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ABSTRACT

The research activity carried out during the PhDrse was focused on the development of mathematical
models of some cognitive processes and their v@itdy means of data present in literature, wittoable
aim: i) to achieve a better interpretation and amption of the great amount of data obtained osethe
processes from different methodologies (electrojphygical recordings on animals, neuropsychological
psychophysical and neuroimaging studies in humand) exploit model predictions and results tadgu
future research and experiments.

In particular, the research activity has been fedusn two different projects: 1) the first one cems
the development of neural oscillators networkriater to investigate the mechanisms of synchrooizatf
the neural oscillatory activity during cognitiveopesses, such as object recognition, memory, |lg@gua
attention; 2) the second one concerns the matheshatiodelling of multisensory integration procesgeg.
visual-acoustic), which occur in several corticald asubcortical regions (in particular in a subaatti
structure named Superior Colliculus (SC)), and Wwhace fundamental for orienting motor and attentive
responses to external world stimuli. This actiiitgs been realized in collaboration with the Cefber
Studies and Researches in Cognitive NeuroscienctheofUniversity of Bologna (in Cesena) and the
Department of Neurobiology and Anatomy of the WEkeest University School of Medicine (NC, USA).

PART 1.

Objects representation in a number of cognitivecfions, like perception and recognition, foresees
distribute processes in different cortical arease ©f the main neurophysiological question concéms
the correlation between these disparate areasalized, in order to succeed in grouping together th
characteristics of the same object (binding probland in maintaining segregated the propertiesnuoghg
to different objects simultaneously present (sedat&m problem).

Different theories have been proposed to addressetiyuestions (Barlow, 1972). One of the most
influential theory is the so called “assembly cafjrpostulated by Singer (2003), according to whighan
object is well described by a few fundamental progg, processing in different and distributed icaift
areas; 2) the recognition of the object would kdized by means of the simultaneously activationhef
cortical areas representing its different featuB@groups of properties belonging to differentemit$ would
be kept separated in the time domain.

In Chapter 1.1and inChapter 1.2we present two neural network models for objecbgaition, based
on the “assembly coding” hypothesis. These modeds networks of Wilson-Cowan oscillators which
exploit: i) two high-level “Gestalt Rules” (the diarity and previous knowledge rules), to realibe t
functional link between elements of different cati areas representing properties of the same tobjec
(binding problem); 2) the synchronization of theura oscillatory activity in they-band (30-100Hz), to
segregate in time the representations of diffepbjects simultaneously present (segmentation pnoble

These models are able to recognize and reconstultiple simultaneous external objects, even in
difficult case (some wrong or lacking features,reldedeatures, superimposed noise).

In Chapter 1.3the previous models are extended to realize arg@maemory, in which sensory-motor
representations of objects are linked with wordstfis aim, the network, previously developed, destdo
the representation of objects as a collection oEsg/-motor features, is reciprocally linked wittsecond
network devoted to the representation of wordsd¢anetwork)

Synapses linking the two networks are trained vidmee-dependent Hebbian rule, during a training
period in which individual objects are presentegktber with the corresponding words.

Simulation results demonstrate that, during theiensdl phase, the network can deal with the
simultaneous presence of objects (from sensory4miotouts) and words (from linguistic inputs), can
correctly associate objects with words and segrobjgcts even in the presence of incomplete infaonat
Moreover, the network can realize some semantis lamong words representing objects with some dhare
features.

These results support the idea that semantic mepanbe described as an integrated process, whose
content is retrieved by the co-activation of diéier multimodal regions. In perspective, extendadivas of
this model may be used to test conceptual theaiwbto provide a quantitative assessment of agistata
(for instance concerning patients with neural defjc



PART 2.

The ability of the brain to integrate informatiorom different sensory channels is fundamental to
perception of the external world (Stein et al, 1)998is well documented that a number of extrajyn
areas have neurons capable of such a task; orree dieist known of these is the superior collicuBs€)(
This midbrain structure receives auditory, visuadl @omatosensory inputs from different subcortaoad
cortical areas, and is involved in the control néotation to external events (Wallace et al, 1993)

SC neurons respond to each of these sensory ispp&sately, but is also capable of integrating t{®tain

et al, 1993) so that the response to the combingdtsensory stimuli is greater than that to theividlal
component stimuli (enhancement). This enhancengmiréportionately greater if the modality-specific
paired stimuli are weaker (the principle of inverséectiveness). Several studies have shown trat th
capability of SC neurons to engage in multisensotggration requires inputs from cortex; primarihe
anterior ectosylvian sulcus (AES), but also therabdateral suprasylvian sulcus (rLS). If thesetical
inputs are deactivated the response of SC neuoarr®$s-modal stimulation is no different from thabked

by the most effective of its individual componetitrsili (Jiang et al 2001).

This phenomenon can be better understood throughematical models. The use of mathematical
models and neural networks can place the masstaftdat has been accumulated about this phenomenon
and its underlying circuitry into a coherent theiwad structure.

In Chapter 2.1 a simple neural network model of this structurepissented; this model is able to
reproduce a large number of SC behaviours like ismisory enhancement, multisensory and unisensory
depression, inverse effectiveness. @mapter 2.2 this model was improved by incorporating more
neurophysiological knowledge about the neural dirgwnderlying SC multisensory integration, in erdo
suggest possible physiological mechanisms throulglchwit is effected. This endeavour was realized in
collaboration with Professor B.E. Stein and DodBorRowland during the 6 months-period spent at the
Department of Neurobiology and Anatomy of the Wé&keest University School of Medicine (NC, USA),
within the Marco Polo Project.

The model includes four distinct unisensory ardeg tire devoted to a topological representation of
external stimuli. Two of them represent subregiohshe AES (i.e., FAES, an auditory area, and ARV,
visual area) and send descending inputs to thiatpsal SC; the other two represent subcorticads(ene
auditory and one visual) projecting ascending iapatthe same SC.

Different competitive mechanisms, realized by meahgopulation of interneurons, are used in the
model to reproduce the different behaviour of SQraoes in conditions of cortical activation and
deactivation.

The model, with a single set of parameters, is tblaimic the behaviour of SC multisensory neurons
response to very different stimulus conditions @mahsory enhancement, inverse effectiveness, witnd
cross-modal suppression of spatially disparateuifimwith cortex functional and cortex deactivatechd
with a particular type of membrane receptors (NMi2&eptors) active or inhibited. All these resulyses
with the data reported in Jiang et al. (2001) anBinns and Salt (1996).

The model suggests that non-linearities in neugaponses and synaptic (excitatory and inhibitory)
connections can explain the fundamental aspectauitisensory integration, and provides a biolodjcal
plausible hypothesis about the underlying circuitry



INTRODUCTION

The aim of the research activity presented in tiésis is to study cognitive processes by means
of mathematical models and computer simulationse Uike of computational methods allows a
mass of data obtained from different methodolodetsctrophysiological recordings in animals,
neuropsychological, psychophysical and neuroimagtadies in humans) to be reciprocally related
and summarized into a unique theoretical structm@eover, mathematical methods and computer
simulations may generate new predictions about dekaviour and the function of cerebral
structures hardly analyzed by means of classiqalcaehes, and may drive future experiments.

During the PhD course, the activity has been foduse two different projects: 1) the first,
described in the PART 1 of this thesis, conceresdievelopment of neural networks of oscillators,
in order to investigate the mechanism of synchiation of the oscillatory activity, especially yn
band, in different brain areas and its role in ¢tgm processes, such as object recognition,
memory, language, attention; 2) the second, reporntéhe PART 2 of this dissertation, concerns
the mathematical modelling of multisensory inteigraprocesses (e.g. visual-acoustic) which occur
in a subcortical structure named Superior Collisu{8C), and which are fundamental in eliciting
appropriate motor and attentive responses to edterorld stimuli. This activity has been realized
in collaboration with the Center for Studies ands&wches in Cognitive Neuroscience of the
University of Bologna (in Cesena) and the DepartneéMNeurobiology and Anatomy of the Wake

Forest University School of Medicine (NC, USA).



Part 1. SYNCHRONIZED OSCILLATORY

ACTIVITY IN OBJECT RECOGNITION,

SEMANTIC MEMORY AND LANGUAGE




The brain is made of by a collection of neuronaeasblies, connected each others to form
networks involved in different cognitive processés.recent years there has been large agreement
about the idea that cognitive processes do notorlyhe activity of single areas but depend on
large-scale circuits, networks of interconnectesirbareas that become contemporary active during
specific cognitive demands. Under this point ofai@ coherent brain activity plays a fundamental
role in human behaviour (for instance, several @strhave shown that a strong connectivity
between visual and premotor cortex is essentidtiing a motor behavior response), and a similar
important role is played during conscious visualtcpption, attentional processes and working
memory tasks.

These networks can be of different size: small Aodnd to populations of neighbouring
neurons (i.e. in visual-feature binding) or widesa including areas far from each other (i.e. in
more complicate cognitive tasks like memorizatianguage and motor response).

Through the analysis of the EEG during several expnts, phase synchronization between
cortical activities in regions involved in the sapm®cess was identified as a possible mechanism
subserving large-scale cognitive integration. T8yachronization may be distributed both within
the same cortical area and among distant areass avad locked to external stimuli, i.e., it depsnd
on internal connections among neurons (i.e., onn&rnal representation of objects). Further
studies suggest also that synchronization increag#s conscious perception compared with
unconscious (subliminal) processes (Melloni L.1et2007).

Conversely, other brain activation measures sushEBG amplitude, turned out to be
ineffective in discriminating between different #iof processes, or in signalling a good cognitive
result (i.e. perceived vs. unperceived visual tatgsek). For instance, Rodriguez E. et al. (1999)
described a face recognition task in which EEG amgywere recorded while subjects viewed
ambiguous stimuli (faces or meaningless shapesul®eshow that pattern of gamma activity was
spatially homogeneous and similar between the paoreand no-perception conditions over time.

On the contrary, the pattern of synchrony was oifié between the two conditions. In particular



synchronization revealed the activation of a cogaitircuit between the left parieto-occipital and
frontotemporal regions, during the visual percaptamd storage of a face. By contrast, the no-
recognition event was associated with a ho-synghaativation in those regions.

In order to clarify the role of-band synchronization in high level cognitive preses (such as
object recognition, memorization and semantic regméeation) some neural network models have
been realized. Those presenteghiapter 1.1and inchapter 1.2deal with the object representation
problem. The model inhapter 1.3enlarge the viewpoint to lessical and semantieetsp

Object representation (chapter 1.1 and chapter 1.2js the first step performed by several

higher-level cognitive processes like attentionpmogzation, working memory, and language.

An early hypothesis in literature was that the eneg of objects would be signalled by
specialized neurons, processing individual featurasa feed-forward and hierarchically structured
process, and would encode increasingly complexioekhips (Barlow, 1972). According to this
idea, the simultaneous presence of two objecthersame scene is signalled by activation of two
distinct specialized neurons. This mechanism isegdly rejected in the neurophysiological
literature today, and in addition, it exhibits seledrawbacks: first of all it would lead to a
combinatorial explosion of possibilities, hence ao excessive number of individual neurons;
furthermore, with this mechanism it is difficult tocorporate new knowledge and to deal with
entirely novel objects (Singer, 1999).

The previous limitations may be overcome by theated “assembly coding”: according to this
hypothesis, the neural system utilizes a limitednber of features to classify and recognize
perceived objects, and the presence of an objesigimlled by the simultaneous activity of many
neurons, each encoding a single feature (von désbey and Schneider, 1986; von der Malsburg
and Buhmann, 1992; Singer, 1993; Singer and Gr@9s;1Eckhorn, 1999; Tallon-Baudry and
Bertrand, 1999; Singer, 2003).

Several experiments have shown that cortical neuaoa often engaged in synchronous activity

in the y-frequency band (40-60 Hz) (Gray and Singer, 13fger, 1993). Synchronization of



cortical oscillatory activity in the gamma band heeen observed in response to several classes of
sensory stimuli (visual, somatosensory (LebedevMeldon, 1995), auditory (Brosch et al., 2002;
Kaiser et al., 2002) and olfactory system (Freeni®78; Wehr and Laurent, 1996)) and also in
high level cognitive tasks (such as recognitiomafsic (Bhattacharya et al., 2001), recognition of
word vs. non-words (Pulvermdller et al., 1996)riny visual search tasks (Tallon-Baudry et al.,
1997), during delayed-matching-to-sample-tasksl¢haBaudry et al., 1998)).

A central question in neurophysiology is how thistibuted neuronal activity is functionally
linked, to group the different features into a anjtand coherent object representation and how
features of different objects, simultaneously pnése the same scene or situation, are segregated t
avoid interference and false conjunctions.

The aim of our models is to explore the mechanisansying out this synchronization between
different neural groups, even belonging to distamtical structures. In particular we investigdte t
possibility that this synchronization is realizeg imeans of Gestalt rules of high level (like the
similarity and the prior knowledge), implementedte synaptic connections between elements in
the same cortical area, but also between diffetestant cortical structures.

Lexical representation (chapter 1.3)A further extension of the previous models consde

how object representation can be linked with wdtesical aspects) and how words can be related
via common features in the corresponding objeeéntic aspects).

When discussing the organisation of memory, cogmitieuroscientists commonly distinguish
the long-term declarative memory into two main séss episodic and semantic (Tulving, 1983).
The last term “semantic memory” is used to dennfermation which is context independent, is
culturally shared and involves the comprehensiowafds and concepts.

Several theories of semantic memory have been peapim past years, with a special focus on
object representation. Actually, most of the adddainformation used in the formulation of these
theories is based on clinical trials on patienthwesions of the brain, who exhibit some defiaits

recognizing objects from words or in evoking worfitem objects (Lambon Ralph et al.,
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2007;Warrington and McCarthy, 1983;Warrington ahdlce, 1984) (see also (Gainotti, 2006) for
a review). Additional information in most recergays is derived from functional neuroimaging
studies and from neurophysiological measurements.

Although conceptual theories of semantic memorfedih many aspects, most of them agree in
considering it as a distributed process, which gaganany different cortical areas and exploits a
multi-modal representation of objects (Warringtord dicCarthy, 1983;Warrington and Shallice,
1984, Damasio, 1989, Caramazza et al., 1990, LGuwotto et al.,1997, Caramazza and Shelton,
1998, Tyler et al., 2000, Snowden et al., 2004nGi#;, 2000 and 2006).

Two fundamental points emerge from analysis ofdltbsories (see also (Hart et al., 2007)): all
assume that features are essential for the formatioconcepts and that semantic memory
encompasses a distributed representation of tkeserés, over different modality domains.

Several problems, however, are implied in theseceptual models and must be solved for
building a functioning semantic neural network. itstf problem is how the different pieces of
information, shared in a distributed and multimodapresentation of features, can be linked
together to form a coherent object descriptions(thithe problem dealt with in chapt. 1.1 and 1.2).
The second issue is how this object representataid be related with the use of words, and with
the lexical aspects of our semantic. Of coursegaibjcan be retrieved from words; similarly, the
sensory presentation of objects can evoke the sjworeling word. The third point is how different
representations of objects and their relative waras be simultaneously maintained in memory,
and correctly separated, preserving a distinctiotheir individual features (this is a semanticnfior
of the classic integration vs. segregation probdéwision research, see (Singer and Gray, 1995)).

The models, that we have realized, give a valuableport for the clarification of these
problems and allow the different conceptual theoteebe implemented in quantitative terms, their
mechanisms formulated in rigorous ways and the gemérbehaviour analyzed via computer

simulations.
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CHAPTER 1.1. OBJECT SEGMENTATION AND RECOVERY VIA

NEURAL OSCILLATORS IMPLEMENTING THE SIMILARITY

AND PRIOR KNOWLEDGE GESTALT RULES

INTRODUCTION

Several experiments have pointed out that in varmagnitive functions, object representation
occurs in a highly parallel and distributed mannlee: different features of an object are processed
and coded in distinct and distant cortical areadl¢n-Baudry C. and Bertrand O., 1999.

A recent influential hypothesis (Damasio, 1989;geinand Gray, 1995; Singer, 1999; Varela et
al., 2001; von der Malsburg and Schneider, 198&med “Temporal Correlation Hypothesis”,
postulates that neuronal groups representing diffesispects of the same object are bound together
into a cell assembly through synchronization ofirtlaetivity in the gamma range (30-100 Hz).
According to this hypothesis, neurons that firgpirase would signal attributes of the same object,
while neurons firing out of phase would signalibtites in different objects.

A role of gamma activity has been demonstratedegognition of music (Bhattacharya et al.,
2001), word vs. non-words (where it seems to ceféssociation between words and meanings)
(Pulvermuller et al., 1996) as well as during vissgarch tasks (Tallon-Baudry et al., 1997) and
delayed-matching-to-sample-tasks (Tallon-Baudryalet1998). Recent studies suggest that theta
and gamma oscillations play an important role inmfation of declarative memory and retrieval
(Osipova et al., 2006; Salinas and Sejnowski, 2081d that changes in synchrony might be

important for processes, such as expectation dedt@in (Salinas and Sejnowski, 2001).
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A recent hypothesis (Tallon-Baudry and Bertrand®@2%ssumes that the same mechanism can
be extended to the more general idea of objeceseptation, and that gamma activity participates
in the activation, retrieval and rehearsal of daarimal representation through top-down processes.

The role of neural synchronization in binding aregreentation, and its connection with
memory, can be critically analyzed using mathemhtimodels and computer simulation
techniques. Indeed, many models of oscillating aeuretworks, with a different level of
complexity and of physiological plausibility havedn proposed in past-years, with encouraging
results. In these models, the rules used for setati@em are generally inscribed into the synaptic
connections linking oscillators. However, most loége studies are focused on low-levels Gestalt
cues, such as proximity, smoothness and commontdatseegment a visual scene at an early
processing visual stage (Terman and Wang, 1995;Vdadgrerman, 1997; Li, 1998; Kazanovich
and Borisyuk, 2002; Ursino et al., 2003) wheread pifew attempts to use high-levels rules to
classify more complex objects at a higher mentatlleand to store them in memory, have been
performed. Among the others, mention must be madeeivotal work by von der Malsburg et al.
(von der Malsburg and Schneider, 1986; Wang el880; von der Malsburg and Buhmann, 1992).
In a first paper, the authors used a model of lagicij neurons, in which neural coupling reflects
similarity of local quality (von der Malsburg ancct®eider, 1986). In subsequent papers, the
authors proposed models for sensory segmentatiamich connections among oscillators encode
prior knowledge (Wang et al., 1990) or in whichibbators are sensitive to the position of the cue
and encode different features (von der Malsburg Bundmann, 1992). Lourenc,o et al. (2000)
modified the model by Wang et al. (1990) introdgcanlaw of synaptic change and discussed the
problem of learning new memories. Fundamental wovisich analyze the problem of
segmentation, feature extraction and memory inaidggngle model, are those by Wang and Liu
(2002), and of Borisyuk and Kazanovich (2004). Bhesrks, however, are explicitly concerned
with the problem of visual information, and so ades segmentation separate from recognition. In

their models, segmentation is performed at an ganbgessing layer (named the “segmentation
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layer” (Wang and Liu, 2002) or “object selectiorydd’ (Borisyuk and Kazanovich, 2004)), by
using low-level spatial rules (such as proximifilne segmented objects are then sent to a feature
extraction module, and then to a memory layer, twhstores information and detects novelty.
Moreover, in Wang and Liu (2002) the memory layends a feedback to the segmentation layer, to
refine segmentation.

Although this subdivision into consecutive layeyertainly acceptable with reference to vision
processing, it may be not adequate to represermcblbgcognition involving multiple sensory
modalities (such as audition, olfaction, taste, #radr binding) which are less dependent on spatial
rules.

Aim of the present work is to realize a single raty which implements segmentation of
different objects and associative memory (i.e.pgedtion and recall of previously stored objects)
within a single processing stage. The work furtthevelops the same ideas as in the works by von
der Malsburg et al. (von der Malsburg and Schneitl@86; Wang et al., 1990; von der Malsburg
and Buhmann, 1992), focusing attention especiatlysegmentation using high level cues with
possible emphasis on higher cortical functions.

Another important aspect, not considered in previmodels of autoassociative memory, is that
perception of the external world, before being mereal, is ordered in the cortex according to
topological maps (Anderson, 1995; Rolls and TreviE398). This topological organization of
features is ubiquitous in the cortex, and implementsort of similarity criterion: neurons which
signal similar attributes tend to be reciprocallgneected and activated together. A similar
organization can emerge spontaneously in self-azgdnnetworks, such as in the well-known
Kohonen'’s topological maps (Kohonen, 1982; Hertzakt 1991; Anderson, 1995; Rolls and
Treves, 1998). Although this aspect of organizatainperception is certainly important for
functioning of associative memories, and for segaten too, we are not aware of any model of
autoassociative memory which exploits these topo&dgaspects. Hence, a second important

characteristic of this work is the simultaneous abkéwo different kinds of information storage:
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self-organizing maps, based on similarity and otopological organization of features (as in
Kohonen maps) and autoassociative memory, basecbwelation and Hebbian learning (as in
Hopfield nets). This aspect differentiates our apph from that used in classic autoassociative
memories.

The essential concept of our model is that segrtientand recall of high-level objects may be
realized by a single network starting from partinincomplete information, by grouping together a
limited set of fundamental features or attribut€sese basic features are extracted at a former
processing stage, and are arranged in a topolbgicalered fashion at some areas of the cortex.
Features are then linked together (binding) andrsepd (segmentation) by synchronization in the
y-range using the similarity and prior knowledge @ksrules, in order to arrive at high-level
(semantic) object representation.

To illustrate the main ideas of our model, we psEp@ simple implementation, in which
complexity is intentionally maintained at a minimuevel. The objective is to show how this
network may work, its virtues and robustness. Mamaplex and physiologically founded networks

may be naturally built in subsequent works.

MODEL DESCRIPTION

In this section we will first describe the genesalucture of the model, and its basic working
principles, independently of the particular implenaion adopted. Then, we will consider a
particular very simple implementation, which is @burse just a crude schematization of the
physiological reality, but whose results are exemplto show model behavior in a variety of

circumstances.
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General model structure

)

ii)

We assume that the model is composed of N osaofjatieural oscillators, subdivided
into H distinct cortical areas. Each neural grougynbe silent, if it does not receive
enough excitation, or may oscillate in tii#requency band, if excited by a sufficient
input.

Each area is devoted to the representation of @fspattribute or feature of the object
(for instance color, orientation, geometrical famrtase of visual stimuli, tone in case of
auditory stimuli, body position in case of somatws®y stimuli, etc...). Hence, one
object is represented as the collection of H fest\i feature per each area). We assume
that each attribute is not immediately presenhagensory input, but has been extracted
from a previous processing stage in the neocortex.

Neural groups within each area represent the vallubat particular attribute according
to a topological organization. This means that fwoximal neural groups in the area
signal the presence of two similar values, whilstatit groups signal the presence of
different values. This topological organization vsry frequent in the neocortex to
represent sensory modalities (let us consider,rfstance, the orientation map or the
color map in the visual cortex, the tonotopic nraghie auditory cortex, etc...).

Neural groups within the same area are connectedateral excitatory and inhibitory
synapses. These lateral connections are organiedding to a classical “Mexican hat”
disposition. This means that a neuron excites (smkcited by) its proximal neurons in
the area, whereas it inhibits (and is inhibited tmgre distal neurons. As it is well known,
excitatory neurons in the cortex may inhibit pro&lmeurons in the same area via
inhibitory interneurons. Hence, all negative symsp®ithin each area are realized via a
bisynaptic connections, from excitatory units toibitory units, and then from the latter

to other excitatory units.
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V) Two neural groups belonging to different areas nbayconnected via symmetrical
excitatory synapses. These reflect the existencrgf range functional connections
among different cortical areas. These synapseshammally equal to zero, but may
assume a positive value when the two neural grbaps been simultaneously active in
the past during the learning phase. Hence, thasa@psgs store a “prior knowledge” on
whether different attributes occurred together he past during the presentation of
objects.

According to the points iii) and iv) before, latenatra-area connections implement a similarity
criterion, i.e., neural groups which signal a sanwvalue for the attribute tend to be simultanepusl
active. According to point v, inter-area synapseplement a prior knowledge criterion, i.e.,
attributes which were collected together in thet parsd to be grouped again in future experience.

Although in the present work we did not implemeny éearning process, i.e., model structure
and synapses were assigned “a priori”, we wisttress that the hypotheses adopted might reflect
real learning procedures in the cortex. In paréiculthe intra-area topological organization
spontaneously emerges in the well-known Kohoneealsasganizing networks (Kohonen, 1982).
The inter-area synapses may grow or decay on tlkes lmd Hebbian learning, reflecting the
correlation of activity between the pre-synaptid @ost-synaptic neurons (Hertz et al., 1991). The
latter hypothesis is supported by the recent olasexrv that long-term potentiation and long-term
depression strictly depend on the temporal corogladf neurons, with a precision of 10 ms or less
(Markram et al., 1997)and can actually be driverosgillations in the-frequency band.

Finally, we wish to stress that, in self-organizimgtworks, the input to a neuron is generally
computed as the scalar product between a sensotgrvend the vector of synapses entering the
neuron (Hertz et al., 1991). In the present stimlythe sake of simplicity, the input to each neuro
is described as a scalar quantity, ranging betvdeand 1, which reflects the similarity of the input

with the value signaled by the given neuron.
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Quantitative model description
The model implemented in this work is composedHotlifferent areas. Although each area
should be represented as a bi-dimensional stryatutbe present study we preferred to describe it

as a mono-dimensional chain (see Fig. 1).

\ Figure 1 — Schematic diagrams describing

the model structure. Panel a the model is

A
composed ofH different cortical areas
each represented as a mono-dimensional
\Y

chain of M Wilson-Cowan oscillators.
Each oscillator receives coupling terms
both from oscillators in the same area
(lateral intra-area connections), and from
- H - oscillators in different areas (inter-area
synapses). Moreover each unit of the
network receives an inhibitory signal from
the global inhibitor (Gl). Panel b Detail of

—» Excitaton ~ the coupling terms. L&X represents lateral

——O Inhibition ey citatory connections, whileLin lateral
inhibitory connections. Both these terms
come from other excitatory units in the
same area. The lateral excitatory and
inhibitory connections have been chosen
to have a Mexican hat disposition for
intra-are synapses. W represents inter-
area synapses: they are normally set to
zero and assume a positive value only
when two oscillators in two distinct areas
have been simultaneously activated during
the learning phase (see text for an
extensive description).

osci//ato;

inter-area synapses

This choice has been adopted to reduce the matlwaiadmplexity of the model. In this way,
each neural group is described using a single ingieck synapses among groups using two indexes.
We think that the main properties of the model banunderstood quite well with this simple
structure. More complex physiological models, idohg a greater number of areas and bi-
dimensional arrangements of neurons within each, @an be the subject of subsequent versions.

Each area in the model is composed/obscillators. Hence, the total number of oscillatisiN
= M-H. In the following, each area will be denoted wile symbolh or k (h, k=1, 2, ...,H) and

each oscillator with the subscripor | (i,j = 1, 2, ...,N). Neurons which belong to tleth area are
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characterized by an indgxanging from §-1)*M + 1 toh*M. In the present study we adopted an
exemplary network with 4 aread € 4) and 100 neural groups per arga=100).

As already described in our previous works (Urshal., 2003), each single oscillator consists
of a feedback connection between an excitatory, gniand an inhibitory unity;, while the output

of the network is the activity of all excitatoryitsr The time derivatives are

E X0 =%+ H (4 ()= BOO+E(D) +1; =g = (1) 1)
%m(t)z—ymﬁ(mH(atxi(t>—¢y)+Ji(t) @)

where H() represents a sigmoidal activation fumctiefined as

1

Hy)= 3)

7
1+e 7

The other parameters in Egs. (1) and (2) have alewing meaning:a and S are positive
parameters, defining the coupling from the excitato the inhibitory unit, and from the inhibitory
to the excitatory unit of the same neural grouppeetively. In particularg significantly influences

the amplitude of oscillations. Paramejeaaffects the oscillation frequency. The self-exaita of x;

is set to 1, to establish a scale for the synapgights. Similarly, the time constant xfis set to 1,
and represents a scale for time ¢, and @, are offset terms for the sigmoidal functions ie th
excitatory and inhibitory unitd; represents an external stimulus for the oscillatguositioni. E;

andJ; represent coupling terms from all other oscillatior the networkz(t) represents the activity
of a global inhibitor. This is described with tf@lowing algebraic equation (see (Ursino et al.,

2003) for more details):

[l zaoe]o]

According to Eg. 4, the global inhibitor computls bverall excitatory activity in the network,

and sends back an inhibitory signal when this @gtoawercomes a given threshold.
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In the present model, the excitatory and inhibitanjts within an oscillator receive the same
excitation from other areas (to achieve rapid symmization, see (Ursino et al., 2003)) but différen
inputs from other excitatory units in the same aua lateral connections. The latter are arranged
according to a Mexican hat. In the following we lvdénote withW the NxN matrix of inter-area
excitatory connections, with®™ the NxN matrix of lateral excitatory connections insideaaea, and
with L™ the NxN matrix of lateral inhibition inside an area. Itvisrth noting that we preferred the
matrix form in the implementation by a computer,diing the value 0 to all synapses which are
not involved in the model.

Hence, we can write, in scalar form

N N

E =2 WX+ L, (5)
i=1 =1
N N

J =2 Wix; +3 LiX (6)
=1 =

or, in matricial form
E=W+L¥X ®)
J=(W+L")X (67
whereX denotes thélx1 vector of neuron outputs, aigJ areNx1 vectors of coupling terms.
The lateral excitatory and inhibitory synapses h#emn chosen to have a Mexican hat
disposition for the intra-area connections. This haen realized as the difference of two Gaussian

functions, with excitation stronger but narrowemarthinhibition. Hence, for a generic unit

belonging to the arda we have

. | &% (i )21(202) if (h=1)M +1< j<hM
X —
0 otherwise
B i_2 2 . .
) Llne—(l—]) I(207) if (h-1)M +1<j<hM
Ly =4 7 . 8)
0 otherwise
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The previous condition ensures that only units witihe same area are connected via lateral

syanpses, i.e., all lateral connections betweenonetin different areas are set to zetff,, L, Gex

and g, are parameters, which establish the strength ateh&ion of these synapses. To have a

Mexican hat arrangement we must halg:> LY and gex < i |

The synapses linking units in different areas,(tlee quantitiedVfj in Egs. 5 and 6) are normally
set to zero. We assume that these synapses hasstiagvalue only if the pre-synaptic and post-
synaptic units represent two attributes of a presiip memorized object. Hence, matri¥/
embodies a prior knowledge stored within the nekwor

In our model each stored object is compose#i afttributes Kl = 4) one per each area. Each
attribute is represented as a central or “exadtiejasurrounded by an “activation bubble” , which
spreads along a few adjacent neurons. As it wilsbown in section “Results”, the width of the
activation bubble depends on parameters describiegal intra-area synapses (Eq. 7 and 8). The
following notation will be used throughout the maaupt, to represent the four “exact” attributes
of one object:

obj =[a, a, a; a,] 9)
wherea, means position of the neuron signaling tith attribute (i.e., the central neuron in the
bubble), with(h-1)M+1 < a, < hM.

In order to build the matrix of inter-area synap3/swe assume that neurons in two different
areas may be connected only if they belong to twbbles simultaneously active in the same
object. Moreover, the strength of this connecti@trdases with the distance from the “exact
attribute”. In other words, attributes at the cemtethe bubble are more strongly connected than
neurons at the periphery of the bubble. This hygpsithmay correspond to Hebbian learning.

Let us consider two neuronsandj, which belong to two distinct areasandk, respectively.
The matrixW is initially set to zero. After presentation oktbbject, synapses connecting neurons

which belong to two simultaneously active bubblesgiven the value
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i 2 L 2
W, =Woe><;{-(' aﬂzggl ak)J if [i-a,|<B and |j-a|<B (10)

Otherwise, the synapse is left at the previousevdharametds in Eqg. (10) represents the width
of the bubble, during the learning phase.

An example of the lateral synapses in the modgland L‘ij‘) and of the excitatory inter-area

synapsesW;) is shown in Fig. 2, by using the same parametgis Table I.

a) b)
intra-area connections inter-area synapses
8 1 |
. 4
=
=
[<5]
=
Ov
4 Or Y — .
-20 0 20 -4 0
I J-ag

Figure 2 — Synaptic weights of the intra-areafanel g and inter-are connections panel b when parameters LS,

Lig and B are set at their basal values (see Table Banel a Weights of the excitatory @) and inhibitory (m)

lateral connections between neurof and neuroni belonging to the same are& ((h-1)M+1<i,j<hM) as a function
of their relative position. Panel b Weights of the inter-area synapses between neuray, in areah (signalling the

h-th attribute of an object) and neuronj in areak, as a function of the position of with respect to neuronay
(signalling the k-th attribute of the same object).The strength of the connection is maximal (W) between

neurons signalling exact properties, and it decre@&s as the distance from the exact value increas&utside of
the activation bubble (of length2-B), the connection is null.

Table 1 -Values for parameters

Wilson-Cowan oscillators
a=0.3 p=25 y=0.6 T=0.025
¢,=0.7 ¢y: 0.15 6=0.3
Lateral intra-area connections
L =8 Oy = 1.3 Ly =3 oin="7

Inter-area synapses
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Parameter assignment

All parameters characterizing a single oscillatégg. 1 and 2) have been given the same value
used in the previous work (Ursino et al., 2003thvihe exception of parametgrThe value of this
parameter determines the maximum number of obyelsish can be simultaneously perceived. We

usedy = 0.6, which allows perception of three simultameobjects. Parameters which summarize
lateral connections L€, LY, g and gi,) have been initially assigned to have a moderate

“activation bubble” within each area, which spreaas along two neural groups at both sides of
the central value. A change in these parametersthe®ffect of varying the dimension of the
activation bubble (see section “Results”). Param@g which represents the strength of prior
knowledge, has been assigned so that a previoustyamzed object can be restored starting from 3
original attributes. Increasing or decreasing thggameter modifies the number of attributes
necessary to completely recognize one object @&teos “Results”). Paramet&in Eq. 10 has ben
given the valud = 2, which agrees with the dimension of the bulshigng the learning phase.

In section “Results” we will consider initially thisllowing three objects, characterized by
different attributes, which are quite distant witleiach area:

Obj1=[5, 112, 208, 317]; Obj2=[54, 141, 2361]; Obj3=[94, 181, 292, 390];

These objects are stored in the inter-area synapmitix, W, according to Eq. 10. During the
simulations phase, these objects are recalleditoylsiting the attributes listed above (via the inpu
li in Eq. 1), or proximal attributes.

The case of an object which shares two identidabates with another one (i.e., the case of
strong correlation among objects) will be treatethie last section.

In all subsequent simulations the state variabley, (i = 1, 2, ...,N), and the global inhibitog,
are given a random initial value, ranging betweean@ 1, obtained from a uniform random
distribution.

A list of parameters in basal conditions is giveable 1.
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RESULTS

Role of the global inhibitor

The first simulation has been performed in ordeeliccidate the role of the global inhibitor
(GI). For the sake of simplicity, in the first sitation we assumed no lateral connections within the
same area, i.e., parametéfSand L] are set to zero in Egs. 7 and 8. This choice kas dopted
to emphasize the role of a single oscillator witkech area, by avoiding contextual influences
between oscillators in the same area. In other syqudt the Gestalt property of “prior knowledge”
is assumed in this simulation. Accordingly, we Bet 0, in Eq. 10. This simulation, however, has
been performed using parametdy = 5, to have the same total excitation for eadillaing neural
group that would occur in the presence of an atitimébubble.

Fig. 3 shows the time pattern of all oscillatorghe network, assuming that neurons belonging
to the first object receive the inplyt= 0.8 (withi [J Objl), while neurons belonging to the second
object receive a greater inplyt= 1.0 (withj O Obj2). The input to all other neurons is set tmze

i.e., these neurons do not receive any externaluitis and do not oscillate (including those of the

third object).

amplitude

AT
object 1 object 2

Figure 3 — Time pattern of the network output withaut (panel g and with (panel b the global inhibitor. In these
simulations, two objects Obj1 and Obj2) are present in the visual sceneDbjl receives inputl = 0.8, whileObj2

receives inputl = 1.0. ParametersLS”, Lig and B are set at 0. The synchronisation between osciltat within the

same object is rapidly achieved in both situationsdowever, when the global inhibitor is absentganel g, the two
objects oscillate with different periods (the objetreceiving a lower input oscillates more slowly)and in some
instants they emerge simultaneously (that is the gmentation problem is not solved). In the presencef the

global inhibitor (panel B, the objects oscillate with the same period andifferent phases (that is they are clearly
distinguishable).
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The upper panel in Fig. 3 shows the time patterallabscillators in the network in the absence
of the global inhibitor (i.e., we excluded Eq. 4daset z = 0 in Eq. 1). As it is clear from thisufig,
neurons reach a rapid synchronization within edgjead, i.e., the network can easily solve the
binding problem thanks to the prior knowledge dloie the synaptic matrix. However, the two
objects oscillate with a different period: neuromgh a higher input show a higher oscillation
frequency and vice versa. As a consequence, theetsbgannot be easily separated, and we can
observe instants in which two objects emerge sanelbusly.

The lower panel of Fig. 3 shows activity in thewetk vs. time in the presence of the global
inhibitor. In this case, objects oscillate with th&me frequency, independently of their input, and
their phase is clearly distinguishable. Hence, @eacts as a “metronome”, which establishes a

single frequency of oscillation for all objects @pendently of their actual input.

The role of prior knowledge: completion of incomplée knowledge

The subsequent simulations will be performed byugiag all lateral connections within an
area (i.e., parameters’, Ly andB have the same value as in Table 1). The presenizgeoal

connections produces an “activation bubble” witeach area, i.e., not only the stimulated neurons
oscillate, but also neurons in the same area signaimilar properties. The width of the excitation
bubble, hence the degree of specificity dependa balance between lateral excitation and lateral
inhibition, as will be more deeply investigateddvel
In this condition, synapsé¥ in the model, which incorporate prior knowledget anly ensure

a rapid synchronization between properties of #mesobject, but also allow restoration of lacking
information. In order to underline this aspect, pexformed some simulations by assuming that
only some properties of the objects are provideohjast to the network, while other properties are

lacking, i.e., the network must deal with “incontglenformation”. Furthermore, some attributes



25

may be a little changed compared with the exaateydle., the network must deal with “corrupted
information”.
The first simulations (Fig. 4) have been perforraeguming the absence of one property in each

object.

Figure 4 — Network activity
at different  snapshots
during the  numerical
simulation. Each pixel
represents an oscillator.
The emerging height is
proportional to the
corresponding oscillator's
activity, i.e., to the value of
the excitatory variable, x;.
In the simulation, three
objects are present in the
sensory input, each lacking
of one attribute (that is
input to the neuron
signalling one attribute is
set to 0, while the other
three attributes  within
each object are stimulated
with  input 0.8). In
particular,  Objl lacks
property ajq, Obj2 lacks
property a, and Obj3 lacks
property ag. After an initial transient, the three objects areperfectly reconstructed by the network, recovering

the fourth lacking property. Separation among the hree objects is achieved via synchronisation of neans
responding to the same object, but desynchronisatioof neurons coding for different objects. The actiity of the
network in the first snapshot (t = 1.8 ms) derive$rom the random initial state value (ranging betwee 0 and 1)
assigned to all state variableg; andy; and to the global inhibitor z

In particular, object 1 lacks the property while object 2 lacks the property and object 3
lacks the propertysaThe other three properties are stimulated withngmit I; = 0.8. The figure
shows network activity in all neural groups at eliint snapshots during the simulation. The
network recovers the lacking property in each dbjecother words, the object can be completely
reconstructed, re-creating the property which isginen as input.

Fig. 5 shows the same simulation, assuming theralesof two properties in objects 2 and 3
(i.e., only 2 properties over 4 are given as tes¢habjects). With the valu,p = 1 for the synapses,

the information is insufficient to recuperate timile object.
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this case, we assumed the absence of one propertyObjl (al), and the absence of two properties i@®bj2 (a2 and
a3) and in Obj3 (a3 and a4). By using the basal value folW0, the network is not able to recover the two lackig
properties, hence only the two assigned attributesmerge inObj2 and in Obj3.

Just two properties may be sufficient to recoveratire object from prior knowledge, if we
assume a stronger value for the synapsesWees, 1.5. The simulation results are not shown fer th
sake of brevity, since they are almost indistinigaide from those presented in Fig. 4.

