
Alma Mater Studiorum - Universitá di Bologna
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Abstract

Ambient Intelligence (AmI) envisions a world where smart, electronic environ-

ments are aware and responsive to their context. People moving into these set-

tings engage many computational devices and systems simultaneously even if

they are not aware of their presence. AmI stems from the convergence of three

key technologies: ubiquitous computing, ubiquitous communication and natural

interfaces.

The dependence on a large amount of fixed and mobile sensors embedded

into the environment makes of Wireless Sensor Networks one of the most rel-

evant enabling technologies for AmI. WSN are complex systems made up of

a number of sensor nodes, simple devices that typically embed a low power

computational unit (microcontrollers, FPGAs etc.), a wireless communication

unit, one or more sensors and a some form of energy supply (either batteries or

energy scavenger modules). Low-cost, low-computational power, low energy

consumption and small size are characteristics that must be taken into consid-

eration when designing and dealing with WSNs. In order to handle the large

amount of data generated by a WSN several multi sensor data fusion tech-

niques have been developed. The aim of multisensor data fusion is to combine

data to achieve better accuracy and inferences than could be achieved by the

use of a single sensor alone.

In this dissertation we present our results in building several AmI applica-

tions suitable for a WSN implementation. The work can be divided into two

main areas: Multimodal Surveillance and Activity Recognition.

Novel techniques to handle data from a network of low-cost, low-power

Pyroelectric InfraRed (PIR) sensors are presented. Such techniques allow the

detection of the number of people moving in the environment, their direction

of movement and their position. We discuss how a mesh of PIR sensors can

be integrated with a video surveillance system to increase its performance in

people tracking. Furthermore we embed a PIR sensor within the design of a

Wireless Video Sensor Node (WVSN) to extend its lifetime.

Activity recognition is a fundamental block in natural interfaces. A chal-

lenging objective is to design an activity recognition system that is able to
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exploit a redundant but unreliable WSN. We present our activity in building

a novel activity recognition architecture for such a dynamic system. The ar-

chitecture has a hierarchical structure where simple nodes performs gesture

classification and a high level meta classifiers fuses a changing number of clas-

sifier outputs. We demonstrate the benefit of such architecture in terms of in-

creased recognition performance, and fault and noise robustness. Furthermore

we show how we can extend network lifetime by performing a performance-

power trade-off.

Smart objects can enhance user experience within smart environments. We

present our work in extending the capabilities of the Smart Micrel Cube (SM-

Cube), a smart object used as tangible interface within a tangible computing

framework, through the development of a gesture recognition algorithm suit-

able for this limited computational power device.

Finally the development of activity recognition techniques can greatly ben-

efit from the availability of shared dataset. We report our experience in build-

ing a dataset for activity recognition. Such dataset is freely available to the

scientific community for research purposes and can be used as a testbench for

developing, testing and comparing different activity recognition techniques.



Chapter 1

Introduction

1.1 Ambient Intelligence: a vision on the future of

electronic systems

The term Ambient Intelligence (AmI) refers to a vision on the future of the infor-

mation society where smart, electronic environment are sensitive and respon-

sive to the presence of people and their activities (Context awareness). In such

smart environment, technology is invisible and embedded into the surround-

ing. People moving into this settings engage many computational devices and

systems simultaneously even if they are not aware of their presence.

The concept of ambient intelligence has been developed in the late 90s. The

basic idea derives from the concept that, while computers purported to serve

people, being hard to use and not aware of our needs, they have actually forced

humans to serve them. In the future, instead, the computation will be human-

centered and will be brought to us whenever and wherever we need it through

hand-held devices or embedded in the environment. Moreover, people will not

have to learn how to use electronic devices, but they will interact with them in

a more natural and intuitive way.

The ISTAG (Information Society Technology Advisory Group) has defined

four scenarios to offer glimpse of futures that can be realized. Each scenario

highlights a number of technological challenges that have to be tackled by re-

searchers. Among them:

• Very unobtrusive hardware. This includes battery size reduction or self

powered devices, sensor and actuator integrated into everyday object

and new displays.

• A seamless mobile/fixed communications infrastructure. Complex het-

erogeneous networks need to function and to communicate in a seamless
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and interoperable way.

• Dynamic and massively distributed device networks. An uncountable

number of wireless, wired and mobile devices will coexist in the same

space. Thus the network should be configurable on an ad hoc basis and

dynamically adapt to changes.

• Natural interaction. System should be intuitive, like normal human be-

haviors.

• Dependability and security. AmI system will control many critical ac-

tivities and handle a considerable amount of sensitive data. Thus this

technologies should be tested to make sure they are safe for use.

The dependence on a large amount of fixed and mobile sensors embedded

into the environment makes of Wireless Sensor Networks (WSN) one of the most

relevant enabling technologies for AmI.

WSN are complex systems made up of a number of devices called sensor

nodes. Each sensor node typically includes one or more sensors, a wireless

radio, an energy source (either batteries or some energy harvesting unit) and

a microcontroller with enough computational power to collect data from the

sensors and perform some sort of computation with it. WSN design space is

very wide and spans from small, fixed Body Area Networks (BAN) for rehabili-

tation composed of a handful of sensors nodes placed over the body, to large,

dynamic networks for environment or animals monitoring consisting of thou-

sand of nodes.

Despite the design of the sensor network and its sensor nodes is strictly

application dependent, a number of constraints should almost always be con-

sidered. Among them:

• Small form factor to reduce nodes intrusiveness.

• Low power consumption to reduce battery size and to extend nodes life-

time.

• Low cost for a widespread diffusion.

These limitations typically result in the adoption of low power, low cost de-

vices such as low power microcontrollers with few kilobytes of RAM and tenth

of kilobytes of program memory with whom only simple data processing algo-

rithms can be implemented. However the overall computational power of the

WNS can be very large since the network presents a high degree of parallelism

that can be exploited through the adoption of ad-hoc techniques. Furthermore

through the fusion of information from the dense mesh of sensors even com-

plex phenomena can be monitored.
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Multi sensor data fusion is an emerging technology that has received sig-

nificant attention for several human activities. When we talk about data fu-

sion techniques, we refer to methods that aim at combining data from multiple

sources (sensors, databases etc.) to achieve better accuracy and inferences than

could be achieved by the use of a single sensor alone.

In general, using an efficient fusion schema several advantages can be ex-

pected.

• Improve the knowledge’s confidence thanks to complementary informa-

tions.

• Improve the detection of phenomenon characteristics.

• Increase robustness to noise in adverse environmental conditions.

It is clear how AmI systems bring together several aspects of research. For

this reason the Ph.D. research activity presented in this dissertation can be di-

vided into two main topics.

Multimodal surveillance

Information from the environment can be collected through different sen-

sor modalities. Video surveillance and other security-related applications

have gained many credits during the last years. Several industrial and

academic projects have recently started to increase the accuracy of (semi)

automatic surveillance systems. In addition, the abatement of hardware

costs allows the deployment of thousands of cameras for surveillance

purposes at a reasonable cost. Despite the efforts made by the researchers

in developing a robust multi-camera vision system, computer vision al-

gorithms have proved their limits to work in complex and cluttered en-

vironments. One of the reason of such limits is that non-visible areas can

not be processed by the system. In this context, the marriage between

a widely distributed low-cost WSN and the coarsely distributed higher

level of intelligence that can be exploited by computer vision systems

may overcome many troubles in a complete tracking of large areas. For

this reason several techniques to monitor the environment through Py-

roelectric Infra-Red (PIR) sensors have been developed. Being low-cost,

passive (thus low-power) and presenting a limited form factor, PIR sen-

sors are well suited for WSN applications. In particular we developed

novel modalities to detect direction of movement, to count the number

and to track position of people moving within a smart environment. Such

techniques have proved to increase the tracking accuracy of the multi-

modal system.

In several setup the use of wired video cameras may not be possible. For
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this reason building an energy efficient wireless vision network for mon-

itoring and surveillance is one of the major efforts in the sensor network

community. The PIR sensors have been used to extend the lifetime of

a solar-powered video sensor node by providing an energy level depen-

dent trigger to the video camera and the wireless module. Such approach

has shown to be able extend node lifetime and possibly result in contin-

uous operation of the node.

Activity recognition in redundant and dynamic sensor networks

AmI envisions the large scale deployment of highly miniaturized, unob-

trusive and interconnected (wireless) sensor nodes. This unobtrusive yet

widespread sensing permits pervasive and wearable computing systems

that provide transparent and natural human-computer interfaces (HCI)

and smart assistance to users according to their context. Current ap-

proaches to activity recognition tend to assume static body-worn (wire-

less) sensor networks. Usually a fixed, often minimal, set of sensors

nodes placed at well defined body locations is used. Nodes and their in-

terconnections do not fail and sensor data is not affected by noise. How-

ever, under realistic conditions, on-body sensor networks tend to be dy-

namic. We developed an activity recognition signal processing chain

suited for such dynamic sensor networks. It takes advantage of multiple

sensors to cope with failures, noise and enable power-performance man-

agement. This approach is suited for other application domains where a

large number of sensor nodes is used to monitor areas of interests. It is

independent of specific sensors and classifiers used, and it is suitable for

distributed execution.

Tangible interfaces play a fundamental role within AmI applications since

they provide a natural way to interact with smart environment. Further-

more smart object used as tangible interface provide redundant infor-

mation about user activity. Thus we developed the Smart Micrel Cube

(SMCube) a smart object able to recognize the gestures of the user. The

SMCube can complement other activity recognition techniques and in-

crease the user experience.

1.2 Thesis Organization Outline

The reminder of the dissertation is organized as follows.

Chapter 2 introduces the basic concepts of Ambient Intelligence (AmI). It

provides a general definition of the main building blocks and defines the crit-

ical factors common to AmI applications. Several example AmI projects are
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presented to provide an insight to the current research in this field.

Chapter 3 describes WSNs. The chapter highlights the characteristics of

WSN and the main application scenarios. A more detailed description of the

building block of a WSN, the Wireless Sensor Node, is provided together with an

overview of the state of the art of such devices. The chapter is concluded with

the description of an emerging standard for WSN wireless protocol: Zigbee.

This protocol has been developed for low-power, low-cost, low-throughput

sensor networks even if recent studies point out the possibility to use it even

for streaming applications.

In order to extract information within a WSN several techniques have been

proposed in the literature. In 1988 the Joint Directors of Laboratories (JDL)

Data Fusion Working Group, began an effort to codify the terminology related

to data fusion. Chapter 4 presents the JDL data fusion models and provides the

basic theory of several data fusion techniques that will be used in the works

presented in this thesis.

Several techniques to track people through the use of a WSN based on sim-

ple, low-cost, low-power Pyroelectric InfraRed (PIR) sensors are presented in

chapter 5. Moreover the chapter shows how such sensors can be integrated

within a video surveillance network to augment its performance and to over-

come some limitations of the video systems. Finally, the chapter describe how

PIR sensors can be used in conjunction with Wireless Video Sensor Nodes

(WVSN) and photovoltaic energy harvesting modules to extend node lifetime.

Thanks to technological advances soon it will be possible to embody a large

number of sensor nodes within the environment, the objects that we use and

our garments. Chapter 6 presents the work carried out to develop activity

recognition techniques in such redundant and dynamic networks. Further-

more within this chapter we present our work in developing smart objects for

natural interaction within smart environments.

Chapter 7 concludes the dissertation summarizing the results presented in

this thesis.





Chapter 2

Ambient Intelligence

2.1 Ambient Intelligence: general definitions

In the AmI vision, humans will be surrounded by smart devices embedded in

everyday objects such as furniture, clothes, vehicles, roads and smart materials.

Devices are aware of human presence and activities, take care of his needs and

are capable of responding intelligently to spoken or gestured indications of

desire. Furthermore they are unobtrusive, often invisible: nowhere unless we

need them. Interaction should be relaxing and enjoyable for the citizen, and

not involve a steep learning curve [226].

The ISTAG (Information Society Technology Advisory Group) is a team that

has been set up to advise the European Commission on the overall strategy

to be followed in carrying out the IST thematic priority under the European

framework programme for research. The ISTAG reflects and advises on the

definition and implementation of a coherent policy for research in ICT in Eu-

rope. This policy should ensure the mastering of technology and its applica-

tions, and should help strengthen industrial competitiveness and address the

main European societal challenges [92].

The first ISTAG meeting took place in 1999 and defined the objective of the

group as

start creating an ambient intelligence landscape (for seamless de-

livery of services and applications) in Europe relying also upon

testbeds and open source software, develop user-friendliness, and

develop and converge the networking infrastructure in Europe to

world-class

— ISTAG, “Orientations for Workprogramme 2000 and beyond”

The ISTAG promotes the creation of pervasive environment improving the
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quality of life of the occupants and enhancing the human experience. Such

smart, electronic environment are proactive to the presence of people and their

activities. Context awareness is a key factor of this vision. Computer react based

on their environment. Devices collect information about the circumstances un-

der which they operate and react accordingly [178, 179].

Ambient Intelligence stems from the convergence of three key technologies:

Ubiquitous Computing

The vision of ubiquitous computing emerged in the late 80s at Xerox Palo

Alto Research Center (PARC) when a heterogeneous group of researcher

developed a novel paradigm of interaction between human and comput-

ers [224]. The term ubiquitous computing has been forged by Mark Weiser

few years later [222] and refers to omnipresent computers that serve peo-

ple in their everyday lives at home and at work, functioning invisibly

and unobtrusively in the background and freeing people to a large extent

from tedious routine tasks. Ubiquitous computing has as its goal the en-

hancing computer use by making many computers available throughout

the physical environment, but making them effectively invisible to the

user [223]. The technology required for ubiquitous computing is three-

fold: cheap, low-power electronic devices, a network that ties them all

together, and software systems implementing ubiquitous applications.

Human-smart environment interaction is possible through hand held de-

vices that collect information from the environment or context aware ser-

vices that are aware of people presence, understand their activities and

react in a proactive manner. Some people say that ubiquitous comput-

ing is the Third Wave of Computing, where the First Wave was many

people, one computer (mainframe), the Second Wave is the era of one

person, many computers (Personal Computers). The Third Wave will be

the era of many computers per person [2] (see figure 2.1).

Ubiquitous Communication

An important factor to fully exploit the power of ubiquitous system and

to provide information everywhere it is needed is the presence of a rich

wired and wireless communication infrastructure. Wireless communi-

cation is well suited for dynamic environment where the users moves

within smart ambients. In order to realize demands for ubiquitous com-

munication and pervasive computing, a change from the traditional ap-

proach of centralized, planned wireless communication networks such

as GSM, toward an adaptive, self-organizing, multi-user, multi-system

distributed wireless communications platform is essential [162] (see fig-

ure 2.2). To implement wireless technology on a wide level, however,
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Figure 2.1: Trends in computing

the wireless hardware itself must meet several criteria on the one hand,

while easy integration and administration as well as security of the net-

work must be ensured on the other. Some of the unique features that

the ambient intelligence scenario presents and that must be considered

are: very large networks (hundred or thousands of nodes), both mobile

and fixed nodes, node failure must be kept in mind, small battery size

(for easier integration) and data centric communication (i.e. redundant

data can be aggregated, compressed, dropped etc.). Incorporating these

unique features into protocol design is important in order to efficiently

utilize the resources of the environment [159].

Intelligent User Friendly Interfaces

Intelligent user interface have a fundamental role in ambient intelligence.

These interfaces go beyond the traditional keyboard, mouse, and display

paradigm to improve human computer interaction by making it more

intuitive, efficient, and secure. Thus, Ubiquitous computing inspires ap-

plication development that is off the desktop. In addition to suggesting a

freedom from well-defined spaces, this vision assumes that physical in-

teraction between humans and computation will be more like the way

humans interact with the physical world. Input has moved beyond the

explicit nature of textual input (keyboards) and selection (pointing de-

vices) to a greater variety of data types. This has resulted in not only a

greater variety of input technologies but also a shift from explicit means
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Figure 2.2: Distributed communication network

of human input to more implicit forms of input. Computer interfaces that

support more natural human forms of communication (such as hand-

writing, speech, and gestures) are beginning to supplement traditional

interfaces. Intelligent human computer interaction promises to support

more sophisticated and natural input and output, to enable users to per-

form potentially complex tasks more quickly, with greater accuracy, and

to improve user satisfaction.

In 2001, two years later the first meeting, the ISTAG group has published

a final report where four scenarios are described in order to offer provocative

glimpses of futures that can be realized [53]. Each scenario contains positive

and negative aspects that allow for a composite, even contrasted, picture of the

future.

The analysis of these scenarios allow to identify the critical factors in build-

ing AmI systems. The factors are divided into 3 main topics.

Socio-political factors AmI should facilitate human contact and be oriented

toward community and cultural enhancement. However to be acceptable

AmI should inspire trust and confidence and thus needs to be driven by

humanistic concerns, not technological ones since people do not accept

everything that is technologically possible and available [154]. A major

criticism came from the observation that being immersive, personalized,
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Figure 2.3: Intelligent Natural Interfaces (Photo:Philips)

context-aware and anticipatory it brings up social, political and cultural

concerns about the loss of privacy, the power concentration in large pri-

vate companies and fear for an increasingly individualized, fragmented

society [232]. This criticism should be kept in mind for a widespread ac-

ceptance of this new technology.

AmI also should exploit its great potential to enhance education and

learning. Everyday life skills will grow because of rising opportunities

and means of personal expression and interaction [52].

Business and industrial models Economic aspects of AmI are a fundamental

factor for the diffusion of this technology. The most important questions

are related to how translate technological and social changes into po-

tential business models. However a number of elements emerged from

the scenario that highlight several potentialities of AmI. Among them:

enhancements in the productivity and the quality of products and ser-

vices, comprehensive methods of monitoring and extracting information

on real-world, reducing reaction times in unforeseen circumstances, new

products and new services.

Technology requirements Five main technology requirements emerge from

the analysis of the scenarios [53]:

1. Very unobtrusive hardware. Miniaturization is necessary to achieve

dense dissemination of devices and to develop new sensors and
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smart materials. In addition self-generating power and micro-power

usage will be necessary due to poor scaling capability of batteries

technology and new displays and smart surfaces should be devel-

oped to provide satisfactory interaction with the environment.

2. A seamless mobile/fixed communications infrastructure. Complex

heterogeneous networks need to function and to communicate in a

seamless and interoperable way. This implies a complete integra-

tion of mobile and fixed and radio and wired networks. Advanced

techniques for dynamic network management will be necessary.

3. Dynamic and massively distributed device networks. A huge amount

of sensors will be spread in the environment. This networks should

be self configurable according to its specific, dynamic status and the

current task with variable actors and components. Databases should

be accessible on demand from anywhere in the system.

4. Natural feeling human interfaces. The design of novel multimodal,

multi-user, and multi purpose interface for speech, gesture, and pat-

tern recognition adaptive to user requirements is required.

5. Dependability and security. Technology should be safe for user both

from the physical and psychological point of view. Thus technology

should be tested and both hardware and software should be robust.

For this reason there is likely to be an emerging emphasis on self-

testing and self-organizing systems.

Ambient Intelligence will be brought to us with the promise of an enhanced

and more satisfying lifestyle. However, its social benefits cannot be realized

unless a number of requirements regarding socio political-issues, business model

and technology development have been met. Several field of research will be

involved in this change and furthermore novel interdisciplinary approaches

will be necessary. Issues such as environmental and social sustainability, pri-

vacy, social robustness and fault tolerance will determine the take up of AmI.

2.2 Ambient Intelligence projects

A number of leading technological organizations are exploring pervasive com-

puting apart from Xeroxs Palo Alto Research Center (PARC).

The Laboratory for Computer Science (LCS), the Artificial Intelligence Lab-

oratory (AIL) at the Massachusetts Institute of Technology (MIT) together with

several industrial partner have started the project Oxygen [142]. The mission

of the project is to bring an abundance of computation and communication within

easy reach of humans through natural perceptual interfaces of speech and vision so
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computation blends into peoples lives enabling them to easily do tasks they want to

do collaborate, access knowledge, automate routine tasks and their environment. The

project focus on network technologies to connect dynamically changing configu-

rations of self-identifying mobile and stationary devices to form collaborative

regions, on software technologies to develop software systems able to adapt to

users, to the environment, to change and to failure with minimal user inter-

vention and without interruption to the services they provide, on perceptual

technologies to build multimodal interaction with the electronic environment,

and on user technologies for user support.

IBM created a living laboratory, called Planet Blue, to understand how peo-

ple will interact with the emerging world of the wireless Internet [88]. The ap-

plications developed within this laboratory aim at highlight the requirements

of the underlying infrastructure needed to support workers. The objective of

Planet Blue is to define the future of post-PC personal computing and drive

IBM’s research in information access devices. The project focus on the devel-

opment of dynamic personal portals, enhanced Personal Information Manage-

ment (PIM) and smart meetings.

Carnegie Mellon University has started Project Aura that focuses on user

attention [26]. The project motivation come from the observation that also user

attention is a (limited) resource in a computer system. Aura’s goal is to provide

each user with an invisible halo of computing and information services that

persists regardless of location and support it. Aura’s related project includes:

distributed real-time object system and interactive media, mobile file access,

application-aware networking, wearable computers and cognitive assistance

for everyday computing.

The regione Emilia Romagna (IT) founded the project LAICA [117](Laboratorio

di Ambient Intelligence per una Cittá Amica - Ambient Intelligence Laboratory

for a Friendly City). The objective of this project is to develop ambient intel-

ligence solution at a city level through a set of demonstrators deployed in the

city of Reggio Emilia (IT). The project bring together 3 university (University

of Bologna, University of Modena and Reggio Emilia and University of Parma)

and 6 industrial partners. Information from the demonstrator are collected to

a middleware that present them both to public offices, police and citizens with

different details.





Chapter 3

Wireless Sensor Networks

3.1 Wireless Sensor Networks overview

Advances in the fields of micro electronics, wireless communication, embed-

ded microprocessors and micro-fabrication allowed the the birth of one of the

most rapidly evolving research and development fields: Wireless Sensor Net-

works (WSN) [41, 241]. WSN are complex system consisting of spatially dis-

tributed autonomous devices, called Sensor Nodes, that collaborate to monitor

physical or environmental conditions at different locations. Design, implemen-

tation, and deployment of a WSN involves a wide range of disciplines and con-

siderations for numerous application-specific constraints [13]. In the last five

years, significant progress has been made in the development of WSNs, and

some WSN-based commercial products have already appeared on the market.

Even if WSN are strictly application dependent, it is possible to define a list

of basic features [90].

• Self-organizing capabilities.

• Short-range broadcast communication and multihop routing.

• Dense deployment and cooperative effort of sensor nodes.

• Frequently changing topology due to fading and node failures.

• Limitations in energy, transmit power, memory, and computing power.

These characteristics make WSN different from other wireless systems and

make them one of the most important enabling technologies for several ap-

plications.
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3.1.1 Wireless Sensor Network applications

Historically WSNs were developed for military applications [30], however there

has been a significant interest also in several other fields of human activities

[166]. Following a list of application is discussed.

Military

Being capable of self organization a large number of sensor nodes could

be rapidly deployed along defensive perimeter or into battlefields (for ex-

ample by dropping them from a helicopter as shown in figure 3.1). Once

on the field they would establish an ad hoc network and monitor for

hostile military units. For example in [131] a wireless network of many

low-cost acoustic sensors is used to determine both a snipers’s location

and the bullet’s trajectory. Furthermore even if the loss of some sensors

is likely to happen the ability to adapt to a changing topology will not

prevent a redundant network to work properly. Clearly, fusing the in-

formation from a heterogeneous set of sensors can improve the precision

and the number of inferences about the activity going on [81].

Figure 3.1: WSN Application on battlefield

Environmental and habitat monitoring

WSN have shown to provide an effective means to monitor geographi-

cally remote areas. Thanks to the ability of transmit collected data to a
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data repository on a server, WSNs have been a great improvement in tra-

ditional monitoring systems where data required manual downloading

by a maintenance team [132]. Some applications of environment monitor-

ing through WSN include the the Environmental Observation and Fore-

casting Systems (EOFS) project which is large-scale distributed system

designed to monitor, model, and forecast wide-area physical processes

such as river systems like the Columbia river estuary [192] and the Sensor

Web Project [152] which is a systems used to implement a global surveil-

lance program to study volcanoes. The system uses a network of sensors

linked by software and the internet to a satellite and has been designed

with a flexible, modular, architecture to facilitate expansion in sensors,

customization of trigger conditions, and customization of responses. Ex-

amples of WSNs applications for habitat monitoring include the Berke-

leys habitat modeling at Great Duck Island [200] (see figure 3.2).

Figure 3.2: Structure of the WSN for habitat monitoring on Great Duck Island

Health care

Patient monitoring systems can be used to collect patient physical status

related data at home and, in some cases, in outdoor scenarios, facilitate

disease management, diagnosis, prediction and follow-up. Use of WSN

can bring great benefit to this activity since the monitoring of people in

their natural environments is not practical when it is necessary to use ca-

bles to connect the sensors with the processing and communication units
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[146]. Some example application includes elderly care [17], post stroke

rehabilitation [155] and support of people who suffer of physical disabil-

ity in order to provide imminent feedbacks when occurs [21] (see 3.3).

Figure 3.3: Audio bio-feedback for impaired people support

Domotic

Home automation is a field within building automation that focus on the

application of automatic techniques for the comfort and security of home

residents. The possibility to embed a large number of sensors into ev-

eryday objects allow the continuous monitoring of the home status. This

results in a more efficient tuning of systems such as the heating, ventilat-

ing, and air conditioning (HVAC) and the easy and natural interface with

electronic devices [163].

Logistic

Tracking of goods is one of the most important aspect for modern com-

panies. In a globalized world, production process is distributed among

several country and many actors take part of it. WSN provide opportuni-

ties for the control and management of transport and logistics processes,

since sensor nodes can be associates with goods and track their path, who

used them and eventually report misuse. An overview of issues and pos-
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sible approaches can be found in [61].

Figure 3.4: WSN can be used for logistic support

Surveillance

As for military application WSN can be used to monitor the access to

building, restricted areas and other critical infrastructure such as power

and telecoms grids or roads and motorway. Heterogeneous systems that

comprise lower-cost sensors, such as presence or acoustic sensors, can

support more bulky and expensive sensors such as imagers, in order to

provide cost effective and efficient systems. The use of this setup is even

more effective if we consider that it is rather difficult for security guards

to continuously watch a set of video monitors when most of the time

nothing occurs is considered. Thus low-cost sensor can help to focus

their attention only where it is necessary [242].

3.2 Wireless Sensor Nodes

WSN basic building blocks are called Wireless sensor nodes or sensor nodes. A

sensor node is a device capable to collect data from one or more sensors, per-

form some sort of computation with it, than (wirelessly) send this data to other

nodes or system for further analysis.
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The major characteristics and requirements of a sensor node can be listed

in the following [174]:

Low cost

WSN may consist of hundred or thousand of sensor nodes, thus single

sensor node cost should be kept low. Also, it is likely that sensor node

will be embedded into everyday object, therefore, for a widespread dif-

fusion of sensor network, their cost should not be excessive.

Low cost requirement results in the adoption of low level components

such as low power microcontrollers with limited amount of data and pro-

gram memory available. As a consequence, even if, due to the high num-

ber of nodes working in parallel within the network, the overall compu-

tational power and memory available to the network can be quite high,

single node capabilities are strictly limited. Thus, application for WSN

should be made up of many simple tasks done in parallel by the nodes of

the network.

Limited size

Sensor nodes will be embedded into the surroundings, into object and

even into user garments. For this reason, unobtrusiveness is a critical

point in order not to impair normal activities. A consequence of minia-

turization is the evolution of sensor nodes from dedicated embedded de-

vices where commercial off the shelf components with emphasis on small

form factor, low-power processing and communication, share a common

board to system on chip sensor nodes where on a common die coexist an

MCU, a wireless transceiver and sensors.

Low power

Power consumption is one of the biggest issues in the design of WSNs.

