since they are

not defined in a policy but in an executable file (cf. Note 6). Value-assignment

atoms in rule bodies check whether an object possesses a given (attribute, value) pair.

Examples 2, 3 and 4 show meaningful applications of comparison rules. Finally,

allow atoms can be exploited in rule bodies whenever the conditions to be fulfilled in

32

order to evaluate an atom atom2 are a superset of the conditions to be fulfilled in

order to evaluate an atom atom1, like in the following example.

allow(atom1) ←
condition1, . . . conditionm.

allow(atom2) ←
condition1, . . . conditionm, furtℎerCondition1, . . . furtℎerConditionn.

The second rule can be replaced by the more compact one

allow(atom2) ←
allow(atom1), furtℎerCondition1, . . . furtℎerConditionn.

Logical predicates are defined in (i.e., appear in the head of some rule of) a (pos-

sibly imported) policy (cf. the predicates public/1 and buy/1 at lines 7, 10-11, 13,

28). The evaluation of provisional predicates (like retrieve/2, send/2, date/1 and

cℎargedOn/2 at lines 6, 9, 29-33, 35) requires to perform an action. Provisional

packages (cf. Note 6) define the mapping between provisional predicates and ac-

tions, evaluate the formers and execute the latters. For this reason, the provisional

predicates appearing in Fig. 3.1 are not part of the Protune language and the fol-

lowing explanation of their interface does not add anything to its description but is

only meant to provide for a better understanding of the policy presented in Fig. 3.1.

retrieve/2 Predicate defined by Happy Book (cf. line 1) which allows to retrieve

the resource corresponding to a given identifier from a local database. The

identifier is modeled as an object identifier (cf. below), whereas the resource

is modeled as an object having at least the attribute price whose value is

modeled as a number (cf. below). The evaluation of (an atom exploiting) the

predicate can be successful only if its first (resp. second) parameter is (resp.

is not) instantiated

send/2 Predicate defined in the credentials package of the Protune framework (cf.

line 3) which allows to retrieve the credentials fulfilling given constraints from

a local credential database. The specification of the constraints is modeled as

33

a(n SQL) string (cf. below), whereas the credentials are modeled as objects.

The evaluation of the predicate can be successful only if its first (resp. second)

parameter is (resp. is not) instantiated

date/1 Predicate defined in the basics package of the Protune framework (cf.

line 2) which allows to retrieve the current date. The current date is modeled

as a date (cf. below). The evaluation of the predicate can be successful only

if its parameter is not instantiated

chargedOn/2 Predicate defined by VISA (cf. line 4) which allows to charge a given

amount on a given credit card. The amount is modeled as a number, whereas

the credit card is modeled as an object. The evaluation of the predicate can

be successful only if both parameters are instantiated

Protune is a typed language and provides four scalar datatypes (namely, booleans,

numbers, strings and dates) and one vectorial datatype (namely, objects). Booleans

are represented by means of the keywords false and true, whereas the right-hand

side of the equality at line 19 (resp. 18, 20) shows that numbers (resp. strings and

dates) are represented as lists of digits (resp. double-quoted character strings and

single-quoted character strings whose content can be interpreted as a date—more

on this in Section 3.4). Objects are sets of (attribute, value) pairs linked to an

identifier and people familiar with Java, JavaScript or PHP can think of them as

maps, objects or associative arrays respectively. However, whilst in such languages

each attribute has one single value, Protune attributes can be multi-valued (cf.

lines 17-18). Notice that objects whose attributes are integers can simulate arrays

and lists.

Protune terms can be variables, scalars, object identifiers (cf. line 13 and

the right-hand side of the equality at line 15) or complex terms (cf. the left-hand

sides of the equalities at lines 15-20, the left-hand side of the inequality at line 34

and the first parameter at line 35). Complex terms have the form t1[t2] where t1 is

a variable, an object identifier or a complex term in turn, whereas t2 is a term.

The heads of rules contain atoms, whereas the heads of metarules contain

metaatoms. In this work we only focus on actor metaatoms/rules. Sensitivity and

34

explanation metaatoms/rules, exploited by the policy-filtering [19] and explanation-

generation module [20] respectively (cf. the beginning of this chapter), are beyond

the scope of this work.

The head of the actor metarule at line 37 contains the actor metaatom [1]→
actor:peer. Actor metarules owe their name to the actor metaatoms their heads

contain. Actor metaatoms owe their name to the token actor they contain. Actor

metaatoms are the mechanism used by Protune to support counter-requests (cf.

Note 3): literals whose labels are referred to by actor metaatoms are supposed to be

evaluated by the client. Finally, the bodies of metarules do not necessarily have to

be empty: metarule bodies do not substantially differ from rule bodies, beside the

fact that they can contain (unlabeled) metaatoms, too.

We conclude this section by describing the format of the importing state-

ments at lines 1-4. Whenever a provisional predicate or a logical predicate not

defined in the current policy is exploited, a corresponding importing statement

must be added to the current policy. Importing statements have the form import

<uri!/name/arity>, where name (resp. arity) is the name (resp. arity) of the

imported predicate, whereas uri is the URI of the manifest of the package defining

the predicate (cf. Section 3.1.3).

3.3 A gentle introduction to Protune’s semantics

Usual LP-engines (like the ones mentioned in Section 3.1.1) evaluate in a

similar way goals and the bodies of rules which have to be evaluated, namely, ac-

cording to the SLDNF-resolution mechanism [64]. The evaluation of a goal/body

L1, . . . Ln (where n > 0) is successful iff the evaluation of each of the literals Li

(where 1 ≤ i ≤ n) is successful.

The Protune engine evaluates Protune goals and bodies in a similar way.

However, unlike usual LP-engines, it evaluates differently goal and body literals

because of the following reasons.

∙ A goal literal is supposed to be evaluated by the server, whereas a body literal

might have to be evaluated by the client (cf. Note 3)

35

∙ Before evaluating a goal literal, the server must check whether the policy in

force allows to evaluate it. Such a check is not needed for body literals

The evaluation of a goal literal of the form atom is successful iff both of the following

conditions are fulfilled.

∙ atom can be evaluated according to the server’s policy, i.e., the server’s policy

contains some rule whose head matches allow(atom) and the evaluation of

whose body is successful

∙ The evaluation of atom is successful

The evaluation of a goal literal of the form ∼ atom is successful iff the evaluation

of the goal literal atom is not (negation-as-failure [64] inference rule).

Note 9 The evaluation of a goal fails if either of the atoms it consists of cannot be

evaluated or if the evaluation of either of the literals it consists of is unsuccessful. In

both cases, the client will receive the same failure message, so that it has no means

to understand which case applies. Providing the client with information about which

kind of failure occurred would lead to unnecessarily disclosing (possibly sensitive)

information about the server’s policy. Being our goal to minimize unnecessary in-

formation disclosure, we designed the Protune engine’s interface so that it does

not distinguish between the two kinds of failure.

The evaluation of a body literal L is successful iff either of the following conditions

is fulfilled.

∙ L has to be evaluated by the server and

– either L is of the form atom and the server’s policy contains some rule

whose head matches atom and the evaluation of whose body is successful

– or L is of the form ∼ atom and the evaluation of the body literal atom

is unsuccessful (negation-as-failure [64] inference rule)

∙ L has to be evaluated by the client and the client evaluates it successfully

36

A literal L has to be evaluated by the client iff the server’s policy contains an actor

metarule (cf. Section 3.2) whose head matches [id]→actor:peer (where [id] is

the label identifying L) and the evaluation of whose body is successful.

The evaluation of an atom varies according to the type of the atom. Sec-

tions 3.3.1, 3.3.2 and 3.3.3 thoroughly describe how provisional, comparison and

value-assignment atoms respectively are evaluated. Logical atoms are not considered

since their evaluation takes place according to the well-known SLDNF-resolution

mechanism [64].

3.3.1 Provisional atoms

As mentioned in Section 3.1.3, the evaluation of (atoms exploiting) provisional

predicates requires to perform an action. The execution of such an action is del-

egated to an external resource (executor), which has to provide a given interface.

The input parameter of an executor is the atom to be evaluated, whereas the return

value is similar to the one of the whole Protune engine (cf. Section 3.1.1), namely

an iterator whose different elements can be retrieved one by one.

Note 10 The return value of executors has been designed to be an iterator instead

of an atomic value because such interface models some scenarios in the most natural

way: against an SQL query, RDBMSs return sets of tuples, each of which can be

modeled most naturally as an element of an iterator.

Note 11 The interface executors must provide is a syntactic constraint, but not a

semantic one: in particular, the Protune specifications do not describe when a

(non-)empty iterator must be returned. It is reasonable that an empty iterator is

returned whenever no result is available. However, some executor developer might

want to return an empty iterator in order to signal that some error occurred (e.g.,

some variable was not instantiated). We do not encourage this practice whenever

it leads to ambiguities (i.e., whenever an empty iterator could be interpreted as

signaling both that no result is available and that some error occurred). However,

it can be considered a reasonable design choice for actions which, if successfully

executed, always return at least one result (e.g., retrieving the current date—cf.

37

Fig. 3.1, line 33), if the executor developer has strong motivations for not providing

the executor user with any information about the occurred error.

Provisional atoms are recognized as such at policy-load time (cf. Section 3.1.3) and

track of the executors in charge of evaluating them is kept. Whenever a provisional

atom must be evaluated, the corresponding executor is invoked.

We conclude this section by describing how objects are handled throughout

the control flow from the Protune engine to an executor and back. As described

in Section 3.2, objects are not atomic entities but sets of (attribute, value) pairs

linked to an identifier. In order to be able to operate on an object, an executor

must be provided with all its (attribute, value) pairs. For this reason, whenever a

provisional atom must be evaluated, if some term of its is an object, the Protune

engine collects all such pairs before handing them over to the executor.

Note 12 Notice that such pairs might be spread throughout the policy as different

facts or might even have to be inferred (as it happens if they appear in the head of

some value-assignment rule). Moreover, since the attributes and values pairs consist

of can be objects in turn, their (attribute, value) pairs must be collected as well.

Conversely, if it happens that some result returned by the executor contains an

object, the Protune engine keeps track of its (attribute, value) pairs in the current

scope.

Note 13 Beside containing Protune objects, represented as sets of (attribute,

value) pairs linked to an identifier, the current scope can contain their representation

as serializable9 Java objects linked to the same identifier. The Java representation is

not used by the Protune engine during the reasoning process but executors might

find it handier than the pair-based one. For this reason, whenever a provisional atom

must be evaluated, if some term of its is an object, the Protune engine hands its

Java representation over to the executor and, if it happens that some result returned

by the executor contains an object, it adds its Java representation to the current scope

as well. Finally, the Java representation is required to be a serializable object since

9http://java.sun.com/developer/technicalArticles/Programming/serialization/

38

it might have to be transmitted across the network and the Protune engine makes

extensive use of the Java serialization mechanism for its network-related tasks.

Example 1 shows that the support to objects and actions reduces the declarativeness

of the Protune language.

Example 1 Assuming that

∙ the evaluation of the provisional atom a(X) has as a result the binding of X

to an object having the (attribute, value) pair (“a”,“v”)

∙ no value-assignment atoms of the form Y [“a”] =“v” can be inferred from the

policy in force or the current scope before the evaluation of a(X)

the evaluation of the atom Y [“a”] =“v” will be successful only if performed after the

evaluation of a(X).

As shown in Example 1, in order to be able to write policies which are interpreted as

intended, a policy author must be aware of both: (i) the side-effects of the evaluation

of a provisional atom; and (ii) the order according to which the Protune engine

evaluates the literals of a goal/body. Although this behavior of the Protune engine

might reduce the user-friendliness of the Protune language, it is the price to pay

in order to integrate objects and actions into a policy language and, all in all, it does

not differ from the behavior of a usual Prolog engine: some knowledge of the way

a Prolog program is interpreted is required in order to write effective and efficient

Prolog programs as well.

3.3.2 Comparison atoms

The evaluation of a comparison atom is unsuccessful if either of the terms to

be compared is not instantiated or if they are not of the same type. In particular,

implicit casting is not supported (e.g., when comparing the string "1" and the

number 0, the former does not get automatically converted into the number 1, nor

is the number 0 automatically converted into the string "0" when comparing it with

the string "a"). If both terms are instantiated and of the same type, the outcome

of the evaluation depends on the type itself as well as on the comparison operator.

39

= ∕= > ≥ < ≤
boolean × ×
number × × × × × ×
string × × × × × ×
date × × × × × ×

object × ×

Table 3.1: Comparisons supported by default

Tab. 3.1 summarizes the comparisons supported by default: the evaluation of

comparison atoms involving types and operators corresponding to cells not marked

with a cross is always unsuccessful (e.g., the evaluation of the comparison atom

true > false is unsuccessful). The outcome of the evaluation of comparison atoms

involving types and operators corresponding to cells marked with a cross depends on

the actual terms to be compared: the Protune ordering of numbers is the intuitive

one, strings are ordered alphabetically and dates temporally. The boolean false

is equal to itself and different than the boolean true (the same holds if false and

true are swapped). Finally, two objects are equal if and only if they are the same

one (i.e., they have the same identifier).

The default semantics of the operators has been defined in order to fit the needs

of most users. However, users can also modify (but not override) it by defining

comparison rules (cf. Note 8). Such rules extend the semantics of an operator

by stating further conditions which, if fulfilled, allow a comparison atom to be

successfully evaluated. Examples 2, 3 and 4 show some cases in which comparison

rules can be useful.

Example 2 In some scenarios it might be convenient setting an ordering between

booleans so that, e.g., false precedes true. This behavior can be obtained by defining

the following comparison facts.

false < true.

true > false.

false <= false.

false <= true.

true <= true.

40

false >= false.

true >= false.

true >= true.

Example 3 As mentioned above, by default two objects are considered to be equal

if and only if they have the same identifier. However, in some scenarios it might

be convenient considering equal two objects o1 and o2 if they have the same set of

(attribute, value) pairs (or, more formally, if subset(o1, o2) ∧ subset(o2, o1) holds,

where subset(o1, o2) holds iff ∀(a1, v1) ∈ o1∃(a2, v2) ∈ o2 such that a1 equals a2 and

v1 equals v2). This behavior can be obtained by defining one or more comparison

rules.

Example 4 As mentioned above, by default the evaluation of a comparison atom

is unsuccessful if either of the terms to be compared is not instantiated. However,

in some scenarios it might be convenient having an equality operator which behaves

similarly as the =/2 Prolog predicate10, i.e., which unifies the terms to be compared

whenever possible so that, e.g., the evaluation of the comparison atom X = 2 succeeds

(and, as a side-effect, unifies X and 2) instead of failing. This behavior can be

obtained by defining one or more comparison rules.

Comparison rules conform to Protune’s namespace mechanism (cf. Section 3.1.3)

as well, i.e., the extension of the semantics of an operator by means of a rule within

a given policy does not affect the semantics of the same operator within a different

policy. On the other hand, such extension can be imported into a different policy by

exploiting the namespace of the imported policy together with the operator within

the importing one, like in the following example (where www.protune.com/modules/

basics.mf is the namespace of the imported policy).

X <www.protune.com/modules/basics.mf> = Y

Note 14 Whenever the user extends the semantics of an operator, the burden of

ensuring the consistency of the extension lays on the user herself. For instance,

10http://www.iso.org/iso/catalogue_detail.htm?csnumber=21413

41

although users are allowed to define the fact true = false., they must be aware of

the consequences of such a definition (in particular, the boolean true would be both

equal to and different than the boolean false – because of the user-defined fact and

the default semantics respectively).

Similarly, users are allowed to define both facts true >= false. and true

<= false., although this would lead to losing the antisymmetric property equality

usually possesses.

Note 15 W.r.t. the first example presented in Note 14, the definition of the fact

true = false. implies that the evaluation of the atom true = false is success-

ful, but it does not imply per se that the evaluation of the atom false = true is

successful as well. In order to obtain such a result, a further fact false = true.

must be defined. For a similar reason, none of the facts listed in Example 2 may be

omitted, if an ordering with the usual properties is desired.

Finally, during the evaluation of a comparison atom user-defined rules are evaluated

(according to the well-known SLDNF-resolution mechanism [64]) before resorting to

the default semantics.

3.3.3 Value-assignment atoms

As described in Section 3.3.1, the evaluation of a provisional atom might

end up with the addition of one or more objects (and hence one or more sets of

(attribute, value) pairs) to the current scope. On the other hand, as described in

Section 3.2, users can create objects within a policy by defining value-assignment

rules. For this reason, during the evaluation of a value-assignment atom, both user-

defined rules and objects available in the current scope must be inspected. The

evaluation of a value-assignment atom is successful iff it is unifiable with

∙ the head of some (value-assignment) rule, the evaluation of whose body is

successful or

∙ some (attribute, value) pair of some object available in the current scope

42

Two value-assignment atoms t11[t12] = t13 and t21[t22] = t23 (where ∀1 ≤ i ≤ 2, 1 ≤ j ≤ 3

tij is not a complex term—cf. Section 3.2) are unifiable iff the triples (t11, t
1
2, t

1
3) and

(t21, t
2
2, t

2
3) are unifiable. Cf. Section 3.5 for the case in which some tij is a complex

term.

The value-assignment atom t1[t2] = t3 (where ∀1 ≤ i ≤ 3 ti is not a complex

term) is unifiable with the pair (a, v) of the object whose identifier is id iff the triples

(t1, t2, t3) and (id, a, v) are unifiable. Cf. Section 3.5 for the case in which some ti

is a complex term.

Finally, the evaluation of user-defined rules (according to the well-known

SLDNF-resolution mechanism [64]) takes place before objects available in the cur-

rent scope are inspected.

3.4 Protune’s syntax

This section formally describes the syntax of the Protune policy language.

For the sake of completeness, we will also formalize sensitivity and explanation

metaatoms, although we did not describe them thoroughly in the previous sections

(cf. the beginning of this chapter).

3.4.1 Terms

Definition 1 (Term) A term is either a variable, a boolean, a number, a string, a

date, an object identifier or a complex term (cf. Definition 2).

We will represent variables as Prolog variables, booleans (resp. strings) as Java

booleans (resp. strings), numbers as Java integers, longs, floats or doubles11, dates as

single-quoted strings whose content is considered a valid date by the parse(String)

method of the java.text.DateFormat Java class12 and object identifiers as Prolog

non-quoted identifiers. Cf. below for the representation of complex terms.

Example 5 All of the following are well-formed terms: the variables X and ,

the boolean false, the numbers 0, 0L, 1e1f and 1e-9d, the string "", the date

‘24.06.09 10:50’ and the object identifier a.

11http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
12http://java.sun.com/javase/7/docs/api/java/text/DateFormat.html

43

Definition 2 (Complex term) A complex term is a pair (id, term), where id is

either a variable, an object identifier or a complex term and term is a term (cf.

Definition 1).

We will represent complex terms as id[term], where id is the string representa-

tion of the variable (resp. object identifier, complex term) and term is the string

representation of the term.

Example 6 All of the following are well-formed complex terms: a[true], X[a],

a[a[a]] and a[X][0].

Definition 3 (Comparison operator) A comparison operator is either of =, !=,

>, >=, < and <=.

3.4.2 Atoms

Definition 4 (Classical atom) A classical atom is a pair (name, terms), where

name is a predicate name and terms is a (possibly empty) list of terms (cf. Defini-

tion 1).

We will represent predicate names as Prolog non-quoted identifiers and classical

atoms as

∙ name, where name is the string representation of the predicate name, if terms

is empty

∙ name(term1, ... termn), where n = #terms and termi is the string repre-

sentation of the i-th term in terms (1 ≤ i ≤ n), if terms is not empty

Example 7 All of the following are well-formed classical atoms: a and a(X, false,

0, "", ‘24.06.09 10:50’, a, a[a]).

Definition 5 (Comparison atom) A comparison atom is a triple (operator, left,

rigℎt), where operator is a comparison operator (cf. Definition 3), and left and

rigℎt are terms (cf. Definition 1).

44

We will represent comparison atoms as left operator rigℎt, where left (resp. oper-

ator, rigℎt) is the string representation of the left term (resp. comparison operator,

right term).

Example 8 All of the following are well-formed comparison atoms: X = false, 0

< "" and ‘24.06.09 10:50’ >= a.

Definition 6 (Queriable atom) A queriable atom is either a classical atom (cf.

Definition 4) or a comparison atom (cf. Definition 5).

Definition 7 (Decision atom) A decision atom is a singleton {atom}, where atom

is a queriable atom (cf. Definition 6).

We will represent decision atoms as allow(atom), where atom is the string repre-

sentation of the queriable atom.

Example 9 All of the following are well-formed decision atoms: allow(a) and

allow(X = false).

Definition 8 (Atom) An atom is either a queriable atom (cf. Definition 6) or a

decision atom (cf. Definition 7).

3.4.3 Goals and rules

Definition 9 (Queriable literal) A queriable literal is a pair (negated, atom),

where negated is either false or true and atom is a queriable atom (cf. Defi-

nition 6).

We will represent queriable literals as

∙ atom, where atom is the string representation of the queriable atom, if negated

is false

∙ not atom, if negated is true

Example 10 All of the following are well-formed queriable literals: a, not X =

false.

45

Definition 10 (Goal) A goal is a non-empty list of queriable literals (cf. Defini-

tion 9).

We will represent goals as literal1, ... literaln., where n is the number of queri-

able literals the goal consists of and literali is the string representation of the i-th

queriable literal (1 ≤ i ≤ n).

Example 11 All of the following are well-formed goals: a. and a, X = false..

Definition 11 (Literal) A literal is either a pair (negated, atom) or a triple (label,

negated, qAtom), where negated is either false or true, atom is an atom (cf.

Definition 8), qAtom is a queriable atom (cf. Definition 6) and label is a label.

We will represent labels as Prolog non-quoted identifiers and literals as

∙ atom, where atom is the string representation of the atom, if the literal is of

the form (negated, atom) and negated is false

∙ not atom, if the literal is of the form (negated, atom) and negated is true

∙ [label] qAtom, where label is the string representation of the label and qAtom

is the string representation of the queriable atom, if the literal is of the form

(label, negated, atom) and negated is false

∙ [label] not qAtom, if the literal is of the form (label, negated, atom) and

negated is true

Example 12 All of the following are well-formed literals: a, not X = false and

[a] allow(a).

Definition 12 (Rule) A rule is either a pair (ℎead, body) or a triple (label, ℎead,

body), where ℎead is an atom (cf. Definition 8), body is a (possibly empty) list of

literals (cf. Definition 11) and label is a label.

We will represent labels as Prolog non-quoted identifiers and rules as

46

∙ ℎead., where ℎead is the string representation of the atom, if the rule is of

the form (ℎead, body) and body is empty

∙ ℎead :- literal1, ... literaln., where n = #body and literali is the string

representation of the i-th literal in body (1 ≤ i ≤ n), if the rule is of the form

(ℎead, body) and body is not empty

∙ [label]: ℎead., where label is the string representation of the label, if the

rule is of the form (label, ℎead, body) and body is empty

∙ [label]: ℎead :- literal1, ... literaln., if the rule is of the form (label,

ℎead, body) and body is not empty

Example 13 All of the following are well-formed rules: a., X = false :- a. and

[a]: allow(a) :- X = false..

3.4.4 Metaatoms

Definition 13 (Actor metaatom) An actor metaatom is a singleton {label}, wh-

ere label is a literal label (cf. Definition 11).

We will represent actor metaatoms as label->actor:peer, where label is the string

representation of the literal label.

Definition 14 (Sensitivity metaatom) A sensitivity metaatom is a singleton {
label}, where label is a literal label (cf. Definition 11) or a rule label (cf. Defini-

tion 12).