In conclusion, the previous simulations illustréte possibility to reconstruct an entire object
from prior knowledge starting from partial infornaat, still satisfying the binding and
segmentation problem. Reconstruction from partibrmation depends on information stored in
the synaptic matriXV: The higher the values of the trained synapses fiarameteW) the smaller
the number of properties necessary to recover gatiob

Further simulations were performed assuming thamesattributes are corrupted from the
“exact” value. These simulations are summarizedable 2. This table shows the percentage of
success is 10 different trials (with random initralues for the network) and the settling time, i.e

the time required for achieving a synchronization.
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Table 2 - Percentage of success in 10 trials for 3 simulatednditions, by using basal parameter values (Tabl#).

condition A condition B condition C

success recognition of recognition of recognition of

event three objects two objects one object
trial 1 31 ms 40ms 31ms
trial 2 86 ms 30ms 37ms
trial 3 39 ms 27ms 113ms
trial 4 26 ms 53ms 79ms
trial 5 no 36ms 27ms
trial 6 36 ms 51ms 45ms
trial 7 26 ms 28ms 55ms
trial 8 27 ms 27ms 37ms
trial 9 27 ms 37ms no
trial 10 27 ms 56ms 18ms
number of
successes 9/10 10/10 9/10

In the three simulated conditions (A, B and C), althe three objects are present in the sensory inpuEach object
receives two exact properties and a third corruptegroperty which may differ by one position (configuation (i))
or by two positions (configuration (i)) from the exact value (the fourth property is lackng). In condition A,
configuration (i) holds for all the three objects. In condition B, onfiguration (i) holds for two objects, whereas
configuration (ii) holds for one object. In condition C, configuratim (i) holds for one object, and configuration
(ii) holds for two objects. The desired behaviour of th network (success event) is the recognition of tiodjects
belonging to configuration ). Values in ms represent the settling time, that ithe time necessary to achieve
synchronisation in the success evenlo indicates that the success event was not occurred.

In the first simulation (Table 2, first column) vassumed that the network receives two correct

properties for each object with the param#igrset to 1. We remind that, according to Fig. 5, two

properties with this value of synapses are insigificto recover the entire object. However, we now

assume that object 1 also receives a property wiycjust 1 position from one of the lacking

properties. Moreover, we assume that also obje@s®3 receive a “corrupted” property, which

differ by just 1 position from the exact one. Thartk lateral connections, the existence of this

“similar “ property is sufficient to evoke the owadirobject, including the fourth lacking property.

Table 2 shows that the percentage of success is. 9% time required for achieving a

synchronization is short (average 30-40 ms).
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However, if one property is shifted by 2 from thegmal one (Table 2, second and third
columns), the object cannot be reconstructed, ukiegalues for the activation bubble as in Tab. 1.
The remaining two objects, however, are corre@bonstructed. Hence, the network works well to
reconstruct correct objects, avoiding reconstructibobjects with excessive corruption.

An interesting characteristic of the model is ttie degree of similarity, required to evoke an
object from prior knowledge, can be enlarged, gctom the extension of lateral synapses (for
instance, on parametegs,) even if parameteB in Eq. 10 is still maintained at the original val{®
= 2). This means that the “activation bubble” wageajsmall during the storage phase, but it can be
modulated during the recovering phase.

When we use low values for the standard deviatmgsand gi,, an object can be reconstructed
from incomplete knowledge only if the input propestare very similar to the original ones. In this
case, neuron activity generates a very narrow aodiv bubble (high specificity, but low
sensitivity). By contrast, the use of a larger eafar the excitatory standard deviatiany allows
object reconstruction even in the presence ofgeladissimilarity between the input properties (low
selectivity, high sensitivity) while the activatitmubbles spread along some contiguous features.

This aspect is investigated in Tab. 3, while anngxa is shown in Fig. 6. Here we show the
activation bubble obtained witlex =1.7, which allows reconstruction of an objechaitgh one
property is different by 2 positions from the exane.

From examination of Table 3, it is interesting tbserve that the percentage of success
decreases dramatically if several objects have lsmeously wrong properties (for instance, two
objects have 1 property which differs by 2 pos#idrom the exact one: 80% of success; three
objects with 1 property which differs by 2 positsofiom the exact one: 40% of success), whereas
the network can easily deal with a single objecicWhexhibits three properties corrupted by 1

(100% of success).
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Table 3 Percentage of success and settling time 10 trials for five simulated conditions by using ahigher value
for 6ay, Which has been increased from 1.3 to 1.7. All trether parameters are set at their basal value.

condition A condition B condition C condition D cordition E
recognition recognition recognition recognition recognition
success event  of three objects  of three objects  of three objects  of three objects  of three objects

trial 1 29 ms 34 ms 33 ms no 34 ms
trial 2 no 22 ms 29 ms no 28 ms
trial 3 31 ms 42 ms no no 29 ms
trial 4 30 ms 43 ms 38 ms 47 ms 40 ms
trial 5 33 ms 49 ms 34 ms 38 ms 18 ms
trial 6 27 ms 66 ms 63 ms no 18 ms
trial 7 29 ms 29 ms 42 ms 34 ms 25 ms
trial 8 41 ms 46 ms 34 ms no 29 ms
trial 9 30 ms 45 ms 51 ms no 18 ms
trial 10 29 ms 29 ms no 38 ms 47 ms
number of
successes 9/10 10/10 8/10 4/10 10/10

In each simulated condition, three objects are presnt in the visual scene. The conditions A, B and &re the
same as in Table 2. In condition D, the three obj&x received two exact properties and a third propdy which
differs by two positions from the exact value (thafs configuration (ji) holds for the three objects). Finally, in the
last simulated condition (E), two objects are perfet, whereas the third receives only three corruptegroperties,
each differing by one position from the exact valueThe success event is recognition of all the thredjects.

Figure 6 — Effect of increasing the
extension of lateral synapses, by
augmenting parameter e, from
1.3 to 1.7. In this simulation, we
assumed that each object receives
RO v . > three properties: two are exact,
area 2 ORI A== NN\ while the third is corrupted with
N %W& respect to the exact value. In
particular, Objl lacks property al
e \ and receives property a2+l
Y (shifted by one position from the
%\®§®\%® exact value).Obj2 lacks property
\\ \®§®§®®§§®® a2 and receives property a3+1.
. e Obj3 lacks property a3 and
\%%\\ receives property a4+2. As the
time snapshots show, all the three

objects are recognized, even the
@@%@ object with a property differing
N\

amplitude

_— - N
) @@ — @ @\% v by two from the exact value
aat \\x@%\@\% @N@ - S SO T N (Obj3). Indeed, activation bubble
\@\§\\i§§®\®® @%&W has been enlarged, spreading
S sty along several neurons coding

similar attributes.



30

The best compromise between specificity and seitgitiepends on the particular purposes of
the network. In the last session we will discusspbssibility that the extension of lateral synapse
may be controlled by a feedback from higher centaffecting a mechanism of attention, which

adapts the network to the specific problem andaive.

Correlation among objects

In all previous simulations we used three distmigects, which had no common attributes. In
other words, input patterns were completely undated. It is now interesting to analyze the
behavior of the network assuming that the objesedun the learning process (i.e., the objects
which constitute the “prior knowledge” stored inetlsynaptic matriX\\) have some common
attributes. Since previous simulations show thattBbutes may be sufficient to restore an entire
object, whereas 2 attributes are insufficient, wsuaed that, in the memorization phase, objects
can also have two common attributes (this mean@% &orrelation). Our main hypothesis is that
these objects can still be recognized by the ndétwwovided they are not simultaneously present in
the visual scene.

In order to test this hypothesis, we “trained” thetwork with the objects Objl and Obj2
described above, whereas we modified the third mieexb object as follows: Obj3 = [54, 141,
292, 390]. In this way, the third object shares fthst two attributes with the second. The
information about these 3 objects is stored insgheaptic matriX\V, using the parameter valié =
1 andB = 2. The model behavior has then been testedusiitig gex =1.7 and assuming that the
network receives three exact properties of objéctnd 2, while object 3 is not present in the
sensory input. In particular, object 2 receivestihe properties in common with object 3, plus an
additional property. Results (percentage of sucd€¢$0) show that the network recognizes not
only object 1, but also object 2, and correcthytoess its fourth property, despite the fact thad tw

input attributes were shared between objects 23and
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However, if objects 2 and 3 were simultaneouslys@né in the input scene, they could not be
separated: the network recognizes a single obggotdd by 6 attributes. A multi-layer network,

exploiting also low-level Gestalt rules (see Distas) may be necessary to solve this problem.

Detection of a different number of objects: role othe parametery

Some simulations have been performed to analyzeotheof parameteyin Eq. 2. To this end,
we variedyin the range 0.3 — 0.8 (which corresponds to anmllason frequency approximately
between 30 and 80 Hz, although the true oscillafrequency also depends on the number of
objects, see Tab. 4). Simulations have been repemimg two, three, four or even five objects
simultaneously present in the same scene. Resal®iemmarized in Tab. 4.

In the absence of any corruption (i.e., when obkjace presented with all four exact properties)
the network succeeds in segmenting two objectaliovalues ofy. By contrast, segmentation of
three objects requires a valuejdess than approximately 0.8, segmentation of @injects require
a value of gamma less than 0.5, while the netwaeken succeeds in managing 5 objects
simultaneously. This result suggests that a value<00.5 is preferable, since it allows detection of
2, 3 or 4 objects indifferently.

The situation, however, becomes more complex ifothjects have corrupted properties (i.e., if
at least one property is shifted by one from theemb position). In this case, we observed that the
use of a low oscillation frequency produces woestutts in case of only two objects. In fact, by
using y= 0.3 — 0.5 (oscillation frequency approximateQ/Hz), the corrupted property sometimes
emerges separately from the rest of the objecg asw independent oscillator. In other words,
depending on its initial conditions, a corruptecpgarty might exploit the dead time between
oscillators to come into view independently of tbier properties. This reconstruction error
disappears if the oscillation frequency is increlabg raisingy up to 0.8. Similarly, when using

three objects with one corrupted property, the pestormance is obtained wigh= 0.6. A higher
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value of ydoes not allow the synchronisation of the thrgeab separately, while a lower value of
y'sometimes consents the appearance of isolate@ntiesp Finally, if four objects are presentgd,
must be decreased down to 0.3 to allow their sépaynchronisation, but the management of
corrupted objects becomes difficult. We can coreltltat: i) the network cannot recognize more
than 4 objects simultaneously, a result which agweéh psychophysical studies (Anderson, 1995);
i) in order to have a good reconstruction eventha presence of corrupted information, the
oscillation frequency must be increased if the nemtf objects is reduced; iii) the capacity to
manage corrupted objects worsens the greater tinbetuof objects simultaneously present.

Table 4 - Performance of the network as a functioof parametery and of the number of objects simultaneously
present.

2 objects

3 objects

4 objects

5 objects

2 objects

3 objects

4 objects

5 objects

2 objects

3 objects

4 objects

5 objects

In the upper table, all objects received all four ract properties. In the middle table, all objects eceived
three exact properties, while one property was shiéd by 1. In the bottom table, all objects receivedwo exact
properties, while one property was shifted by onerad one property was lacking. The oscillation frequecy is also
reported, when possible (If oscillation frequencyd not reported, oscillations were irregular). It isevident the
dependence of the optimal value of on the number of objects, and the difficulty the sgment more than 4
objects.
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DISCUSSION

Objects are defined as a collection of differeratdees, which must be grouped together to
achieve a correct object reconstruction, but madiaken apart from features of different objects to
avoid confusion. Moreover, these features are ggmmk in distinct areas of the brain, and are
generally reproduced via a topologically orderedgaoization. The problem still remains open on
how the brain can integrate this sparse and hidistyibuted information to achieve a coherent and
cohesive perception of the external world.

Several authors in past-years have linked fastllasey activity to learning and memory,
especially in the perception of previously recogdiobjects. An increase in gamma-band activity
has been observed in subjects which identify anfixged picture after having previously seen the
complete one (Gruber et al.,, 2002).The perceptioa meaningful and usual stimulus is able to
elicit long-distance gamma-band synchronizationemghs meaningless images fail to induce this
synchronism (Rodriguez et al., 1999). Enhancediicin the gamma and beta bands distinguishes
visual memory tasks from non-memory conditions IgreBaudry et al., 1998; Tallon-Baudry et
al., 1999).

Aim of this work is to propose a simple model faghilevel object representation, which
exploits two fundamental Gestalt rules: prior knedde and similarity, together with
synchronization among oscillatory neural populaioRrior knowledge is incorporated into the
model in the synapses linking properties in on@ aeeproperties in another area. The similarity
principle ensues from the presence of lateral {atary and inhibitory) synapses within the same
area, which are arranged according to the clas$w=tican hat”.

Although in the present work we did not model syi@aplasticity, i.e., the arrangement of
synapses has been established “a priori” to reflbet previous principles, this particular
arrangement may originate from well-known learnmdes: a Hebbian rule, which reflects the
coexistence of activation between pre-synaptic post-synaptic neurons within a narrow time

scale (less than 10 ms, reflecting the duratiothefactive phase of an oscillator, see Fig. 3), may
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be responsible for inter-area connectivity and agjer of previous-knowledge; a topological

representation of features in each area can otgges in the well-known Kohonen self-organizing

topological maps (Kohonen, 1982; Hertz et al., 399 course, it is possible that plastic behavior
of synapses is associated with some additionaittateeor emotional mechanisms, so that important
situations are stored in the network and groupegtteer, by neglecting unimportant or invalid

conditions.

The consequence of this specific disposition ofapges is that excitation of a neural group
causes the occurrence of an excitation bubble,aativation of one feature is always associated
with the activation of similar features in the sam@ea. Assuming the existence of Hebbian
reinforcement of synapses among different areasgdan temporal correlation, similarity
interferes with prior knowledge: not only the exteztures of a perceived object are linked together
via inter-area synapses, but also similar featuta@sh lie inside the activation bubble, and so are
simultaneously co-active.

Thanks to this implementation, the model exhibitgoad robustness in the separation between
binding and segmentation. Robustness depends opatiieular dynamics included in the model,
especially on the input that each oscillatory wedeives from the other units and from the global
inhibitor. As shown in a previous paper using ar@spntation of oscillator dynamics in the state
plane (Ursino et al., 2003), two oscillators whate connected by strong excitatory and inhibitory
synapses tend to synchronise quite rapidly, thearérg a good solution of the binding problem. In
the present model, this synchronisation is wardhibi@h by inter-area synapses (to bind different
attributes of the same object) and by lateral syasto bind similar attributes inside a single
activation bubble). By contrast, segmentation essiuem the activity of the global inhibitor.
Without the global inhibitor, only a poor segmeittatmay be achieved. The global inhibitor stops
activity of all oscillators which are not enoughnskironized with those maximally active in the

present instant, thus separating attributes whachat meet the previous-knowledge and similarity
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criteria. Hence, robustness crucially depends erctimnection among oscillators, which implement
a peculiar dynamics in the network.

In the following, we will first analyze the maineshents which differentiate the present model
from previous similar ones. Then, the performaricéh® model, as emerging from the simulations,

is discussed. Finally, lines for future extensiand improvements are pointed out.

Differences between the present model and prewvo@s— Important recent models couple
associative memory with oscillation based segmemtaand include prior-knowledge and novelty
detection (Wang and Liu, 2002; Borisyuk and Kazariov2004). However, there are profound
differences between these models and the present on

First, in the models mentioned above segmentatimh r@cognition are performed at two
different processing stages. Generally, a firseétayf neurons segments a visual image on the basis
of proximity and spatial connection laws. Subsedyethe information segmented among different
objects is sent to a feature extraction layer, #rmeh to an associative memory layer, which
recognizes objects and implement prior knowledglestuBy contrast, in the present model,
contrarily to the models mentioned above, segmiemntatnd object recognition occur at the same
processing stage. We just assumed that a prewvayes (not included here, but similar to a classic
Kohonen’s self-organizing map) extracts the maatudees of the input, and orders these feature in a
topological way. Hence, the present model doeglimettly utilize spatial information (i.e., it does
not aspire to simulate segmentation of visual i,sag@ather, it aspires to simulate the perception
and binding of different sensory modalities (sushhaaring, smell, taste, or a combination of them)
which lead to the formation of complex high-levehcepts, when spatial information plays a minor
role (let us consider, for instance, the case pér@on perceiving a burning flame at night: feature
like the smell of smoke, the heat, the brightnassl, the crackling of burning wood should be bind
together into the complex perception of a flame).

A further important aspect, which differentiates mwdel from those by (Wang and Liu, 2002;

Borisyuk and Kazanovich, 2004), is that, in our kygrior knowledge is implemented assuming a
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classic Hebbian reinforcement of synapses. By asnhtrprior knowledge in other networks is
implemented using more complex rules, which dohase a clear neurophysiological counterpart.
For instance, Borisyuk and Kazanovich, (2004) extby say that their memory “works without
modification of connection strength, which makes tmemory different from traditional
connectionist learning models”.

A further novel aspect of our model is that we eXpa topological organization of features,
which is a well-known characteristic of sensoryresgntation in the cortex. Thank to this aspect,
our network is able to recall previously memorizgigjects not only in the presence of partial
information, but also when input information exlsba moderate shift in the input space. The last
item significantly differentiates the present mofitem other associative memory models, based on
Hebbian learning rules, such as the well-known l&dgimodel (Hopfield, 1982; Hertz et al., 1991)
and the associative memory model with oscillatoygaimics and prior knowledge by (Wang et al.,
1990) . Indeed, in the Hopfield net, a small simfthe input pattern would result in a wrong recall
By contrast, our network can sustain a small shifthe input properties (together with the total
absence of some properties) in virtue of lateratneations, which implement the similarity
principle, and in virtue of the use of “activatittubbles”. In other words, our model exploits
cooperation between topological maps and Hebbiannileg, to implement a stronger auto-
associative memory which is partly insensitive toiaput shift. Oscillatory dynamics is further
used to recall and separate multiple objects sanalbiusly present. We are not aware of other
networks which implement Hebbian learning, topatagiorganization (with the related concept of

activation bubble) and oscillatory dynamics insidgingle consistent structure.

Analysis of model performaneeSimulation results, obtained by using a simmenvork with a
minimum of internal complexity, and using an abdtrapresentation of objects (as a collection of 4
features) demonstrate that the proposed mechananaatually work, producing a high percentage
of success (more than 90%). Moreover, simulaticults provide some interesting indications on

the ease or difficulty to recognize multiple obgectvhich, if confirmed on subsequent more
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physiological models, may represent the subjectfdture validation studies via psychophysical
tests.

A first important aspect of our model is the posibto recognize objects starting from an
initial incomplete representation. This mechanism part resembles that exploited in auto-
associative memories (Hertz et al.,, 1991). Thiseisgs controlled by the strength of synapses
among different areas, i.e., by param&gnn Eq. (10): the higher the value 0%, the smaller the
number of properties necessary to achieve recaritnu The disadvantage in the use of higher
value of synapses, however, is that objects witrge level of correlation cannot be discriminated.
With the valueWy = 1 in our model, we can reconstruct objects eMethey exhibit 50%
correlation, i.e., if they share half of their peopes.

An important point in our model is the trade-oftween sensitivity and specificity. Sensitivity
is the proportion of true positives that are cdaiyeaentified by the teshs meeting a certain
condition while specificity is the proportion of true nelgat that are correctigentified by the test
as not meeting the same condition. Of course, detddf between sensitivity and specificity is
common in pattern recognition systems, and it ddp@mthe choice of the cut-off between positives
and negatives. As you increase your sensitivitye(tpositives) and can identify more cases with a
certain condition, you also sacrifice accuracy aemtifying those without the condition (specifigityn
the present model this trade off basically depemashe implementation of the similarity and
previous knowledge rules, i.e., on which differebeéween the “exact” properties of an object and
the “actual’” ones can be tolerated to recognizeathect itself. We can increase the number of
positives by increasing the strength of inter-awaapses (i.e., increasing paramé&tgrn Eqg. 10)
and/or by using a wider extension for the laten#la-area synapses (i.e., increasing paranmier
in Eq. 8). In the first case, a single object carnrécognized by a limited number of properties; in
the second case, a single object can be recogeiaadif some properties are modified compared
with the original ones. Of course, the best chalepends on the particular requirements of the

system: if objects with similar properties mustdaeparated and recognized as different, one needs
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to improve specificity, thus reducing synaptic sg#n and extension, but obtaining a less robust
system.

In our model, if the activation bubble is small angl= 1 (as in the simulations summarized in
Table 2) the network exhibits a good compromisevbeh sensitivity and specificity. It is able to
reconstruct objects if one feature is lacking andtlaer feature is corrupted by one position, while
an object is not reconstructed if a property isated by two positions. A greater sensitivity is
achieved by extending the lateral excitatory syaapgsee Table 3, where just parametgrhas
been raised from 1.3 to 1.7). In this case, netvaark recognize an object also if one property is
shifted by 2 positions in the topological scaled ame property is completely lacking. It is
important to observe that, in moving from Table@Z'able 3, we did not change synapses reflecting
prior knowledge, but only acted on the competitivechanism within one area. This change might
reflect an influence from higher hierarchical cestefor instance an attention mechanism.
Reciprocal influences among neurons in the sane ardact, are not necessarily caused by lateral
synapses (as assumed in our mathematical modeljnéy also reflect top-down strategies from
higher centers: for instance, a bi-synaptic conaedrom one population in one area to a higher
level cortical region, and then back from the higbel region to another population in the same
original area (Angelucci et al., 2002). Accordimgthis idea, the width of the activation bubble in
our model (as in Fig. 6) may be controlled by ddfe levels of attention: with a large activation
bubble an object is recognized even in the presehtage dissimilarities from the original one. A
narrow activation bubble may signify greater awassnto reject objects: hence, only objects quite
close to the original ones are detected and recanstl.

Further important parameters of the model, whicly i@ adjusted to improve the flexibility
and comprehensiveness of the proposed mechanisnthaithreshold of the global inhibitor (i.e,
parameterd in Eq. 4) and the frequency of oscillations (esgfcaffected by parametgrin Eq.

2). In a previous study (Ursino and La Cara, 2004 have shown that the threshold of the global

inhibitor must be closely related with the dimemsaf the object to be detected (that is, with the
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number of oscillators simultaneously active). le firesent work we used objects represented by
just four properties (i.e., four activation bubblethis justifies the choice of a low threshold
J = 0.3. A higher threshold may be required in case ofanmmplex objects, characterized by
many features.

In the present simulations, the valueyof 0.6 has been chosen to recognize three simoligne
objects. Simulations performed with a different rnam of objects suggest that the value @f
(hence the oscillation frequency) must be decre&setbtect a greater number of objects. Hence,
these parameters too may be the target of sopdtistiop-down strategies, to optimize network
performance depending on the particular contexte Tependence of the optimal oscillation
frequency on the number of objects is especiallpartant in case of corrupted features. If
oscillation frequency is too high, the objects hana¢ enough time to appear separately in time
division. However, if the oscillation frequencytdo small some corrupted properties may benefit
of the dead time between one object and anothel,appear as isolated properties instead of
synchronizing with the other properties of the sashgect. We suggest that oscillation frequency
should be controlled by higher centers (maybe bwtéantive or concentration mechanism) on the

basis of the number of objects simultaneously sua#d.

The previous results can also be figured out in fileguency domain (i.e., in the EEG
spectrum). In particular, the model assumes thabgmition of familiar objects produces
synchronization of neural activities in differeegions of the brain, with the appearance of a clear
increase of power spectral density in the EEG @&ythand (20-80 Hz). This aspect is supported by
recent results, showing that the early phase-logadma-activity might reflect the activation of
the neural representation of the familiar targenslus (Stefanics et al., 2004). In particular, E&G
the scalp surface shows an augmentation of indg@edma-activity after the presentation of
meaningful (familiar) as opposed to meaninglessauiiiar) stimuli, which is accompanied by a

dense pattern of significant phase-locking valuesvben distant recording sites (Gruber et al.,
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2005). Model results also suggest that the frequefg-band oscillations should depend on the
number of objects simultaneously detected, andhenldvel of corruption of the detected objects
(i.e., on the complexity of the task). Recent papmrggest that attention enhances gamma-band
response (Senkowski et al., 2005). We are not anfexperimental results showing a change in
frequency with the complexity of the task. The dataspect may be the subject of future
verification.

Model limitations and lines for future workinally, we wish to discuss some lines to imgrov
and enrich the present model. First, the presenlysitilizes highly schematized stimuli, which are
much simpler than those used by the brain to faeé scenes. The use of more complex inputs
stimuli will represent the major direction for fuéuresearch.

An important limitation of our model, strictly ré&d with the previous point, is that the network
is able to discriminate highly correlated objedse Results, section “Correlation among objects”)
only if the objects are not presented together. Jihailtaneous presentation of two objects with
several common features leads to the reconstructice unique object with all features shared
together. We think that this problem (which may tgpical, for instance, of analysis of visual
images) may be overcome with the use of spatiarimmétion. In fact, two identical features,
simultaneously present, may be discriminate acogrth their spatial position.

The last consideration introduces to an importamitation of our study, i.e., the absence of a
spatial organization for the input features. Of reey spatial information may be implemented in
future works by using a segmentation layer, simitathat already used in our previous studies
(Hopfield, 1982; Hertz et al., 1991; Ursino et 2003; Ursino and La Cara, 2004a; Ursino and La
Cara, 2004b), based on proximity rules, followedabfeature extraction layer, and finally by the
same associative memory layer implemented herew\§le to stress that, in the latter case, the
performance of the associative memory layer woelddgilitated compared with the present study,

since the input properties would be presented @yrsagmented (i.e., in temporal division). The
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condition simulated here, in which the input featuthave not been previously segmented, is
certainly more difficult to be managed by the meynuet.

In the present simulations we always assumed d@Haparameters (i.e., the strength and
extension of inter-area and intra-area synapsestharsame for all memorized objects. This means
that all objects, and all features within an ohjbéetve the same importance. Of course, it is plessib
that these parameters may be different from onecblip another (or even from one feature to
another in the same object) reflecting its impartaar emotional impact. For instance, the use of an
higher value forWp in some objects (or only in some features) imptiest the object can be
immediately recognized with presentation of a ledihumber of essential features. Low values of
W, signify that many features are necessary to razeghe object. This differentiation, together
with the use of a different width for the activatibubble, may produce a flexible and highly
specialized system.

In conclusion, we stress that our model does nuiteaso reflect present neurophysiological or
neuroanatomical knowledge in detail, but rathemptopose a computational mechanism, which
exploits and extends similar ideas developed ihesgaimilar models (see (von der Malsburg and
Schneider, 1986; Wang et al., 1990; von der Matslaund Buhmann, 1992)). However, the model
general structure can have some support from theept knowledge of memory and learning
(Kaiser and Lutzenberger, 2003). Future lines mayibected both toward an improvement of the
computational aspects (i.e., the capacity to reizegabjects in different conditions with a flexible
and reliable performance) or toward a more pre@sanection with neurophysiology and

neuroanatomy.
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CHAPTER 1.2. RECOGNITION OF ABSTRACT OBJECTS VIA

NEURAL OSCILLATORS: INTERACTION AMONG

TOPOLOGICAL ORGANIZATION, ASSOCIATIVE MEMORY

AND GAMMA BAND SYNCHRONIZATION

INTRODUCTION

Object representation in various cognitive funcsiaccurs in an activation of distinct and distant
cortical areas (Tallon-Baudry and Bertrand, 1998w can be group together different features,
processed in different cortical areas, of the sabject and how the activities of neural elements,
coding properties of different objects simultandpupresented in the same scene, can be
maintained segregated to avoid a false recognitsom fundamental issue in neurophysiology.

A recent influential hypothesis (Damasio, 1989;g8mnand Gray, 1995; Singer, 1999; Varela et
al., 2001; von der Malsburg and Schneider, 1988jmed “Temporal Correlation Hypothesis”,
postulates that neuronal groups representing diftesispects of the same object are bound together
into a cell assembly through synchronization ofirtlaetivity in the gamma range (30-100 Hz).
According to this hypothesis, neurons that firgpirase would signal attributes of the same object,
while neurons firing out of phase would signalibtites in different objects.

Cortical neurons are often engaged in synchronotigity in the y-frequency band (Gray and
Singer, 1989; Singer, 1993). Experimental studiesasthat oscillations in thg-range become
more evident when subjects perform cognitive tagksch involve feature binding and/or short
term memory (Tallon-Baudry et al., 1998; Engellet2001).

In this line of thinking, Tallon-Baudry and Bertchn(Tallon-Baudry and Bertrand, 1999)

formulated a stimulating hypothesis, named therésentational hypothesis”, which assumes that
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the same mechanism can be extended to the moreayetem of an internal object representation,
through top-down processes. Furthermore, this nmestmamay also apply across different sensory
modalities.

The representational hypothesis, however, involgeseral problems. In many high-level
cognitive tasks multiple objects must be simultars®p recognized from external stimuli: to this
end, input stimuli have to be compared with an oaternal representation, to recover lacking
information from previous experience, and maintams information in memory avoiding
confusion. Furthermore, recognition of objects nhestndependent of spatial attributes (such as the
position, distance and prospective), must spreassadifferent sensory modalities and the objects
should be recognized even if they exhibit some maidechanges compared with a previous
prototypical representation.

Hence, the problem of multiple object recognitia similar to the classic binding and
segmentation problem of sensory perception, with teain differences: objects are considered as
collection of features (which allows spatial invarce); the main rules for recognition are high-leve
Gestalt rules such as prior knowledge and simyianithereas low-level Gestalt rules are used for
early sensory processing (as proximity, collingaaitd common fate).

The similarity law is implemented in the cortexdhgh topological maps of features (e.g., the
color map and the orientation map in the visuatesys the tonotopic map in the auditory system,
the somatotopic ‘homunculus’ in the somatosensgstesn), in which proximal neurons signal
similar values of the feature and tend to be rec@ity connected and co-activated. As in self-
organizing Kohonen maps, topological organizatiothe cortex may arise naturally as the result of
the long-range inhibition and short-range excitatwhich characterizes brain connectivity (Rolls
and Treves, 1998). Since this kind of connectiistpresent at most processing stages in the cortex,
topological maps may be involved in high-level ftiogs; for instance, similarity law can apply not

only to elementary properties of the sensory stusfe.g., edge-orientation, color, tone, etc.), but
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also to more complex features or abstract conggpish as shapes, faces, animate and inanimate
objects) (Kohonen and Hari, 1999; Rolls and De©823.

Implementation of prior knowledge inside the stasetof the temporal correlation hypothesis
requires connections susceptible of use-dependeditfications with a temporal precision in the
millisecond range (that is the temporal resolutioh gamma band synchronization). These
conditions have been recently supported by expetahedata. The tendency of neurons to
synchronize their response increases if they qeatedly engaged in synchronous oscillatory firing
in the gamma band, while the synchronizing tendetesyreases if neurons are repeatedly engaged
in desynchronized oscillatory firing (Singer, 199Recently, it was discovered that the temporal
order of the presynaptic and the postsynaptic spikeessential to have synaptic potentiation or
depression (Markram et al., 1997). In particularpider to have potentiation, synaptic inputs must
be activated in a short critical window 10-20 m$obe post-synaptic spiking (Abbott and Nelson,
2000; Zhang et al., 1998). Such rules have beenedafspike timing dependent synaptic
plasticity”, and are naturally engaged in oscilatnetworks (Paulsen and Sejnowski, 2000).

Numerous neural network models of oscillators Hasen proposed since the mid-eighties in the
attempt to elucidate the role of synchronizatiorsémsory information processing and in object
recognition and retrieval (von der Malsburg and rieitier, 1986; Eckhorn et al., 1990;
Sompolinsky et al., 1990; Wang et al.,, 1990; Gresgband Somers, 1991; Hummel and
Biederman, 1992; von der Malsburg and Buhmann, 18@2n and Opher, 1996; Grossberg and
Grunewald, 1997; Wang and Terman, 1997; Hendin.el@98; Hoshino, 1998; Campbell et al.,
1999; Kuntimad and Ranganath, 1999; Li, 1999; Raatjpand Kuntimad, 1999; Cesmeli and
Wang, 2000; Lourenco et al., 2000; Hummel, 20019iauch and Palm, 2001; Levy et al., 2001;
Chen and Wang, 2002; Kazanovich and Borisyuk, 2002ng and Liu, 2002; Ursino et al., 2003;
Borisyuk and Kazanovich, 2004; Kuzmina et al., 208dkano and Saito, 2004; Ursino and La
Cara, 2004; Yazdanbakhsh and Grossberg, 2004; ZdachdMinai, 2004; Zhang et al., 2007; Wu

and Chen, 2008; Rao et al., 2008). These moddky @i§ to several aspects: the type of oscillators
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used in the network (spiking neurons in pulse-cedpieural networks, networks of relaxation or
Wilson-Cowan oscillators); the level of complexityte physiological reliability. Most of these
papers are concerned with segmentation in sengwcgption. Von der Malsburg and Schneider in
their pivotal paper (von der Malsburg and Schneid®86), examined segmentation in auditory
modality by a network of oscillators in which nelucaupling reflect similarity of local quality.
Many models faced the problem of segmentation wfsaal image by using primitive grouping
Gestalt rules such as proximity, good continuatiomel/orientation similarity, coherent motion,
without involving memory and recognition (Campballal., 1999; Kazanovich and Borisyuk, 2002;
Kuntimad and Ranganath, 1999; Kuzmina et al., 20041999; Nakano and Saito, 2004; Wang
and Terman, 1997; Yazdanbakhsh and Grossberg, Zbg and Minai, 2004). Some of these
models involve multiple layers and areas, eitheprimcess separately different cues of the visual
input (such as motion and brightness) (Cesmeli\&fahg, 2000; Zhang and Minai, 2004) or to
reflect the anatomical laminar structure of theugiscortex (Yazdanbakhsh and Grossberg, 2004).
Hummel and Biederman (Hummel and Biederman, 199nidel, 2001) developed an oscillatory
neural network for shape recognition: a viewpomariant structural description of an object is
made possible through temporary synchronizatiomaépendent oscillator units representing the
parts of the object and the relations among thenoreMadvanced models (Borisyuk and
Kazanovich, 2004; Knoblauch and Palm, 2001; Ward lan, 2002) address the scene analysis
problem via multilayer systems, encompassing inigamitive segmentation and associative
memory: objects are first segmented at an earlggasing layer by using low-level spatial rules,
then the segmented objects are sent to a memaey \Wyich performs recognition and learns new
memories. Some models based on oscillators synidatmn have been proposed with application
to the problem of segmentation, recognition and oreration of odors in the olfactory system
(Hendin et al., 1998; Hoshino et al., 1998; Louer000; Wang et al., 1990). Wang et al. (1990)
proposed a model for sensory segmentation in wbozinections among oscillators encode prior

knowledge, but dynamical learning was lacking. Waek by Hoshino et al. (1998) introduces a
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law of synaptic modifications and considers thebpgm of recognizing previously learned odors,
but not segmentation (i.e. the network deals witle mput at a time). Odors segmentation and
learning of new patterns are addressed in a singlgel by Hendin et al. (1998) and by Lourenceo
et al. (2000). Finally, some papers by Horn et(dlorn and Opher, 1996; Levy et al., 2001)
investigated the properties of binding, segmentatiad learning in oscillatory neural networks
both by simulations and analytical calculations. kg the several results, they found that the
processes of binding and segmentation were faeditaf the inputs to the system, representing
simultaneously activated memories, possessed nomponents.

Inspired by the previous encouraging results ofraenietwork modeling and by recent studies
supporting the role of gamma band synchronizatmhigher cortical functions, we have realized,
as described in the Chapter 1.1, a network of W#Sowan oscillators which aspires to simulate
segmentation at high cognitive levels, rather taatow sensory levels (Ursino et al., 2006). The
network realizes separation of simultaneous objaat$ their recognition at a single processing
layer, by grouping together a set of fundamentatuiees on the basis of two high-level Gestalt
rules: similarity and previous knowledge. We assuirtigat these basic features are extracted at a
former processing stage and arranged topologitalsome areas of the cortex. Accordingly, the
network consists of L (L=4) cortical areas, eacliadled to the representation of a specific feature
of an object. In order to reduce the mathematicahmexity, each area was described as a
monodimensional chain of oscillators, arranged itopological order. The similarity law was
realized via intra-area connections disposed agx@ddn hat; the prior knowledge was realized via
inter-area connections which link attributes ofyowasly memorized objects. It is worth noticing
that both intra and inter-area synapses were asitp priori”, that is they were not subjected to
any learning process. The network showed goodtwylmidth in recovering an object starting from
partial and corrupted input information, and inaging multiple objects.

In this paper, the previous model is significanthproved by introducing some important new

aspects. The improvements can be summarized asvoll
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1) The oscillators are placed in a bi-dimensionalidatt This structure more closely
resembles that found in the cerebral cortex. Itiqdar, a bi-dimensional map is more
suitable to represent the columnar organizatiothefcortex, where features may vary
both within a column, and from one column to ano{fi@naka, 2003). Furthermore, a
two-dimensional map encodes a more rich and flexd#scription of similarity, in
which a feature has several neighbors. In particiach neural oscillator has four

nearest neighbors with a distanck,conventionally assumed equal to 1, and four

neighbors with a distancé :\/E. By contrast, in the previous model (see Chapter
1.1) we used a monodimensional chain in which emdillator has just two nearest
neighbors.

i) The inter-area connections, which reflect previknswledge, are not assigned a priori
as in the former paper, but are subjected to simapasticity. The adopted learning
rule is a modified Hebbian rule according to spilkming dependent synaptic
plasticity: in order to have potentiation, the presptic activity must occur in a short-
temporal window (10 ms) before the post-synaptto/ég (Abbott and Nelson, 2000).
As a consequence, objects can be memorized indtveork with different synaptic
weights, to mimic the presence in memory of mordess familiar objects, or of
objects with different attentive and emotional imipdurthermore, synapses may be
asymmetrical.

i) In order to recognize or reject objects, we devetbp simple “decision network”
which works downstream of the network of oscillatofhis further layer verifies a
certain number of requirements for the oscillatetwork activity and provides an
output signal which automatically indicates thereor or missed detection of each
object.

In the following, the general structure of the natkvwill be first presented. Subsequently, we

will focus on the learning procedure adopted tantthe modifiable synapses. Finally, the
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downstream decision network will be described aodtiffed. Simulation results with
incomplete, modified and correlated objects aresgaeed and discussed to point out the

network capabilities and limitations.

METHOD

The bidimensional network of oscillators
We assume that the model is composedNofieural oscillators, subdivided into distinct
cortical areas (see Figure 1). Each area in theemsdomposed df1;xM, oscillators. Hence, the

total number of oscillators $ =L M4 [M,. Each oscillator may be silent, if it does not reee

enough excitation, or may oscillate in tagequency band, if excited by a sufficient input.

Each area is devoted to the representation of aifgpattribute or feature of the object,
according to a topological organization. This metra two proximal neural groups in the area
signal the presence of two similar values, whilstatit groups signal the presence of different
values. One object is represented as the collectidn features (one feature per each area). We
assume that each attribute is not immediately ptasethe sensory input, but it has been extracted
from a previous processing stage in the neocortex.

Neural groups within the same area are connectethigral excitatory and inhibitory synapses.
These lateral connections are organized accordiagctassical “Mexican hat” disposition: a neuron
excites (and is excited by) its proximal neuronghie area, whereas it inhibits (and is inhibitedl by
more distal neurons, through the presence of itdrpinterneurons. Such a lateral disposition of
synapses is not subject to learning. Furthermararah groups belonging to different areas can be
connected via excitatory synapses. These synapseasit@ally equal to zero, but may assume a
positive value during a learning phase, to memoaZgrior knowledge” on attributes occurring

together in the past during the presentation ofabj
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Figure 1 — Schematic diagram describing the generatructure of the network. Each grey circle represets an
oscillator. Oscillators are organized into 4 distiet areas (shadow squares) of 20x20 elements. Eadtitiator is
connected with other oscillators in the same areaia lateral excitatory and inhibitory intra-area synapses
(arrows L and L™ within the area) and with other oscillators in diferent areas via excitatory inter-area
synapses (arrowdV among areas)Gl represents theGlobal I nhibitor (see text for details).

[+v

Figure 2 — Structure of the single oscillator andts synaptic connections. Symbot>» represents excitatory
connections, while symbo[ ¢ represents inhibitory connections. The dashed lireindicate synapses to and from
other oscillators within the network. x: activity of the excitatory population; y: activity of the inhibitory
population; a and S. strength of the connections between the two popaiions; |: external stimulation; v: random
noise superimposed over external inputz activity of the global inhibitor; L¥* and L': excitatory and inhibitory
lateral synapses among oscillators inside the sanagea. Note that the lateral excitatory synapses coect the
excitatory units of two oscillators, while the lateal inhibitory links occur from the excitatory to t he inhibitory
populations. W: long-range synapses among oscillators belonging tifferent areas. These inter-area synapses
link the excitatory unit of one oscillator to the ecitatory and inhibitory units of another oscillator in a different
area.
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In the following, each area will be denoted witle symboll (I =1, 2, ...,L) and each oscillator
with the subscript§ orhk (i, h =1, 2, ....My; j, k=1,2,..., M). In the present study we adopted
an exemplary network with 4 areds< 4) and 400 neural groups per argla € M, = 20).

As already described in our previous works (Urshal., 2003; Ursino and La Cara, 2004), each
single oscillator consists of a feedback connectietween an excitatory unk;, and an inhibitory
unit, y; (see Figure 2), while the output of the networthis activity of all excitatory units.

