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Thesis abstract

Impairment of postural control is a common consequence of
Parkinson’s disease (PD) that becomes more and more critical with the
progression of the disease, in spite of the available medications. Postural
instability is one of the most disabling features of PD and induces difficulties
with postural transitions, initiation of movements, gait disorders, inability
to live independently at home, and is the major cause of falls. Falls are
frequent (with over 38% falling each year) and may induce adverse
consequences like soft tissue injuries, hip fractures, and immobility due to
fear of falling. As the disease progresses, both postural instability and fear
of falling worsen, which leads patients with PD to become increasingly
immobilized.

The main aims of this dissertation are to: 1) detect and assess, in a
quantitative way, impairments of postural control in PD subjects,
investigate the central mechanisms that control such motor performance,
and how these mechanism are affected by levodopa; 2) develop and
validate a protocol, using wearable inertial sensors, to measure postural
sway and postural transitions prior to step initiation; 3) find quantitative
measures sensitive to impairments of postural control in early stages of PD
and quantitative biomarkers of disease progression; and 4) test the
feasibility and effects of a recently-developed audio-biofeedback system in
maintaining balance in subjects with PD.

In the first set of studies, we showed how PD reduces functional
limits of stability as well as the magnitude and velocity of postural
preparation during voluntary, forward and backward leaning while
standing. Levodopa improves the limits of stability but not the postural
strategies used to achieve the leaning. Further, we found a strong
relationship between backward voluntary limits of stability and size of
automatic postural response to backward perturbations in control subjects
and in PD subjects ON medication. Such relation might suggest that the
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central nervous system presets postural response parameters based on
perceived maximum limits and this presetting is absent in PD patients OFF
medication but restored with levodopa replacement.

Furthermore, we investigated how the size of preparatory postural
adjustments (APAs) prior to step initiation depend on initial stance width.
We found that patients with PD did not scale up the size of their APA with
stance width as much as control subjects so they had much more difficulty
initiating a step from a wide stance than from a narrow stance. This results
supports the hypothesis that subjects with PD maintain a narrow stance as
a compensation for their inability to sufficiently increase the size of their
lateral APA to allow speedy step initiation in wide stance.

In the second set of studies, we demonstrated that it is possible to
use wearable accelerometers to quantify postural performance during quiet
stance and step initiation balance tasks in healthy subjects. We used a
model to predict center of pressure displacements associated with
accelerations at the upper and lower back and thigh. This approach allows
the measurement of balance control without the use of a force platform
outside the laboratory environment.

We used wearable accelerometers on a population of early,
untreated PD patients, and found that postural control in stance and
postural preparation prior to a step are impaired early in the disease when
the typical balance and gait intiation symptoms are not yet clearly
manifested. These novel results suggest that technological measures of
postural control can be more sensitive than clinical measures. Furthermore,
we assessed spontaneous sway and step initiation longitudinally across 1
year in patients with early, untreated PD. We found that changes in trunk
sway, and especially movement smoothness, measured as Jerk, could be
used as an objective measure of PD and its progression.

In the third set of studies, we studied the feasibility of adapting an
existing audio-biofeedback device to improve balance control in patients
with PD. Preliminary results showed that PD subjects found the system
easy-to-use and helpful, and they were able to correctly follow the audio
information when available. Audiobiofeedback improved the properties of
trunk sway during quiet stance.
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Our results have many implications for i) the understanding the
central mechanisms that control postural motor performance, and how
these mechanisms are affected by levodopa; ii) the design of innovative
protocols for measuring and remote monitoring of motor performance in
the elderly or subjects with PD; and iii) the development of technologies for
improving balance, mobility, and consequently quality of life in patients
with balance disorders, such as PD patients with augmented biofeedback
paradigms.
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Chapter 1

Introduction
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Objectives of this thesis

The objectives of this thesis are:

To detect and assess, in a quantitative way, postural impairments in
subjects with PD. Also, to investigate the central mechanisms that
control postural motor performance, and how these mechanisms
are affected by levodopa.

Because the motor impairments in subjects with PD are strongly time-

varying and context-dependent, traditional approaches to quantify postural

impairments bsed on sample observations taken in a sophisticated
movement analysis laboratory setting may have a limited validity. New,

state-of-the-art technologies provide valuable tools for developing more
sophisticated and dedicated portable systems for anywhere-anytime
monitoring of PD subjects’ postural motor behavior.

For this reason, other objectives of this thesis are:

To develop and validate a new protocol, using wearable inertial
sensors to measure postural sway and postural transitions.

For this aim, we determined: i) the optimal number and ii) the
combination of sensors (accelerometers, gyros and compasses), and
iii) their placement on the body and validated this approach to
estimating center of pressure from accelerometers with young,
healthy subjects.

To investigate postural sway and postural transitions in untreated,
early-to-moderate PD subjects, in order to find: i) quantitative
measures sensitive to motor impairments in the early stages of the
pathology, and ii) quantitative biomarkers of disease progression.

To develop a protocol for testing the feasibility and effects of
wearable, audio-biofeedback system in maintaining balance in
subjects with PD.
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Parkinson’s disease

Parkinson disease (PD) is common among older people, affecting more than
1 in every 100 people over the age of 75 years and 1 in every 1,000 people
over the age of 65 years. © On a worldwide basis, it is thought that
approximately 10 million older people have PD. 2 With a large proportion of
the population aging, by the year 2020 more than 40 million people in the
world will have this progressive neurological condition ™.

Patients with PD report that balance disorders are the most important
cause of reduced quality of life (PD Alliance.org). Balance disorders are the
hallmark of PD and can severely compromise an individual’s ability to
perform important motor skills such as walking, turning around, and
transferring in and out of bed.

A better understanding of balance disorders associated with PD can not
only help improve their treatment and improve quality of life, but also
improve our understanding of how the central nervous system controls
balance and movement. This understanding should be based on accurate
measurements of balance and mobility, but this is often lacking. The most
common method for assessing balance and movement disorders associated
with PD consists of questionnaires and clinical rating scales known to suffer
from subjective bias, poor reliability and insensitivity. New technologies,
novel protocols, and sensitive, feasible approaches are needed for assessing
and treating postural instability in PD.