We will represent sensitivity metaatoms as label->sensitivity:private, where

label is the string representation of the literal/rule label.

Definition 15 (Explanation metaatom) An explanation metaatom is a pair (la-

bel, term), where label is a literal label (cf. Definition 11) or a rule label (cf. Defi-

nition 12) and term is a term (cf. Definition 1).

We will represent explanation metaatoms as label->explanation:term, where label

(resp. term) is the string representation of the literal/rule label (resp. term).

47

Definition 16 (Metaatom) A metaatom is either an actor metaatom (cf. Defini-

tion 13) or a sensitivity metaatom (cf. Definition 14) or an explanation metaatom

(cf. Definition 15).

Example 14 All of the following are well-formed metaatoms: the actor metaatom

[a]->actor:peer, the sensitivity metaatom [a]->sensitivity:private and the

explanation metaatom [a]->explanation:"".

3.4.5 Metarules

Definition 17 (Metaliteral) A metaliteral is a pair (negated,metaatom), where

negated is either false or true and metaatom is a metaatom (cf. Definition 16).

We will represent metaliterals as

∙ metaatom, where metaatom is the string representation of the metaatom, if

negated is false

∙ not metaatom, if negated is true

Example 15 All of the following are well-formed metaliterals: [a]->actor:peer

and not [a]->sensitivity:private.

Definition 18 (Generic literal) A generic literal is either a literal (cf. Defini-

tion 11) or a metaliteral (cf. Definition 17).

Definition 19 (Metarule) A metarule is a pair (ℎead, body), where ℎead is a

metaatom (cf. Definition 16) and body is a (possibly empty) list of generic literals

(cf. Definition 18).

We will represent metarules as

∙ ℎead., where ℎead is the string representation of the metaatom, if body is

empty

∙ ℎead :- literal1, ... literaln., where n = #body and literali is the string

representation of the i-th generic literal in body (1 ≤ i ≤ n), if body is not

empty

48

Example 16 All of the following are well-formed metarules: [a]->actor:peer.,

[a]->sensitivity:private :- X oinden false. and [a]->explanation:""

:- [a]->actor:peer..

3.4.6 Policy

Definition 20 (Generic rule) A generic rule is either a rule (cf. Definition 12)

or a metarule (cf. Definition 19).

Definition 21 (Policy) A policy is a (possibly empty) list of generic rules (cf.

Definition 20).

3.5 (Toward) Protune’s semantics

At least two (non mutually exclusive) ways are feasible to describe the seman-

tics of the Protune policy language: (i) describing how a generic Protune policy

can be mapped to a Logic Program [64]; and (ii) providing an executable semantics

(cf. Chapter 7). Whilst we regard both approaches as future work, each of them

would profit from a semantic characterization of complex terms (cf. Section 3.2).

This section provides such a characterization by describing how a generic Pro-

tune policy can be brought to a canonical form (beside variable renaming) in which

complex terms only appear within value-assignment atoms (cf. Section 3.2) of the

form t1[t2] = t3, where none of t1, t2 and t3 is a complex term. In particular, this

section describes the effects of function ℱ on the syntactic constructs a Protune

policy consists of.

3.5.1 Basic definitions

In the following we will write (a1, . . . an) to denote a list consisting of the

elements a1, . . . an (n ≥ 0) and ∅ to denote the empty list. Moreover we will write

A ∪B to denote the concatenation of lists A and B.

Example 17 ∅ ∪ (a) ∪ (b, c) = (a, b, c).

Definition 22 (Function f) If x is a term then

49

∙ f : x 7→ (x, ∅) if x is not a complex term

∙ f : (id, term) 7→ ((id, term), ∅) if (id, term) is a complex term, f : id 7→ (id, ∅)
and f : term 7→ (term, ∅)

∙ f : (id, term) 7→ ((id, variable), assignments ∪ ((id1, term1, variable))) if f :

id 7→ (id, ∅) and f : term 7→ ((id1, term1), assignments)

∙ f : (id, term) 7→ ((variable, term), assignments ∪ ((id1, term1, variable))) if

f : id 7→ ((id1, term1), assignments) and f : term 7→ (term, ∅)

∙ f : (id, term) 7→ ((variable1, variable2), assignments1∪assignments2∪ ((id1,

term1, variable1), (id2, term2, variable2))) if f : id 7→ ((id1, term1), assignme-

nts1) and f : term 7→ ((id2, term2), assignments2)

where variable, variable1 and variable2 are fresh variables.

Example 18 f : a 7→ (a, ∅),f : a[b[c]] 7→ (a[X], (b[c] = X)),f : a[b][c] 7→
(X[c], (a[b] = X)),f : a[b][c[d]] 7→ (X[Y], (a[b] = X, c[d] = Y)).

3.5.2 Terms

Definition 23 (Term) If x is a term different than a complex term then ℱ : x 7→
(x, ∅). Cf. Definition 24 for the output of ℱ in case x is a complex term.

Example 19 ℱ : a 7→ (a, ∅).

Definition 24 (Complex term) If (id, term) is a complex term then

ℱ : (id, term) 7→ (variable, assignments ∪ ((id1, term1, variable)))

where f : (id, term) 7→ ((id1, term1), assignments) and variable is a fresh variable.

Example 20 ℱ : a[b[c]] 7→ (Y, (b[c] = X, a[X] = Y)),ℱ : a[b][c] 7→ (Y, (a[b]

= X, X[c] = Y)),ℱ : a[b][c[d]] 7→ (Z, (a[b] = X, c[d] = Y, X[Y] = Z)).

Theorem 1 For no term term it happens that ℱ : term 7→ (term1, assignments),

where term1 is a complex term.

50

3.5.3 Atoms

Definition 25 (Classical atom) If terms = (term1, . . . termn) (n ≥ 0) and

(name, terms) is a classical atom then ℱ : (name, terms) 7→ ((name, terms1), assig-

nments), where terms1 = (term1
1, . . . term

1
n),assignments =

∪
1≤i≤n assignmentsi

and ∀1 ≤ i ≤ n ℱ : termi 7→ (term1
i , assignmentsi).

Example 21 ℱ : a 7→ (a, ∅),ℱ : a(b[c]) 7→ (a(X), (b[c] = X)).

Definition 26 (Comparison atom) If (operator, left, rigℎt) is a comparison ato-

m then

∙ if operator is = and left is a complex term, ℱ : (operator, left, rigℎt) 7→
((operator, left1, rigℎt1), assignmentsl ∪ assignmentsr), where f : left 7→
(left1, assignmentsl) and ℱ : rigℎt 7→ (rigℎt1, assignmentsr)

∙ otherwise, ℱ : (operator, left, rigℎt) 7→ ((operator, left1, rigℎt1), assignmen-

tsl∪assignmentsr), where ℱ : left 7→ (left1, assignmentsl) and ℱ : rigℎt 7→
(rigℎt1, assignmentsr)

Example 22 ℱ : a = b 7→ (a = b, ∅),ℱ : a > b 7→ (a > b, ∅),ℱ : a[b] = c[d]

7→ (a[b] = X, (c[d] = X)),ℱ : a[b] > c[d] 7→ (X > Y, (a[b] = X, c[d] = Y)).

Theorem 2 For no assignment atom atom it happens that ℱ : atom 7→ ((operator,

left, rigℎt), assignments), where rigℎt is a complex term. Moreover left can be a

complex term only if operator is =.

Definition 27 (Decision atom) If {atom} is a decision atom then ℱ : {atom} 7→
({atom1}, assignments), where ℱ : atom 7→ (atom1, assignments).

Example 23 ℱ : allow(a(b[c])) 7→ (allow(a(X)), (b[c] = X)) and ℱ : allow(

a[b] = c[d]) 7→ (allow(a[b] = X), (c[d] = X)).

51

3.5.4 Goals and rules

Definition 28 (Queriable literal) If (negated, atom) is a queriable literal then

ℱ : (negated, atom) 7→
∪

1≤i≤n((true, assignmenti)) ∪ ((negated, atom1)), where

ℱ : atom 7→ (atom1, assignments) and assignments = (assignment1, . . . assignm-

entn) (n ≥ 0).

Example 24 ℱ : a(b[c]) 7→ (b[c] = X, a(X)) and ℱ : not a[b] = c[d] 7→
(c[d] = X, not a[b] = X).

Definition 29 (Goal) If goal = (literal1, . . . literaln) (n ≥ 1) is a goal then

ℱ : goal 7→
∪

1≤i≤n literalsi, where ∀1 ≤ i ≤ n ℱ : literali 7→ literalsi

Example 25 ℱ : a(b[c])) = b[c] = X, a(X) and ℱ : a, not a[b] = c[d]) =

a, c[d] = X, not a[b] = X.

Definition 30 (Literal) If (negated, atom) is a literal then ℱ : (negated, atom) 7→∪
1≤i≤n((true, assignmenti))∪((negated, atom1)), where ℱ : atom 7→ (atom1, assig-

nments) and assignments = (assignment1, . . . assignmentn) (n ≥ 0).

If (label, negated, qAtom) is a literal then ℱ : (label, negated, qAtom) 7→∪
1≤i≤n((true, assignmenti)) ∪ ((label, negated, qAtom1)), where ℱ : qAtom 7→

(qAtom1, assignments) and assignments = (assignment1, . . . assignmentn) (n ≥
0).

Example 26 ℱ : a(b[c]) 7→ (b[c] = X, a(X)) and ℱ : [a] not b[c] = d[e]

7→ ([a] not b[c] = X,d[e] = X).

Definition 31 (Rule) If body = (literal1, . . . literaln) (n ≥ 0) and (ℎead, body)

is a rule then ℱ : (ℎead, body) 7→ (ℎead1, assignments ∪
∪

1≤i≤nℱ(literali)), where

ℱ : ℎead 7→ (ℎead1, assignments).

If (label, ℎead, body) is a rule then ℱ : (label, ℎead, body) 7→ (label, ℎead1, assi-

gnments ∪
∪

1≤i≤nℱ(literali)), where ℱ : ℎead 7→ (ℎead1, assignments).

Example 27 ℱ : b[c] = d[e] :- a. 7→b[c] = X :- d[e] = X, a. and ℱ :

[a]: allow(a(b[c])) :- not b[c] = d[e]. 7→[a]: allow(a(X)) :- b[c]

= X, d[e] = Y, not b[c] = Y..

52

3.5.5 Metaatoms

Definition 32 (Actor metaatom) If atom is an actor metaatom then ℱ : atom

7→ (atom, ∅).

Definition 33 (Sensitivity metaatom) If atom is a sensitivity metaatom then

ℱ : atom 7→ (atom, ∅).

Definition 34 (Explanation metaatom) If (label, term) is an explanation meta-

atom then ℱ : (label, term) 7→ ((label, term1), assignments), where ℱ : term 7→
(term1, assignments).

Example 28 ℱ : [a]->explanation:b[c] 7→ ([a]->explana-tion:X, (b[c] =

X)).

3.5.6 Metarules

Definition 35 (Metaliteral) If (negated,metaatom) is a metaliteral then ℱ :

(negated,metaatom) 7→
∪

1≤i≤n((true, assignmenti))∪((negated,metaatom1)), wh-

ere ℱ : metaatom 7→ (metaatom1, assignments) and assignments = (assignment1,

. . . assignmentn) (n ≥ 0).

Example 29 ℱ : not [a]->explanation:b[c] 7→ (b[c] = X, not [a]->expla-

nation:X)

Definition 36 (Metarule) If body = (literal1, . . . literaln) (n ≥ 0) and (ℎead,

body) is a metarule then ℱ : (ℎead, body) 7→ (ℎead1, assignments∪
∪

1≤i≤nℱ(literali

)), where ℱ : ℎead 7→ (ℎead1, assignments).

Example 30 ℱ : [a]->explanation:b[c] :- not b[c] = d[e]. 7→[a]->exp-

lanation:X :- b[c] = X, d[e] = Y, not b[c] = Y..

3.5.7 Policy

Definition 37 (Policy) If policy = (rule1, . . . rulen) (n ≥ 0) is a policy then

ℱ : policy 7→
∪

1≤i≤nℱ(rulei).

53

3.6 What’s new

This section describes the most important differences between the version of

the Protune language presented in this work (Protune2 for short) and the one

presented in [19] (Protune1 for short).

External resources Logical external resources (cf. Note 6) were not supported

in Protune1 nor were the automatic identification, location, deployment and ex-

ploitation of external resources (cf. Section 3.1.3). As a first consequence, the

enforcement of Protune1 policies could take place only if: (i) needed (provisional)

external resources were manually made available to the Protune1 engine; and

(ii) each external resource was manually linked to an identifier within a configu-

ration file. Moreover, the binding between the external resource responsible for a

(provisional) predicate appearing in a policy and the predicate itself had to be made

explicit within the policy by means of ontology metarules like the following one,

which binds the (provisional) predicate retrieve/2 to the external resource identi-

fied in the configuration file by the URI www.happy-book.com/policies/module.

mf!/retrieve/2.

retrieve(Id, Resource)→ ontology :

<www.happy-book.com/policies/module.mf!/retrieve/2> .

Finally, for each predicate appearing in a policy, the Protune1 engine had to be

told about its type by means of type metarules like the following one, which states

that the predicate retrieve/2 is a provisional one.

retrieve(Id, Resource)→ type:provisional.

The following list shows that, beside unnecessarily requiring the policy author to

specify information which could be retrieved in an automatic way, type and ontology

metarules were sources of possible errors.

∙ Mixing up logical with provisional in a type metarule as well as misspelling

the identifier of the external resource in an ontology metarule induced the

Protune1 engine to behave differently than expected

54

∙ Since in Protune1 type and ontology metarules did not involve predicates

but atoms, the Protune1 engine had no means (but by resorting to defaults)

to retrieve the type of the predicate exploited in the atom retrieve(id2, res2),

if the only type metarule involving the predicate retrieve/2 and appearing

in the policy was the following one.

retrieve(id1, res1)→ type : provisional.

∙ If, beside the one above, the policy had contained the type metarule

retrieve(id2, res2)→ type : logical.

the type of the predicate retrieve/2 would have depended on the atom ex-

ploiting it. Similarly, the type of the predicate would have varied according

to the outcome of the evaluation of L1, . . . Ln if the policy had contained a

metarule whose body was not empty, like the following one.

retrieve(Id,Resource)→ type : logical← L1, . . . Ln.

Like type and ontology metarules, in Protune1 also actor metarules (cf. Sec-

tion 3.2) involved atoms. Beside the issues listed above, this made impossible for

a policy author writing a policy containing two literals which exploited the same

predicate and such that the first (resp. second) one had to be evaluated by the

server (resp. client).

Provisional atoms Protune1 supported two possible representations of provi-

sional atoms: either as classical atoms (cf. Section 3.2) or as special atoms. The first

representation was meant to be used for atoms whose evaluation had side-effects,

whereas the second one for atoms whose evaluation was side-effect free. A special

atom looked like the following

in([op1, ... opm], r:p(ip1, ... ipn)) (1)

55

where r is the (identifier of the) external resource, p the predicate name, ip1, . . . ipn

and op1, . . . opm its input and output parameters respectively. Output parameters

could only be variables, whereas input parameters only variables or strings, possibly

concatenated with each other by means of the operator & (X & " is a string.").

The following list shows some drawbacks of Protune1’s provisional atoms.

∙ As described above, the two representations of Protune1’s provisional atoms

were meant to be used in different cases. However, since it was the developer

of the external resource who ultimately determined the actual representation,

there was no guarantee that she complied with Protune1’s guidelines and,

in practice, the evaluation of special atoms could have side-effects and the

one of provisional atoms represented as classical atoms could be side-effect

free. Moreover, one could argue that the policy author mostly does not care

whether an atom’s evaluation has side-effects. Therefore, forcing her to use

a different syntax in order to distinguish the two cases reduced Protune1’s

transparency and abstraction level

∙ As we will see in the next paragraph, Protune1 strings could be represented

in a number of ways, e.g., as double-quoted character strings. However, neither

was it possible representing them as double-quoted character strings outside

a special atom nor was it possible representing them but as double-quoted

character strings within a special atom. The constraint of representing the

same entity in different ways according to the part of the policy it appeared in

was clearly misleading, error-prone and user-unfriendly, as was the possibility

of using the operator & only within special atoms

Protune2 normalizes the representation of provisional atoms by getting rid of

special atoms without losing any expressiveness: the Protune1 special atom (1)

can be represented as the Protune2 (classical) atom

p(ip1, . . . ipn, op1, . . . opm)

56

if m does not depend on the values of the input parameters, or as the atom

p(ip1, . . . ipn, op)

if it does, where op is supposed to be an object (cf. Section 3.2) having as many

properties as output parameters of p. In both cases, the directive import <r!/p/a>

must appear at the beginning of the policy, where a is the arity of p (i.e., n+m or

n+ 1 respectively).

Built-in datatypes Protune1 provided fewer built-in datatypes than Pro-

tune2, namely, integers and strings. Although with a slightly different syntax,

complex terms (cf. Section 3.2) were supported in Protune1 as well – however,

objects were not: the grammar of the Protune1 language allowed to define com-

plex terms but, being their semantics not formally specified, the Protune1 engine

was not able to handle them.

A Protune1 string could be represented in a number of ways: as single-

or double-quoted character string (‘A string’ or "A string"), as <>-delimited

or non-delimited character string, if it fulfilled some restrictions (<Astring> or

aString), or as the concatenation of a string defined in a PREFIX directive and

further characters (e.g., {p:string} was yet another representation of the string

Astring, if the directive PREFIX p : <A> appeared at the beginning of the pol-

icy). Such a proliferation of representations was likely to puzzle the user, especially

considering that some representations were only allowed within certain linguistic

constructs (cf. previous paragraph). For this reason, only the double-quoted repre-

sentation is allowed in Protune2.

Miscellany We conclude by mentioning further restrictions of Protune1 which

have been removed in Protune2: (i) only provisional atoms could appear in a

Protune1 goal (and they had to be wrapped by the allow token); (ii) Protune1

did not allow to extend the semantics of built-in operators (cf. Section 3.3.2); and

(iii) Protune1 provided up to one single response to a request. Last but not least,

the two versions of Protune base on different formalisms: Protune1 was based

57

on full Logic Programming [64], whereas Protune2 on Datalog [2].

CHAPTER 4

Using Policies in a Natural Way

Recent experiences with Facebook’s beacon service1 and Virgin’s use of Flickr pic-

tures2 have shown that the widespread adoption of applications (like Web 2.0 ap-

plications and social softwares) which allow users to share data did not come along

with an equally widespread use of technologies (such as policy languages) which al-

low users to fine-grainedly specify which data can be shared with whom. One reason

for this is that current policy languages are too complex to be easily exploited by

common users in a profitable way, since they typically require a policy author to

be a computer expert3 (see for instance excerpts of policies in different languages in

Fig. 4.1 and [12]).

Complex syntax (e.g., unusual tokens not exploited in every-day communica-

tion such as :-, -> and &), logical formalisms (cf. Section 2.3.1) and the difficulty in

general of grasping the meaning of the policy without previous knowledge or being

a computer expert are some of the reasons which make formal languages particu-

larly unfriendly to common users. Moreover, real-world policies tend to be complex,

making the specification process even harder.

As we mentioned at the beginning of Chapter 3, Protune includes mech-

anisms to generate natural language descriptions out of already specified policies

(e.g., the explanation metarules shown in lines 10–25 of Fig. 4.1 can be used to ex-

plain the policy to the end users in a user-friendly manner). However, this approach

only helps to understand policies but not to create or modify them.

This chapter describes Protune’s natural language front-end which allows

users to define policies in the ACE controlled natural language [39]. Such policies

are then automatically translated to the Protune policy language. With this

1http://www.washingtonpost.com/wp-dyn/content/article/2007/11/29/AR20071129025

03.html?hpid=topnews
2http://www.smh.com.au/news/technology/virgin-sued-for-using-teens-photo/2007/

09/21/1189881735928.html
3“Too often, only the Ph.D. student that designed a policy language or framework can use it

effectively”, Kent E. Seamons. Semantic Web and Policy Workshop, 2005.

58

59

(1) allow(download(User, Resource)) :-

(2) authenticated(User),

(3) hasSubscription(User, Subscription),

(4) availableFor(Subscription, Resource).

(5) authenticated(User) :-

(6) send(User, Credential),

(7) not forged(Credential),

(8) Credential["name"] = Name,

(9) User["name"] = Name.

(10) download(User, Resource)->explanation:

(11) "user \"" & User & "\" downloads resource \"" & Resource

(12) & "\"".

(13) authenticated(User)->explanation:

(14) "user \"" & User & "\" is authenticated".

(15) hasSubscription(User, Subscription)->explanation:

(16) "user \"" & User & "\" has subscription \"" & Subscription

(17) & "\"".

(18) availableFor(Subscription, Resource)->explanation:

(19) "subscription \"" & Subscription &

(20) "\" is available for resource \"" & Resource & "\"".

(21) send(User, Credential)->explanation:

(22) "user \"" & User & "\" sends credential \"" & Credential

(23) & "\"".

(24) forged(Credential)->explanation:

(25) "credential \"" & Credential & "\" is forged".

Figure 4.1: Example Protune policy

approach, the policy shown in Fig. 4.1 can be expressed as follows.

1. If a user is authenticated and has a subscription that is available for a resource

then she can download the resource.

2. Every user who sends a credential that is not provably forged and whose name

is the user’s name is authenticated.

Notice that the use of controlled natural languages to express policies makes the

explanation metarules mentioned above not needed anymore, since such policies

can be understood by common users as they are.

This chapter is organized as follows: Section 4.1 presents the concept of “con-

trolled natural language”, introduces the controlled natural language ACE and es-

60

pecially focuses on the internal format (DRS) the ACE parsing engine translates

ACE sentences into. Section 4.2 describes the mapping we defined between DRSs

and Protune policies. Section 4.3 presents a predictive editor which guides the

user step by step toward defining Protune policies by means of ACE sentences and

reports on the results of a preliminary user study evaluating its usability. Finally,

Section 4.4 compares our approach with related work.

4.1 Controlled natural languages

Controlled natural languages (CNLs) are subsets of natural languages that

are restricted (“controlled”) in a way that reduces or removes the ambiguity of the

language [72]. The main motivation is to improve the human-computer interaction4.

The users should be able to express statements in a language that is familiar to them.

On the other hand, the restrictions of the language enable the automatic processing

by computers.

The controlled natural languages we consider here are completely formal lan-

guages that can be mapped automatically and unambiguously to formal representa-

tions. Such languages are described by a formal grammar and are usually explained

to the users on the basis of construction rules (“which subset of the natural lan-

guage is covered?”) and interpretation rules (“how are the sentences interpreted

that would be ambiguous in the natural language?”). In order to clarify the inter-

pretation issue, let us have a look at the following sentence.

Bob buys the book with a card.

In full natural language this sentence has at least two different meanings according

to the context it appears in, namely

∙ Bob buys a book which has a card.

∙ Bob buys a book by means of a (credit) card.

4There exist also some CNLs whose goal is just to improve the understanding for non-native
speakers without aiming to be computer-processable. We do not consider such languages here.

61

In order to disambiguate sentences like the one above, CNLs have to make a number

of design choices in order to deterministically select one out of n possible readings.

The controlled natural language ACE, for instance, assumes that all prepositional

phrases refer to the closest verb (unless the preposition is of, in which case the

prepositional phrase always refers to the preceding noun phrase). In the example

above, ACE would assume that the phrases the book and with a card refer to the

action of buying, boiling down to the second one of the readings listed above.

Ambiguity resolution takes place on a purely syntactic basis, so that CNLs

typically do not differentiate between the purchase of the man and the purchase of

the book, although in everyday’s speech one probably means that it is the man to

buy whereas it is the book to be bought.