The time derivatives are

%Xij v= =X (t)+H (Xij -8 Eyij (t)+ Eij t+ Iij Ty (t) _¢x - Z(t)) 1)

%wﬂﬁ~ﬂ%®+H@&N%¢Jﬂﬂﬂ @)

where H() represents a sigmoidal activation fumctiefined as

HW)=— ©

l+e T

The other parameters in Egs. (1) and (2) have alewing meaning:a and S are positive
parameters, defining the coupling from the excitato the inhibitory unit, and from the inhibitory
to the excitatory unit of the same neural grouppeetively. In particularg significantly influences
the amplitude of oscillations. Parametelis the reciprocal of a time constant and affebis t
oscillation frequency. The self-excitation gf is set to 1, to establish a scale for the synaptic
weights. Similarly, the time constantxfis set to 1, and represents a scale for timg andg, are
offset terms for the sigmoidal functions in the ieatory and inhibitory unitsl; represents an
external stimulus for the oscillator in positign while v; represents random noisg; and Jj
represent coupling terms from all other oscillatorgshe networkz(t) represents the activity of a

global inhibitor. This is described with the follong algebraic equation (see (Ursino et al., 2003;

Ursino and La Cara, 2004) for more details):
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z=|sign > x; —6, |+1] /2 (4)
]

According to Eq. 4, the global inhibitor compuths bverall excitatory activity in the network, and
sends back an inhibitory signal € 1) when this activity overcomes a given thredhghy&,). Its
role is to ensure separation among the objectslsimaously present. In particular, the inhibitory
signal prevents a subsequent object to pop upngsas a previous object is still active.

Each neuron receives fixed (i.e., not modifiabbeitatory and inhibitory synapses from other

neurons in the same area. In the following thes@asses will be denoted with the symbd)ﬁ1k

and L!j“fhk, respectively, wherg denotes the position of the postsynaptic (tangetiron, andhk the

position of the presynaptic neuron, both in the sarea. We assume that the excitatory lateral

synapses goes from the presynaptic excitatoryairpbsitionhk to the postsynaptiexcitatoryunit

at positionij. By contrast, the inhibitory synapses go fromghesynaptic excitatory unit at position

hk to the postsynaptimhibitory unit at positionij. Hence, according to physiological knowledge

(Rolls and Treves, 1998), inhibitory links are readl by means of inhibitory interneurons.
Moreover, a neuron group at positiprcan also receive a long range excitatory synajpse &

neural group located in a different area. Thesegyes, namadl, , , link a presynaptic excitatory

unit at positionhk, to both the excitatory and inhibitory units atspion ij in another area.
According to the learning rule used in this workede synapses are symmetrical. Moreover, we
assume that long-range synapses to excitatory ramditory units are identical (i.e., we used the
same learning rule for both). This corresponds paisimony principle. A more complex choice,
using different learning rule for long-range extwty and inhibitory synapses, may be attempted in
future works. We did not introduce any delay in gresent connections. The effect of delay may
also be analyzed in future studies.

As described above, in the present model we dausetdirect connections from presynaptic

inhibitory units in one neural group to post-synag@xcitatory units in another neural group, i.e.,



55

we assume that connections originating from int@roes are always confined within their neural
group. Actually, in the Wilson-Cowan equations gt oscillator represents the average activity in
a population of proximal neurons and, accordinghgsiology, interneurons can make synapses
only to their neighbors. Hence, the only physiotadjway to simulate a long-distance inhibition is
to send a connection from an excitatory unit aitmyshk to the inhibitory interneurons at different
positionij.

The existence of long-range synapses from excytatoits to distal inhibitory interneurons
(either in the same area or among different areasur model) is important to favor a fast
synchronization between the corresponding neumaligg (see our original paper (Ursino et al.,
2003) for a mathematical analysis in the state glamhis kind of connectivity is supported by
recent experimental and theoretical studies att lmasensory cortices (Angelucci and Bressolf,
2006). In particular, recent models suggest thigt ‘flar inhibition” is not always suppressive but
may facilitate the response, depending on the amofirexcitatory input to local inhibitors
(Schwabe et al., 2006).

According to the previous statements, the couptergns,E; andJ; in Egs. (1) and (2) are

computed as follows

Eij =2 > Wi ik D+ . LinE,)r(lk Dk 5)
h k h k

Jij = 20D W hk Bk + .Y '—i'j’\,'hk Dxhk (6)
h k h k

All terms W, ., linking neuronsj andhkin thesamearea, are set to zero. Similarly, we set to

zero all termsL}, and L, in which neurong andhk belong tadifferentareas.

The Mexican hat disposition for the intra-area amtions (see Figure 3) has been realized as the

difference of two Gaussian functions, with excadatstronger but narrower than inhibition.
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Figure 3 — Intra-area connections: weights of theymapses linking oscillators in positionj with the surrounding
oscillators in the same area.

Hence,
EX _ Lgxe—[(i—h)2+(j—k)z]/(ZUéx) if ij andhk arein thesamearea
Lu ,hk = ) (7)
0 otherwise
N _ LBNe—[(i—h)2+(j—k)2]/(20iﬁ) if ij andhk arein thesamearea
Lu ,hk = . (8)
0 otherwise

where LEX and L'ON are constant parameters, which establish the skreidateral (excitatory and

inhibitory) synapses, andqyand i, determine the extension of these synapses.

Training of inter-area synapses
Synapses linking neural groups in different areas teained in order to store and recover

objects. In the following, an object will be repeased with the notation:
obj =iy, j1 i2,J2 i3,]3 i4,]4]
wherei|, j| represent the position of the neuron signalireg 4t attribute (= 1,2,..1, withL = 4

in our examples).
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We distinguish a learning phase, in which interassgnapses are modified, from a recall phase
in which connection strength does not change. \Weras that these inter-area synapses are initially
set to zero, and that they are increased on this bashe correlation between the activity of the
presynaptic and postsynaptic neurons (time-depéndigobian learning).

During the learning phase each object is presesgpdrately from the others. This means that
neural groups (one per each area) receive an ihpulifferent from zero. The input must be high
enough to induce oscillation in the same group,tbatfour inputs can also be different, causing
neurons to oscillate with a different frequencyeTihput to all other groups is set to zero. Howgver
as a consequence of lateral intra-area connectieusal groups close to the stimulated one are also
excited and start to oscillate, thus forming anvation bubble. The width of the activation bubble
depends on parameters describing lateral intrasameapses (Egs. 7 and 8).

A fundamental problem of the learning phase is that. “activation bubbles” are initially out
of phase, due to the absence of any inter-areaection among them (see Figure 4). As a
consequence, a simple Hebbian rule based on ttentaseous activity of the presynaptic and post
synaptic groups cannot work.

Recent experimental data, however, suggest thaipsignpotentiation occurs if the presynaptic
inputs precede post-synaptic activity by 10 msess|(Markram et al., 1997; Abbott and Nelson,
2000). Hence, in our learning phase we assumedhbadtiebbian rule depends on the present value
of post-synaptic activityx;(t), and on the moving average of the presynaptiviactisay m(t))
computed during the previous 10 ms. We define aimgoaverage signal, reflecting the average
activity during the previous 10 ms, as follows

N -1
D Xkt —mTe)

My (t) = -1=2 N 9)
S
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whereT. is the sampling time (in milliseconds), aNd is the number of samples contained within
10 ms (i.e.Ns = 10/T;). The synapses linking two neurons (sgpandhk) are then modified as

follows during the learning phase
AWjj nic (t+Te) =Wij hk () + Bij nk B (1) [ (1) (10)
whereSjnk represents a learning factor.
In order to assign a value for the learning fagr, in our model we assumed that inter-area
synapses cannot overcome a maximum saturation.vHh® is realized assuming that the learning
factor is progressively reduced to zero when theapge approaches its maximum saturation.

Furthermore, neurons belonging to the same areaotdre linked by a long-range synapse. We

have

(11)

ﬂOMmax —V\/ij,hk) if ij and hk belongtodifferentareas
Bij hk = .
0 otherwise

whereWnax is the maximum value allowed for any synapse, ggd/ax iS the maximum learning

factor (i.e., the learning factor when the synapseero).

Egs. (10) and (11) require a few comments. Fihst, dynapses are modified according to the
Hebb rule only if the presynaptic and postsynaptcirons belong to different areas. Second,
according to Eqg. (10), the array of inter-area pgea can be asymmetrical. Third, Eqg. (11) implies
that each synapse approximately increases accoiding sigmoidal relationship, with upper
saturationWnax The slope of this sigmoidal relationship (henoe increasing rate) is determined
by parametep,.

The strength of the synap¥é ,, at the end of the presentation of one object, nigpen two
factors: parametef,, and the duration of the period along which theeobjs presented to the

network. The longer is this period, the higher e tvalue of synapses, and the strength of

memorization.
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Parameterf3, is assumed to be the same for all synapses avem gnstant. However, this
parameter can be modified from one object to tha daring the learning phase. In this way, the
model can account for objects with a different valece (for instance, for the effect of attention,
emotion, expectation and for all other factors whtay affect storage).

In the present work, we did not use a decay terhénHebbian rule. This may improve the

biological plausibility of the model and could lm#roduced in future versions.

attribute 1
o
w

o<

—

attribute 2
o
w

attribute 3
o
wn

attribute 4
(o]
(8]

Time [ms]

Figure 4 — Learning phase: instantaneous activitysplid black line) and moving averaged activity (dased grey
line) of four oscillators representing the exact dtibutes of an object, during the training of the inter-area
synapses. Oscillators receive external input 0.8t(ebute 1 and 4), 0.7 (attribute 2) and 0.6 (attrbute 3). and are
affected by a random noise term. Initially, the fist and the fourth attributes oscillate with a highe frequency
than the other two; then, rapidly the four oscillabors synchronize due to the formation of inter-areasynapses.
These inter-area synapses are created according ta Hebbian rule, thanks to the partial temporal
superimposition of the moving average presynapticignals with the instantaneous activity of the possynaptic
neuron.

An example of the training phase is shown in Figliravhere the temporal activity of the four
central neurons (i.e., the neurons which signaletkect attributes) is presented. In this figure we
display also the “moving average signal” (i.e., fuantitymy(t) in Eq. 9) for the four neurons. The

neurons received the input values 0.8, 0.7, 0.6 aBdrespectively; hence, the first and the last
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initially oscillate with higher frequency than tlséher two. However, as it is clear from Figure 4 ,
the activities of the four neurons rapidly synchzen due to the formation of inter-area synapses
among them.

An example of the synapses linking the neuron ®,6hject 1 (Objl1 = [5,5 5,35 35,35 35,5])
with all the other neurons in the network after tearning phase is present in Figure 5 (in
particular, this figure shows the values of th@akssn withh =1, 2, ..., 40k =1, 2, ..., 40;
i.e., , it represents the inter-area synapses whigjet into the neuron 5,5). As it is clear from this
figure, after the learning phase the neuron resesymapses from the other neurons in the same
object (i.e., from neurons 5,35 35,35 35,5) aidthough with smaller strength, from the other
neurons in activation bubbles.

After the learning phase, the network can be usatktect and reconstruct objects, even in the

presence of lacking or modified information.

Figure 5 — Learning of object 1 (Objl) and inter-
area synapses. The four exact attributes of Obj1 ar
codified by the oscillators in positions [5,5 5,35
35,35 35,5]. The figure shows the values of the
synapses linking oscillator 5,5 with oscillators irthe
other areas at the end of the learning process of
Objl. In particular, the figure displays the array
Wss ni (representing the inter-area synapses directed
to oscillators 5,5) by means of a three-dimensional
graph: the x,y plane represents the coordinaténk
within the network, and the height of the pixel in
position hk represents the value of the synapse
linking oscillator hk with oscillator 5,5. Note that the
oscillator 5,5 receives the strongest synapses from
the oscillators in the other areas signalling thexact
attributes (that is oscillators 5,35 35,35 35,%nd
weaker synapses from the other oscillators within
the activation bubbles.

The decision network

In our network, object recognition is consideredlrwdene if the L neural oscillators which
signal the attributes of the object oscillate in@dyony, and with a different phase from attributes

of different objects (this means that the networ&dpces four synchronous activation bubbles,
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located in the correct positions). In previous veprkhe success or failure of the network in
recognizing objects was simply decided by the ulemking at the temporal pattern of network
activity. A new aspect of the present model is twat designed a “decision network”, located
downstream the network of Wilson-Cowan oscillatavgh the task of producing a “true” output

only during the correct detection of an object.

Figure 6 — Schematic diagram of the decision netwkr The white circles represent binary neurons, whik
produce output 0 or 1 depending on whether the inpuis below or above the given threshold (indicatety 8).
The activity of all oscillators within each corticd area is given as input to a layer of binary neurns and
compared with a threshold 8, to detect those oscillators that are active at aninstant. The overall number of
active oscillators within each area is compared wlit two thresholds @i, and Gy Whit Onin < Omay), by means of
two binary neurons, labelled as excitatory €x) and inhibitory (in) neuron, respectively. The inhibitory neuron
inhibits the excitatory neuron; therefore, the outpt g of the excitatory neuron assumes value 1 only ihé
number of active oscillators in the corresponding eea lies betweerd,,, and 0, The downstream portion of the
network compares the sum of all the excitatory newns with a threshold 8., (= L-0.5), to detect whetherL
attributes are simultaneously present within the navork; then, the obtained signal () is integrated in order to
verify that the L attributes are maintained for a certain time interval. The integrator is reset as soon as the signal
r is switched off.

In order to detect an object, this decision netwarkst verify the following requirements: i)

there is an “activation bubble” in any area. Tasthnd, the network verifies that the number of

active oscillators in any area, at a given instamgrcomes a first threshold, assuming that a sing|
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bubble is composed at least of a minimum numbeoacttive units; ii) any area must produces just
a single activation bubble at a given instant. ritheo to check this requirement, the network vesifie
that the number of active oscillators within anaarat a given instant, does not overcome a second
threshold, assuming that two simultaneous actimabiobbles (or a single bubble with excessive
width) would produce too much activity in the ar€d.course, the second threshold is higher than
the first; iii) the conditions i and ii must be ifexd along a certain time interval, to ensure the
continuity of object perception.

The previous requirements are detected by the mketiltustrated in Figure 6, which
corresponds to the following equations:

a) a first layer of binary neurons compares theviggtof all oscillators,x;(t), with a threshold,
to detect only those oscillators which are suffitlye active at a given instant. By denoting with

Xijj (t) the activity of a neuron in this network, loedtat position ij, we have:

Xij (t) =[sign(; (1) - 6,) +1]/2 (12)

According to Eq. (12), neurons of this layer areaby in type, producing output O or 1
depending on whether the activity in the corresjpondscillator is below or abov&.

b) L downstreamnhibitory binary neurons (one per area) control whethenthmeber of active
oscillators in that area at a given instant is &avmaximum tolerated threshold (s@y.,). By

denoting withi; the output of these neurons=(1, 2, ...,L) we have

S =22 x5 with ij belongingto theareal (13)
P

i1 (t) =[sign(S (t) ~ max) +1]/2 (14)

According to Eqgs. (13) and (14), the outputf the neuron is set to 1 when the activity inttha
area is too high (this is the case of two simulbaiseactivation bubbles in that area, or of an
activation bubble too large). Otherwise, its atyivs zero. The activity of this neuron is used to

inhibit object detection (see point ¢, below).
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c) OtherL excitatory binary neurons (one per area) verify whether thenlver of active
oscillators in that area at a given instant istootlow (i.e., it is above a given minimum threshol
say 6nin). However, this neuron is inhibited by the acyvitof the inhibitory neuron (see Eq. 14).

By denoting withg (1 = 1, 2, ... L) the activity of these neurons, we have

_ [signls 0 i) *+U _; (15)

a (1)

where the quantit§(t) has the same meaning as in Eq. (13).

In conclusion, the binary quantig(t) signals that there is one and only one propertthat
area

d) Finally, a downstream decision neuron scrutsiaether the network exhibitsattributes
simultaneously, to detect an acceptable object.ebl@r, we require that these attributes are
maintained for a certain time interval. In orderatthieve these requirements, this decision neuron
computes the sum of all excitatory neuroag)j, compares this sum with a threshélg; =L -0.5,

(to detect thak attributes are present) and integrates the stbnalobtained. We can write:

L
r(t) = {sig{Za (t) —m} +1} /2 (16)
=1

t
out(t) = j r(t)dt (17)
t

reset
The symbolteser in EQ. (17) designates the previous instant inctvithe integrator has been
reset to zero. We decided that the reset occusp@s as the signa(t) is switched off (i.e., the
signalr(t) is used both as the input to the integrator, and geset signal to start integration again).
According to Eq. (17), the output signal startsniease as soon asattributes are simultaneously
detected. The longer the time during which thesdbates keep on together, the higher the value
reached byut(t). A high value ofout(t) (for instance above 6, see section Results) sighét the

object is perceived with good reliability.
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The parameter values are reported in Table 1. #ipation for the parameters concerning the
Wilson-Cowan oscillators can be found in previouzrkg (Ursino et al., 2003). Lateral intra-area
connections were given to ensure network stabgity to have an activation bubble which spreads
for a few units around the central oscillator. Madue of % in the Hebb rule was given to have
learning periods of the order of 1 secold,.x was assigned to ensure a strong synchronization
among two interconnected bubbles in case of maxayr@pses. Finally, parameters of the decision
network were given on an empirical basis, by coeréng) the dimension of the bubbles, in order to

maximize the performance of the detector.

Table 1 — Values for parameters

. , Simulations
Wilson Cowan oscillators
a 0.3
5 o We have performed different kinds of
Y 0.5
T 0.025 simulations to test the limits and the capabilities
[ 0.7
% 0.15 of the model. In the first simulations, we tested
6- 1.9
Lateral intra-area connections the capability of the model to reconstruct and
i 9
Oex 08 recognize multiple objects starting from partial
7 3
Oin 35 information, both in case of strong and weak
Hebbian rule for inter area synapses
Fo 0.033 memorization of objects. To this end, we
Wmax l
Decision network 0 stimulated the network with several objects
Ox -
i 3 . .. .
o N simultaneously, but assigning a different number
f)max
Bou 3.5 H H
o of properties (from 1 to 4) to each object.
Gaussian noise
c 0.02 . . .
Object attribies Furthermore, we repeated the simulations with
0bj1 [5,5 5,35 35,35 35,5]
0bj2 (15,15 1525 2525 25151 | different values of the parametey, which
0bj3 [15,5 15,35 25,35 25,5]
0bj4 5,15 5,25 35,25 35,15 . . .
’ : establishes the frequency of oscillations.
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In another set of simulations we introduced a Gauswhite noise term both in the learning
phase and during the recall phase. In these siibnganetwork started from a random initial
condition, and we repeated every simulations tenfolperform a statistical analysis.

In a subsequent set of tests, we tested model itapaaecognize objects also in presence of
some changes in the input properties (i.e., wenasduhat objects were modified compared with
those used in the learning phase). Further sinmnatanalyze the capability of the network to
reconstruct and recognize a different number oedabj (from 1 to 4), correlated objects (i.e.,
objects sharing some properties) and objects witbrent distances among their properties in the

topological space.

RESULTS

Simulations with incomplete objects

The network was trained with three objects (namé@lOObj2 and Obj3), represented by the
following properties: Objl = [5,5 5,35 35,35 35,0bj2 =[15,15 15,25 25,25 25,15], Obj3 =
[15,5 15,35 25,35 25,5]. Two different trainisgssions were performed, starting with null inter-
area synapses. In the first, the three objects segparately presented for 1600 ms (Objl), 1400 ms
(Obj2) and 1100 ms (Obj3), while we used the saalaevof parametef for all objects. With
these values, synapses linking attributes of tret ind the second object are stronger than the
synapses in the last one: however all objects s&rodrg memorization and can be reconstructed
starting from two attributes only. In a secondrinag session, duration of the learning phase was
1300 ms for the first object, 1100 ms for the selcand 800 ms for the third. As a consequence, the
third object is stored more weakly than the othewsg] requires at least three attributes to be

correctly reconstructed. Objects 1 and 2 requisetwo attributes.
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Table 2 — Results of 17 different simulations perfoned by stimulating the network with three objects
simultaneously but assigning a different number oproperties (from 1 to 4) to each object.

STRONG WEAK
TRIALS INPUTS INPUTS
Obj1: Obj2 | Obj3 | Obj1 ; Obj2 | Obj3 Obj1 : Obj2 ; Obj3

=
Y

W

-
~
-
B
w

0.3,0.4,05

w

Objects received two different previous memorizatios: a strong memorization (learning time: Objl = 160 ms;
Obj2 = 1400 ms; Obj3 = 1100 ms) and a weak memoritzan (Objl = 1300 ms; Obj2 = 1100 ms; Obj3 = 800 s
In both cases, two input properties are sufficienfor the reconstruction of Obj1l and Obj2; whereas Ol needs
two properties in the first case and three properts in the second case. The number of input featurésr each
object is specified in the second column. The thirdolumn describes whether the object is reconstruet (yes) or
not (no). The fourth column signals the values of which allow a correct segmentation (the cases wdhi requires
a time, say T, longer than 150 ms to achieve segntation are also indicated). Note that Objl in triak 8 and 17
(strong and weak memorization) and Obj3 in trials 5 12 and 13 (weak memorization) are not reconstruet!:
these results are correct since these objects reeed too few attributes with respect to their memorzation.

Table 2 summarizes the results of 17 simulatiomfopaed with the model, first using strong
memorization and then weaker memorization (seeldbgend for explanations). Results can be
described as follows: i) In simple conditions (forstance when all objects have strong
memorization and most features are present in Jrgergmentation can be achieved witlk 0.5
(which corresponds to an oscillation frequency @b flas 55 Hz). However, when segmentation
becomes more difficult (for instance, in case obke¥ memorization and/or with a smaller number
of input features) the value gimust be reduced to 0.4 or 0.3 (i.e., the frequénogduced to 40-45
Hz); ii) in case of strong memorization, the threbjects can be correctly segmented and
reconstructed, provided at least two of theinlaites are given to the network. If only one atité
is assigned to one object, the object cannot benstaicted, but the remaining objects can be
correctly segmented as well. Only in two casesctireect reconstruction requires a lower value of
y(equal or less than 0.4, trials 11 and 1B)In case of weaker memorization, the netwoak still

segment and memorize objects, provided at leastativiibutes are given for Objl and Obj2, and
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three attributes are given to Obj3: however, inesalvcases the value of paramefermust be
decreased down to 0.3 to obtain a correct segmemtat) The downstream decision network
provides a high output only when all four attritaitef the object are simultaneously recollected
(i.e., the corresponding neural groups oscillateymmchrony). In conditions where the four attrilsute
are not retrieved, the output of the decision nétwemains at a low level, thus signaling that the

object is not recognized.

T=0ms T=1ms

Figure 7 —Panel A Network
activity at different snapshots
during a simulation with
incomplete  objects. Each
pixel represents an oscillator.
The emerging height s
proportional to the
corresponding oscillator’'s
activity x;. The represented
simulation refers to trial 8 in
Table 2: object 1 receives
only one input property,
while objects 2 and 3 receive
all properties. The external
input for the stimulated
properties is equal to 0.8. The
network is able to reconstruct
objects 2 and 3, whereas
object 1 is not reconstructed
(only the bubble
corresponding to the
stimulated property
10 . . ‘ . ; ; : ; ; : emerges).Panel B Output of
2 2 2 2 3 2 the decision network. During
- : - the initial transient (when no
L 2 object reconstruction occurs),
the output of the decision
. network remains at zero, then
B 2 | it reaches a value equal or
grater than 6 during the
correct  reconstruction  of
object 2 and 3, whereas it
remains at zero during the
missed  reconstruction  of
object 1. The number at the
top indicates which object is
recognized; the asterisks
0 L A0 W correspond to the snapshots
0 50 _ 100 150 of panel A where object
B i (i) recognition occurs.

out

In order to clarify the previous points, Figure pllays some snapshots of the network

behavior at particular instants of the simulati¢umsper panels), and the output of the downstream
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decision network (bottom panel), in an exemplaigecarial 8 in Table 2, when four attributes were
given to the network for Objects 2 and 3, and thst bbject received just one property. It is worth
noting that, in the snapshots, each attribute esented by the excitation of an “activation
bubble”, characterized by the central excited newarounded by a group of proximal active ones.
In Figure 7 we can see that the network, after ratial transient period, is able to correctly
reconstruct and segment Objects 2 and 3, butibtisble to reconstruct Object 1 (in fact, a single
attribute is not enough to reconstruct this objetring the oscillatory phase of Object 1, only a
single “activation bubble” is excited. Output ofetldownstream decision network reaches a high
level (as high as 6) during the correct reconsimacof Objects 2 and 3, but it remains at zero

during the oscillatory phase of Object 1.

NOISE . . . . .
TRIALS INPUTS 7=03-05 Simulations with Gaussian noise
Obj1 ; Obj2 : Obj3
________ S WO F—— The previous simulations, in case of strong
(O, S, SO 100% .
) 60% . . . "
i s memorization, were repeated starting from randoitiain
b . 80% .
________ i 16000// conditions and adding Gaussian white noise (zeranme
2 4 a4 | d00% - .
s s [ 100% value, standard deviation 0.02) to all neurons huhihing
3 13 | 80% .
) 100% - . . ..
s e T 0 the training section and during the subsequent lsions.
2 22 | 60% .
i ___________ 20% We repeated every simulation tenfold to perforntagiical
2 L4 | 100%
3.3 100% ... . . . .
o e .. 100% analysis, and all simulations were repeated fofediht
3 100%

) _ _values ofy.
Table 3 — The same simulations as in

Table 2 (in case of strong memorization) . .

were repeated staring from iniial Results are reported in Table 3, and can be sumethas
random conditions and adding Gaussian

white noise to all neurons (zero mean follows: i) the presence of noise makes object®ggition
value, standard deviation 0.02) both
during the training phase and during the

recovery phase. Each simulation was
performed tenfold for each value of

and the best performance is given. The decreases to 60% and the valueyahust be decreased to
third column reports the percentage of
success obtained by varyingy between
0.3 and 0.5.obtained by varying y
between 0.3 and 0.5.

more difficult. In some cases, the percentage afcess

0.3; ii) It is more difficult to find a clear relanship
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between the value gfwhich warrants the better performance and the ¢exitp of the task.

Figure 8 displays some snapshots of the networkaweh at particular instants of the
simulations (upper panels), and the output of thergtream decision network (bottom panel), in
an exemplary case: trial 1 in Table 3, when fodritattes were given to the network for every

object.

IE2ams [=3eime Figure 8 — Panel A Network
activity at different snapshots
during a simulation with
Gaussian noise. The
represented simulation refers
to trial 1 in Table 3: each
object receives all four
properties (attributes are
stimulated with input 0.8).
The network starts from
T=50ms T-ooms random initial conditions and

‘ ] after a short transient it
recognizes all the three
objects (upper right panel,
obj3; lower panels: obj1, obj2
and obj3 from left to right).
Panel B Output of the
decision network. The output
of the decision network
reaches a value higher than 7
whenever an object is
correctly  recovered. The
10 ‘ A B B B asterisks correspond to the
¥ 3 2 3 12 3 2 3 12 four snapshots of panel A
1% 9 1 1 where  object recognition
i I occurs.

In  Figure 8 the

out

network starts from a

i | random condition and

after an initial transient

| | L 1 1 1
05 50 I 100 150 o
. ime (ms period is able to correctly

reconstruct and segment all the three objects. iBhitearly evident in the output of the decision
network, which always reaches a level higher thaim 7Zcorrespondence of a correct object

reconstruction.
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Finally, we repeated all simulations by using nasé/ during the reconstruction phase, but not
during training phase. In these conditions, thevogt exhibits a percentage of success comparable
to that of Table 2. Hence, we can conclude thagenbas a detrimental effect only if applied during

the learning period.

Simulations with modified objects
Table 4 shows results of 30 different simulatiossong memorization) performed both with

some lacking features, and some features changepared with the “exact” value (distande 1).

STRONG _d Results can be summarized as follows: i) in

TRIALS INPUTS y
Obj1 Obj2 | Obj3| Obj1 | Obj2 | Obj3

n
-

most cases the three objects can be correctly
segmented and reconstructed, also in presence
of lacking and modified attributes. However, in
some cases (for instance in all difficult
conditions at the bottom of the table) the
correct segmentation requires a value y@is

low as 0.3 ii) When one object in the network

is stimulated with one “exact” + one modified
feature, its reconstruction succeeds only in

some cases (see trial 20-23 in Table 4). In the

other cases (see trials 17-19) the object cannot

Table 4 — Results of 30 different simulations perfoned be reconstructed, whereas the remaining two
using three objects as input to the network, but wh '

some lacking features and some features shifted fro . .

the “exact value” (distanced = 1). All three objects Objects can be segmented. iii) In trials 24-25
previously received the same strong memorization as

Table 2. The number of exact features + the numbesf  there are two simultaneous objects with one
“not exact” features for each object is given in tke
second column. The meaning of all other symbols ike
same as in Tables 2. In some trials (17-19, 24, 25)
objects cannot be reconstructed. Errors are markedn
grey in the third column. conditions, neither of them can be

exact and one modified feature. In these

reconstructed. iv) The downstream decision networvides a high output only when four
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attributes of the object are simultaneously rectdld (i.e., the corresponding neural groups
oscillate in synchrony). However, in case of maatifobjects, this output is generally as low as 3-4.
By contrast, in the reconstruction of objects withmodifications, output of the decision network
is always higher than 6. Hence, this output noty agignals object reconstruction, but can be
considered an index of object reliability, compawath previous experience.

Finally, we repeated these trials also increadnegdistance in the modified objects (i.e. using
=+2); in this case the network has the capabilityemnstruct objects only in simple cases (i.e., all

the three objects needed that at least three of‘thect” attributes are given to the network).

Simulations with different number of objects

- The network performance was tested by
4 objects
TRIALS INPUTS Y _ _ . .
Obj1 | Obj2 | Obj3 | Obj4 changing the number of objects simultaneously given
1|4 a4 a]| o2 | asinput
________ 2 (.34 .4 4] 02 |
-------- NP N T 0.2 First, we performed several trials (not shown for
________ 4 | 4 .43 4] 02 |
________ 5 ...|.4 .4 ;. 4 3| 02 | : : . .
________ 6 | 3 : 3 : 4 4| o2 | briefness) using only one or two objects as input,
________ 7. ... 3.4 .38 :4] 03 |
________ 8 . f.8.:.4.:.4 .31 02 1 with either strong or weak memorization. In these
________ 9 | 4 38 i3 ! 4] 02 |
10 4 : 3 4 3 0.3 . . .
(o TalTalTsl a0z | simple cases segmentation can always be achieved
_______ 12 1838 ..38] 02 |
....... 38 12038338 .31 .02 | withy= 05 The cases with three objects were
_______ 14 [.8.:.2 .38 :.3] 02 |
15 3 13 : 2 '3 0.2 ,
illustrated above (Tables 2-4). Then, the network

Table 5 — Results of 15 different simulations
performed using four objects as input to the
network, but with some lacking features. The
first three objects received the same strong
memoarization as in Table 2 and they can be
reconstructed starting from two input features;
Obj4 was trained for 900 ms and requires three
attributes to be reconstructed. The number of
stimulated features for each object is given in
the second column. In most trails, a correct
segmentation requires a lower value oy (y =
0.2. see last column

was trained with one more object (named Obj4),
represented by the following properties: Obj4 =
[5,15 5,25 35,25 35,15] and trained for 900 Ass.

in the previous exempla, the first three objectgeha
strong memorization and can be reconstructed

starting from only two attributes, whereas the lagect has weaker memorization and requires at

least three attributes to be correctly reconstrdicte
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The results, summarized in Table 5, show that dle dbjects can be correctly segmented and
reconstructed, provided at least two attributesgaven to the network for the first three objects,
and at least three for the weak object. Howevengeition requires a lower value gfi.e., y= 0.2,
that means a frequency as low as 30 Hz). In fady by oscillating at lower frequency, the
network exhibits enough time to permit the appeagaof an additional object after the emergence
of the previous three. The same trials were repeatth the fourth object stored as strong as the
others: also in this cases the network segmentsattyr with y = 0.2.

Finally, we performed some trials by storing mdrart 4 objects simultaneously. Results show
that the network can reconstruct and segment amamiof four objects together, independently of
the strength of synapses and number of propettiesilated for each object. If the value pis

lowered to 0.1 (to further decrease frequencyMtileon-Cowan equations stop oscillating.

2 Objects with a common characteristic Simulations when two ObjeCtS share one
TRIALS INPUTS i
Obj1 Obj2 Obj3 property
[ A |4 i34c i 3+lc | 04 . . .
________ 2 | 4 sac i 241c | 04 The network was trained with three objects
________ 3 | .3 i 3+#lc ! 3+1c [ 04
-------- Do) 2o S | dde L 08 1 (named Objl, Obj2 and Obj3), represented by the
________ 5 | 1 i 3+1c : 3+1c | 04" ’ !
........ 6 | 4 . 38 : 38 [ 04
7 3 3+1c 2+1c 0.4 I 1 . 11 =
|3 aie ame| o4 | ollowing properties: Objl =[55 535 35,35 b,
________ o | s auc 2 | oa , ,
_______ 10 [ 3 : 3 i 3 | 04 | Obj2=][1515 15,25 25,25 25,15], Obj3 = [15,15
11 2 2+1c 2+1c 0.4*

15,35 25,35 25,5]. Objects 2 and 3 share the firs

Table 6 — Results of 11 different simulations
performed using three objects as input to the
network, with Obj2 and Obj3 sharing one
common feature. All three objects received a
strong memorization (learning time: Objl =
1600 ms, Obj2 and Obj3 = 1200ms). The
number of features + the presence of the
common feature (symbol ‘c’) for each object is
given in the second column.. The best
performance of the network is achieved using
= 0.4; only in one case, object reconstruction is . )
improved using y = 0.3 (see last column). Summarized in Table 6. We found that the best
Asterisks marking trials 4, 5, and 11 indicate
that Objl could not be reconstructed, but the
other two objects were correctly seamente

property. The three objects were separately predent
for 1600 ms (Objl), 1200 ms (Obj2) and 1200 ms
(Obj3) (strong memorization).

The results of different simulations are

performance of the network is achieved using

0.4; with this value the oscillation frequency Isat 45 Hz. However, in one case, we found that
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some object reconstructions requiges 0.3 (i.e., the frequency is reduced to 40 Hiz)s worth
noting that, in these conditions, Objects requirneast three properties to be correctly reconstdic
(i.e., they cannot be reconstruct starting from praperties only).

Figure 9 displays some snapshots of the networkawbeh at particular instants of the
simulations in an exemplary case (trial 1 in Tahlevhen four attributes were given to the network
for each object). After an initial transient peridtde network is able to correctly reconstruct and

segment all the three objects.

T=0ms

40 1 40 1
Figure 9 — Network activity at different snapshotsduring the simulation with two objects sharing an dtribute.
The represented simulation refers to trial 1 in Talte 6: all the three objects receive four inputs prperty. The
external input for the stimulated properties is eqal to 0.8. After an initial transient, the network is able to
reconstruct the objects; in particular objects 2 an 3, which share the property marked in figure witha black
arrow, are well segregated.

Finally, we performed some simulations with objesitsring two features. In these conditions,

the network fails to segment these objects.
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Effect of the distance among features

Several of the previous simulations were repeateyling the distance between the attributes of
two different objects. Results show that the nekweaches a correct reconstruction, independently
of the distance, as long as two “activation bubbleonging to the same area (i.e., bubbles of

different objects) are not overlapping.

Simulations with variable y

05 i
]
g a
=
]
{=]
0 I 1 1 I I 1 1 I
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= T
=

0 50 100 150 200 250 300 350 400 450

10 ‘ C-
0 L | Il L |
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0 I | | 1
0 50 100 150 200 250 300 350 400 450

time (ms)

Figure 10 - Three examples of the output of the dettion network, obtained by decreasing the frequercof
oscillations. To this end, the value of parametely (panel a) has been decreased from 0.5 to 0.3 inrdke
consecutive steps, with a 150 ms duration each. Rdrb represents output of the detection network dung a
simulation of the trial 15 of Table 2 with strong memorisation. Panel ¢ represents the same output ding the
simulation of trial 6 of Table 2, with weak memorigtion. Panel d represents results obtained duringhe trial 6 of
Table 2, with strong memorisation. The cases withaotrect segmentation of three objects are marked wiit
ellipses. It is worth noting that segmentation in pnels b and c is achieved only after 300 ms, whelmet value ofy
has been decreased down to 0.3. In the bottom panelegmentation is achieved almost immediately and i
maintained even at lower values oy.

The previous results show that the oscillation desegpy (hence, the value of paramghemust
be changed depending on the difficulty of the taskjle simple tasks (like those with strong

memorization in Table 2) can be solved wijtt= 0.5, more difficult tasks (as those with weak
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memorization, with four simultaneous objects, widlcking features, or superimposed features)
often require a lower frequency. However, the usa low ymay be detrimental in case of simple

tasks, since some properties of one object may#xhke longer oscillation time available to appear
separately from the others.

In order to make the system more robust, we imphetea simple method to manage
automatically. It consists in starting the simwdatwith y= 0.5, and then reducing its value in steps
(4y =-0.1 every 150 ms). Examples are shown in leidu.

This figure depicts the output of the decision raetnin three cases (trial 15 of Table 2, strong;
trial 6 of Table 2, weak; and trial 6 of Table #089). In the first two cases, the network fads t
detect all three objects during the first 300 mg,dcorrect segmentation is achieved after 300 ms,
when yis reduced to 0.3. In the last case, synchromizat almost immediately achieved wigx

0.5, and is maintained throughout the simulation.

DISCUSSION
In this work, we present a mathematical model whesploits yband synchronization to

simulate abstract representation of objects in@agwoe-declarative memory. The term “abstract”
representation is used here to denote an objeptsepied as a collection of features, which may
spread across different sensory modalities andbeamdependent of spatial relations. For this
reason, we used similarity and previous knowleddgesrto segment objects, without exploiting any
spatial property. Hence, our model does not intendepresent image processing in the visual
cortex, but rather processing in higher corticaoastive areas. This aspect clearly distinguishes
our model from other models (Kazanovich and Botksy002; Ursino et al., 2003; Ursino and La
Cara, 2004; Wang and Terman, 1997; Terman and WESHH), which are explicitly devoted to

image segmentation and in which different objecésseeparated on the basis of spatial properties
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(such as proximity, smoothness, common fate). Asnsarized by Wang in a recent review paper
(Wang, 2005), these models were especially focosdtie figure-ground separation problem

Of course, the present model requires a pre-proaestage, which extracts features according
to a topological organization. These features may Wlepending on the kind of objects to deal
with: they may include geometrical features (likeages), colors, tones, flavours, etc. , each
organized in a topological way. Analysis of these-processing algorithms is beyond the aim of
the present work.

However, the ubiquitous role gftband activity suggests that it may also be involue the
formation of more “abstract” object representationmemory, in part independent on spatial
position. In this case, synchronization may be efriby higher association rules, such as previous
knowledge and similarity.

In the present work we assume that an object caedmered and represented in memory even
if some features are lacking in the external stipmi are moderately changed compared with a
previous knowledge. Let us consider, for instarthe, idea of a sea-shore (sun, flavor of fishes,
waves and sand) or the idea of a flame (lightnéssiting, sounds and smoke). In case of
incomplete information, we assume that just a cowplthese attributes is sufficient to retrieve the
remaining properties in memory (for instance, teecpption of smoke and lightness in a night can
evoke the idea of a flame, with the expectatiomwiing wood noise and heating). Furthermore,
these attributes can be a little different fromsth@reviously perceived (for instance, the lightnes
can have a different intensity, smoke can havdfardnt smell). Similarly, one can recognize that a
tree is a tree although the characteristics ofl¢a@es and bark are different from one tree to
another, and you can imagine lacking featuresetrige (such the smell of flowers).

Although some previous models (summarized in theodluction) exhibit some common
aspects with the present, there are also profoemdaspects in our approach. In particular, none of
these models combine oscillatory dynamics (syndhadion and desynchronization), a topological

organization of features, Hebbian learning andnalfidecision network into a single coherent
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structure. In most models segmentation and menreryreated as separate problems. Most models
lack a topological organization to describe thauin@thers use unphysiological learning rules.

These originals aspects of our models are moreustiraly commented below.

i) The more recent models mentioned above (Borisgmtk Kazanovich, 2004; Knoblauch and
Palm, 2001; Wang and Liu, 2002) perform segmemiaitd recognition at two different processing
stages. Generally, a first layer of neurons segsantisual image on the basis of proximity and
spatial connection laws. Subsequently, the infolonadlready segmented among different objects
is sent to a feature extraction layer, and/or tassociative memory layer, which recognizes objects
and implements prior knowledge rules. In other gotte spatial nature of visual images helps the
solution of the problem, since it allows segmentatbefore object recognition by using different
low-level rules (proximity, common fate, smoothnest.). Of course, previous knowledge can
subsequently improve segmentation in ambiguousscaBg contrast, in the present model,
segmentation and matching with previous memory oatithe same processing stage without the
use of spatial information, i.e., without the afdaw-level spatial rules.

i) The different features in our model are orgadizaccording to a topological map. We
assumed that a previous processing step (not iedlbdre, but similar to a classic Kohonen’s self-
organizing map) extracts the main features of tiput, and orders them in a topological way.
Moreover, this topological organization of featuresassumed as given (i.e., it is not subject to
learning). This is reasonable, since the formatibtopological maps require a long training period,
which is much longer than the period required trestindividual objects or facts in declarative
memory (Rolls and Treves, 1998; Hertz et al., 1991)

Although there is no definite demonstration in mginysiology that topographic maps, besides
representing sensory information are also engagadore complex mental operations, including
object recognition, several recent papers stresiipothesis.