The Background of this thesis will review the : i) pathophysiology of PD, ii)
basis for postural instability in PD and its current laboratory assessment, iii)
current treatments for PD, and iv) how to move from qualitative-clinical
assessment to quantitative-ambulatory assessment of postural instability of
PD.

Pathophysiology of the Movement Disorders in PD
In recent years, there has been a rapid growth in knowledge about the

pathogenesis of the movement disorders that occur in people with PD *
The most frequently observed movement disorders are described in Table 1.
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Bradykinesia Reduced movement speed and amplitude;
at the extreme, it js known as
“hypokinesia,” which refers to
“poverty” of movement

Akinesia Difficulty initiating movements
Episodes of Mater blocks/sudden inability to move
freezing during the execution of a movement
sequence
Impaired balance Difficulty maintaining upright stance with
and postura narrow base of support in response to
control a perturbation to the center of mass or
with eyes closed; difficulty maintaining
stubilig;ein sitfing or when transferring

frem ene position to another; can
manifest as frequent falling

Dyskinesia Overactivity of muscles; can manifest as
dystonia; wriggling,/writhin
movements; chorea or rarely athetosis

Tremor Usually resting tremor; more rarely
postural or action tremar

Rigidity Hypertonicity and hyperreflexia in agonist
an anragonisr muscle groups in d
given lim

Adaptive responses  Reduced activity, muscle weakness,

uced muscle length, confractures,
deformity, reduced aerobic capacity

Table 1: Common movement disorders in people with Parkinson’s disease

Of these movement disorders, slowness in the performance of movement
sequences (bradykinesia) is the most common and affects around 80% of
people with PD *. Slowness may be so marked as to result in poverty of
movement, which is known as “hypokinesia.” People with hypokinesia
typically have an expressionless, mask-like face and walk with reduced
trunk rotation, short steps, and diminished arm swing, which is more
pronounced on one side than the other. Although PD-related movement
disorders characteristically occur bilaterally, movement disorders such as
bradykinesia are asymmetrical in their severity. There is growing evidence
that bradykinesia in people with PD results from disruption of the
neurotransmitters used in the neural projections from the internal segment
of the globus pallidus of the basal ganglia (BG) to the motor cortical regions
known as the supplementary motor area (SMA) and the primary motor
cortex *. The SMA is critical in regulating the increase in neural activity that
needs to occur before a movement is executed >°. It also ensures that a
movement is terminated at the appropriate time >°. If the preparation for
forthcoming movement is disrupted, then movements can be reduced in
size and speed (bradykinesia). At the extreme, if there is no activity in the
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SMA and primary motor cortex, movement fails to occur. Absence of
movement associated with an inability to initiate movement is known as
“akinesia.” ’

Sudden cessation of movement (motor blocks) partway through an action
sequence is known as “freezing” (Table 1). Clinical evidence suggests that
akinesia and freezing episodes are context dependent ’. For example, the
person may “freeze” when attempting to walk through a narrow doorway
or when making a transition from walking on carpet to wooden floorboards,
even though the or she can walk quickly without motor blocks across an
empty parking lot *

The neurotransmitter imbalance in the motor cortex-BG-motor cortex
feedback loop arises due to a relentless and progressive death of neurons in
the substantia nigra pars compacta (SN) of the brain stem *. These
brainstem neurons normally secrete the neurotransmitter dopamine that
apparently plays a role in allowing people to execute well-learned skilled
movements quickly and smoothly. Why cell death occurs in this region of
the brain stem is not known, although exposure to environmental toxins
coupled with a genetic predisposition to PD is one hypothesis 2. What is
known is that the balance of dopamine, gamma-aminobutyric acid (GABA),
enkephalin, glutamate, acetylcholine, and substance P in the BG is normally
very finely tuned *In people with bradykinesia, there is a decrease in the
excitation of the dopaminergic projections from the SN to the striatum and
the internal globus pallidus coupled with a reduction in the inhibitory
activity of dopaminergic projections from the SN to the striatum and the
external globus pallidus *. The net result is excessive inhibitory output from
the globus pallidus to the thalamus that leads to reduced movement.

Bradykinesia, akinesia, and freezing are not the only movement disorders in
PD. As early as 1967, Martin ° recognized that balance disorders were also
an inherent feature of the disease. The reason why balance is disrupted is
unclear, although it appears to be associated with neurotransmitter
disturbances in the output projections from the internal globus pallidus to
the midbrain and brain-stem regions involved in maintaining upright stance
and extensor muscle activity ! Since many balance disorders associated

30



with PD are not improved with levodopa medication, nondopaminergic
pathways involving the brainstem and cortex are thought to be involved.

Another hallmark of idiopathic PD is rigidity *°. Rigidity can be detected by
slow passive movement of the affected body part while the person focuses
his or her attention on a secondary task (such as reciting the days of the
week backward to avoid compensating for his or her movement disorder).

Resting tremor (4—6 Hz) is also characteristic of idiopathic PD and is often
the first symptom reported *. It may be due to an altered firing rate of
thalamic neurons, although the exact mechanism by which this occurs is not
known. Less commonly, action tremor (6—8 Hz) can be observed during the
execution of movements, or postural tremor can be observed when the
person bears weight through the limb or encounters resistance to
movement of the limbs, trunk, head, or neck. Physical therapists rarely
need to treat individuals with resting tremor because it disappears during
movement and therefore does not interfere with the ability to perform
everyday tasks such as walking, writing, or grasping objects.

Postural instability

Postural instability is one of the most disabling features of PD. It is due to a
dysfunction of postural reflexes, which is generally a manifestation of the
late stages of the disease, and usually occurs after the onset of non-motor
symptom™.

In spite of their forward inclination in upright posture, PD patients tend to
fall backwards very easily, with only a slight push, resulting in
retropulsion®?. Both axial rigidity and poor trunk coordination contribute to
the poor stability of PD patients in response to backward body sway. Horak
et al.” studied PD patients in their off-state and showed different dynamic
stability margins for different directions of body sway. The smallest stability
margin occurred for backward body sway in both narrow and wide stance,
suggesting that PD patients are more vulnerable to falls in the backward
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direction. The reduced stability margin in PD patients was due to a slower
rise and a smaller peak of their centre of pressure, when compared to
control subjects. Therefore, widening the sustentation base is unlikely to
help PD patients to prevent backward falls.