In the following sections we introduce the controlled natural language ACE

that we used for Protune’s natural language front-end. Furthermore, we describe

the internal format the ACE parsing engine translates ACE sentences into.

4.1.1 Attempto Controlled English

Attempto Controlled English (ACE)5 [39] is a mature controlled natural lan-

guage (concretely, a controlled subset of English) that has been developed and con-

stantly extended during the last fifteen years. Initially designed as a specification

language, the focus has shifted toward knowledge representation and especially ap-

plications for the Semantic Web.

ACE supports a wide range of English constructs: nouns, proper names, verbs,

adjectives, singular and plural noun phrases, active and passive voice, pronouns,

relative phrases, conjunction and disjunction (and, or), existential and universal

quantifiers (e.g., a, every), negation, modal verbs (e.g., can, must), cardinality re-

strictions (e.g., at most 3 objects), anaphoric references (e.g., the resource, she),

questions, commands and much more.

ACE comes along with a number of tools, the most important of which is the

Attempto Parsing Engine (APE)6. APE translates ACE sentences into DRSs [16, 51],

whose expressiveness is equivalent to the one of first-order logic. Various utility

5http://attempto.ifi.uzh.ch/site/
6http://attempto.ifi.uzh.ch/ape/

62

Standard NLP tool APE

segmentation
tokenization

sentence splitting
classification

parsing
association
normalization/deduplication

Table 4.1: A standard NLP tool’s processing steps vs. APE’s ones

tools use such representation and translate DRSs into other languages like e.g., the

ontology languages OWL and SWRL [49]. Furthermore, the ACE paraphraser can

translate DRSs back to ACE sentences, thereby providing a reformulation of the

original ACE text that can help understanding its APE interpretation.

Furthermore, many tools exist that apply ACE to a certain problem area:

RACE7 is a reasoner that can reason on ACE texts, ACE View [50] is a plugin for

the popular Protégé ontology editor and AceWiki [58] is a semantic wiki engine that

uses ACE for the representation of formal knowledge within a wiki.

Finally, ACE supports user-defined lexica that define proper names, nouns,

verbs, adjectives, adverbs, and prepositions. Thus, it is easy to customize ACE by

integrating a particular domain-specific vocabulary.

4.1.2 ACE as a natural language

ACE sentences are interpreted by APE. While interpreting an ACE sentence,

APE carries out the usual tasks accomplished by NLP tools. Tab. 4.1 lists such tasks

and shows the main differences w.r.t. the processing steps carried out by APE.

Segmentation is concerned with finding the boundaries of grammatical ele-

ments (be they single words or whole sentences) which will then undergo further

processing. W.r.t. the first ACE policy presented at the beginning of the chapter,

during the segmentation step If, a, user, . . . are recognized as words which form the

single sentence the whole policy consists of. APE breaks down the segmentation

step into two sub-tasks, namely tokenization and sentence splitting, concerned with

identifying the individual words and sentences of the input text respectively.

7http://attempto.ifi.uzh.ch/race/

63

During the classification step, each token is assigned a lexical category, whereas

the association step establishes relationships between lexical elements, thereby group-

ing them into higher-level clusters. W.r.t. the first ACE policy presented at the

beginning of the chapter, during the classification step the word a (resp. user)

is recognized as an article (resp. a common noun). During the association step,

the words a and user (resp. is and authenticated) are recognized as forming a

noun (resp. verb) phrase. APE performs classification and association in one single

parsing step.

Finally, both in usual NLP tools and in APE, the normalization/deduplication

step identifies and resolves yet higher-level relationships between linguistic elements.

W.r.t. the first ACE policy presented at the beginning of the chapter, during this

step the pronoun she is recognized as referring to the common noun user.

Beside the differences we just outlined, the overall approach distinguishes APE

from NLP tools. Whilst NLP tools aim at processing and making sense out of

(in principle) whichever input sentence, APE insists on well-formedness: an input

sentence not complying with ACE’s grammar is simply rejected. Moreover, whilst

an NLP tool is expected to interpret an input sentence the way a native speaker

would do, the burden of expressing a content the way APE interprets it relies on

the author of the input sentence.

4.1.3 Discourse Representation Structure

As a formal language, ACE has a deterministic and well-defined meaning.

Therefore, a developer may in principle use ACE sentences directly as the input

format of her application. This choice may turn out to be quite challenging since,

being ACE designed to be human-friendly, the translation of ACE sentences into a

logical representation is not trivial.

For this reason, the output of APE is a semantically equivalent representation

of the input ACE sentence which can be processed more easily in an automatic way.

This representation is called Discourse Representation Structure (DRS) and can be

thought of as a sort of abstract syntax tree of the input sentence. A DRS encodes

the whole information of the original ACE sentence and can be used “as it is” by

64

drs([A, B, C, D, E, F, G, H], [

object(A, user, countable, na, eq, 1)-1,

property(B, authenticated, pos)-1,

predicate(C, be, A, B)-1,

object(D, subscription, countable, na, eq, 1)-1,

object(E, resource, countable, na, eq, 1)-1,

property(F, available, pos)-1,

predicate(G, be, D, F)-1,

modifier_pp(G, for, E)-1,

predicate(H, have, A, D)-1

])

Table 4.2: An example DRS

Prolog programs.

Tab. 4.2, shows the DRS corresponding to the if -part of the first ACE policy

presented at the beginning of the chapter. In the following we will explain this

example, focusing on the elements relevant for the remainder of the chapter. A

thorough description of the DRS language is provided in [40].

For every noun (user, subscription and resource in the example), the DRS

introduces an object predicate, which is identified by a variable (A, D and E re-

spectively). All of user, subscription and resource are countable common nouns,

therefore the third argument of their object predicate is countable. Proper names

are also represented by object predicates, but their third argument is named.

For every adjective (authenticated and available), the DRS introduces a prope-

rty predicate, which is also identified by a variable (B and F respectively).

For every verb (namely is (authenticated), is (available) and has), the DRS

introduces a predicate predicate, which is identified by a variable (C, G and H

respectively). The third argument represents the subject, the fourth argument rep-

resents the object for transitive verbs and the predicate for the verb be, if it is used

in a copular way (i.e., to state a property of the subject). For example, the subject

of is (authenticated) is user, therefore the third argument of its predicate predicate

is the variable identifying user—namely A. On the other hand, its fourth argument

is the variable identifying the predicate authenticated—namely B.

Beside transitive verbs (like have), ACE also supports intransitive and di-

65

transitive verbs (like register and give respectively): intransitive verbs only have a

subject (e.g., someone registers), whereas ditransitive verbs, beside having a subject

and a (direct) object, also have an indirect object (e.g., someone gives something

to someone). Intransitive (resp. ditransitive) verbs are represented in the DRS as

predicate predicates with three (resp. five) arguments.

The predicate is (available) is modified by a prepositional phrase (for a re-

source). For this reason, the DRS contains a modifier pp predicate. Its first argu-

ment is the variable identifying is (available) (namely G), its second argument is the

preposition contained in the prepositional phrase (namely for) and its third argu-

ment is the variable identifying the noun (resource) contained in the prepositional

phrase (namely E).

Tab. 4.3 shows a pretty-printed version of the DRS that corresponds to the

the first ACE policy presented at the beginning of the chapter. It shows further

features of the DRS language which we will now explain.

Each box in Tab. 4.3 corresponds to a drs predicate. Nested boxes reflect

the possibility that drs predicates are nested within other drs predicates. This

happens whenever the ACE sentence contains linguistic constructs like implication

or possibility.

Our example sentence is a conditional sentence with the protasis a user is

authenticated and has a subscription that is available for a resource and the apodosis

she can download the resource. The surrounding box in the DRS connects the boxes

representing protasis and apodosis by the implication symbol (⇒).

The apodosis itself contains a possibility construct (can download the re-

source). The DRS represents it by a nested box, where the inner box for download

the resource is preceded by the deontic operator denoting possibility (◇).

Each box in Tab. 4.3 consists of two parts. The bottom part contains pred-

icates (in particular, nested drs predicates) within the scope of the drs predicate

represented by the box, whereas the upper part lists the variables directly introduced

by predicates within the scope of the drs, i.e., not introduced by nested drs’s.

We conclude our introduction to the DRS language by mentioning that ACE

allows to express formulae involving (among others) integers, reals, strings, variables

66

A B C D E F G H

object(A, user, countable, na, eq, 1)

property(B, authenticated, pos)

predicate(C, be, A, B)

object(D, subscription, countable, na, eq, 1)

object(E, resource, countable, na, eq, 1)

property(F, available, pos)

predicate(G, be, D, F)

modifier pp(G, for, E)

predicate(H, have, A, D)

⇒ ◇
I

predicate(I, download, A, E)

Table 4.3: A pretty-printed DRS

and the usual (in)equality operators. Such formulae are translated into DRSs by

means of the formula predicate. For instance, the ACE fragment X > 1.0 is

translated into the DRS predicates

object(A, something, dom, na, na, na)

formula(A, >, real(1.0))

Notice that the variable occurring in the ACE fragment (namely X) has been re-

placed by another one (namely A) and that the datatype of 1.0 is explicitly men-

tioned. Finally, the fact that the ACE fragment contains a variable X is interpreted

by APE as asserting that some entity identified by X exists. The existence of such

an entity is explicitly stated in the DRS by the object predicate.

4.2 Mapping DRS to Protune

Defining a mapping between DRSs and Protune policies involves two main

tasks: (i) characterizing the subset of the DRS language that expresses Protune

policies; and (ii) mapping this subset to Protune. In both steps, it makes sense

trying to translate linguistic constructs of the DRS language into Protune linguis-

tic constructs which have a comparable semantics.

67

In this section we present the DRS Parsing Engine (DPE), which maps a subset

of all possible DRSs into Protune policies. We first outline the requirements for

the mapping. The actual mapping is presented in Section 4.2.2.

4.2.1 Mapping requirements

Two main requirements guided the ACE→DRS mapping, namely

Unambiguity The mapping is unambiguous, in the sense that for each ACE sen-

tence there is only one DRS it is translated into (i.e., the input ACE sentence

univocally determines the DRS it is translated into)

Syntax-based As described in Section 4.1, only syntactic information is exploited

by APE when translating ACE sentences into DRSs. Contextual information,

which can help humans to disambiguate ambiguous sentences, is not exploited

by APE which resorts to a set of built-in disambiguation rules

Since DPE was meant to be an extension of APE, we designed our DRS→Protune

mapping to be unambiguous (i.e., the input DRS must univocally determine the

Protune policy it is translated into) and syntax-based. As a third requirement,

the mapping should cover Protune as much as possible, i.e., one must be able

to define as many Protune policies as possible through DRSs. As we will see in

Section 4.2.2, all Protune policies not containing metarules (cf. Section 3.2) can be

expressed by means of suitable DRSs. On the other hand, not all possible DRSs can

be translated into Protune policies. The reason is that many linguistic constructs

of the DRS language (e.g., classical negation, necessity and sentence subordination)

do not have an immediate correspondence in Protune.

4.2.2 Mapping

This section introduces the mapping DPE implements. Only a subset of the

issues considered when defining the DRS→Protune mapping will be discussed. A

more thorough overview is provided by [36].

We first outline the features of the Protune language we chose to express

through DRSs and provide a rational for our choices. We then describe the overall

68

structure a DRS must have in order to represent a Protune policy. Finally, we

describe how to represent Protune atoms by means of DRSs.

Which policies? First of all, our mapping does not cover metarules (cf. Sec-

tion 3.2). Although the Protune language in principle allows to create metarules

as complex as rules can be, in almost all cases real-world metarules conform to one

out of a set of few predefined patterns. For this reason, providing users with the

expressiveness of (an extensive subset of) ACE in order to define metarules would

be confusing and hence error-prone.

Mapping drs predicates As described in Section 4.1.3, nested DRSs can repre-

sent (among else): (i) implication; (ii) negation-as-failure (NAF); and (iii) possibil-

ity. These linguistic constructs can be directly translated into Protune: (i) rules;

(ii) negated literals; and (iii) decision atoms (cf. Tab. 4.4).

As described in Section 3.2, a generic Protune rule has the form A ← L1,

. . . Ln where n ≥ 0, A is an atom and L1, . . . Ln are literals. The meaning of the

rule is

A holds if each and all of L1, . . . Ln hold.

∀i : 1 ≤ i ≤ n Li equals either Bi or ∼ Bi for some atom Bi. The meaning of ∼ Bi

is

Bi does not provably hold.

The semantics of atoms A and Bi varies according to their type. In particular, the

meaning of a decision atom allow(C) (for some atom C) is

C can be evaluated upon request of some external entity.

Tab. 4.4 shows the two formats a DRS must possess in order to represent a Protune

rule. Box (a.1) represents a rule’s body as a set of literals, whereas box (a.2)

represents a rule’s head. Box (b) represents the special case of a Protune rule

without body. More formally, this leads to the following definition.

69

(a)
(1)

...

⇒ (2)

...

(b)
...

(c) ∼
...

(d) ◇
...

Table 4.4: Generic forms of DRSs representing Protune rules (a-b),
negated literals (c) and decision atoms (d)

Definition 38 (DRS rule) A DRS rule has either of the formats (a) or (b) in

Tab. 4.4, where

∙ the content of box (a.1) is a set of DRS literals and (a.2) is a DRS head

∙ (b) is a DRS atom

DRSs can express NAF, which we can exploit in order to represent Protune

negated literals.

Definition 39 (DRS negated literal) A DRS negated literal has the format (c)

in Tab. 4.4, where the content of the box is a DRS atom.

In order to represent Protune decision atoms, we use the possibility construct of

the DRS language, which is supposed to represent the possibility operator of deontic

logic but can be nicely reused for Protune decision atoms.

Definition 40 (DRS decision atom) A DRS decision atom has the format (d)

in Tab. 4.4, where the content of the box is a DRS atom.

Mapping atomic DRS predicates In order to finalize the DRS→Protune

mapping, we still have to define how to express comparison, atoms and value-

assignment atoms (cf. Section 3.2) by means of constructs of the DRS language.

This is accomplished by syntactically characterizing patterns of atomic DRS predi-

cates.

70

N
∘

A
C

E
D

R
S

P
r
o
t
u
n
e

1
X
>

1.
0

o
b
j
e
c
t
(
A
,

s
o
m
e
t
h
i
n
g
,

d
o
m
,

n
a
,

n
a
,

n
a
)

A
>

1.
0

f
o
r
m
u
l
a
(
A
,

>
,

r
e
a
l
(
1
.
0
)
)

2
(I

f)
B

ob
se

n
d
s

a
cr

ed
en

ti
al

o
b
j
e
c
t
(
A
,

B
o
b
,

n
a
m
e
d
,

n
a
,

e
q
,

1
)

se
n
d
(“
B
ob

”,
C
re
d
en
ti
a
l)

o
b
j
e
c
t
(
B
,

c
r
e
d
e
n
t
i
a
l
,

c
o
u
n
t
a
b
l
e
,

n
a
,

e
q
,

1
)

p
r
e
d
i
c
a
t
e
(
C
,

s
e
n
d
,

A
,

B
)

3
B

ob
n
eg

ot
ia

te
s

w
it

h
A

li
ce

o
b
j
e
c
t
(
A
,

B
o
b
,

n
a
m
e
d
,

n
a
,

e
q
,

1
)

“n
eg
ot
ia
te

#
w
it
ℎ

”(
“B

ob
”,

“A
li
ce

”)
o
b
j
e
c
t
(
B
,

A
l
i
c
e
,

n
a
m
e
d
,

n
a
,

e
q
,

1
)

p
r
e
d
i
c
a
t
e
(
C
,

n
e
g
o
t
i
a
t
e
,

A
)

m
o
d
i
f
i
e
r
p
p
(
C
,

w
i
t
h
,

B
)

4
B

ob
is

a
u
se

r
o
b
j
e
c
t
(
A
,

B
o
b
,

n
a
m
e
d
,

n
a
,

e
q
,

1
)

u
se
r(

“B
ob

”)
o
b
j
e
c
t
(
B
,

u
s
e
r
,

c
o
u
n
t
a
b
l
e
,

n
a
,

e
q
,

1
)

p
r
e
d
i
c
a
t
e
(
C
,

b
e
,

A
,

B
)

5
“s

u
b
sc

ri
p
ti

on
12

3”
is

av
ai

la
b
le

fo
r

B
ob

o
b
j
e
c
t
(
A
,

B
o
b
,

n
a
m
e
d
,

n
a
,

e
q
,

1
)

“a
v
a
il
a
bl
e#
f
or

”(
p
r
o
p
e
r
t
y
(
B
,

a
v
a
i
l
a
b
l
e
,

p
o
s
)

“s
u
bs
cr
ip
ti
on

12
3”
,“
B
ob

”
p
r
e
d
i
c
a
t
e
(
C
,

b
e
,

s
t
r
i
n
g
(
s
u
b
s
c
r
i
p
t
i
o
n
1
2
3
)
,

B
)

)
m
o
d
i
f
i
e
r
p
p
(
C
,

f
o
r
,

A
)

6
“G

u
er

n
ic

a.
jp

g”
is

in
“p

ic
tu

re
s”

p
r
e
d
i
c
a
t
e
(
A
,

b
e
,

s
t
r
i
n
g
(
G
u
e
r
n
i
c
a
.
j
p
g
)
)

“b
e#
in

”(
“G
u
er
n
ic
a
.j
pg

”,
“p
ic
tu
re
s”

)
m
o
d
i
f
i
e
r
p
p
(
A
,

i
n
,

s
t
r
i
n
g
(
p
i
c
t
u
r
e
s
)
)

7
(I

f)
th

e
n
am

e
of

th
e

cr
ed

en
ti

al
r
e
l
a
t
i
o
n
(
C
,

o
f
,

D
)

C
re
d
en
ti
a
l[

“n
a
m
e”

]
=
N
a
m
e

o
b
j
e
c
t
(
C
,

n
a
m
e
,

c
o
u
n
t
a
b
l
e
,

n
a
,

e
q
,

1
)

o
b
j
e
c
t
(
D
,

c
r
e
d
e
n
t
i
a
l
,

c
o
u
n
t
a
b
l
e
,

n
a
,

e
q
,

1
)

8
B

ob
’s

n
am

e
o
b
j
e
c
t
(
A
,

B
o
b
,

n
a
m
e
d
,

n
a
,

e
q
,

1
)

“B
ob

”[
“n
a
m
e”

]
=
N
a
m
e

r
e
l
a
t
i
o
n
(
B
,

o
f
,

A
)

o
b
j
e
c
t
(
B
,

n
a
m
e
,

c
o
u
n
t
a
b
l
e
,

n
a
,

e
q
,

1
)

T
a
b
le

4
.5

:
D

R
S
→

P
ro

tu
n
e

m
a
p
p
in

g
e
x
a
m

p
le

s

71

We already saw in Section 4.1.3 that DRSs can express formulae by means of

the predicate formula, therefore we can exploit this possibility in order to represent

Protune comparison atoms.

Definition 41 (DRS comparison atom) A DRS comparison atom is a set of

DRS predicates containing one single formula predicate and zero or more object

predicates.

As the first example in Tab. 4.5 shows, only the DRS formula predicate is actually

used for the translation.

Different patterns of DRS linguistic constructs can be mapped to Protune

classical atoms. We distinguish the following cases.

DRS predicate predicates are translated into Protune classical atoms using

the original verb lemma as the name of the atom. DRS object predicates are

dereferenced and directly included into the atom as constants (for proper names) or

variables (for common nouns). Example 2 in Tab. 4.5 shows how the DRS for Bob

sends a credential is translated. send becomes the name of a Protune classical

atom with a constant argument for the proper name Bob and variable argument for

the common noun credential.

DRS modifier pp predicates are translated by extending the name of the

corresponding Protune classical atom with the preposition of the prepositional

phrase and again including the dereferenced DRS object predicate as an argument

(cf. Example 3 in Tab. 4.5).

The translation pattern of the DRS predicate predicate differs if: (i) it rep-

resents the verb be; and (ii) the verb be is used in a copular way (cf. Section 4.1.3).

Example 4 in Tab. 4.5 illustrates the simple case, where the DRS predicate for the

complement (user) is translated into the name of a Protune classical atom with

one argument for the subject Bob. Example 5 illustrates the more complex case,

where be is further modified by the prepositional phrase for Bob. Finally, Example

6 shows that be, when not used in a copular way, is translated like other verbs (cf.

Example 3).

In summary, Protune classical atoms are generated from the following pat-

terns of DRS predicates.

72

Definition 42 (DRS classical atom) A DRS classical atom is a set of DRS pred-

icates containing one single predicate predicate and zero or more modifier pp,

object and property predicates.

Protune value-assignment atoms express properties possessed by objects. The

DRS language represents possession relationships between two objects X1 and X2

by means of the predicate relation(X1,of,X2). For this reason, we exploit the

DRS relation predicate in order to represent Protune value-assignment atoms.

Examples 7 and 8 in Tab. 4.5 illustrate how DRS relation predicates are translated

into Protune value-assignment atoms.

Definition 43 (DRS value-assignment atom) A DRS value-assignment atom

is a set of DRS predicates containing one single relation predicate and zero or

more object predicates.

Together, Definitions 39-43 define all necessary DRS patterns to generate Protune

atoms.

Definition 44 (DRS atom/literal) A DRS atom is either a DRS decision atom

or a DRS comparison atom or a DRS classical atom or a DRS value-assignment

atom. A DRS literal is either a DRS atom or a DRS negated literal.

4.3 Usability issues

APE’s functionalities are available through a number of interfaces. In partic-

ular, a stand-alone distribution is available8 which can be downloaded and installed

on one’s own computer.

Whenever a non well-formed sentence is input to APE’s stand-alone distribu-

tion, an error message containing debug information as well as suggestions to fix the

problem occurred is shown (e.g., Every ACE text must end with . or ? or !.).

DPE provides a similar interface, with the difference that error messages (and

suggestions for fixes) are provided not only if the input is not an ACE sentence, but

8http://attempto.ifi.uzh.ch/site/downloads/files/ape-6.5-100128.zip

73

also if it is an ACE sentence which does not translate into a DRS rule (as defined

in Section 4.2.2), and hence cannot be translated into a Protune policy.

Although meaningful error messages can help by driving users toward well-

formed input sentences, the approach provided by APE’s stand-alone distribution

and DPE suffers from a big drawback in terms of usability: even if the user fixes

the problems occurred in her sentence according to the suggestions contained in the

error message, there is no guarantee that the corrected sentence will be well-formed,

since it might still contain (different) errors. For this reason, the process of inputing

a sentence can result in a (possibly long) sequence of steps, in each of which new

errors appear which need to be fixed in the following attempt.

Furthermore, the detection of the cause of a syntax error is not trivial at all.

For instance, in the case of the incorrect sentence a customer provides a card pays,

the user probably forgot a word somewhere in the sentence. But at least three

different correct sentences can be constructed by the introduction of one word: a

customer provides a card that pays, a customer that provides a card pays and a cus-

tomer provides a card and pays. Thus, without further information it is impossible

to find out what the actual mistake was.

W.r.t. usability, a much better approach is to constrain users to only create

well-formed input sentences. Section 4.3.1 describes a possible way to enforce this

constraint.

4.3.1 A predictive authoring tool

Even though CNLs are much easier to use than other computer languages, they

still require a minimum learning process of their restrictions and interpretation rules.

In order to ease and speed up this learning process, we suggest to use predictive

editors [59], i.e., editors that are aware of the grammar of the used CNL and can

guide the user step by step through the creation of a sentence. Such an editor

forces the user to continue the sentence in a way that corresponds to the respective

grammar and the currently loaded lexicon. Therefore, a complete sentence is always

syntactically correct and no error messages are needed.