Kohonen and Hari (1999) demonstrated that absteattire maps arise spontaneously from the

use of self-organizing algorithms. In a brilliantaenple reported in their paper (see also Ritter and
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Kohonen, 1989) a semantic map of words is formedyhich words are automatically segregated
into classes, and a finer structure can be foutlinvclasses.

Many other authors in more recent years discuskedpbssible role of topographic maps
outside sensory areas. Pulvermuller (2005) hypabgsghat topographically organized regions of
the cortex directly connect different features ofvard. In this idea, a semantic process would
engage many cortical areas. Simmons and Barsald@B)2proposed a similarity-in-topography
principle; this principle states that “the categalistructure of the word becomes instantiatedhén t
topography of the brain’s association areas”. Tale of topography in the organization of higher
brain centers, and particularly in abstract cogaitrtepresentation, is stressed by Thivierge and
Marcus in a recent review paper (2007).

Direct experimental demonstrations of these theomee still scanty. Tanaka (2003), by
exploring cortical columns in the inferotemporaltea, suggests that some form of topography is
present in that region: most cells represent feataf object images while cells within the same
column respond to similar features. Maps which dbrapresent spatially ordered information can
be found in the auditory cortex and in the olphactystem (Kaiser et al., 2002; Freeman, 1978).
Recent neuroimaging studies suggest that mapsecéuhd in cortical regions far downstream the
primary sensory areas (such as in frontal and qmédt regions) (Hagler and Sereno, 2006). Indirect
evidence on the role of topological maps in cognitalso comes from studies on patients with
deficits in category recognition (see Damasio (3980d Thivierge and Marcus (2007) for a
review).

iii) Association among different features (i.enking features into a coherent representation of
abstract objects) is realized using a Hebbian rulkich allows implementation of previous
knowledge principle. By contrast, prior knowledge some other networks (Borisyuk and
Kazanovich, 2004; Wang and Liu, 2002) is impleménising more complex rules, which do not

have a clear neurophysiological counterpart.
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In our model the Hebb rule was implemented usirgy ¢brrelated moving average of the
activity of presynaptic neurons, computed durirg phevious 10 ms, with the current activity of the
post-synaptic neuron. Indeed, the required defag for effective synaptic Hebbian modification is
the order of less than 10 ms (Abbott and Nels@®02 A further characteristic of our model is
that the strength of object memorization can bdyeeaaried, by increasing the training time and/or
the learning rate. The consequence is that multibjects can be stored in memory with a different
pregnancy. In particular, the difference in the mamation strength in our model produces a
difference in the balance between sensitivity apdc#icity for object recognition (sensitivity
denotes the capacity to recognize true positiy@sgiicity the capacity to reject true negativdn).
case of strong memorization, a smaller number afufes may be required to recover the object
from partial information (see, for instance, obgedt and 2 in Tables 2 and 3, which can be
reconstructed starting from just two attributesrad)e Hence, the object can be recovered with very
high sensitivity, but with a poor specificity. Tlpposite occurs in case of weak memorizations.
With the present network it is easy to realize thest compromise between sensitivity and
specificity, by acting on the learning raégin Eq. 11, and on the maximum level of synapsgs.
This compromise between sensitivity and specificaeyn be important in real life. For instance, if
recognition of a given object is essential for suals it is preferable to recover it even in a wgon
condition (poor specificity), but avoiding any fawf recognition (high sensitivity). By contrast,
other objects may be recognized only in evidenega®lerating some omissions.

iv) The present model makes use of a “decision oy placed downstream the topological
maps of oscillating neurons. The function of thetwork is to reach a decision on whether, at a
given instant, an acceptable representation oftgecbis present in the cortex. The output of this
network can be sent out to other regions in thenbta drive action and behavior. It is worth ngtin
that our decision network makes use of neuronstwtétect the simultaneous presence of activity
in different areas. The existence of coincidenaesitige target neurons has been hypothesized by

others in the context of assembly coding (Abel®821 Konig et al., 1996). Experimental evidence
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has been presented for neurons in the visual anthtesensory cortex which are triggered by
synchronized thalamic afferents (Alonso et al.,8; %oy and Allowey, 2001).

In all simulations, we tested the behavior of tleeision network, and found that it performs
well. Some errors may just occur during the initraihsient period (the first 30-40 ms) which thus
must be excluded from the analysis. The networkvides a strong output only when four
“activation bubbles” with correct dimension areg@et in the four areas (one per area). In all other
cases the network does not recognize the objead. a8pects deserve comments. The output of the
decision network may reach different levels: hertcdpes not only recognize the existence of an
object, but may also provide some information oe tlegree of reliability of the object itself.
Second, in case of a modification of one propdtig, final object presents an activation bubble
which is slightly translated compared with the ovay one (i.e., that used during the learning
phase). This is an interesting property of our wekwinter-area synapses allow restoration of
lacking properties on the basis of previous knog#edstill preserving information on subtle
differences between the actual object and the ogenally memorized. It is interesting to observe
that, in most of these cases, the decision netweakhes lower levels, i.e., it gives a smaller
confidence to object recognition.

We are aware that the decision layer has not a plegiological evidence. However, we think
that its function is important to provide a measafdahe reliability of object recognition, i.e., a
measure of how much the present information infole topological areas can be exploited or not
in the prosecution of the task. As pointed out liyess (Osipova, 2006), the increase in neural
synchronization may result in a drive to other are&the brain participating to the same task.
However, activities characterized by a failure bjeat detection, should not drive other areas. This
requires the existence of a gating mechanism, wtachmunicates information to other centers in
case of correct recognition, warranting that padormation is not taken into account. In our
model, this function is performed by the decisiagelr. The latter should not be considered as a

“homunculus”, but simply as a further step in a ptem multilayer processing path. Furthermore,
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output of the decision layer might be used as dlfaek reinforcement signal, to improve learning
of recognized objects, but inhibiting poorly recaga objects. A similar approach to classify and
learn objects is used in the Adaptive Resonanceryh@RT) (Carpenter and Grossberg, 2003).
Finally, as discussed in the simulations of modifigbjects (Table 4), output of the decision
network may be used to quantify the level of religbof the recognition.

Furthermore, it is interesting to observe that pnesence of a downstream decision network
makes our model somewhat similar to the “match atiitzation” qualitative model proposed by
Herrmann et al (2004). In that model, a first pssteg step reflects a match between stimulus-
related information and memory content. The resuthis comparison is then read out by a second
processing step, which is referred as “the utilarét In our model, the first step (matching) is
performed by the network of Wilson-Cowan oscillatom which inter-area synapses represent
memory, and the network dynamics attempts to resgtored information. The second step
(utilization) is realized by the downstream deaismetwork.

An important aspect, emerging from our simulatioashe necessity to modify the frequency of
oscillations (hence the paramerdepending on the complexity of the task. Whilaer tasks
can generally be solved with a valueyas high as 0.5, more difficult tasks require adoy(down
to 0.2 in case of four simultaneous objects). Tégethdence of the optimal oscillation frequency on
the complexity of the task can be summarized devist If oscillation frequency is too high, the
network has not enough time to process information so the objects have not enough time to
appear separately in time division (for instance,the case of four objects). However, if the
oscillation frequency is too small, some propertress/ benefit of the dead time between one object
and another, and appear as isolated propertiesathstf synchronizing with the other properties of
the same object (for instance, this may be a caeser of noise in the learning phase).

In order to deal with a variable oscillation frequg, in this work we proposed a simple
strategy, which consists in decreasipgin progressive steps. Each step should last énotay

allow correct synchronization (approximately 10@1fs). Although this strategy ensures good
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segmentation for different tasks which require feedeént frequency (as shown in Figure 10), it is
feasible that the brain implement a more sophiicstrategy to choice the best oscillation
frequency. Maybe, the decision network output maybed to control the oscillation frequency in
future versions of this model.

Several recent studies provide a physiologicaldfasia frequency change yoscillations. The
characteristics ofy rhythms are under the control of attention (Jeretea., 2007; Borgers et al.,
2005), and can be modulated by D4 dopamine receptat by cholinergic (acetylcholine and
muscarinic) receptors (Rodriguez et al., 2004, Bigrke et al., 2007; Kuznetsova and Deth, 2008).
In particular, D4 dopamine affects the spike dorat@nd the interspike interval (Kuznetsova and
Deth, 2008). Herculano-Huzel et al. (1999) receothgerved that the frequency of gamma band
oscillations depends on the level of central attiva at intermediate level of activation the
frequency is in the range 70-105 Hz; at higherlle¥activation it is in the range 20-65 Hz, and th
frequency decreases with further central activatisith an increase in the strength of response.
Neuromodulation oj/oscillations has been also investigated by Hassalml coworkers (2006).

The presence of a global inhibitor also requirdsiaf comment. Its presence is necessary to
desynchronize oscillators in different objectspasted out by previous modeling papers (Ursino et
al., 2003; Wang and Terman, 1997). However, ittiprasent difficult to find a clear biological
counterpart for it. Its function may be related hwihat of attention. Indeed, some authors have
shown that attention in visual cortical areas hashibitory influence and can induce a bias toward
one of two competing stimuli (Treue and Maunsef98). We are not aware of similar data in
higher cortical areas.

Finally, it is worthwhile to discuss some possilahaitations of the present work and delineate
lines for future improvement.

Actually, the simulations presented in Table 3vgtibat model results are very sensitive to
noise and that model's performance worsens ifen@sadded to the inputs. This result seems to

contradict results of our previous study (see (st al., 2003)) and of studies by others (such as
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(Horn and Opher, 1996)) showing that noise may havéeeneficial effect on binding and
segmentation. However, this contradiction is onpparent. In fact, in our trials noise has a
detrimental effect solely if applied during theri@ag phase; if noise is applied merely during the
segmentation phase (which is the condition testegrevious studies), the network performs very
well. In order to avoid the detrimental effect afise during training, it might be necessary to
modify the learning rule for instance with the oduction of a decay term.

In the present trials, with strong memorizationg tebjects can be correctly segmented if they
have just one common feature, but they cannot gmeeted if they have two common features;
hence, it seems that the network has very limitagacity to handle superimposed objects.
However, this result was well expected, and dependthe limited number of features we used to
represent objects. In particular, when one obgstaored with strong inter-area synapses, it can be
entirely recovered starting from two features. Asoasequence, if two objects have two common
features and strong memorization, presentatiowofféatures of the first object activates its ollera
representation, and so unavoidably activates @lsadmaining two features of the second object.
As a general rule, the maximum number of featunas tivo objects can have in common, without
showing interference, must be less than the nurobératures sufficient to reconstruct the entire
object from incomplete information. Of course, esg@ntation of objects with a greater number of
features may allow a larger superimposition to éedhed with the same theoretical approach

The learning rule adopted in the present trial disgerves a few comments. First, in the present
work we used a different learning time to memomgects with a different strength, and so to
break any initial symmetry in the network behavidDesynchronization, however, could also be
obtained using a different learning rate for distiobjects (i.e., a different value £), or starting
with random initial conditions. Second, as spediféove, the present learning rule is affected by
the presence of random noise superimposed durentyaiming period. This model limitation might
be overcome in future works using a learning rulthva decay term, which converges to the

average value of the input, by eliminating any aaisth zero mean value. Finally, some authors in
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recent years (Hasselmo, 2005; Manns et al., 20@poged that the theta rhythm may allow a rapid
alternation in autoassociative memories (like tipbdcampus) between conditions that promote
memory encoding and conditions that promote memetgieval. This aspect may also be the

subject of a future model improvement.



85

REFERENCES

Tallon-Baudry C and Bertrand O. (1999) Oscillatgggmma activity in humans and its role in
object representation. Trends Cogn.Sci. 3: 151-162.

Damasio AR. (1989) The brain binds entities andn&veby multiregional activation from
convergence zones. Neural Computation. 1: 123-132.

Singer W and Gray CM. (1995) Visual Feature integnaand the temporal correlation hypothesis.
Ann.Rev.Neurosci. 18: 555-586.

Singer W. (1999) Neuronal synchrony: a versatildector the definition of relations? Neuron. 24:
49-65.

Varela F, Lachaux JP, Rodriguez E, Martinerie 0003 The brainweb: phase synchronization and
large-scale integration. Nat.Rev.Neurosci. 2: 239-2

von der Malsburg C and Schneider W. (1986) A necoaktail-party processor. Biol.Cybern. 54:
29-40.

Lebedev MA and Nelson RJ. (1995) Rhythmically fiyi@0-50 Hz neurons in monkey primary
somatosensory cortex: activity patterns duringiatidn of vibratory-cued hand movements.
J.Comput.Neurosci. 2: 313-334.

Brosch M, Budinger E, Scheich H. (2002) Stimulusted gamma oscillations in primate auditory
cortex. J.Neurophysiol. 87. 2715-2725.

Kaiser J, Lutzenberger W, Ackermann H, Birbaumef2002) Dynamics of gamma-band activity
induced by auditory pattern changes in humans.lO8oetex. 12: 212-221.

Freeman WJ. (1978) Spatial properties of an EEGntewe the olfactory bulb and cortex.
Electroencephalogr.Clin.Neurophysiol. 44: 586-605.

Wehr M and Laurent G. (1996) Odour encoding by trabsequences of firing in oscillating
neural assemblies. Nature. 384: 162-166.

Rodriguez E, George N, Lachaux JP, Martinerie Jpagk B, Varela FJ. (1999) Perception's
shadow: long-distance synchronization of humambaativity. Nature. 397: 430-433.

Bhattacharya J, Petsche H, Pereda E. (2001) Larggraynchrony in the gamma band: role in
music perception. J.Neurosci. 21: 6329-6337.

Pulvermller F, Preissl H, Lutzenberger W, Birbauie(1996) Brain rhythms of language: nouns
versus verbs. Eur.J.Neurosci. 8: 937-941.

Tallon-Baudry C, Bertrand O, Delpuech C, Perniefl997) Oscillatory gamma band (30-70 Hz)
activity induced by a visual search task in humadseurosci. 17: 722-734.

Tallon-Baudry C, Bertrand O, Peronnet F,Perniet@®8) Induced gamma band activity during the
dealy of a visual short-term memory task in humarideurosci. 18: 4244-4254.



86

Osipova D, Takashima A, Oostenvald R, FernAandeaM&js E, Jensen O. (2006) Theta and
gamma oscillations predict encoding and retrieValezlarative memory. J.Neurosci. 26: 7523-
7531.

Salinas E and Sejnowski TJ. (2001) Correlated mealractivity and the flow of neural information.
Nat.Rev.Neurosci. 2: 539-550.

Melloni L, Molina C, Pena M, Torres D, Singer W, ®Rguez E. (2007) Synchronization of neural
activity accross cortical areas correlates withscoous perception. J.Neurosci. 27: 2858-2865.

Rolls ET and Treves A. (1998) Neural Networks amdif Function Oxford: Oxford University
Press.

Kohonen T and Hari R. (1999) Where the abstradufeamaps of the brain might come from.
Trends Neurosci. 22: 135-139.

Rolls ET and Deco G. (2002) Computation Neuros@ewicVision New York: Oxford University
Press.

Markram H, Lubke J, Frotscher M, Sakmann B. (19®&gulation of synaptic efficacy by
coincidence of postsynaptic APs and EPSSs. Sci@iée.213-215.

Abbott LF and Nelson SB. (2000) Synaptic plasticigming the beast. Nat.Neurosci. 3: 1178-
1183.

Zhang LI, Tao HW, Holt CE, Harrsi WA, Poo M. (1998)critical window for cooperation and
competition among developing retinotectal synapNasure. 395: 37-44.

Paulsen O and Sejnowski TJ. (2000) Natural pattefrativity and long-term synaptic plasticity.
Curr.Opin.Neurobiol. 10: 172-179.

Borisyuk R and Kazanovich Y. (2004) Oscillatory nebdf attention-guided object selection and
novelty detection. Neural Networks. 17: 899-915.

Campbell SR, Wang DL, Jayaprakash C. (1999) Symghamd desynchrony in integrate-and-fire
oscillators. Neural Computation. 11: 1595-1619.

Cesmeli E and Wang D. (2000) Motion Segmentaticgetlaon Motion/Brightness integration and
Oscillatory Correlation. IEEE transactions on néaggworks. 11: 935-947.

Chen K and Wang D. (2002) A dynamically coupled raewscillator network for image
segmentation. Neural Networks. 15: 423-439.

Eckhorn R, Reitboeck HJ, Arndt M, Dicke PW. (19%@ature-linking via synchronization among
distributed assemblies: simulation of results frcahcortex. Neural Computation. 2: 293-307.

Grossberg G and Grunewald A. (1997) Cortical symoization and perceptual framing.
J.Cogn.Neurosci. 9: 117-132.

Grossberg S and Somers D. (1991) Synchronizedaigmils during cooperative feature linking in a
cortical model of visual perception. Neural Netwsrk: 453-466.



87
Hendin O, Horn D, Tsodyks MV. (1998) Associativemm@y and segmentation in an oscillatory
neural model of the olfactory bulb. J.Comput.Nearos: 157-169.

Horn D and Opher 1. (1996) The importance of nd@esegmentation and binding in dynamical
neural systems. Int J Neural Syst. 7: 529-535.

Horn D and Opher 1. (1996) Temporal segmentationaimeural dynamic system. Neural
Computation. 8: 373-389.

Hoshino O, Kashimori Y, Kambara T. (1998) An olfagt recognition model based on spatio-
temporal encoding of odour quality. Biol.Cyberro|.w79 pp. 109-120, 1998.

Hummel JE and Biederman I. (1992) Dynamic bindimgaineural network for shape recognition.
Psychol.Rev. 99: 480-517.

Hummel JE. (2001). Complementary solutions to timelibg problem in vision: Implications for
shape perception and object recognition. Visualn@am. 8: 489-517.

Kazanovich Y and Borisyuk R. (2002) Object selattiby an oscillatory neural network.
BioSystems. 67: 103-111.

Knoblauch A and Palm G. (2001) Pattern separatioapiking associative memories and visual
areas and synchronisation. Neural Networks. 14:788B

Kuntimad G and Ranganath HS. (1999) Perfect imaggnentation using pulse coupled neural
networks. IEEE Trans.Neural Networks. 10: 591-598.

Kuzmina M, Manykin E, Surina |. (2004) Oscillatonetwork with self-organized dynamical
connections for synchronization-based image segtient BioSystems. 76: 43-53.

Levy N, Horn D, Meilijson I, Ruppin E. (2001) Digiuted synchrony in a cell assembly of spiking
neurons. Neural Networks. 14: 815-824.

Li Z. (1999) Visual segmentation by contextual usfhces via intra-cortical interactions in the
primary visual cortex. Network. 10: 187-212.

Lourenco C, Babloyantz A, Hougardy M. (2000) Patteegmentation in a binary/analog world:
unsupervised learning versus memory storing. Nélealvorks 13: 71-89.

Nakano H and Saito T. (2004) Grouping synchronirain a pulse-coupled network of chaotic
spiking oscillators. IEEE Trans.Neural Networks: 1618-1026.

Ranganath HS and Kuntimad G. (1999) Object detealising pulse coupled neural networks.
IEEE Trans.Neural Networks. 10: 615-620.

Sompolinsky H, Golomb D, Kleinfeld D. (1990) Globatocessing of visual stimuli in a neural
network of coupled oscillators. Proc.Natl.Acad.B8A. 87: 7200-7204.

Ursino M, La Cara GE, Sarti A. (2003) Binding anggsentation of multiple objects through
neural oscillators inhibited by contour informatidiol.Cybern. 89: 56-70.

Ursino M and La Cara GE (2004) Modeling segmentatiba visual scene via neural oscillators:
fragmentation, discovery of details and attentidetwork: Comput Neural Syst. 15: 69-89.



88

von der Malsburg C and Buhmann J. (1992) Sens@msatation with coupled neural oscillators.
Biol.Cybern. 67: 233-246.

Wang D, Buhmann J, von der Malsburg C. (1990) Rattegmentation in associative memory,"
Neural Computation. 2: 94-106.

Wang D and Terman D. (1997) Image Segmentationdoase oscillatory correlation. Neural
Computation. 9: 805-836.

Wang D. and Liu X. (2002) Scene analysis by integgaprimitive segmentation and associative
memory. IEEE Transactions Man and Cybernetics t B.aCybernetics. 32: 254-268.

Yazdanbakhsh A and Grossberg S. (2004) Fast symidlatmon of perceptual grouping in laminar
visual cortical circuits. Neural Networks. 17: 7078.

Zhang X and Minai AA. (2004) Temporally sequencattliigent block-matching and motion-
segmentation using locally coupled networks. IEE&NE.Neural Networks. 15: 1202-1214.

Zhang H, Xie Y, Wang Z, Zheng C. (2007) Adaptivadyonization between two different chaotic
neural networks with time delay. IEEE Trans. Nelnatw. 18: 1841-1845.

Wu W and Chen T. (2008) Global synchronizationecidt of linearly coupled neural network
systems with time-varying coupling. IEEE Trans. Ng¢WiNetw. vol. 19: 319-332.

Rao AR, Cecchi GA, Peck CC, Kozsloski JR. (2008supervised segmentation with dynamical
units. IEEE Trans. Neural Netw. 19: 168-182.

Ursino M, Magosso E, La Cara GE, Cuppini C. (2006)ect segmentation and recovery via neural
oscillators implementing the similarity and priardwledge gestalt rules. BioSystems. 85: 201-
218.

Tanaka K. (2003) Columns for complex visual objéeatures in the inferotemporal cortex:
clustering of cells with similar but slightly diffent stimulus selectivity. Cereb.Cortex. 13: 90-
99.

Angelucci A and Bressloff PC. (2006) Contributiori feedforward, lateral and feedback
connections to the classical receptive field ceatef extra-classical receptive field surround of
primate V1 neurons. Prog.Brain Res. 154: 93-120.

Schwabe L, Obermayer K, Angelucci A, Bressloff RZD06) The role of feedback in shaping the
extra-classical receptive field of cortical neuroasrecurrent network model. J.Neurosci. vol.
26:9117-9129.

Terman D and Wang D. (1995) Global competition dodal cooperation in a network of
oscillators. Physica D. 81: 148-176.

Wang D. (2005) The time dimension for scene ansly&EE Tr.Neural Networks. 16: 1401-1426.

Hertz J, Krogh A, Palmer RG. (1991) Introductiontthe theory of neural computation. Redwood,
CA: Addison-Wesley.

Ritter H and Kohonen T. (1989) Self-organizing setitamaps. Biol.Cybern. 61: 241-254.



89

Pulvermuller F. (2005) Brain mechanisms linkinggaage and action. Nat.Rev.Neurosci. 6: 576-
582.

Simmons WK and Barsalou LW. (2003) The similaritytopography principle: reconciling
theories of conceptual deficits. Cogn.Neuropsychi.451-486.

Thivierge J and Marcus GF. (2007) The topograpinénb from neural connectivity to cognition.
Trends Neurosci. 30: 251-259.

Hagler DJ and Sereno MI (2006) Spatial maps intédoand prefrontal cortex. Neuroimage. 29:
567-577.

Damasio AR. (1990) Category-related recognitionedisf as a clue to the neural substrates of
knowledge. Trends Neurosci. 13: 95-98.

Abeles M. (1982) Role of the cortical neuron: imeggr or coincidence detector? Isr.J.Med.Sci. vol.
18: 83-92.

Konig P, Engel AK, Singer W. (1996) Integrator airccidence detector? The role of the cortical
neuron revisited. Trends Neurosci. 19: 130-137.

Alonso JM, Usrey WM, Reid RC. (1996) Precisely etated firing in cells of the lateral geniculate
nucleus. Nature. 383: 815-819.

Roy SA and Allowey KD. (2001) Coincidence detectmrtemporal integration? What the neurons
in somatosensory cortex are doing. J.Neurosci2262-2473.

Carpenter, G. A. and Grossberg, G. (2003) Adap®genance theory," in Arbib, M. A. (ed.) The
Handbook of Brain Theory and Neural Networks Cantdei MA: MIT Press 87-90.

Herrmann CS, Munch MHJ, Engel AK. (2004) Cognitiienctions of gamma band
activity:memory match and utilisation. Trends ing@iive Sciences. 8: 347-355.

Jensen O, Kaiser J, Lachaux JP. (2007) Human gafregaency oscillations associated with
attention and memory. Trends Neurosci. 30: 317-324.

Borgers C, Epstein S, Kopell NJ. (2005) Backgrogachma rhythmicity and attention in cortical
local circuits: a computational study. Proc.NatBASci.USA. 102: 7002-7007.

Rodriguez R, Kallenbach U, Singer W, Munk MH. (2p0&hort- and long-term effects of
cholinergic modulation of gamma oscillations anshense synchronization in the visual cortex.
J.Neurosci. 24: 10369-10378.

Hentschke H, Perkins MG, Pearce RA, Banks MI. (20duscarinic blockade weakens interaction
of gamma with theta rhythms in mouse hippocampus.JENeurosci. 26: 1642-1656.

Kuznetsova AY and Deth RC. (2008) A model for madioin of neuronal synchronization by D4
dopamine receptor-mediated phospholipid methylaticdomput.Neurosci. 24: 314-329.

Herculano-Houzel S, Munk MH, Neuenschwander S, &ingy. (1999) Precisely synchronized
oscillatory firing patterns require electroenceplgaaphic activation. J.Neurosci. 19: 3992-
4010.



90
Hasselmo ME and Giocomo LM. (2006) Cholinergic matdan of cortical function. J.Mol
Neurosci. 30: 133-135.

Treue S and Maunsell JH. (1996) Attentional modaitabf visual motion processing in cortical
areas MT and MST. Nature. 382: 539-541.

Hasselmo ME. (2005) What is the function of hippaopal theta rhythm? Linking behavioral data
to phasic properties of field potential and undaling data. Hippocampus. 15: 936-949.

Manns JR, Zilli EA, Ong ME, Hasselmo ME, Eichenbatin(2007) Hippocampal CA1 spiking
during encoding and retrieval: relation to thetags Neurobiol Learn Mem. 87: 9-20.



91

CHAPTER 1.3. A NEURAL NETWORK MODEL OF SEMANTIC

MEMORY LINKING FEATURE-BASED OBJECT

REPRESENTATION AND WORD

INTRODUCTION

In literature are present several theories of séimamemory, with a special focus on object
representation. Despite of the differences in masyects, most of them agree in considering the
semantic memory as a distributed process, whichgegymany different cortical areas and exploits
a multi-modal representation of objects. DamasiBg) suggests that semantic representation is
not a static store, but a dynamical one which tectd many fragmented motor and sensory
features. A subsequent influential theory by Watom et al. (Warrington and McCarthy,
1983;Warrington and Shallice, 1984) assumes theepe of multiple channels of processing,
within both the sensory and motor systems. Theomh accounts for the existence of distinct
semantic sub-systems, specialized for sensorywaraibnal attributes of objects. Extensions of this
idea were formulated by Lauro-Grotto et al. (19%h)pwden et al. (2004), and Gainotti (Gainotti,
2000;Gainotti, 2006). All these authors assumettimsemantic system is an integrated multimodal
network, in which different areas store modalitggfic information. Similarly, the “Hierarchical
Inference Theory” (Humphreys and Forde, 2001) agsuthat semantic memory is organized by
modality-specific stores for features, and thatocemts derive from an interactive process between
the semantic and perceptual levels of representatitaramazza et al. (Caramazza et al.,
1990;Caramazza and Shelton, 1998) proposed thsdedaan essential aspect of semantics) are
organized by conceptual features that are hightsetated, “neurally contiguous” and developed on

an evolutionary basis. Similarly, Tyler and co-awh(2000) in a model known as “Conceptual
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Structure Account”, suggest that objects are remtesl as patterns of activation across features,
and categories emerge from a distributed networkrgmhose items which exhibit shared or
correlated features.

A recent conceptual model by Hart, Kraut and cokeos (Hart et al., 2002; Kraut et al., 2002)
summarizes all these aspects clearly: the modahass that Semantic Object Memory is based on
cortical regions which encode both sensorimotor laigther order cognitive information (such as
lexical, emotional, etc..); retrieval of objectsorft memory involves the activation of these
distributed representations together, which ara théegrated by means of synchronized activity
modulated by the thalamus.

As we told above (see Introduction) a couple obpems have to be solved in order to realize a
semantic neural network: i) information relatedthe same concept has to be linked together to
realize the corresponding internal semantic reptesien; ii) create a relationship between
representations and words; iii) segmentation pralfter distinct internal representations.

A valuable support for the clarification of thesmlgems and for the analysis of mechanisms
formulated in these conceptual theories can ddrova the use of computational models based on
distributed neural networks, and from computer $athons. Among the others, Rogers et al. (2004)
developed a computational model which containsethagers of units, coding for visual, verbal and
semantic elements. The linguistic and visual regregions communicate by means of the “hidden”
semantic layer, which wishes to represents theetarttemporal lobe”. The model is then trained
with the classical back-propagation algorithm, lsat tthe linguistic representation can recall the
visual one, and vice versa. Models which explodtiees to study category-specific semantic
impairment were also used by Small et al. (1995)RkEE et al. (1997), Devlin et al. (1998) and
Lambon Ralph et al. (2007). In the model by Dewinal. (1998), in particular, features are
topographically organized while specific categore® not. However, none of these models
investigate how different words and their featuspresentation can coexist in the same semantic

memory, i.e., they do not cope with the segmemati@blem.
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A model dealing with the retrieval of multiple patts in semantic memory was proposed by
Morelli et al. (2006) . In this model features ameled by neurons working in chaotic regimen, and
the retrieval process consists of synchronizatiomearons coding for the same pattern. The model
is able to distinguish objects even in the presaficeveral common features.

As described in the previous chapters (see Chaptadd 1.2), we developed an analogous
model for object recognition (Ursino et al., 2006ido et al., 2009) based on the following ideas:
i) each object is described as a collection ofrabstfeatures (in the present simplified version of
the model these features are just four); ii) eaetture is encoded via a topological organizatioa in
different cortical area. Similar features occupyxmmal positions in the same area,; iii) the
relationship between features in the same objetdaied from previous experience via a time-
dependent Hebbian mechanism, which reinforces a&wcit connections; iv) different features of
the same object are linked together, but are segghfeom features in other simultaneous objects,
via synchronization in the gamma band. To this ¢he,model uses Wilson-Cowan oscillators as
the basic computation units.

The model incorporates both previous-knowledge, (a€long term memory) via the Hebbian
training, and a similarity principle, thanks to tie@ological organisation of features. In the Chapt
1.2 we explain that the model can recognize metigbjects, and segment them from the other
simultaneously present objects, even in case ofrideated information, noise and moderate
correlation among the inputs. Hence, it can reprieaegood candidate for building more complex
models of semantic memory, in which multiple objeatepresented as collection of features,
engage a dynamical relationship with a linguistieaa maintaining their individuality via gamma-
band synchronization.

The aim of the present work is to start buildinglsa semantic memory model. To this end, the
previous model has been expanded, including adéesiea, which represents words. This lexical
area collects features (assumed to be extractesh fao processing chain of sensory-motor

information), and receives words (assumed to ddriv@ a phonemic processing network); it thus
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represents a converging zone, perhaps locatedeiranterior left temporal cortex (Rogers et al.,
2004;Snowden et al., 2004;Ward, 2006). The oveetlivork (feature + lexical) is then trained via a
time-dependent Hebbian mechanism, so that wordssseciated with the corresponding objects,
described as feature collections. Simulation resarké presented, to show how the network can deal
with the simultaneous presence of words and ohjextd how objects can be evoked in the
semantic memory from the presence of correlateztnmétion (for instance, a related word + one of
the object’s features).

The present model wishes to represent just avestion, portraying the basic mechanisms in
act. Hence, in the last part of this chapter litiotas of the current implementation are discussed

and lines for further work delineated, aimed atdng future more realistic and complete versions.

METHOD
Our model consists of two different layers: thetfifnamed “feature network”) is devoted to a

description of objects represented as a colleabbsensory-motor features. The second (named
“lexical network”) is devoted to the representatminwords, from an upstream language process.
The two networks communicate via trained synaggeseover, the lexical network also receives a
signal from a “decision network”, which recognizeether a correct object information is present
in the feature network, and avoids that a misleadapresentation can evoke a word. The two
networks are separately described below; thenaldpaithm for training synapses is presented and

justified.

The bidimensional network of features
As described in the previous paper this netwodommposed oN neural oscillators, subdivided

into F distinct cortical areas (see Figurel). Each arehe model is composed NfxN, oscillators.
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An oscillator may be silent, if it does not recei@eough excitation, or may oscillate in the
frequency band, if excited by a sufficient input.

Each area is devoted to the representation of aifgpattribute or feature of the object,
according to a topological organization. Hence, obgct is represented as the collectionFof
features (one feature per each area). We assurheedbh attribute has been extracted from a

previous processing in the neocortex, which elalesraensory-motor information.

Figure 1- Schematic diagram describing

the general structure of the network.

The model presents 4 distinct Feature

e © o o o o 0. o Areas (upper shadow squares) of 20x20

Feature Areas PN elements, which are described by means

- of Wilson-Cowan oscillators, and a

Lexical Area of 40x40 elements (lower

shadow square), which are represented
by a first order dynamics and a
sigmoidal relationship. In the Feature
network, each oscillator is connected
with other oscillators in the same area
via lateral excitatory and inhibitory
intra-area synapses, and with other
oscillators in different areas via
excitatory inter-area synapses.
Moreover, elements of the feature and
lexical networks are linked via excitatory
recurrent synapses V", Wh). Finally, the
lexical area receives dishinibition from a
decision network, which recognizes the
presence of correctly-segmented objects.

DECISION
ETWORK

Y

e o6 oo
Lexical Area

Neural oscillators within the same area are commukestia lateral excitatory and inhibitory
synapses, according to a classical “Mexican hapakition, while neural oscillators belonging to
different areas can be connected via excitatorggsy®es after training. These synapses are initially
set to zero, but may assume a positive value throadearning phase, to memorize “prior
knowledge” on attributes occurring together dutiing presentation of objects. Lateral synapses are

not subjected to a training phase.



96

In the following, each oscillator will be denotedmthe subscript§ or hk In the present study
we adopted an exemplary network with 4 ardas @) and 400 neural groups per arBa£ N, =
20).

Each single oscillator consists of a feedback cotore between an excitatory ung;, and an
inhibitory unit, y; while the output of the network is the activity af excitatory units. This is

described with the following system of differentegjuations

%Xij(t):_xij(t)+H(Xij(t)_,gtyij(t)"'Eij(t)+vijL(t)+|ij ‘¢x—2(t)) 1)

%yﬁ (t) = -y, )+ H o X, () -4, )+ 3, (1 @)

where H() represents a sigmoidal activation fumctiefined as

1
_y
l+e T

H)= ®3)

The other parameters in Egs. (1) and (2) have alHewiing meaning:a and S are positive
parameters, defining the coupling from the excitato the inhibitory unit, and from the inhibitory
to the excitatory unit of the same neural grouppeetively. In particularg significantly influences
the amplitude of oscillations. Parametelis the reciprocal of a time constant and affebis t
oscillation frequency. The self-excitation gf is set to 1, to establish a scale for the synaptic
weights. Similarly, the time constantxfis set to 1, and represents a scale for timg andg, are
offset terms for the sigmoidal functions in the ieatory and inhibitory unitsl; represents the

external stimulus for the oscillator in positigncoming from the sensory-motor processing chain
which extracts featureg; andJ; represent coupling terms (respectively excitatomg inhibitory)
from all other oscillators in the features netwddee Egs.4-7), whiIt—:\/ijL is the stimulus

(excitatory) coming from the lexical area (Eq. 8)t) represents the activity of a global inhibitor

whose role is to ensure separation among the sbguotultaneously present. In particular, the
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inhibitory signal prevents a subsequent objectdp pp as long as a previous object is still active
(see Chapters 1.1 and 1.2 for its description)
The coupling terms between elements in corticabsarg; and J; in Egs. (1) and (2) are

computed as follows

Eij =2 > Wi nk B+ . LinE,)r(lk Dk 4)
h k h k

Jij = 20D Wi hk Bk + .Y '—i'j’\,'hk Dk 5)
h k h k

where ij denotes the position of the postsynaptic (targetyron, andhk the position of the
presynaptic neuron, and the sums extend to alypagdic neurons in the feature area. The symbols

Wijj hk represent inter-area synapses, subjects to Helening (see next paragraph), which
favour synchronization. The symbolg”, and L, represent lateral excitatory and inhibitory
synapses among neurons in the same area. It th woting that all termd”, and L, with
neuronsij andhk belonging tadifferentareas are set to zero. Conversely, all teWfig,, linking

neurongj andhkin thesamearea, are set to zero.
The Mexican hat disposition for the intra-area @wiions has been realized by means of two

Gaussian functions, with excitation stronger butmaer than inhibition. Hence,

'E>r<\k _ Lgxe—[(i—h)2+( j—k)z]/(ZUezx) if ij andhk arein thesamearea ©)
1, .
) 0 otherwise
N I_|0N e—[(i—h)2+( j—k)z]/(zmﬁ) if ij andhk arein thesamearea .
ij,hk — . ( )
0 otherwise

where LEX and L{)N are constant parameters, which establish the shrafidateral (excitatory and

inhibitory) synapses, andgyand gj, determine the extension of these synapses.

Finally, the term\/ij" coming from the lexical area is calculated asoio#f



98
L L L
Vim = 27> Wik Bk (8)
h K

where XrITk represents the activity of the neuitdkin the lexical area and the symbMﬁLhk are the

synapses from the lexical to the feature netwotki¢tvare subject to Hebbian learning, see below).

The bidimensional lexical area

This area is made ofM;xM, units, described via a first order dynamic andigmsidal
relationship. Each unit represents a specific “Woltdcan receive an input from a pre-processing
stage which detects words from phonemes (see &tarnine Hopfield and Brody (Hopfield and
Brody, 2001) for a possible model) or from groupsvatten letters, but it can also be stimulated
through long-range synapses coming from the feahatevork; hence it represents an amodal
convergence zone, as often hypothesized in thei@ntemporal lobe (Damasio, 1989;Snowden et
al., 2004;Ward, 2006). In this way, a “word” isked with elements in feature areas representing
specific properties of a stored object. All togettee“word” and its specific attributes are comhine
to embody the semantic meaning of that conceptt@dntegrated network can indifferently be
activated by language or sensory-motor informatiban object.

The long range excitatory synapses between thedeand the feature area are the result of a
learning phase during which each “word” and theesponding object are presented to the network
to link an object and its name.

A problem with the lexical area is that its elensemtust be activated from the sensory-motor
route only if an object is correctly recognizednfrats features, and correctly segmented from other
objects (for exempla of incorrect segmentationdifficult” conditions see the previous chapter). In
case of incorrect object recognition or wrong segfet®n, the corresponding word must not be
evoked. To deal with this problem, we exploiteddacision network”, developed in the previous
chapter. This network received inputs from the deatareas and verified a certain number of

requirements for the feature oscillators activity,decide whether a correct object (i.e., an object
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represented by exactly four simultaneous distieettires) is present or not: in particular, high
values of its output (usually above 6) signifiecttlobject was correctly perceived. A detailed
description of this decision network can be foumChapter 1.2, hence it is not replicated here for
briefness. In the present version of the modelshghtly modified this decision network so that its
final output is ON/OFF in type. To this aim, we adda further layer to the previous decision
network, which realizes a comparator with a thréte") as high as 6. Accordingly, the final
output of the decision network now assumes valinechse of correct object detection and 0 in case
of incorrect detection.

In the present model we assume that the lexicatar&tcan be activated by the elements of the
feature areas only if the decision network is ie dn state. This is realized sending sufficient
inhibition to all elements of the lexical area. Jlimhibition is withdrawn by the decision network,
as soon as a correct object is present.