Beyond abnormal postural reflexes, several other factors may contribute to
postural instability in PD patients as well as other parkinsonian symptoms:
orthostatic hypotension, age-related sensory changes, and their ability to
integrate visual, vestibular, and proprioceptive inputs.

This postural instability induces difficulties with transfers, gait disorders,
inability to live independently at home, and is the major cause of falls .
Falls are frequent, with a 38% risk of falling found among 100 PD patients
by Koller et al.ls, among these, 13% felt down more than once a week.
Moreover, falls may induce adverse consequences like soft-tissue injuries,
hip fractures, and fear of falling. As the disease progresses, both Pl and fear
of falling worsen, which leads PD patients to become increasingly
immobilized.

Evaluation of postural instability in Parkinson’s disease
Static posturography

Static posturography consists in recording the displacements of the center
of pression (COP), using a force platform, during quiet stance. In these
conditions, the CoP sways reflect patient instability. Reported results of
static posturography in PD were often contradictory 16 Several studies
reported that the body sway of PD patients is closed to normal under quiet
stance, at least at the earlier stages of the disease *"*¥, whereas one recent
study reported impairment early in the disease *°. In addition, Horak et al.?°
reported a decrease in postural sway in PD patients, while Mitchell et al.*
showed an increase of the postural sway in the mediolateral direction. For
these authors, the mediolateral posturographic measures were also
associated with a history of falls and a poor balance performance. Btaszczyk

32



et al.”2 reported an increase of spontaneous sway indices and suggested
that this method should be supplemented by additional measures of
stability range such as the functional reach or maximal voluntary leaning.

The use of static posturography in PD is limited because of the
heterogeneity of the results and because this method assesses only a single
component of posture. Overall, these data suggest that the technics of
postural analysis we have at our disposal are not suitable for clinical
evaluation of postural troubles®®.

Dynamic posturography

The control of balance involves multiple components of postural control,
including reactions triggered by external perturbations, antigravity muscle
tone, and centrally-initiated postural adjustments preceding or
accompanying voluntary movements'®. Although balance under dynamic
conditions has been rarely investigated in PD patients, some specific
impairment of postural reflexes have been underlined. Analyses of postural
reflexes in response to an unpredictable perturbation of the support
(usually an unexpected toe-up tilt) showed that PD patients exhibit
abnormal and “inflexible” postural reflexes, as reflected by an increase in
amplitude and duration of the EMG response latency 23,24 Using
perturbations of the supporting surface in the lateral and sagittal planes,
Horak et al.’* showed that PD patients have directionally specific postural
instability. Same dissociation between antero-posterior and lateral control
of posture were also demonstrated in studies assessing postural control of
PD patients during slow oscillation of the support® and during locomotor
tasks®.

Impairment of anticipatory postural adjustments (APA)

Voluntary movement is usually accompanied or preceded by an adjustment
of posture aimed at preventing the disequilibrium generated by the
movement 2. Lee et al. *® analyzed APA in a lateral leg-raising task in PD
patients. They showed that in the more severely affected parkinsonian
patients, the amplitude of the initial displacement of CoP was markedly
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reduced, the interval between the earliest force changes and the onset of
leg elevation was prolonged, and the relative timing of the kinematics
adjustments during this interval was disrupted. The authors concluded that
abnormalities in programming APA might contribute to postural instability
in Parkinson’s disease.

Considerable attention has also been focused on gait initiation impairments
in PD 3%, The main abnormality consisted in an increased duration of the
postural phase and a decrease in propulsive forces during postural and
movement phases.

Treatment
Pharmacotherapy

Currently the principle treatments include medications that mimic
dopamine, compounds used to create dopamine in the brain (such as
levodopa) and drugs that inhibit the breakdown of dopamine. Among the
others, levodopa is the most important and commonly used.

However, a major disabling symptom of chronic levodopa therapy is
dyskinesia *%. Dyskinesia generally occurs at the maximal benefit from a
single levodopa dose (peak-dose dyskinesia) that can involve any body part
with choreic or dystonic movements. As dyskinesia is a side effect of the
levodopa therapy, it is often referred to as levodopa-induced dyskinesia *>.
The actual emergence of dyskinesia during the day depends on timing and
guantity of each individual does of levodopa and also to a lesser extent,
depends on stress, food and many other factors *3. Other chronic levodopa
therapy related motor manifestations that may develop are motor
fluctuations such as wearing-off, early-morning dystonia, delayed ON or no-
ON response and eventually ON-OFF phenomena °.

Two important and commonly used terms regarding the parkinsonian state
of the patients are ON and OFF states. During the ON state, the medication
(in particular levodopa) is active and motor performance of the patient is
improved. OFF state is the period that starts when the effects of the
medications wear off and PD symptoms reemerge. Many of PD patients
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start to fluctuate between the ON and OFF states. Moreover, during the ON
state patients may suffer from dyskinesia. The clinicians constantly need to
adjust the dose and the time between each intake of the medications to
maximize the period of ON state and minimize the periods of OFF and
dyskinesia. Over the time the response to a fixed dose of the levodopa
therapy decreases and as a result, the dose or the time between each
intake needs to be adjusted. Clearly, to optimally adjust the treatments,
knowing the exact periods of ON and OFF state during the day is invaluable
to the clinicians.

Stereotactic neurosurgery

Over the last decade high-frequenct deep brain stimulation (DBS) has
emerged as an efficient therapy for patients with advanced PD 3% A
important advantage of DBS, in contrast to drug therapy, is that a constant
level of stimulation can be maintained throughout the day. Modern
neurosurgical interventions might provide some therapeutic benefit, which
appears most pronounced for bilateral stimulation of the subthalamic
nucleus (STN) *>*° or internal globus pallidus (GPi) **.For postural instability,
this beneficial effect is particularly evident when patients are tested
without concurrent dopaminergic medication **.

Quantitative studies showed that STN- and GPi-DBS improve advanced PD
patients’ stability in quiet stance *** and increase the step length and the
speed of steady-state gait ***°. STN-DBS is assumed to present a higher risk
of dyskinetic side-effects than does GPi-DBS °% thus, patients suffering
predominantly from L-dopa-induced dyskinesia are commonly directed to
GPi-DBS °".