Nodes, typically, are equipped with batteries, thus they have a limited

amount of available energy. Often a frequent change of batteries can

be unfeasible, specially in large WSN, or can not be possible when, for

example, nodes are placed in harsh environment. In many application

scenarios, the target node lifetime should be several years long. This im-

poses drastic constraints on power consumption that can drop down to

an average of few tenth of microwatts.

Limited power consumption usually is achieved using low power hard-

ware or performing several trade off between the energy consumption

and other network characteristics such as: quality of service, latency,

sensing accuracy, reactiveness to changes in topology, node size (since

batteries do not scale as quickly as integrated circuits).

Another approach is to rely on energy scavenging systems to extend node
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lifetime. However energy harvesting, typically, provide a non constant

amount of energy that must be carefully managed to assure the desired

service.

Wireless

Wireless is a key factor for many applications that rely on mobile nodes,

and in order to reduce WSN cost. In fact, sensor nodes, even if fixed,

may be placed in environment where communication infrastructure are

not present. In this situation the cost of wiring sensor nodes can be too

high and result in sensor network rejection.

Scalability and self organization

Wireless sensor nodes should be able to autonomously organize them-

self and to adapt to changes in their setup and number. This characteristic

is fundamental since often WSN are deployed without a precise control

of nodes position (for example, when dropped on battle field) and also

because, due to the low cost hardware used, nodes failure can be rather

common. For this reason sensor network should be able to provide a

graceful degradation as the number of nodes decrease. Furthermore, self

organization is necessary where mobile nodes move within different re-

gions and interact with a multitude of different other nodes.

Figure 3.5 presents the system architecture of a generic sensor node which,

typically, is made up of four basic building blocks.

• Sensing Unit.

• Computational Unit.

• Communication Unit.

• Power Unit.

An example of wireless sensor node is presented in figure 3.6 [65].

3.2.1 Computational Unit

Sensor nodes should collect data from the environment, process it and com-

municate. For this reason a central processing unit is needed. The CPU should

be able to manage the sensor node activity while meeting the energy consump-

tion, size and cost constraints. There are a large number of available microcon-

troller, microprocessors and FPGA that can be integrated within sensor nodes,

which allow a high degree of flexibility [213, 1].
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Figure 3.5: Generic architecture of a sensor node

Figure 3.6: WiMoCA wireless sensor node
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Microcontrollers

Nowadays, microcontroller includes a sufficient amount of memory and

enough computational power to iterate with sensors and communication

devices such as short-range radio to compose a sensor node. Furthermore

they provide non-volatile memory for data storage and several other de-

vices such as: ADC, UART, SPI, counters and timers.

There are many types of microcontrollers, ranging from 4 to 32 bits, vary-

ing the number of timers, bits of ADC and power consumption. In par-

ticular they provide several different operating modes that allow to save

energy when the sensor node is idle.

FPGA

Field Programmable Gate Array (FPGA) presents some disadvantages

with respect to microcontrollers. The most important is related to power

consumption, which is not as low as microcontrollers one. However the

development of ultra low power FPGA can make these devices a suitable

solution for sensor node.

3.2.2 Sensor and Actuator Unit

A sensor is a device that converts a physical phenomenon into an electrical

signal. On the other hand, an actuator convert an electrical signal into physical

phenomena. The first decade of the 21st century has been called as the ”Sensor

Decade” for the dramatic increase in sensor R&D over the past years [229].

Sensors are used to measure various physical properties sch as temperature,

force, pressure, flow, position, light intensity, acceleration, incident infrared

radiation, etc. [182].

Sensors may be classified in a number of ways. One useful way is to clas-

sify sensors either as active or passive. The former require an external source

of power, thus they consume power even when nothing is detected. The lat-

ter generate their electrical output signal without requiring external voltage or

current. A list of popular sensors is presented in table 3.1.

Most sensors require an output conditioning circuit to amplify and filter

their output in order to be processed by a microcontroller. Typical sensor

conditioning circuits include amplifier, filtering, level translation, impedance

transformation.

3.2.3 Communication Unit

The wireless communication channel enables to transfer signals from sensors

to exterior world, and also an internal mechanism of communication to es-

tablish and maintain of WSN. This medium needs to be bidirectional, to be
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Property Sensor Active/Passive Output

Temperature
Thermocouple Passive Voltage

Silicon Active Voltage/Current
Thermistor Active Resistance

Force/Pressure Strain Gage Active Resistance
Piezoelectric Passive Voltage

Accelerometer Accelerometer Active Capacitance
Infrared radiation Pyroelectric InfraRed Passive Voltage/Current

light intensity Photodiode Passive Current

Table 3.1: Popular sensors and their output.

energy-efficient, and have relatively slow date rate. Two basic techniques are

used: optical communication and radio frequency communication [214].

Optical communication

Two main technologies are available for optical communication: laser

and infrared.

Laser communication consumes less energy than RF over larger range,

is secure, since upon interception the signal is interrupted, and do not

need antennas. However it requires line of sight and alignment between

transmitter and receiver and this is a major drawback since several appli-

cations presents randomly deployed nodes.

Also infrared is directional and requires line of sight between 2 communi-

cating nodes. It allows only short range (less than 10 meters), but do not

require antennas. An interesting solution is presented with the PushPin

project [122] in order to achieve omni-directional ifrared communication

on a single plane.

Radio frequency communication

Based on electromagnetic waves, one of the most important challenges

for this typology of communication is antenna design and size. However

RF communication present several advantages. It is easy to use, to inte-

grate and it is a well established technology. Power consumption of RF

communication is affected by type of modulation, data rate and trans-

mission power. An important aspect to consider when working with RF

transceiver is that idle state (radio active but not transmitting, nether re-

ceiving) drawn as much current as receive mode. Thus wireless protocols

must reduce as much as possible this waste of energy.

3.2.4 Power Unit

Power supply unit usually consists of a battery and a dc-dc converter. Thus,

the power needs of large wireless sensors network (maybe deployed in harsh
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environment) is the current biggest impediment that keeps them from becom-

ing completely autonomous, forcing them to be either connected to an external

power source or have lifecycles that are curtailed by batteries. Furthermore,

in some application like gesture recognition, where sensor are embedded into

user garments, battery size is the most relevant factor when seeking unobtru-

siveness since battery technology tends to be a limiting factor in miniaturiza-

tion [157].

For this reason in the last years, energy harvesting has emerged as one al-

ternative to provide perpetual power solution to sensor network.

3.3 State of the art

In this section a we present a series of commercial and academic solutions of

wireless sensor nodes and their main features.

3.3.1 Smart Dust

The goal of the Smart Dust project, founded by DARPA (Defense Advanced

Research Projects Agency), is to demonstrate that a complete sensor communi-

cation system can be integrated into a cubic millimeter package. This involves

both evolutionary and revolutionary advances in miniaturization, integration,

and energy management [15, 220]. A conceptual diagram of a Smart Dust mote

is presented in figure 3.7.

Figure 3.7: A diagram of the Smart Dust mote

Many sensors, including temperature, pressure, and acceleration sensors,

from MEMS and CMOS processes can be attached to a mote. In contrast to
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typical computing systems, in an autonomous cubic-millimeter package com-

putation must focus on minimizing a given tasks energy consumption. This

is achieved through frequency and voltage scaling, since the computation re-

quirement for this motes are limited. Communication is possible by means

of two approaches: passive reflective systems between nodes and the base

stations and active steered laser systems between motes. The power system

consists either of a thick-film battery, or a solar cell with a charge-integrating

capacitor for periods of darkness, or both.

3.3.2 Intel mote

The Intel Mote is a new sensor node platform motivated by several design

goals: increased CPU performance for data compression as well as initial classi-

fication and analysis, improved radio bandwidth and reliability, and the usage

of commercial off-the-shelf components in order to maintain cost-effectiveness.

An important aspect of the platform design was to increase performance while

preserve battery life. To satisfy these requirements, Intel chose a system on

chip from Zeevo Inc. including a CMOS Bluetooth radio and an ARM7TDMI

core operating at 12MHz and with 64KB SRAM and 512KB FLASH [151].

The Intel Mote is built on a 3× 3 cm circuit board that integrates the Zeevo

module, a surface-mount 2.4GHz antenna, various digital I/O options using

stackable connectors and a multi-color status LED (see figure 3.8).

Figure 3.8: The intel mote

Intel second generation of sensor nodes are the Intel Mote 2. This motes

are based on an Intel PXA270 XScale CPU with 32 MB of flash and 32 MB of

SDRAM resulting in high performance processing capabilities. The processor

integrates a DSP co processor, a security co processor and an expanded set

of I/O interfaces. The platform also provides an on-board 802.15.4 radio and

the option to add other wireless standards such as Bluetooth and 802.11b via

an SDIO interface. The complete platform is hosted on a single 36 × 48 mm

printed circuit board [109, 184](see figure 3.9).
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Figure 3.9: The intel mote 2

3.3.3 Mica Mote

MICA Motes (see figure 3.10), developed by UC Berkeley research group on

wireless sensors, is a mote module used for research and development of low

power, wireless, sensor networks. The motes measures 3.16 × 6.35 cm and

is created using off-the-shelf hardware, but the architecture and its capabili-

ties could be implemented in just a few square millimeters of custom silicon.

The main microcontroller is an Atmel ATMEGA128 running at 4MHz with

128kB of FLASH and 4kB of RAM. The radio module is based on an RF TR1000

transceiver operating at 916.5 MHz. Several sensor extension board can be con-

nected to the base board, such as: thermal temperature, barometric pressure,

magnetic fields, light, passive infrared, acceleration, vibration, and acoustics

[84].

Figure 3.10: The Mica mote

An evolution of the Mica motes are the Mica2 mote [34] and the the MICAz

[35] mote from Crossbow [36]. The latter, in particular, is a 2.4 GHz, IEEE

802.15.4/ZigBee, board used for low-power, wireless, sensor networks.

3.3.4 Tmote Sky

Tmote Sky [183] is an ultra low power wireless module for use in sensor net-

works, monitoring applications, and rapid application prototyping. On a sin-
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gle 3, 22 × 6.55 cm board it integrates an ultra low power microcontrolloer

(MSP430 from TI), sensors (Humidity, temperature and light sensors), a Zig-

bee compliant radio (CC2420 from Chipcon), antenna and programming ca-

pabilities (see figure 3.11). Tmotesky offers a robust solution with hardware

protected external 1MB flash, in the event of a malfunctioning program, the

module loads a protected image from flash to restore proper operation.

Figure 3.11: The Tmote Sky mote

3.3.5 BT Node

The BTnode (see figure 3.12) is an autonomous wireless sensor platform devel-

oped at ETH Zurich by the Computer Engineering and Networks Laboratory

(TIK) and the Research Group for Distributed Systems [60]. The mote is based

on a Bluetooth radio and a microcontroller. It serves as a demonstration plat-

form for research in mobile and ad-hoc connected networks (MANETs) and

distributed sensor networks. Currently the latest version is revision 3 which in-

cludes a core CPU Atmel ATmega128L with 4kByte EEPROM, 64kByte SRAM,

128kByte Flash and a dual radio device composed of a Zeevo ZV4002 Blue-

tooth radio and a low power Chipcon CC1000 radio operating at 868 MHz.

The BTnode rev3 is compatible to the old BTnode rev2 and the Berkeley Motes.

This twin device can operate both radios simultaneously or shut them down

independently when not in use.

3.3.6 System on chip

One of the main limitations of the platforms presented in the previous sections

is that they are built using commodity chips, which themselves are not specif-

ically designed for wireless sensor network applications. As a result, they suf-

fer several inefficiencies that lead to limited functional capabilities, high power

consumption, and limited operational lifetimes [64]. A breakthrough innova-

tion happened when the whole sensor node has been integrated on a single

chip. In the following sections we present the solutions proposed by 2 Original

Equipment Manufacturers (OEM).
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Figure 3.12: The BTnode mote

Freescale solutions

With the mission of making the world a smarter place with leading embed-

ded semiconductor solutions for cars, mobile phones, networks and many

more, Freescale is a leading company that develops and produces electronic

devices for many applications: automotive, computer networks, communica-

tions infrastructure, office buildings, factories, industrial equipment, tools, mo-

bile phones, home appliances and everyday consumer products. Freescale has

joined the Zigbee alliance in 2004 as a promoter and, since then it has develop

several solution for Zigbee.

In particular 2 system on chips have been developed for WSN.

MC1322x Platform in a Package (PiP)

The MC1322xV [68] is Freescales third-generation ZigBee platform which

incorporate a complete, low power, 2.4 GHz radio frequency transceiver,

32-bit ARM7 core based MCU, hardware acceleration for both the IEEE

802.15.4 MAC and AES security, and a full set of MCU peripherals into a

9.5×9.5mm Platform-in-Package (PiP). The MC13224V solution includes

a fully functional 32-bit TDMI ARM7 processor, 128KB FLASH, 96 KB

RAM and, 80K ROM containing boot code, all device drivers and fully

compliant IEEE 802.15.4 MAC. Typical power consumption is 21mA in

Rx mode and 29mA in Tx mode and drops to less than 1µA in stop

mode. This device can be used for wireless applications ranging from

simple proprietary point-to-point connectivity to complete ZigBee mesh

networking in order to provide a highly integrated, total solution, with

premier processing capabilities and very low power consumption.

MC1321x System in Package (SiP)

The MC1321x family is Freescales second-generation ZigBee platform

which incorporates an 8 bit MCU (MC9S08GT) with a Zigbee compliant

transceiver (MC1320x) into a single 9× 9mm package [68]. The MC13213
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provides 60 K Flash memory and 4 K of RAM and can operate at up to

40MHz. It consumes 35mA in Tx mode and 42mA in Rx mode when the

MCU operates at 16MHz. By using the IEEE 802.15.4 Compliant MAC,

or BeeStack ZigBee Protocol Stack, the MC1321x solution can be used for

wireless applications from simple proprietary point-to-point connectivity

to a complete ZigBee mesh network.

Ember solutions

Ember’s mission is to be the leading provider of wireless sensor and control

network technologies that enable dramatic energy efficiency improvements for

businesses, homes, and the utilities that serve them. For this reason Ember

joined the Zigbee Alliance in 2003 as a promoter and developed several devices

and tools to develop Zigbee based applications [57].

Since 2005 ember produces the SN250, system on chip for Zigbee based

WSN. The EM250 combines a 2.4GHz IEEE 802.15.4 compliant radio transceiver

with a 16-bit microprocessor with 128kB Flash and 5kB RAM in a 7×7mm pack-

age. Requiring 28mA in RX mode and 24 in TX mode and being able to drop

power consumption down to 1µA, it is optimized for designs requiring long

battery life and low external component count.

3.4 Protocols for sensor networks

Typically a sensor node implements radio frequency communication. In fact,

the development of novel protocols and standard for wireless sensor network

is a very active field of research [46, 10].

Within the work of this thesis we focused on the development of Zigbee

based WSN. In this section we present this protocol.

3.4.1 Zigbee motivations

The Zigbee alliance [243] has been created in 2002 to meet markets which re-

quire longer battery life, lower data rates and less complexity than available

from existing wireless standards (see figure 3.13). At that time, for such wire-

less application a standard has been developed by the IEEE. The IEEE 802.15

TG4 was chartered to investigate a low data rate solution with multi-month to

multi-year battery life, very low complexity and operating in an unlicensed,

international frequency band [89].

As shown in figure 3.14, the scope of the task group 4 is to define the phys-

ical layer (PHY) and the media access controller (MAC) of the protocol, upon

which lay the upper layers defined by the Zigbee Alliance.
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Figure 3.13: Comparision of Zigbee and other standards

Figure 3.14: Zigbee Stack development contribution
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The Zigbee protocol addresses those application that rely on large autonomous

networks that needs to operate reliably for years without any operator inter-

vention. For such application power consumption is one of the most impor-

tant constraints together with cost reduction (both low cost devices and low

cost setup and maintenance), while data rate and QoS has are less relevant.

Furthermore being a non proprietary solutions it emphasize multivendor in-

teroperability.

A list of possible applications is presented in figure 3.15.

Figure 3.15: Zibee application range

3.4.2 IEEE 802.15.4 Overview

A low rate wireless personal area network (LR-WPAN) is a simple, low-cost

communication network that allows wireless connectivity in applications with

limited power and relaxed throughput requirements. The main objectives of an

LR-WPAN are ease of installation, reliable data transfer, short-range operation,

extremely low cost, and a reasonable battery life, while maintaining a simple

and flexible protocol.

IEEE Standard 802.15.4 defines the PHY layer and MAC sublayer specifica-

tions for LR-WPAN with fixed, portable, and moving devices with no battery

or very limited battery consumption requirements typically operating in the

personal operating space (POS).

The first version of the protocol has been ratified in May 2003. A revi-

sion process was then initiated to incorporate additional features and enhance-

ments as well as some simplifications to the 2003 edition of this standard. Since
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May 2004 the TG4 put itself into hibernation, thus the revision was completed

by the new task group 4b that ratified the 2006 version of the protocol in June

2006. Following a successive amendment published in June 2007 has added

the specification of 2 new PHY layers: the Ultra-wide band (UWB) PHY at fre-

quencies of 3 GHz to 5 GHz, 6 GHz to 10 GHz with data rates ranging from 110

kb/s to 27.24 Mb/s, and Chirp spread spectrum (CSS) PHY at 2450 MHz with

data rate of 250 kb/s and 1000 kb/s. In the following sections we will focus on

the 2006 specifications.

Two different device types can participate in an IEEE 802.15.4 network: a

full-function device (FFD) and a reduced-function device (RFD). The former

has more capabilities than the latter being able to communicate to all other de-

vices in its range. RFD, instead, can communicate and may be associated only

with a single FFD. Consequently, the RFD can be implemented using minimal

resources and memory capacity.

Depending on the application requirements, a network may operate in ei-

ther of two topologies: the star topology or the peer-to-peer (mesh) topology

(see figure 3.16). The first define a structure where the communication is estab-

lished between devices and a single central controller, called the PAN coordina-

tor. A PAN coordinator is used to initiate, terminate, or route communication

around the network and is the primary controller of the PAN. Mesh networks

also have a PAN coordinator; however, in these any device may communicate

with any other device as long as they are in range. Up to 232 devices can coexist

in the same network

Figure 3.16: IEEE 802.15.4 Network topologies

3.4.3 Physical Layer

The PHY layer is responsible for the following tasks:

• Activation and deactivation of the radio transceiver.
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• Energy detection (ED) within the current channel.

• Link quality indicator (LQI) for received packets, which represent the

strength of the received signal.

• Clear channel assessment (CCA) for carrier sense multiple access with

collision avoidance (CSMA-CA).

• Channel frequency selection.

• Data transmission and reception

A compliant device shall operate in one or several frequency bands using

the modulation and spreading formats listed in table 3.2. A total of 32 channels

are available to set up a network.

Table 3.2: IEEE 802.15.4 frequency bands, modulation and spreading.

The receiver ED measurement is intended for use by a network layer as part

of a channel selection algorithm. It is an estimate of the received signal power

within the bandwidth of the channel. No attempt is made to identify or decode

signals on the channel. Once the coordinator has detected the energy on every

channels, it start the network on the channel with less energy detected to limit

interferences.

Prior to any transmission a node should perform a CCA to avoid collision

with other communications. CCA algorithm should return an indication of

channel busy according to the selected CCA modality.

• Mode 1 Energy above threshold.

• Mode 2 Carrier sense only. CCA shall report a busy medium only upon

the detection of any signal compliant with this standard with the same

modulation and spreading characteristics of the PHY that is currently in

use by the device.
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• Mode 3 Carrier sense with energy above threshold. CCA shall report a

busy medium if a signal with the modulation and spreading characteris-

tics of this standard is detected and it has an energy above a threshold.

3.4.4 Media Access Controller (MAC) Layer

The MAC layer handles all access to the physical radio channel. This standard

allows the optional use of a superframe structure defined at MAC level. The

format of the superframe is defined by the coordinator, an example is presented

in figure 3.17. From figure 3.17, we can define the structure of the superframe.

• Beacon. The beacon is a special packed issued by the coordinator of the

PAN used to synchronize the attached devices, to identify the PAN, and

to describe the structure of the superframes.

• Contention Access Period. The Contention Access Period (CAP) start im-

mediately following the beacon. Any device wishing to communicate

during the contention access period (CAP) competes with other devices.

• Contention Free Period. The optional Contention Free Period (CFP) is used

to guarantee specific data bandwidth in low latency applications. This

period is divided into several Guarantee Time Slots (GTS) that, upon re-

quest, can be reserved by specific devices.

• Inactive. The last part of the superframe is communication free. During

this time, devices can turn off their radio to save energy.

Networks that do not use a superframe structure, require either to imple-

ment ad hoc synchronization techniques or to keep some node always i RX

mode to avoid messages loss.

Figure 3.17: IEEE 802.15.4 superframe structure

MAC layer is responsible for the following tasks:
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• Generating network beacons if the device is a coordinator

• Synchronizing to network beacons

• Supporting PAN association and disassociation

• Supporting device security

• Employing the CSMA-CA mechanism for channel access

• Handling and maintaining the GTS mechanism

• Providing a reliable link between two peer MAC entities

At MAC level three three types of data transfer transactions exist, according

to the structure of the network (with or without beacon).

In a beacon-enabled PAN, data transfer are synchronized through the bea-

cons. A device wishing to transfer data to a coordinator first listens for the net-

work beacon in order to synchronize to the superframe structure, than trans-

mits its data frame during the appropriate period. An optional acknowledg-

ment packet can be sent to acknowledge successful data reception (see figure

3.18). Communication between coordinator and associated device is indicated

in the beacon message. When the device receives the beacon it knows if there

are pending packets that have to be received, then it transmits a MAC com-

mand requesting the data, and wait for the packet from the coordinator (see

figure 3.19).

Figure 3.18: Data transfer between a
device and the coordinator
in a beacon enabled net-
work

Figure 3.19: Data transfer between the
coordinator and a device
in a beacon enabled net-
work

In not beacon enabled PAN, it is assumed that either an ad hoc synchro-

nization techniques is implemented or the coordinator is always listening. In

the latter case, a device wishing to transmit a message, once performed a CCA,

simply send it, the coordinator eventually acknowledge the correct reception
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of data (see figure 3.20). In the opposite direction the communication is device

driven, thus is the device that periodically poll the coordinator for pending

messages. If any packet is pending the coordinator either do not acknowledge

the request or send a packet with payload equal to zero, otherwise, once ac-

knowledged the request, it send the data and eventually wait for an acknowl-

edge frame (see figure 3.21).

Figure 3.20: Data transfer between a
device and the coordina-
tor in a non beacon en-
abled network

Figure 3.21: Data transfer between
the coordinator and a de-
vice in a non beacon en-
abled network

3.4.5 Zigbee

The Zigbee Alliance specified the upper layers of the Zigbee standard. A com-

plete overview of the structure of the protocol is presented in figure 3.22.

Figure 3.22: Zigbee Stack overview

The first version of the Zigbee stack was released in 2004 and supported
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only one profile: home control lighting. This stack was never extensively de-

ployed with customers and is no longer supported. Two years later the second

version of the stack (Zigbee 2006, the one discussed below) has been ratified.

This version supports a single stack known as the Zigbee stack. The latest ver-

sion of the stack, Zigbee 2007, has been released in 2007 and includes 2 stacks:

the Zigbee stack and the Zigbee Pro stack [58].

The Zigbee and Zigbee Pro stacks are complete implementations of the net-

working layer, security services and the application framework. Devices im-

plementing Zigbee and Zigbee Pro can interoperate by acting as end devices

in the other type of network, that is: in a Zigbee Pro network, Zigbee devices

can only operate as end devices and vice versa. The reason is that the 2 stacks

use different addressing techniques: the Zigbee uses a tree addressing while

the Zigbee Pro uses a stochastic addressing.

Since the Zigbee protocol is based on the IEEE 802.15.4 MAC and PHY lay-

ers it rely on two device types too: FFD and RFD (see session 3.4.2). Further-

more it defines three possible roles: network coordinator, router, end device.

Up to 216 devices can coexist in the same network.

As for IEEE 802.15.4 the coordinator of the network is unique and is re-

sponsible for initiating and maintaining the devices on the network. Routers

are FFD that have the ability to communicate with all other routers within their

communication range and to move data and control messages through the net-

work. End devices are low power low cost nodes that can communicate only

with their parent router/coordinator. While, usually the coordinator and the

routers are main powered, end devices are battery powered.

The specification allows three topologies of network: Star (with a single

coordinator as the central node), cluster tree (where end device are the leaf of

the tree) and mesh (typically composed only of routers and the coordinator)

(see figure 3.23).

Figure 3.23: Zigbee Network topologies

The Zigbee specification defines the following layers.

• Network Layer. The network layer (NWL) is responsible of: join and

leave a network, route frames to their destinations, discover and main-
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tain routes between devices, discover neighbors, store neighbor informa-

tion, apply security to packets.

• Application Layer. The application layer (APL) is made up of 3 parts: Ap-

plication Support Sublayer (APS), Zigbee Device Object (ZDO) and the user

specific applications (that are hosted within the Application Framework,

AF). The former provide a common interface to user applications in or-

der to access all zigbee services. It is responsible of: maintaining binding

tables (which are tables that contains the id of devices that match based

on their services and their needs), forwarding messages between bound

devices and fragmentation, reassembly and reliable data transport. The

ZDO is a standard application built over the APS that is in charge to setup

and manage the device role within the network. Its duties are: define the

role of the device within the network (coordinator, router, end device),

handle binding requests, discovering devices on the network, establish

secure connections between devices.

Following a more detailed description of the two layers.

Network Layer

The network layer is required to provide functionality to ensure correct opera-

tion of the IEEE 802.15.4-2003 MAC sub-layer and to provide a suitable service

interface to the application layer.

To all devices it should allow to join and leave the network, while only

router and the coordinator can permit devices to join and leave the network,

participate in assignment of logical network addresses and maintain a list of

neighboring devices.

A node wishing to associate to the network should perform a join request to

a router or the coordinator of the network. Upon acceptance it will be assigned

a unique network address. The ZigBee stack uses tree addressing. This address

is calculated according to three constants shared by all nodes of the network

that have routing capabilities.

1. Max Depth (MD). This parameter specify the maximum allowed distance

(in hop) between a device and the coordinator of the network. Each de-

vice will keep track of its depth. Coordinator have depth 0 and the max-

imum depth is MD-1.

2. Max Children (MC). This parameter specify how many node can be asso-

ciate to a router or to the coordinator.

3. Max Router (MR). This parameter specify how many associated devices

can have routing capabilities.
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These constants are used to build a vector called CSkip table whose elements

are calculated as follow [118].

CSkip(d) =

{
1 + MC · (MD − d− 1), MR = 1

1+MC−MR−MC·MRMD−d−1

1−MR , MR 6= 1

Each device with routing capabilities will have its CSkip value according to

its depth. With this value, when it receives an association request that can be

accepted (i.e. there is enough room for this router/end device) it assigns the

new address in a sequential manner according to the following

{
A = Aparent + n · CSkip(d), If device is a Router

A = Aparent + n, if device is not a Router

Where A is the address of the new device, Aparent is the address of the device

that receives the association request, and n is the sequential order of the request

(i.e. the nth router or end device that ask for association). A schematic example

with Maxdepth = 3, MaxChildren = 2, and MaxRouter = 2 is presented in

figure 3.24.

Figure 3.24: Example of Zigbee address allocation

Packet routing can be done in one of the three following ways.

Tree Routing

The destination address tells you where the destination is located within

the association tree. In fact given the local address and the destination

address it is possible to define a simple mechanism that route the packet

up or down the tree branches. If the destination address is larger than

the local address and smaller than the local address plus the value of

the CSkip value of the local node level than the packet should be routed

down. Otherwise it should be routed up. Figure 3.25 present this routing

technique.