In the following each element of the lexical avall be denoted with the subscripisor hk (i,
h=1,2,..M;j, k=1,2,..., M) and with the superscrift In the present study we adoptded =
M, = 40. Each single element exhibits a sigmoidati@hship (with lower threshold and upper
saturation) and a first order dynamics (with a giweme constant). This is described via the

following differential equation:
b )= )+ HUub ) o

rb is the time constant, which determines the spéebecanswer to the stimulus, arhdzl"(u"(t))

is a sigmoidal function. The latter is describedlg following equation:

H L(ul-(t)): 1+e_(uL(::-)_19L)mL : (10)

where 9" defines the input value at which neuron activétyhalf the maximum (central point) and
p" sets the slope at the central point. Eq. 10 caieally sets the maximal neuron activity at 1

(i.e., all neuron activities are normalized to thaximum).
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According to the previous description, the oveimfiut, u; (t), to a lexical neuron in thig-

position can be computed as follows

ut(t) =15 (0)+vf -G-a-2-) (12)

IijL (t) is the input produced by an external Iinguistimsiation.\/ijF represents the intensity of the

input due to synaptic connections from the featueevork; this synaptic input is computed as

follows:
v.F :ZZW_F Ok (12)
] ij,hk —"hk
h k
where X, represents the activity of the neurakin the Feature Areas arW{jF’hk the strength of

synapses. Finally, the terﬁSL Eﬂl—z"(t)) accounts for the inhibition received by the lekimaea,

withdrawn by the decision network. In particular", (t is)a binary variable representing the output
of the decision network (1 in case of correct d&tec O in case of incorrect detection — see

description above); hence, the strength of thebitibh sent to the Lexical Area i&- when the

decision network is in the OFF state, and becometén the decision network shifts to the ON

state. It is worth noting that the external lingigisnput IijL (t) when present, is set sufficiently high

to overcome the inhibition received by the lexiagda.

Synapses training

Phase 1: Training of inter-area synapses withinfeéegture network

In a first phase, the network is trained to recegrubjects without the presence of words. This
means that we first learn an object as a collectibits properties, and only subsequently we
associate a name to the object. To this end, tshgge presented separately and the feature network
is trained with the same algorithm used in the joev chapter (Chapter 1.2). This is a time

dependent Hebbian learning, based on the correldteween the present activity in the post-
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synaptic neuron, and the average activity of tleegynaptic neuron in the previous 10 ms. After the
training phase, the network is able to reconstbgcts from their features, as illustrated in {bos

et al., 2009) (all mathematical details can alséoo@d in Chapter 1.2).

Phase 2: Training of long-range synapses among.éxécal and the Feature Networks

As for inter-area synapses within the Feature nedwalso synapses linking the Lexical and the
Feature Networks are realized by means of a Heldba@mng phase. These synapses are trained in
order to assign a “name” to a previously learnteobjIn the following, an object stored in the
Features Network will be represented with the nomat

obj =iy, j1 i2,J2 i3,]3 i4,]4]
wherei,, j, represent the position of the neuron signalirgf-th attribute {= 1,2,..F, with F = 4
in our examples). A word in the Lexical Area wi# bepresented with the notation:

wr =i, j]
wherei, j represent the position of the neuron signaling edwo

We trained simultaneously synapses from FeatureasAr® Lexical Area,leF’hk, and

connections from Lexical elements to Features né¢,v\M/ithk, assuming that these long-range

synapses are initially set to zero, and that theyirecreased on the basis of the correlation betwee
the activity of the presynaptic and postsynaptigeraes (time-dependent Hebbian learning).

During the second phase of the learning algorithicheobject is presented alone, coupled with
its corresponding lexical term. To this end, wespré all properties of an object to the feature
network, by providing inputd;, high enough to activate the corresponding osoilta and
simultaneously excite the lexical area with an inpigh enough to lead the corresponding unit
close to saturation.

As discussed in chapter 1.2 (Ursino et al., 2068)ent experimental data suggest that synaptic

potentiation occurs if the pre-synaptic input poesepost-synaptic activity by 10 ms or less (Abbott
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and Nelson, 2000;Markram et al., 1997). Accordingye assumed that the Hebbian rule depends

on the present value of post-synaptic activyt) or xi'j- (t), and on the moving average of the pre-

synaptic activity (saymn(t) or mr';k (t)) computed during the previous 10 ms. We calcullhée

moving average signal as follows

N -1
Z th(t - st)

— m=0
My (t) = NS (13)

for signals in Feature Areas, while

N -1
Z XflTk(t_st)
M (t) =-M=0 N (14)
S

for lexical activities.
Tsis the sampling period (in milliseconds), aXglis the number of samples contained within 10
ms (i.e.,Ns = 10/Tg). The synapses linking two neurons (§agndhk) are then modified as follows

during the learning phase
W (E+Ts) =W (0 + B 1y O () i (1) (15)
ij ,hk S ij ,hk ij,hk =Mij hk
W (E+Ts) =W, (0 + By O (8) g (0)
ij,hk S ij,hk ij, hk =Xij hk
where :[”iJF,hk and ,[>’”L hk represent learning factors.

Moreover, we assumed that inter-area synapses tamamcome a maximum saturation value.
This is realized assuming that learning factors @gressively reduced to zero when synapses

approach saturation. We have
L _ pligl L
By nk = Po Mmax -W; ,hk) (17)

[”ijF,hk =5 Q’Van]ax _\NijF,hk) (18)
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where Wn';ax and Wnﬁax are maximum values allowed for any synapse, zml)dNn';aXand

ﬂOF Wn'faxare maximum learning factors (i.e., learning fagtwhen synapses are zero).

According to the previous equations, arrays ofrkatea synapses can be asymmetrical. Egs.
17-18 imply that each synapse approximately ine@gagcording to a sigmoidal relationship, with
upper saturationNmax The slope of this sigmoidal relationship (hence thcreasing rate) is

determined by parametgk.
The strength of synaps@/ﬁllj"hkand \N|jF,hk at the end of the presentation of one object &d i

name, depends on two factors: paramgieand the duration of the period along which thesobj
and the word are presented to the network. Theelomgythis period, the higher is the value of
synapses, and the strength of language correlation.

In the following, parametef, is assumed to be the same for all synapses &iea mstant.
However, this parameter may be modified from oneaitio the next during the learning phase and
from one connection to another. In this way, thedetanay account for objects with a different
relevance (for instance, for the effect of attemtiemotion, expectation and for all other factors
which may affect storage) and for the presencewoiesfeatures more relevant than others.

In the present work, we memorized 3 different otgj@nd their correlated names:

Obj1 =[5,5 5,35 35,35 35,5] Wrl = [5,5];
Obj2 = [15,15 15,25 25,25 25,15] Wr2 = [15;15]
Obj3 = [15,5 15,35 25,35 25,5] Wr3 = [15,35].

Subsequently, to analyze conditions characterizeddorelated objects (i.e., objects having a
common feature), training was repeated, startiognfnull long-range synapses, replacing Obj3
with another object (Obj4) defined as follows:

Obj4 = [15,15 15,35 25,35 25,5] Wr3 = [15,35]

An example of the second training phase is showkign2A. This figure displays the temporal

activity of the four attributes describing an obhj@nd of the element representing its “name”.
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Moreover, the “moving average signals” (i.e., thramtitiesmy(t) in Eq. 15) are also shown for the
four neurons in the Feature Areas. These neuraesviel an input value as high as 0.8 and their

activity is synchronized thanks to previous leagnimthe training phase one.
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Figure 2 — Example of training of the synapses fronthe feature areas to the lexical area. The figurehows the
training process of the synapses linking the fourti&ibutes of Obj1 ([5,5 5,35 35,35 35,5]) in the Fdure Areas,
with the corresponding word in the Lexical Area (cdlified by the neuron in position [5,5]).Panel A training of
synapses from the feature to the lexical are@he left upper panel shows the instantaneous actiyi (solid black
line) and moving averaged activity (dashed blackie) of the four oscillators representing the exadttributes of
the object, during the training period. The left lover graph shows the instantaneous activity (solidlack line) of
the corresponding element in the lexical Area. Odtators in the Feature Areas receive external inpuD.8, while
the lexical element receives an input as great a$).2The four oscillators synchronize due to the intearea

synapses between the Feature Areas. Inter-networlylsapsesv\/ij':hk are created according to a Hebbian rule,

thanks to the temporal superimposition of the movig average presynaptic signals in Feature Areas witthe
instantaneous activity of the post-synaptic neurom the Lexical Area. Panel B V\,”Fhkinter—network synapses after

the learning phaseThe right plot shows the values of the synapsesking oscillators in the feature areas with the
element [5,5] in the Lexical Area at the end of thdearning process of Objl word. In particular, the figure
displays the array WSF5 " (representing the inter-area synapses directed t@hguage element 5,5) by means of a

three-dimensional graph: thex,y plane represents the coordinaténk within the feature network, and the height
of the pixel in position hk represents the value of the synapse linking oscittar hk to element 5,5. Note that the
element 5,5 receives the strongest synapses frometloscillators in the feature areas signalling the xact

attributes, and weaker synapses from the other odEitors within the activation bubbles.

Panel B in Fig. 2 displays the synapses linking iearon 5,5 in the Lexical Area with the

neurons in the Features Network after the learpimage (in particular, this figure shows the values
of the arrayV\/,jF’hk withh=1,2, .. ,40k=1, 2, ..., 40; i.e., , it represents the longgan

synapses whiclkargetinto the lexical neuron 5,5). As it is clear frahis figure, after the learning
phase the neuron receives synapses not only fremetrons describing the exact properties of the

object (i.e., from neurons 5,5 5,35 35,35 35,5eFeature Areas) but also, although with smaller
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strength, from the other proximal neurons in a¢tora bubbles. This implements a similarity

principle.

Table 1 — Values for parameters

Wilson-Cowan oscillators

EX
Ly

Oex

b
Oin
Ts
Ns
Bo
WL
By
WF

Lexical Area

G
Object attributes
Obj1
Obj2
Obj3
Obj4
Lexical Elements

wri

wr2
wr3

0.3
2.5

0.3+0.5 ms™!

0.025
0.7
0.15

Lateral intra-area connections in Features Network

9
0.8

3
3.5

0.2 ms
50

0.125
1

0.125

10
0.5
1

20

[5,5
[15,15
[15,5
[15,15

[5,5]

[15,15]
[15,35]

5,35 35,35
15,25 25,25
1535 2535
15,35 25,35

Hebbian rule for synapses between Features network and Lexical Area

35,5]
25,15]
25,5]
25,5]

After the learning phase, the network can be
used to recognize and reconstruct objects
evoked by language or sensory inputs, even
in the presence of lacking or modified

information. In particular, the learning rates

and training period were assigned so that
each object can be reconstructed from two
features, but cannot be correctly
reconstructed starting from one feature only.

A list of parameters used in the present

simulations is provided in Table 1.

RESULTS
The simulations portrayed in this section
aim at illustrating some network abilities,

such as the capacity to restore information

from incomplete objects (i.e., objects which ladkng features), the capacity to deal with multiple

words, still maintaining a separate descriptiontloé individual objects, and the capacity to

simultaneously retrieve information from words apdrceived objects, also exploiting some

correlation among objects.
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Incomplete objects
Figure 3 shows the results of a simulation perfarsi@rting from incomplete information. The
network has been trained with three different aigj€®©bjl, Obj2, Obj3), which do not share any

feature.

t=0ms t=1.4ms t=18.2ms t=25.2ms t=29ms t=37ms

Feature

Areas

1 20 40 1 20 40 1 20 40
t=0ms t=1.4ms t=18.2ms t=252ms t=29 ms t=37 ms

Lexical
Area

-—

1 20 40 1 20 40 1 20 40 1 20 40 1 20 40 1 20 40

Figure 3 — Network activity at different snapshotsduring a simulation with incomplete objects. In theupper row
each pixel represents an oscillator of the Featur@reas, while the lower row shows elements of the kieal Area.
The luminance (black means zero activity, white me®s maximum activity) is proportional to the correspnding
oscillator’s activity x;. During the simulation, object 1 and object 2 redege only two properties as input, while
object 3 receives all properties. The external inpis to the Feature Areas for the stimulated properts are equal
to 0.8. The Lexical Area does not receive any extal stimulus. The network is able to reconstruct ad recognize
all the three presented objects in the Feature Aremand to evoke the right “word”(associated during e previous
training phase) in the Lexical Area.

During the recovery phase, the feature area resdgr features of the third object (i.e., the
complete information) but only two features of thest and second objects. This condition
corresponds to the case when a subject perceiest®ldrom the external word, without any
lexical input. After a short transient period (abd® ms) during which the three objects appear
together in the feature area, and no word is evokethe lexical area, the network is able to
segment the three objects correctly, by recovetteglacking features. During the appearance of
individual objects (oscillating in time sharingtime y-band) the decision network shifts into the
state. As a consequence, the three objects evekeotinesponding words in the lexical area. It is
worth noting that the representations of wordshia lexical area oscillate in therange too, i.e.,

with the same time-division as object represemtatiahe feature area.
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Multiple words

Fig. 4 shows an example of the network capacityni@nage several simultaneous words,
avoiding confusion in the object representatiorthia simulation, the lexical area receives theehr
words (corresponding to the objects previouslyestbmwhereas the feature area is unstimulated.
This situation corresponds to the case of a subybat is listening to words, without any other

external (sensory or motor) stimulation.
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t=0ms
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Figure 4 — Network activity at different snapshots during a simulation performed by giving 3 words
simultaneously as input to the Lexical Area. In theleft figure each pixel represents an element of ¢hLexical
Area, while the right panels show different snapshis of the Feature Areas during the simulation. Theexternal
input to the Lexical Area for all stimulated words are as great as 20 to overcome inhibition, while lB¢ure Areas
do not receive any external stimulus. The networksi able to evoke all the three objects in the FeaterAreas and
perform a correct segmentation in they-band, by associating the three objects to the cagsponding stimulated
“words” in the Lexical Area.

After a short transient period (about 15 ms) thievoek is able to evoke the representations of
the objects in the feature areas, and to segment torrectly. Of course, the object representations
in the feature area oscillate in tiggange, whereas word representation is kept consténs is

simply a consequence of having used a non-oscylatetwork to represent words.

Simultaneous word and feature inputs
Perhaps the most interesting characteristic oh#te/ork consists in the possibility to manage a
mixed input condition, i.e., one in which the subjeeceives both words and sensory-motor

information (the latter represented as a collectibfeatures). An example is shown in Fig. 5. Here
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the network receives one word (Obj2) and percemesobjects (Objl and Obj3, each of them with
all features). After the usual transient period (%), the word is able to evoke the corresponding
object representation in the feature areas, whietivo external objects evoke the corresponding
words in the lexical area. The three objects areectly segmented in the feature areas and ocillat
in time division in they-range. In the lexical area only the word extegnabsigned exhibits a
constant activity, while the other two words (evibkey the external features) oscillate in fhe

range.

50ms t—ZDst 31.8ms

1 20 40 20 40 1

t=0ms t=1.2ms t—150m5 t=202ms t=25.8ms Dt=31.8m5

Lexical
Area
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1 20 40 1 20 40 ‘I 20 40 1 20 40 1 20 40 1 20 40

Figure 5 — Network activity at different snapshotsduring a simulation performed by giving one word
(corresponding to Obj2) as input to the Lexical Area and two different objects (Obj1l and Obj3), compleed with
all their properties, to the Feature Areas. The natork is able to recognize both the 2 objects direlst presented
to the Feature Areas and the one evoked by the word the lexical Area. It is worth noting that the retwork
constantly maintain the external word in the Lexicd Area, whereas the other two words, evoked by stintated
features, oscillate in theyrange.

A further interesting property of the present natwis the possibility to establish a semantic link
between words and features: this may occur wherotyects, represented by different words, share
some common features (i.e., they are correlatedhi$ situation, one may expect that hearing the
first word may favour the recognition of the secaflgect, even in presence of very incomplete
perception. To illustrate this concept, the netwwds trained with three objects, two of them (Obj1
and Obj2) have no common features, while the tbiogect (Obj4) shares one feature with the
second. In a first simulation (not shown for breefg) the network received all features of the first
object (Objl) and just one feature of the secondablithis feature was not shared by Obj4). As

well expected, in this condition just Objl is renagd and evokes the corresponding word in the
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lexical area, while the second object is not recagh (in fact, one feature is insufficient for otfje
recognition; i.e., the other three features aretniggered by the inter-area connections and the
corresponding word is not evoked). The same sinomatvas then repeated by stimulating the
lexical area with the word corresponding to Objdd dhe feature areas with the same features
described above (Objl with four features, Obj2 wutst one not-shared feature). Fig. 6 shows that,
in this case, the presence of the external womallithe complete reconstruction of Obj2, and the
appearance of activity corresponding to its wordthe lexical area. This signifies that the
perception of a word can evoke a second correlatedd, starting from a very incomplete

perception.

= 53.8m

t=0ms

w
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20 40
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Figure 6 — Network activity during a simulation performed by giving all properties of an object to thefeature
areas (Obj1), one word as input to the Lexical Aregcorresponding to Obj4) and just one property of athird
object (Obj2) to the Feature Areas. It is worth noing that Obj2 shares one feature (not stimulated) ith the
object represented by the stimulated word. The netark is able to recover the lacking features of Obj2and to
segment correctly all three objects in the featurareas. The external word is maintained constantly aive in the
lexical Area, whereas the other two words oscillateut of phase in they-band. It is noticeable that, in the absence
of the external word, a single feature alone is indficient to evoke the entire representation of Ok (unpublished
simulation). Hence, a correlated word helps the ralection of an object from incomplete information.

Robustness vs. frequency changes

Finally, we performed some simulations to study tlvBe synchronization is robust for what
concerns moderate changes in the frequency of ssciltators. Our results suggest that moderate
changes in frequency can be automatically correatetloscillators are forced back to the gamma
range by inputs coming from other oscillators ie tietwork and from the global inhibitor. An

example is shown in fig. 7.
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In this simulation, twelve oscillators are simubkansly active, representing three different
objects and words (but only eight of them are shtwtbriefness). However, two oscillators have a
frequency quite different from the others (see igglegend for more details) while the other ten
have similar frequency. The figure shows that,radtéew cycles, oscillators in each object become
synchronized (the first four for what concerns fin&t object and other four for what concerns the
second object) despite the fact that two of themally worked at a different frequency. More
important, the frequency of the two “unstable” datirs is quickly pulled back inside the gamma

band.
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Figure 7 — Temporal activity of the eight oscillatos corresponding to objectsObjl and Obj2 (the four oscillators
in the upper panel represent the features of the st object; the four oscillators in the bottom panés the feature
of the second object). In this simulation all feattes of the three objects ©bj1, Obj2 and Obj3) were stimulated
with an external input as high as 0.8, but some odlators had different oscillation frequency (obtaning by
varying parameter y in Eqg. (2)). In particular, the fourth oscillator in the figure hady = 0.45 (corresponding to a
frequency, in the absence of external connectionas high as 70-75 Hz) while the eighth oscillator day = 0.15
(corresponding to a frequency as low as 25 Hz). Adither oscillators hady = 0.35 (frequency about 45-50 Hz).
Moreover, all oscillators started from a random intial state. As it is clear from this figure, aftera transient
period, the fourth and eighth oscillators become swchronized with the other features of the same ob@. In
particular, the frequency of the fourth oscillator is reduced, while the frequency of the eighth is greased.
Moreover, features of the third object (not shown kre) are also correctly synchronized.
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DISCUSSION

The idea that semantic memory involves a distridbutepresentation of features, extending
across different modalities and involving both sgpsnd motor information has been discussed by
many authors in past years (Caramazza et al., G2@@otti, 2000;Gainotti, 2006;HArt et al.,
2007;Humphreys and Forde, 2001;Kraut et al., 2082:b-Grotto et al., 1997;Tyler et al.,
2000;Warrington and McCarthy, 1983;Warrington arthliice, 1984) and is still the subject of
active research by cognitive neuroscientists. Tprieblem may benefit from computational
approaches, which emphasize the virtues and liimitsitof present theories and help a clearer and
rigorous conceptualisation of existing data.

In the present work, we propose a preliminary sempgtwork for the simulation of semantic
memory. Although extremely simplified compared wittie reality, the network incorporates
several characteristics, which should constituge ¢bre of more sophisticate future models. The
main characteristics of our network are summarasedicritically commented hereafter:

i) abstract objects are represented as a colleofiteatures; one object is recognized when all its
features are in the active state. Furthermore, &sathire is described by a zone of activation in an
appropriate cortical area, and all features areltmpcally organized. This means that that similar
features are coded by neural oscillators in prokipesitions of the cortex, and are connected via
reciprocal recurrent connections. This aspect imples a similarity principle in a plausible and
straightforward manner: an object, similar to arotbbject previously memorized, can still benefit
from previous experience and can be recognizedtdaspdest changes.

i) multiple objects can be simultaneously représénn memory via synchronisation in tie
band. Features which belong to the same objectlaiscin phase, whereas features in different
objects are out of phase. The idea that a timesidivican be exploited to represent mutiple objects
was originally formulated by Milner (Milner, 1974nd Von der Marlsburg (von der Malsburg and
Schneider, 1986), and has been recently appli@tject segmentation especially in visual scenes

(the so-called binding and segmentation problerokifgrn, 1999;Singer and Gray, 1995;Wang and
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Terman, 1997)). Our belief, already formulated ievoous works (Ursino et al., 2006;Ursino et al.,
2008), is that the same mechanism can be expltmtedgment abstract objects too, represented as a
collection of features. Several recent results stpiie idea that neural synchronization plays an
essential role not only in low sensory perceptiat &lso in higher-cognitive tasks. A role of
gamma activity has been demonstrated in recognitionusic (Bhattacharya et al., 2001) words vs.
non-words (where it seems to reflect associatidwéen words and meanings) (Pulvermiller et al.,
1996) and recognition of black and white faces wseaningless figures (Rodriguez et al., 1999).
Further studies suggest that theta and gamma aigmi§ play an important role in formation of
declarative memory and retrieval (Osipova et abQ&Salinas and Sejnowski, 2001) and that
synchronization increases with conscious perceptompared with unconscious (subliminal)
processes (Melloni et al., 2007).

iii) The object, represented by its features, isnErted via re-entrant synapses to a lexical area
devoted to the representation of words. In thegregersion of the model, words are described by
means of “grand-mother cells” (one neuron per eeatd); of course, this aspect may be improved
in future versions. The function of connectionswesn the feature areas and the lexical area is to
realize a sort of semantic relationship betweenrépeesentation of objects and their words. This
implicitly signifies that, after the training phaséhe perception of objects may evoke the
corresponding word, while listening to words mayivaate the multimodal object representation in
cortical areas. Some results in the recent litegatcorroborate this viewpoint. Data from
neurophysiological studies (Pulvermller et al., 28ulvermuller et al., 2000), transcranial
magnetic stimulation (Pulvermller et al., 2005byuinller et al., 2005a) and functional magnetic
resonance (fMRI) (Hauk et al., 2004) suggest thatdomprehension of words activates the motor
and premotor cortex in a somatotopic manner. Maatial. (Martin et al., 1995) found that colour
words activate a region near the area involvetiénperception of colour. Gonzales et al. (Gonzalez

et al., 2006), using fMRI, observed that subjeetsding odour-related words display activation in
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the olfactory regions of the brain. These resudiken together, support the idea that the neural
representation of a word is associated with theesponding perceptual information.

iv) Of course, the network needs a training phaserder to associate all features of the same
object, and to associate objects with words. Adogrdo recent data, we assumed that training of
synapses is based on the correlation between st@ntaneous post-synaptic activity, and the pre-
synaptic activity evaluated over a previous 10 mterval. Indeed, various authors suggest that
Hebbian reinforcement does not require a perfecespondence between spikes, but operates over
a temporal window (Abbott and Nelson, 2000;Markratmal., 1997). Buszacki (Buzséaki, 2006)
hypothesized that this characteristic of synapsstigity is one of the reasons for the ubiquitous
role of gamma oscillations in the brain, since ¥heycle approximately has the same temporal
length as that required for the plasticity rulesour model, a temporal window is essential tovallo
synchronisation among neural groups, which ar@lhjitout of phase (hence, whose activity is not
perfectly superimposed) during the training peribdt rapidly synchronize thanks to synaptic
reinforcement.

In the present trials we assumed that network itrgjrfor each object, occurs in two distinct
phases: in the first, an object is presented aloge without the associated word, and the difiere
features of this object are linked together (fatamce, a child is watching at a dog without lisign
any name). During a second phase the object andatitiesponding word are presented together,
and the object receives a hame (the child is lapkinthe dog and is simultaneously listening the

word “dog”). In other terms, we first trained sysapWn in Egs. 4 and 5, and only subsequently

we trained synapséa&/ij"’hk and V\/ijFth in Egs. 8 and 12. This choice has been adoptext sire

claim it is more similar to natural learning. Hoveey similar results may be obtained even by
training all synapses together during a uniquenimngi phase.
An important aspect of our model, which may be eitetl in future versions, is the possibility to

realize simple semantic links between objects andds: In the present paper, we exploited the
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possibility that two objects may have some comneatures in order to realize a simple association
among the corresponding words. As illustrated ig. Bi, perception of a single feature (which is
insufficient to recognize one object and to evoke torresponding word) may lead to object
recognition in the presence of a correlated wotils Bimple example shows that memory is an
integrated process, and that its content can bevet from the co-activation of different regions,
coding for disparate properties (as in the classest “desert” and “hump” allows retrieval of the
word “camel”) (Kraut et al., 2002;Kraut et al., B)0The idea that the correlation among features
may be exploited to form classes of objects, andetect category membership, without the need
for a hierarchical representation of objects, heenbformulated by some authors recently, and is at
the basis of several conceptual theories of semamtimory (see (Gainotti, 2006;HArt et al., 2007)
for a review). However, we are aware just of a Mandf models which try to implement these
concepts through neural networks and to simulaertain consequences by a computer.

A recent model by Morelli et al. (Morelli et al.0@6) shares some aspect with ours. In both
models an object is represented as a collectiofeatires, and the possibility to kept different
objects simultaneously in memory is achieved veagynchronized firing activity of neurons which
code for the same objects. Moreover, both moded with the possibility that objects share some
common features. Morelli et al. used a greater rarmab features (16) and analyzed the case of
objects with 3 common features; while we used {fufgatures in our exemplary simulations, with
the possibility of one common feature. A significatfference is that we used Wilson-Cowan
oscillators to synchronize features, hence in oonukations objects appear in “time division”,
whereas Morelli et al. used chaotic dynamics. Otlistinguishing aspects of our model concern the
topological organisation of features (which implensea similarity principle), the presence of a
decision network to recognize plausible objects] #Hre relationship between objects and words.
Pulvermuller (Pulvermuller, 2005) and Simmons ararsBlou (Simmons and Barsalou, 2003)

hypothesized that different features of a wordtapmgraphically organized in different regions of
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the cortex. A model including a topological orgatian of features was developed by Devlin et al.
(Devlin et al., 1998).

An important problem, that deserves some discusssonow synchronisation among cognitive
processes can be assessed in humans, and whaertreyrole of synchronisation in cognition.

In its broad sense, synchronisation representsdheurrence of events in time (Buzséaki, 2006).
Different methods to quantify this concept haverb@eoposed. The older ones used spectral
coherence (Bressler et al., 1993) or detectiah®ftemporal position of maxima values in filtered
signals (Yordanova et al., 1997). More recentlyguantity used to quantify synchronism is the
phase coherence (Lachaux et al., 1999;Melloni et2807;Rodriguez et al., 1999). In brief, the
method involves computing the phai#erence between two signals in a time windowa afiven
frequency, and assessitige stability of such phase difference throughtrgdlls. Phase coherence
between EEG electrodes has been used in neuropdyisal studies, as a measure able to detect a
functional relation, reflecting the co-activatioh distant and task-relevant brain sites. A special
case of phase coherence with zero phase differengghase synchrony. Variants of phase
synchronisation are phase coupling among diffefesquencies and phase-lock to an external
stimulus [the interested reader can find more tetai(Sauseng and Klimesch, 2008)]. Of course,
the temporal resolution necessary to detect symedabon with enough accuracy (order of tens or a
few milliseconds) is not in the range of traditibnauroimaging techniques, such as fMRI or PET,
and is only accessible by surface EEG or MEG. Hitterl techniques, however, measure electrical
activity only in a large population of neurons wahpoor spatial resolution. Finally, surface EEG
and MEG should be processed with algorithms foctedenagnetic source localisation, in order to
detect activity in specific regions of interesthe cortex, involved in cognitive aspects of thekta

A further problem is why synchronization “espegiat the gamma range” may be so important
in cognitive processes. A first aspect is that aesircan fire only if they receive enough input
excitation. Only coherent source activity, syncliwed in a small temporal window, can be

effective to trigger downstream neurons. Hence,clsgonized activity is the most effective
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mechanism to make information from spatially sefgardrain areas simultaneously available for
further processing (binding) by maintaining it dist from other information (segregation). Some
authors suggested that binding of neural actiatpecessary to trigger short-term memory (Crick
and Koch, 1990), or to form a “global workspaceldheading to the emergence of conscious states
(Damasio, 1990;Grossberg, 1999). Another imporpariit is that synchronization in the gamma-
band can efficaciously trigger changes in synagfficacy (Buzséaki, 2006;Engel and Singer, 2001).
Indeed, the temporal relation between pre-synagtt post-synaptic activities, necessary to cause
long term potentiation or long term depressionwithin 10-20 ms (that is typical of the gamma
range). This signifies that, synchronized oscibiatin the gamma range can be crucial for memory
formation.

Of course, in order to fully exploit phase synchration in the gamma range, one needs that the
frequency of oscillators is quite stable, and tpassible frequency derangements outside the
gamma range are rapidly corrected. There are v@noechanisms (both in vivo and in the model)
which may improve robustness against frequencygdmrFirst, neural groups which participate to
the representation of the same object are linkadexcitatory synapses (in our model they target to
both excitatory and inhibitory populations). Thessmapses rapidly induce synchronisation of the
neural groups. In particular, neural groups whighilgt off-band activity are forced back into the
gamma-band by inputs coming from the other poputati A second mechanism that may help
robustness in the model is the activity of the gldhhibitor. As soon as a single object terminates
its cycle, all other neural groups are simultangousinhibited, and so may start their activation
together. This mechanism forces the frequency lobsillators (even in different objects) to the
same frequency (see Fig. 7).

Finally, we wish to mention that, in vivo, gammecitlations can be especially ascribed to
connections between interneurons with fast synakimetics (GABAa synapses) whose time
constant is just a few milliseconds (Bartos et2007;Jefferys et al., 1996). Hence, a rapid method

to induce a gamma-band oscillation in real neuealvorks is to provide an excitatory input to these



117

interneurons. This makes the mechanism of gammd-lgeneration ubiquitous and easily
controllable from external top-down influences.

Finally, it is important to point out the main litations of the present model, which should
become the subject of future improvements and sidan. A fundamental limitation is that each
object is represented by an exact number of femt(foeir in the present exempla); each feature
must be active and synchronized with all the otHersthe decision network to recognize a
plausible object. Of course, in the reality an objean be represented by a variable number of
features, which, moreover, can be differently ated in sensory or motor areas. For instance,
differences in the perception of action vs. noneactvords have been ascribed to the prevalence of
motor features in the first class, and of senseatures in the second (Caramazza and Shelton,
1998;Crutch and Warrington, 2003). Similarly, thescription of some objects (such as animals or
plants) may require a greater number of featurespened with those necessary for the description
of simpler objects (Tyler et al., 2000;Tyler and $4p 2001). For that reason, a fundamental
forthcoming extension of our model should invol\ee tpossibility to describe objects with a
variable number of features, distributed in altéugaways among cortical regions.

A second important limitation is that words areresgnted in the lexical area via “grand mother
cells”, i.e., only one neuron is used to represenindividual word. This choice has been adopted
since the aim of the present study was not thpt@fiding a detailed description of the lexicalare
but just using this area to establish a link betwebjects and words, so that words can evoke an
object representation, and vice versa. Of counsieyd model versions may incorporate a more
sophisticate description of the lexical area, iniokh for instance, neurons code for different
phonemes and a word is described by an orderea dfigghonemes (see for instance, (Marslen-
Wilson, 1987)). Nevertheless, a representation @& as grand-mother cells has been adopted in
recent models of word recognition from speech. iAstance, Hopfield and Brody in a recent
influential model (Hopfield and Brody, 2001) propssthat a single neuron with a small time

constant can detect the occurrence of a partisplatio-temporal pattern (for instance a short word
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or a phoneme) by revealing the transient synchabiois of previous events, occurring in a specific
temporal sequence. The model by Hopfield, integratgh a working memory circuit to maintain
words for the entire duration of a task, may repnéshe basis for a more sophisticate description o
the relationship between the lexical area, speadhta auditory input.

A third future improvement may concern the decisi@twork. In the present version, the
decision network is necessary to avoid that a éfalsbject representation can evoke words. For
instance, this is the case when more than fouurfestare simultaneously active, i.e., the feature
network failed to solve the segmentation problene &ve devising future versions in which the
lexical area can recognize the occurrence of afyjesten without the need for an upstream decision
network.

A further point is that, in the present model, wevér not included any connection among
individual words in the lexical area. An importaxtension of our study may assume that words
are reciprocally connected by excitatory weighesjwied from a learning phase. For instance, two
words occurring frequently together, may developeeurrent link. In this manner, a semantic
relationship between words and objects can bezeshhot only thanks to correlates features (which
signal category membership) but also by direct eciaons among words.

Finally, future versions of the model may test behaviour of alternative equations, such as
relaxation oscillators, integrate and fire neuronghaotic dynamics (as in the model by Morelli et
al. (Morelli et al., 2006)) to synchronize neuratiaty. The virtues and limitations of individual

neuron models in the field of semantic memory issgpect which still deserves extensive analysis.
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Part 2. MULTISENSORY INTEGRATION
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In the natural environment, stimuli of different datities occur at various locations in space and
time. Among the brain’s most important function,teting, decoding and interpreting these
information about external significant events argramary importance and involve a host of neural
circuitries, linking different specialized braingrens.

The ability to get information from different semgsources and, more important, the skill to
integrate them into a unitary internal object repreation, is fundamental to determine the
relationships among different sensory signals anehhance detection and identification of external
events to trigger the correct responses (Steinvierédith, 1993; Welch and Warren, 1986).

This sensory interaction is usually referred as Itisensory integration”, that denotes the
capability of a neuron to produce a different res@oto a combination of various sensory-modality
stimuli with respect to the single unisensory congas.

Multisensory integration can result in either erdeanent or depression of the neuron’s response.
This reflects the salience and the relationshigvbeh external sensory inputs: if they are related t
the same event they will be integrated togethdadditate and speed up the detection, resulting in
an higher and faster neuron’s activityultisensory enhancemgnivhereas if two or more stimuli
derive from events competing for the brain’s aitemtthe elicited response would be decreased
(multisensory depressipn

Evidence for multisensory convergence at neurall&éas been found in various structures of
the mammalian brain outside the primary sensorgsai&tein and Meredith, 1993). The most
studied locus of multisensory interaction is a fagemidbrain structure, the superior colliculus
(SC). This structure plays a critical role in trengration and control of orienting movements of the
head and eyes towards external events (Sparks; $8&@& and Meredith, 1993). Many neurons in
the deep layers of the SC receive converging visaaditory and somatosensory afferents from
various subcortical and extraprimary cortical sesr¢Edwards et al., 1979; Huerta and Harting,
1984; Wallace et al., 1993). Responses of suchonsuto a combination of stimuli delivered in

multiple sensory modalities can differ significagntfom those evoked by any of their unisensory
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inputs in a way that substantially facilitates tte of the SC in controlling attentive and
orientation behaviour (Frens et al., 1995; Schragel Widmann, 1998; Stein et al., 1989).

Several neurophysiological and behavioural studvese performed in order to identify the
principles ruling multisensory integration in SCunens. This process faces two different issues:
the coincidence of sensory information in spacd,tae temporal coincidence of converging inputs.
The combination of two different sensory stimulig(e auditory and visual), present at close spatial
and temporal proximity (as it occurs when theywefrom the same event), is typically synergistic
producing a neuron’s response which is signifigagthter than that evoked by the most effective
of the two unimodal inputs individuallyrultisensory enhancemeriBell et al., 2001; Kadunce et
al., 2001; Meredith and Stein, 1986b; Meredith &tein, 1996; Wallace et al., 1998). In some
neurons, the response enhancement may even exibeedum of their individual unimodal
responsessperadditivity (Kadunce et al., 2001; Meredith and Stein, 1988&rrault Jr et al.,
2003; Perrault Jr et al., 2005; Wallace et aP98). On the other hand, when the two stimuli are
presented at different locations or at differemti(i.e. they likely derive from different eventap
interaction occurs or the neuron’s response isiderably depressednltisensory depressipn
(Kadunce et al., 1997; Kadunce et al., 2001; Mi¢éneand Stein, 1986a; Wallace et al., 1998).
Globally, these properties of cross-modal integratire known as thepatial rule

The spatial rule is accompanied by another wellwkmontegrative principle calledhverse
effectivenessaccording to which the magnitude of the multisepsenhancement is inversely
related to the effectiveness of the individual ungial stimuli: combinations of weakly effective
unisensory stimuli produce proportionally greatarltmensory enhancement than more effective
unisensory stimuli (Meredith and Stein, 1986b; &dtrJr et al., 2003; Perrault Jr et al., 2005;
Stanford et al., 2005; Stein and Meredith, 1993il8¢e et al., 1998). Overt behaviour responses
have been found to follow these SC neurons’ progeert

Many different studies have shown that the descendixcitatory inputs from a specific

association cortex (Anterior Ectosylvian Sulcus,SAHJiang et al., 2002, 2003) and a class of
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membrane receptors (N-methyl-D-aspartd&®IDA, receptors) (Binns and Salt, 1996) strongly
influence the multisensory integration capabilibéshe SC multisensory neurons.

These principles provide a highly influential franwk to explain the multisensory interactions
observed in SC neurons and to predict how someactaarstics of the stimuli (such as spatial
location, time of occurrence and intensity) influerthe integrative response, both at neuronal and
behavioural level. However the underlying neurathanisms and network architecture involved in
these processes are not clearly identified yets@& peoperties of multisensory integration in the SC
may depend both on the non-linear characterisfieeeorons and on the particular arrangement of
the neural circuitries which process the signaisthis regard, mathematical models inspired by
physiological principles may play a critical rola providing a deeper understanding of the
mechanisms which participate in multisensory ireéign, their possible importance in the origin of
different phenomena, and the topology of the netoahections among different brain areas.

In this work we present some neural network modssed on neurophysiologically plausible
mechanisms and on phenomenological results. Tke (@hapter 2.1) is a simple model of SC
neurons focused on trying to investigate neurorethmnisms underlying multisensory integration,
with particular attention on the effect of the rorear behaviour of SC neurons, the spatial
information provided by different cortical inputand the relationships among neurons with
different receptive fields. Moreover the model Hasen used to investigate which parameter
modifications are able to explain the variabilifynaultisensory neuron responses observed in-vivo.

The second modekliapter 2.2 goes over the physiological simplifications ot tfirst one,
including both cortical and non-cortical inputs $€, to study and describe the effect of cortical

deactivation on multisensory integration, and thle of NMDA receptors in driving SC behaviour.
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CHAPTER 2.1. MULTISENSORY _ INTEGRATION IN  THE

SUPERIOR COLLICULUS: A NEURAL NETWORK MODEL

INTRODUCTION

Multisensory neurons the SC receive convergingaljsauditory and somatosensory afferents
from various subcortical and extraprimary cortisalurces (Edwards et al., 1979; Huerta and
Harting, 1984; Wallace et al., 1993). Responsesuch neurons to a combination of stimuli of
different sensory modalities can differ signifidgnirom those evoked by any of their unisensory
inputs in a way to facilitate the role of the SCcontrolling attentive and orientation behaviour
(Frens et al., 1995; Schroger and Widmann, 1988n®t al., 1989).

A consistent amount of physiological data has lgghered from studies performed in order to
identify the principles ruling multisensory integom in SC neurons: the coincidence of sensory
information in space, and the temporal coincidesiceonverging inputs. Modality-specific RFs of
SC neurons are in spatial register, i.e. they sgresimilar regions of sensory space, so that they
overlap. Both this receptive field alignment and time coincidence of different stimuli are critica
for normal multisensory processes in SC (Mereditd &tein, 1996). According to the temporal
domain and the spatial organization, a combinatibtwo different sensory stimuli (e.g., auditory
and visual) could elicit a neuron’s response whgkignificantly grater than that evoked by the
most effective of the two unimodal inputs indivitlya(multisensory enhancemégnBell et al.,
2001; Kadunce et al., 2001; Meredith and Stei®6b9 Meredith and Stein, 1996; Wallace et al.,
1998), when they fall within the overlapping receptfields of the same neuron at the same time
(both stimuli are likely produce from the same dyelm some neurons, the response enhancement

may even exceed the sum of their individual uninhedsponsesstperadditivity (Kadunce et al.,
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2001; Meredith and Stein, 1986b; Perrault Jr et 2D03; Perrault Jr et al., 2005; Wallace et al.,
1998). On the other hand, when the two stimuli@esented at different locations or at different
time (i.e. they likely derive from different eveptsnvo alternative results can be observed: emioer
interaction occurs or the neuron’s response towtitiein-field stimulus is considerably depressed
(multisensory depressipiiKadunce et al., 1997; Kadunce et al., 2001redeh and Stein, 1986a;
Wallace et al., 1998). Multisensory depressiorassumed to derive from the presence of an
inhibitory region which surrounds the excitatorgeptive field (Kadunce et al.,, 1997). Globally,
these properties of cross-modal integration arevknas thespatial rule

The spatial rule is accompanied by another wellwkmontegrative principle callednverse
effectivenesgMeredith and Stein, 1986b; Perrault Jr et aD03 Perrault Jr et al., 2005; Stanford
et al.,, 2005; Stein and Meredith, 1993; Wallacalgt 1998). Inverse effectiveness has functional
sense in behavioural situations: the probabilitydétect a weak or ambiguous stimulus benefits
more from multisensory enhancement than a highsity stimulus which is easily detected by a
single modality alone (Jiang et al., 2002; Steiale 1989; Wilkinson et al., 1996).