A recent analysis of patient outcomes >%°* highlighted how PD patients who
had undergone STN-DBS and those who had undergone GPi-DBS
experienced comparable improvements both in motor function and in
performance of activities of daily living following surgery. In a multicenter
study with a 4-year followup, PD patients who had undergone STN-DBS and
those who had undergone GPi-DBS exhibited significant improvement in

n

many cardinal features of PD, such as tremor, rigidity, bradykinesia, and
tremor >*. The GPe has been recently proposed as a DBS target for PD. Vitek
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et al. >> have shown that patients undergoing GPe-DBS improved more in
terms of bradykinesia, akinesia, and rigidity than did patients undergoing
GPi-DBS. GPe-DBS induced more dyskinetic events than did GPi-DBS. In
addition, recently low-frequency stimulation of the pedunculopontine
nucleus region has been shown to improve Parkinsonian gait and balance
disorders similarly to high-frequency STN stimulation > and high frequency
stimulation of the substantia nigra pars reticulate has been tested for
balance control during gait initiation process °’.

However, DBS does not represent a cure for Parkinson's. Though the
surgery can help improve patients' movement, DBS does nothing for non-
motor symptoms of the disease, such as depression, anxiety, balance
problems, cognitive decline and memory loss. In some cases, the procedure
can make these issues worse; in others, it can cause problems where there
were none. In all cases, patients need sustained medical care after surgery,
as their disease continues to progress.

To date, more than 35,000 patients around the world have had DBS
electrodes implanted in their brains. Though it's no longer considered
experimental, DBS is, for now, still used as a second- or third-line
treatment, reserved for patients with relatively advanced cases of the
disease and those for whom medication alone is inadequate or can't be
adjusted precisely enough to keep their tremors and writhing under
control.

Physiotherapy

There is increasing attention for the possible beneficial effects of physical
exercise in Parkinson's disease *®°°. Overall, physical functioning, balance,
gait speed, strength and health-related quality of life improve for people
with Parkinson's disease after a physical exercise intervention. Exercise
therapy may also lead to a reduction in FOG ®. Management guidelines of
the American Academy for Neurology concluded that exercise may be
helpful in improving motor function in people with Parkinson's disease o1,
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However, there is insufficient evidence to support (or refute) that physical
exercise is beneficial for reducing falls or depression *°. The lack of clear
effect on falls was also shown in an RCT, which showed that a combination
of exercise and movement strategies (i.e. prevention of falls and movement
initiation) only tended to decrease the incidence of falls compared with
controls receiving usual care ®2 However, it was encouraging that recurrent
near-falls were decreased in the intervention group, and either with longer
follow-up, a more intensive intervention or prolonged treatment this may
eventually translate into fewer actual falls and injuries, possibly even
among prior nonfallers.

A novel approach in delivering exercise is using motor imagery, engaged
previously to promote recovery of stroke patients %3 An innovative study 64
compared a control group that was treated with physical exercise alone
with an experimental group that was treated with a combination of actual
physical exercise and imagery of the very same exercises. The combined
treatment group showed the greatest improvement, but much work is
needed to fully underpin the merits of motor imagery for rehabilitation in
PD.

Clinical assessment of motor impairments

Currently, motor assessment in PD is mainly based on historical
information, home diaries and neurological examination during visits to the
clinic. These methods clearly suffer from many drawbacks: data from these
sources can be highly subjective, they rely on the patient’s memory and
perception of his own symptoms and they depend on the physician’s
experience in the field. Moreover, most of the patients may not be aware of
mild tremor or dyskinesia. They may not necessarily understand medical
terminology. They may unconsciously exaggerate or attenuate symptoms’

severity. Finally, short-term memory can be affected by PD ®°,

In an attempt to solve these problems and to find more objective
assessments, several rating scales have been designed and used ®’. Among
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them, the Unified Parkinson’s Disease Rating Scale (UPDRS) is the most
widely used 8. This rating scale tries to quantify selected symptoms and
signs of parkinsonism in a 5-points scoring system (with 0 for no sign and 4
for a marked severity of the sign). In addition, several researchers have
developed methods to assess gait, FOG, postural instability and balance
confidence *73.

Unfortunately, the UPDRS like any other semi-objective rating scale has
limitations like intra and inter-observer inconsistencies, can be time
consuming and can be biased by subjectivity issues related to historical
information.

So, the ideal assessment method should provide objective, quantitative
measurements that could be easily translated into simple and useful
information. For this purpose an instrumental method is undoubtedly more
appropriate.

From the laboratory settings towards ambulatory assessment
of PD motor symptoms

In the last decade, quantitative assessment of gait and posture in a
movement analysis laboratory has become a widely used clinical tool, and
an increasing number of physical therapists and doctors are choosing
suitable treatments for their patients based on the information from
kinematic and kinetic data "+,

A complete movement analysis system uses optical motion analysis system,
force platforms, and electromyography in order to obtain the 3D realistic
representation of the movement of the musculo-skeletal systems.
Normally, the following quantities are measured. Instantaneous positions of
markers located on the skin surface are obtained using
stereophotogrammetry (motion capture) either based on conventional
photography or optoelectronic sensors '/’
using dynamometers, such as force plates . Electrical activity of muscles
is recorded through electromyography "’°. Metabolic energy is assessed
using indirect calorimetry. Anthropometric quantities are acquired either
using a scale, a tape measure and callipers, or more sophisticated methods

. External forces are measured
77;79
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such as 3D scanners. Such systems are very accurate and represent a gold
standard in studying movement analysis, however they are expensive,
require a large space and cannot be used outside a laboratory environment.
For these reasons, in the last few years, many sensors have been developed
for industrial, robotics, aerospace and biomedical measurements using the
continuously advancing circuit technology 2. Recent developments in
microelectronics have led to design and production of a new generation of
small, cheap and robust sensors that can be used to measure kinematic
parameters of the movements of the body segments. These developments
have breathed a new life in design of ambulatory systems for long-term
monitoring of body movements %,

Accelerometers and gyroscopes have been used to detect and quantify
tremor % bradykinesia and hypokinesia **®° in PD patients. Ambulatory
gait analysis systems has been design based on accelerometers **°? and
gyroscopes 2> for healthy subjects, elderly and pathological cases. These
sensors have been used as activity monitor *° or to classify different body
postures "%, Also recently kinematic sensors has been used in detection
and quantification of dyskinesia >>*°*, and ON-OFF state in subjects with PD
102

Today, especially regarding assessment of PD, none of the abovementioned
techniques are perfect or sufficiently investigated and overall there is little
experience with them. Long-term quantification has rarely been achieved.
These methods are yet young and none of them has been used in large
scale nor has reached consensus as a gold standard in the scientific and
clinical community. Moreover, body worn inertial sensors that have been
optimized for gait measurement are not currently tuned appropriately to
sensitively measure the much smaller body motions associated with quiet
stance.
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Outline of the thesis

The thesis is organized into eleven chapters, as showed in Table 2

The first (current) chapter introduces the objectives of the thesis, provides a
short review of the literature, and an outline of the thesis.