74

Several such editors have been introduced, for example ECOLE9 or GINO [15].

AceWiki and the ACE Editor make use of the same predictive editor that has been

developed to support subsets of ACE. This predictive editor is very flexible, which

enabled us to adapt it to Protune’s requirements and to use it for the evaluation

described in Section 4.3.3.

Fig. 4.2 is a screenshot of the predictive editor that we used for the evaluation.

The numbered components are explained below.

(1) is a read-only text area that shows the beginning of a sentence. This

fragment has been entered by a user and it has been accepted by the editor as a

correct sentence beginning. Thus, there is at least one possible completion that

leads to a correct sentence. The button Delete can be used to delete the last token

inserted, whereas pressing the Clear button resets the content of the text area.

The text field (2) can be used to enter the next words of the sentence. If they

are a correct continuation of the sentence then they are moved to the text field (1)

as soon as the RETURN key is hit.

Clicking on the entries of the menu boxes (3) is an alternative way to construct

a sentence. There is a menu box for each word class that is allowed at the current

position. In this case, only function words, intransitive adjectives and singular

countable nouns representing persons or objects are allowed. The menu box for

verbs, for example, is not shown because verbs are not allowed at this position.

4.3.2 Editor’s features

The predictive editor described in Section 4.3.1 is implemented as a Web ap-

plication and can be easily deployed on a servlet container and accessed remotely.

The default editor can be personalized by providing a set of application-specific

components, the most important of which is the grammar of the language the editor

is meant to support.

As described in Section 4.2.1, not all features of ACE are used to express

Protune policies. For this reason, ACE policies (i.e., the set of all ACE sentences

expressing Protune policies) is a proper subset of the set of all ACE sentences.

9http://www.ics.mq.edu.au/˜rolfs/peng/writing-peng.html

75

Our editor (shown in Fig. 4.2) currently supports a proper subset of ACE policies,

which we called ProACE. This set is sound and possesses a remarkable property

which we call half-coverage.

Soundness Each sentence belonging to ProACE can be translated to a Protune

rule. This property ensures that it is never the case that APE translates

a ProACE sentence into a DRS which is not a DRS rule as defined in Sec-

tion 4.2.2

Half-coverage For each ACE sentence which: (i) does not belong to ProACE; and

(ii) could be in principle translated to a Protune policy P ; there is a(n ACE)

sentence belonging to ProACE which can be translated to P . This property

ensures that, if there is at all a way to express a Protune policy in ACE,

then there is a way to express the same policy in ProACE. In other words, this

property guarantees that, although ProACE is a proper subset of ACE, it does

not lower ACE’s expressiveness w.r.t. the capability of expressing Protune

policies

4.3.3 Evaluation

We conducted a preliminary user study in order to evaluate efficacy and effi-

ciency of our framework. The user study makes use of the editor described in Sec-

tion 4.3.1 and is available at http://policy.l3s.uni-hannover.de:9080/proace.

Its fine-grained results are reported at http://policy.l3s.uni-hannover.de:9080

/proace/report.xml (Internet Explorer is required).

We asked the participants to reformulate the (full) natural language sentences

listed in Tab. 4.6 so that the editor accepted them. We did not provide any further

information to the participants beside the one available on the user study’s Web

pages. In particular, we did not provide any information about ProACE’s syntax

and interpretation rules. We only supplied few example ProACE sentences which

the users were supposed to mimic when reformulating the sentences in Tab. 4.6.

In order to evaluate our framework, we tracked the user’s interaction with it,

namely: (i) the time elapsed before the user undertook an action (e.g., pressing a

76

Figure 4.2: A predictive authoring tool

N∘ Sentence Average Average Success
attempt time (s) rate (%)
number

1 Colleagues can access files related 2 194 (5.86) 11.11 (22.22)
to work.

2 Directory “work” contains files 1.79 162 (6.18) 18.18
related to work.

3 Friends can see everything which 1.64 151 (4.86) 20
is not related to work.

4 Friends of friends can see public files. 1.5 125 (4.82) 9.09 (81.81)

5 “Un chien andalou.mpg” is public. 1.38 51 (5.39) 100

6 “Guernica.jpg” is in directory “work”. 1.08 42 (7.08) 100

7 John is a friend. 1 17 (3.66) 92.31

Table 4.6: Sentences exploited in the user study

77

button or hitting the RETURN key); (ii) how many times the user reworked the same

sentence and the overall time spent with it; and (iii) the final version of a sentence.

The first set of statistics can be used to evaluate the efficiency of our frame-

work: if much time elapses between two following actions it might mean that the

user is unsure about what she should do and possibly does not find the interface

user-friendly. The third set of statistics can be used to check whether the sentence

reformulated by the user, as it is interpreted by APE and DPE, is semantically

equivalent to the original (full natural language) sentence, thereby evaluating the

efficacy of our framework. Finally, the second set of statistics can be used to esti-

mate the difficulty degree of a sentence: if the user spent much time with a sentence

and reworked it many times, most likely she found that sentence more difficult

than another one she did not spend so much time with and she did not rework so

many times. The estimate of the difficulty degree of a sentence can then be used to

normalize the other sets of statistics.

The entries in Tab. 4.6 are ordered according to a descending difficulty level.

Tab. 4.6 also shows how many times a sentence has been reworked (in average) as

well as the overall time spent in average with it and to start an action (between

parenthesis). The time required to reformulate a sentence varies from 17s to a bit

more than 3min: taking into account that the users had no previous knowledge

about ProACE’s syntactical constraints, we consider these values to be satisfactory.

Finally, the time required to undertake an action varies from less than 4s to a bit

more than 7s, being in average 5.48s: taking into account the time needed to search

all menu boxes (cf. Fig. 4.2) and to estimate whether a token can express the

intended meaning, we also consider these values to be satisfactory.

In order to evaluate the efficacy of our framework, we classified the sentences

reformulated by the users as: (i) ProACE-correct; (ii) NL-correct; (iii) wrong; and

(iv) off-topic.

ProACE-correct sentences are semantically equivalent to the original ones both

in natural language and in ProACE. NL-correct sentences are semantically equiv-

alent to the original ones in natural language but not in ProACE. For instance,

sentence

78

Every colleague accesses everything in “work”.

can be considered a correct reformulation in natural language of the first sentence

in Tab. 4.6. However, intended as a ProACE reformulation of the same sentence, it

presents three errors.

1. A periphrastic form must be used to point out that only colleagues are allowed

to access everything in “work”: every colleague must be replaced by everyone

who is a colleague

2. The verb can must be used to express the permission: accesses must be re-

placed by can access

3. A new subordinate sentence must be used to point out the location of the

resources: in “work” must be replaced by which is in “work”

Wrong sentences are semantically equivalent to the original ones neither in natural

language nor in ProACE. Finally, off-topic sentences were not meant to reformulate

the original ones: sometimes users did not reformulate some of the sentences but

combined them with other ones in order to infer new sentences which they then

reformulated. For instance, many users reformulated the first sentence in Tab. 4.6

as follows.

Everybody who is a colleague can access everything which is in “work”.

Sentence 2 in Tab. 4.6 indeed asserts that directory “work” contains files related to

work. Since no other directories are mentioned which contain files related to work,

the users probably considered sentence 2 equivalent to the following one by applying

a sort of “closed-world assumption” inference rule.

All files related to work are contained in directory “work”.

Combining this sentence with the first one in Tab. 4.6 leads to the reformulation

above. Off-topic sentences are not considered in the last column of Tab. 4.6

79

The last column of Tab. 4.6 shows the percentage of reformulated sentences

which are ProACE-correct. Between parenthesis it is also shown how such percent-

age would increase if the users had been aware of DPE’s interpretation rules which

led to the errors described above. The results show that users find ProACE quite in-

tuitive as long as they have to define simple policies (like sentences 5-7 in Tab. 4.6),

that a basic knowledge of APE and DPE’s interpretation rules already allows to

specify more complex policies (like sentence 4) and that a deeper knowledge of such

rules is a prerequisite to define yet more complex policies (like sentences 1-3).

4.4 Related work

To the best of our knowledge, there is no previous work to exploit controlled

natural languages in order to ease the task of defining formal policies. Still, the need

of a user-friendly interface to policy specification is perceived in the community

and different approaches have been proposed, some of which also exploit natural

language.

[78] suggests to use UML10 sequence diagrams as a notation for policy specifi-

cation. The authors evaluate to which extent UML is suitable for the specification

of policies and especially focus on expressiveness, utility and human readability. Al-

though sequence diagrams are expressive enough to specify policies, the authors rec-

ognize that policy specification by means of sequence diagrams has major readability

and understandability problems which, if acceptable for engineers, are unlikely to

be overcome by non-technicians without strict guidance.

Among other new features, [83] describes the facilities the KAoS policy man-

agement framework (cf. Chapter 2) provides for policy authoring. In particular, the

Generic Policy Editor provides a policy author with a generic policy statement in

the form of a natural language sentence. More specific policies can be asserted by

replacing parts of such statement with terms retrieved from available and relevant

ontologies adapted to the current context

Although the Generic Policy Editor does exploit natural language, it simply

plays the role of a fancier interface: the freedom of the user is actually constrained

10http://www.uml.org/

80

to selecting the values of some fields out of a list, i.e., the approach does not differ

from a classical user interface provided with a set of combo boxes.

[23] and [52] describe the policy workbench SPARCLE which enables users

to enter policies in natural language. The approach pursued by the authors lays

somehow in the middle between a “template-based” and a “full natural language”

one. On the one hand, policies must comply with one out of two high-level templates,

e.g.,

[User category] can [Action] [Data Category] for the purpose

of [Purpose] if [Condition] with [Obligation]

On the other hand, users are allowed to define the elements the templates consist

of (user categories, actions . . .) the way they like. For this reason, there is no

guarantee that SPARCLE will correctly interpret the input policy (i.e., that the

semantics of the policy, as intended by SPARCLE, corresponds to the one the user

wanted to express). In our approach, a misinterpretation of the user’s input can

only happen if she did not stick to the interpretation rules of ACE and DPE (as

described in Section 4.2.1).

Somehow related is also [57], which describes a system able to process privacy

policies in full natural language. However, the focus of the paper is not on supporting

the users with an easy interface to policy specification but on analyzing user policies

(describing under which circumstances users are willing to disclose personal data)

and enterprise policies (describing how enterprises handle customers’ personal data)

in order to find compatibilities between them. NLP techniques are exploited in

order to convert policies to sets of (name, value) pairs (where both name and value

belong to a predefined vocabulary), which are then matched.

CHAPTER 5

Access Control for Sharing Semantic Data across Desktops

As we noticed in Section 1.2, the expressiveness of the policy languages proposed

by the scientific community increased over time. At the beginning of Chapter 4,

we already pointed out a consequence of such increment of expressiveness, namely,

the reduction of the user-friendliness of policy languages. This chapter is concerned

with another consequence, namely, the increment of the computational overhead

required to enforce policies of languages with bigger and bigger expressiveness. This

problem is especially serious in all application scenarios which require a big amount

of requests to be evaluated against complex policies in a short time (as it happens

to, e.g., Web Servers).

A possible way to overcome this problem consists in pre-evaluating the poli-

cies available in a system against all possible requests and storing the results in a

suitable way (e.g., in a database). This way, as soon as a request comes in, the

computationally expensive process of evaluating the system’s policies against the

request does not need to be performed anymore since the request can be accepted

or rejected by looking up the pre-computed result.

This chapter thoroughly describes the issues related to the pre-evaluation of

policies in the case of a generic policy language and afterwards focuses on the spe-

cific issues of Protune, which we used to test the efficacy and efficiency of our

approach. The results of our experiments w.r.t. the Semantic Desktop scenario are

also reported.

This chapter is organized as follows. Section 5.1 presents a general-purpose

strategy to lower the policy enforcement time by exploiting pre-evaluation. The

general-purpose strategy does not provide good performance against policy modifi-

cations. In order to overcome this problem, some knowledge of the employed policy

language is required. For this reason, Section 5.2 presents a special-purpose strategy

applicable to policies defined in the Protune policy language. Section 5.3 intro-

duces the concept of “Semantic Desktop” and presents the experimental results of

81

82

the application of the general-purpose strategy to the Semantic Desktop scenario.

Finally, we discuss related work in Section 5.4.

5.1 The general-purpose strategy

This section describes our general-purpose strategy to lower the policy enforce-

ment time. We first introduce the conceptual framework our strategy applies to and

afterwards we describe the strategy itself.

5.1.1 The conceptual framework

This section: (i) elaborates on some general properties of policy languages

described in Chapter 2; and (ii) introduces some general properties of policy engines.

Such properties are organized according to the following independent dimensions

∙ expressiveness

∙ capability of specifying both positive and negative information explicitly

∙ interaction with the user at evaluation-time

As mentioned at the beginning of Chapter 1, a policy states conditions under which

an action can be executed. Such conditions can involve: (i) properties of the entity

(human or software agent) requesting its execution (requester); (ii) properties of

the entity on which the action has to be executed (resource); (iii) properties of the

action itself; or (iv) environmental properties.

As we mentioned in Section 2.3.1, in order to provide the language with a

well-defined semantics, policy languages are usually based on some mathematical

formalism, typically Description Logic or Logic Programming or some suitable sub-

set of either of them. One of the main differences between Description Logic-based

(DL-based) and Logic Programming-based (LP-based) policy languages is the way

they deal with negation: Description Logic allows to define negative information ex-

plicitly, whereas LP-based systems can only deduce negative information by means

of the so-called negation-as-failure inference rule (cf. Section 3.3).

Since DL-based languages allow to specify both positive and negative infor-

mation, consistency problems arise whenever both a statement and its negation are

83

asserted. This problem is typically addressed by allowing the user to define priorities

among statements (this is the strategy adopted, e.g., by the designers of KAoS—cf.

Chapter 2).

LP-based languages do not have to deal with consistency issues, since they only

allow the user to specify positive information. The other side of the coin is that, as

soon as new information is added to Logic Programs, consequences which could be

drawn previously cannot be inferred anymore (this is commonly expressed by the

sentence “negation-as-failure is a non-monotonic inference rule”—cf. Section 2.3.1).

Since DL-based languages allow to specify both positive and negative informa-

tion, they can enable the user to define both policies stating under which conditions

a request must be accepted (allow policies) and policies stating under which condi-

tions a request may not be accepted (deny policies). Since LP-based languages allow

to specify only positive information, they can only enable the user to define either

allow or deny policies. The first approach automatically rejects incoming requests

which do not fulfill the given conditions and is usually preferred, since wrongly ac-

cepting a request which should have been rejected is typically a more serious issue

than rejecting a request which should have been accepted.

Nevertheless, LP-based languages can be exploited as building blocks of higher-

level languages which do allow to explicitly specify both positive and negative in-

formation by enforcing a negation semantics on top of them. This can be easily

obtained as follows: let L be an LP-based language and L′ its extension with nega-

tion. A policy of L′ is a pair (P, flag), where: (i) P is a policy of L; (ii) flag ∈
{allow, deny}; and (iii) P is interpreted as an allow policy if flag = allow and as

a deny policy if flag = deny. This approach has been exploited in the definition of

the LP-based policy language Rei (cf. Chapter 2) and has been also applied to the

LP-based policy language Protune in [1].

Many application scenarios do not require the policy owner to take part in

the policy evaluation process. This is e.g., the case of a Web Server which delivers

(resp. does not deliver) sensitive information according to the clients’ properties as

specified in the server policy. In this case, it is reasonable assuming that the policy

owner (e.g., the human being who deployed the Web application) is never requested

84

to provide further information to be used during the evaluation of the policy. Other

application scenarios do require that the policy evaluation process involves the policy

owner directly. This is often the case of firewalls on desktop computers. As soon

as a known application tries to access the computer, the request is (not) accepted

automatically according to the available policies. As soon as an unknown application

tries to access the computer, the policy owner (i.e., the user) is asked whether the

request should (not) be accepted.

In the next section we present a strategy to lower the policy enforcement time

which applies to policy languages and engines that

∙ allow to define policies based on properties of requester, action and resource

∙ enable to define allow and deny policies

∙ may require the policy owner to take part in the policy evaluation process

Cela va sans dire, our solution also applies to policy languages and engines which

support only a subset of the features listed above.

On the other hand, our solution does not apply to policies which set conditions

on environmental properties: it is clear that it does not make sense pre-evaluating

a policy which e.g., grants access to a resource from 8am to 5pm since, if only one

out of pre-evaluation time and query time belongs to this interval, access will be

wrongly granted/denied.

5.1.2 A näıve general-purpose strategy

The UML1 diagram presented in Fig. 5.1 shows the entities a generic autho-

rization framework is concerned with, namely requesters, resources, actions and

policies: all of requesters, resources and actions are identified by some sort of identi-

fier, whereas a policy, beside the text of the policy itself, possesses a flag indicating

whether it applies only to the resources (resp. requesters, actions) available at policy

creation-time or also to resources possibly added later on.

Policies are distinct in allow and deny policies and dominance relationships

can be defined among them: an allow (resp. deny) policy can dominate and be

1http://www.uml.org/

85

Figure 5.1: A basic UML class diagram of a generic authorization frame-
work

dominated by an arbitrary number of deny (resp. allow) policies, meaning that in

case of conflict the dominating policy will be enforced. In the following we will call

such relationships among policies priority relationships.

The set of priority relationships induces a graph structure over the set of

policies. Special care must be taken in order to avoid that the graph contains loops,

since otherwise all policies belonging to a loop would be dominated and none of

them could be enforced. We will describe in the following how our strategy avoids

that loops are built in the priority relationship graph.

The basic functionality provided by an authorization framework is the ca-

pability of (not) authorizing requesters to perform actions on resources. However,

real-world authorization frameworks have to provide surrounding facilities for adding

and removing requesters, actions, resources and policies. In the following we briefly

sketch the internals of such functionalities.

Request evaluation The evaluation of a request for accessing a resource takes

place according to the following algorithm. If there is a non-dominated ap-

plicable policy P , the request is accepted or rejected, according to whether

P is an allow or a deny policy. Otherwise, the user is asked whether the

request should be accepted or rejected. In the latter case, the user’s answer

is interpreted as the definition of a new policy which dominates every pos-

sibly conflicting one. Notice that the addition of such priority relationships

86

Figure 5.2: The UML class diagram of our authorization framework

can never make the priority relationship graph cyclic, since in such graph the

newly added policy does not have incoming arcs

Resource removal The addition of a new resource does not require to perform any

further operation, whereas, in order to keep the policy repository as tidy as

possible, it makes sense removing all policies affecting one single resource upon

removal of that resource. Notice that with our approach it is not infrequent

that policies apply to one single resource: as we described above, this is the case

whenever the user is asked whether a request should be accepted or rejected.

Requester and action addition and removal are handled in a similar way as

resource addition and removal

Policy addition Whenever a new policy is added, it is checked whether it conflicts

with already defined policies. If this is the case, the user is asked to define pri-

ority relationships between the new policy and the conflicting ones. The user

is not allowed to define priority relationships which would make the priority

relationship graph cyclic

Policy removal Whenever a policy is removed, all relationships it was involved in

are removed as well

87

5.1.3 The general-purpose strategy revisited

When performing the operations listed in Section 5.1.2, some activities must

be carried out which are computationally expensive, namely

1. selection of non-dominated policies which apply to a given request (cf. list

item 1)

2. identification of policies applicable to one single resource/requester (cf. list

item 2)

3. identification of conflicting policies (cf. list item 3)

4. constraining the user to define only priority relationships which keep the pri-

ority relationship graph acyclic (cf. list item 3)

The UML diagram presented in Fig. 5.2 is a variant of the one shown in Fig. 5.1

and adds further information which is meant to reduce the computational cost of

the activities listed above. A new attribute dominatingPolicyNr has been added to

policies, indicating how many other policies dominate a given one, and a relationship

between policies and resources (resp. requesters, actions) has been added. A policy

can affect an arbitrary number of resources (resp. requesters, actions). On the other

hand, each resource (resp. requester, action) can be affected by an arbitrary number

of policies. These relationships have a unique attribute tracking whether the policy

affects only that resource (resp. requester, action). In the following we will call

relationships between policies and resources (resp. requesters, actions) influence

relationships.

The addition of redundant information requires some overhead in order to

keep such information consistent with the global state of the system. W.r.t. the list

presented in Section 5.1.2, the following modifications are needed.

Resource addition Whenever a new resource is added, corresponding relation-

ships with the policies it is affected by are defined. Notice that also rela-

tionships with dominated policies are defined, so that they do not need to

be computed each time a dominating policy is deleted. Relationships are of

88

course defined only with policies which apply also to resources added after

policy creation-time

Resource removal Whenever a resource is removed, all relationships it was in-

volved in are removed as well

Policy addition Whenever a new policy is added, influence relationships are de-

fined between the new policy and the resources, requesters and actions it

affects: if the new policy affects only one single resource (resp. requester,

action) the unique attribute of the influence relationship is set. Finally, the

dominatingPolicyNr attribute of the new policy is initialized according to

the priority relationships defined and the one of the policies dominated by the

new policy is incremented

Policy removal Whenever a policy is removed, all influence relationships it was

involved in are removed as well. The dominatingPolicyNr attribute of all

policies which were dominated by the deleted one is decremented

Against the increase in space needed to store explicitly all information about re-

questers, actions, resources, policies and the relationships between them, the revis-

ited general-purpose strategy has the potential of dramatically decreasing the time

needed by an authorization framework to carry out its activities. For instance, with

our strategy the evaluation of a request, which is typically a time-consuming task,

simply requires to look up whether a policy exists which applies to the current re-

quester, action and resource and, if this is the case, whether such policy is an allow

or a deny one. Assuming that the information shown in Fig. 5.2 is represented in a

reasonable way as a relational database, this task may amount to issuing one single

SELECT query to the corresponding RDBMS.

However, there is still a task for which our strategy does not provide good

performance, namely reacting to policy modifications: against the modification of

a policy, all influence relationships involving it have to be recomputed, even if the

changes actually involve only few of them. A better approach would be to identify

the influence relationships affected by the changes and to update only them. How-

89

ever, this task essentially depends on the employed policy language, therefore no

general solution can be provided.

In the following we describe an efficient strategy to identify the influence re-

lationships affected by Protune policies.

5.2 The special-purpose strategy

This section describes an efficient strategy to identify the influence relation-

ships (cf. Section 5.1.3) affected by Protune policies. This strategy has the poten-

tial of dramatically decreasing the time needed to identify the influence relationships

affected by modifications of a Protune policy. As described in Section 3.6, Pro-

tune is based on Datalog. For this reason, we first introduce our strategy for

Datalog programs in Section 5.2.1 and we then extend it to Protune policies in

Section 5.2.2. Finally, we only focus on policy modifications consisting in addition

and removal of rules.

5.2.1 The Datalog case

Identifying the influence relationships affected by changes to Protune policies

is a particular case of identifying the modifications in the extension of a predicate

against changes in a Logic Program. This section addresses this more general prob-

lem and presents an efficient algorithm which allows to identify a superset of such

modifications.

Whenever a Protune policy is modified, all influence relationships it was

involved in have to be recomputed. Especially for big sets of requesters, actions

and resources, this process can be extremely expensive and time-consuming. A

better approach would be to first identify the influence relationships which have to

be recomputed (which, at least for small modifications to the Protune policy, are

likely to be much fewer than all possible combinations of requesters, actions and

resources) and to recompute only those.