These principles provide a highly influential frangek to explain the multisensory interactions
observed in SC neurons and to predict how someactaarstics of the stimuli (such as spatial
location, time of occurrence and intensity) influerthe integrative response, both at neuronal and
behavioural level.

A fundamental contribution to investigate the meutims by which modality-specific inputs
achieve integration in SC can be obtained by uswegral network models and computer
simulations. Anastasio et al. (Anastasio, PattorBé&kacem-Boussaid, 2000; Patton, Belkacem-
Boussaid, & Anastasio, 2002) developed some mduidsed on information theory, in which a SC
neuron uses the Bayes’ rule to compute the prabatikat a target is present in its receptive field
A similar approach was used by Colonius and Dietie(Colonius & Diederich, 2004). These
models reproduce the major features of multisensnhancement, suggesting that SC neurons can

operate under the Bayes’ rule. However, they ditl provide insights into the neurobiological
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mechanisms that may implement the needed computaiosubsequent papers, Anastasio and
Patton (Anastasio & Patton, 2003; Patton & Anasta®003) realized simple perceptron models
implementing the Bayes'rule, to address issuesafabiological mechanisms. With these models,
the authors were able to account for crossmodaaremdment and, by using Hebbian learning
mechanisms, to explain the existence of both moldiah and unimodal neurons. Furthermore, the
neural implementation also accounted for within-adg suppression, given only the added
hypothesis that inputs of the same modality haveengpontaneous covariance than those of
different modalities.

Although the latter models were somewhat inspingghoysiological mechanisms, there are still
some aspects which may benefit from a computatiapptoach via neural networks and computer
simulation techniques. In particular, previous nmsddo not consider the spatial properties of
multisensory integration, or the effect of the piosi and intensity of different inputs on the SC
response. Moreover, these models do not includenapetition among neurons with different
receptive field to detect a target.

The aim of this work is to develop a neural netwaridel, based on neurobiologically plausible
mechanisms, which is able to reproduce and exghkaneral in-vivo results in anesthetized animals.
For simplicity, only the audio-visual integratios ¢onsidered (i.e. the presence of somatosensory
inputs is not considered). The model includes thmearal networks, which communicate via
synaptic connections. Two of them are unimodal r@pidesent neurons coding visual and auditory
stimuli, respectively; these networks represensemsory cortical areas projecting afferents to SC,
in particular two subregions of AES cortex (the éwdr Ectosylvian Visual area, AEV, and the
Field Anterior Ectosylvian Sulcus, FAES); a doweatn network, representing multimodal
neurons in the SC, receives information from thetigam unisensory networks via feedforward
synapses and integrates these information to peothe final response. Furthermore, neurons in
each network are interconnected via lateral syreap®e activity of each neuron is described by a

sigmoidal relationship with a threshold and a sstan. The present paper reports a quantitative
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description of the mathematical model, includingegjuations. Through computer simulation, we
show that the model is able to explain the mairperties of multimodal neurons (cross-modality
enhancement; inverse effectiveness; within-modaliy cross-modality suppression). Furthermore,
through a sensitivity analysis on the strength @f §napses, we show that the existence of
different typologies of SC neurons, described mliterature, can be reproduced quite well through
changes in the synaptic strength. Finally, the iptsgsole of feedback modulation on certain
physio-pathological behaviour (such as facilitation ventriloquism) is investigated, and its

possible involvement in cognitive science discussed

METHOD
In this section we will first describe the genestalucture of the model. Then all equations are
presented and justified. Finally, parameter assatms discussed, on the basis of previous

neurophysiological data.

General model structure

— The model is composed of three areas. Elemerdaatf area are organizedNM dimension
matrices, so that the structure keeps a spatialgandietrical similarity with the external world:
neurons of each area respond only to stimuli corfrioigp a limited zone of the space (see Fig. 1).
Neurons normally are in a silent state (or exhist a mild basal activity) and can be activated if
stimulated by a sufficiently strong input. Furthen®, each neuron exhibits a sigmoidal relationship
(with lower threshold and upper saturation) andst érder dynamics (with a given time constant).
The two upstream areas are unimodal, and respoaddiory and visual stimuli, respectively. A
third downstream area represents neurons in thee§ibnsible for multisensory integration. These
three areas have a topological organisation, preximal neurons respond to stimuli in proximal

position of space.
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Figure 1 — Schematic diagram describing
the general structure of the network.
Each grey circle represents a neuron.
Neurons are organized into 3 distinct
areas of 40x40 elementgV, visual, A,
auditory and SC multimodal in the
superior colliculus). Each neuron of these
areas is connected with other elements in
the same area via lateral excitatory and
inhibitory intra-area synapses @rrows L g,
and L;, within the area). Neurons of the
unimodal areas send feedforward
excitatory inter-area  synapses to
multimodal neurons in the superior
colliculus area located at the same
position (arrows K: Multimodal neurons,
x in turn, send excitatory feedback inter-

Lﬂ

L, ~~<gk / area connections to neurons of the
s unisensory areas (arrowsF; see text for
details).

— Each element of the unisensory areas has itsreeaptive field RF) that can be partially
superimposed on that of the other elements ofdheesarea. The elements of the same unisensory
area interact via lateral synapses, which can e éxcitatory and inhibitory. These synapses are
arranged according to a Mexican hat dispositian,(a circular excitatory region surrounded by a
larger inhibitory annulus).

— The elements of the multisensory area in the reupeolliculus receive inputs from the two
neurons in the upstream areas (visual and auditehgse RFs are located in the same spatial
position. Moreover, elements in the SC are condetig lateral synapses, which also have a
Mexican hat disposition.

— The multimodal neurons in the SC send a feedeackatory input to the unimodal neurons
whose RFs are located in the same spatial positiainjs way, detection of a multimodal stimulus

may help reinforcement of the unisensory stimuthi@ upstream areas.

Mathematical description
In the following sections, quantities which refes heurons in the auditory, visual or

multisensory areas will be denoted with the supgitsca, v and m, respectively. The spatial
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position of individual neurons will be describedthy subscriptg orhk (i, h=1, 2, ..N;j, k=1,

2, ...,M).

The receptive fields of unisensory areas

In the present version we assume that each aszanposed by 40x40 neurons (iE.= 40;M
= 40). Such a limited number of neurons was chdseeduce the computational complexity for
computer implementation. Neurons in each areardifféhe position of their receptive field of 2.25
deg. Hence, each area covers 90 deg in the vst@alistic or multisensory space. In the following,
we will denote withx; andy; the center of the RF of a generic neujoilence, we can write:

x=2.25deg [ =1,2,...,40)

y;=2.25tdeg [ =1,2,...,40)
The receptive field (sayijs(x,y ))of neuronij in the unisensory aresis described with a

gaussian function. Hence,

| =% +ly; -y

2
R y)=Rj[e 2le) s=av; (1)
where the symbols,y represent a generic coordinate in spaaei, Is the standard deviation of the

Gaussian function (three standard deviations apmately cover the overall RF) anﬂiosis a

parameter which sets the strength of the response.
According to Eq. (1), a stimulus presented at th&tnx,y excites not only the neuron centered

in that zone, but also the proximal neurons wheseptive fields cover such position.

The inputr’

ij !

that reaches the neurgnin presence of a stimulus, is computed as therinne

product of the stimulus and the receptive fielde ¥én write:

() = [[Ro (¢ ) 0°(x, . t)dxdy O 3 RS (x,y) G°(x, y, )y @)
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where, i(x,y,t) is the external sensory stimulus presented atdloedinatex,y and at timet,

and the right hand member of Eq. (2) means thaintlegral has been computed with the histogram

rule (in this work Ax=Ay= 2.25°).

The activity in the unisensory areas
Unisensory neurons can be stimulated not only btereal inputs, but also through the

connections with other elements in the same arba.ifiput that a unisensory neuron gets from

other elements of the same area is representatelyuantity;’, defined as:
Ii]'s(t) = zl-ﬁ,hk Qﬁk(t) s=a,v, 3)
hk

wherez;, (t) is thehk-neuron’s activity (described below) amd,, is the strength of the synaptic
connection from the pre-synaptic neuron at the tjpwsihk to the post-synaptic neuron at the
positionij. These synapses are symmetrical and arranged awgooca “Mexican hat” function:

lolsal]  Jala/]
2

1§ k= @ 2 ) -Lj [ 2l

s=a,Vv (4)

In this equation,L, and 0’; define the excitatory Gaussian function, whilg and 0’; the
inhibitory one, andl, dy represent the distance between the pre-synagipast-synaptic neurons
in the horizontal and vertical coordinates. To dvondesired border effects, synapses have been
realized by a circular structure so that every aewf each area receives the same number of side
connections. This is realized assuming the follgnerpressions for distances:

i~h i [i—hj<N/2
dxz{h | i=h ©)

N=fi-Hh if fi—h>N/2

i -K it |j—K<M /2
dy={ | o
M —=|j =K if |j—k>M/2
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S
ij

A further input to unisensory neurons is induced thg feedbackf’, from the Superior

Colliculus. Such connections exclusively link newsavhose RFs are placed in the s@aposition
in the Colliculus and the unisensory area. We have

() =F°z"() $=av ®)
where z" is the activity of the neuron in the SC at the saositionij and F* is the strength of
feedback synaptic connection.

According to the previous description, the totgbuh (say uijs(t)) received by a unisensory
neuron at positiorj is computed as follows,

uijs(t):rijs(t)"'lijs(t)"' fijs(t) . S=aVv (7)
This is the sum of three component$; that represents the external sensory infjutcoming from

the intra-area synapses; arfgff, the contribution of the feedback coming from tBeperior

Colliculus.
Finally, neuron activity is computed from its inptriough a static sigmoidal relationship and a

first-order dynamics. This is described via thédwing differential equation:

o B2 )=-2; )+ 23 ) ®)

T is the time constant, which determines the spédigecanswer to the stimulus, a¢((us(t)) is

a sigmoidal function. The latter is described bg fitllowing equation:

1
Lt e O

ous(t)=

sa,Vv. (9)

where 9° defines input value at which neuron activity i$f llze maximum (central point) aml
sets the slope at the central point.

Such a function identifies three regions of workpeénding on the intensity of the input: the

sub-threshold behaviour of a neuron, a linear regiaround $°), and a saturation region.
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According to the previous equation, the maximalraeuactivity is conventionally set at 1 (i.e., all

neuron activities are normalized to the maximum).

The activity in the multisensory area

As said before, neurons of this area receive infroi® neurons in the two unisensory areas
whose RFs are located in the same posifjonThis choice has been adopted since, according to
experimental data, the auditory and visual RFs ofhwdtisensory neuron are in spatial register
(Kadunce et al. 2001; Meredith and Stein 1996), tleey represent similar regions in space.

Furthermore, neurons in the superior colliculug aéeive lateral synapses from other elements in
the same area. Hence, the overall ianJjT‘,(t), to a multisensory neuron can be computed as
follows

=1 )+ B 0)+70) (10)

k® and k" represent the intensities of the synaptic conaestiwvhich link the acoustic and the
visual areas with the superior colliculug(t) and z(t) are the activities of the acoustic and visual
neurons in théj-position (computed through Eq. (8)), atfil(t) is the input due to the synapses
between the elements of the Colliculus. The ladan is computed as follows

h}“(t) = Z'—mhk er&(t) . (11)

We assumed that lateral synapses in the multisg@sea have a Mexican hat disposition. The

equation that outlines the synaptic links betweahotilus elements is:

ol lalea

=L@ 2 5 e 2R (12)
where the distanceg; andd, have the same expression as in Eq. (5), and pteessid),, LI, oo

and gii' set the strength and spatial disposition of lasmaapses.
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Then, the activity of a multisensory neuron is coabeg from its input by using equations similar

to Egs. (8) and (9).

Parameter assignment

Table 1 — Basal value of model parameters

Visual Area
N=M 40
o 1.5(3.37°)
Ry 1
L 1.6
o, 3.5(7.87°)
L, 1.23
o, 6.3 (14.17°)
F? 1
T, 3 ms
0. 3
P 0.3
k" 7
Acoustic Area
N=M 40
oy 2 (4.5°)
R; 1
L 1
cy:; 5.3 (11.92°)
L, 0.8
ci 11.8 (26.55°)
F* 1
T, 3 ms
¢ 3
p° 0.3
k* 6
Superior Colliculus Areé
N=M 40
. 3.8
o 3.5(8°)
b 33
o 6.2 (13.95°)
T 3 ms

3

The value of all model parameters is shown in Tdble
These parameters have been assigned starting fatamird
the literature according to the main criteria sumpeal

below.

Receptive fieIdsU\F/g and 0'; have been given so that the
receptive fields of the visual neurons are apprexaty 10-
15 deg in diameter, and those of acoustic neurons

approximately 20-25 deg in diameter, according &bad
reported in (Kadunce et al., 200R, and R} are set to 1,

to establish a scale for the inputs generated éye#ternal
stimuli.
Unimodal areasParameters which establish the extension

and the strength of lateral synapses in the uniimawcteas

. v v :
(i.e., LY L, Oexand Tj, for the visual area, and

a a .
L3, L8, Oex and Oj, for the acoustic area) have been

assigned to simultaneously satisfy several critéfia the
presence of an external stimulus produces an &ciiva
bubble of neurons which approximately coincide wtike
dimension of the receptive field; (2) according data

reported in Kadunce et al. (Kadunce et al. 1997) we
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assumed that the surrounding inhibitory area is hmlazger than the activation bubble; (3)
inhibition strength must be strong enough to awostdability, i.e., an uncontrolled excitation which
propagates to the overall area.

Superior colliculus areaParameters which establish the extension andstieagth of lateral

m m
synapses in the SC areas (il Ln, Texand T, ) have been assigned to warrant cross-modal

and within-modal integration in agreement with degported in Kadunce et al. (Kadunce et al.,
1997; Kadunce et al., 2001).
Parameters of the individual neurons (sigmoidahtiginships and time constant$yr the sake

of simplicity, these parameters have been chosemalegr all neurons, independently of the

respective area. The central abscis®d, has been assigned to have negligible neuronityciiv
basal condition (i.e., when the input is zero). Blepe of the sigmoidal relationship;, has been
assigned to have a smooth transition from silencgaturation in response to unimodal and cross-
modal inputs (Perrault Jr et al., 2005). The tenastant agrees with values (a few milliseconds)
normally used in deterministic mean-field equati¢Ben-Yishai et al., 1995). In particular, this
value can be chosen significant smaller than thealonane time constant (Treves, 1993).
Connections between the three areBHse parameters of feedforward connections from the
unisensory areas to the superior colliculus (kéandk® have been set in order to: a) two visual
and auditory stimuli of the same intensity prodsaailar effects on multimodal neurons, when
acting separately. In this way, two stimuli of diftnt modality can be directly compared in term of
their effect. Since the auditory neurons have atgreRF, this criterion implies the use of greater
feedforward synapses from the visual area; (b) fesggnificant multisensory enhancement; (c)
have a greater dynamical range of multisensory amesuin response to cross-modal stimuli,
compared with unimodal stimuli (i.e., a single stlas cannot lead the SC neuron to saturation;
Perrault et al. 2005). Furthermore, in this work agsumed that the effect of a visual stimulus on

the SC neuron is moderately greater compared Wéteffect of an auditory stimulus. For the sake
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of simplicity, the feedback connections from the S€liron to the upstream visual and auditory
neurons (i.e., paramete8 andF") have been set to small values in this work, agsgithat this
effect is normally modest. These parameters mathéesubject of a sensitivity analysis in future

works.
All synapses in the multimodal are&({, L|, k', k%, F* andF") have then been the subject of a

n?

sensitivity analysis, as shown in section results.

RESULTS

Steady-state network behaviour

A) Visual Area I
40

Figure 2 — Examples of network’'s responses to

stimuli with different sensory modality. The intensty
SC Area of each stimulus is the samei‘Ei®= 22). Each pixel
represents a neuron. The width of the activation
bubble in the unisensory areas depends on the
dimension of the modality-specific receptive field.
The colour of each pixel is proportional to the
corresponding neuron’s activity z; (blue=0, red=1).

Iv=— 20

Acoustic Area
40

\0
1
1

20

/ ]

20 The arrows indicate the inter-area connections (both

1 feedforward and feedback). (a) The model is excited

1 by an external visual stimulus, located at position

20,20. This stimulus produces the activation of a

B) Visual Area I bubble of neurons both in the unisensory (visual)
40 area and in the superior colliculus. (b) The netwdt

receives an acoustic stimulus at position 20,20 arzch
activation bubble occurs in the acoustic area andni
the superior colliculus. (¢) The model receives a
multisensory input, represented by two cross-modal
stimuli coming from the same location in space. Bbt
unisensory areas present a bubble of activated-
neurons; the superior colliculus shows an increased
activation that is consistent with the phenomenonfo
multisensory enhancement.

20

40
1
1
20
/ ]

SC Area

Acoustic Area

40

Ja——= 20

1
1

C) Visual I:;ea / All the results, except those reported in Fig.

Iv— 20 SC Area 18, have been calculated in steady-state
40
1 20 40 conditions, by giving one or two simultaneous
Acoustic Area

a0 step stimuli to the model, with a duration 100

Ja——= 20

1
1 20 40
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ms, starting from the basal resting condition (i@ stimulation). This time is sufficient for the
model to reach a steady-state value. In particmli&en computing model responses to different
stimuli located at different points in the RF wal diot use a moving stimulus, but we placed the

stimulus at the assigned spatial position and wasteough time (100 ms), before putting it at the

next position.

Figure 2 shows an example of the activation bubinldbe three areas, simulated by the model
in presence of a unisensory visual input (upperepaa unisensory auditory input (middle panel)

and two simultaneous visual and auditory stimutiti&m panel).

Figure 3 shows the response of a multisensory S@oneevoked by a stimulus (or a pair of
stimuli) located at different positions within arwitside the receptive field. A bell shape is
obtained, with the maximum located at the centr¢hef RFs. When the stimulus is placed at the
border of the RF, neuron activity decreases down9% of the bell peak. It is worth noting the

strong enhancement of the multisensory responsea@a with the response to individual stimuli.

1.00
Figure 3 — The simulated normalized activity of a

superior colliculus Neuron SCN) evoked by an
input whose application point shifts through the
receptive field. The network is stimulated, first ty
an acoustic stimulus otted ling, then by a visual
stimulus (dashed ling and, finally, by two paired
cross-modal stimuli Golid line) with the same
intensity (i'=i®=22). Results have been calculated
with the stimulus in the assigned spatial position
and waiting for the network to reach the final
steady-state condition. It is worth nothing the
| strong multisensory enhancement.

e
~
o

SCN normalized activity
=] =}
a 8

0.00 =
-18°  -12°

18°
____________ >
k) ----------- > ) - > &)

Results displayed in Fig. 3 resemble those expetatlg obtained in SC cells by changing the
stimulus locations in modality-specific and multisery tests (see Fig. 5 in Kadunce et al. 2001). In
these tests, a bell shape was obtained with thepoast (both for unisensory and multisensory

stimulation) approximately positioned at the cemtethe overlapping region between the auditory
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and visual RFs. Multisensory response always oweecanisensory response. Neuron activity
decreased down to approximately the 10% of the peakity when the stimulus was applied at the

border of the overlapping region, in agreement withdel predictions.

1.254

ivity

1.00

0.75+

0.50

0.254

SCN normalized act

0.00

Figure 4 — Analysis of the response of a superiootliculus Neuron (SCN) to unimodal and crossmodaltsnuli.
The responses were assessed stimulating the modéhwan acoustic @otted ling, a visual dashed ling¢ and two
paired multisensory (olid line) stimuli with different levels of intensity. Resuts have been computed in steady-
state conditions. By way of comparison, the sum ahe two unisensory responsegiftted and dashed linds also
presented in this figure. The stimulus was presentkat the center of the RF of the observed SC neuromhe
intensities of the stimuli of each sensory modalitgre shown in the x-axis, where we used normalizedput. This
means that the same value has been assigned to ensory stimuli which produce comparable responses ithe
SC neurons. We chose low-intensity inputd£0 — 10) to reproduce the under-threshold behaviow; and the high-
intensity ones {(>20) to obtain the saturation levels.

The dynamical ranges of a SC neuron are reportédgind, for an auditory (dotted line), a visual
(dashed line) and a multisensory (continuous Igtejulation. These responses have been obtained
by using either a single stimulus (auditory or w@i§wof increasing strength or two paired stimuli
(visual + auditory) located at the centre of the Rlte dynamical range is defined as the difference
in neuron activity at saturation and at threshblaithermore, by way of comparison, the sum of the
two unisensory responses is also presented inaime sigure (dash-dotted line). Two aspects of
these curves are of interest: first, the dynamiaabe to multisensory stimulation is much greater

than that to a single stimulus. Second, the nearbribits a superadditive response at low values of
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the input stimuli (just above threshold), while ttesponse becomes additive/subadditive at high
stimulation levels.

Perrault et al. (2005) used two different metrics quantitatively evaluate multisensory
integration. The first, i.e. the interactive indéx,a measure of response increase induced by two

cross-modal stimuli compared to a single stimubug] is defined as follows:

I\/Ir—Urmax} a0
U

Interact'aflndex{
rmax
where Mr (multisensory response) is the response evoketidogombined-modality stimulus,

andUr__ (unisensory response) is the response evokedehydist effective unisensory stimulus.

max

The second, named the multisensory contrast, @ toesguantify additivity:
Multisensoy Contrast [(Mr + BA) - (vr + Ar)];

where Mr, as described above, is the response evoked hyuhesensory stimulusBA is the
basal activityVr and Ar are the responses evoked by a unisensory visdaraauditory stimulus,
respectively.

Figure 5 displays the interactive index computediifferent values of the input stimuli. In
particular, the top panel shows the response o€an&uron to an individual auditory or visual
stimulus (ranging from above threshold to saturgtimcated at the center of the RF, and to a
combination of both paired stimuli. The multisensogsponse is always higher than the individual
responses. From these data, the interactive inds»vben computed (bottom panel). According to
the principle of inverse effectiveness, this inddecreases from about 500% in case of weak
unisensory stimuli (just above the threshold) dawn60-50% in case of strong stimuli (input
values = 30 and 40 in the figure). It is worth ngtthat for input values above 25 neuron behaviour
becomes subadditive (see Fig. 4). Values of inte@dndex obtained with the model fall in the
ranges reported in the literature. Perrault e(2005) found values of interactive index between
1,000% and 300% in case of superadditivity, andweeh 100% and 20% in case of

additivity/subadditivity. In Kadunce et al. (2001)g interactive index was 94% and 55% in case of
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subadditivity, and above 200% in case of superadlgit Wallace et al. (1996), reports an average
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0.50+

0.25+

SCN normalized activity
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Figure 6 — Analysis of the multisensory contrast,
defined as the difference between the activity of a
SCN stimulated by two cross-modal stimuli coming
from the same location in space and the sum of the
two unisensory responses. In each simulation we
have paired a constant visual input with an acoudti

stimulus of different levels of intensity, to evalate

the inverse effectiveness principle. The intensitseof

the acoustic stimulus are presented in the x-axis.
Results were obtained in steady-state conditions.
Upper panel The constant visual stimulus was
chosen close to the threshold for unisensory
stimulation (i*=12). In this case neuron’s behaviour
is “superadditive” for all values of the acoustic

stimulus. Bottom panelThe constant visual stimulus
was chosen close to the saturation region for
unisensory stimulation = 30). In this condition,

neuron’s behaviour changes from superadditive to
additive/subadditive by increasing the second
(auditory) stimulus.

Contrast

Contrast
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0.50—

0.25+

0.00

enhancement of 122% (with values even
up 270%) for poorly effective stimuli,
and of 31% (range between —6% and
67%) for highly effective stimuli.

Figure 5 — Analysis of the interactive index
that underlines the phenomenon of the
enhancement and the inverse effectiveness
principle. Upper panelValue of the steady-
state response of a SCN to an acoustiddtted
bar), visual (vertical-lined ba) and
multisensory (diagonal-lined baj stimulus,
located at the center of the neuron’s RF, at
various intensities (x-axes), ranging from
above threshold {=12) to saturation §>30).
Bottom panel Interactive index (D%)
computed from the data in theupper panel as
the per cent increase of the multisensory
response compared to the maximum
unisensory response.
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Figure 6 analyzes the inverse effectiveness pri@dy using the multisensory contrast. The
upper panel shows contrast as a function of thet@ydstimulus, computed when the visual
stimulus is set to a small valug € 12; just above threshold). Neuron behaviourisesadditive
(i.e., contrast is greater than zero) for all valoéthe acoustic input. The bottom panel shows the
same figure, computed using a high value for tisealiinput (' = 30; close to saturation). In this
condition, neuron behaviour changes from superaedib additive (contrast almost zero) or to
subadditive by increasing the second (auditoryhsiis.

Figure 7 shows the role of the distance between dtwvauli on the integrated response. The
panels (a) show the case in which a visual stimigduscated at the center of the RF, and either a
second visual stimulus (within-modality interacfiar a second auditory stimulus (cross-modality
interaction) is moved from the center to the pegigh The activity in the visual unimodal area, at
the central position of the RF, is shown in the pefnel, while the middle panel shows activity in
the corresponding multimodal neuron. The panelsc@nsider a central auditory stimulus (again
with within-modality and cross-modality interactiovith a second stimulus). The activity in the
unimodal auditory area at the central positionhef RF is shown in the left panel, while activity in
the same position of the SC is shown in the mideHleel. The results confirm that a second
stimulus of a different modality located within theceptive field causes significant cross-modal
enhancement, whereas in the case of a within-ntgdstimulus the enhancement is mild (i.e., a
second stimulus of the same modality, located enthe RF does not evoke a significantly greater
response). The absence of significant within-maogl@nhancement agrees with experimental data
(Stein and Meredith 1993; Wallace et al. 1996)h# second stimulus is moved away from the RF,
one can observe significant within-modality suppi@s as well as significant cross-modality
suppression. Within modality suppression is strionigoth modalities (auditory and visual) leading
to almost 70% reduction in the SC response. Thislaheoesult is consistent with the study by
Kadunce et al., reporting a magnitude of within-mdg depression greater than 50% for the

majority of visual and auditory responsive neurddereover, in the same study, no significant
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differences in the magnitude of response suppnessire observed between within- and cross-
modality suppression, as predicted by the modelalBi, the suppressive regions are quite large

(25-30°) in the model, in accordance with physialabdata (Kadunce et al. 1997).
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Figure 7 — Effect of the distance between two stintilon the integrative response of the multisensor$gC neurons.
A first stimulus was located at the center of the R of the observed neuron. A second stimulus, eithef the same
modality (dashed ling or of a different modality (solid ling), is applied at different distances from the centeof
the RF. All simulations refer to steady-state condions. The distance between the two stimuli is shawin the x-
axis. The intensity of both stimuli wasi, = i, = 22. Panel A a visual stimulus is fixed at the center of the R, and
either a second visual stimulus (within-modality iteraction) or an auditory stimulus (cross-modalityinteraction)
is placed at a different distance from the center fothe RF. Panel B the same experiment described above,
repeated by maintaining the auditory stimulus fixed at the center of the RF, and paired either by aezond
auditory stimulus or a visual stimulus. Results inthe left column show activity in the visual @) or auditory (b)
neuron in the unimodal area, located at the centeof the RF. Results in themiddle columnshow activity of the
multimodal SC neuron at the same position, obtaineavith basal parameter values. Results in theight column
show activity of the same multimodal SC neuron obiaed by setting all lateral synapses in the multimdal area
at zero. In this condition, in order to avoid excesive basal excitation for multimodal neurons, the entral
abscissa of the sigmoidal relationships (i.e., pangeter & in Eq. 8) has been increased from 3 to 6. Elimin&n of
lateral multimodal synapses abolishes both cross-rdality and within-modality suppression. In fact, asshown in
the left column, within-modality suppression in theunimodal areas is quite negligible. The horizontaline in the
middle and right columns represents SC neuron actity in response to a central stimulus alone.

In the model, cross-modality suppression is a aqunsgce of long-range lateral inhibition within
the SC area. By contrast, within-modality suppr@ssnay depend on the concurrent action of two

mechanisms: lateral inhibition within the unimo@akual and auditory) areas and lateral inhibition
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within the SC area. In order to identify the specible of these two mechanisms, the previous
simulations have been repeated by assuming thenabsef lateral interactions within the
multimodal area (right columns). In these condsioboth cross-modality suppression and within-

modality suppression completely disappear. Thislltesuggests that, with the basal values of

parameters (see Table 1), lateral unimodal synaplegsa negligible role in generating within-

modality suppression, and lateral inhibition am@&€g neurons is fully responsible for both within-

modality and cross-modality suppression. This agdiam is confirmed by the activity in unimodal

areas shown in the left panels of Fig. 7, showirag lateral inhibition in unimodal areas, with Hasa

parameter values, is negligible.
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Figure 8 — Same simulations as in figure 7, but usj a different set of parameters. In particular, inthese
simulations we increased the strength of lateral syapses in the unimodal areas, and the strength oéédforward

synapses from unimodal areas to the multimodal arealThe new parameters are:L, = 5.4; L; = 4.7; L3 = 4.2;

L, =3.5; 0. =0. = 2.8 (6.3°);0, =0, =7.4 (16.65°);k" = 9; k® = 8. The intensity of both stimuli was®=i"= 17.

In these conditions, elimination of lateral synapsein the multi-modal area abolishes cross-modal sppession
but does not abolish within-modality suppressionr{ght column). In fact, as shown in the left column, within-
modality suppression is already evident in the unimdal areas.
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Figure 8 displays the same simulations as in Figssuming stronger lateral inhibition within
unimodal areas (see the legend to the figure ferntiodified values of parameters). In this case,
when all mechanisms are included, within-modalip@ession results slightly greater than cross-
modality suppression (middle column). If lateratemractions in SC area are set to zero (right
column), cross-modality suppression vanishes, whitein modality suppression still survives. In
fact, as shown in the left panels, a significanthumodality suppression is now evident in the
unimodal areas. Hence, a different balance betiageral inhibition in the unimodal areas and in
the multimodal area may explain the existence dhiwimodality suppression without cross-
modality suppression as documented in the liteeafiiadunce et al. 1997).

Results in Figs. 7 and 8 were obtained by perfogrtine same parameter changes in all locations
of the network, i.e., all neurons in the network#ee in the same manner. However, in a real set
up, neurons with different behavior can be obsewikin the same network. In order to show this
possibility, we repeated a few simulations concegnwithin- and cross-modality suppression,
starting from the basal network (that is the nelwwsith the same parameters as in Table 1) but we
modified the local value of synapses only at sopezific positions.

The results are illustrated in Figure 9, where éhexemplary positions are considered: (a)
position 29.25°, 29.25°: we assume that all neuianthis position (multimodal and unimodal)
receive the basal value of synapses. The SC neexhibits both within-modality and cross-
modality suppression (top panel). (b) Position 584%°: we assume that the multimodal neuron in
this position does not receive any lateral conoectvithin the SC, but the unimodal neurons at the
same position receives basal values of synapsesSThneuron exhibits neither within nor cross-
modality suppression (middle panel). (c) Positié28°, 58.5°: the multimodal neuron does not
receive any lateral connection within the SC, wkiile neuron in the acoustic unimodal area at the
same position receives lateral inhibitory synagtemnger than basal (see legend for details).itn th

case, the SC neuron exhibits within-modality supgien (using acoustic stimulation) without
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cross-modality suppression (bottom panel). Thesalte demonstrate that the present model can

easily be extended to build networks in which ygles of behavior co-exist.

100 Figure 9 — Same simulations as ipanels(b) of Figs. 7 and 8 (an
%‘ acoustic stimulus is fixed at the center of the RFand within- and
B 075 cross-modality interactions are tested) but using anon-
s homogeneous network in which the local value of sgpses can
8 050 change from one position to another. Three exemplgrpositions
= are shown.Upper panelPosition 29.25°, 29.25° — All neurons in
2 025 this position receive basal synapses. An acoustiinsulus (i®=22) is
= fixed at the centre of the RF at that position, and either a second
@ 400 : : . , , visual stimulus ('=22, cross-modality interaction,solid line) or a
0° g° 18° 27 36" 45 second auditory stimulus (®=22, within-modality interaction,
1.00- dashed ling is placed at different distances from the centref the
2> RF. The SC neuron exhibits both within- and cross-mdality
= suppression.Middle panelPosition 58.5°, 45° — The SC neuron in
S 075 . . X .
® this position does not receive lateral synapses (@rits threshold
N 0504 parameter 3" has been increased from 3 to 6), whereas the
'E ' neurons in the unimodal areas receive basal lateralynapses. The
‘g 5251 same experiment as inupper panel has been repeated in this
= position. The SC neuron exhibits neither cross- norwithin-
& modality suppression.Bottom panelPosition 29.25°, 58.5° — The
0.0000 g 18° 270 age 45 SC neuron in this position does not receive lateraynapses (and
i its threshold parameter 9" has been increased from 3 to 6),
> ] whereas the neuron at the same position in the acstic area
2 receives lateral synapses stronger than basal (tiparameters used
S 0751 a a
o ~ 7 |_a |_a ag ag.
8 050 % / are: %= 42; n= 35, ®=28 (6.3°); "=7.4 (16.65°);
© A 1 F) a
g \_',’ F=-10; k =8). Furthermore, in order to avoid excessive
Z’f 0.254 inhibition to this acoustic neuron, also its neighburing neurons
[5) (three for each side) receive stronger lateral symses (same
? 000 ,  parameters as above). An acoustic stimulus®E 22) is fixed at the

S A centre of the RF at that position, and a either aecond visual

stimulus (¥ = 9, cross-modality interaction,solid line) or a second auditory stimulus i¢ = 9, within-modality
interaction, dashed ling is placed at different distances from the centeof the RF. In these conditions, the SC
neuron exhibits within-modality suppression withoutcross-modality suppression.

To go into more depth in the mechanisms underlyireg SC multisensory integration and its
response behaviour, we performed some more comgimtetations. All results refer to steady-state
conditions; to this end, the stimuli were maintdirad their spatial position for a time interval Q10
ms) sufficient for the exhaustion of all transieesponses, before moving them to a different
position.

Simulation with basal parameter value®A first set of simulations has been performedvail
parameters at their basal values, as reportedinIla

Figure 10 describes the response to two visualuditiof the same intensity. The stimuli are

initially placed at a distance which avoids anyeifdgrence; the distance is then progressively
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reduced to zero. The first three rows (panel Ayesent the activity in the visual, auditory and
multimodal areas in five exemplary cases. The botpanel (panel B) represents a profile of the

response in the multimodal area.

A ™ @ ® @ ®) , del imul
VISUAL AREA Figure 10 — Model response to two simultaneous
45° 45°

el visual stimuli (intensity i¥ = 17) placed at five
different positions in space. Stimuli are punctuabnd
are always applied at the same elevation (vertical
. - - - . coordinate 0°) but at different distances along the
N e azimuth. Stimuli location: (1) [-22.5° 0°] [22.5° @],
azimuth distance = 45° (2) [-18° 0°] [18° 0°],
azimuth distance = 36°; (3) [-11.25° 0°] [11.25° [°
azimuth distance = 22.5°; (4) [-6.75° 0°] [6.75° D°
L L sl =l ~ _, azimuth distance = 12.5°; (5) overlapped stimuli at
T UlTcENsORY aREA 7 W, [0°0°]. Fig. 10A: Each column depicts the activityof
e “5“ & .. all neurons in the three areas of the model (visual
.. auditory and multisensory) in steady state
., conditions, after application of two stimuli at a
, Specific position (see column label). The darkness
the colour represents the magnitude of neuron
azimuth (deg) activity. A strong within modality suppression in the
multisensory area is evident in the third and fourh
B columns. Fig. 10B: profile showing the response of
MULTISENSORY AREA the neurons in the multisensory area having RF
centre at the vertical coordinate 0° and at the
azimuth coordinate from —40.5° to +40.5° (that is37
neurons positioned along the middle line of the
vertical field) during the five simulations depictel in
Fig. 10A. Each line pattern corresponds to one ohe
five simulations (see line label). Within modality
suppression is evident (greater than 80%). Within
modality enhancement of two superimposed stimuli
(simulation 5) is mild.
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Figure 11 describes results of similar simulatiobst obtained by using two simultaneous
auditory stimuli.

The following considerations can be drawn fromrégmults, as shown in Figs. 10 and 11:
i) each stimulus induces an activation bubble endbrresponding unimodal area. When two stimuli
of the same modality are separated by 10-15 deg,can observe a significant attenuation in the
activation bubbles. This is a consequence of ttegdhinhibition within the unimodal areas, which
implements a competitive mechanism. While two slirate very close, a single larger bubble is
evident in the central position, as a consequeffidheo short-distance lateral excitation. ii) The
activity of multimodal neurons exhibits an evideatluction when two stimuli are approached to

each other. This suppression is greater than tiedroeed in the unimodal area, and may even reach
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more than 80% of the original level (i.e., the
level which is evident when the two stimuli are
distant, and no suppression occurs). Finally,
when the two stimuli are almost superimposed,
one can observe just a mild enhancement (the
increase in the response of multimodal neurons
is less than 10%).

Figure 11 — Model response to two simultaneous
auditory stimuli (intensity i® = 17) placed at five
different positions in space. The meaning of symbel
is the same as in Fig. 10. Within modality
suppression is evident (greater than 70%). Within
modality enhancement of two superimposed stimuli
(simulation 5) is mild. Worth noting is the smaller
resolution in case of proximal stimuli (simulation4)
compared with Fig. 10, as a consequence of the
larger acoustic RFs.

Figure 12 illustrates the case of cross-modal natigon, that is the results obtained by applying a

visual and an auditory stimulus of the same intgraidifferent positions.

Figure 12 — Model response to two simultaneous A (O] @ @) @) ®)
cross-modal stimuli (intensity I = 17, f = 17) placed - - MIsHALAREE S -
at five different positions in space. The meaningfo
symbols is the same as in Fig. 10. Cross modalit of @ of ® o @ of = of
suppression is evident (greater than 60%). Cross-
modal enhancement of two superimposed stimuli BT S e
(simulation 5) is also evident (about +50%). ACUSTIGARER
0 [ ] 0 1 ] 0 L ] 0 L ] o L
In thlS Case, no SuppreSSIOn In the UnImOl s 0 a5 %se 0 a5t %s 0 a5 %5 [} a5 %5 0 45° 1
D ~ MULTISENSORY AREA D 0s
areas is evident. This is the consequence of 3 N
% o o o o o 0‘2
absence of any direct connections among g . sl el Ll a1
()
°
. imuth (d
two unimodal areas, and of the small valu ™"
B
assigned to feedback synapses from = . MULTISENSORY AREA
2 - (1)
. - o
multimodal area to the unimodal areas (Te §°7° o~ @
® 0.50 i — Ez;
1). In the present model, indeed, two unimoc £ 0.2 [ ®)
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areas can interact only via feedback links from timddal areas, since no direct connection
between unisensory areas is provided. In fact, dhly way the two unimodal areas can

communicate in our model is via the presence ofdhkeedback links. By contrast, a strong

crossmodal interaction is evident in the multimodada. Cross-modal suppression (about 60% of
the basal level) occurs when the distance betwleenwo stimuli is in the range 10-15 deg. Two

proximal stimuli cause a significant cross-modaharcement: the response of the central
multimodal neuron is greater (+ 50-60%) than tlspoase to each individual stimulus.

In order to simulate the inverse effectiveness e@rgpof SC neurons, we repeated the same
simulations as in Fig. 12, using different levets the two input signals. From these simulations,
cross-modality enhancement has been evaluated laypanaf the Interactive Index. Results are
displayed in Figure 13 as a function of the intgnsif the input stimuli. This figure shows that
enhancement computed with input stimuli of low nsi¢y may be as great as 500% and decreases

monotonically with the intensity of the inputs. &tong intensity, enhancement declines to 30-40%

or less.

Figure 13 — Multisensory enhancement

600- computed with the model in steady state

- conditions, in response to two

500- superimposed cross-modal stimuli of the
same intensity, placed at the centre (solid

4004 ] symbols) or at the periphery (open
"(H symbols) of the RF. The intensity of the

= 300- g stimuli is plotted in the x-axis. Stimuli
X o o with intensity greater than 12 have been
200+ " s 2o applied at the periphery since lower

[ O o inputs do not produce any significant
1004 " O h t d ith

™ - - response. Enhancement decreases wi

0 ' ' ' ' ' ' : ' u ' stimulus strength, according to the

8 10 12 14 16 18 20 22 24 26 inverse effectiveness principle. Moreover,
stimuli placed at a weakly effective
location (at the periphery of RF) induce
greater enhancement than do stimuli at a

input intensity

more effective location (at the centre of RF).