Neighbour Routing

The coordinator and Routers maintain a table with the addresses of the

devices within its range of communication. These tables are used to send
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Figure 3.25: Example of Zigbee tree routing

messages directly to the destination (see figure 3.26)

Figure 3.26: Example of Zigbee neighbor routing

Mesh Routing

The coordinator and Routers maintain the routing table of next hop neigh-

bor. If neighbor devices have an entry for the destination the message can

be forwarded through it (see figure 3.26)

Figure 3.27: Example of Zigbee mesh routing

Usually the tree routing is used when both the neighbor and the mesh rout-

ing do not find the destination. Eventually, a route discovery procedure can be

initiated to find a suitable path to the destination. The route discovery is per-

formed through a sequence of broadcast messages. If a better route is found

the routing tables of the nodes involved in the discovery are updated.
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Application Layer

In order to explain the details of the APL some definitions are needed (see also

figure 3.28).

Endpoint

The endpoint is a logical extension of the device address. Up to 240 user

application can be hosted on a Zigbee device, each one is identified by

a unique endpoint id. For example, a single zigbee device can control 4

lamps, each lamp will be associated to a different endpoint. Two end-

points are used for special usage: endpoint 0 for the ZDO and endpoint

255 to broadcast messages to all applications. Endpoints 241-254 are re-

served for future use.

Attributes

Physical devices associated to a Zigbee device are identified through the

use of attributes. For example, a the lamp might contain an output at-

tribute ẗurned onẅhich represents the current status of the lamp.

Profile

Application profiles are agreements for messages, message formats and

processing actions that enable applications to create an interoperable, dis-

tributed application between applications that reside on separate devices.

Through the use of certified profiles developers from different companies

can develop new products that can interoperate with other vendors de-

vices. In the example of the lamp, a home lightning profile can be devel-

oped define the behavior of devices that are part of the lightning system

such as switches and lamps.

Following a list of profiles that have been ratified:

• Home Automation (HA) defining devices for typical residential and

small commercial installations.

• Commercial Building Automation (CBA) defining devices for large

commercial buildings and networks.

• Advanced Metering Initiative (AMI) For utility meter reading and

interaction with household devices

• Telecom Application (TA) Wireless applications within the telecoms

area.

• Wireless Sensor Network Applications (WSN) Wireless sensor net-

works.

• Personal Home Health Care (PHHC) Monitoring of personal health

in the home environment.
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Cluster

A Cluster is identified by a cluster identifier, which is associated with

data flowing out of, or into, the device. Binding decisions are taken by

matching an output cluster identifier to an input cluster identifier, assum-

ing both devices are within the same profile. For example the lamp can

contain an input cluster id 21 to change its status from off to on while the

switch will have an output cluster 21 to change the lamp status.

Descriptor

ZigBee devices describe themselves using descriptor data structures. Each

device have a set of descriptors that are used to match devices and their

services. The node descriptor contains information about the capabilities

of the ZigBee node like device logical type, MAC capabilities and fre-

quency band. It is mandatory for each node. The node power descriptor

gives an indication of the power status of the node and is mandatory

for each node. Each endpoint should have a simple descriptor that con-

tains information specific to each endpoint on this node such as profile

id, input clusters and output clusters. It is mandatory for each endpoint

present in the node. Finally the complex descriptor contains extended in-

formation about the devices connected to a zigbee node such as man-

ufacturer and model name and serial number. The use of the complex

descriptor is optional.

Application Support Sublayer

The APS provides three basics services : device discovery, service discovery, bind-

ing.

Device discovery

Device discovery is the process whereby a ZigBee device can discover

other ZigBee devices by initiating queries that are broadcast (of any broad-

cast address type) or unicast addressed. This service is used to find either

the 16 bit Network address or the 32 bit IEEE 802.15.4 address.

Service discovery

Service discovery is the process whereby services available on endpoints

at the receiving device are discovered by external devices. There are 2

modalities to issue a service discovery. The first is accomplished issu-

ing a query to a specific endpoint on a given device, the second is called

a match request that compares the descriptors of the 2 devices to see if

they can match. Service discovery is a key process to interface and con-

nect devices within the network. Through both direct and broadcast re-
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Figure 3.28: Example of Zigbee application, endpoint and clusters.

quests for service matching a range of options for commissioning tools

and applications is available.

Binding

Binding is the creation of logical links between complementary applica-

tion devices and endpoints. It is always performed after a communica-

tions link has been established. The binding is performed once a service

match between two endpoints on two devices has been found. The nodes

can decide to communicate directly through their network address (di-

rect addressing) or to rely on a third node. The information about which

cluster is bound between the two nodes is stored in a binding table stored

within a device designated as the binding table cache.

Binding tables are used to perform indirect addressing. The use of direct

addressing requires the controlling device to have knowledge of desti-

nation address, endpoint and cluster id. Such information may not be

stored on the sending device, however after binding they are stored in

the binding table. When a source device wishes to send a command to

a destination using indirect addressing it simply send their messages to

the device that contains the binding table that will use source address,

endpoint and cluster id to find those of the destination device and rely

the message to the indicated destination. Figure 3.29 clarify this process.
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Note that one source address, endpoint and cluster can be bound to

Figure 3.29: Example of binding process.

more than one destination ones.

Zigbee Device Object

ZigBee Device Object is an application which employs network and applica-

tion support layer primitives to implement ZigBee End Devices, ZigBee Routers

and ZigBee Coordinators. It has its own profile, ZigBee Device Profile (ZDP),

and occupy reserved endpoint 0. Its public interface provides address man-

agement of the device, discovery, binding, and security functions within the

application framework layer of the ZigBee protocol stack.

The ZDO is responsible for the following functions:

• Initializing the Application Support Sublayer (APS), Network Layer (NWK),

Security Service Provider (SSP) and any other ZigBee device layer other

than the end applications residing over Endpoints 1-240.

• Assembling configuration information from the end applications to de-

termine and implement the following functions: device initialization, ser-

vice and device discovery, security management, network management,

binding management and node management.

3.4.6 Security

Security within the Zigbee stack is applied through the use of four techniques:
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• Freshness check prevents replay attacks that can cause undesired net-

work behavior. Each Zigbee device maintain a 32 bit freshness counter

for both incoming and outcoming messages.

• A 0, 32, 64 or 128 bit message integrity code (default 62) is added at the

end of the message to prevent an attacker from modifying the message

in transit. The length of the integrity code is a trade-off between the mes-

sage payload length and the protection level (the probability that a ran-

dom guess of the code would be correct).

• Message Encryption using a standard 128 bit AES algorithm prevents an

eavesdropper from listening to messages. Two level of encryption are

possible through the use of two different keys: network level and device

level. This protection is independent from the others, thus low power

devices can decide not to implement it.

• Device authentication provides assurance about the originator of the mes-

sage. Also authentication can be performed at network and device level.

The latter, however, requires to store a pair of keys for each link, increas-

ing the memory requirement for a node.

Such techniques are implemented both at MAC, NWK, and APL layer.

As highlighted in the previous list, security makes use of three symmetric

keys:

• Master key. It is the basis for long-term security between the two devices,

used during the execution of a symmetric-key key establishment protocol

and to generate link keys. It is the basic key for secure communication

and it can be either pre-installed or sent over the air if eavesdropping can

be prevented.

• Network key. Broadcast communication is secured through this key shared

by all devices of the network. As for the master key it can be sent over

the air or pre-installed.

• Link key. Link keys are shared between couples of devices and are used

for direct messages. Link keys are generated from the master key using

the APL key establishment services based on the Symmetric-Key Key Es-

tablishment (SKKE) protocol.

To handle keys and to manage secure device authentication the Zigbee pro-

tocol defines the role of the Trust center. The trust center is a device trusted

by all the other devices within a network. All members of the network shall

recognize exactly one trust center, and there shall be exactly one trust center in

each secure network. Typically the network coordinator is also the trust center.
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The functions performed by the trust center can be subdivided into three

subroles: trust manager, network manager, and configuration manager. The

trust manager are used by the devices of the network to identify other devices

of the network. The network manager is responsible for the network and dis-

tributes and maintains the Network key. Finally the configuration manager

is responsible for binding two applications and enabling end-to-end security

between devices of the network (for example, by distributing link keys).

Several design principles are involved in Zigbee security.

1. The layer that originates a frame is responsible for initially securing it.

For example, MAC messages to handle a device disassociation must be

secured ad MAC level.

2. If protection is required all messages should be secured except the ones

between a router and a newly joined device, until the new device receive

the keys.

3. Keys can be reused between layers.

4. If two devices have a link key, it is always used instead of the network

key.

5. All devices in the same network should use the same security level.

However some policy decisions are left to the real implementation.

1. Handle error conditions.

2. Out of band methods for key setup.

3. Handle loss of counter or key conditions.

4. Policy for expiration and update of keys.

5. Policy for new devices acceptance.





Chapter 4

Data Fusion and Pattern

Recognition

4.1 Data Fusion overview

A concise definition of Data fusion have been proposed to highlight the fact that

similar problems of data association and combination occur in a wide range of

engineering, analysis, and cognitive situations. According to this definition

data fusion is the process of combining data or information to estimate or pre-

dict entity states [193]. Often we refer to data fusion also as Sensor Fusion. In

this case we refer to the use of techniques that combine data from multiple

sources (sensors or high level inferences), and related information from asso-

ciated databases, to achieve improved accuracies and more specific inferences

than could be achieved by the use of a single sensor alone [76].

The concept of multi-sensor data fusion is not a novel idea. Humans and

animals use multiple senses to improve their ability to survive. Nowadays the

development of new sensors, hardware and processing techniques make real-

time fusion of data possible.

Fusing data from multiple sensors offers some advantages over standard

algorithms [129]:

1. Improved confidence due to complementary and redundant information;

2. Robustness and reliability in adverse conditions;

3. Increased coverage in space and time,

4. Better discrimination between hypotheses due to more complete infor-

mation;
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5. System being operational even if one or several sensors are malfunction-

ing;

6. Possible solution to the vast amount available information.

In 1988 the Joint Directors of Laboratories (JDL) Data Fusion Working Group,

began an effort to codify the terminology related to data fusion. The result of

that effort was the creation of a process model for data fusion and a data fusion

lexicon [228]. Since then several revision have been proposed to improve that

model [193, 18, 124]. The JDL process model identifies the processes, functions,

categories of techniques, and specific techniques applicable to data fusion. The

results is presented in figure 4.1.

Figure 4.1: JDL Data Fusion model

The model shows a two-layer hierarchy. The top level is made up of four

blocks: sensor inputs, human-computer interaction, database management and

source preprocessing. At lower level 6 subprocesses are defined [18]:

Level 0 - Sub-Object Data Assessment . Estimation and prediction of signal/object

observable states on the basis of signal level data association (i.e. data

pre-processing).

Level 1 - Object Assessment . Estimation and prediction of entity states on

the basis of observation-to-track association, continuous state estimation

and discrete state estimation (i.e. combining data to estimate entity at-

tributes and identity).

Level 2 - Situation Assessment . Estimation and prediction of relations among

entities in the context of their environment.
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Level 3 - Impact Assessment . Estimation and prediction of effects on situa-

tions of planned or estimated actions by the participants.

Level 4 - Process Refinement . Adaptive data acquisition and processing to

support mission objectives. This is a meta-process that monitor the over-

all data fusion process to improve its performances

Level 5 - User Refinement . Adaptive determination of who handle informa-

tion and adaptive data displaying to support cognitive decision making

and actions (i.e. which data display to support user decision).

For each of these subprocesses the hierarchical JDL model identifies specific

functions and categories of techniques. Three basic alternatives can be used for

multisensor data: direct fusion of sensor data 4.2, representation of sensor data

via feature vectors , and fusion of the feature vectors 4.3, or independent pro-

cessing of each sensor to achieve high-level inferences, which are subsequently

combined 4.4.

Figure 4.2: Fusion of sensor data

Several techniques have been proposed for data fusion [177, 66, 153, 123].

Several of them rely on pattern recognition techniques or on filtering. In the

following sections we present an overview of algorithms.

4.2 Direct fusion of sensor data

Direct fusion of sensor data refers to the combination of input signals from a

(heterogeneous) group of sensors in order to provide an output signal that is

usually of the same form as the original signals, but of greater quality. The

signals from sensors can be modeled as random variables corrupted by un-
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Figure 4.3: Fusion of features vectors

Figure 4.4: Fusion of high level inferences



4.2 Direct fusion of sensor data 55

correlated noise, and the fusion process can be considered as an estimation

procedure.

Predictive filters are widespread tools in modern science. They perform state

prediction and parameter estimation in fields such as robotics, computer vi-

sion, and computer graphics. They belong to the class of Bayesian filters, since

they apply the Bayesian rule of conditional probability to combine a predicted

behavior with some corrupted indirect observation [71].

As compared to the other types of fusion, fusion of sensor data requires a

higher degree of synchronization between data streams from the sensors. The

most common techniques for this kind of fusion consist of weighted averaging

and Kalman filtering.

4.2.1 Kalman filter

In 1960, R.E. Kalman published a paper describing a recursive solution to the

discrete data linear filtering problem [103]. Since that time, due in large part

to advances in digital computing, the Kalman filter has been the subject of

extensive research and application.

The Kalman filter is the simplest example of a predictive filter. It represents

uncertainties as Gaussian random variables, fully described by a mean and a

covariance matrix, and models the system with linear dynamics and observa-

tions. Since Gaussians are preserved under linear transformation, the Kalman

filter’s implementation uses only linear algebra operations.

It can be shown that the Kalman filter is an optimal recursive data process-

ing algorithm. One aspect of this optimality is that the Kalman filter uses all

information that can be provided to it. It processes all available measurements,

regardless of their precision, to estimate the current value of the variables of

interest. Furthermore it use the knowledge of the system and measurement

device dynamics, the statistical description of the system noises, measurement

errors, and uncertainty in the dynamics models, and any available information

about initial conditions of the variables of interest [135].

[225] The Kalman filter addresses the general problem of trying to estimate

the state of a discrete-time controlled process that is governed by the following

set of linear equations 4.1

{
xk = Axk−1 + Buk−1 + wk−1

zk = Hxk + vk

(4.1)

Where xk is the state of the process and zk is the, noisy, measurement. wk and

vk represent, respectively, the process noise and the measurement noise and

are assumed to have a normal probability distribution with the parameters
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presented in equation 4.2.

P (w) ∼N(0, Q)

P (v) ∼N(0, R)

(4.2)

Where Q is the process noise covariance matrix and R is the measurement noise

covariance matrix.

A, B and H are the equations that specifies how the state of the process

evolves and is related to the measurement.

The filter estimates a process by using a form of feedback control. The pro-

cess evaluate the state at some time and then obtains feedback in the form of

(noisy) measurements. A set of time update equations (or predictor equations)

are responsible for projecting forward the current state and error covariance

estimates to obtain the a priori estimates for the next time step. The measurement

update equations (or corrector equations) generate a feedback used to incorpo-

rate a new measurement into the a priori estimate and obtain an improved a

posteriori estimate.

Equations 4.3 and 4.4 present respectively the prediction and the correction

equations

x− =Axk−1 + Buk−1

P−k =APk−1A
T + Q

(4.3)

Kk =P−k HT (HP−k HT + R)−1

xk =x−k + Kk(zk −Hx−k )

Pk =(I −KkH)P−k

(4.4)

Where with the over line we indicate the estimated value of the status of the

process, P = E[ekeT
k ] is the error covariance matrix where the error is calculated

as ek = xk − xk, and Kk is the Kalman gain that decides how much the a priori

estimates should be corrected by the k-th observation (note how the large the

measurement noise, R, the smaller the correction).

In the actual implementation of the filter, the measure of the noise covari-

ance matrix, R, is generally possible prior to operation of the filter, since we

should be able to measure the process to estimate its state. The determination

of the process noise covariance, Q, is generally more difficult as often we do
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not have the ability to directly observe the process we are estimating. For this

reason we rely on an off line tuning of the parameter of the filter. This tuning

often take the name of system identification or training.

If the hypothesis on the linearity of the process and the pdf of the noise are

respected, the Kalman filter can provide and exact solution for the estimation

of the process. However, one of the main criticism to the Kalman filter is that

the hypothesis on the linearity of process and on the noises models are too

restrictive. For this reason many other models have been proposed.

• Extended Kalman filters.

• Unscented Kalman filters.

• Particle filters.

The objective of this models is provide an approximate solution for an exact

model rather than an exact solution for an approximate model.

4.3 Fusion of features vectors

Fusion of features vectors combines distinctive relevant characteristics (fea-

tures) from sensor reading to extract useful informations or to classify a par-

ticular phenomenon. Those features may come from several raw data sources

(several sensors, different moments,etc.) or from the same raw data.

Several techniques to fuse features vectors take the name of pattern recogni-

tion techniques. Pattern recognition can be defined as the act of taking in raw

data and taking an action based on the “category” of the pattern [54]. In gen-

eral a pattern recognition system establish a mapping between the measure-

ment space and the the space of potential meanings (classes). This mapping is

performed in six steps (see figure 4.5).

Sensing Data is collected from the one or more sensors.

Pre processing Pre processing include all the steps necessary to condition the

signal for further processing. Typically this steps includes a filter to re-

duce signal noise.

Segmentation Segmentation is a critical step in the patter recognition chain.

Sensors provide a continue stream of data, segmentation aim at extract-

ing only the data related to a single entity to classify.

Feature extraction This steps aim at reduce data dimension. The objective here

is to extract quantities that are distinctive of a certain class.
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Classification Classification uses the information provided by the features to

assign the object to a category.

Post processing Exploit further context information other than from the target

pattern itself to improve performance.

Figure 4.5: Pattern recognition steps

To perform the classification step we rely on a set of tools called classifiers.

A large number of classifiers have been developed to address several problems

in patter recognition. In general we can sort them into two categories.

Supervised classifiers In supervised learning, a teacher provides a category

label or cost for each pattern in a training set, and we seek to reduce the

sum of the costs for these patterns. The classifier is trained off line using

this set of samples. Typically training is a computational expensive op-

eration while normal classification is much more lightweight and suited

for real time operation.

Unsupervised classifiers In unsupervised learning or clustering there is no ex-

plicit teacher, and the system forms clusters out of the input patterns.
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Unsupervised classifiers are used when a training set is not available or

too expensive to be created. Typically they rely on a set of assumption on

the underlying probability densities and assume that the only thing that

must be learned is the value of an unknown parameter vector.

The development of pattern classification systems rises a number of issues.

Many are domain or problem specific, and their solution will depend upon the

knowledge and insights of the designer.

Feature Extraction

The task off feature extraction is strictly problem and domain dependent.

In general we can place a conceptual boundary between feature extrac-

tion and classification since an ideal feature extractor would yield a rep-

resentation that makes the job of the classifier trivial and vice versa, a

perfect classifier would not need the help of a feature extractor. Typically

it is not possible to define features that are good for all problems and

developer experience play an important role.

Overfitting

For supervised classifiers may sound obvious the idea that a larger train-

ing set will result in a more complex, but more performing classifier. Ex-

perience showed that increasing the complexity of the classifiers may re-

sult in poorer performance during normal operation. In fact while an

overly complex model may allow perfect classification of the training

samples, it is unlikely to give good classification of novel patterns. This

situation is known as overfitting. One of the most important areas of re-

search in statistical pattern classification is determining how to adjust the

complexity of the model.

Model Selection

Tenth of model have been developed for classification. In general is hard

to know when a hypothesized model differs significantly from the true

model underlying our patterns.

Prior Knowledge, Context awareness

Incorporating prior knowledge and context awareness to improve the

classification accuracy. However context can be highly complex and ab-

stract and often came from different spaces than our features vectors.

Segmentation

Segmentation is one of the deepest problems in those pattern recogni-

tion application where continuous stream of data are handled like speech

recognition, hand written recognition etc. In such application is essential
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to extract part of the signal related to a single word or letter in order to

perform the classification. Such procedure is not trivial but fundamental

to improve classifier accuracy.

Computational Complexity

The computational complexity of different algorithms is of great impor-

tance, especially for practical applications where limited resources are

available. Algorithm scaling with the number of features or performance-

complexity trade off are very important for pattern recognition techniques

evaluation.

In the following section a set of pattern recognition techniques are pre-

sented as examples. The list focus on the algorithm used during the work

presented in this thesis.

4.3.1 Naı̈ve Bayes Classifier

The naı̈ve Bayes classifier is a simple probabilistic classifier based on Bayes’

theorem. The classifier combines the Bayes probabilistic model with a decision

rule. A common rule is to classify an input instance as belonging to the class

that maximize the a posteriori probability [173]. Previous work [172] showed

that naive Bayesian classifiers perform well even if the independence assump-

tion is not met.

Formally, given the conditional model P (C|A1, A2, ..., AN ), where C de-

notes the final classification output class and Ak are N input variables (the

features vector) and using Bayes theorem we can define:

P (C|A1, A2, ..., An) =
P (A1, A2, ..., An|C) P (C)

P (A1, A2, ..., An)

Posterior =
Likelihood× Prior

Marginal

Where the Posterior is the probability of a class given the input sequence,

Likelihood is the conditional probability of a sequence given a certain class, Prior

is the prior probability of the selected class, and Marginal is the probability of

the input sequence.

Applying the assumption that the input attributes are independent we can

write:

P (C|A1, A2, ..., An) =
P (C)

∏n
i=1 P (ai|C)

P (A1, A2, ..., An)
(4.5)
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According to the proposed decision rule we can finally state:

Cout(a1, a2, ..., an) =

argmaxc
P (C = c)

∏n
i=1 P (Ai = ai|C = c)

P (A1 = a1, A2 = a2, ..., An = an)
(4.6)

Since the denominator in equation 4.6 is constant for every class we only

need to compute the numerator. The prior can be easily derived knowing the

percentage of each class in the training set. The likelihood is obtained during

the training phase, by defining P (Ai = ai|C = c) = tc

t , where tc is the number

of training instances for which the class C = c and the attribute Ai = ai and

t is the number of training instances for class c. We must note that when for a

class c we do not have a sample for which Ai = ai,
∏n

i=1 P (Ai = ai|C = c) for

that class is always zero, despite the value of the other input attribute. For this

reason often the M-estimate of the likelihood is used. Its formula is presented

in the following equation:

P (Ai = ai|C = c) =
tc + mp

t + m
(4.7)

where p is an a priori estimation of P (Ai = ai|C = c) and m is a user specific

value. Typical choice for p is 1
] A values , while a typical value for m is m = 1.

4.3.2 Support Vector Machines

Support Vector Machines (SVM) is a supervised classifiers belonging to the

class of linear discriminant classifiers. Such classifiers build discriminant func-

tions that are a combination (either linear or not linear) of the input vectors’

components. Geometrically, a discriminant function defines an hyperplane

that separates two classes [54]. Several solution have been proposed to deal

also with non-separable data.

The original idea about SVM has been developed since 1979 by Vladimir

Vapnik [210, 211, 212]. Recently there has been an explosion in the number of

research papers on the topic of SVM. SVMs have been successfully applied to a

number of applications ranging from particle identification, face identification,

and text categorization to engine knock detection, bioinformatics, and database

marketing [14].

The simplest case deal with 2 classes linearly separable data. If we call xi

the vector with the features, and yi = ±1 the label of each input vector. A

discriminant function that is a linear combination of the components of x can
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be written as:
xi ·w + b > +1 yi = 1

xi ·w + b < −1 yi = −1
(4.8)

Where w is a weight vector that determines the orientation of the separating

hyperplane and b is a bias that indicate the distance from the origin of the

separating hyperplane see figure 4.6.

Figure 4.6: Best separating hyperplane in the separable case (feature space = 2)

It is clear that infinite planes can be defined to separate the two sets of sam-

ples. A smart choice is to select the one that presents higher margin. The hy-

perplane with higher margin can be found if ve consider the points where the

equality in equation 4.8 holds. Such points lay on 2 hyperplanes (H1, H2) that

share the same normal vector w and relative distance (margin) equal to 1
‖w‖ .

Thus we can find the optimal hyperplane (the one with maximum margin) by

minimizing ‖w‖2 subject to constraints 4.8.

Note how the only points needed to build the separating hyperplane are

the one that lay on H1 and H2. Such points are called support vectors.

In a more complex case, where we have to distinguish between more than

2 classes, 2 solutions are possible: build an hyperplane that separate each class

from all the other, build an hyperplane for each couple of classes (see figure

4.7).

This approach can be extended to handle non separable data. The idea is to

relax the constraints in equation 4.8, but only when necessary. In order to do it

we introduce a further cost called slack variables, ξi.

xi ·w + b > +1− ξi yi = 1

xi ·w + b < −1 + ξi yi = −1

ξi ≤ 0 ∀i
(4.9)

In equation 4.9 for an error to occur ξi must be greater than 1, hence
∑

ξi is

an upper bound of the training error. We can take this contribution into account

by changing the objective function to be minimized to ‖w‖2
2 + C(

∑
ξi)k [23],

where C is a user defined constant. The higher is C the higher is the penalty
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Figure 4.7: Two options for building a set of separating hyperplanes in the multiple
class example

assigned to errors. A graphical representation of the use of slack variables is

presented in figure 4.8.

Figure 4.8: Separating hyperplanes in case of non separable data.

The concept above can be further extended to non linear hyperplanes. The

basic idea is to map the input feature vector into a space with much higher

dimensionality (n À m) where they can be easily separated.

Φ : Rm → Rn (4.10)

It can be shown that in the training steps the vector of features appears

always as a product of vectors (xi · xj), thus if we are able to find a Kernel

function K(xi, xj) = Φ(xi) · Φ(xi) we will use only such functions and we do

not even need to know Φ.

Some example of kernel are presented in 4.11.



64 Data Fusion and Pattern Recognition

K(x, y) =(x · y + 1)p

K(x, y) =e
‖x−y‖2

2σ2

K(x, y) = tanh(kx · y− δ)

(4.11)

4.3.3 K-Nearest Neigborns

The k-Nearest Neighbors (k-NN) algorithm is amongst the simplest of all ma-

chine learning algorithms. It belongs to the class of non parametric classifica-

tion techniques.

In its classical form, given a reference dataset of n elements Dn = {(xi, yi), 1 ≤
i ≤ n}where xi are the samples and yi the respective class, the Nearest Neighbor

assigns any new input feature vector to the class of the nearest vector. More

in general the k-NN algorithm maps any new feature vector to the most repre-

sented class within the labels of the k nearest reference vectors [115].

Formally, for a two class problem, given a metrics d(x, x′) on Rd and an

integer k, the k-nearest neighbor classifier generates a map from Rd to {0, 1} as

a function of the reference samples Dn wherein each point x ∈ Rd is mapped

into one of the two classes according to the majority of the labels of its k-nearest

neighbors in the reference sample see figure 4.9.

Figure 4.9: K-NN mapping in the two class case, with d=2 and k=1

Two main issues in developing a k-NN classifier are: the choice of the met-

ric, since features can present dynamics that differ of several degree of magni-
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tude, and tie handling. A way to handle ties is to assign the new feature vector

to the most represented class.

Despite its simplicity, versions of this non parametric algorithm are asymp-

totically consistent with a Bayes classifier, and are competitive with other pop-

ular classifiers in practical settings. However special attention must be placed

when implementing this technique on an embedded, low-power, low-cost de-

vice, since in order to classify a new instance the whole training set Dn must

be stored on the device.

4.4 Fusion of high level inferences

The data fusion systems presented in the previous sections use a single feature

descriptor and a particular classification procedure to determine the true class

of a given pattern. However, for problems involving a large number of classes

and noisy inputs, perfect solutions are often difficult to achieve. For this reason

a number of methods have been developed for classifier fusion, we often refer

to this method as mixture of experts.

There are two general groups of classifier fusion techniques [175]:

1. Method operating on classifiers. They aim at finding the single best classifier

among a group of classifiers and take its output as the final decision for

further processing [231] (Dinamc Classifier Selection).

2. Method fusing classifiers output. Produce an output which is a combination

of the output of the input classifiers outputs [233].

The method operating on classifiers output can be further divided accord-

ing to the type of the output produced by individual classifiers [175].

• Single labels. Classifiers producing crisp, single class labels (SCL) provide

the least amount of useful information for the combination process.

• Ranked classes. Classifiers can provide a ranking of the possible classes.