However, the identification of each and all influence relationships which have

to be recomputed can be an expensive and time-consuming task as well. For this

reason, we could relax this requirement and identify a superset of the influence

90

relationships which have to be recomputed. Being the overall time of relationship

identification and recomputation to be minimized, an algorithm A1 identifying more

relationships than a slower algorithm A2 could still be preferable if the time required

to recompute the additional relationships is less than the difference of the execution

times of A2 and A1.

This section introduces an algorithm identifying a superset of the influence

relationships to be recomputed and explains the rational behind it. We start by

recalling that

1. an atom p(x⃗) holds according to a Datalog program P iff it matches the head

of some rule of P whose body holds. More formally,

P ∣= p(x⃗)⇔ ∃R ∈ P, �∣�HR = p(x⃗) ∧ P ∣= �BR

where � is a substitution [64] and HR (resp. BR) denotes the head (resp. body)

of a rule R of P

2. the body B of a rule of a Datalog program P holds iff each of the literals in

B holds. More formally,

P ∣= B ⇔ ∃�∣∀l ∈ B P ∣= �l

where � is a substitution

3. a ground negated literal holds iff the atom it exploits does not hold. More

formally,

P ∣=∼ p(x⃗)⇔ ¬P ∣= p(x⃗)

where ¬ (resp. ∼) denotes classical negation (resp. negation-as-failure) and

no variables appear in x⃗

Definition 45 will allow to ease the notation in the following.

Definition 45 (Consequence) Given a Datalog program P and an atom p(x⃗), we

91

say that p(x⃗) is a consequence of P by means of a rule R ∈ P iff

∃�∣�HR = p(x⃗) ∧ P ∣= �BR

where � is a substitution and HR (resp. BR) denotes the head (resp. body) of R.

We will write P ∣=R p(x⃗) to denote the fact that the atom p(x⃗) is a consequence of

a Datalog program P by means of a rule R. We will also write P ∣=ℛ p(x⃗), where

ℛ ⊆ P , as a shortcut for ∨R∈ℛP ∣=R p(x⃗). Finally, notice that P ∣=P p(x⃗) and

P ∣= p(x⃗) are equivalent.

We now present the definitions of extension and change functions. Such def-

initions, as well as the following ones, rely on the notion of universe U , a generic

set which we will assume to be finite and to contain all constants appearing in the

given Datalog program(s).

Definition 46 (Extension function) Given a universe U and a Datalog program

P , the extension function ℰU ,P associates each predicate p appearing in P with the

set

{x⃗ ∈ Un∣P ∣= p(x⃗)}

(extension of p), where n denotes the arity of p.

Intuitively, ℰU ,P associates each predicate p appearing in P with the set of its ground

instances p(x⃗) which hold in P .

Definition 47 (Change function) Given a universe U and two Datalog programs

P1 and P2, the change function CU ,P1,P2 associates each predicate p appearing in P1

or P2 with the set

{x⃗ ∈ Un∣P1 ∣= p(x⃗)∨̇P2 ∣= p(x⃗)}

(change set of p), where n (resp. ∨̇) denotes the arity of p (resp. the XOR boolean

operator).

Intuitively, CU ,P1,P2 associates each predicate p appearing in P1 or P2 with the set of

its ground instances p(x⃗) which hold either in P1 or in P2 but not in both of them.

92

The following theorem directly derives from the definitions of extension and

change functions.

Theorem 3 Given a universe U and two Datalog programs P1 and P2, for each

predicate p appearing in P1 or P2

CU ,P1,P2(p) = ℰU ,P1(p)△ℰU ,P2(p)

where △ denotes the symmetric difference operator.

Unfortunately, Theorem 3 cannot be exploited to compute in an efficient way the

change set of predicates after modifications to a Datalog program, since it would re-

quire to compute the extension of such predicates before and after the modifications

took place and to compare the results with each other.

The remaining of this section is devoted to the description of the modified

change function ĈU ,P1,P2 . Its definition (cf. below) is pretty similar to the one of

change function, the main difference being the condition the n-uples x⃗ have to fulfill

in order to belong to the image of a predicate. Since such condition has been relaxed,

for each predicate p it holds that CU ,P1,P2(p) ⊆ ĈU ,P1,P2(p). On the other hand, the

relaxation has been carried out in a way such that the computation of ĈU ,P1,P2 is

typically less expensive and time-consuming than the one of CU ,P1,P2 .

Tab. 5.1 shows the logical steps we performed to modify the change function

into the modified change function. In order to improve readability, we assume

throughout the table that conjunctions bind stronger than disjunctions.

Cell 1 is a paraphrase of the condition in Definition 47 which takes into account

the logical equivalence A∨̇B ≡ (A∧¬B)∨ (¬A∧B) and the equivalence presented

in Item 1 of the previous list. Only the first part of the paraphrase is shown, since

the second part can be obtained from the first one by swapping all occurrences of 1

and 2.

Cell 2 does not differ from the previous one but for a further condition (namely,

R1
1 ∈ P2 ∨ R1

1 /∈ P2) which has been added to the first element of the conjunction.

Being this further condition always true, the addition does not modify the semantics

of the whole expression.

93

1
(∃
R

1 1
∈
P

1
,�

1 1
∣�

1 1
H
R

1 1
=
p(
x⃗

)
∧
P

1
∣=
�1 1
B
R

1 1
)
∧
¬(
∃R

1 2
∈
P

2
,�

1 2
∣�

1 2
H
R

1 2
=
p(
x⃗

)
∧
P

2
∣=
�1 2
B
R

1 2
)∨

..
.

2
(∃
R

1 1
∈
P

1
,�

1 1
∣�

1 1
H
R

1 1
=
p(
x⃗

)
∧
P

1
∣=
�1 1
B
R

1 1
∧

(R
1 1
∈
P

2
∨
R

1 1
/∈
P

2
))
∧
¬(
∃R

1 2
∈
P

2
,�

1 2
∣�

1 2
H
R

1 2
=
p(
x⃗

)
∧
P

2
∣=
�1 2
B
R

1 2
)∨

..
.

3
(∃
R

1 1
∈
P

1
∩
P

2
,�

1 1
∣�

1 1
H
R

1 1
=
p(
x⃗

)
∧
P

1
∣=
�1 1
B
R

1 1
)
∧
¬(
∃R

1 2
∈
P

2
,�

1 2
∣�

1 2
H
R

1 2
=
p(
x⃗

)
∧
P

2
∣=
�1 2
B
R

1 2
)∨

(∃
R

1 3
∈
P

1
∖P

2
,�

1 3
∣�

1 3
H
R

1 3
=
p(
x⃗

)
∧
P

1
∣=
�1 3
B
R

1 3
)
∧
¬(
∃R

1 4
∈
P

2
,�

1 4
∣�

1 4
H
R

1 4
=
p(
x⃗

)
∧
P

2
∣=
�1 4
B
R

1 4
)∨

..
.

4

(∃
R

1 1
∈
P

1
∩
P

2
,�

1 1
∣�

1 1
H
R

1 1
=
p(
x⃗

)
∧
P

1
∣=
�1 1
B
R

1 1
∧
¬P

2
∣=
�1 1
B
R

1 1
)∨

(∃
R

1 3
∈
P

1
∖P

2
,�

1 3
∣�

1 3
H
R

1 3
=
p(
x⃗

)
∧
P

1
∣=
�1 3
B
R

1 3
)
∧
¬(
∃R

1 4
∈
P

2
,�

1 4
∣�

1 4
H
R

1 4
=
p(
x⃗

)
∧
P

2
∣=
�1 4
B
R

1 4
)∨

(∃
R

2 2
∈
P

2
∩
P

1
,�

2 2
∣�

2 2
H
R

2 2
=
p(
x⃗

)
∧
P

2
∣=
�2 2
B
R

2 2
∧
¬P

1
∣=
�2 2
B
R

2 2
)∨

(∃
R

2 4
∈
P

2
∖P

1
,�

2 4
∣�

2 4
H
R

2 4
=
p(
x⃗

)
∧
P

2
∣=
�2 4
B
R

2 4
)
∧
¬(
∃R

2 3
∈
P

1
,�

2 3
∣�

2 3
H
R

2 3
=
p(
x⃗

)
∧
P

1
∣=
�2 3
B
R

2 3
)∨

5
(∃
R
∈
P

1
∩
P

2
,�
∣�
H
R

=
p(
x⃗

)
∧

(P
1
∣=
�B

R
∨̇P

2
∣=
�B

R
))
∨

(P
1
∣=
P

1
∖P

2
p(
x⃗

)
∧
¬P

2
∣=
p(
x⃗

))
∨

(P
2
∣=
P

2
∖P

1
p(
x⃗

)
∧
¬P

1
∣=
p(
x⃗

))

T
a
b
le

5
.1

:
R

e
la

x
a
ti

o
n

o
f

co
n
d
it

io
n
P

1
∣=
p(
x⃗

)∨̇
P

2
∣=
p(
x⃗

)

94

Cell 3 further expands Cell 2 by applying the distributivity of conjunction over

disjunction and by recalling that x ∈ A∧x ∈ B ⇒ x ∈ A∩B and x ∈ A∧x /∈ B ⇒
x ∈ A∖B, where A and B are generic sets and ∖ denotes the set difference operator.

Finally, notice that the second part of the formula can be obtained from the first

one by swapping all occurrences of 1 and 2, and of 3 and 4.

Cell 4 presents the first relaxation we introduced: it involves the first line, has

been deduced from the first line of Cell 3 and can be explained intuitively as follows.

If there are no rules nor substitutions which allow to infer p(x⃗) from P2, then not

even the rule and substitution which allow to infer p(x⃗) from P1 will allow to infer

it from P2. The condition in the first line of Cell 4 is less strong than the one in the

first line of Cell 3, since the latter requires that no rule of P2 allows to infer p(x⃗),

whereas the former simply requires that a particular rule of P2 does not allow to

infer it. As a consequence, all n-uples x⃗ satisfying the latter condition will satisfy

the former as well, i.e., the set of n-uples satisfying the latter condition is a subset

of the set of n-uples satisfying the former one.

Cell 5 is a rewriting of Cell 4: the first line of Cell 5 summarizes lines 1 and 3

of Cell 4 by exploiting the logical equivalence ∃x∣A(x)∨ ∃y∣B(y) ≡ ∃x∣A(x)∨B(x)

as well as the one involving the ∨̇ operator and the distributivity of conjunction over

disjunction we recalled above. Line 2 (resp. 3) of Cell 5 summarizes line 2 (resp. 4)

of Cell 4 by exploiting the formalism introduced in Definition 45.

Tab. 5.2 shows the logical steps we performed to relax the condition P1 ∣=
�BR∨̇P2 ∣= �BR which appears in the first line of the fifth cell of Tab. 5.1. Cell 1 is

a paraphrase of such condition which takes into account the well-known definition of

the ∨̇ operator and the equivalence introduced in Item 2 of the previous list. Only

the first part of the paraphrase is shown, since the second part can be obtained from

the first one by swapping all occurrences of 1 and 2.

Cell 2 presents the second relaxation we introduced, which does not conceptu-

ally differ from the one we presented in Cell 4 of Tab. 5.1: if there are no substitutions

which allow to infer every literal of BR from P2, then not even the substitution which

allows to infer every literal of BR from P1 will allow to infer them from P2.

Cell 3 does not differ from the previous one but for the fact that the logical

95

1
(∃�1

1∣∀l11 ∈ BR P1 ∣= �1
1�l

1
1) ∧ ¬(∃�1

2∣∀l12 ∈ BR P2 ∣= �1
2�l

1
2)∨

. . .

2
(∃�1

1∣∀l11 ∈ BR P1 ∣= �1
1�l

1
1 ∧ ¬∀l12 ∈ BR P2 ∣= �1

1�l
1
2)∨

. . .

3
(∃�1

1, l
1
2 ∈ BR∣∀l11 ∈ BR P1 ∣= �1

1�l
1
1 ∧ ¬P2 ∣= �1

1�l
1
2)∨

. . .

4
(∃�1, l1 ∈ BR∣P1 ∣= �1�l1 ∧ ¬P2 ∣= �1�l1)∨
(∃�2, l2 ∈ BR∣P2 ∣= �2�l2 ∧ ¬P1 ∣= �2�l2)

5a
∃�1, p(x⃗) ∈ BR∣P1 ∣= �1�p(x⃗) ∧ ¬P2 ∣= �1�p(x⃗)∨
P2 ∣= �1�p(x⃗) ∧ ¬P1 ∣= �1�p(x⃗)

5b
∃�1,∼ p(x⃗) ∈ BR∣P1 ∣=∼ �1�p(x⃗) ∧ ¬P2 ∣=∼ �1�p(x⃗)
P2 ∣=∼ �1�p(x⃗) ∧ ¬P1 ∣=∼ �1�p(x⃗)

6 ∃�1, p(x⃗) ∈ BR∣P1 ∣= �1�p(x⃗)∨̇P2 ∣= �1�p(x⃗)
7 ∃p(x⃗) ∈ BR, �1∣�1�x⃗ ∈ CU ,P1,P2(p)

Table 5.2: Relaxation of condition P1 ∣= �BR∨̇P2 ∣= �BR

equivalence ¬∀x A(x) ≡ ∃x∣¬A(x) has been applied and the resulting existential

quantification has been moved to the beginning.

Cell 4 presents the third relaxation we introduced, which can be explained

intuitively as follows. If there is a substitution which allows to infer every literal of

BR from P1, then such substitution allows to infer from P1 the literal which cannot

be inferred from P2. The condition in the first line of Cell 4 is less strong than the

one in the first line of Cell 3, since the latter requires that every literal of BR can

be inferred from P1, whereas the former simply requires that a particular literal can

be inferred.

Cells 5a and 5b are rewritings of Cell 4: they summarize the two lines of Cell 4

by exploiting the logical equivalence involving existential quantification we recalled

above. Line 5a (resp. 5b) assumes that the existentially quantified literal has the

form p(x⃗) (resp. ∼ p(x⃗)). Notice that, by applying the equivalence presented in

Item 3 of the previous list as well as the involutive property of classical negation,

the condition presented in line 5b does not differ from the one presented in line 5a,

which we can hence assume to represent the general case as long as we interpret the

fragment p(x⃗) ∈ BR as denoting an atom (and not a literal anymore) appearing in

the body of a rule R, possibly within a negated literal.

Finally, Cell 6 is a rewriting of Cell 5a by applying the well-known definition of

96

the ∨̇ operator and Cell 7 is a rewriting of Cell 6 by applying backwards Definition 47.

We are now ready to introduce the formal definition of modified change func-

tion.

Definition 48 (Modified change function) Given a universe U and two Data-

log programs P1 and P2, the modified change function ĈU ,P1,P2 associates each pred-

icate p appearing in P1 or P2 with the set of x⃗ ∈ Un (modified change set) which

satisfy either of the following conditions

∙ ∃R ∈ P1 ∩ P2, p1(x⃗1) ∈ BR, �, �1∣�HR = p(x⃗) ∧ �1�x⃗1 ∈ ĈU ,P1,P2(p1)

∙ P1 ∣=P1∖P2 p(x⃗) ∧ ¬P2 ∣= p(x⃗)

∙ P2 ∣=P2∖P1 p(x⃗) ∧ ¬P1 ∣= p(x⃗)

where n denotes the arity of p.

The first condition in Definition 48 has been obtained by plugging the Cell 7 of

Tab. 5.2 into the first line of Cell 5 of Tab. 5.1 and by moving the existential

quantifications to the beginning. The resulting expression has been further relaxed

by replacing the set CU ,P1,P2(p) with a superset of it, namey ĈU ,P1,P2(p) itself. Such

replacement makes Definition 48 recursive and this property will be exploited by

the algorithm presented in Fig. 5.3.

Intuitively, ĈU ,P1,P2 associates each predicate p appearing in P1 or P2 with the

set of its ground instances p(x⃗) which

∙ either are a consequence of P1 by means of a rule not belonging to P2, but not

of P2

∙ or are a consequence of P2 by means of a rule not belonging to P1, but not of

P1

∙ or match the head of some rule: (i) belonging to both P1 and P2; and (ii) such

that some (ground) instance of some predicate p1 in its body belongs to the

set ĈU ,P1,P2 associates p with

97

Input:
a universe U
two Datalog programs P1 and P2

Output:
a map linking predicates with sets of their ground instances

mcf(U , P1, P2) :
p, p1 ≡ predicates
x⃗ ≡ an n-upla of terms
m1, m2 ≡ maps linking predicates with sets of their ground instances
R ≡ a rule
�, �1 ≡ substitutions

(1) ∀p appearing in P1 or P2

(2) ∀x⃗ ∈ Uarity(p)

(3) if(
(4) P1 ∣=P1∖P2 p(x⃗) ∧ ¬P2 ∣= p(x⃗)∨
(5) P2 ∣=P2∖P1 p(x⃗) ∧ ¬P1 ∣= p(x⃗)
(6)) add(m2, p, x⃗)

(7) do{
(8) m1 ::= m2

(9) ∀p appearing in P1 or P2

(10) ∀R ∈ P1 ∩ P2 such that p(x⃗) appears in HR

(11) ∀� such that �p(x⃗) is ground
(12) if(BR is empty)
(13) add(m2, p1, �x⃗)
(14) else ∀p1 such that p1(x⃗1) appears in BR

(15) if(∃�1∣isIn(m1, p1, �1�x⃗1))
(16) add(m2, p1, �x⃗)
(17)} while(m1 ∕= m2)

(18)return m2

Figure 5.3: Algorithm to compute the modified change function

98

Definition 48 can be directly converted into an algorithm which computes the set

ĈU ,P1,P2 associates a generic predicate p with. Such algorithm (shown in Fig. 5.3)

relies on three auxiliary functions.

arity Returns the arity of the input predicate

add Adds the input n-upla to the set the input map links the input predicate with

isIn Returns true if the input n-upla belongs to the set the input map links the

input predicate with, false otherwise

Lines (1-6) of the algorithm initialize map m2 by computing for each predicate

appearing in P1 or P2 the subset of its extension which fulfills either of the last two

conditions listed in Definition 48 and shown in lines (4-5).

The loop shown in lines (7-17) updates m2 (after keeping a backup copy in

m1) by computing for each predicate appearing in P1 or P2 its ground instances

which fulfill the first condition listed in Definition 48. The loop ends as soon as m2

does not differ from m1, i.e., if m2 has not been modified during the last iteration:

in this case m2 is returned.

We notice that a loop is needed because the definition of modified change

function is recursive: the computation of the output of ĈU ,P1,P2 for a given predicate

p requires that its output has been already computed for all predicates appearing

in the body of rules in whose head p appears. On the other hand, as long as the

computation is not over yet, in general only a subset of the output of ĈU ,P1,P2 for a

given predicate is available. For this reason, our algorithm computes the output of

ĈU ,P1,P2 for a given predicate p assuming that the output of the predicates p depends

on has been completely computed, but then it checks this assumption by computing

the output of ĈU ,P1,P2 more and more times and only stops if a fixed point is reached.

We notice that a fixed point is always reached since, for each predicate p, the

set m2 links p with cannot decrease and, in the worst case, it will be equal to Un

(where n denotes the arity of p), which is a finite set, since we assumed U to be

finite.

We conclude this section by providing some qualitative remarks about the

efficiency of the algorithm shown in Fig. 5.3. The performance of such algorithm

99

greatly varies according to the characteristics of the input programs. Beside the

trivial observation that the algorithm performs better: (i) the fewer predicates are

exploited in the input programs (line 9); (ii) the fewer rules are shared by them (line

10); and (iii) the smaller the universe is (line 11); it might be worth mentioning that

rules whose body is not empty have a bigger impact on the performance than facts,

since they require two further inner loops (lines 14-15) to be evaluated.

Lines 1-6 constitute the main difference between our algorithm and the näıve

one which can be derived from Theorem 3: our algorithm does not require to com-

pute the extension of predicates w.r.t. the whole input programs but only w.r.t.

the rules which are not shared by them. For this reason, the improvement of our

algorithm over the näıve one is especially visible whenever the input programs share

most rules, like in our application scenario, where the input programs represent the

policy in force before and after some modifications took place (with the reasonable

assumption that the modifications only involved a small part of the program).

Finally, if either of the input programs uses recursion, the loop shown in lines

(7-17) must be performed more than twice. The following example shows that

such loop might have to be performed up to #U + 1 times (where #A denotes the

cardinality of a set A). However, we do not believe that such cases often occurs in

practice.

(1) a(X) ← b(X, Y), a(Y).

(2) b(1, 0).

. . .

(n) b(n− 1, n− 2).

(n+ 1) a(0).

Let assume that U is the set of the first n natural numbers (where n ≥ 1), P1 is the

Datalog program consisting of the first n rules shown above, whereas P2 consists

of all n + 1 rules. Up to line (6) of the algorithm, m2 links the predicate a with

the set {0}. At the end of the i-th iteration of the loop (where 1 ≤ i ≤ n), the

natural number i has to be added to the set m2 links a with. Since such set has been

100

modified, a new iteration is needed. After the natural number n has been added to

the set, the (n+ 1)-th iteration does not add anything to such set and the loop can

be exited.

5.2.2 The Protune case

The algorithm presented in Fig. 5.3 can be easily adapted to Protune policies

in order to retrieve the atoms of the form allow(execute(requester, action,

resource)) which have to be re-evaluated against modifications to the policy.

The biggest differences between Datalog and Protune which are relevant in

this respect are: (i) Protune is a policy language and not a language for data

retrieval; (ii) the evaluation of a Protune literal might require to perform actions;

and (iii) Protune supports value-assignment atoms (cf. Section 3.2). In the re-

maining of this section we discuss whether and how each of these differences requires

changes to the algorithm presented in Fig. 5.3.

As described in Section 3.3, the process of evaluating a Protune query in-

volves up to two steps: checking whether the query can be evaluated and, if this is

the case, actually evaluating it. This chapter describes how to pre-evaluate triples

(rq, a, rs), where rq is a requester allowed to perform the action a on the resource

rs. For this reason, we are only concerned with the first one of the two steps we

just mentioned, for which the single-step algorithm presented in Fig. 5.3 can still be

exploited.

As we just argued, the algorithm presented in Fig. 5.3 can be used to identify

the modified change set of Protune logical predicates appearing in a policy (cf.

Section 3.2). However, there is no standard way to identify the modified change set

of Protune provisional predicates, since its computation strongly depends on the

actions associated to the provisional predicates. At a general level, (at least) two

approaches are feasible.

∙ Assuming that the extension of provisional predicates has changed and recom-

puting it. This approach would require to modify the algorithm presented in

Fig. 5.3 by OR-ing a further condition to the ones listed in lines (4-5) stating

that p is a provisional predicate. The drawback of this approach is that, in

101

case the assumption does not hold (i.e., if the extension of some provisional

predicate did not change), the modified change set of the other predicates can

excessively overestimate their change set

∙ Requiring that the policy only exploits provisional predicates whose extension

does not change. This approach would require to modify the algorithm pre-

sented in Fig. 5.3 by adding to line (9) the further constraint that p must be

a logical predicate. The drawback of this approach is that it is applicable to

a lower number of scenarios

Notice that, since in Protune environmental properties are retrieved by means of

provisional predicates, the second approach further constrains the restriction intro-

duced in Section 5.1.1, namely the exclusion from our scenario of policies which set

conditions on environmental properties.

Finally, the notation Protune uses to represent value-assignment atoms is

nothing but syntactic sugar: each atom of the form id[attr] = val occurring in a

Protune policy could be systematically replaced by the Datalog-compatible atom

p(id, attr, val) (where p is the name of a predicate not occurring in the policy)

without modifying Protune’s semantics nor reducing its overall functionalities and

expressive power.