In conclusion, with basal parameter values the rnoebehibits strong cross-modality
enhancement, but negligible within-modality enhaneet. Cross-modality enhancement satisfies
the inverse-effectiveness principle. Furthermdre,mhodel exhibits both within-modality and cross-

modality suppression in response to distal stimhb®, first phenomenon being a little stronger than
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the second. All these results agree, both qualghtiand quantitatively, with data reported in the
literature.

Sensitivity analysis A subsequent set of simulations has been pertbtmenmask the role of
the synapses in the multimodal area (i.e., lamapses; feedforward synapses from the unimodal
areas to the multimodal areas; feedback synapsestire multimodal area to the unimodal areas).

The aim of these simulations is to show how différeesponses of SC cells, described by
neurophysiological studies, can emerge in the madeh simple consequence of differences in

synaptic strength.

VISUAL-VISUAL Figure 14 —Sensitivity analysis on the role of lateral
2 1.007 synapses in the multisensory are@he three panels
% 0.75- show the response of neurons in the multisensory
© area whose RF is centred at the vertical coordinate

g 0.50- o N 0° and at the azimuth coordinate from —-40.5° to
s | iR A N Y +40.5° (that is, 37 neurons positioned along the
Edz2 IAS 'S N middle line of the vertical field) during the five
< 0.00+ . ‘ . ‘ . ‘ . ‘ simulations depicted in Fig. 10 (visual-visual, upgr
40 30 20 10 O 10 20 30 40 panel), in Fig. 11 (auditory—auditory, middle pane)
azimuth (deg) and in Fig. 12 (visual-auditory, lower panel). The
number labelling each line pattern identifies the
simulation, as in the Figs. 10-12 (see legend ofyFi
AUDITORY-AUDITORY 10). Results differ from those in Figs. 10-12, siac
%‘1-00' the strength of all lateral synapses in the
5 0.75- multisensory areas has been set at zero. Moreover,
5 to maintain a mild neuron activity despite the
8 0.507 o PN absence of lateral inhibition, the position of the
8 .25 DA A B neuron sigmoid function has been translatedd = 8
S L AA XK Y AN in Eq. (9)). In these conditions, within-modality
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Results show that deleting lateral multimodal swespdoes not eliminate either within-modality
suppression or cross-modality enhancement. By asitcross modality suppression disappears.

Hence, in these conditions the model can explaé gresence of cells which exhibit within-
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modality suppression without cross-modality supgices as observed in many SC neurons
(Kadunce et al., 1997) .
Figure 15 shows the effect of a change in feedfoivegnapses from the unimodal areas to the

multimodal area.
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Figure 15 —Sensitivity analysis on the role of feed forwardnsypses The panel shows the response of neurons in
the multisensory area whose RF is centred at the s&al coordinate 0° and at the azimuth coordinatefrom
-40.5° to +40.5° (that is, 37 neurons positioned aalg the middle line of the vertical field) during he five
simulations depicted in Fig. 12 (visual-auditory).The number labelling each line pattern identifies lhe
simulation, as in the Figs. 10-12. Results differdm those in Fig. 12, since we decreased the feedfard
synapses coming from the visual unimodal area (k= 8) and increased the feedforward synapses comifigm the
auditory unimodal area (k* = 9). In these conditions, one can observe cros®dal suppression of the auditory
stimulus on the response to the visual stimulus, buot viceversa.

In basal conditions (Tab. 1) these synapses haga bet so that the effects of two identical
visual and auditory stimuli on multimodal neuronsreszcomparable. In order to break this balance,
in the simulations depicted in Fig. 15, we slightigluced the feedforward synapses from the visual
area, and we slightly increased those from thetanydiarea. In these conditions, an auditory
stimulus has a stronger effect on multimodal nesiriran an identical visual stimulus. As it is
evident in Fig. 15, as a consequence of the cothgethechanism implemented in the multimodal
area, the auditory stimulus now causes a strongsarmdal suppression, whereas the cross-modal
suppression caused by a visual stimulus is almegligible. Hence, the model can easily explain
the presence of multimodal neurons characterizethéysuppression of one-modality on the other
one (in our example, auditory on visual), but neewersa (Kadunce et al., 1997) .

A last set of simulations has been performed tatpaut the potential influence of the feedback

synapses on model behaviour. In basal conditidres strength of these synapses has been set to
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quite low values, in order to induce just a mildeet on the unimodal areas. However, an
interesting behaviour emerges, if the feedback gs@sare reinforced.

A first example is illustrated in Figure 16.

VISUAL AREA Figure 16 — Role of feedback
synapses on the reinforcement
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1.00- conditions in response to a
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Here we applied a mild visual stimulus at the cdrgpatial position, and a simultaneous strong
auditory stimulus in the same position. This caoditmay simulate, for instance, what occurs in a
patient with a visual deficit (here simulated by @dministration of a mild visual stimulus), with
only poor response to visual stimulation. It is Wwmothat such patient may benefit by application of

a concurrent strong auditory stimulus in the sapetial location to enhance the detection of a
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visual stimulus (Bolognini et al., 2005; Frassineit al., 2005) . With the basal value of the
feedback synapses, the visual stimulus can evokeaonegligible response in the unimodal visual
area. By contrast, the auditory stimulus evokesr@ng response in the auditory unimodal area
which, in turn, can trigger a moderate responsenoltimodal neurons. The simulation has then
been repeated with a progressive increase in fekdbgnapses from the multimodal area to
unimodal visual area: an increase in these synamsesduce a reinforcement of the activity in the
unimodal visual area. For values of the synaptiengfth greater than 5, a large activation bubble
appears in the unimodal visual area, similar té évaked by a strong visual stimulus. The result is
that a poor visual stimulus, which cannot evpke sea significant activity in the unimodal area if

presented alone, can be reinforced and fully peedethanks to the occurrence of an auditory

stimulus placed in the same position (Bologniralet2005; Ladavas, 2008).
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Figure 17 —Role of feedback synapses on ventriloquissnEach row shows the response profile of neuronshese
RF is centred at the vertical coordinate 0° and athe azimuth coordinate from -40.5° to +40.5° (thais, 37
neurons positioned along the middle line of the vécal field) in the visual (upper panel), auditory (middle panel)

and multisensory (bottom panel) areas. The curvesave been computed in steady state conditions in fnse to
a moderate auditory stimulus (f = 9) positioned at the coordinate (22.5°, 0°) antb a simultaneous stronger
visual stimulus positioned at the central point obpace (coordinates 0°, 0°). In these simulations vassumed high
values of feedback synapses {E F* = 15). The four columns differ for what concerns e intensity of the visual
stimulus (from left to right: i¥ = 12, 13, 14, 15). In the left column, the auditgrstimulus is perceived at the
correct position. In the two middle columns, one aaobserve a conflict between two auditory activitie (located at
the original position and at the position of the \gual stimulus). Finally, in the right column, the vsual stimulus

“captures” the auditory one at its position, and suppresses acoustic activity at the original posidn

(ventriloquism).
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Figure 17 displays the simulation results obtaibggresenting a stronger visual stimulus and a
weaker auditory stimulus at different positionss{dnce 22 deg). Both stimuli are strong enough to
evoke a significant activity in the correspondingnaodal areas, although the visual activity is
higher. Furthermore, in these simulations we assluthe existence of strong feedback synapses
from the multimodal to both unimodal areas. In géhesnditions, if the two input stimuli are no too
different in intensity i{ = 12;i® = 9) the visual and the auditory stimuli are paree separately at
the correct position, although only the stronganslus (i.e., the visual one) can evoke a consisten
activity in the multimodal area. If the visual stilas is slightly increased’(= 13 or 14, second and
third columns), we can observe the presence ofzmes of activity in the auditory area: i.e., a
competition occurs on the position of the auditstiynulus. Finally, if the visual stimulus is furthe
increasedi{ = 15), an activation bubble occurs in the auditarga at the same position of the
visual stimulus, as a consequence of the feedlvaok the multimodal area; the auditory activity in
the original position is almost completely suppeesdy the presence of competitive lateral

inhibition. This result simulates the ventriloqui¢Rick et al., 1969).

Network dynamical response

1.00+ Figure 18 — The temporal response of a SC
neuron evoked by a visual stimulus alone
(dashed ling and by a multi-sensory stimulation
(visual + auditory; solid ling). In both cases, the
stimuli were applied at the timet=0 ms, starting
______________ from an initial basal condition (no stimulation).
T Vertical lines denote the settling time (i.e., the
time required to approach 90% of the final
steady-state level). The settling time of the
multisensory response is less than one-half the
settling time of the unisensory response (17 ms
vS. 43 ms).
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Figure 18 shows the temporal response of a SC neawaked by a visual stimulus alone, and by
a multi-sensory stimulation (visual + auditory).both cases, the stimuli were applied at time t=0

ms, starting from an initial baseline condition (gtomulation). The settling time of the responses
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(i.e., the time required to reach 90% of the fistalady-state level) is indicated in the figure.sTisi

as high as 43 ms for the unimodal response, aratlisced down to 17 ms for the multisensory one.
Hence, multisensory integration does not only wairéd the final response, but also significantly
reduces the settling time. The value of settlingetishown in Fig. 18 is much higher than the value
expected on the basis of the time constant us&d,.ifi8). Indeed, in a feedback network the settling
time is significantly affected by the time requiréor the feedback mechanisms to reach an
equilibrium. In order to gain a deeper understagain the mechanisms responsible for the slow
transient response, we performed a sensitivityyarsabn the strength of lateral synapses in both
unimodal and multimodal areas.
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Moreover, we computed the settling times for défer(multimodal and unimodal) values of the
input stimuli (Figure 19). In particular, we firsomputed the settling times with basal parameter
values; then, we set lateral synapses in the modtaharea to zero, by maintaining the unimodal

area synapses; finally, we also suppressed lagnalpses in the unimodal areas. Figure 19a shows
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the results obtained with basal parameter valudsairmechanisms intact. The settling times for
unimodal and bimodal stimulation are comparablgeay low levels of the input (range 10 — 30
ms). If the input is moderately increased, thdiagttime becomes much higher in case of bimodal
stimulation than in case of unimodal stimulatio® (&. 30 ms). Conversely, at high input level,
settling time to bimodal stimulation decreases WwelR0 ms, while settling time to unimodal
stimulation increases to more than 40 ms. Suppresd lateral synapses in the multimodal area
[Fig. 19(b)] causes a dramatic reduction of segtlime (down to about 12 ms for both unimodal
and bimodal stimulation). Finally, if also unimodakeral synapses are suppressed (results not
shown for briefness) the settling time displaysudghfer minor decrease (down to 8-9 ms). In the
latter condition, the only feedback mechanism @gnfrmultimodal to unimodal areas. We can thus
conclude that the settling time is affected by fidmdback mechanism in the multimodal area, and
this time is reduced by high multimodal stimulation

In order to provide a deeper description of théed#nt factors affecting the settling time, in Fig.
19(a) we also show the output of the SC neuronthadnput to the SC neuron, distinguishing
between the visual input, the acoustic input, gterhl input (i.e., that due to lateral synapsehen
SC) and the net input (i.e., the sum of the previfactors). Results show that the settling time is
particularly high when the neuron works close #® ¢kntral region and its net input (due to the sum
of the input coming from the unimodal areas andlaberal inputs from other neurons in the SC) is
close to zero, or just a little positive. When ¢éxiton becomes much higher than inhibition, the
settling time decreases rapidly. Substantiallyflingt time dramatically falls when the overall
lateral excitation becomes comparable to the latehgbition, and lateral excitation and inhibition

balance.



158

DISCUSSION

Many studies in the last two decades describedokiysiological properties of neurons in the
superior colliculus which integrate stimuli fromffdrent sensory modalities, in order to produce
efferent motor commands, namely head and eyestatien (Kadunce et al. 1997, 2001; King and
Palmer 1985; Meredith and Stein 1986a, b; Perraull. 2003, 2005; Populin and Yin 2002;
Stanford et al. 2005; Wallace et al. 1998). Reshntim these studies contributed to individuate
some general principles ruling the integrative prtips of these neurons. First, two stimuli are
strongly integrated when they occur in close spatrad temporal register. On the other hand,
stimuli which do not overlap in space and time meagrt a reciprocal inhibitory influence (cross-
modal and within-modal suppression). Finally, nadtisory integration is much stronger for stimuli
individually less efficient in inducing a unisengaesponse (principle of inverse effectiveness).

All these experimental data provide a clear andepaft scenario on the properties of
multimodal neurons. This scenario is further supgmbby behavioural experiments both on animals
(Stein et al. 1988, 1989) and humans (Frassinedt. 002), showing facilitation or suppression of
attentive/orientation responses in the presencenaftimodal stimuli compared with unimodal
stimuli (Amlot et al. 2003; Bermant and Welch 19F8ens et al. 1995; Hughes et al. 1994; Perrott
et al. 1990).

These properties of multisensory integration deperat only on neuronal individual
characteristics, but also on the organization ef ¢hcuitry that processes unimodal stimuli and
conveys these stimuli toward multi-sensory neur@nsleeper insight into these mechanisms and
into the possible topology of the neural netwonkoired can be provided by mathematical models
and computer simulation techniques. Mathematicadetwallow the formulation of hypotheses in
rigorous quantitative terms, the validation/rejectiof these hypotheses on the basis of available
experimental data and the synthesis of multipledtedge into a coherent structure. In particular, in

the case of multisensory SC neurons, there aremitgsenough data to attempt an accurate analysis
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and validation with mathematical models, and thetlsssis of these data into a comprehensive,
although simplified, theoretical scenario.

In recent years, Patton et al. (2002) and Anasetsad. (2000) developed mathematical models,
based on a Bayesian approach, to study the prepeastineurons in the deep superior colliculus.
They postulated that these neurons compute thenoasprobability that a target is present in their
receptive field, and showed that this hypothesis eaplain cross-modal enhancement. In a
subsequent work (Patton and Anastasio 2003), thwme sauthors proposed some neural
implementations, based on modified perceptron nsdeld showed that these can explain cross-
modal enhancement and within-modality suppressi&ithough the latter models share some
aspects with our (especially in the use of sigmoma-linearities) there are also fundamental
differences. First, the authors do not explicithnsider the spatial arrangement of the input stimul
not their intensity, but modify the covariance bétinput channels (assuming that inputs of the
same modality have greater spontaneous covaridmme iputs of different modality). This
assumption may be true if the two unimodal stincoline from neurons with overlapping receptive
fields. Furthermore, the authors use a multiphetnteraction in their models. Our model adds
several new aspects: it considers the spatialiposaind the intensity of the input stimuli expligjt
and simulates the effect of competitive interadtianvolved in target detection. It analyzes
dynamical ranges to stimuli of increasing amplitudenally, it explains enhancement and
suppression without assuming multiplicative intdcat at the synaptic level, but considering a
Mexican-hat disposition of synapses between adjataurons.

In a further version of their model, Anastasio dPatton (2003) separately considered the
ascending and descending inputs to SC neuronstrameéd the connection weights from these
inputs with different rules, to have both unimodad multimodal neurons in the same theoretical
model. This differentiation is not considered inr amork, but may be the subject of future

extensions (see also discussion below).
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The present work was designed to elucidate possidaral mechanisms involved in
multisensory integration in SC by using a mathecaatinodel. To this aim, we developed a model
of a simple neural circuit which encompasses sévaethanisms, still maintaining a moderate
level of complexity. Actually, the model aspires tepresent a good compromise between
completeness, on one hand, and conceptual (andutatigmal) simplicity on the other.

The basic idea of this model is that multimodalmes in the superior colliculus receive their
inputs from two upstream unimodal areas, one devtiwea topological organisation of visual
stimuli and another devoted to a topological orgaton of auditory stimuli. For the sake of
simplicity, in this model somatosensory stimuli asglected, i.e., we consider only the problem of
audiovisual integration. Moreover, the exact lomatof these areas is not established in our model,
i.,e., we did not look for a definite anatomical nterpart. Experimental data suggest that
multisensory neurons are created by the convergehoeodality-specific afferents coming from
different sources (Edwards et al. 1979; Huerta ldading 1984; Wallace et al. 1993). Moreover,
results of recent experiments (Jiang et al. 20@&ngland Stein 2003) indicate that SC neurons
respond to these inputs in different ways: the mreaddi multisensory integration is altered depending
on the considered input sources and cortical desttdin. Limitations of our model in fitting these
experiments, and lines for future improvements|, el discussed at the end.

Several mechanisms have been included in this eirbpkal circuit, each with a specific
significance and a possible role in affecting finesponses: (1) non-linearities in the activation
function of single neurons (i.e., a lower threshaidl upper saturation, expressed with a sigmoidal
relationship). As will be commented below, thesalmearities are essential to understand some
important properties of multisensory integratiomicts as the inverse effectiveness, and the
possibility of superadditive, additive or subadditintegration. (2) Lateral synapses (excitatory or
inhibitory) among neurons in the same unimodal .aféeey have been modelled with a classical
“Mexican hat” disposition, i.e., a close facilitagaarea surrounded by an inhibitory annulus. These

synapses play a fundamental role in producingeheptive field of multimodal neurons. Moreover,
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they contribute to the within-modality suppressttmtumented in many experiments in the absence
of cross-modal suppression (Kadunce et al. 199D1R0(3) Feedforward connections from
unimodal to multimodal neurons. The strength ofséhesynapses affects the sensitivity of
multimodal neurons and their unisensory dynamiaabe (i.e., the maximum response to a single
stimulus of a given modality). (4) Lateral synapsesong multisensory neurons. These synapses
are necessary to obtain a significant cross-mgdaitppression between spatially separated
auditory and visual stimuli, as documented in réexperiments (Kadunce et al. 2001). Moreover,
they significantly affect the settling time of thessponse. (5) Excitatory backward connections from
multimodal neurons to unimodal neurons at the saspatial position. Inclusion of these
connections considers the possibility that the oasp by a multimodal neuron reinforces the
response at an earlier unimodal area (for instahe¢a strong visual stimulus may help perception
of a weak auditory stimulus in the same positiard &ice versa). In the present simulations the
strength of these backward connections has beentaired quite low, hence they do not play a
major role in simulation results. However, it magy ihteresting to investigate the possible effect of
a reinforcement of these synapses in further ssudie

In summary, although some important properties ha model (for instances, cross-modal
enhancement and inverse effectiveness) derive gigmoidal non-linearities, lateral synapses in
the unimodal and multi-modal areas also play aifsogmt role, explaining the suppression (either
within-modality or cross-modality) between two disstimuli and affecting the settling time of the
response. All elements included in the model acesgary to account for the variability of in vivo
SC cell behaviour.

By incorporating the previous mechanisms, and uairsingle set of parameters (see Table 1),
the model was able to make several predictionsghvban be compared with experimental data. In
the following, the main simulation results areicatly commented:

1. Inverse effectivenessAs it is evident in Figs. 5 and 6, the capacityrafltisensory neurons to

integrate crossmodal stimuli strongly depends @nitensity of unisensory inputs. As in Perrault
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et al. (2005), in the present work the facilitatanteraction has been quantified using two
alternative metrics, namely interactive index arahtrast. The first relates the multisensory
response to the stronger unisensory response. édoad relates the multisensory response to the
predicted sum of the two unisensory responses. Bwtrics are affected by the intensity of the
unisensory inputs, with cross-modal response etthgoa significant decrease if stimulus intensity
is progressively raised. This behaviour, whichnew as “inverse effectiveness”, is a consequence
of the non-linear property of neurons, and depemushe position on the sigmoidal relationship
after application of the more effective input. Tkin this mechanism, let us consider the case in
which, after application of the more effective wmsory stimulus, the SC neuron works at the
lower portion of its sigmoidal relationship, clogethe threshold. Here, application of a second
stimulus may move the working point into the lingaortion of the curve, thus causing a
disproportionate increase in the response compavégd that evoked by the first input
(superadditivity, enhancement greater than 100%)cdhtrast, if the neuron works in the central
(quasi-linear) region, the effect of a second shimus simply additive. Finally, if the upper
saturation region is approached one can have siibvagidsince a second stimulus can induce only
a minor increase in neuron activity. The last casaot simulated in this work since, with the
present value of feedforward synapses, a singlausits cannot move the working point close to the
upper saturation region. Sub-additivity, howevem de mimicked by increasing the feedforward
synapses.

Furthermore, recent experiments (Carriere, Royalydllace, 2008) on multisensory neurons in
the cortex (whose properties closely resemble tlebseultisensory neurons in the SC (Carriere et
al., 2008; Wallace et al., 1993)), have shown thaltisensory enhancement is stronger for input
stimuli applied at weakly effective positions withihe RF than at more effective locations. As
shown in Fig. 13, model predictions agree with tims/ivo observation: stimuli applied at the

border of RF produce greater enhancement than Istapplied at RF centre. Hence, the model is
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able to account for the principle of inverse effemess both as a function of the intensity
properties of input stimuli and of the spatial prdpes of stimuli location within the RF.

2. Dynamic range-The multisensory dynamic range of multimodal nesgrcs greater than the
unisensory dynamical range (Perrault et al. 200Bjs means that the maximal response evoked by
a combination of auditory and visual stimuli in s#ospatial and temporal register is greater than th
maximal response evoked by a single stimulus bkeitnodality (see Fig. 5 in Perrault et al. 2005).
Such a property is explained in our model by tresence of two sigmoidal relationships, disposed
in a series arrangement. Let us consider a sitigheilsis and progressively increase its intensity: i
our model, the maximal response in the SC (see4jigs determined by the upper saturation of
neurons in the upstream unimodal area, and byttaegth of the feedforward synapses linking this
unimodal neuron to the downstream (multimodal) aeUsynapse&® or k' in Eq. 10]. This input
does not lead multimodal neurons to saturation.s€quently, if we apply a combination of a visual
and an auditory stimulus, and progressively in@dasir intensity (multisensory dynamic range),
the downstream multimodal neuron can be driveneclds its upper saturation and exhibits a
greater response.

3. Cross-modality vs. within modality integratie#\ccording to the literature (Stein and
Meredith 1993) in our model a combination of twess-modal stimuli within the RF results in
significant enhancement of the SC response, busdhee effect is not visible when the two stimuli
are presented as a within-modality pair. A secoitimsmodality stimulus applied within the RF
causes just a mild enhancement (Fig. 7).

4. Spatial relationship between two (within-modalcooss-modal) stimuli-In agreement with
experimental data (Kadunce et al. 1997, 2001), madel shows that, as the spatial distance
between two stimuli increases, multisensory integnain SC layer shifts from enhancement to
suppression both using within-modality and crosshatity stimuli. However with our choice of
basal parameter values (Table 1), synapses in d@ahaweas do not play a relevant role and do not

affect suppression properties of superior collisulm these conditions both within-modality and
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cross-modality suppression depend mainly on thegmee of lateral inhibition in the multimodal
area (see Fig. 7). Hence, within-modality and crosslality suppression cannot be decoupled.
Previous results in the literature (Kadunce efl@B7) show the existence of different types of SC
multimodal neurons: some exhibit both cross-mogalguppression and within-modality
suppression (as in the exemplum in Fig. 7); otledsibit within modality suppression without
cross-modality suppression (as in Fig. 8 right pgn@&he model suggests that these differences can
be ascribed to a different balance between latehgbition in the unimodal and multimodal areas.
In fact, increasing lateral inhibition in the unidad area with poor lateral inhibition in the
multimodal area may explain within-modality supies without cross-modality suppression.

5. Temporal dynamiesAs illustrated in Figs. 18 and 19 the temporapmse to a combination
of two stimuli in different sensory modalities isuoh faster than the temporal response to a single
stimulus. Looking at Fig. 18, we can say that tettliag time evoked by two large stimuli is less
than half the settling time evoked by a single atim. Furthermore, sensitivity analysis (Fig. 19)
demonstrates that the observed settling time ectdtl not only by the inputs and time constants,
but also by the lateral feedback in the multimaatala. Hence its value is an emergent property of
the network which depends on the time requiredidedback mechanisms to reach a steady state
level. This time is significantly decreased by thWawge cross-modal stimuli compared with a
unimodal stimulus. In particular, as shown in Fl§, the settling time falls dramatically when
lateral inhibition is overcome by lateral excitati¢iowever, it is important to stress that theliseft
time in our model does not replicate the tempoedtgon of neuron response to real (auditory and
visual) input stimuli, as measured in vivo, butyorépresents the network dynamics. Actually, the
temporal pattern of neuron response during in experiments may depend on additional factors,
such as the time dynamics of the peripheral recgefgsuch as the retina and the cochlea), as well
the latency of the neural pathways from the reaeftdhe SC. Analysis of these factors is well

beyond the aim of the present work.
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However, we think that the 20-25 ms differenceattlimg times, evident in Figs. 18 and 19a
may be of interest, and may in part explain théedéhce in overt behaviour between multimodal
and unimodal stimulation observed during behavioexaeriments (Frens et al. 1995; Perrott et al.
1990).

An interesting aspect of our simulations (see 5)gs that the behaviour of a neuron in response
to a second stimulus can shift from entirely sugéitaze to superadditive—additive depending on
the intensity of the first stimulus applied. Thigrsfies that, contrarily to what frequently claiche
in the literature (Perrault et al. 2005), the betarof a neuron in terms of its multisensory castr
is not an intrinsic property, but depends on ittipalar operative conditions.

In summary, the results in Figs. 3, 4, 5, 6, 7,10,12, 13 and in Fig. 18 have been obtained
only by changing input stimuli, (i.e., modality témsity and spatial position), without altering any
parameter of the model. Therefore, they mimic teswhich can be obtained on a single neuron,
not on a group of different neurons. The purposs twashow that the model, designed on the basis
of few principles, with a single set of paramet@rsnce, representing a single case) can explain and
summarize several data, characterized by diffeyeogerties of the input.

An example of possible individual variability amongurons and classes of neurons, and the
importance of synaptic connections in the multisepsrea, has been investigated in Figs. 8, 9, 14,
15, 16 and 17, by changing the value of lateral teetiforward synapses in multimodal and
unimodal areas. These simulations emphasize thahpdyg to have within-modality suppression
without cross-modality suppression, as observesbme SC neurons (Kadunce et al. 1997).

Finally, we wish to comment on possible model latiadns, which may the subject of future
improvements. First, the structure of the modarastically simplified compared with the reality.
In our model, we assumed that the receptive fiefdscoustic and visual neurons, converging to the
same multimodal neuron, have a circular shape amdxactly centered at the same position in
space, with the visual neuron having a smaller Bfapgared with the acoustic neuron (hence, the

RF of visual neurons is entirely contained insiae RF of acoustic neurons). By contrast, as clearly
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documented in the literature, the two RFs do ndileka 100% overlap (although, as reported in

Kadunce et al. 2001, in many multisensory neurongenthan 70% of the visual RF is contained

within the area of the auditory RF). Moreover, insnsimulations we assumed that synapses within
a single area are perfectly symmetrical and thartetlis no difference in the properties of neurons
within the same area, except for the position efrtRF. Of course, in real networks, neurons and
synapses exhibit a random variability, and two pr@t neurons in the same area can exhibit
different properties and disparate responses. Oifsep these simplifications have been adopted to
have a more straightforward model, and to makettadysis of results easier.

A first step to overcome this limitation was presehin Fig. 9, where we locally modified the
values of synapses and displayed the activity idetmeurons in the same network with different
properties. These results show that the network lmaneasily changed, to account for the
simultaneous existence of neurons with differenpprties, as experimentally observed.

Another limitation of our model is the absence oed synapses between neurons in the two
unimodal areas. Indeed, a unimodal auditory ne(aicga A) and a unimodal visual neuron (area V)
communicate only indirectly, through the backwaxthapses coming from the multimodal SC
neuron (area SC). This choice has been adopteddaiwgdo a principle of parsimony, i.e., to limit
the number of mechanisms in the model. It is pdssitoowever, that neurons in unimodal areas
communicate also directly via lateral synapses. ddssible effect of these links on model response
may be the subject of future extensions.

Jiang et al. (2001) and Jiang and Stein (2003) destrated that the capacity of SC neurons to
integrate crossmodal sensory stimuli is stronglgeselent on influences from two cortical areas
[the anterior ectosylvian sulcus (AES) and the midateral suprasylvian sulcus (rLEHowever,
the response to unimodal stimuli remains largekaan even if these cortices are temporarily
deactivated (Jiang et al. 2001; Jiang and Steir8R0Chis aspect raises additional problems for a
mathematical model, which might be solved includimgre unimodal areas and/or a more complex

topology for the network. For instance, the twonuodal areas in the present model might represent
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the visual and auditory inputs from the AES (andhpps rLS), allowing multisensory integration
(either enhancement or suppression). In particukdlle AES contains distinct sensory
representations (a somatosensory, a visual andditogy region) and also has many multisensory
neurons. Yet, only unimodal neurons in the AES sapdts to the SC (Stein 1998; Wallace et al.
1993). Additional inputs from other cortical andsartical structures might be responsible for the
responses observed after deactivation of the AE®cel a more complete model should include at
least four distinct unimodal inputs (two visual ahslo auditory) to SC neurons, reflecting
descending inputs from cortico-collicular regiomesponsible for multisensory integration) and
ascending inputs coming from a variety of otherrsesi (which do not produce multisensory
integration). The present model considers onlyfitlsé (descending) inputs, hence cannot simulate
SC behaviour after AES and rLS deactivation. Ofrseudevelopment of the more complex model
might be the subject of future refinements andresitans.

Finally, it is important to stress that most of thkea mentioned in this work have been obtained
in anesthetized animals, hence the model presdmdez aspires to simulate these conditions. In
recent years, controversial results have been ghdali on the possible effect of anaesthetics on
bimodal enhancement in the superior colliculus. i/eBome authors report multisensory integration
and cross-modal enhancement in alert untrained @&ftslace et al. 1998) others observed
depressed enhancement in behaving cats comparedawésthetized animals (Frens and Van
Opstal 1998; Peck 1996; Populin 2005; Populin amd2002). There are two main aspects which
can in part explain these differences. First, sanmdors (Populin and Yin 2002) used a different
metrics to quantify multimodal enhancement in agritnals. By this measure, the authors consider
multimodal enhancement only in case of superadtitivn our model, superadditivity may be
converted to simple additivity, or even to subaddit by changing some model parameters.
Second, the SC receives a vast intrinsic inhibiteeywork (Mize et al. 1994), and receives both
ascending subcortical inputs and descending infpoiis cortical regions (such as AES and rLS). It

is thus possible that anaesthesia modifies sonanyeers in the model, alters the balance among
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the inputs, and/or the balance between inhibitiod excitation. These effects may be studied in
future versions of the model, including additionaputs and using a sensitivity analysis on

parameter changes and/or on input changes.
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CHAPTER 2.2. A NEURAL NETWORK MODEL DESCRIBING

SENSORY INTEGRATION IN THE SUPERIOR COLLICULUS

INTRODUCTION

SC neurons receive converging visual, auditory soghatosensory inputs from a variety of
cortical and subcortical areas (Edwards et al.,91%uerta and Harting, 1984; Wallace et al.,
1993). In the cat, some inputs to the SC descamd freurons in different regions of the associative
cortex, in particular the anterior ectosylvian sSICAES), and the rostral lateral suprasylvianisilc
(rLS), while other ascending projections come fr@mbcortical sources. These inputs are
topographically organized in sensory maps, withheadividual map in spatial register with the
others.

Several behavioural and neurophysiological regdleng et al., 2001 and Jiang and Stein, 2003)
demonstrated that the capability of SC neuronsitiegrate crossmodal sensory stimuli is strongly
dependent on influences from two cortical argag @nterior ectosylvian sulcus (AES) and the
rostral lateral suprasylvian sulcus (rLSDespite the response to unimodal stimuli remkrgely
intact, if these cortices are temporarily deactadatthe response to cross-modal stimuli simply
resembles that to the most effective of their umsey component (Jiang et al. 2001; Jiang and
Stein 2003).

Other experiments (Binns and Salt, 1996) stressdleeof a class of membrane receptors (N-
methyl-D-aspartateNMDA, receptors) in eliciting multisensory enhancementthe Superior
Colliculus neurons. These receptors are voltagemtignt and could work as detectors of spatial
and temporal coincident stimuli to the SC. Afteplagation of AP5, an NMDA receptor antagonist,

the response to multimodal stimuli is greatly rextljcand the response to stimuli of increasing
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amplitude is converted from non-linear to almoseér (Binns and Salt, 1996). These results
suggest that NMDA receptors are of great importanaaultisensory enhancement, and that non-
linearities of the SC neuron response, mediatethbge receptors, are important for multisensory
integration (Rowland et al., 2007).

This great number of results gathered in recentsyea multimodal integration in the SC may
now allow a theoretical formalisation via mathermaltimodels. In particular, a model may help
understanding the role of the different mechanismslved in the SC response, and the
relationships among the different inputs (cortieald non-cortical) which target to SC neurons.
However, just a few models have been proposed il

Anastasio, Patton et al. (Anastasio, Patton, & 8etkn-Boussaid, 2000; Patton, Belkacem-
Boussaid, & Anastasio, 2002; Anastasio and Paf003; ; Patton & Anastasio, 2003), Colonius
and Diederich (2004), Knill and Pouget (2004) relsedeveloped some models based on the
information theory, in which neurons implement tBayes rule. These models suggest that SC
neurons guarantee optimal performance for targetctien, by computing the posterior probability
that a target is present in their receptive fidlhreover, the models by Anastasio and Patton can
account for a variety of behaviour, including theistence of cross-modal enhancement, the
existence of both multimodal and unimodal neuransvall as within-modality suppression, given
only the added hypothesis that inputs of the sameéality have more spontaneous covariance than
those of different modalities (Anastasio, Pattomlet2003 ; Patton & Anastasio, 2003). However,
these models are based on information theory rétla@ron neurophysiological concepts.

Recently, Rowland et al. (2007) developed a contjautal model in which SC neurons receive
ascending and descending inputs. The model stréissele of NMDA receptors in producing
multisensory enhancement via a non-linear behawaduhe receptor level. However, it does not
include spatial information on the inputs nor agdoior mutual relationship among neurons with

different receptive fields.
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The first version of our model of multisensory mt&tion in the SC (see for details Chapter 2.1),
includes a topographical organization of neurons,R¥ad it can reproduce different experimental
results in the literature, such as the inversecsffeness rule, multisensory enhancement in
response to cross-modal stimuli in spatial registesss-modal and within-modal suppression in
response to stimuli with disparate spatial propsr{lJrsino et al., 2009). That version of the mpdel
however, accounted only for the presence of thecabidescending inputs, and so provided only a
partial description of the present knowledge on3kebehaviour. Due to this limitation, the model
was unable to explain SC behaviour after cortiegativation nor it could be used to analyze SC
changes during the development period in the diéelywhen descending inputs are probably weak
and still not-organized. A more sophisticate madelequired to study the relationships between
non-AES and AES sources, to describe the effectcartical deactivation on multisensory
integration and formulate hypotheses on possibleldpment changes.

Aim of this work is to present an improved versiofh the previous model, in which the
interaction between cortical AES and not-AES inmranultisensory SC neurons is described. The
model hypothesizes the existence of a competitieehanism between descending and ascending
sources, to explain results in the neurophysiokdditerature. Moreover, the role of non-linearstie
in neuron response is emphasized, in the sameabn|m previous modelling works (Anastasio,
Patton, & Belkacem-Boussaid, 2000; Patton, BelkaBewussaid, & Anastasio, 2002; Anastasio
and Patton, 2003; ; Patton & Anastasio, 2003; daokmand Diederich, 2004; Knill and Pouget,
2004; Rowland et al., 2007). Results demonstraa¢ the model is able to incorporate many
additional experimental results (including partiat total cortical deactivation and NMDA
blockade) into a comprehensive schema and to peawdications for future experimental and/or
theoretical work. In perspective, it may be usedstady the mechanisms at the basis of

development of multisensory integration in the yehfé.
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METHOD

General model structure

a)

VISUAL Area AUDITORY Area

receptors

Figure 7 — The general structure of the network (fig.1a) andsiphysiological counterpart (fig.1b)The four
projection areas (AES and non-AES) make excitatorgonnections (arrows) with the SC and with interneuons.
The interneurons work in concert to provide two conpetitive mechanisms based on their inhibitory synages
(black dots). Ha and Hv = interneurons receiving aditory (a) or visual (v) input from cortex; la, Iv =
interneurons receiving auditory and visual inputs fom non-AES areas.

The model involves 4 regions of sensory input (Sigel), each projecting topographically
to an area which represents the SC; two of thgad Breas represent unisensory projections
from AES, specifically AEV (visual) and FAES (aumy) regions; the other represent
unisensory visual and auditory inputs from non-AES). ascending) sources. Neurons in
the SC area are responsible for multisensory iategr. Each region is a chain of 100
neurons and its structure is arranged to keep @abpad geometrical similarity with the
external world: neurons of each area respond anstitnuli coming from a limited zone of
space. Neurons normally are in a silent state Xbibd just a mild basal activity) and can be
activated if stimulated by a sufficiently strongout. Furthermore, each neuron exhibits a
sigmoidal relationship (with lower threshold andpap saturation) and a first order
dynamics (with a given time constant). All theseaar have a topological organisation, i.e.,
proximal neurons respond to stimuli in proximalitioa of space.

Each element of the unisensory areas has its oweptige field (RF) that can be partially

superimposed on that of the other elements of Hmeesarea. Elements of the same
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unisensory area interact via lateral synapses,hwtan be both excitatory and inhibitory.
These synapses are arranged according to a MeXiaandisposition (i.e., a circular
excitatory region surrounded by a larger inhibitannulus).

Elements in the superior colliculus receive inplugsn neurons in the 4 unisensory areas
(visual and auditory) whose RFs are located in shene spatial position. Moreover,
elements in the SC are connected by lateral sysapgleich also have a Mexican hat
disposition.

The model also includes two different competitiveamanisms realized by means of 4
different populations of inhibitory interneuronshése interneurons do not act directly on
the input of the multimodal neurons in the collicsil but modulate the strength of ascending
excitatory synapses.

1. The first mechanism aims at to mimicking the effettthe cortex on non-AES
sources, assuming that, when the cortex is activdpminates on non-cortical
inputs. This is realized through two populationscoftical inhibitory interneurons
(Hy andH, in Fig. 1), which receive inputs from FAES neur@ml AEV neurons
respectively, and, if stimulated, inhibit stimulioming from non-AES (e.g.
ascending) sources.

2. the second competitive mechanism is realized thrabg interaction between the
inhibitory interneurond, andl,, so that the stronger unisensory input converging
from non-AES regions overwhelms the weaker.

Note that these regions of interneurons are ardhragea chain of 100 elements: each
interneuron receives its input only from one exoma neuron belonging to the

corresponding unisensory input regions.
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Mathematical description
The following notations will be used throughout thanuscript.
A quantity which refers to a single neuron will teenoted with one superscript (d@yand one

subscript (say). The superscript represents the region the ndugtongs to. The subscript £ 1,2,

..., N) denotes the spatial position of its receptivédfitn particular, the symbal” will be used to

represent neuron input, arl to represent the neuron activity (normalized betw@ and 1),
The following symbols will be used as superscriptslenote the nine different regions of the

model (see Fig. 1):

Ca (cortical auditory): FAES neurons:

Cv (cortical visual): AEV neurons;

Na not-FAES auditory neurons;

Nv. (not-cortical visual): not-AEV visual neurons;

Hv: cortical inhibitory interneurons which receivguts from AEV;,

Ha: cortical inhibitory interneurons which receiveutis from FAES;

la: inhibitory interneurons which receive inputs fromt-FAES;

Iv: inhibitory interneurons which receive inputs frowt-AEV;

Sm (superior colliculus multimodal): multimodal nems in the superior colliculus

Each excitatory synapse linking two neurons inedéht regions, both at the same posiiion
will be denoted with the symbaN"™*, where the first superscriph)(represents the target region
and the second superscrig} the region from where synapses originate. Eabibitory synapse
originating from an interneuron at positiorwill be denoted with the symboK™*, where the

meaning of symbols is the same as explained alitweelateral (excitatory or inhibitory) synapses

linking two neurons in the same region (but witffedient spatial position) will be denoted with
h - . .. . .. .
Li;, whereh is the region and the subscriptaindj represent the position of the post-synaptic

neuron and of the pre-synaptic neuron, respectively
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The receptive fields of unisensory areas

In the present version we assume that each aceariposed by a chain &f neurons (withiN =
100). Such a limited number of neurons was chosereduce the computational complexity for
computer implementation. The use of a monodimemasi@arrangement has a physiological
reliability since SC neurons are much more spedaifithe azimuthal direction than in the vertical
one (Stein, 1993; Stein, 1976). Neurons in each diféer in the position of their receptive fielg b
1.8°. Hence, each area covers 180° in the visgaljystic or multisensory space. In the following,
we will denote withx; the center of the RF of a generic neuradence, we can write:

x=18ideg I(=1,2,...,100)

The receptive field (sa®’(x)) of neuroni in the unisensory aresis described with a gaussian

function. Hence,

_05=x)?