Two main methods can be used to fuse such ranking: class set reduction,

that aim a reducing the number of possible classes while ensuring that

the correct class is still present in the reduced set; class set reordering,

that aim at ranking the correct class at the top of the results.

• Soft output. Soft outputs are numbers in the range [0, 1] that cover all

known measures of evidence: probability, possibility, necessity, belief and

plausibility [110].

This taxonomy is presented in figure 4.10.
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Figure 4.10: Diagram of the possible classifier fusion methods

4.4.1 Majority voting

Majority voting [119] is the simplest single labels classifier fusion methods. It

does not assume prior knowledge of the individual classifiers, and it does not

require training.

The majority voting technique can be used when we are in presence of n

experts that produce a unique decision regarding the identity of the sample. In

combining the decisions of the n experts, the sample is assigned the class for

which there is a consensus, or when at least k of the experts are agreed on the

identity, where

k =

{
n
2 + 1 if n is even
n+1

2 if n is odd
(4.12)

According to this rule the combined decision is correct when a majority of

experts is correct, while it is wrong when the majority of experts is wrong and

agrees. The strength of this method stems from the fact that in order to produce

an error the majority of expert must be wrong and make the same mistake, which

is unlikely.

Despite its simplicity, this approach showed as much effectiveness as other

more complicated approaches such as: Bayesian classifier, logistic regression,

fuzzy integral, and neural network [120].
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4.4.2 Borda Count

The Borda count is an election method based on the ranking of the candidates.

It belongs to the class reduction methods of the rank classes classifiers and can

be considered a generalization of the majority vote method.

Each expert generates a ranked list of potential classes where the most likely

class is placed at the top of the list. The Borda count for a class is the sum of

the number of classes ranked below it (i.e. less likely) by each classifier. The

output class is the one with the highest Borda count [86].

The Borda count method is simple to implement and requires no training.

However, it does not take into account the differences in the individual classi-

fier capabilities. All classifiers are treated equally, which may not be preferable

when we know that certain classifiers are more likely to be correct than others.

4.5 Time variant classifiers

In the previous sections, data from each class were assumed drawn from a

single generating distribution, and independently of each other (independent,

identical distributed samples, i.i.d). However, in many field of research we deal

with sequential data. In contrast to i.i.d, sequential data present a high degree

of correlation between successive samples, and the information is contained in

the sequence of samples. For this reason, a sequence of samples are the actual

input of our classifiers, and each sample may be generated out of a different

distribution.

Several techniques have been developed to classify sequential data [51].

Common approaches include hidden Markov models (HMMs) [55], dynamic

time warping [141] and neural networks [221, 143].

4.5.1 Hidden Markov Models

The Hidden Markov Model(HMM) is a powerful statistical tool for modeling

generative sequences that can be characterized by an underlying process gen-

erating an observable sequence. HMMs have found application in many areas

interested in signal processing.

The HMM belong to the class of the Markov processes, which are models

used to describe the evolution of a system. A Markov process describes a sys-

tem which at any given time t can be in one of N states S1, S2, ..., SN . At each

time step, the system changes its state according to a set of probabilities associ-

ated with the actual state. The output of the process is the set of states at each

instant of time, where each state corresponds to a physical event, thus we refer

to this model also as observable Markov model [168].
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In many cases of interest, the state of the system cannot be directly ob-

served, but inferred though measurements of other variables called observa-

tion. This implies that the state of a system at any given time can be treated

as a hidden random variable that generates the observables that we measure.

A HMM is a probabilistic model used to describe sequences of observations

O = {o1, o2, ..., oT } and their corresponding hidden state Q = {q1, q2, ..., qT }.

Two fundamental hypotheses are given:

1. The state of the system at any given time t depend only on the state at

time t− 1.

p(qt|qt−1, ot−1, qt−2, ot−2..., q1, o1) = p(qt|qt−1) (4.13)

2. The observable at any given time t depend only on the state at time t.

p(ot|qt, qt−1, ot−1, qt−2, ot−2..., q1, o1) = p(ot|qt) (4.14)

A Discrete HMM is characterized by the following parameters:

• A set of N states S = {s1, s2, ..., sN}. Although they are hidden, often

they are related to some physical significance.

• A set of M discrete observables V = {v1, v2, ..., vM} which represent the

physical values out of the system.

• The state transition probability matrix A = {aij} = P (qt+1 = sj |qt = si).

Each element aij of the matrix defines the probability of being in state si

at time t and in state sj at time t + 1.

• The observation probability matrix B = {bi(k)} = P (ot = vk|qt = si).

Each element bi(k) of the matrix defines the probability of seeing symbol

k in state i.

• The initial state distribution vector Π = {πi} = P (q1 = si). Each element

πi of the vector defines the probability of being in state i at the beginning

of the sequence.

The compact notation of a HMM is λ = (A,B, Π). In figure 4.11 an example

with N = 3 and M = 3 is presented.

Continuous HMM differ from Discrete HMM only because the observables

can assume continuous value. In this case B typically is represented through

a mixture of gaussian, thus this matrix is replaced by one vector of mean and

one covariance matrix for each state.

There are three main problems associated with HMMs.
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Figure 4.11: Example of HMM with N = 3 and M = 3

1. Given a sequence of observation O = {o1, o2, ..., oT } and a model λ find

the probability that the model generated that sequence P (O|λ). This is

also called the evaluation problem. The solution of this problem is equiv-

alent to perform the classification of data.

2. Given a sequence of observation O = {o1, o2, ..., oT } and a model λ find

the probability the most probable sequence of states that generated that

sequence. This is also called the decoding problem. Since a physical status

can be associated to each state of the model, the solution of this problem

is equivalent to filter out the noise on the observations.

3. Given a set of observations O1, O2, ..., Ol find the model λ that best de-

scribes that observations. This is the estimation. The solution of this prob-

lem optimize, by training, a model for solving problems 1 and 2.

In the following section we present the solutions to the three problems for

discrete HMM.

Evaluation problem

The most straightforward way of calculating the probability of a sequence

O = {o1, o2, ..., oT } given a model λ is through enumerating every possible

state sequence of length T, Q. Assuming the statistical independence of obser-

vations, the probability of each sequence Q is:

P (O|Q,λ) =
T∏

t=1

P (Ot|qt, λ) (4.15)

The final probability of the sequence can be obtained by summing the prod-

ucts between probability in 4.15 times the probability of the sequence Q over
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all possible sequences.

P (O|λ) =
∑

all Q
P (Ot|Q,λ)P (Q|λ)

=
∑

q1,q2,...,qT

πq1bq1(O1)aq1,q2bq2(O2)...aqT−1,qT
bqT

(OT )
(4.16)

However the calculation presented in 4.16 involves the order of 2 · T · NT

calculations. This is computational unfeasible, since T in most cases is in the

order of hundreds or thousands of samples.

For this reason we rely on a more efficient, recursive, procedure called the

forward algorithm.

This procedure uses the forward variables αt defined as the probability of

the partial observation sequence, O = {o1, o2, ..., ot} and state si, at time t,

given the model λ, αt(i) = P (o1, o2, ..., ot, qt = i|λ). This procedure is made up

of three steps.

1. Initialization: α1(i) = πi(O1)bi(O1), 1 ≤ i ≤ N

2. Induction: αt+1(j) = [
N∑

i=1

αt(i)aij ]bj(Ot+1), 1 ≤ j ≤ N and 1 ≤ t ≤ T − 1

3. Termination: P (O|λ) =
N∑

i=1

αT (i)

The computational cost is N2 · T .

Decoding problem

The decoding problem is solved through the Viterbi algorithm which is a dy-

namic programming method.

The viterbi algorithm defines the following quantity

δt(i) = max
q1,q2,...,qt−1

P [q1, q2, ..., qt = i, O1, O2, ..., Ot|λ]P (O|Q,λ) =
T∏

t=1

P (Ot|qt, λ)

(4.17)

δt(i) is the highest probability along a single path, at time t, which ac-

counts for the first t observation and ends in state Si. By induction δt+1(j) =

[max
i

δt(i)aij ] · bj(Ot+1). To retrieve the state sequence, we need to keep track

of the argument which maximized equation 4.17.

The complete procedure is made up of the following steps:

1. Initialization: δ1(i) = πibi(O1)

2. Induction: δt(j) = max
1≤i≤N

[δt−1(i)aij ]bj(Ot)

state at time t: qt = arg max
1≤i≤N

[δt]
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3. Termination: probability of the path P = max
1≤i≤N

[δt]

Note that this procedure at each istant t finds the most probable state qt

given the model and the sequence. However the resulting final sequence may

not be possible. Infact, suppose that aij = 0 for a given couple of state {i, j}.

It may happen that δt = si and δt+1 = sj because 2 different path present

the highest probability at 2 successive steps. However, the resulting state se-

quence is the one that maximizes the probability at each time step t of seeing

the previous sequence of symbols.

Estimation problem

The third problem of HMMs is to adjust the model parameters (A, B, λ) to

maximize the probability of a set of observation sequences (training set). There

is no known way to analytically solve this problem, thus we rely on a itera-

tive procedure called the Baum-Welch algorithm. The Baum-Welch algorithm

belongs to the class of the Expectation-Maximization (EM) algorithms.

In order to describe this algorithm we must define three other variables, the

backward variable βt(i), ξt(i, j) and γt(i).

The backward variable βt(i) is similar to the forward variable αt(i) except

that it is calculated from the last sample. It represents the probability of the

partial observation sequence from t + 1 to the end T , given the actual state Si

at time t and the model λ.

βt(i) = P (Ot+1, Ot+2, ..., OT |qt = Si, λ) (4.18)

As for the α variable we can compute it in a recursive manner.

1. Initialization: βT (i) = 1, 1 ≤ i ≤ N

2. Induction: βt(j) =
N∑

i=1

βt+1(i)aij), 1 ≤ j ≤ N and t = T − 1, T − 2, ..., 1

The ξt(i, j) variable represent the probability of being in state Si at time t,

and state Sj at time t + 1, given the model and the observation. In equation

4.19 is described how to calculate εt(i, j) as a function of α, β, aij and bi(k).

ξt(i, j) = P (qt = Si, qt+1 = Si|O, λ) =
αt(i)aijbj(Ot+1βt+1(j))

N∑
1=1

N∑

j=i

αiaijbj(Ot+1)βt+1(j)

(4.19)

Finally the γt(i) is the probability of being in state Si at time t given the

observation sequence O and the model λ. γt(i) can be computed using both

the α and the β or the ξt(i, j)
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γt(i) =
αt(i)βt(i)

N∑

i=1

αt(i)βt(i)

=
N∑

j=1

ξti, j (4.20)

Notice that
T−1∑
t=1

γt(i) represent the expected number of transition from Si

and
T−1∑
t=1

ξt(i, j) represent the expected number of transition from Si to Sj . Thus

a method for reestimation of the parameter of an HMM (λ = (A,B, π)) is the

following.

πi = expected number of state Siat time t=1 = γ1(i) (4.21)

aij = expected number of transitions from state Sito state Sj

expected number of transition from state Si

=

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

(4.22)

bi(k) = expected number of times in state iand observing symbol vk

expected number of times in state i

=

(

T−1∑
t=1

γt(i))s.tOt=vk

T−1∑
t=1

γt(i)

(4.23)

It has been proved that P (O|λ) ≥ P (O|λ0), where λ0 is a starting, random

model, and that iterating the estimation of the model parameter, this iteration

converge to a local maxima.

Since only local maxima can be obtained, this procedure should be repeated

several times, each time starting from a different random guess of the parame-

ters. The best solution is kept.
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Multimodal surveillance

5.1 Overview

Human detection and motion tracking have always gathered much attention

in field as surveillance, industrial applications and, in general, smart envi-

ronments. Conventional tracking techniques use cameras and process large

amounts of data to extract features such as number of people, position and

direction [19].

Video surveillance and other security-related applications have gained many

credits due to the terroristic threats of the last years. Several industrial and

academic projects have recently started to increase the accuracy of (semi) au-

tomatic surveillance systems. In addition, the abatement of hardware costs

allows the deployment of thousands of cameras for surveillance purposes at a

reasonable cost.

The ever-increasing demand of security and the low cost of cameras con-

tributed to the diffusion of the research in distributed multi-camera surveil-

lance systems. Multiple cameras enable the surveillance of wider areas and the

exploitation of redundant information (provided by the different viewpoints)

might solve classical limitations of single-camera systems, such as occlusions.

Despite the efforts made by the researchers in developing a robust multi-

camera vision system, computer vision algorithms have proved their limits to

work in complex and cluttered environments [207].

These limits are mainly due to two classes of problems. The first is that

non-visible areas can not be processed by the system. This trivial statement

is of particular importance in cluttered scenes and can be partially lessened

by using multiple sensors (not only cameras). The second class of problems,

instead, is due to the limited resolution of cameras. Having infinite resolution

and zooming capabilities would make the job easier, but, in addition to be
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unfeasible, it would exponentially increase the computational load and it is

typically too expensive.

An interesting solution is that of using simple but effective specialized sen-

sors to solve the specific problems of the vision systems. In this way, vision

would still provide high-level information, and low-level sensors would assure

higher accuracy. In this context, the marriage between a widely distributed

low-cost wireless sensor network and the coarsely distributed higher level of

intelligence that can be exploited by computer vision systems may overcome

many troubles in a complete tracking of large areas.

Pyroelectric InfraRed (PIR) detectors take advantage of pyroelectricity, which

is the electrical response of a polar, dielectric material to a change in its temper-

ature, to detect a body at thermal disequilibrium with the surrounding envi-

ronment. These sensors are typically used in commercial applications to detect

presence of individuals to trigger alarms. However, human tracking with cam-

eras can greatly benefit from the integration of PIR detectors within the video

system. Being low-cost, low-power and presenting a small form factor, PIR

sensors are well suited for WSN based application.

In this chapter we present the design and development of a low cost wire-

less sensor network which, by means of PIR detectors, is able to extract the

number, direction of movement and the position of individuals moving through

a gate or a section of a hallway [236, 238, 237]. In this way, we explored a novel

use of PIR sensors for advanced tracking.

The proposed algorithms have low computational requirements, they are

therefore well suited for systems with limited computational resources, such

those available in sensor nodes (usually equipped with 8-bit microcontrollers).

Moreover, they enable fast recognition of occurring events, to obtain a highly

reactive system. We propose a multilevel data analysis, where processing is

distributed among nodes: the end-nodes extract the features, while a coordi-

nator infers the event happened.

In this chapter we will show how these techniques have been integrated

with a video surveillance system to increase its effectiveness [165, 40].

PIR sensors can be integrated within a video surveillance network also to

increase the lifetime of Wireless Video Sensor Nodes (WVSN). Low-cost video

surveillance systems based on wireless sensor networks will hit the market

with the promise of flexibility, quickly deployment and providing accurate

real-time visual data. However, many technical problems have to be still over-

come for a widespread diffusion of such a technology. For instance, even if

research continues to develop higher energy-density batteries, capacity con-

straints limit the lifespan of common wireless sensor nodes. For this reason,

energy-aware design and maximization of the sensor network lifetime become
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the major key research challenges for WVSN and their applications.

To enhance vision sensor networks, two successful strategies can be adopted:

1. exploiting alternative power sources which increase the autonomy of the

nodes considerably;

2. exploring multi-modal sensor integration which can save on-board power

consumption

Recently, several researchers have proposed alternative power sources and

Energy Scavenging techniques to extract and convert power from the surround-

ing environment and to replenish energy buffers like batteries or supercapac-

itors. In particular, photovoltaic (PV) harvesters are the most promising to

enable perpetual operation of WSNs [20, 187]. Unfortunately if the power con-

sumption of a device can be estimated, the power generated by a PV module

changes non-linearly under varying temperature or solar irradiance and tech-

niques which automatically tune the operating point of the solar cell should be

considered to provide the maximum output power.

From the sensor capability point of view, CMOS imagers are generally high-

power consuming devices and accuracy of the information increases the re-

quired power. Therefore they should be activated very carefully in order to

save energy and their functions could be replaced by low-power low-level vi-

sion devices during the idle intervals, when the density of the events or the

energy stored is low. Being able to detect variations of incident infrared ra-

diation, due to movement of bodies not at thermal equilibrium compared the

environment, the use of a network of PIR may lead to the extraction of more

complex data such as object direction of movements, speed, distance from sen-

sor and other characteristics [185]. The combination of several vision devices

with heterogeneous features allows the development of multimodal surveil-

lance applications with efficient energy policies. In fact, video would still pro-

vide high-level information when required, and PIR sensors would assure a

continuous monitoring service triggering the CMOS camera when an event is

detected.

In this chapter we present the design, implementation and characterization

of a self powered video sensor node, able to detect people and supported by

PIR sensors to enhance energy efficiency [128, 127].

5.2 Pyroelectric InfraRed (PIR) Sensors

Detectors that measure radiation by means of the change of temperature of an

absorbing material are classified as thermal detectors. Thermal detectors re-

spond to any wavelength radiation that is absorbed, and when an appropriate
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absorbing material is applied to the detector element surface, they can be made

to respond over a selected range of wavelengths [93].

Pyroelectricity is the electrical response of a polar, dielectric material to a

change in its temperature. For pyroelectric sensor applications two classes of

material are used: ionic crystals (like LiTaO3 or LiNb3) and molecular crystals

or polymers (for example Polyvinylidene Fluoride, PVDF) [227, 11]. In crys-

talline matter, pyroelectricity occurs in all materials with symmetries that al-

low the existence of a polar direction, in polymers, the polar features are polar

molecules or groups. The wavelengths of interest are mainly in the range of the

infrared window at 8 ÷ 14µm, in which the IR emission of room temperature

bodies also peaks (see figure 5.1).

Figure 5.1: black body radiation curve at 37◦C

The basic structure of a pyroelectric sensing element is a planar capacitor

whose charge Q varies according to:

∆Q = A · p ·∆T (5.1)

where A is the area of the sensing element and p the pyroelectric coefficient

specific for that material. The origin of this effect lies in polar features that are

lined up with the same orientation along at least one direction in the material

[156].

This charge usually is measured using electrodes as a current through a

capacitor surface (see figure 5.2). In fact, calculating the time derivative of the

pyroelectric charge, we obtain the following:

I = A · p · dT

dt
(5.2)



5.2 Pyroelectric InfraRed (PIR) Sensors 77

Figure 5.2: Schematic illustration of a PIR sensor

This extremely low current must be amplified with a high impedance pream-

plifier, two alternatives are possible: voltage and current mode. The complete

chain conversion is presented in figure 5.3 [93].

Figure 5.3: Chain conversion for PIR sensors

Due to its simplicity, voltage mode is the most commonly used operating

mode for pyroelectric detectors. In the simplest case the preamplifier is made

up of a JFET transistor configured as source follower. The gate resistor and the

JFET are integrated into the detector housing. The resistor in the source line is
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(a) Voltage mode circuit.

(b) Current mode circuit.

Figure 5.4: PIR preamplification modes.

placed outside the detector housing 5.4(a).

Current mode pyroelectric detectors are not as widely available as voltage

mode ones. The reason for this is that elementary pyroelectric detectors are

mass produced for light switches and motion detectors. Due to the complexity

of the preamplifier the use of this kind of preamplification is limited to few

applications. In the simplest case the housing containing only the pyroelectric

element, more complex solutions include the pyroelectric element, JFET and

feedback resistor 5.4(b).

Nowadays commercially available pyroelectric materials are stable, uni-

form and durable. This development has made practical the large scale produc-

tion and application of cost effective, high performance pyroelectric infrared

detectors into a wide variety of commercial, industrial and military applica-

tions.

Commercial Off The Shelf (COTS) PIR sensor usually include two or four

sensitive elements in order to improves the immunity to changes in the back-

ground temperature and achieve a shorter settling time. The resulting schematic

is presented in figure 5.5.

Furthermore, In order to shape the Field of View (FOV) of the sensor, the
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Figure 5.5: Schematic of a COTS PIR

detector is used together with a package equipped with Fresnel lens. Fresnel

lenses are good energy collectors and are used in several applications. They

can be obtained molding inexpensive and lightweight plastic materials with

transmission characteristics suited for the desired wavelength range. Array of

such lenses are designed to divide the detection area in distinct zones. As a

body moves through such cones of view, incident radiation changes and the

resulting output clearly indicates the presence of a person (see figure 5.6).

Figure 5.6: Output of a PIR sensor used in conjunction with array of Fresnel lenses

5.2.1 Related work

Thanks to their ability to detect body not at thermal equilibrium with the envi-

ronment PIR sensor are widely used to in surveillance systems [145] and auto-

matic light switching systems.

PIR sensors are also used in much more complex applications such as ther-

mal imaging [4], radiometry [164], thermometers [203] and biometry [62, 63].
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Several other works explore the usage of PIR sensor arrays to track people

movement. In Gopinathan et al. [73] a pyroelectric motion tracking system able

to detect the path of a single person moving in an area and based on coded

apertures has been developed. The apertures are designed to modulate the

visibility of four PIR detectors over a 1.6×1.6m area such that the position of a

source among 15 resolution cells may be discriminated using 4 measurements.

in Shankar et al. [185] a low cost sensor cluster is used to extract velocity

as well as the path of a single person. While a modified PIR sensor is used to

classify 5 different human motion events in [206]. In Song et al. [188] analyzes

the performance and the applicability of the PIR sensors for security systems

and propose a region-based human tracking algorithm. This technique has

been implemented and tested in real environment. Results shows that the hu-

man tracking algorithm based on the PIR sensors performs very well with the

proposed sensor deployment. De Vlaam in his master thesis [45] uses a wire-

less PIR sensor network to detect objects and humans for security applications

and provide an estimation of the direction of movements. The network is im-

plemented using Mica2 nodes and data gathered by a base station. Tracking

algorithms are implemented on the nodes and speed calculation provided ac-

curately, even if influenced by the orientation of the sensors. Slightly different

is the work of Hashimoto et al. [79] where an array of PIR is used to count

the number of people moving through a gate. Since the sensor can only detect

temperature changes, the incident radiation flow is modulated by a chopper

wheel that temporarily obstruct the PIR Field Of View (FOV). The data from

the sensors is processed by a PC.

Sensor networks implemented with PIR are useful where privacy must be

preserved together with security. In [170] cameras and PIR sensors are de-

ployed respectively in public and private areas, and their information com-

bined to correlate events such as tracking human motion and undesired access

or presence in private areas, such as theft. This work demonstrate benefits of

reducing camera deployment in favor of PIR sensors and reports results from a

survey on 60 people, stating that people consider motion sensors less invasive

for their privacy than cameras.

PIR sensors are often combined with vision systems and other kind of sen-

sors in research focused on robot navigation and localization. In Sekmen et al.

[181] a sound source localizer and a motion detector system are implemented

on a human service robot called ISAC, with the purpose of redirect the atten-

tion of ISAC. The motion detector system use an infrared sensor array of five

PIR sensors and it is integrated with the vision system of ISAC to perform real-

time human tracking, in an inexpensive way.

Combining PIR sensor with video systems is a common approach to im-
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prove video analysis. In [22] PIR sensors are used to provide a trigger event in

a motion-detection application based on cameras for tracking events at night.

The appearance of an infrared radiating body set off the PIR sensor, which

turns on a floodlight enabling the cameras to capture clearly an event such as

animals passing by an outdoor detected area. In Araujo et al. [3] PIR sensors

are used to distinguish a still person from the background and than perform a

correct tracking of people. Bai et al. present a system based on an ARM board

with a Camera module being triggered by a Pyroelectric Infrared Sensor (PIR)

which senses changes in the external temperature from an intruder. The sys-

tem captures the relevant images and send them to a remote server. Finally, a

number of publications exploit the integration of PIR sensor to improve camera

based localization [6, 32, 33].

5.3 Direction and number of people detection

In this section we present the design and development of a low power and

low cost wireless sensor network which, by means of PIR detectors, is able to

extract the number and direction of movement of individuals moving through

a gate or a section of a hallway. The network used as test-bench consists of

four wireless nodes: three sensor nodes, equipped with a PIR detector, and a

coordinator node, which gathers, analyzes and sends via RS232 to a PC the

number and direction of people passing through. The wireless infrastructure

is based on Zigbee protocol [243].

The proposed approach has very low computational requirements, it is

therefore well suited for systems with limited computational resources, such

as 8-bit microcontrollers, typically used on sensor nodes. Moreover, it enables

fast recognition of occurring events, to obtain a highly reactive system. To

achieve this we propose an efficient multilevel data analysis, where processing

is distributed among nodes: the end-nodes extract the features, while the coor-

dinator infers the event happened. This allow the exploitation of the intrinsic

parallelism within the sensor network.

5.3.1 System description

The wireless sensor node we implemented is built on top of a Zigbee devel-

oper board (SARD) [69] which already includes all the necessary components

to implement a Zigbee node. The board uses a GT60 microcontroller of the

8-bit family HCS08 by Freescale together with the MC13192 transceiver. The

detector used for our sensor nodes is Murata IRA E710 [150], which present

the characteristic shown in table 5.1. The output of this sensor must be ampli-
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fied several hundred of times in order to achieve signal amplitude that can be

handled by the microcontroller with a supply voltage of 3V and a 8-bit ADC.

In particular, our signal conditioning circuit is a double stage amplifier which

achieve a total amplification of about 1400 and operates as a band-pass filter

between 0.57Hz and 11Hz which is suitable for detecting moving people [160].

Furthermore it bias the output voltage at Vdd

2 when no movement is detected.

The conditioning circuit board includes also a low power voltage regulator

used to decouple power supply lines from the transceiver ones.

Responsivity (500K, 1Hz, 1Hz) (mV p.p.) 4.3
Field of View (◦) 90

Spectral Response (µm) 5-14
Supply Voltage (V) 2-5

Operating Temperature (◦C) -40 to 70

Table 5.1: Murata IRA E710 PIR sensor characteristics.

Commercial presence detection systems currently in use aim to cover wide

area with a single PIR. The only thing that is required is to obtain an indication

whether somebody is moving in the covered area or not. Thus, Fresnel lens

arrays are made of a number of elements and span over several tens of degree

width. In this situation the output signal depends on all the components of

incident radiation through any lens.

The novel idea behind our system is to reduce the number of Fresnel lenses

used for the array and to augment the number of PIR sensors placed in the

area. In particular we choose to reduce at minimum the horizontal span while

keeping a wide vertical span. To achieve this we used the package of a COTS

PIR presence detector, IS-215T [87], and shielded the unwanted elements of the

provided lens with metallic tape. The lenses left uncovered were chosen as the

three central ones, on the top, in the center and on the bottom (see figure 5.7).

In case of dual element sensor, as Murata IRA E710, each cone of the FOV

associated to a lens must be divided into two adjacent sub cones. As a body

moves, the elements see the change in radiation flux in sequence causing two

opposite peaks (see figure 5.6). Here, since only one lens is not shielded, as the

body moves in front of the PIR only a couple of peaks will be produced. An

example of PIR output as a person moves back and forth is presented in figure

5.8.

The communication within the nodes of the network is based on Zigbee

protocol [243]. The whole network is made up of four wireless nodes: a coor-

dinator node and three sensor nodes placed in a row with different orientations

(see figure 5.9).

The choice of a wireless solution is motivated by three reasons:
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Figure 5.7: Modified FOV of the PIR sensor

Figure 5.8: Output of the PIR sensor when a single lens is used and a person moves
back and forth in front of it.
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Figure 5.9: Setup of the PIR network used to detect number of person and direction of
movement.

1. we plan to include the cluster of nodes presented here within a complex

and heterogeneous system made of different kind of sensors;

2. we need flexibility in the number and position of nodes;

3. to increase scalability we want to keep some computation within the

node and send only higher level information, therefore we dont need

high bandwidth;

Among wireless protocols the one that fits better our needs is Zigbee. This

protocol has low power, low data rate characteristics, it allows high flexibility

and it enables coverage of a relatively wide area, by means of multi-hopping.

According to Zigbee specification the coordinator node, after initialization,

starts the network. On the other end the sensor nodes associate with the co-

ordinator and send the data from PIR sensor. The coordinator acts also as a

sink node toward a PC via RS232. On the PC a simple application collects the

packets from the network.