5.3 Experimental results

This section introduces the concept of “Semantic Desktop” and presents the

experimental results of the application of our general-purpose strategy (cf. Sec-

tion 5.1) to the Semantic Desktop scenario.

Personal Information Management (PIM) systems support users in organizing

and managing their e-mails, address books, calendars and other information on their

desktop. Systems like Google Desktop2, Beagle3, Haystack4 and Gnowsis [71] define

semantic data as any content available on the user’s personal information space.

Their primary goals are to provide convenient access to such semantic data and

2http://desktop.google.com/
3http://beagle-project.org/
4http://haystack.lcs.mit.edu/

102

Figure 5.4: Architecture of the Semantic Desktop Beagle++ system and
semantic data sharing across desktops

to enable sharing of both desktop resources and metadata describing them across

PIMs.

Fig. 5.4 illustrates a Semantic Desktop as well as semantic data sharing across

desktops. Each user of the system possesses a Semantic Desktop corresponding to

her personal information space. Each desktop contains a set of resources the user

creates, modifies or deletes as well as a set of applications along with their internal

resources. A set of filters and generators process these resources and generate

metadata to describe their content. For example, metadata for publications include

title and authors, metadata for e-mails include sender, receiver(s), subject and date.

Generated metadata are automatically stored in a database and used to maintain

an inverted index which maps keywords to actual resources in order to allow for

full-text query search.

In order to evaluate our general-purpose strategy against the Semantic Desktop

scenario, we simulated the evolution of a user’s desktop. At the beginning of the

simulation, the user has no resources (and therefore no policies). As resources are

added, requests for accessing them are issued. As described in Section 5.1, whenever

no policies have been defined for a requested resource, the user is asked to accept or

reject the request. The user’s feedback is simulated by a random generator of binary

values. Resources keep being added until 1.000 policies have been defined, i.e., a

number which we consider to be much bigger than the one of current real-world

103

CREATE TABLE POLICY(

ID INT,

TYPE BOOLEAN,

NOW OR ALWAYS BOOLEAN,

DOMINATING POLICY NR INT

)

CREATE TABLE DOMINATES(

DOMINATING INT,

DOMINATED INT

)

CREATE TABLE AFFECT RESOURCE(

POLICY INT,

RESOURCE INT,

UNIQUE BOOLEAN

)

Figure 5.5: Schema of the database used in our evaluation

scenarios. At that time, we go the way back, i.e., we remove policies and resources

until neither the formers nor the latters are available in the system anymore.

Fig. 5.5 shows the schema of the relational database used in our evaluation

as an implementation of (a subset of) the UML diagram shown in Fig. 5.2. Table

POLICY contains information about the policies defined by the user, namely, their

identifier (field ID) and type (allow or deny—field TYPE), whether they apply only

to the resources available at policy creation-time or also to resources possibly added

later on (field NOW OR ALWAYS) and the number of other policies dominating them

(field DOMINATING POLICY NR). Notice that in our implementation the text of the

policies is not contained itself in the database but in a file the ID field points to.

Table DOMINATES stores the priority relationships (cf. Section 5.1.2) between

policies, i.e., it is a set of pairs of policy identifiers whose first element (field

DOMINATING) dominates the second one (field DOMINATED). Finally, table AFFECT RE-

SOURCE stores the influence relationships (cf. Section 5.1.3) between policies and

resources, i.e., it is a set of triples containing the identifiers of a resource (field

RESOURCE) and of a policy affecting it (field POLICY) as well as a flag (field UNIQUE)

tracking whether the policy affects only that resource.

Notice that no tables storing influence relationships between policies and re-

104

Figure 5.6: Overhead of adding/removing resources

questers/actions are available. Because of symmetry reasons, in our evaluation we

restricted ourselves to only considering influence relationships between policies and

resources.

Fig. 5.6 shows the overhead of exploiting pre-evaluation when adding/removing

resources. As described in Section 5.1, the overhead of adding a resource amounts to

defining influence relationships with the policies it is affected by (i.e., in our imple-

mentation, to inserting rows into table AFFECT RESOURCES), whereas the overhead

of removing a resource amounts to

∙ removing all policies affecting only that resource (i.e., in our implementation,

deleting rows from table POLICY)

∙ deleting all (influence) relationships it was involved in (i.e., in our implemen-

tation, deleting rows from table AFFECT RESOURCES)

The higher number of operations needed when removing an existing resource w.r.t.

adding a new one explains why in Fig. 5.6 the gradient of the Remove resource-curve

is higher than the one of the Add resource-curve.

Fig. 5.7 shows the overhead of exploiting pre-evaluation when adding/removing

policies. As described in Section 5.1, the overhead of adding a policy amounts to

105

Figure 5.7: Overhead of adding/removing policies

∙ checking whether it conflicts with already defined policies

∙ incrementing the dominatingPolicyNr attribute of the policies dominated by

the new one (i.e., in our implementation, updating rows of table POLICY)

∙ defining influence relationships between the new policy and the resources it af-

fects (i.e., in our implementation, inserting rows into table AFFECT RESOURCES)

whereas the overhead of removing a policy amounts to

∙ decrementing the dominatingPolicyNr attribute of all policies which were

dominated by the deleted one (i.e., in our implementation, updating rows of

table POLICY)

∙ deleting all influence and priority relationships it was involved in (i.e., in our

implementation, deleting rows from tables AFFECT RESOURCES and DOMINATES)

Again, the higher number of operations needed when adding a new policy w.r.t.

removing an existing one explains why in Fig. 5.7 the Add policy-curve presents

higher values than the ones of the Remove policy-curve.

106

Figure 5.8: Optimized vs. non-optimized policy evaluation

Finally, Fig. 5.8 shows the improvement of exploiting pre-evaluation when eval-

uating requests. The evaluation of a request by exploiting pre-evaluation amounts

to issuing a query to the database whose schema is shown in Fig. 5.5 in order to

retrieve the type of the policy affecting the requested resource. If such a policy does

not exist then no policies affecting such resource have been defined yet and the user

is asked whether the request should be accepted or rejected.

The evaluation of a request without exploiting pre-evaluation is more complex.

Since no information is explicitly available about which policy affects which resource,

one has to try out all policies defined in the system until: either (i) a non-dominated

policy is found which applies to the requested resource; or (ii) it turns out that such

a policy does not exist. Notice that the second case, which applies to requests for

resources for which no policies have been defined yet, requires to inspect each and

all of the policies defined in the system and is hence more and more computationally

expensive as the number of policies increases (as it is reflected in Fig. 5.8).

When going through all policies defined in the system, it could be a good

idea starting with the non-dominated ones, going down the dominance relationship

graph and stopping as soon as the condition above is satisfied. This way, as soon as

an applicable policy is found, it is guaranteed that such policy is not dominated by

107

Input:
a resource r

Output:
either of ACCEPT , REJECT or UNDEFINED

evaluate(r) :
P ≡ a set of policies

P = getNonDominatedPolicies()
while(P ∕= ∅)
∀p ∈ P

if(appliesTo(p, r))
if(isAllowPolicy(p))

return ACCEPT
else return REJECT

P = getDominatedPolicies(P)
return UNDEFINED

Figure 5.9: Algorithm to find the policy applicable to a given resource

any other one w.r.t. the requested resource. This algorithm, which we exploited in

our experiments, is formalized by the function evaluate in Fig. 5.9. Such function

evaluates the request to access a resource r w.r.t. the policies defined in the system

and relies on four auxiliary functions.

getNonDominatedPolicies Returns the set of non-dominated policies defined in

the system

appliesTo Returns true if the input policy p applies to the input resource r, false

otherwise

isAllowPolicy Returns true if the input policy p is an allow policy, false otherwise

getDominatedPolicies Returns the set of policies defined in the system which are

dominated by some policy in the input policy set P

Function evaluate iterates over the set of policies defined in the system going down

the dominance relationship graph. As soon as an applicable policy is found, the

108

request is accepted or rejected according to whether the policy is an allow or a deny

one. If no applicable policy is found, UNDEFINED is returned.

To conclude, we notice that the more complex the policies defined in the

system are, the more computationally expensive their non-optimized evaluation is

and hence the bigger the improvement of exploiting pre-evaluation is. In order not

to introduce biases in our experiments, we only exploited the easiest policies one

can define with the Protune policy language. Such policies simply state that a

resource can(not) be accessed and do not require any condition to be fulfilled. Here

is an example how such a(n allow) policy looks like

allow(access(resourceId)).

where resourceId is the identifier of the resource to be accessed.

Because of this design choice, the improvement of the optimized request evalua-

tion over the non-optimized one shown in Fig. 5.8 is underestimated w.r.t. real-world

scenarios. Still, our experiments show that our approach is beneficial whenever the

ratio between the number of evaluations and the number of other operations is at

least 4.5 (for up to 100 policies defined in the system) or 1 (for more than 300

policies). We consider these numbers to be reasonable in most real-world scenarios.

5.4 Related work

In the last years, systems for collaborative work and file sharing gained increas-

ing popularity. The need for effective search in this context despite the increasing

amount of information pushed forward further developments of search infrastruc-

tures for enterprise data management systems [45]. However, the sometimes private

nature of such shared information makes difficult applying traditional document in-

dexing schemes directly: user access levels and access control have to be reflected in

the index structures and retrieval algorithms as well as when ranking the search re-

sults. The shortcomings of traditional ranking algorithms for search through access-

controlled collections is outlined in [26].

In the literature, several solutions have been proposed addressing the problem

109

of preserving the privacy of data stored on public remote servers, which typically

provide a basis for community platforms. For example, cryptographic techniques

enable users to store encrypted text files on a remote server and retrieve them by

means of keyword search [28, 44, 79].

However, these solutions are not suitable for collaborative multi-user environ-

ments. Alternatively, the data shared within a community can be stored locally

by the user within an access-controlled collection. In this case, efficient retrieval

algorithms to search through access-controlled collections must be provided in order

to enable information sharing within the community.

The authors of [11] address the problem of providing privacy-preserving search

over distributed access-controlled content. Although this technique enables random

provider selection, it does not allow to rank search results obtained from different

document collections. On the other hand, our semantically enriched community

platform provides a unified view on the whole information set available to the user.

CHAPTER 6

Enabling Advanced and Context-Dependent Access Control

in RDF Stores

The Semantic Web vision [76] requires that existing data are provided with machine-

understandable annotations. These annotations (commonly referred to as metadata)

are meant to ease tasks such as data sharing and integration. These metadata

are typically represented in RDF/XML [14, 22] or other machine-understandable

formats, such as microformats [55] or RDFa [3], which can be conveniently translated

into RDF, e.g., by custom GRDDL [66] transformations.

However, it is often the case that unconditional sharing of metadata is undesir-

able: many Semantic Web applications require to control when, what and to whom

metadata are disclosed. Nevertheless, existing RDF stores and standard protocols

to access them, such as the SPARQL protocol [29], do not support access control or

their support is minimal (e.g., protection only applies to the repository as a whole

but not to the data it contains).

A possible solution to this problem would be to embed access control within the

RDF store. However, in this case the access-control mechanism would be repository-

dependent and not portable across different platforms. Moreover, “hard-wired” pro-

tection mechanisms have proved to work well in the context of relational database

management systems (RDBMS), where the granularity of access control nicely scales

down to the table level. However, such mechanisms do not apply to RDF reposito-

ries, since there is no schema underlying the data they store.

A more general solution is to add a new component responsible for access

control-related issues on top of the RDF store. However, the problems such compo-

nent would have to face are not trivial since, e.g., it cannot limit itself to filtering

triples which must be kept private out of the results of a query. This depends on

the fact that those triples might not be known in advance, as it happens when the

outcome of the query consists of triples not previously available in the RDF store

but created on-the-fly, e.g., by means of a SPARQL [69] CONSTRUCT statement.

110

111

In this chapter we describe how policy languages can be exploited to integrate

advanced access-control mechanisms based on policies with arbitrary RDF data

stores. Since the näıve approach of evaluating the available policies for each triple

returned against a query would not scale as soon as the result set exceeds a certain

size, our solution requires to rewrite input RDF queries in order to embed into them

the constraints set by applicable policies. The modified queries are then sent to the

RDF store which executes them like usual RDF queries. Notice that our framework

enables access control at triple level, i.e., all triples returned as a response to the

query are allowed to be disclosed to the requester according to the policies in force.

The remainder of this chapter is organized as follows: Section 6.1 accounts for

alternative approaches and related work. In Section 6.2 we describe how a policy

engine can be integrated on top of a generic RDF store in order to enforce access

control at triple level. Finally, Section 6.3 presents our current implementation: a set

of experiments which estimate the impact of our approach in terms of performance

is included as well.

6.1 Related work

In order to fine-grainedly control access to specific RDF statements, two main

approaches have been proposed: (i) filtering the set of RDF statements returned by

a query as described, e.g., in [33]; and (ii) defining a priori a set of RDF statements

that are allowed to be accessed by the requester as proposed, e.g., in [37].

As for restricting access to RDF data, filtering query results in a separate

post-processing step after query execution as proposed in [33] is not an adequate

solution: current RDF query languages allow to arbitrarily structure the results, as

shown in the following example1.

CONSTRUCT {CC} newNS:isOwnedBy {User}

FROM {User} ex:hasCreditCard {CC};

foaf:name {Name}

WHERE Name = ‘Alice’

1Our examples use SeRQL [24] syntax (for the sake of simplicity we do not include namespace
definitions). However, the ideas behind our solution are language-independent and can be applied
to other RDF query languages, such as SPARQL.

112

Here, filtering the query results is not straightforward, since the result structure is

not known in advance. In fact, not the results produced by the query but rather

the data accessed in the FROM clause should be restricted. Moreover, the approach

suggested in [33] is not feasible for large result sets (e.g., suppose an unauthorized

requester submits a query asking for all available triples in the store), since it requires

to first retrieve all triples and only at that point to filter out the ones which cannot

be disclosed.

A different way to address this problem is to define a priori which subsets of an

RDF database can be accessed by some requester. This approach is pursued in [27]

which shows how Named Graphs can be used to evaluate SPARQL queries. Dietzold

et Auer [37] propose a framework which first applies all access-control policies to

the whole RDF database and afterwards executes the query only on the subset of it

containing RDF triples which can be disclosed.

A priori solutions are only applicable to scenarios where access restrictions

depend on the data to be accessed. However, in Semantic Web scenarios, where

different services might want to access RDF statements, access to data could have

to be additionally restricted according to externally checked, contextual conditions.

Therefore, pre-computing Named Graphs for each possible combination of environ-

mental factors cannot help, since in the worst case it would lead to a number of

graphs to be generated which is exponential in the number of environmental fac-

tors. Runtime creation of Named Graphs is infeasible too, since the creation process

would excessively slow down the response time.

Reddivari et al. [70] suggest to exploit simple rule-based policies over RDF

stores: such policies define graph patterns identifying subgraphs of the database

on which actions like read and update can be executed. The drawback of this

approach is performance against query evaluation, since the process of answering a

query requires to instantiate the graph patterns, i.e., to generate one graph for each

policy and to execute the given query on each graph.

Our approach ensures that access policies are satisfied by rewriting the queries

that are sent to an RDF store. Thus, there is no need to instantiate graphs before

query execution. Furthermore, our approach enables to exploit RDF Schema entail-

113

ments similarly as done by the a priori approach described in [47]. For instance,

if an access-control policy states that no statements about foaf:OnlineAccounts

should be disclosed, then statements about foaf:OnlineEcommerceAccounts would

not be disclosed either, assuming that the latter is a subclass of the former.

Finally, none of the policy languages presented in Chapter 2 has been already

integrated into RDF databases.

6.2 Policy-based query expansion

As argued in Section 6.1, existing work on RDF data protection does not

suit the requirements of dynamic environments. Many available solutions are only

applicable to scenarios where access restrictions depend on the data to be accessed

but not on environmental factors, i.e., to scenarios where access-control policies

include data-dependent conditions but no context-dependent conditions.

To address this limitation, we decided to enforce an access-control layer on

top of RDF stores, which also has the positive side-effect of making our solution

store-independent. Our strategy consists of two steps: first, context-dependent

conditions stated by the applicable policies are identified and pre-evaluated. If

the pre-evaluation succeeds, the query is then modified in order to embed data-

dependent conditions, so that only allowed RDF statements are accessed by the

underlying RDF store at query-processing time.

By supporting both data- and context-dependent conditions, our solution al-

lows for more expressive policies than the ones supported by the approaches pre-

sented in Section 6.1, while at the same time relying on the highly optimized query

evaluation of the RDF store for the enforcement of data-dependent conditions.

6.2.1 RDF queries

The following definitions use a similar notation as in [68]: they rely on the

sets I, B, L and V ar, which are supposed to be infinite and mutually disjoint, and

to denote sets of IRIs, blank nodes, literals and variables respectively.

Definition 49 (RDF graph) An RDF graph is a finite subset of (I ∪ B) × I ×
(I ∪B ∪ L).

114

Definition 50 (Triple pattern) A triple pattern is a triple of the form (s, p, o),

where s ∈ I ∪B ∪ V ar, p ∈ I ∪ V ar and o ∈ I ∪B ∪ L ∪ V ar.

Definition 51 (Path Expression) A path expression is a set of triple patterns.

In the following, we will use vars(e) to denote the set of all variables occurring in a

triple pattern or path expression e.

Intuitively, path expressions are templates formed by triple patterns where

variables are allowed in any position, and are meant to model conjunctive queries

to be matched against RDF graphs.

In the following, we will mean by atomic constraint a property of an n-upla

of elements of I ∪B ∪ L ∪ V ar (where n ≥ 1). A property of a pair (e1, e2) may be

the fact that e1 > e2. A property of a triple (e1, e2, e3) may be the fact that e3 is

the string concatenation of e1 and e2.

The expressiveness of constraints heavily depends on the query language actu-

ally exploited. In order to keep the discussion as general as possible, we do not stick

to any specific existing language and hence do not further discuss the expressiveness

constraints may have.

Atomic constraints can be combined by means of boolean operators in order

to form boolean expressions.

Definition 52 (Query) A query is either a pair (RF, PE) or a triple (RF, PE,

BE) where

∙ PE is a path expression (query pattern)

∙ RF is

– either a set of variables ⊆ vars(PE)

– or a path expression such that vars(RF) ⊆ vars(PE)

(result form)

∙ BE is a set of boolean expressions

115

(0) CONSTRUCT * FROM

(1) {Person} foaf:name {Name};

(2) foaf:phone {Phone};

(3) foaf:interest {Document};

(4) foaf:holdsAccount {Account}

Figure 6.1: Example RDF query

In the following, we will use vars(e) to denote the set of all variables occurring in a

result form, query pattern or boolean expression e.

Intuitively, our definition of “query” is meant to model RDF queries having the

following structure (cf. Section 6.19 in [4])2, where the WHERE section can possibly

be omitted.

SELECT RF/CONSTRUCT RF

FROM PE

WHERE BE

In SELECT queries RF is a set of variables, whereas in CONSTRUCT queries it is a path

expression. An example query is provided in Fig. 6.1, where the token * is exploited,

denoting either vars(PE) (in SELECT queries) or PE (in CONSTRUCT queries). The

boolean expressions in BE are supposed to be AND-ed. If no access-control policy

were defined, this query would return an RDF graph containing all RDF triples

matching the graph pattern defined in the FROM block, i.e., the query answer would

include identifier and name of a person, her phone number(s) and the document(s)

she is interested in as well as the account(s) she holds.

The following definition is taken from [64].

Definition 53 (Substitution) A substitution is a finite set of the form {v1/t1, . . .

vn/tn}, where n ≥ 0 and ∀1 ≤ i, j ≤ n vi ∈ V ar, ti ∈ I ∪ B ∪ L ∪ V ar, vi ∕= ti and

i ∕= j ⇒ vi ∕= vj.

2We focus on common read operations which all RDF query languages like SeRQL or SPARQL
support. Data manipulation operations, such as insert or delete, are supported by some exten-
sions such as SPARUL [74] but are not part of any standard yet.

116

Definition 54 (disunify function) Given a triple pattern e = (s, p, o) and a sub-

stitution �, the function disunify(e, �) returns the pair (e′, BE), where e′ is a triple

pattern (s′, p, o′) and BE is a set of boolean expressions such that

∙

⎧⎨⎩
s′ = vs and BEs = {vs = s} if s /∈ V ar

s′ = vs and BEs = {vs = X} if s ∈ V ar, s/X ∈ �

s′ = s and BEs = ∅ otherwise

∙

⎧⎨⎩
o′ = vo and BEo = {vo = o} if o /∈ V ar

o′ = vo and BEo = {vo = X} if o ∈ V ar, o/X ∈ �

o′ = o and BEo = ∅ otherwise

where

∙ vs, vo /∈ vars(e) nor appear they in �

∙ vs ∕= vo

∙ BE = BEs ∪BEo

Example 31 In this example some applications of function disunify are provided.

∙ disunify((a, b, c), ∅) = ((X, b, Y), {X = a, Y = c})

∙ disunify((X, b, Y), ∅) = ((X, b, Y), ∅)

∙ disunify((X1, b, Y1), {X1/X2, Y1/Y2}) = ((X3, b, Y3), {X3 = X2, Y3 = Y2})

Intuitively, subject and object of the triple pattern are replaced by variables, whereas

the boolean expressions keep track of their original values.

6.2.2 Specifying policies over RDF data

In order to restrict access to RDF statements, a policy language must allow

to specify graph patterns (i.e., path expressions and boolean expressions), such as

one can do in an RDF query. This implies that the policy language must allow to

explicitly define variables and to set constraints on the values they can assume. This

117

requirement by itself excludes policy languages based on Description Logic [9] (e.g.,

KAoS—cf. Chapter 2), since Description Logic does not allow to explicitly define

variables. For this reason, in the following we will focus on the competing track of

policy languages which are based on the Logic Programming [64] formalism.

Policies of Logic Programming-based policy languages rely on the notion of

rule. We consider a policy rule to have the following form

(1) ALLOW/DENY ACCESS TO PE IF

(2) CP1 AND . . . CPl AND

(3) PE1 AND . . . PEm AND

(4) BE1 AND . . . BEn

where l,m, n ≥ 0, PE and PEi (1 ≤ i ≤ m) are triple patterns, CPj (1 ≤ j ≤ l)

are context-dependent conditions and BEk (1 ≤ k ≤ n) are boolean expressions.

We call head of the rule the action shown in line (1) (i.e., ALLOW/DENY ACCESS

TO PE) and body of the rule the set of conditions appearing in lines (2-4). In the

following, we will use H(pol) (resp. HPE(pol)) to denote the head (resp. triple

pattern in the head) of a policy rule pol and B(pol) to denote the (possibly empty)

body of pol.

Notice that our policies are expressed in a high-level syntax. This way, we

allow them to the LP-based policy languages described in Chapter 2. On the other

hand, it is true that the policy language actually chosen will impact the expressive-

ness of the policies which can be specified, in particular: (i) the set of supported

atomic constraints to be exploited in the boolean expressions BEi; and (ii) the set

of supported context-dependent conditions. Finally, notice that, in order for our

solution to be applicable to a given query language and a given policy language,

the set of atomic constraints supported by the former must be a subset of the one

supported by the latter.

Suppose that Alice specified the policies presented in Tab. 6.1, whose intended

meaning is as follows.