Table 2:

Thesis outline

Title

Instrumentation Subjects

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Effects of Parkinson’s Disease and

Levodopa on Functional Limits of
Stability
Is the size of postural response

related to voluntary limits of stability

in Parkinson’s disease?

Step initiation in Parkinson’s disease:
influence of initial stance conditions

Accelerometry-based prediction of

center of pressure during quiet
standing

Dependence of anticipatory postural

adjustments for step initiation on
task movement features: a study
based on dynamometric and
accelerometric data

Multisegmental analysis of postural
sway in untreated Parkinson’s disease

an accelerometer-based approach

Anticipatory postural adjustments
prior to step initiation are hypometric
in untreated Parkinson’s disease: an

accelerometer-based approach

Longitudinal monitoring of posture
in patients with early-to-moderate

Parkinson's disease

Biofeedback for training balance and
mobility in older people: a systematic

review

Effect of Audio-Biofeedback in

maintaining balance in Parkinson's

disease: preliminary results

Force plate + Motion Advanced PD, OFF-ON Levodopa +
Analysis healthy aged-matched subjects

Force plate + Motion Advanced PD, OFF-ON Levodopa +
Analysis healthy aged-matched subjects

Force plate + Motion Advanced PD, OFF-ON Levodopa +
Analysis healthy aged-matched subjects

Accelerometers +

force plate young healthy subjects
gxh;:zeters * young healthy subjects
;;\:r(;:l;rl:zeters + untreated early-to-moderate PD
Accelerometers + anrlv ta andarats DM
force plate untreated early-to-moderate PD

Accelerometers +

force plate untreated early-to-moderate PD

older people

Accelerometer + moderate PD ON Levodopa + healthy
palmtop aged-matched subjects
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The second, third, and fourth chapter focus on the quantitative
assessments of some of the most disabling postural impairments that
negatively affect the quality of life in PD subjects. In particular, we
investigated how Parkinson’s disease and Levodopa affect: i) self-perceived
limits of stability, ii) postural responses to external perturbations, and iii)
anticipatory preparation to voluntary movements.

The fifth and sixth chapters describe the validation of tools based on the
use of accelerometric sensors in order to quantify and assess postural sway
and postural transition in young, healthy subjects.

The seventh, eighth, and ninety chapters present the results obtained
applying the methodology previously validated in a group of untreated,
early-to-moderate PD.

The tenth chapter provides a review of the literature on the use of
biofeedback for training balance and mobility in elderly and PD subjects.
Here are also presented preliminary results on the use of an audio-
biofeedback system in maintaining balance in PD subjects.

The last chapter, Conclusions, summarizes the contributions of this thesis
and presents the perspectives of future studies.

All chapters of the thesis follow a similar structure. Each chapter starts with
an introduction to bring the subject of the chapter into focus, and it is
followed by detailed, methods, results, and conclusions. In addition, at the
end of each chapter, in the bibliography section, the referenced articles,
books, and resources used throughout the chapter are listed.
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Chapter 2

Effects of Parkinson’s Disease and Levodopa
on Functional Limits of Stability
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Abstract

Background.

The voluntary, maximum inclined posture reflects the self-perceived limits
of stability. Parkinson’s disease is associated with small, bradykinetic
postural weight shifts while standing but it is unclear whether this is due to
reduced limits of stability and/or to the selection of abnormal strategies for
leaning. The aim of this study was to investigate the effects of Parkinson’s
disease and levodopa medication on voluntary limits of stability and
strategies used to reach these limits.

Methods.

Fourteen subjects with Parkinson’s disease (OFF and ON levodopa) and 10
age-matched controls participated in the study. Functional limits of stability
were quantified as the maximum center of pressure excursion during
voluntary forward and backward leaning. Postural strategies to achieve
functional limits of stability were assessed by i) body segments alignment,
ii) the difference between center of pressure and center of mass in
preparation for a lean, iii) the timing and the velocity of the preparation
phase.

Results.

Functional limits of stability were significantly smaller in subjects with
Parkinson’s disease compared to control subjects. Subjects with Parkinson’s
disease maintained their stooped posture while leaning, initiated leaning
with a smaller difference between center of pressure and center of mass
and had a slower leaning velocity compared to control subjects. Levodopa
enlarged the limits of stability in subjects with Parkinson’s disease because
of an increase in maximum forward, but not backward lean, but did not
significantly improve postural alignment, preparation for a leaning
movement, or velocity of leaning.

Conclusions.
Parkinson’s disease reduces functional limits of stability as well as the
magnitude and velocity of postural preparation during voluntary, forward
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and backward leaning while standing. Levodopa improves the limits of
stability but not the postural strategies used to achieve the leaning.
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Introduction

Postural stability is the ability to maintain equilibrium under both
static and dynamic conditions, such as during quiet stance [1-3], in response
to postural perturbations [4-6], or during the postural preparation for
movements [7;8]. One way to quantify postural stability involves measuring
the limits of stability. The limits of stability can be defined, under dynamic
conditions, as the maximum displacement of the center of body mass
during a feet-in-place response to external postural perturbations that can
be controlled without a fall or a step (Horak et al., 2005). To investigate
limits of stability in the absence of external perturbations, the maximum,
voluntary, inclined posture can be used [9;10]. Statically holding the center
of body mass near the forward or backward limits of foot support simulates
functional positions that occur in motor tasks such as in the transition from
stance to gait and from sit to stand [11]. Limits of stability, quantified by the
maximum, voluntary inclined posture may be considered “functional” limits
of stability, since they are influenced by subjective perception, internal
postural control abilities, and environmental factors, and not only by body
biomechanics or segment properties [12]. One way to measure functional
limits of stability involves quantification of the maximum center of pressure
(COP) displacement with respect to the base of support [13].