5.3.2 Model and system analisys

As mentioned above, the objectives of our project are to recognize the number

of people and direction of movement through a gate. At present, we tested the

system to detect direction and number of people in five situations: one, two or

three people passing in line or side by side (see figure 5.10).

This system will be included in a wireless sensor network. Thus the ap-

proach that we propose is suited for devices with limited computational power.

To accomplish its objective the 8-bit microcontroller placed on the SARD de-

tects the number of peaks at the output of the sensor conditioning circuit and

the duration of one fixed peak, as will be clarified in next paragraphs. This task

can be achieved quickly while the person walks through; therefore as soon as
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Figure 5.10: Events of interests: passages of 1, 2 or 3 persons in sequence or in parallel.

the end of an event is detected the sensor node can send its features at the co-

ordinator which, by means of few additional controls on data, can detect the

number of individuals and direction of their movement. The resulting system

is then highly reactive and can produce an indication within few hundreds of

millisecond after the passage. This time delay depends mainly on the time re-

quired to the sensor nodes to access to the wireless channel and send 2 or 4

bytes of data (depending on their position) at 250kb/s, but can be considered

negligible due to the fact that each passage duration is in the order of seconds.

Single person moving

The PIR output greatly depends on how the people move within the field of

view of the detector. Speed and distance from sensor and size of the person

can heavily influence the output of the sensor. Also, when two people walk

in line, the resulting signal depends on several variables such as distance from

sensor, reciprocal distance, speed, etc.

Narrowing the FOV of the detector to only one column of lenses has two

positive effects:

1. reduces the area where a person affects the output signal helping in dis-

tinguishing different people moving in series and movement back and

forth;

2. each passage produces only a couple of peaks where the first can be seen

as an indication of direction of movement (see figure 5.8).

With this simple consideration we are able to detect direction of movement

of a single person by means of a single detector by looking at first peak di-

rection. However, some issues arise: noise immunity, segmentation of events

(detection of the beginning and end of an event).

There are three main sources of noises



86 Multimodal surveillance

1. period of adjustment. When a person exits from the FOV of a sensor a

negative change in radiation flux occurs causing oscillation around bias

output voltage;

2. background temperature change. Due to normal daily fluctuation of temper-

atures;

3. power supply. Due to the rapid change from active to off state of the wire-

less unit which induces spikes on Vdd lines.

Use of a dual element PIR detector helps to reduce the period of adjustment

and also the influence of changes in background temperature.

The spikes on Vdd lines due to the wireless module are amplified by the

sensor conditioning circuits and produces heavy changes in the output signal.

To overcome this problem alimentation decoupling is then needed.

Segmentation of events is obtained simply using two thresholds 0.3V above

and below the bias output voltage, respectively at 1.2V and 1.8V. An event

starts when one of these two thresholds is broken while it stops when, for a 1

second period, the output signal stays between the two thresholds. The choice

of 0.3V is a compromise between the sensitivity of the detector and the ability

to distinguish successive events. In fact, as it can be seen from figure 5.11, a

higher threshold may cause the impossibility to recognize events generated by

an individual moving at high speed or far from the sensors, while the event

duration can be much shorter. On the other hand a lower threshold will al-

low far or faster people to be detected but will result in a longer duration of

the event. Not to be forgotten, when thresholds are too low, noise may cause

unwanted events.

Group of people moving

People moving in line. When people walk in front of the PIR detectors in

line we expect to see a number of peaks proportional to their number. In this

situation the choice of a narrow FOV results in PIR 2 output (see figure 5.9)

depending only on one person at a time. Consequently, for each one we see a

couple of peaks. Obviously, the direction of the first peak indicates the queue

direction of movement.

People moving side by side. In this case we expect that the output of the

sensor is highly influenced by how the group moves and by the individuals

body size. The main effects are two:

1. shielding of the closest person on the other ones;

2. oscillations due to more than one person in the FOV.
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Figure 5.11: Reactiveness-noise immunity trade off in threshold selection.

When the group is walking exactly one beside the other, we expect that the

PIR 2 output presents the same shape than in one person case. The only ob-

served difference is that the dynamic of the signal has a longer duration. Pre-

liminary tests showed that the duration of the peaks can be used to distinguish

between one person and many people traversing, but cannot give a clear indi-

cation on the exact number of individuals passed. In table 5.2 we present the

maximum, minimum and average duration of the two peaks of the waveform

collected from PIR 2 during our tests.

1st peak (ms) 2nd peak (ms)
min. avr. max. min. avr. max.

1 300 450 630 470 590 680
2 310 480 640 640 710 870
3 480 560 650 680 800 880

Table 5.2: average, max and min duration of 1st and 2nd peak when one, two
or three people are passing.

As can be seen from the table, the mean value of the second peak distin-

guishes clearly between the presence of one individual and many individuals,

but range is high. However, this feature can be useful to differentiate situa-

tions where people are crossing the FOV in group from individuals traversing

in sequence.

Using the setup presented in figure 5.9 helps to overcome the problem of

closer people shadowing the farther ones. In fac, with such configuration at

least one PIR sees the people moving side by side almost like they are moving
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in series. The output of the PIR whose orientation is orthogonal to direction of

movement is similar to the case of a queue of people passing, especially if the

2 users are walking far one from each other. This is a consequence of the fact

that they enter in the field of view of the PIR in successive instants, thus they

produce two partially overlapped outputs as the case of one person only (see

figure 5.12).

Figure 5.12: Output of the ”correct” side PIRs when 2 people are passing.

We used three sensors because, depending on the direction of movement

and the relative position, we expect to lose information due to the shadowing

of the tester closer to the sensors on the others, as shown in figure 5.13.

Figure 5.13: Output of the ”wrong” side PIRs when 2 people are passing. Shadowing is
highlighted.

Use of an array of three PIR detectors placed as shown in figure 5.9 allows

detecting direction of movement and number of users moving in both direc-

tions by looking at the number of peaks and the direction of the first peak.

However some issues arise in the implementing phase:

1. detecting which sensor gives the right information on the number of peo-

ple;

2. detecting each peak.
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Depending on direction of movement and relative position we assume that

only one out of three sensors is in the best position to recognize the number

of people passing. According to this only one RF module needs to send its

information. However, each sensor itself is not able to know if it is the one

or not. In such situation we decided to use a multilevel data analysis: the

single sensor detects direction (e.g. upper or lower peak) and number of peaks

then sends such information to the coordinator, which works as a cluster head.

Having information from all the nodes, the coordinator understands how the

testers are passing.

Peak detection is made using threshold. In particular, a positive peak is de-

tected when the signal is lower than a certain threshold under a previous de-

tected local maximum. Vice versa a negative peak is detected when the signal

breaks a certain threshold above a previous local minimum. Tests have shown

that an optimal threshold is 0.7V. After we detected a maximum we look for a

minimum and vice versa. The first peak indicates the direction of movement

of the individuals in the FOV.

5.3.3 Data fusion

We propose a simple method to distinguish between the five proposed situa-

tions.

According to the previous considerations, each wireless sensor node sam-

ples the output of the PIR detector and then identifies the number of peak pairs

(one positive and one negative) and the direction of the first peak. Moreover

the sensor placed in the middle (PIR 2 in the configuration of figure 5.9) detects

the duration of the second peak. These eight features are sent to the coordina-

tor which infers the number of people and direction of movement. We assume

that the coordinator knows the relative position of the three nodes.

Direction of movement is detected looking at the indication of the three

sensors. In the event of contradictory inputs, the direction is considered the

one suggested by at least two out of three nodes.

Number of people is extracted by means of four features: number of peaks

detected by each node and duration of the second peak measured by the cen-

tral node. Firstly, the coordinator looks at the length of the second peak mea-

sured by PIR 2. According to Table 2 we specified a threshold of 0.64 sec: if

the period is shorter than 0.64 sec it means that people are moving in line. As

a consequence, the number of couples of peaks detected by the central node

indicates the number of people passing. Otherwise more than one person is

passing side by side. Depending on direction, the number of people is now in-

dicated by the number of pair recognized by one of the two sensors on the side.
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The coordinator, knowing the relative position, can then choose the correct one.

5.3.4 Evaluation

To confirm our hypothesis we performed five sets of testing set. During each

test, one, two or three people moved forward and back ten times along the

longer direction of the room. In multiple people cases, testers walked both

side by side and in sequence. For every situation we performed 20 tests, 10 in

one direction and 10 in the other, for a total of 100 experiments.

Table 5.3 summarizes the results.

Number of people Correct direction Correct number
1 20/20 (100%) 19/20 (95%)

2 sequence 20/20 (100%) 20/20(100%)
2 side by side 20/20 (100%) 17/20 (85%)

3 sequence 20/20 (100%) 20/20(100%)
3 side by side 20/20 (100%) 13/20(65%)

Table 5.3: Experimental results.

As can be seen from table 5.3, we achieved 100% correct recognition of di-

rection of movement applying the rules proposed and using the threshold in-

dicated to identify the start of an event. It worth notice that the middle sensor

node always infer the correct direction, therefore it is sufficient for the extrac-

tion of this parameter.

Following the rules proposed we achieved 89% accuracy on detecting the

number of people passing. However, it is necessary to distinguish between the

tests where people are walking in line and when they move side by side. We

had 59 experiments (98.3%), within the first subset, where the correct number

of people is extracted. In figure 5.14 the output of the middle sensor when one,

two or three people are passing is illustrated.

The accuracy drastically reduces to 75% in the subset of experiments where

people walk side by side (30 correct identification over 40 tests). In figure

5.15 the output of the three detectors is shown when three people are walk-

ing through. In this situation the accuracy results to be much lower than in

the other. This is mainly due to two reasons: shielding effect and handmade

sensors. In fact, the closest tester walks only few centimetres away from the

sensor, thus slight differences in reciprocal position caused a shielding effect

that undermined the gathered data. Moreover, the board with the sensor con-

ditioning circuit was built in our lab, while the package and the lenses are the

one from COTS presence detectors: slight misalignment and a non accurate

distance between the sensor and the lenses compromised the correct detection

of people.
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(a) Single person (b) 2 people

(c) 3 people

Figure 5.14: Output of the middle pir when 1,2 and 3 people are passing in a row.

(a) PIR 1

(b) PIR 2 (c) PIR 3

Figure 5.15: Output the three PIR when three people are passing side by side. PIR 1 is
in the ”best” position, the central PIR (PIR 2) shows an output similar to
the one in the case of single person, PIR 3 output is affected by shielding
effect.
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5.3.5 Conclusion

In this chapter we introduced a novel approach to detect direction of move-

ment and number of people passing in a hallway or through a gate by means

of a set of three PIR detectors. We proposed a novel configuration for the sen-

sors and a set of features that can be easily calculated by typical wireless sensor

nodes based on low power microcontrollers (e.g. 8 bit ones). The detectors are

located along a wall of a hallway. A coordinator node, which works also as a

sink node, collects the features sent from the three wireless sensor nodes and it

can infer direction of movement and number of people.

The technique proposed allows high reactivity. Results of the detection are

available few hundreds of milliseconds after the event is ended. Tests show

that in 100% of the cases our system has been able to detect correctly direction

of movement, while number of users has been identified correctly in 89% of

our tests.

5.4 Distance estimation

In this section a novel technique to detect person position through the use of

an array of PIR detectors is proposed. The basic block of the network includes

two PIR detectors placed on opposite walls of a hallway or a gate and facing

each other. Each block is able to autonomously classify in real-time passages

between the PIRs into three classes according to the distance of the person from

the sensors, thus resulting in high system scalability and flexibility. The use

of three different classifiers, namely Naı̈ve Bayes, Support Vector Machines

(SVM) and k-Nearest Neighbor (k-NN), is evaluated and performance vs. cost

trade offs are explored.

5.4.1 System description

Our objective is to detect the distance of a moving person from the walls of an

hallway. Since we do not need a precise estimation of the position we roughly

divide the hallway into three separate zones: close to sensor 1, middle, close

to sensor 2 (see figure 5.16). Each couple of PIR detectors monitors the passage

through a thin section of the hallway.

We used the same hardware described in section 5.3.1. Also here, we shielded

all the lenses of the IS-215T package except the central ones in order to narrow

the FoV of the sensors.

The whole AoI is covered with several couples of PIR sensors, according to

the application need.
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Figure 5.16: The building block of the network is made up of two PIRs that au-
tonomously monitor a slice of the AoI. The space between them is divided
into three zones.

5.4.2 Model analysis

Figure 5.17 shows the PIR output as a function of distance.

Figure 5.17: Output of a PIR sensor in case of passages at different distances.

From this plot, we can see how signal duration increases with distance

while signal amplitude is at a maximum for passages in the middle position.
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Signal duration increase is due to the FoV conic shape. In fact, a PIR is

mostly sensitive to entrances and exits from its FoV and these two instants are

more distant when a person walks far from the sensors.

Output peak-to-peak amplitude decreases with distance because far bodies

result in a smaller change in the incident radiation. Amplitude reduction for

closer passages is due to the interaction of the two sensitive elements. In figure

5.18 we highlighted each elements’ FoV. In proximity of the sensor the two

FoVs are overlapped, thus compensating each other.

Figure 5.18: Schematic of a typical C.O.T.S. PIR. Two sensing elements are used in se-
ries with opposite polarization, the output is pre-amplified through a built
in MOS transistor. Highlighted with shading, the FoV of each sensing ele-
ment. Notice how, in proximity of the device, the two FoVs are overlapped.

In case of isolated people, each passage can be easily segmented using two

thresholds above and below V dd
2 . The starting of the passage is detected when

one of the threshold is broken, the end when the PIR output remains between

the threshold for a certain time T . According to results from previous work

[238], we placed the thresholds at V dd
2 ± 300mV and T = 1sec.

When a passage is detected, each sensor extracts its duration and the PIR

output amplitude. These two features are wirelessly sent to a central unit in or-

der to evaluate the distance of passage, thus reducing the power consumption

related to wireless communication and the bandwidth required. The central

unit calculates the ratio between homogeneous features (duration and ampli-

tude). Therefore each passage results in a two-elements vector of features (rel-

ative duration and relative amplitude) with whom we estimate the position of
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the person ((see figure 5.19)).

Figure 5.19: Task allocation for distance detection.

In figure 5.20, we plotted such vectors for a subset of samples from passages

at different distances. As can be seen from this figure, it is not possible to define

well separated region of the space for each distance of passage, so we decided

to rely on a classifier in order to estimate it.

Figure 5.20: Mapping of input vector in the two dimensional feature space. The three
classes are located into partially overlapped areas of the space.

We tested and compared the use of three classifiers: Naı̈ve Bayes, Support

Vector Machines (SVM) and k-Nearest Neighbor (k-NN) (see sections 4.3.1,



96 Multimodal surveillance

4.3.2 and 4.3.3).

These classifiers fall into the category of supervised classifiers. Such classi-

fiers require a starting, off-line, usually computational heavy training phase

during which their parameters are learned from a set of training instances

(training set). On the other hand, classification of instances during normal op-

erative phase is a lightweight task that can be implemented in real-time on low

cost, low power devices, thus allowing distributed implementation through

the sensor network.

5.4.3 Test and results

To validate our approach we collected about 200 instances for each class. In

order to test the selected classification algorithm we used the Waikato Environ-

ment for Knowledge Analysis (WEKA) software developed at the University

of Waikato [230]. The algorithm used are: NaiveBayesSimple for Naı̈ve Bayes,

SMO with polynomial kernel for SVM, and IBk for k-NN.

To evaluate the results we used 4-folds cross validation, consequently the

available instances from each class have been divided into four groups (folds),

three of them have been used to train the classifier and one to validate it. The

training and validation steps are repeated four times, each one using a different

fold for validation.

Classifiers performance, calculated as correct classification ratio, are pre-

sented in table 5.4.

Classifier Correct classification ratio (%)
Naı̈ve Bayes 83.49

1-NN 92.47
3-NN 93.75
5-NN 92.95

Linear SVM 86.06
Quadratic SVM 86.06

Cubic SVM 87.50

Table 5.4: Classifiers performance (correct classification ratio).

In table 5.5 the computational costs to perform the classification of one in-

stance is reported. Here Nsv1 and Nsv2 are, respectively, the number of support

vectors for the quadratic and cubic SVM classifier and T is the number of ref-

erence instances for the k-NN classifier.

From these tables we can see how k-NN achieves higher accuracy with re-

spect to the other classifiers. However, this classifier is the one with highest

memory requirements to store the reference instances. Moreover, whenever a

passage is detected, it is necessary to compute the distance between the new
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Classifier Computational cost Memory cost
Naı̈ve Bayes 3 sum, 3sqr., 3 exp., 6 mul., 1 max 15

1-NN T·(3 sum, 2 sqr., 1sqrt.) , 1 max 2·T
3-NN T·(3 sum, 2 sqr., 1sqrt.) , 3 max 2·T
5-NN T·(3 sum, 2 sqr., 1sqrt.) , 5 max 2·T

Linear SVM 6 mul., 6 sum, 2 max 6
Quadratic SVM 2 ·Nsv1 · (1mul., 1sum), 2max 2 ·Nsv1

Cubic SVM 2 ·Nsv2 · (1mul., 1sum), 2max 2 ·Nsv2

Table 5.5: Classifiers computational effort to perform the classification of a single in-
stance and memory cost (number of double) to implement the classifier.
Nsv1 = 257, Nsv1 = 235 and T = 300

input vector and all references, thus resulting in higher latency in reporting the

distance estimation than the other classifiers.

SVMs performs well, but from tables 5.4 and 5.5 we can see that an increase

in classifier complexity results in little or null increase in classification perfor-

mance. Thus the use of high complexity classifiers is not justified for this ap-

plication. Finally Naı̈ve Bayes method shows the worst performance, however

it has little memory requirements and computational effort.

A deeper understanding of classification performance can be gathered look-

ing at its confusion matrix. Table 5.6 presents, as an example, the confusion

matrix when using Naı̈ve Bayes classifier. By looking at the matrix we can see

how instances from classes close to 1 and close to 2 are never confused, indicat-

ing limited uncertainty in position estimation. The other classifiers present this

characteristic, too.

classified as
close to 1 middle close to 2

close to 1 165 33 0
middle 15 180 12

close to 2 0 43 176

Table 5.6: Naı̈ve Bayes classifier’s confusion matrix

5.4.4 Conclusion

Wireless sensor networks will provide great opportunities for researchers and

developers. However several technical issues must be addressed when dealing

with such systems, in particular size, cost and power consumption should be

reduced and a large amount of data must be efficiently handled.

In this section we proposed a novel approach to estimate, using PIR detec-

tor, people position within a section of an hallway or a gate. Being passive,

small and low cost PIR detectors are well suited within wireless sensor net-
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works.

As a person moves within PIR’s FoV, the sensor node locally calculate pas-

sage duration and PIR output maximum amplitude. With such information

coming from a couple of detectors facing each other we estimated the position

of a person moving between them. Estimation is performed with a classifier

that classifies the passages into a set of three classes: close to one PIR, mid-

dle, close to the second PIR. Since our approach relies on a set of identical,

autonomous building blocks it shows high flexibility and scalability.

We tested the use of three classifiers. We compared the classifiers in terms

of correct classification ratio, computational cost and memory cost. We found

that k-NN has better performance (up to 93.75% correct classification ratio) but

requires more memory and computational effort than the other classifiers. On

the other hand, Naı̈ve Bayes and linear SVM result in lower performance (re-

spectively 83.49% and 86.06% correct classification ratio) but have much more

relaxed requirements on memory and computational cost.

5.5 Multimodal sensor network for video surveil-

lance

This work reports the joint research of MicrelLab [139], which is part of DEIS,

University of Bologna ([49, 204]), and the Image Lab [91], which is part of Uni-

versity of Modena and Reggio Emilia [205], developing a multimodal sensor

network that integrates a wireless network of PIR-based sensors with a tradi-

tional vision system to provide drastically improved (in accuracy and robust-

ness) tracking of people. It is worth noting that people surveillance is more in-

teresting from the researchs point of view w.r.t. to vehicle tracking, because of

the intrinsic complexity in detecting, tracking, and understanding human be-

havior: changes in posture and gestures, human interaction, presence of mul-

tiple people, and so on, make the problem challenging and interesting for the

computer vision community.

5.5.1 Integrated multimodal sensor networks

Vision systems achieve good accuracy when working alone, but they definitely

could benefit from the multi-modal integration with PIR sensors. For testing

the integration, a test bed has been created at our campus. Figure 5.21 shows

the location of cameras and PIR sensors. The system we implemented is com-

posed by several modules, working in parallel on different threads (see figure

5.22). In particular, a thread is generated for each camera, devoted to com-

pute the list of people present in the scene exploiting a two stage processing
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(segmentation and tracking). All the camera threads are tightly connected to a

coordinator thread, that detects if the same person is visible in more than one

camera, and, in such a situation, it labels the corresponding tracks with the

same identifier.

Figure 5.21: Map of the test bed system.

Figure 5.22: Software architecture of the system.

At the same time, a sensor manager coordinates the network of sensors dis-

tributed over the monitored area. Observing the output of a couple of PIR, the

microcontroller integrated on the sensor node is able to detect both presence

and direction of movement of the person walking by it. When such situation is

detected the microcontroller creates and wirelessly sends a message to a spe-



100 Multimodal surveillance

cial node which acts as a sink. The sink then forwards the message to the

sensor manager via RS232 cable in order to make the information available to

the tracking and labeling algorithms.

Eventually, data coming from cameras and sensors are collected and man-

aged by a supervisor thread. The coordination between cameras and sensors

is twofold. Each time the vision system requires more detailed or reliable in-

formation about the presence of people in the zones monitored by the sensors,

it sends requests to the supervisor thread. Contemporaneously, when the sen-

sor network detects a particular event, the manager takes care to inform the

involved cameras.

5.5.2 PIR sensor network

The wireless sensor node that we used in this project is slightly different than

the one presented in 5.3.1.

Figure 5.23: General architecture of the PIR sensor node.

The general architecture of a single node is shown in figure 5.23. More than

one PIR can be connected to the microcontroller unit (MCU) through the signal

conditioning unit (SCU). Each PIR sensor is equipped with a Fresnel lens from

Murata [150] (see figure 5.24), which is used to shape the detection area while

IR filter is used to limit incoming radiation between 8 and 14µm, typical of

human body radiation range. By suitably shading its Fresnel lenses, we were

able to obtain a cone of coverage with a vertical angle of 60 degree and an

horizontal angle of 38 degree.

Furthermore, a single PIR sensor can detect the direction of movement. Fig-

ure 5.25 shows the signal detected by sensor when a person passes through the

area under control from left to right (the first peak is negative) and from right

to left (first peak is positive). The PIR output sensor conditioning circuit as well
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Figure 5.24: Schematic of the Fresnel lens used in this project.

as the microprocessor and transceiver (TX/RX) units are the same as in 5.3.1.

Digital output is obtained through use of a programmable comparator, with

I2C serial interface, where a threshold can be set. However, in our work analog

output is also considered to extract more complex information than the simple

presence.

In our setup, each node includes two PIR sensors.

Figure 5.25: Signals detected by sensor: when a person passes through the area under
control from left to right the first peak is negative and from right to left the
first peak is positive.

5.5.3 Sensing and data collection

Figure 5.26 shows the processing data flow from event acquisition to genera-

tion of the packet which will be sent by the wireless nodes.

We are interested in detecting precisely presence and direction of move-

ment, but also more complex movements such as changes in direction within

the covered area. In fact, these are information that can be exploited by the

vision system for enhancing the accuracy of the video surveillance application,

in which presence and direction of movement (of people) are key information.

As outlined above, we augment the information produced by a single node

by using 2 PIR sensors (figure 5.27(a)) per node. The typical sensors output
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Figure 5.26: Event acquisition and Sensor Data Conditioning and Processing.

when a person is walking through the sensor area is the one presented in fig-

ure 5.27(b). The signal collected by the sensors is digitally converted to be

processed by the microcontroller. When a person crosses the monitored area

each of the two sensors generates a waveform similar to the one in figure 5.25

depending on the direction of movement. We consider interesting events those

stimulating a significant variation of the signal (figure 5.27(b)): when the in-

put coming from the digital converter exceeds a lower or an upper threshold,

a trigger is generated to start the processing algorithm in charge of extracting

information from the signal.

The analysis, as mentioned above, is aimed at understanding the direction

of a person walking in the covered area. Assuming that one person is moving

from left to right as in figure 5.27(a), he will be detected first by PIRi then by

both PIRi and PIRj and at last only by PIRj as it is lightened in figure 5.28. In

general, a different activation sequence can help identifying changes in direc-

tion of movement within the area covered by the array of sensors. Results from

the processing is a message containing information about the presence and/or

direction of movements in the selected area.

Note that the trigger generator is disabled for a period to be set depending

on the application after the detection of an event, avoiding redundant infor-

mation to be sent. In our case, the period is set at 2 seconds. This choice has

been verified as not influencing correct analysis, because it does not cause loss

of events.
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(a)

(b) .

Figure 5.27: Sensor node composed by two PIRs

Figure 5.28: PIR activation sequence.

The network has a star topology, i.e., all the nodes are end devices and com-

municate only with a central one, the coordinator. The central node (bridge)

collects data from the sensor nodes and sends them to another node (sink)

which communicate through its RS232 interface to a PC (see Fig. 1). Hence,

in our application the bridge is the network coordinator while the other nodes

are end devices. The sensor nodes, which are located in the courtyard, are
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battery-powered while the bridge and the sink are main powered.

This topology is suitable to the characteristics of the monitored area. In fact,

the sensor are located in a courtyard outside the building while the PC, due to

privacy issues, is locked inside a small room, which must be kept closed within

the building. Some tests shown that only the sensors close to the door of the

building are able to communicate with a device inside the room, while all the

courtyard can be covered by a receiver located close to the door.

As already mentioned, the information collected by the sensors are sent

to the video processing server via RS232 cable. We decided to use an asyn-

chronous communication, that is, the sensor network send data to the server

as soon as it collects them. Each message is made up of a start byte (the ASCII

code I), a sensor ID, an area ID, an indication of length (the number of follow-

ing couples name-value, see table 5.7), several couples name-value and a stop

bit (the ASCII code F) (see figure 5.29). Start and stop bit are used for synchro-

nization. Area and sensor node ID are used to uniquely identify the node.

Figure 5.29: Communication protocol between nodes and sensor manager.

Information Code Value Code

Presence 1 Present 1
Area free 16

Direction 2 From PIRi to PIRj 48
From PIRj to PIRi 192

Table 5.7: Adopted codes

5.5.4 Vision system

The vision system has been developed by the ImageLab at University of Mod-

ena and Reggio Emilia.

Single camera processing

Many approaches to people detection and tracking by single cameras have

been proposed in the literature. Their schemes are often similar: first, to per-

form motion detection by separating points belonging to still parts from points

belonging to moving parts (by means of background suppression, frame dif-

ference, or statistical analysis); then, blob analysis aims at grouping spatially

correlated points into objects and characterizing them by visual features and
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motion components; eventually, moving objects are tracked with the aim of

keeping track of their identity to further analyze the behavior.

Our approach from single camera follows this scheme, and it is composed

by two main modules: segmentation and tracking. The first module aims at

extracting visual objects, that are entities that we are interesting in and that we

want to analyze separately with respect to the background. Normally, the vi-

sual objects are objects detected in motion for almost one frame. To this aim,

background suppression techniques are often adopted and operate by subtract-

ing the current background model Bt from the current frame It. The points are

extracted and grouped with a labeling process into a set FOt of foreground ob-

jects at instant time t. This set contains both relevant objects and other outliers,

such as shadows and noise. To identify shadow points, we used a determin-

istic approach, proposed in [37], based on the assumption that shadows have

similar chromaticity but lower brightness than the background on which they

are cast.

Objects in the set FOt considered too small are discarded as noise. The

set V Ot of visual objects obtained after the size-based validation is processed

by the tracking module that computes for each frame t a set of tracks Tt =

{T t
1 , ..., T t

m}.