1. Everyone can access Alice’s phone number(s)

118

N∘ Policy
(i) ALLOW ACCESS TO

(#alice, foaf:phone, Z)

(ii) DENY ACCESS TO

(X, foaf:phone, Z) IF

(X, foaf:currentProject, #rewerse) AND

the requester is #recSer

(iii) ALLOW ACCESS TO

(X, foaf:phone, Z) IF

the requester is certified by #bbb AND

(#alice, foaf:knows, X)

(iv) ALLOW ACCESS TO

(X, Y, Z) IF

the current time is Time AND

09:00 < Time AND Time < 17:00 AND

Y = foaf:name AND X != #tom

(v) ALLOW ACCESS TO

(#alice, foaf:interest, Z) IF

(Z, rdf:type, foaf:Document) AND

(#alice, foaf:currentProject, P) AND

(Z, foaf:topic, T) AND (P, foaf:theme, T)

(vi) ALLOW ACCESS TO

(#alice, foaf:holdsAccount, X) IF

the requester is Y AND

(#alice, foaf:knows, Y)

(vii) ALLOW ACCESS TO

(X, Y, Z) IF

(X, rdf:type, foaf:Person) AND

the requester sends a credential C AND

the issuer of C is X

Table 6.1: Example of high-level policies controlling access to RDF state-
ments

2. The Recommender Service is not allowed to access the phone number(s) of

members of project REWERSE

3. Recognized trusted services (which have to provide a credential issued by the

Better Business Bureau—BBB) are allowed to access the phone number(s) of

people Alice knows

4. RDF statements containing the name of entities different from Alice’s boss

119

Tom can be accessed during work time

5. This policy controls the access to Alice’s interests. Only documents related to

her current project(s) can be accessed

6. A service can access Alice’s on-line eCommerce account only if the service was

invoked by a person known to Alice

7. A service can access information about a person if it can provide a credential

issued by this person

Context-dependent conditions are expressed in natural language (e.g., the requester

is ‘RecommenderService’), triple patterns according to the triple notation (e.g.,

(#alice, foaf : knows,X)) and boolean expressions exploit the usual (in)equality

operators (e.g., 09 : 00 < Time).

In order to evaluate policies and to handle conflicts which arise whenever two

(different) policies allow and deny access to the same resource, we use a simple

policy-evaluation strategy, outlined by the following algorithm, which provides a

the deny by default strategy.

if a deny policy is applicable

then access to the triple(s) is denied

else if an allow policy is applicable

then access to the triple(s) is allowed

else access to the triple(s) is denied

More advanced algorithms exploiting priorities or default precedences among policies

(like in [48]) could be used as well.

6.2.3 Policy evaluation and query expansion

Given an RDF query, each RDF statement matching a triple pattern specified

in the FROM block is accessed and possibly returned. Our approach analyzes the

set of RDF statements to be accessed and restricts it according to the policies in

force. Context-dependent conditions are evaluated by the policy engine, which keeps

track of the results in its internal state Σ (cf. [19] – in other words, Σ determines at

120

each instant the extension of the context-dependent predicates). On the other hand,

data-dependent constraints are added to the given query and hence automatically

enforced during query processing.

To illustrate the algorithm step by step, we consider the query defined in

Fig. 6.1.

Definition 55 (Policy applicability) Given a triple pattern e, a set of policies

P and a time-dependent state Σ, we say that a policy pol ∈ P is applicable to e

according to Σ and P iff HPE(pol) and e are unifiable and there exists a variable

substitution �′′ such that

∙ �′ = mgu(e,HPE(pol)), where mgu denotes the most general unifier [64]

∙ � = �′�′′

∙ ∀cp ∈ B(pol) P ∪ Σ ∣= �cp

∙ ∀be ∈ B(pol) such that

– vars(�be) ∩ vars(�e) = ∅ and

– ∀pe ∈ B(pol) vars(�be) ∩ vars(�pe) = ∅

it holds that P ∪ Σ ∣= �be

and the result of its application to e is a pair (PE,BE) such that

∙ PE = {pe′∣pe ∈ B(pol), disunify(pe, �) = (pe′, ⋅)}

∙ BE0 =
∪
i∈{BE∣pe∈B(pol),disunify(pe,�)=(⋅,BE)} i

∙ BE1 = {�be∣be ∈ B(pol)∧∃pe ∈ B(pol) : vars(�be)∩(vars(�pe)∪vars(�e)) ∕=
∅}

∙ BE = BE0 ∪BE1 ∪ {X = Y ∣X/Y ∈ � ∧X ∈ vars(e) ∧ Y ∈ Const}

In the following, we will use isApplP,Σ(pol, e) to refer to the fact that a policy pol

belonging to a set of policies P is applicable to a triple pattern e according to a

state Σ and applP,Σ(pol, e) to refer to the result of such application.

121

Intuitively, a policy pol is applicable to a triple pattern e if the triple the

policy is protecting unifies with e and; (i) all context-dependent predicates; and

(ii) all boolean expressions which do not share variables with e nor with any of the

triple patterns in the body of pol; hold according to the available set of policies and

state. The result of the application is a pair whose first element is a modified version

of the set of triple patterns available in the body of pol and whose second element

is a set of boolean expressions comprising

∙ the boolean expressions created when disunifying the triple patterns available

in the body of pol

∙ a modified version of the boolean expressions available in the body of pol which

share variables with e or with some triple pattern in the body of pol

∙ the ground bindings available in the substitution

Example 32 Tab. 6.2 shows all pairs (pol, e) (where pol is applicable to e) as well

as the result of the application of pol to e. The first column of the table shows the

policy number (Np) as it has been introduced in Tab. 6.1, whereas the second column

shows the number of the triple pattern (Nt) as it has been introduced in Fig. 6.1.

The further columns exploit the terminology introduced in Definition 55. When

computing the applicability of a policy to a triple pattern we made the following

assumptions concerning the evaluation of context-dependent predicates.

∙ In policies (ii) and (vi) the requester is #recSer

∙ In policy (iii) the requester is certified by #bbb

∙ In policy (iv) the current time is 15:00

∙ In policy (vii) the requester sent a credential #cred issued by #bbb

Before we describe the query expansion algorithm we specify the conditions under

which a query does not need to be evaluated since the result is empty.

122

N
p

N
t

�
′

�
′′

P
E

B
E

0
B
E

1
B
E
∖B
E

0
∖B
E

1

i
2

{P
er
so
n
/
#
a
li
ce
,

Z
/
P
ℎ
o
n
e}

∅
∅

∅
∅

{P
er
so
n

=
#
a
li
ce
}

ii
2

{X
/
P
er
so
n
,

Z
/
P
ℎ
o
n
e}

{(
X

1
,f
o
a
f

:
cu
r
r
en
tP
r
o
je
ct
,X

2
)}

{X
1

=
P
er
so
n
,

X
2

=
#
r
ew
er
se
}

∅
ii
i

2
{(
X

3
,f
o
a
f

:
k
n
o
w
s,
X

4
)}

{X
3

=
#
a
li
ce
}

X
4

=
P
er
so
n
}

iv
1

{X
/
P
er
so
n
,

Y
/
f
o
a
f

:
n
a
m
e,

Z
/N

a
m
e}

{T
im
e/

1
5

:
0
0
}
∅

∅
{P
er
so
n
∕=

#
to
m
}

v
3

{P
er
so
n
/
#
a
li
ce
,

Z
/
D
o
cu
m
en
t}

∅

{(
X

5
,r
df

:
ty
p
e,
X

6
),

(X
7
,f
o
a
f

:
cu
r
r
en
tP
r
o
je
ct
,P

),
(X

8
,f
o
a
f

:
to
p
ic
,T

),
(P
,f
o
a
f

:
tℎ
em

e,
T

)}

{X
5

=
D
o
cu
m
en
t,

X
6

=
f
o
a
f

:
D
o
cu
m
en
t,

X
7

=
#
a
li
ce
,

X
8

=
D
o
cu
m
en
t}

∅

{P
er
so
n

=
#
a
li
ce
}

v
i

4
{P
er
so
n
/
#
a
li
ce
,

X
/A
cc
o
u
n
t}

{Y
/
#
r
ec
S
er
}

{(
X

9
,f
o
a
f

:
k
n
o
w
s,
X

1
0
)}

{X
9

=
#
a
li
ce
,

X
1
0

=
#
r
ec
S
er
}

v
ii

1
{X

/
P
er
so
n
,

Y
/
f
o
a
f

:
n
a
m
e,

Z
/N

a
m
e}

{C
/
#
cr
ed
,

X
/
#
bb
b}

{(
X

1
1
,r
df

:
ty
p
e,
X

1
2
)}

{X
1
1

=
#
bb
b,

X
1
2

=
f
o
a
f

:
P
er
so
n
}

∅

v
ii

2
{X

/
P
er
so
n
,

Y
/
f
o
a
f

:
p
ℎ
o
n
e,

Z
/
P
ℎ
o
n
e}

{(
X

1
3
,r
df

:
ty
p
e,
X

1
4
)}

{X
1
3

=
#
bb
b,

X
1
4

=
f
o
a
f

:
P
er
so
n
}

v
ii

3
{X

/
P
er
so
n
,

Y
/
f
o
a
f

:
in
te
r
es
t,

Z
/
D
o
cu
m
en
t}

{(
X

1
5
,r
df

:
ty
p
e,
X

1
6
)}

{X
1
5

=
#
bb
b,

X
1
6

=
f
o
a
f

:
P
er
so
n
}

v
ii

4
{X

/
P
er
so
n
,

Y
/
f
o
a
f

:
ℎ
o
ld
sA
cc
o
u
n
t,

Z
/A
cc
o
u
n
t}

{(
X

1
7
,r
df

:
ty
p
e,
X

1
8
)}

{X
1
7

=
#
bb
b,

X
1
8

=
f
o
a
f

:
P
er
so
n
}

T
a
b

le
6
.2

:
A

p
p
li

ca
ti

o
n

o
f

p
o
li

ci
e
s

to
tr

ip
le

p
a
tt

e
rn

s

123

Definition 56 (Query failure) Given a query q = (RF, PE,BE), a set of poli-

cies P and a state Σ, we say that q fails if either of the following two conditions

hold.

∙ ∃e ∈ PE ∄pol ∈ P ∣pol is an allow policy ∧isApplP,Σ(pol, e)

∙ ∃e ∈ PE, pol ∈ P ∣pol is a deny policy ∧isApplP,Σ(pol, e) ∧ applP,Σ(pol, e) =

(∅, ∅)

Intuitively, a query fails if there does not exist any triple to be returned according

to both the query and the applicable policies, i.e., if the query contains at least one

triple pattern for which no matching triples are allowed to be accessed (deny by

default) or for which all matching triples are not allowed to be accessed (explicit

deny).

The query expansion algorithm is defined as follows.

Input:

Two sets of triple patterns PE1 and PE2

A set of boolean expressions BE ′

Output:

PE ≡ a set of triple patterns

BE ≡ a set of boolean expressions

removeDuplicates(PE1, PE2, BE
′):

� ≡ a substitution

(1) PE = � = ∅
(2) ∀pe2 ∈ PE2

(3) if ∃pe1 ∈ PE1∣pe2 and pe1 are unifiable

(4) � = �mgu(pe2, pe1)

(5) else PE∪ = {pe2}
(6) BE = {�be′∣be′ ∈ BE ′}

124

Input:

a query q = (RF,PE,BE)

a set of policies P

a state Σ

Output:

PE+
new ≡ a set of triple patterns (from allow policies)

PE−new ≡ a set of triple patterns (from deny policies)

BE+
new ≡ a set of boolean expressions (from allow policies)

BE−new ≡ a set of boolean expressions (from deny policies)

policyF iltering(q, P,Σ):

BE+
or ≡ a set of boolean expressions (from allow policies)

BE−or ≡ a set of boolean expressions (from deny policies)

Papp ≡ a set of policies

(1) PE+
new = PE−new = BE+

new = BE−new = ∅
(2) ∀e ∈ PE
(3) BE+

or = BE−or = ∅

// check allow policies

(4) Papp = {pol ∈ P ∣pol is an allow policy ∧isApplP,Σ(pol, e)}
(5) if Papp = ∅

// no triples matching e can be accessed

return query failure

(6) ∀pol ∈ Papp

(7) applP,Σ(pol, e) = (PE′, BE′)

(8) removeDuplicates(PE+
new, PE

′, BE′) = (PE′′, BE′′)

(9) PE+
new∪ = PE′′

(10) BE+
or∪ = {∧be∈BE′′be}

(11) BE+
new∪ = {∨

be∈BE+
or
be}

// check deny policies

(12) Papp = {pol ∈ P ∣pol is a deny policy ∧isApplP,Σ(pol, e)}
(13) if ∃pol ∈ Papp : applP,Σ(pol, e) = (∅, ∅)

// all triples matching e cannot be accessed

return query failure

(14) ∀pol ∈ Papp

(15) applP,Σ(pol, e) = (PE′, BE′)

(16) removeDuplicates(PE−new, PE
′, BE′) = (PE′′, BE′′)

(17) PE−new∪ = PE′′

(18) BE−or∪ = {∧be∈BE′′be}
(19) BE−new∪ = {∨

be∈BE−or
be}

125

Intuitively, function removeDuplicates: (i) merges two sets of triple patterns so

that triple patterns which are equal beside variable renaming are not taken into

account; and (ii) modifies a set of boolean expressions in order to take into account

the merging performed during the previous step. First, the output parameter PE as

well as the local variable � are initialized to the empty set (line 1). Afterwards, for

each triple pattern pe2 belonging to the input parameter PE2 (line 2) it is checked

whether pe2 already belongs to the input parameter PE1 beside variable renaming.

To this goal, it is checked whether PE1 contains a triple pattern pe1 which is unifiable

with pe2 (line 3). If this is the case, � is updated by composing it with the most

general unifier between pe2 and pe1 (line 4), otherwise pe2 is added to PE1 (line 5).

Finally, the output parameter BE is set to be equal to the input parameter BE ′,

beside the fact that the substitution � is applied to all boolean expressions in BE ′

(line 6).

Intuitively, for each triple pattern available in the FROM clause of a query,

function policyF iltering retrieves the policies applicable to it. The triple patterns

resulting from the application (cf. Definition 55) of the policies to the triples are

collected. The boolean expressions resulting from the application of a policy to

a triple are AND-ed, whereas the AND-expressions resulting from the application of

all (applicable) policies to a triple are OR-ed and such OR-expressions are collected.

During the whole process, allow and deny policies are kept separate.

First, the output parameters PE+
new, PE−new, BE+

new and BE−new are initialized

to the empty set (line 1). Afterwards, for each triple pattern e available in the FROM

clause of the input query (line 2) the local variables BE+
or and BE−or are initialized

to the empty set (line 3) and allow (line 4) and deny (line 12) policies applicable

to e are subsequently inspected. According to Definition 56, if no applicable allow

policies are found (line 5) or some deny policy applies without any restriction (line

13) the query fails. Otherwise, for each applicable policy (lines 6, 14) functions appl

(cf. Definition 55—lines 7, 15) and removeDuplicates (lines 8, 16) are subsequently

invoked in order to retrieve a set of triple patterns PE ′′ and a set of boolean ex-

pressions BE ′′. The triple patterns belonging to PE ′′ are added to PE+
new (line 9)

and PE−new (line 17), whereas the boolean expressions belonging to BE ′′ are AND-ed

126

and the result expression is added to BE+
or (line 10) and BE−or (line 18). After all

applicable policies have been checked, the boolean expressions belonging to BE+
or

(resp. BE−or) are OR-ed and the result expression is added to BE+
new (line 10) (resp.

BE−new—line 18).

Example 33 Tab. 6.3 exemplifies the application of function policyF iltering to the

query shown in Fig. 6.1 and the policies shown in Tab. 6.1. We made the following

assumptions concerning the evaluation of context-dependent predicates.

∙ The requester is #recSer (therefore policies (ii) and (vi) apply to the query)

∙ The requester is certified by #bbb (therefore policy (iii) applies to the query)

∙ The current time is 18:00 (therefore policy (iv) does not apply to the query)

∙ The requester sent a credential #cred issued by #bbb (therefore policy (vii)

applies to the query)

Because of these assumptions, all policies but (iv) are applicable to the query. The

first two columns of Tab. 6.3 do not differ from the corresponding ones of Tab. 6.2,

whereas the further columns show the values returned by function removeDuplicates

(PE and BE) as well as the last value of its local variable � upon subsequent calls

within function policyF iltering, assuming that both the triple patterns in the WHERE

clause of the query and the policies in Tab. 6.1 are processed in a top-down fashion.

Finally, notice that allow (resp. deny) policies are shown in the upper (resp. lower)

part of Tab. 6.3.

Tab. 6.3 allows to retrieve the output parameters of function policyF iltering:

PE−new = {(X1, foaf : currentProject,X2)} and BE−new = {X1 = Person ∧ X2 =

#rewerse}. PE+
new is the union of the sets appearing in column PE (beside the last

line), whereas BE+
new can be computed as follows.

1. All equalities appearing in each cell of column BE must be AND-ed

2. The conjunctions built during the previous step which refer to the same triple

pattern must be OR-ed

127

N
t

N
p

P
E

B
E

�

1
v
ii
{(
X

1
1
,r
df

:
ty
p
e,
X

1
2
)}

{X
1
1

=
#
bb
b,
X

1
2

=
f
oa
f

:
P
er
so
n
}

∅
2

i
∅

{P
er
so
n

=
#
a
li
ce
}

2
ii

i
{(
X

3
,f
oa
f

:
k
n
ow
s,
X

4
)}

{X
3

=
#
a
li
ce
,X

4
=
P
er
so
n
}

2
v
ii
∅

{X
1
1

=
#
bb
b,
X

1
2

=
f
oa
f

:
P
er
so
n
}

{X
1
3
/X

1
1
,X

1
4
/X

1
2
}

3
v

{(
X

7
,f
oa
f

:
cu
rr
en
tP
ro
je
ct
,P

),
(X

8
,f
oa
f

:
to
p
ic
,T

),
(P
,f
oa
f

:
tℎ
em

a
,T

)}
{X

1
1

=
D
oc
u
m
en
t,
X

1
2

=
f
oa
f

:
D
oc
u
m
en
t,

X
7

=
#
a
li
ce
,X

8
=
D
oc
u
m
en
t,
P
er
so
n

=
#
a
li
ce
}

{X
5
/X

1
1
,X

6
/X

1
2
}

3
v
ii
∅

{X
1
1

=
#
bb
b,
X

1
2

=
f
oa
f

:
P
er
so
n
}

{X
1
5
/X

1
1
,X

1
6
/X

1
2
}

4
v
i

{X
3

=
#
a
li
ce
,X

4
=

#
re
cS
er
,P
er
so
n

=
#
a
li
ce
}

{X
9
/X

3
,X

1
0
/X

4
}

4
v
ii

{X
1
1

=
#
bb
b,
X

1
2

=
f
oa
f

:
P
er
so
n
}

{X
1
7
/X

1
1
,X

1
8
/X

1
2
}

2
ii

{(
X

1
,f
oa
f

:
cu
rr
en
tP
ro
je
ct
,X

2
)}

{X
1

=
P
er
so
n
,X

2
=

#
re
w
er
se
}

∅

T
a
b
le

6
.3

:
A

p
p
li
ca

ti
o
n

o
f

fu
n
ct

io
n
po
li
cy
F
il
te
ri
n
g

to
th

e
q
u
e
ry

in
F

ig
.

6
.1

a
n
d

th
e

p
o
li

ci
e
s

in
T

a
b
.

6
.1

128

3. BE+
new is the set of the disjunctions built during the previous step

Definition 57 (Expanded query) An expanded query is a pair ((RF+, (PE+,

PE+
O), BE+), (RF−, (PE−, PE−O), BE−)) where

∙ (RF+, PE+, BE+) and (RF−, PE−, BE−) are (usual) queries

∙ PE+
O and PE−O are path expressions

Intuitively, an expanded query is meant to model RDF queries having the following

structure.

CONSTRUCT RF+

FROM PE+ [PE+
O]

WHERE BE+

MINUS

CONSTRUCT RF−

FROM PE− [PE−O]

WHERE BE−

where

∙ MINUS denotes the set difference operator: the result set of the query above

is the set of results which are returned by the first subquery but not by the

second one

∙ [and] denote the optional path expression modifier: path expressions con-

tained within the brackets do not have to be matched to find query results

Input:

a query q = (RF, PE,BE)

a set of policies P

a state Σ

Output:

an expanded query q = (RF+, (PE+, PE+
O), BE+), (RF−, (PE−, PE−O), BE−))

129

expandQuery(q, P,Σ)

1) policyF iltering(q, P,Σ) = (PE+
new, PE

−
new, BE

+
new, BE

−
new)

2) RF+ = RF− = RF

3) PE+ = PE− = PE

4) PE+
O = PE+

new

5) PE−O = PE−new

6) BE+ = BE ∪BE+
new

7) BE− = BE ∪BE−new

Intuitively, function expandQuery modifies a query having the structure shown

in Section 6.2.1 into a query having the structure shown above. Optional path

expressions as well as further boolean expressions integrating the ones available in

the original query are provided by the policyF iltering function.

Example 34 Fig. 6.2 shows the result of applying function expandQuery to the

query shown in Fig. 6.1 and the policies shown in Tab. 6.1, with the same assump-

tions as in Example 33.

6.3 Implementation

In this section we present the implementation of the algorithm we described

in Section 6.2.3. We first introduce a generic architecture (which we call Access

Control for RDF Stores—AC4RDF) and describe our concrete implementation. Af-

terwards, we demonstrate how we successfully integrated AC4RDF into existing

infrastructures. Finally, we evaluate the performance of our approach.

6.3.1 Architecture

A key goal of our approach is to be applicable to and reusable in different

settings in which access to RDF data should be controlled. Our RDF query rewrit-

ing framework is based on three external component, which can be autonomously

configured and adapted to a specific setting.

130

CONSTRUCT *

FROM {Person} foaf:name {Name};

foaf:phone {Phone};

foaf:interest {Document};

foaf:holdsAccount {Account}

[{X11} rdf:type {X12},

{X3} foaf:knows {X4},

{X7} foaf:currentProject {P},

{X8} foaf:topic {T},

{P} foaf:theme {T}]

WHERE (X11 = #bbb AND X12 = foaf:Person) AND

(Person = #alice OR

(X3 = #alice AND X4 = Person) OR

(X11 =#bbb AND X12 = foaf:Person)

) AND (

(X11 = Document AND X12 = foaf:Document AND

X7 = #alice AND X8 = Document AND

Person = #alice

) OR

(X11 = #bbb AND X12 = foaf:Person)

) AND (

(X3 = #alice AND X4 = #recSer AND

Person = #alice

) OR

(X11 = #bbb AND X12 = foaf:Person)

)

MINUS

CONSTRUCT *

FROM {Person} foaf:name {Name};

foaf:phone {Phone};

foaf:interest {Document};

foaf:holdsAccount {Account}

[{X1} foaf:currentProject {X2}]

WHERE X1 = Person AND X2 = #rewerse

Figure 6.2: Expanded RDF query

131

Figure 6.3: Architecture of AC4RDF

RDF Query Language Nowadays, many RDF query languages exist. Although

SPARQL has recently become a W3C Recommendation, SeRQL and RDQL

[73] are still being used. Therefore, we designed our framework in order to be

able to support different RDF query languages

Policy language As mentioned in Section 6.1, different policy languages and en-

gines can be exploited in order to specify and enforce RDF access-control

policies. Our framework is able to deal with different policy languages and

engines, as long as they provide the required expressiveness as described in

Section 6.2.2

RDF store Finally, our framework is agnostic on the way RDF data are stored

in order to support application scenarios which require different stores (like

Sesame3 [25], Kowari4 or Jena5)

The interface to such external components is provided by the Query Extension, Ac-

cess Control and Repository Access modules of AC4RDF, whose generic architecture

is shown in Fig. 6.3.