Postural instability is a frequent problem in subjects with Parkinson’s
disease (PD) [14-16] and has a great impact on their quality of life, often
resulting in falls, subsequent injury, and increased fear of falling. Previous
studies reported reduced antero-posterior COP excursions in PD subjects in
their ON dopaminergic medication state compared with age-matched
control subjects while voluntarily leaning [9;17]. Another study [10] did not
detect any differences in COP position at maximum leans between healthy
and PD subjects. However, the previous studies investigated postural
stability while statically maintaining the maximum inclined posture, and did
not consider the anticipatory and executive phases used to reach the
maximal inclinations or the influence of levodopa on the limits of stability
(i.e., OFF vs. ON state).

The purpose of the present study was to investigate how PD subjects
manage their forward and backward functional limits of stability, and how
this is affected by levodopa. Since COP displacements reflect not only
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displacement of the body center of mass (COM) [18], but also anticipatory
postural control [1;7], we used i) the relationship between COP and COM,, ii)
leaning velocity and duration, and iii) body segments alignment, to
investigate the postural strategies used to achieve the forward and
backward stability limits.

Methods

Participants

Fourteen patients with idiopathic PD (mean age 65.6 years, SD 8.7), see
Table 1, and 10 age-matched control subjects (mean age 64.9 years, SD 8)
free of any neurological or musculoskeletal disorders, participated in this
study. All subjects gave informed consent in accordance with the OHSU
Institutional Review Board.

All subjects with PD were sensitive to levodopa as noted by the Motor
Subscale (Part Ill) of the Unified Parkinson’s Disease Rating Scale (UPDRS),
[19], reported in Table 1. PD subjects were tested in their practical OFF
state after at least 12 hours of medication wash-out, and again on the same
day in their ON state, at least one hour after taking their usual dose of
medication. All subjects with PD had gait difficulties, impaired balance, and
moderate to severe PD (from Ill to IV on the Hoehn and Yahr scale). These
subjects were approved for deep brain stimulation surgery, attesting to
homogeneity of the PD group, consistent with surgery inclusion criteria
[20]. A summary of PD subjects’ characteristics is reported in Table 1.
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Disease

SubjID Age[yrs] duration  UPDRS" Rigidity" Posture®
[yrs]
OFF ON OFF ON OFF ON
1 67 9 59 34 15 8 5 1
2 73 24 64 55 14 8 5 6
3 76 14 63 42 12 10 3 3
4 74 17 57 23 11 6 5 2
5 75 13 32,5 21 10 5 4 4
6 56 15 29.5 19 3.5 2 3 3
7 73 10 70 53 17 13 6 5
8 57 3 26 13 10 7 3 0
9 55 13 43 13 6 0 4 1
10 55 10 39.5 23 6 6 35 25
11 52 5 42 16 10 0 2 2
12 67 13 43 13 7 0 1 0
13 67 15 59 345 14 9 3 1
14 71 14 48 39 5 4 3 2
Mean 65.6 12.5 48.3 28.5 10.0 5.6 3.6 23
Std 8.7 5.1 13.9 14.5 4.1 4.0 1.3 1.8
P=0.001 P=0.007 P=0.03

' UPDRS Motor Subscale, /108; ? Item #22 of UPDRS, /20; ® Item #28
& 30 of UPDRS, /8

Table 1: Characteristics of subjects with Parkinson's disease

Procedure

At the beginning of a trial, the subjects stood with each foot on a separate,
side by side, force plate with feet parallel at their comfortable stance width.
Initial stance position was consistent from trial-to-trial by tracing foot
outlines on the force plates and by coaching subjects to maintain their
initial COP position prior to each trial based on oscilloscope COP traces.
Subjects were asked to maintain an upright standing position with arms
crossed on the chest, eyes open and gaze straight ahead at an art poster 3-
meters ahead of them. To allow for subsequent parameters normalization,
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foot length was measured, from the heel to the tip of the hallux, with an
electronic calliper.

Starting from an upright, natural position, subjects performed three tasks
sequentially: 1) maximum forward lean (1 repetition acquired for 15 s), 2)
maximum backward lean (1 repetition acquired for 15 s), and 3) quiet
stance (3 repetitions of 60 s each). Subjects were asked to lean as far as
they could at their comfortable speed, without lifting their toes or heels or
flexing their hips, and to hold their maximum position for at least 5 seconds.

Measurements

Force platform data

Four vertical forces were recorded from each strain-gauge, custom-made
force plate at 480 Hz, low-pass filtered at 8 Hz, and down-sampled at 20 Hz.
The excursion of the total body COP (i.e., the application point of the total
ground-reaction force) was computed from the vertical forces [21], both in
the antero-posterior (AP) and medio-lateral (ML) direction.

Body kinematics

A Motion Analysis System (Santa Rosa, CA) with 6 video cameras and
sampling frequency of 60 Hz recorded the kinematics of body segments.
Reflective markers were placed on both feet and on the right side of the
body on the following bony landmarks: fifth metatarsal head, lateral
malleolus, lateral femoral condyle, greater trochanter, anterior superior
iliac spine, clavicular acromion, elbow, temple of head, and mastoid
process. Body segment kinematics, and appropriate anthropometric tables
[3], were used to estimate the position of the total body COM in the sagittal
plane. In addition, we reconstructed the shank, thigh, and trunk segment
angles with respect to vertical to characterize postural alignment.

Data analysis and extracted parameters
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The leaning tasks consisted of a motion phase followed by a maximal
leaning phase. The 3 quiet stance trials were considered to characterize the
natural standing of subjects, through the estimation of the average COP
position.