In the case of people tracking, the basic tracking approaches (based on di-

rectional rules, or Kalman filters) are not suitable, since humans undergo to

deformation in the shape, move with unpredictability and sudden changes in

the main direction, and are likely to be occluded by objects or other people.

For these reasons, we proposed a probabilistic and appearance-based track-

ing algorithm able to manage also large and long-lasting occlusions [38]. De-

spite its accuracy, our tracking fails in the case the person changes his direction

when occluded, since the algorithm relies on the hypothesis of constancy of

motion during occlusions (being any other hypotheses not reasonable). Since

in absence of visibility cameras are useless, this is a concrete and interesting

example in which PIR sensors can be useful.

The knowledge about V Os and their status is exploited by a selective back-

ground model [37] in order to be both reactive to background changes and

robust to noise. Selective update is obtained by, on the one hand, not consid-

ering moving pixels in the updating process, and, on the other hand, forcing

inclusion of stopped objects (previously moving) into the background model.

Unfortunately, the system sometimes misclassified moving objects (such as a

person) with stopped objects (such as a door that has been opened). In these

cases, the lack of enough resolution prevents the vision system to work prop-

erly and PIR sensors might help.

Eventually, scene understanding is a high-level module and heavily de-
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pends on the specific application. In the case of video surveillance of people, it

includes a posture classification module [38], capable to discriminate between

four postures (standing, sitting, crouching, and laying) and, consequently, to

detect interesting events, such as a persons fall.

Consistent labelling

Real video surveillance setups often require multiple cameras, both to cover

wider areas and to solve occlusions by exploiting multiple viewpoints. The

goals of the consistent labelling and multicamera tracking module are the de-

tection of correspondences between people extracted from each single cam-

era tracking module, and then the computation of a list composed by the best

views (selected from the different cameras) of people present in the scene. This

list is the input of higher level tasks, as posture classification, face detection,

and recognition. We propose an approach of consistent labelling based on geo-

metrical features and homographic transformations. For two overlapped cam-

eras Ci and Cj , through a learning procedure in which a single track moves

from one view to another, an automatic procedure computes the End of Field

of Views (EoFoVs) that are exploited to keep consistent labels on the objects

when they pass from one camera to the adjacent. By this, the homography that

binds the ground planes on the two views can be easily computed. Full details

can be found in [25].

Differently from other methods that check consistency only when objects

pass through the edges of the field of views (camera handoff), we compute the

assignment each time a new object is detected in the camera Ci in the overlap-

ping. In this case its support point is projected in Cj by means of the homo-

graphic transformation. The coordinates of the projected point could not cor-

respond to the support point of an actual object. Thus, we select for the match

the object in Cj whose support point is at the minimum Euclidean distance in

the 2D plane from these coordinates. This approach is an efficient tradeoff be-

tween classical techniques that verify correspondences at the camera handoff

instant only (as in [107]), and complex methods of 3D reconstruction that find

correspondences at each frame preventing any real time implementation (as in

[144]). Figure 5.30 gives a bird-eye-view description of the area acquired by

three different cameras; this representation is possible due to the homographic

transformations between different views. The edges of field of view have been

superimposed. The people can be detected by one, two, or even three cameras

depending on their position. When a person is in the internal part (where three

cameras are overlapped), three different views of the same person are avail-

able. In figure 5.31 an example of consistent labelling between three cameras is

reported.
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Figure 5.30: Bird-eye-view description of our test bed environment.

Figure 5.31: Example of consistent labelling between three views.

5.5.5 Multi modal integration

To test the system we have equipped the atrium of our faculty with four cam-

eras and several PIRs, as depicted in figure 5.21. Detailed descriptions with

particular experimental results of the sensor nodes and of the multicamera sys-

tem are reported in [39].

Sensor-guided background update

Algorithms of motion capture based on background subtraction rely on a very

crucial task: the update of the background, especially in presence of illumina-

tion changes and moved objects inside the scene. For example, when the doors

in figure 5.32 are opened, the background scene changes and the detection of

people in that area becomes unreliable. To this aim, we use sensors to monitor

the area near the doors. If the single camera processing detects a visual object

in the door area but the sensors do not capture events, then we assume that the

motion is due to an incorrect background. In such a situation, the background

is updated by forcing the area covered by the sensor directly with the input

image.

More generally, each tracking system analyzes its list of detected objects. If

an object is still for a long time, then the correspondent camera thread makes a

request to the manager specifying the object location. The manager searches if

the concerned zone is covered by a sensor and, in such a situation, it responds



108 Multimodal surveillance

Figure 5.32: Opening and closeing doors make unreliable background suppression
techniques.

with the relative state. If the computer vision and the sensor network are dis-

cordant, then the sensor is considered more reliable, and the vision system

reacts consequently, for example updating the background.

In figure 5.33 some frames taken from a single camera that is capturing the

entrance of our faculty are reported. The rows report, from top to bottom, the

input frames, the output of the tracking system, and the background model.

Initially (first column) the door was open. Some frames later a person closes

the door and from this instant the background becomes inconsistent. In fact,

the system erroneously detects the presence of a person in the area of the door

(see figure 5.33(e)). When the PIR sensor placed near the door does not capture

any events, the background is correctly updated (last column).

Detection of direction changes during occlusion

Occlusions are another problem that characterize video surveillance systems

based on computer vision; for example, in the environments of figure 5.32,

people can walk behind the columns, and, in such a situations, the system is

likely to lose them. To face this problem, we have introduced some rules inside

the tracking system. When a track disappears, it is not deleted immediately,

but its appearance is kept unchanged and an estimation of the track position

is computed exploiting a constant velocity assumption. If the person returns

visible again with a similar appearance and a position near to the predicted

one, then the system assigns the same label of the disappeared track. However,

if the person changes direction during the occlusion, the system is not able to

correctly assign the label anymore.

For this reason, we exploit a PIR sensor node placed behind the column.
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Figure 5.33: Sensor-guided background update.

As above mentioned, these sensors detect not only the presence of a person,

but also his direction. Then, we can detect a change of direction capturing

couples of opposite direction events sent in a short temporal window. In such

a situation, the direction of the motion applied to the track is inverted in order

to estimate the position frame by frame.

In figure 5.34 an example of consistent labelling after an occlusion is re-

ported. The person walks behind a column and, during the occlusion, inverts

his direction. The computer vision tracking algorithm is not able to solve the

consistent labelling because the person reappears too far with respect to the

predicted position (computed with a constant velocity assumption). Using PIR

sensors, instead, the change of direction is detected and the estimated track po-

sition can be properly updated. Then, when the person reappears, the tracker

assigns the same label (24) assigned before the occlusion (see figure 5.34(b)).

Differently from the previous example, in this case the sensor network de-

tects an event and the manager thread informs the involved cameras of it.

Then, if a tracking system has detected an object in the corresponding posi-

tion, the motion direction is changed accordingly.
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(a) Before occlusion (b) After occlusion

Figure 5.34: Consistent labelling after an occlusion exploiting a PIR node to detect di-
rection changes

5.5.6 Conclusion

Distributed surveillance is a challenging task for which a robust solution, work-

ing on a 7/24 basis, is still missing. This section is meant to propose an innova-

tive solution that integrates cameras and PIR (Passive InfraRed) sensors. The

proposed multi-modal sensor network exploits simple outputs from the PIR

sensor nodes (detecting the presence and the direction of movements of peo-

ple in the scene) to improve the accuracy of the vision subsystem.

Two case studies are reported. In the first, the vision system, based on back-

ground suppression, fails due to a door that is opened. Since background is

not immediately updated, the door is detected as a moving object (resolution

is not sufficient to enable a correct motion detection). In this case, a PIR sensor

is used to discriminate between the opened door and a real moving person. In

the second case study, a person changes its direction when it is occluded by

a column. The vision tracking algorithm relies on the constancy of the speed

during occlusions and thus fails. A pair of PIR sensors are, instead, used to

detect the change in direction and alerting the vision system.

The reported results demonstrate that using the integration between PIR

sensors and cameras the accuracy can significantly be increased.

5.6 A solar-powered video sensor node for energy

efficient multimodal surveillance

Building an energy efficient wireless vision network for monitoring and surveil-

lance is one of the major efforts in the sensor network community. In this sec-

tion we describe an application for people detection, which exploits both net-

work architecture flexibility and on-board processing capabilities. The appli-

cation, based on support vector machine engine (SVM), is able to detect events

(e.g. when the environment is changed due to the movement of subject in the
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Figure 5.35: Hierarchical design of the video sensor node, with three different layers for
the alert system.

scene), and distinguishes the presence of people or human bodies rather than

objects or animals in the field of view before generating alarms or sending in-

formation through the wireless link. We focus on the design, implementation

and characterization of a self-powered video sensor node, able to detect people

and supported by PIR sensors to enhance energy efficiency.

The video sensor node is designed to support flexibility in terms of distri-

bution of the processing tasks across the network and is powered by a solar

scavenger using a 70 cm2 photovoltaic panel. Keeping the nodes constantly

active is clearly impracticable, because of the power consumption of compo-

nents such as imager, transceiver and microprocessor. Therefore the proposed

architecture follows a hardware/software hierarchical design with three layers

which can be separately activated, as showed in figure 5.35.

The figure considers a hypothetical surveillance scenario where events oc-

cupy the 4% of the time and only 20% of them results in an alarm to report. The

objective is to wake up the video acquisition only in presence of people and to

reduce the number of not-interesting events in order to guarantee longer life-

time while the system is recharged by a fluctuating and unpredictable energy

source. Once the video is waken-up, the node locally classifies input images

and wirelessly sends to a base station only relevant ones, thus saving energy

by reducing the amount of transmitted data.

We developed a novel method to modulate the status of each layer by ex-

ploiting a PIR based wake-up circuit and local image processing. The sensitiv-

ity of the trigger signal from the PIR detector is adjusted dynamically accord-

ing to the available energy in the reservoirs, the average contrast of the images

taken from the scene and the probability of seeing a person in the camera FOV.
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5.6.1 Related work

Recent years witness a rapid growing of research and development of surveil-

lance and multimodal applications using multiple sensors, including video

and other kind of sensors. The aim of such systems is both to overcome some

points of failure of a particular kind of sensor and to balance different parame-

ters fixed by the application among which power consumption plays a central

role.

Power management is a critical issue when dealing with wireless sensor

networks and it is well known that batteries does not scale as much as elec-

tronic device [157] thus posing a severe limitation in the achievable unobtru-

siveness. Also the cost of batteries often exceeds the one of nodes. At last,

in some application, it may be not possible to reach the sensors (i.e. due to

dangerous environment, like battlefields) in order to replace batteries.

In [74] the authors attempt to formalize and analyze the trade-off between

power conservation and quality of surveillance in target tracking sensor net-

works. In [239] a dynamic sensor selection is applied to efficiently use avail-

able sensor energy and extend overall network life. Another attempt to extend

network life by capitalizing on low power states of its node can be found in

[12]. In this work the amount of data collected by the system is tuned in or-

der to minimize power consumption while achieving high accuracy. Finally

in [81], a distribute network of motes equipped with acoustic and magnetic

sensors have been deployed in order to achieve longevity, adjustable sensitiv-

ity, stealthiness and effectiveness in a military surveillance application. Since

in this paper the authors aim at achieving longevity through sensor selection

techniques, they use a high number of low power nodes with low resolution

(magnetic field detector) and network life extension is obtained by reducing

number of active sensors when any activity is detected and successively wake

them up. In contrast we have a unique sensor, which provides much more in-

formation and we modulate its activity through the use of another low power

sensor.

In contrast to the work presented in this session none of the cited works

attempted to reduce the node power consumption except using low power

hardware, and they either do not consider a stochastic source of energy as the

one provided by an energy scavenging system.

5.6.2 System architecture

The hardware architecture of the solar-powered video sensor is displayed in

5.36 and consists of several modules: the solar harvesting unit, the vision board

which hosts both the CMOS imager and the PIR sensor with a common area
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Figure 5.36: Video sensor node architecture.

under monitoring, the wireless module, the microprocessor and other periph-

erals.

Computational unit and CMOS imager

The core of the video node consists of an STR91xF microprocessor from STMi-

croelectronics with an ARM966E 16/32-bit RISC architecture, 96 MHz operat-

ing frequency, 96 KB SRAM and several peripheral interfaces that can be dis-

abled if not used. The microprocessor provides the high-speed logic interface

necessary to capture images from the camera and processing data for people

detection or object classification, it also offers configurable and flexible power

management control through operative frequency scaling.

The vision module includes a SXGA CMOS color digital camera targeted

for mobile applications featuring low-size and low-power consumption and a

Pyroelectric Infrared Detectors, which detection area is overlapped with the

field of view of the video sensor.

The video sensing device is a VS6624 CMOS imager from STMicroelectron-

ics. It supports up to 15 fps SXGA with progressive scan and up to 30 fps

with VGA format. It operates at 2.8 V and 12 MHz frequency and the power

consumption is 120 mW when active, while it decreases down to 23 mW when

switched to standby. Although it supports SXGA resolution, only 160 × 120

pixels are enough to perform the human detection algorithm, and it allows to

save time and energy for storing and processing data. CMOS camera can be

programmed and controlled via internal registers using I2C serial interface. It

supports several output formats, in particular we adopt 8-bit grayscale images

with YCbCr 4:0:0 format.
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Figure 5.37: Developed prototype of the video sensor node.

Wireless communication capabilities have been supported through a suit-

able interface for both Zigbee and Bluetooth compliant transceiver. The mod-

ule has a stackable design as the sensor node, hence the wireless layer is easy to

replace. We implement hardware and software interfaces in order to host dif-

ferent wireless standard used in wireless sensor network community such as

Zigbee and Bluetooth or proprietary protocols. All the performance and mea-

surements discussed in this section are referred to the version with Bluetooth

capability.

Figure 5.37 shows the first version of the developed prototype, the whole

system is designed with low power consumption as the primary goal. The

system is powered by an energy management module which hosts solar har-

vesting capability. The solar cell used to replenish the energy reservoirs has a

nominal output power of 500 mW under full outdoor irradiance and a harvest-

ing circuit extracts the maximum power available from the solar cell following

the optimal operating point at the minimum energy cost.

Energy harvesting unit

Energy harvesting is a low cost-effective operation, in term of energy har-

nessed, device size and efficiency. One of the primary issues to address is min-

imizing the power consumed by the harvester itself. Less power will require

the circuit, faster will be the growth of the harvested energy in the accumulator.
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The I-V characteristic of a PV module is given by the following equation:

Io = Ig − Isat

{
e

q
AKT (Vo+IoRs) − 1

}
(5.3)

where Ig is the generated current, Isat is the reverse saturation current, q is the

electronic charge, A is a dimensional factor, K is the Boltzmann constant, T the

temperature in degree Kelvin, Rs the series resistance of the cell. The internal

shunt resistance is neglected in this model. The plot of the PV module adopted

in our solar harvester is shown in figure 5.38(a).
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Figure 5.38: Characteristic of the photovoltaic module.

One key design challenge is how to optimize the efficiency of solar en-

ergy collection under non stationary light conditions and therefore maximum

power point tracking techniques (MPPT) aim to automatically find the oper-

ating point (VPV , IPV ) at which a PV module should operate to provide the

maximum output power following it when light intensity changes. There are
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several methods and algorithms to track the MPP [59], we adopt one based

on Fractional Open-Circuit Voltage (FOCV) which is the most used and cost-

effective in medium and small-scale solar harvester. This method exploits the

nearly linear proportional relationship between the operating voltage at MPP

(VMPP ) of the main photovoltaic module and the open circuit voltage of a small

additional PV array used as pilot-cell (Vpilot cell) under the same light L and

temperature T conditions (5.4).

VMPP (T,L) ≈ KMPP · Vpilot cell (T,L) (5.4)

We adopt the CPC1824 from Clare, Inc. [137] for the pilot-cell. It is a mono-

lithic photovoltaic module of only 9 mm2, and it works as irradiance sensor

providing feedback information to the harvester. The pilot cell follows almost

linearly the behavior of the main PV module during light variations. As shown

in figure 5.38(b), the ratio between the operating voltage at the MPP of the main

module and Vpilot cell is almost constant under several solar intensities.
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Figure 5.39: Conceptual schematic of solar harvester: buck power converter and MPP
tracker.

Figure 5.39 depicts the schematic of the solar scavenging circuit for the

video sensor node. By measuring the pilot-cell voltage the circuit estimates the

MPP of the main module generating a lower and an upper threshold around

its value. Then an ultra-low power comparator continuously checks the oper-
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ating point of the main cell to the thresholds adjusting dynamically the duty

cycle and the frequency of the control signal which drives the power converter

circuit. Solar energy harvesters usually exploit buck configuration because the

voltage level of the energy reservoirs is lower than the nominal operating volt-

age of the solar cell. In our implementations we exploit supercapacitors as

energy storage devices, since they overcome many drawbacks of batteries that

are critical in WSN applications and for long-live maintenance-free embedded

systems. The harvester achieves an efficiency of the 80% and depending on so-

lar irradiation can provide a maximum output power of about 500 mW while

the power consumed by energy harvesting process is less than 1 mW .

PIR sensors wake-up unit

As in the other works presented in this section (see sections 5.3, 5.4 and 5.5)

we used a commercial PIR detector that includes 2 sensitive elements placed

in series with opposite polarization. The details of this device have been pre-

sented earlier in section 5.4.1, a schematic of this device is presented in figure

5.18. The Fresnel lenses adopted in this project are the ones described in section

5.5.2 (see figure 5.24).

In particular in this work we are interested in the amplitude of the output

signal which, outside the area where the FoV of the 2 elements is overlapped

(see figure 5.18), is inversely proportional to the distance from the detector as

can be seen in figure 5.40.
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Figure 5.40: Output of a PIR sensor when a person moves at different distances

The sensor output signal is conditioned as in 5.3.1
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In addition to the amplifier we designed a trigger with adjustable thresh-

old. The schematic of the circuit is presented in figure 5.41. Here the series of

R1, R2 (where R1=R2) and the digital potentiometer produces the 2 thresholds

which are symmetrical to Vdd

2 and their reciprocal distance increases with the

resistance of the digital potentiometer. When the amplified output breaks one

threshold it generate an interrupt for the Video node core. Thus, by on-line

programming the potentiometer we can adjust the sensitivity of the wake-up

signal.

Figure 5.41: Schematics for trigger generation using PIR output signal.

5.6.3 System analisys

Sensor node characterization

The ARM microprocessor STR91xFoffers configurable and flexible power man-

agement control which allows dynamic power consumption reduction. It sup-

ports three global power control modes: RUN, IDLE and SLEEP. SLEEP mode

is used by the video sensor node when no events are registered in the filed of

view. When triggered by an event from the PIR sensor, the system switches into

RUN mode starting the detection application until the PIR trigger events or re-

gions of interest are discovered in the current image, then the system switches

back into SLEEP mode where the power consumption decreases up to 90%

since only the PIR module operates. Power consumptions are reported in table

5.8.
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Component Power [mW ]
ARM9 (RUN mode) 450
ARM9 (IDLE mode) 49,5

ARM9 (SLEEP mode) 15
Video sensor (ON mode) 165

Video sensor (IDLE mode) 23
TX/RX module (ACTIVE mode) 98

TX/RX module (IDLE mode) 10
PIR sensor 1,5

Solar Harvester 0,98
Video Node (Active) 650
Video Node (Sleep) 50

Table 5.8: Power consumption of the video sensor node.
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Figure 5.42: Flow chart of the human detection application.

Human detection application

Figure 5.42 presents the main steps of the implemented algorithm for human

body detection. After triggered by the PIR sensor, all the system wakes up

and the CMOS imager acquires and sends a frame to the microprocessor with

YCbCr 4:0:0, grayscale, 8-bit format. In order to isolate a 128 × 64 region-of-

interest (ROI) of the event we initially perform a background subtraction using

the three-frame algorithm sub-image [101]. A pixel-by-pixel subtraction is per-

formed using the first and second frame stored in the memory, then another

pixel-by-pixel subtraction uses the second and third frame. Finally the two re-

sults pass in a logical AND to have a difference-image that allows to detect and

track moving objects across different frames.

This new image is stored in SRAM and we use it to search and isolate region

of interests (ROI) in a 128 × 64 sub-image. To obtain the vector of feature for

the following classification step, we calculate the average values of gray for

each column and row in ROI (which is equivalent to project the ROI image

onto horizontal and vertical axes). Thus the size of the input vector for the
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Task Energy [mJ ] time [ms]
Three Frame Difference 440 720

ROI Extraction 12,2 20
Feature Extraction 9,6 16

SVM 21,21 35

Table 5.9: Energy requirement

classifier is reduced from 8192 to 192 elements. Undoubtedly both smart ROI

size and efficient feature extraction algorithm contribute significantly to save

energy and time processing.

Regarding the classification function, a highly tuned SVM-like hardware

oriented algorithm has been implemented for the STR91xF [106]. A detailed

description of this algorithm and its performance in people recognition can

be found in [105]. Being a ”learning from examples” technique, SVM [211,

180] it is firstly trained on a set of available data known as training set. Such a

computationally expensive training phase is performed off-line by a powerful

base station, then the classification function are loaded to the nodes to classify

the patterns under observation.

Thanks to background subtraction the training set is independent from the

node position and orientation, thus all SVM can be trained at once using the

same training set.

The output of the classification can be simply binary report of the presence

of the human body in the field of view, or an image of the region of interest

with the detected subject. This result can be sent via wireless to a controller

unit.

Autonomy of the system

We considered a typical application scenario of an outdoor surveillance. As-

suming a rate of events as presented at the beginning of this section we esti-

mated the capacity necessary to perform a complete and effective service dur-

ing the night using the energy harvested and saved during the day. Exper-

imental results using different size supercapacitors without solar harvesting

capabilities, show that the system can achieve autonomy of several hours (fig-

ure 5.43). Increasing the capacity up to 500 F it is possible to operate for about

8 hours, till the next morning.

5.6.4 Dynamic adjustment of the detection area

In a distributed vision network several nodes cooperate for an efficient surveil-

lance service and the area under monitoring is covered by multiple nodes de-
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Figure 5.43: Autonomy of the system varying the capacity of the reservoirs without en-
vironmental harvested energy

ployed in the environment and the whose projections of camera field of views

are usually overlapped. For this reason it is possible to develop distributed

policies for smart dynamic coverage of the region under surveillance. For in-

stance when a node is lacking of energy it could reduce its detection area and

consequently its activity while other cooperative nodes compensate augment-

ing PIR sensitivity for longer distance events. In such a cooperative vision, a

dynamic adjustment of the detection area on each single video is necessary.

Figure 5.44 shows the amplitude of the PIR signal as a function of the dis-

tance of the detected object. This result highlights how is possible to modulate

the detection area by adjusting the thresholds used to generate a wake-up sig-

nal for the video node.

If we assume a uniform probability that a person moves in a certain point

of the area of interest, by increasing the threshold we reduce the sensitivity of

the trigger and the area covered by the PIR and consequently the probability

to activate the camera.

For this reason the threshold (5.5) is regulated as a function of the following

parameters:

• contrast of the image, C;

• the energy available in the supercapacitor, ECAP ;

• the probability of seeing a person moving in a certain point at a certain

time, p.

Vthreshold = α
p

ECAP
+ βC (5.5)
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Figure 5.44: Amplitude of the PIR Output signal as function of the distance of the object.

Images with low contrast C may result in a loss of accuracy of the SVM

algorithm. Thus, it is better to suspend the vision algorithm saving energy

when the contrast of the image is lower than a defined value C < Cth. Concur-

rently, when the contrast of the images is low, the threshold of the PIR could

be reduced in order to extend the area under monitoring and sending alarms

relying only on PIR detection. The value of the threshold should be inversely

proportional to the energy available in the supercapacitor and directly propor-

tional to the probability density of a people moving in the field of view. In fact

when more energy is available a higher number of detection can be tolerated.

On the other hand, if the probability of detecting a person is higher, lack of

energy in the accumulator forces a higher reduction of the field of view of the

PIR if we want to extend the lifetime.

A simulation to verify the performance of the proposed dynamic thresh-

old is depicted in figure 5.45(a). The energy harnessed from the solar cell is

powering the sensor node and replenishing the energy storage ECAP with the

exceeding energy. When the energy in the storage is enough to sustain the de-

sired quality of service, the detection area covered by PIR sensor increases (up

to 4 m in our scenario). Similarly, as soon as the available energy decreases due

to a reduction of the harvesting supplying, the threshold switches diminishing

the area covered by PIR and consequently the rate of activation of the cam-

era. The simulation covers about five hours of operation of the sensor node,

and the threshold function is approximated using discrete values. It worth to

notice that simulations are performed using energy storage devices with lim-

ited capacitance of 33 F and a constant contrast C of the images higher than

the threshold Cth. To prove the effectiveness of the dynamic adjustment of the

monitored area, figure 5.45(b) illustrates the behavior of the node with differ-
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ent configurations. The plot compares the energy stored in the supercapacitor

in the same operating condition of figure 5.45(a) with the situation when the

threshold of PIR sensor is fixed with a constant size of the area under monitor-

ing of 3 m (dashed plot). Using a fixed threshold the trade-off between energy

and sensitivity is off-line design parameter and wide detection areas increase

the probability to be out of service because of the empty energy accumulator,

as happens in the figure during the interval IOFF [111, 168]. The plot shows

also the performance of the video node without solar harvester and when no

environmental energy is stored in the accumulator. Obviously in this case the

video node has a limited lifetime as for all battery-operated systems.
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threshold.
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5.6.5 Conclusion

An integrated self-powered video sensor node for energy efficient surveillance

has been proposed. The adoption of a solar harvester for supplying the node

leads to several benefits such as the possibility to extend the lifetime of the vi-

sion sensor network. However since the amount of energy provided by the

photovoltaic module cannot be predicted the status of the system must be dy-

namically adjusted. A multimodal platform equipped with different family of

vision sensor with heterogeneous features of power consumption and resolu-

tion permits to adopt very effective energy management techniques reducing

considerably the activation of the camera, the microprocessor and other power

consuming devices. In the proposed system the sensitivity of a low power PIR

based wake-up circuit is adjusted dynamically according to the available en-

ergy on-board, to the contrast and the probability of moving subjects enter the

video node field of view. With such a technique, under a hypothetical surveil-

lance scenario, we estimated that using a 500F super capacitor the wireless

video node is able to operate for about 8 hours during nighttime.



Chapter 6

Activity Recognition in

Redundant and Dynamic

Sensor Networks

6.1 Overview

Technological advances enable the large scale deployment of highly miniatur-

ized, unobtrusive and interconnected (wireless) sensor nodes (WSN) in our

living environments, in our outfits, and in devices we carry with us. This

unobtrusive yet widespread sensing permits pervasive and wearable comput-

ing systems that provide transparent and natural human-computer interfaces

(HCI) and smart assistance to users according to their context and activities.

Human activities and manipulative gestures are an important aspect of

context that supports activity-based computing [43] with application including

gestural-based HCI [102], support of impaired people [83], or industrial worker’s

assistance [196].

The prevailing assumptions underlying traditional approaches to activity

recognition are

• Sensors placed at an ”optimal” body locations for the activities to detect.

Variation in sensor placement over time are proscribed as they affect clas-

sification.

• Sensors are rarely available unless specifically provided for a desired ap-

plication scenario and they are bulky, thus their number is minimized

in order to reduce obtrusiveness (e.g. manipulative gestures may be de-

tected from few IMUs placed on limbs and back).
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• The sensors characteristics remain constant (i.e. no sensor degradation)

and they do not fail.

• Sensor interconnections are reliable.

This leads to activity recognition signal processing chains optimized for

statically defined sensor setups that do not allow a more flexible network struc-

ture. Moreover, due to their minimized number, every sensor node is a point

of failure of the entire network. Thus, once one sensor runs out of energy or

fails the system is not able to achieve its objective and maintenance is needed.

Yet, sensor nodes get smaller and cheaper. They become available in larger

numbers, integrated in our outfits, in devices we carry around, and in our envi-

ronments. Although this allows a dense on-body sensor placement, it may be

at the expense of sensor accuracy or robustness, or interconnection reliability.