3http://www.openrdf.org/
4http://kowari.sourceforge.net/
5http://jena.sourceforge.net/

132

Query Extension The main task of this module is to rewrite a given query in such

a way that only allowed RDF statements are accessed and returned. To this

goal, it has to query the Access Control module for each FROM clause of the

input query in order to retrieve further path expressions and constraints (cf.

Section 6.2.3) which will be used to expand the query. Currently, an interface

for the SeRQL query language is available

Access Control This module is responsible for evaluating the policies available

in the system against the requests issued by the Query Extension module.

The evaluation may take into account contextual information provided by the

Query Extension module, such as properties of the requester (possibly to be

certified by credentials) or environmental factors (e.g., time of the request).

Currently, an interface for the Protunepolicy language and framework is

available

Repository Access When the expanded query is sent to the underlying RDF

repository, it must be ensured that the latter is able to interpret it. For

this reason, the main task of this module is to translate the incoming query

in a language the repository is able to understand. Since our implementation

exploits Sesame, which natively supports SeRQL, we could skip the transla-

tion step. Since the returned result set only contains allowed statements, it

can be directly handed over to the requester

6.3.2 Experiments and evaluation

We set up a Sesame database with more than 3,000,000 RDF statements about

persons and mails into a Quad CPU AMD Opteron 2.4GHz with 32GB memory and

issued the queries from a Dual Pentium 3.00GHz with 2GB memory. We tested our

approach in the worst case by issuing a query which would return a very large

number of results (namely 1,280,000) if access control were disabled.

Fig. 6.4 shows the time needed to evaluate the query if access control is en-

abled: the query has been issued many times with different policies, which led to

different expanded queries. The results are ordered according to the number of fur-

ther FROM and WHERE literals of the expanded query w.r.t. the original one. Graph

133

(a) shows experiments performed when only allow policies were defined, whereas

the experiments reported in graph (b) used both allow and deny policies.

Both graphs show that the addition of WHERE literals linearly increases the

evaluation time. The reasons for this increment are: (i) each WHERE literal specifies

new triples that are allowed to be accessed, therefore the number of triples that will

be returned increases; and (ii) the further literals require time for their evaluation.

As the reader can notice, both graphs show a huge increment of the evaluation

time when six FROM literals are added. Upon closer inspection of the behavior of the

repository, we observed that the new literals produced a triplication of the number

of triples to be considered, even though none of the new ones was to be returned

(for this reason we believe that appropriate optimizations in the repository would

help to increment the performance).

We also made other experiments (not reported here) with more selective

queries and we noticed that the addition of FROM literals only produced linear in-

crement of the evaluation time.

These results demonstrate that the approach described in this chapter scales

to a large number of policies since, even if thousands of policies are defined in the

system, not all of them will contribute to expand the original query with new literals.

Only those: (i) protecting the triples appearing in the FROM clause of the original

query; and (ii) whose context-dependent conditions are fulfilled; will be taken into

account.

Our approach is especially appealing if the policies available in the system

induce the expanded query to only contain boolean constraints and selective path

expressions. In such a setting, longer evaluation times could be a reasonable price

for the advantages provided by fine-grained access control. In particular, this cost

may be acceptable for Semantic Web applications and services that must deal with

sensitive data and which use highly selective queries.

On the other hand, further optimizations are required in order to reduce the

evaluation time for non-selective queries: such optimizations include improvements

in the query expansion process, reordering of constraints as well as native optimiza-

tions in the RDF repository.

134

(a)

(b)

Figure 6.4: Response time when increasing the number of FROM and WHERE

literals: (a) with allow policies; and (b) with allow and deny
policies

CHAPTER 7

Conclusions and Outlook

We have illustrated the Protune policy framework and described how it can be

used in order to create a security level on top of metadata stores and RDF reposi-

tories. The positive performance evaluation experiments we reported showed Pro-

tune’s feasibility w.r.t. real-world scenarios. According to [38, 31], Protune is

one of the most complete policy frameworks available to date w.r.t the desiderata

laid out in the literature. More information about Protune and the vision be-

hind it can be found on the Web site of REWERSE’s working group on policies:

http://cs.na.infn.it/rewerse/. There, on the software page, the interested

reader can find links to Protune’s software and some on-line demos and videos.

The main challenges for Protune are related to usability: Protune tackles

usability issues by (partially or totally) automating the information exchange oper-

ations related to access control and information release control, and by providing a

natural language front-end for policy authoring.

We plan to continue the development of Protune by adding new features

and improving the prototype. In particular, we plan to support reliable forms of ev-

idences not based on standard certification authorities by exploiting services such as

OpenId and enabling user-centric credential creation. Support to obligation policies

is another foreseen extension (preliminary work is reported in [5, 54, 53, 18]).

Another important line of research concerns standardization: we are inves-

tigating how Protune’s policies and messages can be encoded by adapting and

combining existing standards such as XACML (for decision rules—cf. Chapter 2),

RuleML1 or RIF2 (for rule-based ontologies), WS-Security3 (for message exchange)

and so on. Concerning W3C’s RIF initiative, our working group has contributed

with a use case about policy and ontology sharing in trust negotiation.

Finally, we plan to complete some preliminary work which has been accounted

1http://ruleml.org/
2http://www.w3.org/2005/rules/wiki/RIF_Working_Group
3http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

135

136

for in the previous chapters, namely: (i) specification of the semantics of the Pro-

tune policy language; (ii) more thorough user evaluation of feasibility, efficacy and

efficiency of Protune’s natural language front-end; and (iii) experimental evalu-

ation of the special-purpose strategy to create a security level on top of metadata

stores by protecting them by means of Protune policies.

1. Section 3.5 described how Protune policies can be brought to a canoni-

cal form (beside variable renaming), thereby providing the first step toward

the definition of the semantics of the Protune policy language. However,

the semantics of a generic Protune policy in canonical form has not been

described in this work. Two (non mutually exclusive) ways appear to be

feasible: (i) describing how a Protune policy can be mapped to a Logic

Program (whose semantics has been extensively described in the literature—

cf. [64]); and (ii) providing an executable semantics. The latter strategy bases

on the Model-driven architecture [56] approach to software design, originally

pursued by the Object Management Group4. By means of automatic gener-

ators, MDA-based tools (most noticeably, the Eclipse Modeling Framework5)

allow to create reference implementations of a system out of a description of

its model

2. Section 4.3.3 reported on the results of a preliminary unsupervised user study

evaluating the usability of Protune’s natural language front-end. However, it

is desirable confirming the results of such user study through a more thorough

one, conducted in a supervised fashion and involving more participants as well

as a higher number of policies

3. Chapter 5 presented a general-purpose strategy and a special-purpose one to

lower the policy enforcement time by exploiting pre-evaluation. However, only

the general-purpose strategy has been evaluated (cf. Section 5.3), whereas

solely the theoretical properties of the special-purpose one have been investi-

gated

4http://www.omg.org/
5http://www.eclipse.org/modeling/emf/

BIBLIOGRAPHY

[1] Fabian Abel, Juri Luca De Coi, Nicola Henze, Arne Wolf Koesling, Daniel

Krause, and Daniel Olmedilla. A user interface to define and adjust policies

for dynamic user models. In WEBIST, pages 184–191, 2009.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley, 1995.

[3] Ben Adida, Mark Birbeck, Shane McCarron, and Steven Pemberton. RDFa in

XHTML: Syntax and processing – second edition. Technical report, W3C,

2008. http://www.w3.org/TR/rdfa-syntax.

[4] B.V. Aduna. The SeRQL query language (revision 1.2). Technical report,

Sirma AI Ltd., 2006. http://www.openrdf.org/doc/sesame/users/.

[5] José Júlio Alferes, Ricardo Amador, Philipp Kärger, and Daniel Olmedilla.

Towards reactive Semantic Web policies: Advanced agent control for the

Semantic Web. In International Semantic Web Conference (Posters &

Demos), 2008.

[6] Anne H. Anderson. An introduction to the Web Services Policy Language

(WSPL). In POLICY, pages 189–192, 2004.

[7] Anne H. Anderson. A comparison of two privacy policy languages: EPAL and

XACML. In SWS, pages 53–60, 2006.

[8] Paul Ashley, Satoshi Hada, Gnter Karjoth, Calvin Powers, and Matthias

Schunter. Enterprise Privacy Authorization Language (EPAL 1.2). Technical

report, IBM, November 2003.

[9] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,

Implementation, and Applications. Cambridge University Press, 2003.

137

138

[10] Michael Backes, Günter Karjoth, Walid Bagga, and Matthias Schunter.

Efficient comparison of enterprise privacy policies. In SAC, pages 375–382,

2004.

[11] Mayank Bawa, Roberto J. Bayardo Jr., and Rakesh Agrawal.

Privacy-preserving indexing of documents on the network. In VLDB, pages

922–933, 2003.

[12] Moritz Y. Becker. Cassandra: Flexible Trust Management and its Application

to Electronic Health Records. PhD thesis, University of Cambridge, 2005.

[13] Moritz Y. Becker and Peter Sewell. Cassandra: Distributed access control

policies with tunable expressiveness. In POLICY, pages 159–168, 2004.

[14] Dave Beckett. RDF/XML syntax specification. Technical report, W3C, 2004.

http://www.w3.org/TR/rdf-syntax-grammar/.

[15] Abraham Bernstein and Esther Kaufmann. GINO – a guided input natural

language ontology editor. In International Semantic Web Conference, pages

144–157, 2006.

[16] Patrick Blackburn and Johan Bos. Representation and Inference for Natural

Language: A First Course in Computational Semantics. Center for the Study

of Language and Information, 2005.

[17] Piero A. Bonatti, Juri Luca De Coi, Wolfgang Nejdl, Daniel Olmedilla, Luigi

Sauro, and Sergej Zerr. Policy based protection and personalized generation

of web content. In LA-WEB, 2009.

[18] Piero A. Bonatti, Philipp Kärger, and Daniel Olmedilla. Reactive policies for

the Semantic Web. In ESWC, 2010.

[19] Piero A. Bonatti and Daniel Olmedilla. Driving and monitoring provisional

trust negotiation with metapolicies. In POLICY, pages 14–23, 2005.

[20] Piero A. Bonatti, Daniel Olmedilla, and Joachim Peer. Advanced policy

explanations on the web. In ECAI, pages 200–204, 2006.

139

[21] Piero A. Bonatti and Pierangela Samarati. A uniform framework for

regulating service access and information release on the web. Journal of

Computer Security, 10(3):241–272, 2002.

[22] Dan Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF

schema. Technical report, W3C, 2004. http://www.w3.org/TR/rdf-schema/.

[23] Carolyn Brodie, Clare-Marie Karat, and John Karat. An empirical study of

natural language parsing of privacy policy rules using the SPARCLE policy

workbench. In SOUPS, pages 8–19, 2006.

[24] Jeen Broekstra and Arjohn Kampman. Semantic Web and Peer-to-Peer,

chapter An RDF query and transformation language, pages 23–39. Springer,

2006.

[25] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A

generic architecture for storing and querying RDF and RDF schema. In

International Semantic Web Conference, pages 54–68, 2002.

[26] Ingo Brunkhorst, Paul Alexandru Chirita, Stefania Costache, Julien Gaugaz,

Ekaterini Ioannou, Tereza Iofciu, Enrico Minack, Wolfgang Nejdl, and Raluca

Paiu. The Beagle++ toolbox: Towards an extendable desktop search

architecture. In Semantic Desktop Workshop 2006, November 2006.

[27] Jeremy J. Carroll, Christian Bizer, Patrick J. Hayes, and Patrick Stickler.

Named graphs, provenance and trust. In WWW, pages 613–622, 2005.

[28] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword

searches on remote encrypted data. In ACNS, pages 442–455, 2005.

[29] Kendall Grant Clark, Lee Feigenbaum, and Elias Torres. SPARQL protocol

for RDF. Technical report, W3C, 2008.

http://www.w3.org/TR/rdf-sparql-protocol/.

[30] Juri Luca De Coi, Peter Fankhauser, Tobias Kuhn, Wolfgang Nejdl, and

Daniel Olmedilla. Controlled natural language policies. In CCS, 2009.

140

[31] Juri Luca De Coi and Daniel Olmedilla. A review of trust management,

security and privacy policy languages. In SECRYPT, pages 483–490, 2008.

[32] Juri Luca De Coi, Daniel Olmedilla, Sergej Zerr, Piero A. Bonatti, and Luigi

Sauro. A trust management package for policy-driven protection &

personalization of web content. In POLICY, pages 228–230, 2008.

[33] Alex Cozzi, Stephen Farrell, Tessa A. Lau, Barton A. Smith, Clemens Drews,

James Lin, Bob Stachel, and Thomas P. Moran. Activity management as a

Web Service. IBM Systems Journal, 45(4):695–712, 2006.

[34] Lorrie Cranor, Marc Langheinrich, and Massimo Marchiori. A P3P preference

exchange language 1.0 (APPEL1.0). Technical report, W3C, 2002.

http://www.w3.org/TR/P3P-preferences/.

[35] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The

Ponder policy specification language. In POLICY, pages 18–38, 2001.

[36] Juri Luca De Coi. Mapping natural language to formal policies: an

ACE→ Protune mapping. Technical report, Forschungszentrum L3S, July

2008.

[37] Sebastian Dietzold and Sren Auer. Access control on RDF triple stores from a

Semantic Wiki perspective. In European Semantic Web Conference, 2006.

[38] Claudiu Duma, Almut Herzog, and Nahid Shahmehri. Privacy in the Semantic

Web: What policy languages have to offer. In POLICY, pages 109–118, 2007.

[39] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto Controlled

English for knowledge representation. In Reasoning Web, pages 104–124, 2008.

[40] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Discourse

representation structures for ACE 6.5. Technical report, Department of

Informatics, University of Zurich, February 2008.

141

[41] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley,

1995.

[42] Rita Gavriloaie, Wolfgang Nejdl, Daniel Olmedilla, Kent E. Seamons, and

Marianne Winslett. No registration needed: How to use declarative policies

and negotiation to access sensitive resources on the Semantic Web. In ESWS,

pages 342–356, 2004.

[43] Simon Godik and Tim Moses. OASIS eXtensible Access Control Markup

Language (XACML) version 1.0. Technical report, OASIS, February 2003.

[44] Hakan Hacigümüs, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra.

Executing SQL over encrypted data in the database-service-provider model.

In SIGMOD Conference, pages 216–227, 2002.

[45] David Hawking. Challenges in enterprise search. In ADC, pages 15–24, 2004.

[46] Amir Herzberg, Yosi Mass, Joris Mihaeli, Dalit Naor, and Yiftach Ravid.

Access control meets public key infrastructure, or: Assigning roles to

strangers. In IEEE Symposium on Security and Privacy, pages 2–14, 2000.

[47] Amit Jain and Csilla Farkas. Secure resource description framework: an access

control model. In SACMAT, pages 121–129, 2006.

[48] Lalana Kagal, Timothy W. Finin, and Anupam Joshi. A policy language for a

pervasive computing environment. In POLICY, pages 63–, 2003.

[49] Kaarel Kaljurand. Attempto Controlled English as a Semantic Web Language.

PhD thesis, Faculty of Mathematics and Computer Science, University of

Tartu, 2007.

[50] Kaarel Kaljurand. ACE View – an ontology and rule editor based on

Attempto Controlled English. In OWLED, 2008.

142

[51] Hans Kamp and Uwe Reyle. From Discourse to Logic. Introduction to

Modeltheoretic Semantics of Natural Language, Formal Logic and Discourse

Representation Theory. Springer, 1993.

[52] Clare-Marie Karat, John Karat, Carolyn Brodie, and Jinjuan Feng.

Evaluating interfaces for privacy policy rule authoring. In CHI, pages 83–92,

2006.

[53] Philipp Kärger, Emily Kigel, and VenkatRam Yadav Jaltar. SPoX: combining

reactive Semantic Web policies and Social Semantic Data to control the

behaviour of Skype. In International Semantic Web Conference (Posters &

Demos), 2009.

[54] Philipp Kärger, Emily Kigel, and Daniel Olmedilla. Reactivity and Social

Data: Keys to drive decisions in social network applications. In SDoW, 2009.

[55] Rohit Khare and Tantek Çelik. Microformats: a pragmatic path to the

Semantic Web. In WWW, pages 865–866, 2006.

[56] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model

Driven Architecture: Practice and Promise. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2003.

[57] Takao Kojima and Yukio Itakura. Proposal of privacy policy matching engine.

In Digital Identity Management, pages 9–14, 2008.

[58] Tobias Kuhn. AceWiki: Collaborative ontology management in controlled

natural language. In SemWiki, 2008.

[59] Tobias Kuhn and Rolf Schwitter. Writing support for Controlled Natural

Languages. In ALTA, 2008.

[60] Jiangtao Li, Ninghui Li, and William H. Winsborough. Automated trust

negotiation using cryptographic credentials. In ACM Conference on

Computer and Communications Security, pages 46–57, 2005.

143

[61] Ninghui Li and John C. Mitchell. A role-based trust-management framework.

In DISCEX (1), pages 201–, 2003.

[62] Ninghui Li, Mahesh V. Tripunitara, and Qihua Wang. Resiliency policies in

access control. In ACM Conference on Computer and Communications

Security, pages 113–123, 2006.

[63] Ninghui Li and Qihua Wang. Beyond separation of duty: an algebra for

specifying high-level security policies. In ACM Conference on Computer and

Communications Security, pages 356–369, 2006.

[64] John W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer,

1987.

[65] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis G. Kafura, and Sumit

Shah. First experiences using XACML for access control in distributed

systems. In XML Security, pages 25–37, 2003.

[66] L. Ian Lumb and Keith D. Aldridge. Grid – enabling the global geodynamics

project: Automatic RDF extraction from the ESML data description and

representation via GRDDL. In HPCS, page 29, 2006.

[67] Daniel Olmedilla. Policy Representation and Reasoning for Security and

Trust Management in Distributed Environments. PhD thesis, Leibniz

Universität Hannover, 2009.

[68] Axel Polleres. From SPARQL to rules (and back). In WWW, pages 787–796,

2007.

[69] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF.

Technical report, W3C, 2008. http://www.w3.org/TR/rdf-sparql-query/.

[70] Pavan Reddivari, Tim Finin, and Anupam Joshi. Policy based access control

for a RDF store. In Proceedings of the Policy Management for the Web

Workshop, A WWW 2005 Workshop, pages 78–83. W3C, May 2005.

144

[71] Leo Sauermann, Gunnar Aastrand Grimnes, Malte Kiesel, Christiaan Fluit,

Heiko Maus, Dominik Heim, Danish Nadeem, Benjamin Horak, and Andreas

Dengel. Semantic desktop 2.0: The Gnowsis experience. In International

Semantic Web Conference, pages 887–900, 2006.

[72] Rolf Schwitter, Kaarel Kaljurand, Anne Cregan, Catherine Dolbear, and Glen

Hart. A comparison of three Controlled Natural Languages for OWL 1.1. In

OWLED 2008 DC, 2008.

[73] Andy Seaborne. RDQL – a query language for RDF. Technical report, W3C,

2004. http://www.w3.org/Submission/RDQL/.

[74] Andy Seaborne, Geetha Manjunath, Chris Bizer, John Breslin, Souripriya

Das, Ian Davis, Steve Harris, Kingsley Idehen, Olivier Corby, Kjetil Kjernsmo,

and Benjamin Nowack. A language for updating RDF graphs. Technical

report, W3C, 2008. http://www.w3.org/Submission/SPARQL-Update/.

[75] Kent E. Seamons, Marianne Winslett, Ting Yu, Bryan Smith, Evan Child,

Jared Jacobson, Hyrum Mills, and Lina Yu. Requirements for policy

languages for trust negotiation. In POLICY, pages 68–79, 2002.

[76] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The Semantic Web

revisited. IEEE Intelligent Systems, 21(3):96–101, 2006.

[77] Morris Sloman. Policy driven management for distributed systems. J.

Network Syst. Manage., 2(4), 1994.

[78] Bjørnar Solhaug, Dag Elgesem, and Ketil Stølen. Specifying policies using

UML sequence diagrams – an evaluation based on a case study. In POLICY,

pages 19–28, 2007.

[79] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical

techniques for searches on encrypted data. In IEEE Symposium on Security

and Privacy, pages 44–55, 2000.

145

[80] Scott D. Stoller, Ping Yang, C. R. Ramakrishnan, and Mikhail I. Gofman.

Efficient policy analysis for administrative role based access control. In ACM

Conference on Computer and Communications Security, pages 445–455, 2007.

[81] Gianluca Tonti, Jeffrey M. Bradshaw, Renia Jeffers, Rebecca Montanari,

Niranjan Suri, and Andrzej Uszok. Semantic Web languages for policy

representation and reasoning: A comparison of KAoS, Rei, and Ponder. In

International Semantic Web Conference, pages 419–437, 2003.

[82] Andrzej Uszok, Jeffrey M. Bradshaw, Renia Jeffers, Niranjan Suri, Patrick J.

Hayes, Maggie R. Breedy, Larry Bunch, Matt Johnson, Shriniwas Kulkarni,

and James Lott. KAoS policy and domain services: Toward a

Description-Logic approach to policy representation, deconfliction, and

enforcement. In POLICY, pages 93–, 2003.

[83] Andrzej Uszok, Jeffrey M. Bradshaw, James Lott, Maggie R. Breedy, Larry

Bunch, Paul J. Feltovich, Matthew Johnson, and Hyuckchul Jung. New

developments in ontology-based policy management: Increasing the

practicality and comprehensiveness of KAoS. In POLICY, pages 145–152,

2008.

[84] William H. Winsborough, Kent E. Seamons, and Vicki E. Jones. Automated

trust negotiation. In DISCEX (1), pages 88–102, 2000.

[85] Ting Yu, Xiaosong Ma, and Marianne Winslett. PRUNES: an efficient and

complete strategy for automated trust negotiation over the Internet. In ACM

Conference on Computer and Communications Security, pages 210–219, 2000.

[86] Ting Yu, Marianne Winslett, and Kent E. Seamons. Interoperable strategies

in automated trust negotiation. In ACM Conference on Computer and

Communications Security, pages 146–155, 2001.

[87] Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting structured

credentials and sensitive policies through interoperable strategies for

automated trust negotiation. ACM Trans. Inf. Syst. Secur., 6(1):1–42, 2003.

Acknowledgments

The author’s efforts were funded by the European Commission in the

∙ Network of Excellence REWERSE1 (IST-2004-506779)

∙ Project TENCompetence2 (IST-2004-02787)

1http://rewerse.net/
2http://www.tencompetence.org/

146

Lebenslauf

Persönliche Daten

Juri Luca De Coi

geboren am 1. November 1979 in Hagen

ledig

Ausbildung

1985-1993 Grundschule in Castel di Casio bei Bologna

1993-1998 Gymnasium in Porretta Terme bei Bologna

1991-1998 Studium des Fachs Klavier an der Musikhochschule Bologna

1998-2005 Studium des Fachs Komposition an der Musikhochschule Bologna

1998-2004 Studium des Informatikingenieurwesens an der Universität Bologna

seit 2006 Promotion an der Leibniz Universität Hannover

Tätigkeiten

1998-2001 Mitarbeit an der Montessori-Schule in Porretta Terme bei Bologna

als einer der verantwortlichen Leiter des Musical-Laboratoriums

2004-2005 Wissenschaftlicher Mitarbeiter am D.E.I.S., dem Forschungsinstitut

für Informatik-, Elektro- und Systemwissenschaften der Universität

Bologna

2006-2010 Forscher am L3S (Learning Laboratories of Lower Saxony), Leibniz

Universität Hannover

Sprachkenntnisse

Italienisch Muttersprache

Deutsch gut

Englisch gut

Französisch gut

Hannover, 9.3.2010 Juri Luca De Coi

147