Functional Limits of Stability

The steady-state positions of AP COP during backward and forward maximal
lean were used to quantify the functional limits of stability (fLOS). Their
extension was estimated as

fLOS = maxFW — maxBW,
where maxFW and maxBW represented the average AP COP over the first 5
seconds of stabilized, forward and backward leaning, respectively (see
Figure 1A). fLOS, maxFW, and maxBW were normalized to foot length, and
are, in the following, expressed as a percent of foot length. The 5 s window
of stabilized, maximal leaning was manually identified analyzing AP COP
time-series.
The steady-state positions of ML COP were also computed during maximal
leans, to check for potential, lateral asymmetries.
To express the COP coordinates in an anatomically-based reference frame,
the position of the AP COP was referenced to the lateral malleolus marker,
and the position of the ML COP was referenced to the mid-point between
right and left malleolus markers.

Postural strategies

Postural strategies were characterized by means of average segmental
kinematics. Average inclination of the trunk, thigh, and shank segments
with respect to vertical were used to describe the body segments alignment
(postural attitude) during the 3 tasks (see Figure 1B for details).

Motion phase of the leaning tasks

The onset of the motion phase was detected by a threshold-based
algorithm, with threshold set as twice the standard deviation (SD) of AP
COP during the initial, standing position of each trial (Figure 1). The motion
phase was considered completed when AP COP ended its rapid migration to
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a new steady-state position, coincident with the start of the leaning phases
(see Figure 1C). The size of the anticipatory postural adjustments to initiate
the motion phase of the lean was quantified by the peak of the COP-COM
time series (see Figure 1C) [22]. The motion phase of leaning was
characterized by its duration (motion duration, Figure 1C), and by the ratio
between the AP COP path and the motion duration (motion velocity).

Statistical analyses

Group means and SD of the means are summarized in the text. For each
parameter, a separate one-way ANOVA was used to detect differences
between the control versus PD OFF and between the control versus PD ON
groups. A repeated measures ANOVA was used to compare PD subjects
OFF and ON. Correlations between functional limits of stability parameters
and the UPDRS Motor Subscale and the UPDRS items characterizing rigidity
and posture (ltems 22 and 28 & 30, respectively) were investigated using
Pearson’s correlation analysis. For the entire set of statistical analyses the
level of significance was set at p<0.05. All the analyses were performed with
NCSS Software, Kaysville, Utah.
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Figure 1: Signals collected from a representative control subject and main
parameters considered in the data analysis. (A) Functional limits of stability and
parameters that quantify the maximal leaning phase. (B) Parameters that
characterize the motion phase (example for forward leaning).
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Results

Functional limits of stability

The mean position of AP COP in quiet stance and during maximal backward
leaning was not significantly different between control and PD subjects,
both in the OFF and ON states, as shown in Figure 2A. Similarly, the mean
position of ML COP during the 3 tasks was not different between control
and PD subjects, or between PD subjects in the OFF and ON states.

A. Maximal leanings and quiet stance B. Functional Limits of Stability

60 maxFW . sel
% *
%
0 — L
= % __ 50
2 < I
S 2
6 401 % .
2 S 45 —
ks Red
° o
> 30 Quiet Stance )
o ®
ﬂ_ = =
8 0 <§/§ n 40 I
O 200 S
<
maxBW 351
10+
Q * '
0 ’ : : 30
Control PD OFF PD ON Control PD OFF PD ON
subjects subjects

Figure 2: Functional limits of stability in control and parkinsonian subjects. (A)
Position of antero-posterior center of pressure (mean and SD) during the maximal
leaning tasks and in quiet stance. (B) Functional limits of stability (mean and SD)
quantified as the difference between maximal forward and maximal backward lean
position. * p<0.05, ** p<0.01

Maximal forward leaning was significantly smaller in PD subjects in the OFF
state compared to control subjects (p<0.05), and was increased by
levodopa, although remained smaller than normal (Fig. 2A). MaxFW
reached a mean of 53.1% (SD 2.1) of foot length ahead of the lateral
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malleoli in control subjects versus 44.7% (SD 2.4) in PD OFF and 48.5% (SD
1.9) in PD ON.

The magnitude of the functional limits of stability, as measured by fLOS
(Figure 2B), and expressed as percent of foot length, was significantly
smaller in PD OFF, compared to control subjects (37.6% (SD 2.6) and 48.5%
(SD 1.2), respectively, with p <0.01). Levodopa significantly increased fLOS
in PD subjects, (41.4% (SD 2.6)), however, fLOS remained significantly
smaller than normal values (p<0.05). All 14 PD subjects increased their fLOS
with levodopa except one subject, who was the least responsive to
levodopa (see the Motor UPDRS Motor subscale and rigidity score in Table
1, Subject #14). All correlations between fLOS and UPDRS Motor subscale
were not significant (ranging from -0.56 to -0.42 with 0.09 < p < 0.17) even
after we removed two outliers (Subjects #2 and #7 in Table 1) who had
been unable to maintain backward lean for 5 seconds.

Postural Strategy

During quiet stance, the kinematic analysis of body segment alignment with
respect to vertical confirmed the typical stooped posture in PD subjects. Fig.
3, upper panel, shows the group average, sagittal body alignment as stick
diagrams for the 3 subject groups. PD subjects showed significantly larger
forward inclination of the trunk (p<0.05), larger backward inclination of the
thigh (p<0.01), and larger forward inclination of the shank (p<0.05)
compared to control subjects, reflecting their increased hip, knee, and ankle
joint flexion. Levodopa decreased forward trunk inclination to some extent,
although not significantly, but did not change thigh or shank inclinations,
which remained significantly different from control subjects’ values (p<0.01
and p<0.05, respectively).

During forward lean, all subjects significantly increased their forward trunk
inclination compared to quiet stance (p<0.05; Fig. 3B upper panel).
However, unlike control subjects, PD subjects, both OFF and ON,
maintained similar leg alignment as during quiet stance, with a smaller
forward thigh inclination and a smaller forward shank inclination than
control subjects (p<0.05). In addition, PD subjects maintained the knees
flexed during backward leaning, as highlighted by corresponding shank and
thigh inclination values and by stick diagrams.
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Figure 3: Postural strategies during maximal leaning tasks and quiet stance in

control and parkinsonian subjects, represented by: (A) average stick diagrams. (B)
trunk, thigh, and shank inclinations (mean and SD). *p<0.05, **p<0.01

Motion phase of the leaning tasks

The AP COP-COM time-series is shown in Figure 4A during the backward
and forward leaning tasks for a representative control subject.