Under realistic conditions, on-body sensor networks tend to be dynamic. This

leads to real-world deployment issues. Textile sensing elements are subject to

high mechanical stress (e.g. during washing or when worn) which may lead

to sensor degradation and faults. Networks of miniature body-worn wireless

sensors may suffer from radio interferences, as well as occlusions caused by

body-parts, thereby causing data rate reduction or data loss. In order to avoid

relative motion, sensors attached on the body require the use of tight-fitting

clothes or relatively high attachment pressure, which limits comfort. Users

take with them and leave instrumented devices (e.g. cellphone, PDA), and

change sensor-augmented clothing. In a general setting the sensor network

characteristics may thus change in unpredictable ways.

Furthermore, high classification accuracy is usually desired. This implies

the use of several sensors distributed over the body, depending on the activities

to detect. At the same time, a wearable system must be unobtrusive and oper-

ate during long periods of time. This requires power optimization to improve

user acceptance, since batteries are a limiting factor in miniaturization [157],

and to enable long term operation of pervasive computing environments. As a

result, application-defined power-performance tradeoffs are beneficial.

Power minimization is mainly addressed by reducing the power consump-

tion of single nodes. Energy use may be reduced by improved wireless proto-

cols [10], careful hardware selection [84], or duty cycling to keep the hardware

in a low-power state most of the time [42]. Energy harvesting techniques may

also complement battery power [148], although the unpredictability of energy

supply typical of harvesting makes it difficult to manage duty cycling sched-

ules [215].

However, activity recognition requires fixed sensor sampling rate and con-

tinuous sensor node operation, since user gestures can occur at any time and
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maximum classification accuracy is desired. Therefore adaptive sampling rate

and unpredictable duty cycling can not be used to minimize energy use.

The objective of this chapter is to investigate activity recognition in this

challenging context of large and dynamically changing sensor networks. Through

the chapter we demonstrate the benefits for activity recognition brought about

by the availability of a large number of sensor nodes, in terms of scalable sys-

tem performance, fault and noise tolerance, and power-performance manage-

ment opportunities.

To this end, we introduce an activity recognition signal processing chain

suited for dynamic sensor networks. It takes advantage of multiple sensors

to cope with failures, noise and enable power-performance management. It is

based on a dynamic classifier fusion core that combines the information of sim-

ple activity classifiers operating on individual sensor nodes into a joint activity

classification. The algorithm can be easily parallelized to best use the compu-

tational power of a sensor network. We validate this method using a set of

activities from a quality assurance checkpoint of a car assembly line. We show

that this approach allows scalable system performance, and intrinsic robust-

ness to faults and noise.

Furthermore we investigate how to extend network life in an activity recog-

nition system, while maintain a desired accuracy, by capitalizing on the net-

work redundancy. A set of sensor nodes perform gesture recognition continu-

ously and autonomously, while the others are kept in low power state. They are

activated when their contribution is needed to keep the desired classification

accuracy, such as when active nodes fail or turn off due to lack of energy. The

number of sensors that contribute to activity recognition is modulated through

dynamic sensor selection on the basis of a system performance model defined during

system training.

We show that this approach enables runtime application-defined power-

performance management at the network level. This approach is independent

of specific sensors and classifiers used, and it is suitable for other application

domains where a large number of sensor nodes is used to monitor areas of

interests.

With the objective of enhancing the interaction with smart environment,

smart objects can be used as tangible interfaces and play a fundamental role in

improving human experience within interactive spaces for entertainment and

education [95].

The Tangerine Smart Micrel Cube (SMCube) is a tangible smart object for

Human Computer Interaction (HCI) equipped with sensors (digital tri-axes ac-

celerometer as default) and actuators (infrared LEDs, vibro-motors) embedded

in a wooden cube. Data from accelerometer is used to locally detect the ac-
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tive face (the one directed upward) and a set of gesture performed by the user.

These information are wirelessly sent to a base station for processing. Further-

more, through the LEDs the node can interact with a vision based system in a

multi modal activity detection scenario.

The SMCube has been designed as a building block of the Tangerine appli-

cation framework to provide a tangible smart interface within the digital media

table scenario. Since it can be carried around and interact with different tables

it can be used as a representative of the user and it can support data exchange

and natural interaction.

In this chapter we present our attempt to augment the intelligence of the

SMcube implementing an on board gesture recognition algorithm based on

a decision three. The algorithm is able to distinguish between four gestures

performed by the user: cube placed on the table, cube held, cube shake and tap

(the user tap on the upper face of the cube). The gestures recognized provoke

reactions defined by the system or application the cube is interacting with.

One of the main challenges in developing activity recognition techiques is

related to the large amount of data required for:

• build a new model;

• validate a novel approach;

• compare different techniques.

The last part of the chapter describes our experience in building a dataset

for context recognition. The dataset is available for research purposes and is

intended to be a common benchmark for design, evaluation and comparison

of different activity recognition approaches. It includes several repetition of

complex activities made up of athomic gestures, thus it presents an hierarchical

structure suitable for multilevel data analysis. All the data streams are labeled

and videos are available for a deeper understanding of the activities [240].

6.2 Related work

6.2.1 Gesture recognition

Human activities can be recognized from various kind of sensors in objects,

the environment or on-body [221, 143]. The approaches can be divided into

those relying on ambient infrastructure such as video camera and tracking sys-

tems [190, 191] and those relying on body-worn sensors [8]. In this chapter we

rely on body-worn sensors (e.g. motion sensors). A standard approach to the

technical integration of on-body sensors relies on a Body Area Network (BAN)
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[100], with wired or wireless interconnections depending on the application

needs. Objects instrumented with sensors can also provide insight into human

activities.

Activity recognition is a sense and classify problem. Sensors are used to

acquire signals related to the activities of interest. A wide range of body worn

and object-integrated acceleration sensors have been used to recognize object

use [102], hand gestures [161] or whole body activities [27]. Gestures can be

sensed using miniature and low-cost MEMS acceleration sensors, simple ball

switches [209] or Inertial Measurement Units (IMUs) that combine accelerom-

eters, gyroscopes and magnetometers to provide higher accuracy [7, 82, 98].

Textile sensors (typically conductive elastomer used as stretch sensors) can

be integrated into textiles without affecting usability. This allows unobtru-

sive motion-sensing garments [133] to monitor the movement of joints (elbows,

shoulders, fingers etc.). Muscle activity sensed by electromyography provides

information about muscle motion [29]. Microphones can provide an indication

of user activities generating characteristic sounds [219]. Objects instrumented

with motion sensors can complement body-worn motion sensors [130].

Above all, the recognition of complex real-world activities benefits from

the combination of multiple sensor types. In [195] data from body worn in-

ertial sensors is correlated with the hand position measured from ultrasonic

sensors in order to detect gestures during an assembly or maintenance tasks.

Additional sensing modalities such as force sensitive resistors informing about

muscle activity, and instrumented objects and environments provide further

insights into the activities taking place [196]. Furthermore the fusion of contri-

bution from a several body worn sensor can improve noise and fault tolerance

[218]. In this work the output of a fixed number of sensor is combined result-

ing in a set of strings, one for each class. Through error correcting codes the

authors show how faults on nodes can be compensated.

Once acquired, sensor data is pre-processed to reduce noise, and segmented

into sections likely to contain activities. A vector of features is extracted from

each segment. A classifier operating on the features yields the activity class.

Several design choices are available at each step, depending on the application

scenario, the activities that have to be recognized, and the available computa-

tional power (see section 4.1).

When features are time invariant (e.g. zero crossing rate or frequency spec-

trum), simple time-independent classifiers can be used (see section 4.3). Some

examples includes linear classifiers, such as Support Vector Machines (see sec-

tion 4.3.2), or decision trees, such as C4.5. In a more general case features

are time dependent, and classifiers suited for temporal pattern recognition are

used (see section 4.5). HMMs are often used in activity recognition since they
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tend to perform well with a wide range of sensor modalities [191, 195] (they are

also used successfully in other problem domains, such as speech recognition,

for which they were initially developed [147, 70, 168]).

Information from multiple sensors (possibly of various kinds) can be fused

to improve classification accuracy [216, 171]. This can occur at various levels

(see figures 4.2, 4.3 and 4.4).

Fusion at the classifier level (decision fusion) combines the result of indi-

vidual classifiers operating on independent sensors and is commonly used in

HCI and activity recognition as it allows the fusion of heterogeneous sensors.

It is implemented by a meta-classifier that combines the decisions provided

the sensor specific classifiers [108]. Various meta-classifiers are available (see

section 4.4).

Most state of the art activity recognition systems reviewed above tend to

aim at the best activity recognition performance. Power reduction is often con-

sidered as a by-product of careful hardware selection [84] and improved wire-

less protocols [208, 243].

Power-performance trade-offs is usually performed at node level by adapt-

ing parameters such as clock rate [114], or sample rate [99], as well as signal

processing window sizes and overlap [16, 189]. These approaches are mostly

applied to single sensor nodes and do not consider the sensor network as a

whole.

Duty cycling [42] and energy harvesting [148] are typical approaches to ex-

tend node lifetime in WSN. However, the unpredictability of energy supply

typical of harvesting makes it difficult to manage duty cycling schedules [215].

Furthermore, activity recognition systems require constant data sampling and

processing, which makes such approaches inappropriate, unless additional in-

formation is used to wake up the system the moment an activity or gesture

starts.

Power can be managed at the network level. This has been extensively stud-

ied in environmental and ambient monitoring with WSN. Examples include

optimized routing algorithms [198, 169], clustering algorithms for redundant

data reduction [31, 217] and data compression techniques [176]. In a dense

mesh of nodes, a number of sensors can be turned off to extend the WSN life-

time while other nodes still cover the area of interest [28] or by turning on parts

of the system only when an event of interest occurs [80]. However such opti-

mizations typically focus on rare events [56, 138], or periodic data collection,

rather than continuous data acquisition and classification required for activity

recognition.

An attempt to balance power consumption and performance in a gesture

recognition scenario is presented in [149]. Here gestures are grouped according
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to pre-defined Situation. Each Situation can be easily recognized with only a

subset of nodes, thus the others can be kept into low power state.

6.2.2 Tangible interfaces

The development of smart objects is an active field of research [202, 44, 48, 199,

72]. With the objective of enhancing the interaction with smart environment,

smart objects can be used as tangible interfaces and play a fundamental role in

improving human experience within interactive spaces for entertainment and

education [95].

Interactive surfaces are a natural choice when developing applications that

deal with browsing and exploration of multimedia contents. On these surfaces

users can manipulate elements through direct and spontaneous actions. This

research led to systems based on gesture recognition and analysis of users bare

hands [158, 77, 9].

In the case of complex applications, featuring multiple options and actions,

simple and spontaneous hand gestures turn out to be not enough. Solutions

could be:

1. use an extended set of complex gestures to include an wide vocabulary

of actions.

2. use specific interface elements such as menus and icons.

However, the former risk to distort the naturalness of interaction while the

latter reduce the directness of interaction causing conflict between digital con-

tents and interface elements, both sharing the same visualization area. The

result is that such solutions could increase the user cognitive load without sig-

nificatively improve the interaction level.

Tangible user interfaces (TUI) can be an alternative solution to the men-

tioned techniques. TUI are smart objects that the system interprets as part of

the interaction language [67]. Users, manipulating those objects, inspired by

their physical affordance, can have a more direct access to functions mapped

to different objects [186].

TUIs have a broad literature; several systems approached the use of passive

physical objects with recognizable shapes or encodings [97, 75] , as well as

smart objects embedding sensors [113, 201].

Several examples include digital desks or tables as in the work of Mazalek

et al. [136] or the recently presented Microsoft Surface Computing platform

[140] where the focus of the interaction design is on the relationship between

the physical and the digital object.
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Other works exploit TUI for Mixed Reality (MR) applications. Kotranza

et Lok presents the results of a pilot study in which eight (n = 8) physician-

assistant students performed a clinical breast exam on the MRH patient [112].

In the work of Dias et al. novel uses for TUIs are proposed since such objects

can trigger the functionalities of the virtual system [50]. Finally the work of

Lee et al. shows that tangible MR provides more cost-effective and reliable

visualization and simulation for the existing pervasive environment. They em-

bed virtual objects into the real smart environment in a way that support the

service provided bt the smart home [121].

6.2.3 Overview of available datasets

UCI Machine Learning Repository

The UCI Machine Learning Repository is a collection of databases, domain

theories, and data generators that are used by the machine learning community

for the empirical analysis of machine learning algorithms. The archive was

created as an ftp archive in 1987 by David Aha and fellow graduate students at

UC Irvine. Since that time, it has been widely used by students, educators, and

researchers all over the world as a primary source of machine learning data

sets. It has been cited over 1000 times, making it one of the top 100 most cited

”papers” in all of computer science. The current version of the web site was

designed in 2007 by Arthur Asuncion and David Newman [5], and this project

is in collaboration with Rexa.info at the University of Massachusetts Amherst.

Currently 177 data sets are maintain as a service to the machine learning

community. Among the many we can find:

• Iris Data Set. This is perhaps the best known database to be found in the

pattern recognition literature. Fisher’s paper is a classic in the field and is

referenced frequently to this day [54]. The data set contains 3 classes of 50

instances each, where each class refers to a type of iris plant. One class is

linearly separable from the other 2; the latter are NOT linearly separable

from each other. The attributes are the measure width and length of sepal

and petal of different class of iris flowers.

• UJI Pen Characters Data Set. One of the newest added datasets it con-

tains samples sentences from 60 writers at two different sites in two phases.

Each writer contributed with letters, digits, and other characters and two

samples were collected for each pair writer/character. Writers were in-

structed to clear the content of the corresponding box by using an on-

screen button and try again whenever they made a mistake or were un-

happy with the writing of any character. Subjects were monitored only
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when writing their first exemplars and every sample considered OK by

its writer was accepted, even if some of its points lay out of the corre-

sponding acquisition box. Only X and Y coordinate information was

recorded along the strokes by the acquisition program, without, for in-

stance, pressure level values or timing information. Thus, in multi-stroke

samples, no information at all was recorded between strokes. Both co-

ordinates were expressed as integer ink units, with the origin lying at

the top left corner of the corresponding acquisition box. X values grow

left-to-right and Y values grow downwards.

• Census Income (KDD) Data Set. This data set contains weighted census

data extracted from the 1994 and 1995 Current Population Surveys con-

ducted by the U.S. Census Bureau. The data contains 41 demographic

and employment related variables.

• Parkinsons Data Set. The dataset was created by Max Little of the Uni-

versity of Oxford, in collaboration with the National Center for Voice and

Speech, Denver, Colorado, who recorded the speech signals. This dataset

is composed of 195 voice recording of biomedical voice measurements

from 31 people, 23 with Parkinson’s disease (PD). The main aim of the

data is to discriminate healthy people from those with PD.

The PlaceLab at MIT

The PlaceLab [94] is a real home where the routine activities and interactions

of everyday home life can be observed, recorded for later analysis, and experi-

mentally manipulated. Volunteer research participants individually live in the

PlaceLab for days or weeks, treating it as a temporary home. Meanwhile, a de-

tailed description of their activities is recorded by sensing devices integrated

into the fabric of the architecture.

The PlaceLab has been developed as a complement to existing tools and

methodologies for gathering data on behavior and use of technology in home

settings (e.g., laboratory user studies, surveys, interviews, ethnographic ob-

servation) since studying behavior in naturalistic living environments allows

researchers to better understand how to create technologies that respond to

and respect the complexity of life.

Figure 6.1 presents some image from the interior of the 1000 square foot lab

and and its floor plan. The lab consists of a living room, dining area, kitchen,

small office, bedroom, full bath and half bath.

The PlaceLab is equipped with: 18 microphones, 9 color cameras, 9 infrared

cameras, 8 switches to detect open-close events (such as opening of the refrig-

erator of the lighting of a stove top burner ecc.), 34 temperature sensors, 10
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Figure 6.1: Floor plan and pictures of the interior of the PlaceLab.

humidity sensors, 5 light sensors, 1 barometric pressure sensor, 37 electrical

current sensors, 11 water flow sensors and 2 gas flow sensors.

Several datasets have been collected in the PlaceLab, three of them are pub-

lic:

• PLIA1. This sample PlaceLab dataset was recorded on Friday March

4, 2005 from 9 AM to 12 noon with a volunteer who was familiar with

the PlaceLab, but not a creator of the core technical infrastructure. The

researcher was asked to perform a set of common household activities

during the four-hour period that included the following: preparing two

recipes, doing a load of dishes, cleaning the kitchen, doing at least two

loads of laundry, making the bed, and light cleaning around the apart-

ment. The volunteer determined the sequence, pace, and concurrency of

these activities and also integrated additional household tasks. The in-

tent was to have a short test dataset of a manageable size that could be

easily placed on the web without concerns about anonymity. The dataset

shows a variety of activity types and activate as many sensors as possi-

ble, but in a natural way. In addition to the activities above, the researcher

searches for items, struggles to use an appliance, talks on the phone, an-

swers email, and performs other everyday tasks. The researcher wore

two mobile accelerometers (one on the left thigh and the other on the

right wrist) and a wireless heart rate monitor.

• PLIA2. It is the same as PLIA1 recorded one year later on Friday March

24, 2006 from 10AM to 2PM. During that year several improvement were
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made to the PlaceLab infrastructure: a robust visualization and annota-

tion tool has been created, high-frame rate still images with time syn-

chronized audio snippets are saved instead than using video codec, the

latency of all 1-wire sensors have been reduced, the sampling rates for

temperature, humidity, light, etc. sensors has been increased, the activity

ontology has been revised and small mobile phones replaced PDAs for

self-report applications.

• PLCouple1. This dataset consists of all easily anonymized sensor data

for a 2.5 month period when a couple stayed in the PlaceLab. The partici-

pants were encouraged to maintain as normal a routine as possible. They

went to work, had visitors over, cooked meals, and worked on projects

and leisure activities according to their own preferences. They brought

objects such as small appliances, clothing, bedding, boxes of books and

audio tapes, and food from their own home when they moved in. Al-

though they were living away from home, the relatively long duration of

the experiment allowed the residents to acclimate to the apartment [125].

ICDM Data Mining Contest on localization

The first IEEE ICDM Data Mining Contest (IEEE ICDM DMC07) [234] was held

in conjunction with the 2007 IEEE International Conference on Data Mining

(IEEE ICDM 2007). This contest is about indoor location estimation from radio

signal strengths received by a client device from various WiFi Access Points

(APs). This is a problem of practical significance and technical challenge. In-

door location estimation in wireless networks using Received Signal Strength

(RSS) values has attracted great interests in data mining and machine learn-

ing communities. Many applications rely on this task, ranging from robotics

to context-aware computing can now be realized with the help of distributed

wireless networks, to security related applications, and to mobile commerce

and health care for the sick and elderly. The problem can be visualized by

considering the following scenario:

A person holding a wireless client device walks around a building

floor. The client device (which can be a PDA) is equipped with a

wireless card that can receive signals from many surrounding wire-

less access points (APs). Each of these APs is identifiable with a

unique ID. Based on the collection of signal strength values (RSS

values), a data mining algorithm running on the client device tries

to figure out the current location of the user.

A typical way to do this task is through triangulation. However, triangula-

tion methods cannot cope with the uncertainty associated with the RSS values.
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Thus, for this contest some training data have been collected and data mining

and machine learning methods have been used to locate the user. The ICDM

contest data set will serve as a benchmark data set in comparing solutions for

such a challenging and practical problem as localization.

All WiFi data are collected in approximately 200 locations, where each lo-

cation is a grid. A grid has a size of about 1.5m×1.5m. The RSS values include

a set of IDs for the access points (AP) and their corresponding RSS values (re-

ceived signal strength). The larger the RSS value is received from an access

point AP 1, the closer to the AP 1 is the client device.

ImageParsing

Imageparsing.com (IP) is a web site affiliated with the Lotus Hill Institute

(LHI)-an independent, non-profit, international research organization, estab-

lished at EZhou, China, in 2005 by Dr. Song-Chun Zhu (Professor, Statistics

and Computer Science, UCLA )

In order to advance the field of computer vision, the objective of the IP

website is to provide large scale annotated ground truth data to the general

vision community [235].

The ground truth data set intends to cover almost all aspects of the com-

puter vision and pattern recognition research: edges, contours, contour at-

tributes, segmentation, grouping, occluded contour completion, text, object

category recognition, scene, 3D world frames, UAV images, Google Earth im-

ages, video, and cartoon. The ground truth data are stored in a unified data

structure the And-Or graph representation and organized in a Database (MySQL)

for retrieval and search. It has now over 3 million annotated object nodes by

June, 2007.

Natural images consist of an overwhelming number of visual patterns gen-

erated by very diverse stochastic processes in nature. The objective of image

understanding is to parse an input image into its constituent patterns. Fig-

ure 6.2 is an example of parsing a stadium scene hierarchically: human (face

and clothes), sports field (a point process, a curve process, homogeneous color

regions, text) and spectators ( textures, persons).

6.3 Activity recognition from body worn sensors: scal-

ability and robustness

In this section we wish to investigate activity recognition in the challenging

context of large and dynamically changing sensor networks.
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Figure 6.2: Example of image analysis and information extraction.
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This work is part of an ongoing effort to explore activity recognition in large

networks of simple sensors distributed on the body. Energy constraints fa-

vors low-power and miniature sensors, such as MEMS accelerometers or tex-

tile stretch sensors in contrast to inertial measurement units (which combine

accelerometers with gyroscopes and magnetometers) which are more power

hungry. These sensors may be unreliable or subject to faults and their place-

ment may be subject to jitter during operation due to repeated body motion

or the use of loose fitting clothes. We envision activity recognition in such dy-

namic sensor network where the number and type of nodes may even change

over time, with sensors added or removed at run-time.

We investigate the use of sensor fusion techniques for gesture recognition.

A meta-classifier fuses the information of simple classifiers operating on indi-

vidual sensors. We investigate the outcomes of classifier fusion in function of

the number of sensors on the recognition performance (sensor scalability), and

on the robustness to faults (robustness).

We validate this method using a set of 10 activities from a quality assurance

checkpoint of a car assembly line. We show that this approach allows scalable

system performance, and intrinsic robustness to faults and noise.

6.3.1 System architecture

The outline of our architecture is illustrated in figure 6.3. Sensor data is first

acquired and preprocessed. Preprocessing consists of feature extraction. Fea-

tures are classified individually for each sensor, leading to class labels. Finally

these class labels are fused, which yields the likely activity class corresponding

to sensor data.

Classification of activities from accelerometers

We use three-axis accelerometers for activity recognition because they are small

and inexpensive.

We consider two possible preprocessing variants.

In this work we consider isolated activity recognition, thus here preprocess-

ing do not include segmentation. Rather we assume that sensor nodes are able

to detect the beginning and the end of activity occurrences. Various methods

are available to identify segments in data streams likely to contain an activity

[104, 47, 111].

In the first variant (individual acceleration axis), we consider each acceleration

sensor axis as a standalone one-dimensional ”sensor” that provides a discrete

signal sij
t (i indicates the sensor node, j one of the three axis x, y or z; t denotes

the signal sample). Thus, each sensor node provides three data streams (one for
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Figure 6.3: Activity recognition architecture. Features extracted from the sensor data
are classified by competing hidden Markov models, each one trained to
model one activity class. The most likely model yields the class label. These
labels are fused to obtain an overall classification result. A naive Bayesian
scheme, borda count scheme and a majority voting scheme are used.

each axis). Each data stream is processed by independent activity recognition

signal processing chains up to node-level class output. In other words, each

sensor node provides three class decision outputs.

In the second variant (acceleration magnitude), the three axis of the accel-

eration sensor (si,x
t , si,y

t , si,z
t ) are combined into a single acceleration magni-

tude signal: si
t =

√
si,x

t

2
+ si,y

t

2
+ si,z

t

2
. Thus, each sensor node provides one

data stream (the acceleration magnitude), that is processed by a single activity

recognition processing chain up to node-level class output. This reduces com-

putational load, provides better robustness against sensor rotation, but may

lead to information loss. In other words, when using acceleration magnitude,

each sensor node provides a single class decision output.

Features are extracted from the sensor signal to reduce the input dimen-

sionality to the classifier and highlight important signal properties. Discrete

feature symbols that indicate the acceleration magnitude (negative accelera-

tion, positive acceleration, and no acceleration) are obtained by ternarizing the

acceleration amplitude with two thresholds. This allows to use HMMs with

discrete observations that are significantly less computationally demanding

than HMMs operating on continuous observations.

The conversion of the sensor signal si
t into a feature symbol f i

t is done by
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means of two thresholds R−∆R and R + ∆R as follows:

f i
t =





− for s
′i
t < R−∆R

0 for R−∆R ≤ s
′i
t ≤ R + ∆R

+ for s
′i
t > R + ∆R

(6.1)

R is equal to 0g for individual acceleration axis and to 1g for the variant

acceleration magnitude.

The sequence of features are than classified at node level using a set of

HMM (see section 4.5.1). As many HMMs as activity classes are defined and

trained to model the activity classes. These HMMs compete and the one mod-

eling best the features indicates the class label (see figure 6.3).

We use ergodic (fully connected) discrete HMMs with 4 hidden states. The

possible observations are the 3 acceleration features. Training is performed

by optimizing the HMM parameters with the Baum-Welch algorithm starting

from HMMs with randomly initialized parameters. For each model, optimiza-

tion was repeated 15 times with a different random initialization and the HMM

modeling best the target gesture was selected. The model likelihood is esti-

mated using the Forward algorithm. We used the Kevin Murphy HMM Tool-

box for this purpose.

The classification result ci
out of node i is sent through the network to fuse it

with the decisions of other nodes to obtain the network-level activity recogni-

tion Cout.

Classifier fusion

Among classifier fusion methods (see section 4.4), we consider a majority vot-

ing scheme (section 4.4.1 ), borda count ranking scheme (section 4.4.2) and a

naive Bayesian fusion method (section 4.3.1).

These methods are tractable for wearable systems and cope with a change

in the number of sensors, such as when a sensor fails, without needing any

retraining.

When using a majority voting fusing scheme the final output class Cout is

selected as the most represented among the node level classifier outputs ci
out.

When using a borda count fusing scheme each node level classifiers need to

produce a class ranking. This is done by sorting the classes c in ascending or-

der, according to the probabilities P (O|λc). Each node i thus provides a vector

~ci
out with the sorted list of classes.

When using the naı̈ve Bayes classifier for fusion of high level inferences

we require a starting offline training phase to extract the likelihood values for

each node level classifier output and each class (P (ck
out = cj |Creal = ci) for
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1 < k < M and 1 < i j < C, where k is the index of the nodes of the network,

M in total, and i and j are the indexes of the class, C in total). In particular we

build an N ×N Node Statistics matrix NSk which has the structure presented in

equation 6.2, where N is the number of classes that have to be detected.

NSk =




tk11 tk12 ... tk1N

tk21 tk22 ... tk2N

... ... ... ...

tkN1 tkN2 ... tkNN




(6.2)

Each element of the matrix is the M-estimate of the likelihood (see equation

4.7 section 4.3.1) with m = 1 and p = 1
N=10 = 0.1.

The naı̈ve Bayes classifier classifies the gesture according to the following:

Cout(c1
out, c

2
out, ..., c

N
out) =

argmaxc

[
P (C = c)

∏n
k=1 tk

c,ck
out

P (c1
out, c

2
out, ..., c

N
out)

]
= argmaxc

[
n∏

k=1

tkc,ck
out

]
(6.3)

Where the last step is possible because the probability at the denominator in

equation 6.3 is identical for all classes and we assume that the Prior probability

P (C) is constant for all classes.

6.3.2 Experimental setup

To assess our approach we apply it to an activity recognition scenario within

the quality checkpoint of a car manufacturing plant [196]. The knowledge of

workers’ activities enables context-aware support [134, 194].

Within the quality checkpoint, workers must verify the functionality and

quality of the car. This is done by visual and tactile inspection. For instance, all

car parts must be operated and the presence of scratches and the smoothness

of surfaces must be sensed. These activities translate into characteristic limb

gestures. Out of the 46 activities performed in this checkpoint [197] we selected

the subset of ten gestures listed in table 6.1.