2
R°(X) =R [ 2lot) s=Ca,Cv,Na,Nv; (1)
where the symbols represent a generic coordinate in spazg, is the standard deviation of the

Gaussian function (three standard deviations apmately cover the overall RF) anﬂagis a

parameter which sets the strength of the response.
According to Eq. (1), a stimulus presented at thsitppnx excites not only the neuron centered

in that zone, but also the proximal neurons wheseptive fields cover such position.
The sensory input®, that reaches the neurorin presence of a stimulus, is computed as the

inner product of the stimulus and the receptivilfiaVe can write:

(1) = [RO0) 0°(x, t)dx 0" R*(x) G°(x,t)px 2)

where,i%(x,t) is the external sensory stimulus presented atdbedinatex and at time, and the
right hand member of Eq. (2) means that the intdgaa been computed with the histogram rule (in

this work,4x = 1.8 deg).
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The activity in the unisensory areas
Unisensory neurons can be stimulated not only btereal inputs, but also through the
connections with other elements in the same area.

The input that a unisensory neuron gets from odfemnents of the same area is represented by

the quantity;’, defined as:

15t)=> 1, (1) s=Ca,Cv,Na,Nv; 3)

wherezjs(t) is thej-neuron’s activity (described below) ard; is the strength of the synaptic

connection from the pre-synaptic neuron at thetjposj to the post-synaptic neuron at the position

i. These synapses are symmetrical and arrangeddatgoo a “Mexican hat” function:

_ dx2 ~ dx2

2

LiS,j — Ls [ 2[(h§x)2 ) LS I 2[(10;) . S:Ca,CV, Na, NV, (4)

ex n

In this equation,L, and U:X define the excitatory Gaussian function, whifg and 0; the

inhibitory one, andly represents the distance between the pre-synapdipast-synaptic neurons.
To avoid undesired border effects, synapses haea bealized with a circular structure so that
every neuron of each area receives the same nurhb&te connections. This is realized assuming

the following expression for the distance:

(il if i-jj<N/2
dX_{N—|i—j| if i-j>N/2 ®)

According to the previous description, the totgbuh (say uf(t)) received by a unisensory
neuron at positionis computed as follows,

us(t)=rs(t)+15(@) ; s=Ca,Cv, Na,Nv. 6)
This is the sum of two components?, that represents the external sensory input;landoming

from the intra-area synapses.
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Finally, neuron activity is computed from its inptlirough a static sigmoidal relationship and a

first-order dynamic. This is described via theduoling differential equation:

Ts

L 2=+ o) s=Ca, Cv,Na v 2

T is the time constant, which determines the spéddecanswer to the stimulus, aw;ﬁt@ﬁ(t)) is a

sigmoidal function. The latter is described by filllowing equation:

or(t)=—

PP

s=Ca, Cv, Na\v (8)

where $° defines the input value at which neuron activitihalf the maximum (central point) and
p° sets the slope at the central point.

Such function identifies three regions of work, eleging on the intensity of the input: the sub-

threshold behaviour of a neuron, a linear regioouad 9°), and a saturation region. According to
the previous equation, the maximal neuron activgtyconventionally set at 1 (i.e., all neuron

activities are normalized to the maximum).

The competitive mechanisms

As said before, the network includes two compeditmechanisms realized by means of four
areas of inhibitory interneurons. These populatiagsunisensory, i.e. each area of interneurons is
stimulated only by inputs coming from one of tharfanisensory input regions.

The first mechanism reproduces the effect of ABE$egoon the ascending paths. It involves the
populationsHv andHa stimulated by AEV cortex or FAES cortex, respegiyv(accordingly to V.
Fuentes-Santamaria et al., 2007).

Inputs received by these interneurons are compasgéddllows:
UlHa(t) :WHa,Ca QCa(t) , (11)
UiHV(t) :WHV,CV ch(t) ; ( 12)
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where W™ and W™ represent intensities of synaptic connections &etwa pre-synaptic

neuron in the cortex and the corresponding elermetite relative interneurons area, agd, ™

are the activities of the unisensory neuron in FABR&ex and in AEV cortex.

The second mechanism involves the other two aréasterneurons)v andla. Elements of
these populations are stimulated by neurons baitgngr to the visual not-AEV area, or to the
auditory not-FAES area. The purpose of this medmaris to realize a competition between the two
inputs coming from not-AES sources so that thenggeo overwhelms the weaker. To this end,
interneurons of these regions receive not onlynaudtis from the corresponding unisensory region,
but also a reciprocally inhibitory input from thescanding interneuron of the other sensory
modality.

Inputs received by these interneurons are compasgeddilows:

0P () =W () -k 2 (13)

U0 =W () - K (14)
where symbolaV™* and K represent excitatory and inhibitory synapses ligkdifferent regions,
and z™*, z", Z*andz" are neuron activities at position

The activities are computed from the inputs throagstatic sigmoidal relationship and a first-

order dynamics analogous to Egs. (7) and (8) wigiesscriptHa, Hv, laandlv.

The activity in the multisensory area

Multisensory neurons in the superior colliculuseige inputs from neurons in the unisensory
regions whose RFs are located in the same positidfyurthermore, excitation from unisensory
areas is modulated by inhibitory interneurons ia fame spatial position. This choice has been
adopted since, according to experimental dataatiggory and visual RFs of a multisensory neuron

are in spatial register (Kadunce et al., 2001;edeh and Stein, 1996), i.e., they represent simila
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regions in space. Finally, neurons in the supextiiculus also receive lateral synapses form other
elements in the same area.

The auditory and visual inputs coming from FAES &gV regions are not inhibited, hence
they are simply computed as the product of the gynaveight and the activity of the upstream

unisensory neuron. We can write

SmCa WSmCa H' (15)

uiSva :VViSmCV Hin (16)
The overall auditory and visual inputs, coming fromat-FAES and not-AEV region, are
computed with a more complex equation, since tieitaory activity coming from the upstream
unimodal neuron is modulated by inhibitory synapdesparticular, the excitatory activity is
reduced by activity from both cortical interneurqaseasHa andHv) and from the activity of the

not-cortical interneuron with different sensory rabiy (eitherla or Iv). We have

u_Sm,Na( ) WSm,Na Na [([1 K Sm,Ha Ha )[([1 K SmHv Hv )[([1 K Smlv Iv ) (17)

uiSm,Nv( ) WSm,Nv Nv [([1 K Sm,Ha Ha )[([1 K SmHv Hv )[([1 K Smla Ia ) (18)
where the meaning of symbols is the same as exglahbove.
Finally, a multimodal neuron also receives laténglut (saylism(t)), form other neurons in the

same area. The latter term is computed as follows

157() => L) - (19)

j

We assumed that lateral synapses in the multisg@sea have a Mexican hat disposition. The

eqguation is:
dxz dxz
m=| S @ 2f R 2oy (20)
where the distanag has the same expression as in Eq. (5), and paesigf’, L", o>" and g 5"

set the strength and spatial disposition of lateyabpses.
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Finally, the overall inputy™(t), to a multisensory neuron can be computed asvsllo
W) = U (E) + U () + us™A(E) + Ut () +157() (21)

The activity of a multisensory neuron is computenhf its input by using equations similar to

Egs. (7) and (8).

Parameter assignment
The value of all model parameters is shown in Tab.

Table 5 — Parameter values used in the present mdde

AEV Area FAES Area
N 100 N 100
- lf” 1(1.8°) . }f” 15279
Ry’ ! R* 1
- Superior Colliculus Area
Lng 5.4 L‘;’j 42 L
o Ca N 100
o 2.8 (5.04°) o 2.8 (5.04°)
ex ex R
C C: Lls;n %2
LY 472 L* 355
m m Sm
Cv Ca L ex 38
G. 7.4 (13.32°) G, 7.4 (13.32°) E
m
L2 = G 3.5(6.3°
T 3 ms Tca 3 ms f;
- 6.2 (11.16°
5c . o . o, (11.169)
i 0.3 pe 0.3 T sm 3 ms
WI_HV’CV 15 (0 without NMDA) WiH”*C" 14 9 6
WS 7.7 (1 without NMDA) wsmca 59 P 03
Not-AEV Area Not-FAES Area Visual Cortical Interneurons (H,) Auditory Cortical Interneurons (H.)
N 100 N 100 N 100 N 100
o 10189 o 1.5 2.7°) Ty 3ms T ta 3ms
7 Hv Ha
R é\/v 1 R(;Na 1 94 3 9 3
Hv Ha
LY 54 e 42 P ! 4 :
Sm,Hy Sm,Ha
M N K 1 K 1
o 2.8 (5.04°) o 2.8 (5.04°) i i
ex ex
Y 472 e 3.55 - ]
in in Visual Interneurons (I,) Auditory Interneurons (I,)
Nv & Na o
G, 7.4 (13.32°) G, 7.4 (13.32°) . 100 N 100
Ty 3 ms T v 3 ms T 3 ms T 3 ms
8 ]\"v 6 S Na 6 9 {v 3 S Ia 3
P 0.3 pY 0.3 P 1 Y 1
VVilv,Nv 15 VV[Ia,Na 14 K[Ig,]v 33 KiIv,Ia 33
VV[Sm,Nv 5 VI/iSm,Na 4 K.Sm’lv 1 K.Sm,la 1
I 1

These parameters have been assigned starting fatanirdthe literature according to the main

criteria summarized below.
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Receptive fieldsagv ,Jsv and Usa, 026 have been given so that the receptive fields ef th
visual are approximately 10 deg in diameter, ama$éhof acoustic neurons approximately 10-15
deg in diameter, according to data reported in (ae et al., 2001)R>", R)Vand RS* , R*® are

set to 1, to establish a scale for the inputs geadrby the external stimuli.
Parameters of the excitatory neurons (sigmoidahtiehships and time constant$yr the sake
of simplicity, these parameters have been chosemalegr all neurons, independently of the

respective area. All together they are responédrleliciting the activity in SC neurons. The cexhtr

abscissa of neurons and receptafs, has been assigned to have small neuron activityasal
condition (i.e., without any external stimulus).eTélope of the sigmoidal relationships, has been
assigned to have a smooth transition from silencgaturation in response to unimodal and cross-
modal inputs (Perrault Jr et al., 2005). The tirmestant, describing neurons dynamics, agrees with
values (a few milliseconds) normally used in detarstic mean-field equations (Ben-Yishai et al.,
1995). In particular, this value can be choseniigamt smaller than the membrane time constant
(Treves, 1993).

Parameters of the inhibitory interneurons (sigmaiddationships and time constantgjlso in

this case parameters have been given the sames\fatuall inhibitory interneurons, independently

of their area. The slope>, and the central absciss2®, of the sigmoidal relationships have been
assigned to have a fast transition from silenceaturation in response to inputs coming from
unisensory areas, but a small basal activity inah&ence of any external stimulation. This allows
the implementation of a strong competitive mechanisven in the presence of a moderate
stimulation. The time constant is the same ashereixcitatory interneurons.

Lateral synapses in unimodal ared®arameters which establish the extension angtteagth

S

of lateral synapses in the unimodal areas (il§,, L.

n?

s s i
o.,and o,,) have been assigned to

simultaneously satisfy several criteria: i) theegance of an external stimulus produces an

activation bubble of neurons which approximatelyncme with the dimension of the receptive
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field; ii) according to data reported in Kadunceakt(Kadunce et al., 1997) we assumed that an
inhibitory area surrounds the activation bubblg;inhibition strength must be strong enough to
avoid instability, i.e., an uncontrolled excitatiomhich propagates to the overall area; iv)
stimulating the suppressive region with a secomdudis can induce a within-modality suppression
as high as 50% (Kadunce et al., 1997).

Lateral synapses in the superior collicullBarameters which establish the extension and the

Sm Sm
strength of lateral synapses in the SC areas (g.,L>", o, and o,, ) have been assigned to

Lin s
warrant that two cross-modal stimuli inside theemtre field cause enhancement (Stein and
Meredith, 1993), two unimodal stimuli inside the R&use no enhancement (or even a marginal
suppression at the boundary, according to datatexpo Alvarado et al., 2007a,b), and two cross-
modal or unimodal stimuli placed at far positions.( the first inside the RF, the second outside t

RF) cause a significant suppression, in agreeméhtdata reported in Kadunce et al. (Kadunce et

al., 1997; Kadunce et al., 2001).

Connections between AES subregions andT®€ parameters of feedforward connections from

the unisensory AES areas to the superior collic(ilas W™ andW*°"“*) have been set in order
to: a) have a significant multisensory enhanceminthave a greater dynamical range (i.e., the
excursion from sub-threshold to saturation act)vidff multisensory neurons in response to cross-
modal stimuli, compared with unimodal stimuli (j.a.single stimulus cannot lead the SC neuron to
saturation) (Perrault et al., 2005). Furthermanmethis work we assumed that the effect of a visual
stimulus on the SC neuron is moderately greaterpemed with the effect of an auditory stimulus
(Perrault et al., 2005).

Connections between not-AES subregions andT®E parameters of feedforward connections

from the unisensory not-AES areas to the supenticalus (i.e., W™ and W°>""*) have been

set to have unisensory responses 50% depressed, A#fe is deactivated, compared with those
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elicited by AES stimuli (a normal condition), inragment with data reported in Alvarado et al.
(Alvarado et al., 2007a,b).

Competitive mechanismg€onnections from neurons in the unisensory AESsrto cortical

interneurons (i.e W™ andW"*“*) are given so that even a moderate activity inAES cortex

can lead the interneuron close to saturation. &nhgil connections from unisensory neurons in not-

AES regions and interneurons (i.ay"™" and W'*"*) are given so that the corresponding
interneuron is lead close to saturation if the egponding not-AES region is moderately active.
Parameters which establish the strength of inhipiiofluence on the excitatory synapses (i.e.,
parameters<® in Egs. 17 and 18) have been set to 1; in thisn@arwhen the interneuron is in
saturation, the target excitatory synapses is cetalyl inhibited. Finally, inhibitory synapse¢"'"
and K" in Egs. 13 and 14, have been set to have a stramgemtakes all competition between
the two interneurons in the ascending route; hedceing cortical deactivation, the stronger

ascending unisensory input overwhelms the weaker.

RESULTS

Effect of cortical deactivation

A first set of simulations has been performed tmpare the behavior of the SC in response to
unimodal and crossmodal stimuli of different intéies, first with the intact cortex, and then aféer
total or partial deactivation of AES. Cortex deaation has been simulated by assigning a value
equal to zero to all output signals exiting frora tteactivated area.

Results obtained with the intact model are showign 2a. In response to unimodal auditory or
visual stimulation of increasing intensities, SQimoas exhibit a progressive augmentation in their
response, with saturation at 0.3-0.4 (i.e., abd#@% of the maximal SC response). Model

parameters were set so that the visual responseoderately higher than the auditory one, in
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agreement with data reported in (Perrault et 8052 Saturation in the SC depends on saturation in

neurons of the unimodal areas and on the valuakfas¢he synapses which link unimodal areas to

the SC.
a) . b) -
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Figure 8 —Behavior of the network as function of AES corteXhese figures show the activity of SC neurons in
response to different inputs with AES cortex active(fig.2a) or inhibited, fully (fig.2b) or only partially (AEV
inhibited, fig.2c, FAES inhibited, fig.2d). If the AES is totally inhibited (Fig. 2b) the SC shows nanultisensory
integration, the unisensory responses are reducedytabout 50% and the response to two cross-modal stuli
looks like the stronger unisensory one. If just théAEV cortex is inhibited, the SC presents a normatesponse to
an auditory stimulation, but the response to a uniradal visual stimulation is reduced by about 50% copared to
that produced when the AEV cortex is active. The mitisensory response looks like the stronger one (ithis case
the auditory one). In fig.2d FAES is inhibited: theSC response to a visual stimulation is unaffecteghereas the
response to an auditory stimulus is depressed comgal with the intact case; multisensory stimulationelicits a
response similar to the visual one. In all simulatins the activity was assessed by stimulating the oha with
auditory (dotted line), visual (dashed line) and mliisensory (solid line) inputs, at various intensies. The stimuli
were presented in the center of the RF of the obsexd SC neuron. Note the loss of multisensory integtion when
AES is deactivated even partially. Multisensory inégration capability needs both AES subregions activ

Cross-modal stimulation evokes a much greater respof SC neurons, which is superadditive
at small intensities of the input stimuli, and bees just additive at high intensities. The latter
result agrees with the inverse effectiveness rvlerédith and Stein 1986b; Perrault et al. 2003,

2005; Stanford et al. 2005; Stein and Meredith 1998llace et al. 1998).
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Two relevant changes are evident in the SC behafter total deactivation of cortical areas
(Fig. 2b). First, the unimodal responses are smtiken in the intact case, with upper saturation at
about 0.1-0.2 of the maximum activity (i.e., theuetion in the unimodal response is greater than
50%, accordingly with data presented in Alvaradalgt2007b, see Figure 1 and 2). Second, cross-
modal integration is completely lost: the respotseaired auditory and visual stimuli is just
trivially greater than the stronger of the two uodmal responses: the highest Multisensory
Enhancement computed by the model with AES dedetives equal to 6.3%. These results agree
with those reported in Alvarado et al. (2007a,byl an Jiang et al. (2001): after a complete
deactivation of AES the response to a cross-mddalkation is comparable to the response elicits
by the most effective unisensory component (seexample fig. 8 in Jiang et al., 2001, in which
the Response Enhancement % is between +9% and .-14%)

Further simulations have then been performed asgudeactivation of the visual cortex (AEV)
only (Fig. 2c) and of auditory cortex (FAES) onBid. 2d). Results show a significant reduction of
the unimodal response (more than 50%) in the miydaffected by the deactivation procedure,
whereas the other unimodal response is almost ngelda In these conditions too the multimodal
integration is lost and the multimodal responsgndistinguishable from the stronger unimodal one.

Results reported in Fig. 2b (total deactivationtlué cortex) have been obtained assuming a
strong competition between the two ascending paihghat the weaker stimulus is inhibited and
only the stronger can significantly affect the $Cdifferent behaviour can be obtained assuming a
weaker competition.

Fig.3 shows results of a sensitivity analysis, ihiaki weaker competition is simulated by
progressively reducing the strength of the inhilyiteynapses between the interneurons in the

Iv,la
K|

ascending path (i.e., parameteltﬁi'a"v and in Eqs. 13 and 14) during total cortical

deactivation. In case of strong competition, ther8€§ponse to cross modal stimuli resembles the
response to the stronger unisensory stimulus. Geale assuming weak competition, both

interneurong, andl, display non-zero activity and inhibit excitatiain the ascending path of the
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different sensory modality. As a consequence, theeSponse to cross-modal stimulation becomes
even smaller than the stronger individual unisensesponse. This apparently paradoxical result,
which is a consequence of the supposed competitiothe ascending routes, finds several

experimental confirms. Cases of multisensory respsnweaker than the dominant unisensory

response are reported, for instance, in Jiang €2@0D1, see Fig. 9) after AES deactivation.

051 _ — visual Stimulation
-— - Auditory Stimulation a Synapses Iv-la = 33
——  Cross-modal Stimulation | ®2Ynapsesiv-la=13
0.4l o Synapses lv-la =12
) dSynapses Iv-la=10
0.3
0.2
0.1
0 - £ | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

Figure 9 —Sensitivity analysis of the strength of inhibitogompetition in the ascending path The figure shows the
activity of SC neurons (continuous lines) in respee to different cross-modal inputs during total AES
deactivation (the same case as in fig.2b) and assing a different strength for the inhibitory synapses between
the interneurons in the ascending path (i.e., parasters Ki'a"" and Ki'VJa in Egs. 13 and 14). The responses to

unimodal (auditory or visual) stimulation are also shown for comparison (dashed lines). In case of sing
competition ( Ki'a"V and Ki'V"a greater than 15), the SC response to cross moddinsuli resembles the response

to the stronger unisensory stimulus. Conversely, aaming weak competition (Kila,lv and Ki'V"a smaller than 12-

13) the SC response to cross-modal stimulation beoes smaller than the stronger individual unisensory
response.

Effect of NMDA deactivation

A few experimental results suggest that multisensotegration in the SC depends on the
presence of NMDA receptors (Binns and Salt, 1996)particular, the responses to cross-modal
stimuli are consistently reduced during applicatioh AP5, an NMDA receptor antagonist.

Moreover, the response to unimodal visual stimidi greatly reduced, whereas inconsistent results
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are reported for what concerns the response toadahauditory stimuli. These results may reflect
a different functional role of NMDA receptors inrgptic transmission of auditory and visual

response in the SC (Binns and Salt, 1996).

a)

AES active - no NMDA Figure 10 —Behavior of the network with

Up Multisensory stimulus NMDA receptors deactivatedThe upper
0.9} - Auditory stimulus panel shows the activity of SC neurons

0.8l == Visual stimulus after deactivation of NMDA receptors, in
-- V+A the same simulations as in Fig. 2.
iy Deactivation of NMDA receptors causes a
0.6 43% decrease in the unimodal response to

) visual stimuli, whereas it barely influences
e auditory response (-7%). The multisensory
) response is significantly reduced too and
0.3 o ce==e-e=e=======  yaglts lower than the sum of unisensory
- responses at every input intensity
(subadditivity). The lower panel compares
the multimodal responses in the intact case
0 5 10 15 20 25 30 35 40 45 50 and after NMDA deactivation. It is worth
External Input noting that the characteristic becomes
quite linear after deactivation.
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and Salt (1996) we assumed that
deactivation of NMDA receptors by
AP5 greatly reduces the strength of

all synapses which exit from cortical

SC neurons normalized activity

area AEV (the reduction is reported

0 5 10 15 20 25 30
2L in Tab. 1) but does not significantly

affect synapses exiting from area FAES. Resultsshmvn in Fig. 4a as a function of the input
intensity. By comparing this figure with the unaffied case (i.e., Fig. 2a) one can observe that
simulation of NMDA inactivation causes a signifitaaduction in the visual response, a moderate
reduction in the auditory response, and a strorduat®on in the multisensory response. In
particular, a mild cross-modal enhancement stituog, but it is now sub-additive. The cross-modal
response to two paired auditory and visual stinmljust scarcely greater than the unimodal

auditory response. These results agree fairly wigl those reported by Binns and Salt (1996).
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Fig. 4b compares the cross-modal response of thde3@e and after NMDA deactivation.
Results clearly show that the characteristic “nawaotivity vs. stimulus intensity” is strongly non-
linear in the intact condition, but becomes quiteadr after NMDA deactivation. This results agree

with data shown in (Binns and Salt, 1996; Rowlandl e 2007).
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Figure 11 — Unisensory and multisensory responses with NMDA eptors active or inhibited Activities were
assessed by presenting to the network auditory (difgrey bars), visual (light-grey bars) and multisessory (black
bars) inputs at two different intensities (I=50, fg.5.a, i.e., close to saturation; 1=20, fig.5b, i.gust above
threshold) at the center of the RF both with NMDA receptors active (filled bars) and inhibited (emptybars). It is
worth noting that the visual response is more afféed (50%) by the NMDA inhibition than the auditory one, and
the cross-modal response is reduced more than thers of the unimodal stimuli.

In order to allow a more direct comparison betwgedel results and real data, Fig. 5 shows
the reduction in the SC response after NMDA deatiw in the three cases of visual unimodal,
auditory unimodal and cross-modal stimulation. Teerease in the sum of the two unimodal
responses is also reported. Model results are @véwo different levels of the input stimuli: high
intensity close to saturation of the unimodal nesrdFig. 5a); moderate intensity, when the
unimodal neurons work just above threshold (Fig. $be data by Binns and Salt agree quite well
with those obtained with the model at high inpuemsities. In particular, the simulated effect of
AP5 reduces the visual response by 43.4% in theeh{d® + 9% in Binns and Salt). The response
to the auditory stimulus was reduced by 6.7% in riedel (-4 £ 21% in Binns and Salt). The

response to the combined stimuli was reduced b§%62n the model (59 £ 7% in Binns and Salt)
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while the sum of the single modality response vemhiced by 27.9% in the model (26 + 10% in

Binns and Salt).

Inputs with different spatial position

An important characteristic of SC neurons is they wlaey integrate stimuli coming from
different spatial positions. If a second stimulsigpplied outside the RF of an SC neuron, it fails
produce enhancement or may even cause a depraxsitoe SC response (Meredith and Stein
1986b, 1996; Meredith et al. 1987; Stein et al.31%ein and Wallace 1996; Wallace et al. 1996,
1998). This phenomenon occurs both in case of twwmadal stimuli with disparate spatial position
(unimodal depression) and in case of spatially alsfe cross-modal stimuli (cross-modal
depression).

In order to study this phenomenon, the model wiasusated with two simultaneous stimuli, the
first located at the center of the RF of the ta§@tneuron, the second at a given distance from the

center. Both stimuli have a large intensity, iteey can lead unimodal neurons close to saturation.
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Figure 12 —Integration as a function of the position of twoistuli. The figures show the response of the network
to paired stimuli in different spatial configurations. Simulations are made by stimulating the model ith an
auditory (fig.6a) or a visual (fig. 6b) stimulus atthe center of the RF of the observed SC neuron. &hresponse
elicited by this unimodal stimulus (dotted thin line, in case of auditory stimulation; dashed thin lie, for visual
stimulation) is then compared with those produced ¥ coupling either a second stimulus of the same sy
modality (dotted thick line, for auditory input; da shed thick line, for visual input) or a stimulus of different
sensory modality (solid lines) in different positios. The x axis displays the relative position of # second
stimulus relative to the center of the RF. x=0° ma#s that both stimuli are at the center of the RF; mcreasing x
means that the position of the second stimulus isare and more far from the RF. Results show: multisesory
enhancement in case of cross-modal stimulation irk the RF irrespective of the position of the twotsnuli; no
unisensory enhancement within the RF; multisensoryand unisensory inhibition in case of two stimuli fa in
space.
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The effect of various distances was tested (see big and b). In any case, we left enough time
after application of the second stimulus for thedelido reach a final steady-state condition (i.e.,
only stationary states are examined here). Resalitajned with the intact cortex, are summarized
in Fig. 6a in the case of a central auditory stusuland in Fig. 6b in the case of a central visual
stimulus.

The following conclusions can be drawn from theuliss A second cross-modal stimulus
positioned at the center of the RF causes a stgmfi enhancement (about 100-150% in the
exempla in Fig.6 relative position = 0°). Conveyselo significant enhancement occurs when a
second unimodal stimulus is positioned at the Rifitere If the second cross modal stimulus is
located at the margin of the RF (Fig.6 relativeijas = 3.6°) one can still observe a cross-modal
enhancement (especially in the case of a centmlaVvistimulus), whereas a second unimodal
stimulus located at the periphery of the RF cansederate depression. The latter result agrees with
data reported in Alvarado et al. (Alvarado et 2007a,b). Finally, a second stimulus located far
from the RF (i.e., not in spatial register with tirst) induces a significant depression of the SC

response (Fig. 6 relative position = 8-18°), batlcase of unimodal and cross-modal stimulation.
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Figure 13 —The effect of AES cortex on the integratiorhe same simulations as in Fig. 6 performed afte
inactivation of the AES cortex. Results show: 1) aeduction in the SC response both to a unisensorynd to a

multisensory stimulation; 2) the loss of multisensty enhancement in case of cross-modal stimulatiomside the
RF: the response of the network looks like the onelicited by the strongest unisensory input; 3) a fght

inhibition in case of two stimuli of the same or dferent sensory modality far in space.

Finally, Fig. 7 shows the effect of two stimuli different spatial position (these are the same
simulations as in Fig. 6) after deactivation of &tS. In this condition, as already shown in Fig. 2

cross-modal enhancement disappears, and the ovesalbnse is much weaker than in the intact
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case. Moreover, one can observe that cross-modal@modal depression are still evident in case
of distant stimuli, although the cross-modal degigasis weaker than in the intact case (With AES
deactivated the maximum cross-modal depressionAviiked is 25% and the unisensory is 22.6%
while with AES active cross-modal depression iS%d,.while the maximum unisensory depression
is 28.1%; in the case of V fixed with AES active ave a cross-modal depression of 25.2% and a
unisensory one of 23.7%, while with AES deactivated have 19.4% for the cross-modal
depression and 20.6% for the unisensory one).

It's worth noting, in Fig. 7a, that a second viss@mulus placed at the center of the RF causes
an increase in the overall response. However, tlaisnot be considered as a cross-modal
enhancement since, in agreement with Fig. 7b, itted fesponse is almost indistinguishable from

the response produced by a visual stimulus alone.

DISCUSSION

In the present work we developed and validatedva medel of multisensory integration in the
cat superior colliculus, to embed disparate infdromafrom the present literature into a coherent
comprehensive framework. The model aspires to atdou several results, including the presence
of cross-modal enhancement, cross modal and uninsag@aression, the inverse effectiveness, the
effect of selective cortical deactivation and thiée@ of NMDA blockade. The model was
developed using only a few basic mechanisms, whegdpect neurophysiological principles,
although some of them are still hypothetical. Mpeaticularly, the fundamental aspects of the
model are: i) SC neurons receive inputs from foiffe®ent unisensory sources; two of them
descending from the cortex (AES) and two ascenftimg subcortical structures. Moreover, these
unisensory inputs are in spatial register and dbeg topological organisation. The presence of
descending and ascending inputs is well documant#tk literature. Subcortical inputs may reach

the SC directly from the eye and spinal cord, onfra variety of subcortical nuclei (Stein and
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Meredith, 1993). Descending inputs originate fro8SAand rLS (McHaffie et al. 1988; Meredith
and Clemo 1989; Stein et al. 1983; Wallace et 883). An interesting aspect, which seems to
contradict the present assumptions, is that the AES includes multisensory neurons, able to
associate cross modal inputs. However, these newl@mot target to the SC but constitute a circuit
independent form the SC (Wallace et al., 1993). Meel considers only unisensory AES neurons
and their projections to the SC, by neglectingabsociation role of the AES cortex. ii) All neuson
exhibit a non-linear characteristic, with lowerdshold and upper saturation. This is a well-known
behaviour of neurons. This non-linear characteris$i essential to permit the passage from
superadditive enhancement in case of mild stinouidditive or subadditive enhancement in case of
large stimuli, according to the inverse effectivenprinciple. Moreover, the model predicts that, i
case of a depression in the target synapses @s@&of NMDA blockade), the response in the SC
becomes more linear, since the neuron does noh réacsaturation region. iii) The model
hypothesizes the presence of a Mexican hat disposfior the synapses within the unimodal
regions. This assumption allows the formation oféa“activation bubbles” in all areas and, above
all, can explain the occurrence of cross-modal amdhodal suppression in case of stimuli with
spatial disparity. The presence of Mexican hat @bgpn of synapses is well documented in the
cortex, and is strictly related with the formatiohtopological maps. This assumption is perhaps
less documented for what concerns subcortical tstres. A consequence of having assumed a
Mexican hat arrangement for synapses in the subabriegions is that the model still exhibits
cross-modal and within-modal suppression to stinmdt in spatial register even after AES
deactivation (see Fig. 6). This result may be thigiext of future experimental validation. iv) The
most hypothetical aspect of the model concerngitibn. In particular, two inhibitory mechanisms
have been incorporated. The first assumes thaldbeending inputs, when present, can inhibit the
ascending ones. This mechanism is necessary tdasemiine loss of multisensory enhancement
occurring after selective cortical deactivationr(fostance, several authors observed that, after

selective deactivation of the AEV, cross-modal emeanent is lost, i.e. a visual stimulus does not
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enhance the auditory response. This implies a bbd¢ke ascending visual input to the SC by the
descending auditory stimulus). The second mechaassumes a strong competition between the
two ascending sources, so that the dominant asognguts causes the almost complete inhibition
of the other (winner takes all dynamics, WTA). 8tgocompetition was necessary to mimic the
observation that, during total AES deactivation, B6es the capacity to integrate multisensory
cues, and neuron response in most cases reseralds the dominant unisensory stimulus (Jiang
et al., 2001). Although the presence of a WTA dymearn the ascending path is just hypothetical at
the present stage, this kind of interaction is degly met in the brain, especially for the selatti

of sensory inputs. For instance, WTA dynamics mayessential in some kinds of selective
attention mechanisms, to avoid the interferencenfitess relevant inputs which are treated as
“distractors”. The model suggests that selectiontleg stronger sensory input via a WTA
mechanism, may be the original choice implementethé subcortical ascending path, whereas a
more sophisticate “sensory fusion strategy”, ablexploit the presence of different sensory inputs
in spatial and temporal register, may have evolssequently from the cortex. In the cat, this
second mechanism maturates only in the early mooftHge under the influence of correlated
sensory stimuli from the environment (Wallace atelr§ 2007)

It is worth noting that, using the previous asstioms and a single set of parameters, the model
is able to mimic several different kinds of behawiaeported in the literature, not only in
gualitative but also in acceptable quantitativeeagrent. The changes in SC response to unimodal
and cross-modal stimuli after total or selectivaaivation of the cortex (realized by eliminatirf a
input afferents from the deactivated area) ar&énrange reported in the literature (see Alvarado e
al., 2007a,b; Jiang et al., 2001) as we describéde “Results” section.

In order to simulate experiments consisting of NMDMckade, we included an additional
hypothesis. The simpler way to simulate the abseh®VDA receptor was to reduce the synaptic
strength from AES to the SC. This hypothesis is@aable since synaptic efficacy is related with

the numbers of ion channels opened by the stimlichy in turn, is receptor-dependent. Binns and
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Salt (1996) observed that NMDA blockade stronglguees the SC response to visual stimuli
presented alone, whereas the response to auditonulis exhibited only minor changes.
Accordingly, in the model we assumed that NMDA liade strongly reduces synapses targeting
from AEV to the SC, whereas synapses from FAESG@& only moderately affected. Using this
simple hypothesis the model can explain not onéyghrcentage changes in SC response observed
after unimodal (auditory and visual) stimulatiomt lalso the changes in the multimodal responses
and the shift from non-linear to linear characterisf the neuron. Possible reasons why NMDA
blockade can affect the visual descending path rtiae the auditory one are discussed in Binns
and Salt (1996): the authors mention the posgibilitat there are different types of NMDA
receptors with different pharmacological propertresisual, auditory or somatosensory inputs, or
that NMDA vs. AMPA receptors may have a relativdifferent importance in the mediation of
visual vs. the auditory response.

Of course, the present model exhibits importantpéifroation, which must be recognized and
justified, and may become the target of future iovements.

A first simplification is that we neglected the eadf the rLS. This simplification is justified by
the observation that AES appears to be a more tapomediator of multisensory integration than
rLS (Jiang et al., 2001). In many SC neurons thdtisemsory enhancement depends only on
influences from AES: enhancement is eliminatedrdpAES deactivation whereas deactivating the
rLS has almost no effect on neuron response. Hawewesome SC neurons multisensory
enhancement depends on an intact rLS (see FigStein, 2005) while, in some additional cases,
both AES and rLS seem able to induce multisensohaecement even in the absence of the other
area (see Fig. 6 in Stein, 2005).

In the present work we decided to include onlyréggon AES (further subdivided into the AEV
and FAES) according to a parsimony principle. Is@a of another cortical region (rLS) could be
done by simply adding two additional unisensoryaarén the model with the corresponding

descending connections to the SC; however, thiscehwould have increased the computational
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complexity of the model and the number of paransetethout evident conceptual benefits. We

expect that, using two different cortical regioasd different (perhaps random) weights for the
descending synapses, one may conceive a model ich wiultisensory integration in some SC

neurons may depend on the AES only, on the rLS onbyn both. However, these aspects are well
beyond the aim of the present work.

A further simplification in the present model imtmeurons in each area are arranged according
to a unidimensional chain, whereas a two-dimensilatzce was used in previous works (Magosso
et al., 2008; Ursino et al., 2009). This simplifioa dramatically reduces the computational cost
(especially for what concerns the number of synsjps@ill maintaining all main conceptual
properties of the model. Furthermore, this simgdifion is justified since SC neurons are more
specific in the azimuthal direction than in thetieal one. Hence, even the use of a uniform bi-
dimensional lattice would represent a simplificataf reality.

Finally, it is important to discuss what may be tbke of the present model in future research.
The fundamental role of mathematical models in oglysiology is to propose possible
mechanisms able to explain existing data, and ¢gest further experiments to validate or reject
the proposed hypotheses. In this regard, the pregamk exhibits important aspects of novelty. It
suggests the presence of competitive mechanismgebetthe different sources which target into
the SC neurons. There is at present no anatomraigrece that GABAergic SC interneurons have
the same disposition assumed in the present modelthat interneurons receiving descending
inputs act on the ascending paths, while thosewviegeascending inputs work on the ascending
path of the other sensory modality via a competitivechanism. A consequence of this hypothesis
is that, in case of winner takes all dynamics,(s&rong competition), the response of the SC meuro
after AES deactivation equals the response to ttenger input. However, in case of weaker
competitive mechanism (which may occur due to dtundividual variability among neurons and

synapses), the response of the SC neuron to a-mmdal stimulation after AES deactivation
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becomes weaker than the stronger unisensory resgtns is the exemplum presented in Fig. 3).
There are some experimental confirms of this reéliling et al., 2001).

Another hypothesis, which may drive future expentaéstrategies, is that NMDA receptors are
important on the visual descending paths, but lzaless evident role on the auditory descending
path as well as on both ascending paths. In p#aticin case of NMDA blockade, the model
predicts that the descending visual path is dra$ticeduced, and so the ascending visual path
becomes relevant in producing the final responsesteal unisensory stimulation.

In our opinion, however, the most important conttibn of the present model in the future
research may be in the study of multisensory maturaluring the early months of life. Wallace
and Stein (1997) observed that the number of nemisisry neurons in the SC gradually increases
during the first postnatal months, and that thesrdmwst multisensory neurons do not exhibit
significant enhancement. Subsequently, WallaceStaoh (2000 and 2007) observed that the onset
of multisensory integration depends on corticaluefces, as well as on the presence of correlated
input stimuli (for instance auditory and visual sue spatial register) from the environment. Hence,
the present model, with the addition of some leaymules, may be used to formulate hypothesis on
synaptic plasticity during the early months lifedaverify the effect of these hypotheses on SC
multisensory integration characteristics. This rbayof great value to gain a deepen understanding
on the mechanisms of multisensory maturation andhenbasic organization which drives the

formation of an adult SC.
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CONCLUSIONS

The models proposed in this work provide severalrauds to the experimental knowledge and
research: on one hand, our models can be of valaktify understanding of in-vivo data available
in literature; on the other hand, they can suggesel and fruitful routes for further investigatioh
the examined cognitive processes.

In particular, the models point out plausible secesaabout the functioning of some neural
structures (in particular the SC), difficult to &me only by means of classical experimental
methods, and identify, with neurobiological cormmsty, possible neural mechanisms underlying
high level cognitive processes (object recognitmmemorization, and semantic memory).

Within these theoretical frameworks, several experital data are coherently synthesized, and
the variability of in-vivo data is explained, asung it to few parameters modifications.
Experimental results acquire more value and cabdir exploited when their relationships are
evidenced in rigorous quantitative terms.

In addition, model predictions can suggest theterie of additional mechanisms in the neural
circuits (e.g. top-down attentive mechanisms toolkes perceptual conflicts or new language
learning mechanisms), that may become the subpédigure novel and fruitful neurophysiologic
experiments.

In the following, the main contributions of the net&lin each area of this research activity, are
briefly highlighted:

Object representation and semantic memory- These models, by using simple Gestalt rules

of similarity and previous knowledge, and time dign to detect multiple contemporary objects:
() give a plausible interpretation of neural meukens, in particular thg-band synchronization,

involved in high level cognitive processes suchblgigct recognition and semantic memory;
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(i) are able to implement a theoretical structtinat incorporates the last conceptual theories
present in literature and reproduces neurophysicébgata;

(i) realize, via a neurobiological plausible Hedi learning algorithm, a bidirectional relatiornshi
between cortical representations of abstract abjexid a lessical area, devoted to words
representation;

(iv) can be exploited to form classes of objects] & detect category membership, without the
need for a hierarchical representation of objects.

SC multisensory integration capabilities— The proposed models provide a potential scenario

of neural circuitries and mechanisms underling mseftsory integration in the SC. The main
strengths of the model can be resumed as follows:

(i) it is entirely based on neurobiologically pléle mechanisms;

(i) with a single set of parameters it is ablestmulate several characteristics of SC neurons in
guantitative agreement with experimental findingsulfisensory enhancement, inverse
effectiveness, within-modality and cross-modaliiypgression, effect of cortical deactivation, role
of NMDA receptors);

(iif) changes in some model parameters, still namhg the same network topology, can explain
the variability of in-vivo SC cell behaviour andcacint for some perception illusions;

(iv) it maintains a moderate level of computatioo@mnplexity;

(v) it can be useful to investigate the mechaniamelved in maturation of multisensory
capabilities during early life.

Finally, in subsequent studies these mathematicadets, with suitable modifications and
extensions, may be used to address further cognipwoblems, such as investigate the
developmental changes responsible for the formatioa multimodal space representation, shed
light on neurological deficits in audio-visual peption, assess the potential effects of rehabdiat

paradigms, explore the learning paradigms in lagguecquisition.
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