The COP-COM peak was significantly smaller in PD compared to control
subjects (p<0.05), both for the forward and backward leaning. Figure 4B
summarizes the group means and SD of the COP-COM peak. Levodopa did
not significantly change the COP-COM peak.
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Figure 4: Peak of COP-COM time series during backward and forward leaning. (A)
Example of COP-COM time-series for a representative control subject. (B) COP-COM

peaks for control and parkinsonian subjects (mean and SD). *p<0.05

During backward leaning, PD subjects showed significantly longer and
slower movements compared to control subjects (Fig. 5). In contrast, during
forward leaning, movement duration and velocity were similar for control
and PD subjects (Fig. 5 ). Levodopa did not change significantly movement

duration and velocity.
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Figure 5: Spatio-temporal characterization of the motion phase (mean and SD) in
control and parkinsonian subjects. (A) Motion duration. (B) Motion velocity

quantified by the AP COP mean velocity.
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Discussion

The present study showed that subjects with PD have smaller functional
limits of stability in the sagittal plane compared to age-matched control
subjects. The small stability limits in PD subjects was primarily due to a
reduction of maximum forward body leaning. The small maximum forward
lean in PD subjects may be related to their impaired postural preparation
for gait initiation [8;23;24], that similarly requires a preparatory forward
lean. In contrast to the forward direction, stability limits in the backward
direction were not significantly different between control and PD subjects.
This result could be due to an age-effect or “floor”-effect on maximum
backward inclination common to both PD and control subjects due to
biomechanical constraints for backward leaning [9].

We did not find any left-right asymmetry during the leaning tasks. However,
future studies aimed at a better characterization of postural stability should
more extensively evaluate COP position in both the AP and ML directions,
during longer leans. Indeed, previous studies found differences in medio-
lateral sway between PD and control subjects during body sagittal
inclinations [10;25] .

Unlike a previous study [9], we did not see a significant difference in
average COP position during quiet stance between PD and control subjects.
Such differences might be explained by different inclusion criteria for PD
subjects (our subjects where candidates for DBS surgery) and by the specific
instructions for subjects to gaze forward and to maintain consistent initial
COP position prior to each trial.

Postural kinematic strategies [26] in the steady-state upright and leaning
positions confirmed the typical, stooped posture of PD subjects [5]. PD
subjects also maintained their stooped posture during the voluntary leaning
tasks [27]. The stooped posture probably contributed to the reduced
forward limits of stability, because the flexed ankle, knee and hip joints
resulted in longer ankle plantarflexor muscles and larger antigravity forces
required to maintain equilibrium. This unchanged body posture is
consistent with previous studies showing that PD subjects have difficulty in
changing postural strategies with changes in initial conditions [5;8;23;28].
Although our subjects were instructed to move without flexion/extension of
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knee or hip, both control and PD subjects were not able to use a pure,
inverted pendulum-like behavior but flexed the hips for forward leans and
flexed the knees for backward leans.

Although these PD subjects were highly sensitive to levodopa, as shown by
changes in their UPDRS Motor subscale, and levodopa increased their limits
of stability, the medication did not change postural strategies used to reach
such limits. It is possible that reduced rigidity allowed larger stability limits
with levodopa, although the parameter fLOS did not correlate with UPDRS
measures of rigidity. Indeed, previous studies demonstrated that PD
subjects in the ON levodopa state reduced, compared to the OFF state, the
background EMG, consistently with reduced rigidity, and then they can
move the COM farther and faster in response to external perturbations and
during quiet stance [29]. Possibly reduction of leg, not axial, rigidity may be
related to increased functional stability limits in the ON state, consistently
with a previous study that showed no reduction of axial rigidity with
levodopa [30].

Postural preparation for the voluntary leaning movement, characterized by
the peak of the COP-COM time series, was impaired in subjects with PD,
particularly in the OFF state, consistently with other tasks requiring
anticipatory postural adjustments [8;23;31]. The COP-COM variable has
been shown to detect stability during preparation for a voluntary rise from
a chair [7]. Our results showed reduced COP-COM peak in preparation for a
lean as well as reduced functional stability limits in PD subjects, suggesting
that PD affect both preparation and achievement of limits of stability.
Subjects with PD reached their functional stability limits slowly compared to
control subjects, during backward, but not during forward, leaning. The
slowness of backward leaning may reflect weakness in the ankle extensors
or a perceived difficulty of the backward leaning motor task. In fact,
slowness of movement may reveal cautiousness or fear of falling and a
higher perceived difficulty of the backward leaning task [32]. In this case,
rehabilitation programs focused on increasing postural limits of stability
and/or reducing fear of falling may be useful for PD.

The present study highlights the importance of a quantitative approach for
postural evaluation in PD. In fact, the lack of correlation between the
UPDRS Motor subscale and limits of stability parameters is consistent with
poor specificity of the UPDRS Motor subscale for the postural requirements
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associated with a voluntary lean. Forward voluntary leaning may be a good
clinical measure of postural ability in PD by reflecting composite effects of
segment orientation, perceived postural stability, fear of falling, whole body
kinaesthesia and leg rigidity

Our results showed that levodopa improves the static, functional limits of
stability, but did not ameliorate postural preparation for a leaning
movement or postural kinematic strategies for leaning. These findings
suggest separate central mechanisms and different constraints on
perceived postural limits of stability, multisegmental postural alignment,
and postural preparation for whole body movement.
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Chapter 3

Is the size of postural response related to
voluntary limits of stability in Parkinson’s
disease?
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Abstract

The relationship between voluntary limits of stability and automatic
postural responses may reveal how perceived limits of stability affect
balance when reacting to perturbations. Both voluntary and automatically-
triggered postural limits of stability are compromised by Parkinson’s disease
(PD), but the relationship between them is unknown. Nine subjects with PD
were tested ON and OFF medication and compared to nine healthy control
subjects. Subjects were asked to: 1) voluntarily lean and hold maximally
from the ankle joint in the backward direction and 2) maintain balance in
response to a forward surface translation of 12 cm at 9 cm/s, which induced
backward postural sway. Voluntary and automatic limits of stability were
defined by the peak center of pressure and center of mass in the backward
direction, normalized to foot length. The strong relationship between
backward voluntary limits of stability and size of the automatic postural
responses suggests that the central nervous system might presets postural
response parameters based on voluntary maximum limits. Such relation is
disrup