142 Gesture Recognition In Redundant and Dynamic Sensor Networks

The user holds a notepad with his left hand

and writes down a short note with his right

hand.

The user opens the hood with his left hand

and blocks it with a stick kept with his right

hand.

The user removes the stick with his right

hand while keeping the hood with his left

hand then closes the hood with his left hand.

The user checks the gaps on the front door

by sliding his left and right hand over the

gaps. The two hands move simultaneously.

The user grabs the car left front door with

his left hand while it is closed and opens it

completely.

The user grabs the car left front door with his

left hand while it is open and closes it com-

pletely.
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The user grabs the car left front and back

doors with his left and right hands than open

and close completely and at the same time

the two doors.

The user checks the gaps on the trunk by

sliding his left and right hand over the gaps.

The two hands move simultaneously.

The user opens the trunk using both hands

and then moves it up and down on the top

of his head three times before closing it.

The user grabs the steering wheel with both

hands and turns it clockwise and counter-

clockwise three times.

Table 6.1: List of activity classes to recognize from body-worn sensors.

We equipped a subject with 20 sensor nodes containing a 3-axes accelerom-

eter (Analog Device ADXL330) placed on the two arms (10 on each arm) as

illustrated in figure 6.4. To ensure generality of the results, the sensors were

placed to cover the two arms without any particular constraints (no specific

position or orientation). We recorded a data set composed of 70 repetitions of

each gesture listed in table 6.1, for a total of 700 gesture instances. Acceleration



144 Gesture Recognition In Redundant and Dynamic Sensor Networks

Figure 6.4: Placement of the acceleration sensor nodes on the user. Ten nodes are uni-
formly distributed on each user arms (20 nodes in total). No specific as-
sumption has been made on sensor position and orientation.

data was sampled at 100Hz.

6.3.3 Test and results

In the remaining of the section we refer to the symbol sequences obtained from

individual acceleration sensor axis after ternarization as Single axis sequences,

and to the symbol sequences obtained from combining the three acceleration

sensor axes of a node into a magnitude vector, after ternarization, as Magnitude

sequences.

Node-level activity recognition performance

The pre-processing thresholds ∆R of equation 6.1 is optimized to maximize

the classification accuracy of the node classifiers.

System performance is computed by classifying gesture instances using a

single acceleration axis of a given node (in the single axis sequence case) or a

triplet of acceleration axis from a given node (in the acceleration magnitude

case). This is repeated for all axis and nodes, and averaged. Figure 6.5 illus-

trates the effect of ∆R on the system performance.

In the rest of this paper the values of ∆R providing the best performance is

used: R = 0g and ∆R = 400mg for the single axis pre-processing method; and

R = 1g and ∆R = 40mg for the magnitude pre-processing method.
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Figure 6.5: Average node level classifier (HMM) classification accuracy as a function of
the threshold used to ternarize the input data from accelerometers when sin-
gle axis acceleration features (left) or acceleration magnitude (right) features
are used.

Network-level activity recognition performance and sensor scalability

To show how performance scales with the number of nodes that participate to

the gesture recognition we evaluated the classification accuracy over the whole

test set of a cluster of increasing size, from 1 to 20 sensors. For each cluster

size we performed 50 trials, using randomly picked nodes, and we report the

average accuracy. When single axis sequences are used, we select the sensor

axes in a node-wise manner: when one node is selected, all of its three axes are

used, but each of them is considered as an independent sensor.

In figure 6.6 we illustrate the average performance of the system as a func-

tion of the number of nodes within the network, for the various sensor fusion

methods and pre-processing method. In figure 6.7 we compare the different

fusion methods for a given pre-processing technique.

Figure 6.6: Sensor scalability. Average classification accuracy as a function of the num-
ber of nodes participating to the classification when different network level
fusion methods are used. Vertical bars indicate classification variance. In
each sub-plot single axis acceleration features and acceleration magnitude
features are compared. Dashed lines indicate the best performance achieved
using a single node, the fusion of an increasing number of sensors quickly
results in better performance.

System performance increases with the number of nodes participating to
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the classification. For the larger networks, the addition of one more node re-

sults in lower increase of performance than for smaller networks since the new

sensor is more likely to provide redundant information and thus only slightly

improves the overall system knowledge.

The use of single axis sequences results in higher performance. This can be

understood because computing the magnitude of a vector is not an injective

function. Thus, different vectors may produce the same magnitude, resulting

in a loss of information.

Figure 6.7: Sensor scalability. Average classification accuracy as a function of the num-
ber of nodes participating to the classification. Vertical bars indicate classi-
fication variance. On each plot different network level classifiers are com-
pared.

The Borda count fusion method shows the best performance in comparison

to the other two fusion methods, both with single axis acceleration and accel-

eration magnitude sequences. Moreover, the performance with naı̈ve Bayes

fusion decreases in comparison to the other fusion methods when using accel-

eration magnitude sequences, and it is outperformed by the other two fusion

methods for cluster larger than five nodes.

Majority voting and Borda count present the same results for magnitude

pre-processing with cluster of size 1 since the methods are identical when only

one decision is available.

Table 6.1(a) and 6.1(b) summarize the results for all the methods and pre-

processing techniques for cluster sizes 1, 5, 10 and 20. In Figure 6.8 we rep-

resent the confusion matrix obtained when using single axis sequences and

naı̈ve Bayes fusion method. As the number of sensor increases, the diagonal

of the matrix is emphasized, reflecting the performance increase. By using 20

nodes we achieved more than 95% classification accuracy with all of the three

fusion algorithms and single axis sequences. The use of magnitude sequences

resulted in slightly lower classification performance, although with lower com-

putational cost (a single instead of 3 classifiers per node).
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(a) Single accelerometer axis features

] Fusion Performance (%)
1 Majority 64.4
1 Borda 77.9
1 Bayes 73.7
5 Majority 89.3
5 Borda 93.5
5 Bayes 92.8
10 Majority 93.6
10 Borda 95.7
10 Bayes 95.7
20 Majority 95.9
20 Borda 97.1
20 Bayes 96.9

(b) Acceleration magnitude features

] Fusion Performance (%)
1 Majority 69.2
1 Borda 69.2
1 Bayes 66.7
5 Majority 84.5
5 Borda 88.8
5 Bayes 84.2
10 Majority 90.2
10 Borda 93.2
10 Bayes 89.4
20 Majority 94.6
20 Borda 96.1
20 Bayes 93.0

Table 6.2: Performance comparison between different fusion methods, features, and
number of active nodes.
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Figure 6.8: Graphical representation of the confusion matrix when 1, 7, 13 or 20 sen-
sor are participating to the classification. Naı̈ve Bayes fusion and single
axis acceleration features are used. Darker spots indicated higher number
of classified instances. As can be seen from these plots, increasing the num-
ber of sensors results in a drift toward the main diagonal meaning higher
classification accuracy.

Robustness to noise and faults

During regular operation sensors may be affected by noise or faults that alter

the input sequences. We evaluate the robustness of the gesture recognition

system to different noise sources. To the best of our knowledge no previous

effort tried to model the noise that may affect body worn accelerometers, thus

we define 2 sources of noise likely to occur: rotational noise and random noise.

Rotation noise: the nodes, due to loose fitting garments that bend dur-

ing normal activity, may change their position and orientation around their

attachment point. At this stage we ignore changes in position and we focus

on changes of orientation. We model this by a rotation of the coordinate sys-

tem of the accelerometer. We define the new coordinate system by successive

application of a rotation along the X, Y, and Z axes. The acceleration vector

from the accelerometer is then projected onto this new coordinate system and

subsequently processed as if it were the real recorded acceleration signal. The

rotation along each axis is a random value within the range [0◦; αmax]. We test

the classification accuracy with αmax varying from 5◦ to 60◦ in 5◦ step. Note
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that acceleration magnitude features are insensitive to the rotational noise.

As previously for the sensor scalability analysis, we repeat the test 50 times

for each cluster size and noise level and present averages, with a randomly

selected set of nodes.

Figure 6.9 illustrates the performance of the system with clusters of nodes

of different size as a function of αmax. Dashed lines show the performance of

the same system when using magnitude sequences. Figure 6.10 details as an

example the performance of the system as a function of number of nodes and

the noise level when using naı̈ve Bayes. In figure 6.11 we compare the robust-

ness of three fusion methods for different cluster sizes. Naı̈ve Bayes fusion is

more robust than the other two methods when the noise increases.

Figure 6.9: Robustness to rotational noise. Average correct classification ration of a sys-
tem with 1, 5, 10 or 20 active sensors as a function of the rotational noise
added. Increasing the rotational noise results in decreasing classification ac-
curacy. This degradation can be compensated by increasing the number of
active nodes.

Noise decrease classification accuracy. This effect can be compensated by

augmenting the number of nodes within the network. For example, using

Borda count with a single node we can achieve almost 80% classification accu-

racy without noise. The higher the noise level, the larger the clusters should be

to provide immunity to noise and maintain the initial performance. With rota-

tional noise up to 10◦, the initial performance can be maintained by increasing

the network to 5 nodes. With 10 nodes we can tolerate up to 20◦ of rotational

noise and almost 35◦ with 20 nodes while keeping the same performance.

Note that in these tests all the nodes of the network are affected by the same

level of noise. In a real scenario, it is more likely that only a part of the active

nodes is affected, thus resulting in better performance.

These results highlight that the use of magnitude sequences may be overall

a better choice if accelerometer orientation in a system is likely to be variable

since it outperform single axis accelerations performance even for low noise

levels. This may prove important in the design of loose fitting garments with

integrated sensors, where a small rotational noise and position variability is
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Figure 6.10: Average classification accuracy of the system as a function of both level
of rotational noise added to accelerometers output and number of sensors
participating to classification. Naı̈ve Bayes fusion method and single axis
acceleration features used.

Figure 6.11: Average classification accuracy when 1, 5 or 20 nodes participate to the clas-
sification. The performance using different fusion methods are compared
as the rotational noise added to the accelerometer output increases.
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likely to be always present [78].

Faults: We assess robustness against failures seriously affecting the system,

such as communication errors, or misclassification. We model these errors in

a generic way by randomly changing the decision output of a classifier. This

corrupted output is then processed normally (i.e. it is fused with the decisions

of the other nodes). With the naı̈ve Bayes and majority voting fusion, the de-

cision output of a node is randomly changed. With the Borda count fusion the

decision vector output (ranked list) is randomly mixed.

To determine fault tolerance to this kind of noise we calculate the classifi-

cation accuracy of a cluster of 20 nodes, with an increasing number of nodes

affected by random noise. We repeat the evaluation 50 times, each time picking

a random set of nodes as faulty ones, and report the average performance.

Figure 6.12 shows the average performance of the system as a function of

the number of nodes affected by noise for the various fusion and pre-processing

methods.

The three methods have similar performance trends as the number of faulty

nodes increases, but majority voting and naı̈ve Bayes fusion show better ro-

bustness to this type of faults than Borda count (see figure Figure 6.13).

Figure 6.12: Robustness to random noise. Average classification accuracy of a system
with 20 active nodes with an increasing number of nodes affected by ran-
dom noise. Single axis acceleration features and acceleration magnitude
features are compared.

Although larger noise levels decrease classification accuracy, sensor fusion

allows to reduce the impact of faults in larger sensor sets and performance re-

mains relatively constant up to high fault rates. In some cases, even when more

than half the nodes are faulty the performance of the system shows little degra-

dation. Interestingly, this robustness to faults is provided without an explicit

fault detection mechanism, and is an inherent advantage conferred by having

multiple nodes contributing to the overall classification.

All three methods show similar performance, around 10%, when all nodes

of the network are faulty. This comes from the fact that all the classifier out-

puts are random, and the class decision is randomly distributed among the ten
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Figure 6.13: Robustness to random noise. Average classification accuracy of a system
with 20 active nodes with increasing number of nodes affected by random
noise. The majority voting, Borda count and naı̈ve Bayes fusion methods
are compared using different features.

possible classes.

6.3.4 Discussion

In previous sections we showed how it is possible to combine data from a large

number of small and cheap accelerometers, easily integrable into garments, in

order to achieve high gesture recognition accuracy even in presence of noisy

data or unreliable sensors.

Such information can be exploited to vary the number of working sensor

according to dynamic application constraint. For this objective we can aug-

ment the number of sensor used, and thus the correct classification ratio, only

in critical situations and keep unused sensor in a low-power, idle state in order

to increase network life.

A comparison of the results obtained for sensor scalability and tolerance to

random noise indicate that a node providing a wrong decision has a stronger

impact on system performance after decision fusion than not providing a deci-

sion at all.

In figure 6.14 we highlight this in case of single accelerometer axis sequences

and naı̈ve Bayes fusion method, with a cluster of 20 active nodes. The average

performance of the system as the number of active nodes is reduced is com-

pared to the average performance as the number of faulty nodes is increased.

At high fault rates, the results show that it is beneficial to exclude sensors pro-

viding corrupted decisions (e.g. if data is corrupted during a transmission)

from participating to the decision fusion, rather than to rely on decision fusion

to compensate for the error.

Once the HMM models are trained, the classification of a sequence (using
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Figure 6.14: Comparison of the average classification accuracy of a cluster of 20 nodes
when the number of active nodes is progressively decreased (variable size
set), and when the number of nodes affected by random noise is progres-
sively increased. The detection and exclusion of faulty nodes results in
higher system performance.

the forward algorithm) is a lightweight task that can be computed online while

the samples are collected. Each time a sample arrives the node must perform

the following steps:

1. pre-process the sample (ternarize or extract magnitude from a triad of

samples).

2. calculate one step of forward algorithm for all HMM models: S2+S mul-

tiplications and S sums, where S is the number of hidden states. In our

case we have 10 HMM and S = 4, thus we must compute 200 multiplica-

tions and 40 sums.

3. normalize through a shift partial results in order to avoid underflow.

As the node recognizes the end of a gesture it must perform S sums for each

HMM and find the class with higher probability or sort the classes to build the

rank for Borda count. The computational effort of the fusion node is presented

in table 6.3 where C is the number of classes to recognize and N the number

of nodes to fuse. These steps can be easily done by today’s low power sensor

nodes, as microcontrollers nowadays usually embed a multiplier.
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Fusion method Multiplication Sums
Majority 0 C ·N

Borda 0 N
Bayes C · (N + 1) 0

Table 6.3: Computational effort

6.3.5 Conclusion

Traditional human activity recognition systems rely on a static signal process-

ing chain that processes the data of a fixed and often minimal set of sensors

placed at well-defined body (or environment) locations. Yet, in real-world de-

ployment failures and signal degradation occur. This leads to dynamically

changing availability and characteristics of sensing resources. On the other

hand, technological advances allows for sensors to become smaller and cheaper.

They nowadays become pervasive: from sensor-augmented clothing and ac-

cessories, to smart wearable devices and widespread ambient sensing. Thus,

given these advances, the problem of activity recognition has to be understood

in the context of large and dynamic sensor networks. This calls for activity recog-

nition methods suited for such systems, and that capitalize on their character-

istics.

In this section we demonstrated the benefits for activity recognition brought

about by the availability of a large number of sensor nodes, and how real-world

challenges can be balanced by an adaptive use of resources. We introduced a

generic hierarchical architecture to recognize activities in dynamic sensor net-

works composed of: individual activity recognition sensor nodes that operate in-

dependently of each other and (ii) a dynamic classifier fusion core that combines

the decisions of a variable number of nodes into a joint activity classification.

The activity recognition system introduced here addresses a number of the

pitfalls of traditional activity recognition systems. Thanks to our approach: (i)

sensors are not single points of failure since they can be replaced dynamically;

(ii) sensor fusion provides robustness to signal degradation; (iii) performance

can be scaled dynamically, and even outperform that of systems using a mini-

mal application-specific sensor set.

We assessed this system in a real-world case study. We used it to recognize

a set of 10 activities performed by industrial workers at the quality assurance

checkpoint of a car assembly factory. Activities were sensed with up to 20

3D acceleration sensors distributed over the arms of the worker. Within the

generic architecture outlined above we used and compared: hidden Markov

models for individual activity recognition and majority voting, Borda count

and naı̈ve Bayes as decision fusion algorithms.

We demonstrated that system performance can be scaled dynamically by
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selecting the number of sensors participating to activity recognition. The three

dynamic decision fusion algorithms show similar performance scaling trends,

although with slightly different performance values and computational costs.

Borda count showed the best performance results. The classification accu-

racy is 77.9%, 95.7%, and 97.1% with respectively 1, 10 and 20 nodes when

processing acceleration axis independently.

Majority voting is less computationally expensive than Borda count and re-

sults in slightly lower performance. The classification accuracy is respectively

64.4%, 93.6%, and 95,9% with 1, 10 and 20 nodes.

Naı̈ve Bayes is the most computationally expensive method among the

three. During training it requires a further step to build classification statis-

tics and during recognition it needs to compute the posterior probability of

activity classes. The performance of this approach is slightly higher than ma-

jority voting but slightly worse than Borda count. The classification accuracy

is respectively 73.7%, 95.7%, and 96,9% with 1, 10 and 20 nodes.

Overall, fusion using Borda count offers a good trade off between perfor-

mance and computational effort.

The fusion of multiple sensors allows to outperform the accuracy obtained

from the single best node/classifier of the system (this aspect is analytically dis-

cussed in [171]). For instance, by using the single best node/classifier (fusion

of the 3 axes of that node) of the system, the resulting performance is 84.9%,

75.9% and 83.7% with Borda count, majority voting, and Naı̈ve Bayes decision

fusion. By fusing the result of 10 nodes, the performance can be increased on

average by more than 10% over the single best node.

We demonstrated that activity recognition in a sensor network provides

intrinsic robustness to noise and faults. We modeled two sources of errors.

The first one models the imperfect attachment of nodes. The second models a

generic type of faults leading to misclassification (e.g. typically sensor failure,

but also communication errors). We showed that there is implicit tolerance to

errors provided by the fusion of the decision of multiple sensors in both cases.

This may prove important in the design of loose fitting garments with inte-

grated sensors, where the likely sensor placement and orientation variability

may be compensated through data fusion.

In comparison to the intrinsic robustness provided by the system, we showed

that when nodes misclassify gestures due to faults there is an additional perfor-

mance benefit in explicitly discarding them from decision fusion. This benefit

is larger with higher fault rates, however it becomes negligible with moderate

to low fault rates. Consequently, if the system is expected to suffer from likely

sensor degradation or failures there are advantages in building a fault detec-

tion mechanism in the sensor nodes. However, if sensor degradation or failures
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are less likely, the system is able to compensate these faults at the algorithmic

level thanks to decision fusion.

The results presented here are generalizable along three lines. First, the

activities that are considered to assess the activity recognition system are rep-

resentative of a wide range of human activities since they involve left and right

upper and lower arm motion overall different scales (i.e. the hand trajectory is

contained in a volume spanning tens of centimeters up to several meters). This

type of activities are common not only in industrial manufacturing, but also

e.g. in sports, entertainment, and health care/rehabilitation applications. As a

consequence, the range of the results obtained here regarding classification ac-

curacy and number of sensors may be extrapolated to other problem domains

sharing similar characteristics.

Second, the activity recognition architecture is generic. While in this work

we used hidden Markov models for activity recognition, other classifiers may

be used without affecting the generality of the results. The characteristics of the

system are brought about by the dynamic classifier fusion core and dynamic

sensor selection algorithm. We compared the three families of decision fusion

algorithms (single class label, class set reduction, and soft output [175]) with

three sensor selection heuristics. In every case we observed similar results (e.g.

identical trends when parameters are changed, or similar performance values).

This leads us to believe that the results presented here can be extrapolated to

other algorithms (classification, decision fusion, and dynamic sensor selection),

within the architectural framework introduced here.

Third, the architecture introduced here can be seamlessly applied to activity

and context recognition in ambient intelligence environments. The resulting

system characteristics (i.e. performance trends, intrinsic robustness, benefits

of power-performance management) are likely to be identical, although exact

performance numbers will be application specific.

6.4 Activity recognition accuracy-rowert rade-off by

dynamic sensor selection

In an activity recognition system, high classification accuracy is usually de-

sired. This implies the use of a large number of sensors distributed over the

body, depending on the activities to detect. At the same time a wearable sys-

tem must be unobtrusive and operate during long periods of time. This implies

minimizing sensor size, and especially energy consumption since battery tech-

nology tends to be a limiting factor in miniaturization.

In this section we investigate how to extend network life in an activity
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recognition system, while maintaining a desired accuracy, by capitalizing on

an redundant number of small (possibly unreliable) sensors placed randomly

over the user arms.

We exploit the activity recognition system presented in section 6.3 and we

extend it using a dynamic sensor selection algorithm in order to modulate the

number of sensors that contribute to activity recognition at runtime. Most sen-

sor nodes are kept in low power state. They are activated when their contribu-

tion is needed to keep the desired classification accuracy, such as when active

nodes fail or turn off due to lack of energy. This approach copes with dynam-

ically changing networks without the need for retraining and allows activity

recognition even in the presence of unexpected faults, thus reducing the fre-

quency of user maintenance. The algorithm can be easily parallelized to best

use the computational power of a sensor network. We show how this approach

fits the Titan framework that we are developing for the execution of distributed

context recognition algorithms in dynamic and heterogeneous wireless sensor

networks.

Our technique has been validated using the same dataset described in 6.3.2.

6.4.1 Dynamic sensor selection

Multiple sensors allow for network-level power-performance management. A

dynamic sensor selection (DSS) scheme is used to modulate the number of sen-

sors contributing to activity recognition in order to manage power-performance

tradeoffs at run-time according to the application needs.

The DSS procedure works continuously. Thus, when the system is at risk

of not meeting its performance goal (e.g. when an active sensor runs out of

energy or fails), the dynamic sensor selection scheme reconfigures the network

to restore the desired performance. This contributes to improved robustness

against faults and longer network lifetime, and also reduces maintenance bur-

den as there is no need to immediately replace defective parts of the system as

long as enough resources are available.

At any given instant t, the status of the nodes of the network (si) can be one

of the following:

Power Off The node is not active but waiting to participate to the gesture

recognition.

Active classification The node is active and classifies gestures.

Active fusion The node is active and fuses the decisions of individual node

classifiers.

Faulty The node is either faulty or out of energy.
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The nodes that are active at a certain time t form the Active Cluster, C(t).

The active cluster is dynamically adapted by the DSS scheme according to the

status of the network.

Whenever one active node stops operating the DSS algorithm is executed

to adjust the Active Cluster. The resulting cluster must fulfill the following

requirements:

1. achieve a minimum application defined performance in presence of m

faulty nodes;

2. use the smallest possible number of nodes.

Since the DSS algorithm starts when one of the nodes fails, m defines how

many faults can be tolerated between the time the first sensor fails and the time

the DSS algorithm produces the replacement cluster. A higher value m results

in a larger number of active nodes, but provides a higher fault tolerance.

Figure 6.15 illustrates the DSS algorithm. Formally, the algorithm looks for

a new cluster C(t+1) as a function of the cluster at time t (C(t)), the minimum

accuracy fixed by the application (A), the number of failures that can be tol-

erated (m), the status of the nodes of the network ({si}), and a set of gesture

instances used to evaluate the cluster performance (I).

C(t + 1) = f(C(t), A,m, {si}, I) (6.4)

The DSS algorithm follow the following steps:

1. evaluate if the remaining remaining active nodes ci = C(t) with dimen-

sion di = D(t), where i = 0 fulfill the requirement above (all subclusters

Sck with dimension dSck
= d0 − m present a correct classification ratio

equal or greater than A on a reference set of gesture instance I). If so, this

cluster is the new Active Cluster (C(t+1) = C(t) = c0, i.e. no nodes need

to be turned on).

2. If not, select a new node to add to the active cluster and form the new

cluster ci+1 with dimension di+1 = di + 1.

3. evaluate if cluster ci+1 fulfill the requirement above. If so, this cluster is

the new Active Cluster C(t + 1) = ci, otherwise repeat the previous step

until either one suitable cluster have been found or all nodes are used.

Three heuristics are used to select which node is added to form the new

cluster cout:

Best Build all possible clusters of dimension di + 1 by adding one Power Off

node to ci and test them. Return the cluster that shows the best accuracy.
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Figure 6.15: The dynamic sensor selection algorithm starts by evaluating the existing
cluster of nodes. If it does not fulfill the performance requirement, it looks
for a new cluster of nodes by iteratively evaluating clusters of increasing
size until the performance requirements are fulfilled.

First Build a cluster of dimension di +1 by adding one Power Off to ci and test

it. If it fulfills the requirements return this cluster, otherwise test another

cluster of dimension di + 1 built by adding another Power Off node and

repeat until a suitable cluster is found. If no suitable clusters are found

then return the one with the best accuracy.

Random Returns a cluster of dimension di + 1 by adding one random Power

Off node to ci.

The performance of the active cluster is defined by its accuracy at classify-

ing a set of representative reference gesture instances (I , in equation 6.4).

The outcome of the node level classification is fixed given a trained classi-

fier (here an HMM model) and a sequence of observation. Thus, the result of

the classification of the instances in set I by sensor i can be pre-computed (i.e.
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ci
out or ~ci

out in section 6.3.1). The DSS algorithm thus only implements the sen-

sor fusion step on the basis of these pre-computed node classification results.

Concretely, each node only needs to store the result of the classification of the

sequences in the reference set I , and does not need the whole acceleration se-

quences. This reduces the amount of memory required and the complexity

of the evaluation of the cluster performance. In fact, the memory required is

N × Nref (where Nref is the number of reference instances). Moreover, the

complexity is related only to the fusion step of the algorithm, which is O(N2)

for the Best and First schemes (this latter considered in the worst case), where

N is the number of sensors, and O(N) for the Random scheme.

This approach enables a generic modeling of the performance of the system

for any gesture. Given a representative set of reference gestures it enables an

accurate prediction of the performance of a set of nodes, since the system is

directly used as its own model. This approach is only limited by how repre-

sentative of the problem at hand the instances in the set I are.

6.4.2 Accuracy of cluster performance estimation

The performance of one cluster is predicted on the basis of a set of reference

instances (see equation 6.4). This approach assumes that the performance of

the system can be generalized from a limited number of reference instances.

We assess the accuracy of this approach by selecting a set of 20 instances

as reference set and the remaining 50 as validation set. On the basis of the ref-

erence and the validation instances we determine the performance of clusters

of increasing size composed of randomly picked nodes. This is repeated 150

times using three different reference sets (50 trials for each size with the same

reference set). The probability density function (PDF) of the evaluation error

is built using the Parzen window method with Gaussian windows. The PDF

in case of naı̈ve Bayes fusion and single axis sequences is presented in figure

6.16. From this figure we can see that the performance prediction is more accu-

rate for larger clusters. For the larger cluster the absolute value of the error is

smaller than ±3%, while with smaller cluster it can increases to about ±10%.

The effect of the number of reference instances on the performance predic-

tion accuracy is assessed in the same way by varying the number of instances

in the reference set. Increasing the reference set initially increases performance

prediction up to a plateau (see figure 6.16). This behavior stems from the fact

that a small set of reference instances is less likely to be representative of the

activity classes.

These results illustrate the accuracy of the performance prediction method

described in section 6.4.1. It does not guarantee that the effective performance
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Figure 6.16: Probability density function of the performance prediction error as a func-
tion of: the number of nodes in the cluster(a), the reference set size (b)

of the system is systematically higher than the predicted performance. In an

application the performance prediction (and thus indirectly gesture and user

variability) must be characterized beforehand according to the method de-

scribed here. On this basis the appropriate reference set size can be selected

according to the desired likelihood that the system effectively meets - or is

above - the estimated performance.

Another approach is to add a margin to the minimum classification accu-

racy requested by the application. This margin is related to the number of

active nodes, size of the reference set, and gesture variability (e.g. for bigger

clusters or more reference instances a smaller margin is selected).

By placing a fault tolerance (in our tests m = 1, that is all sub cluster of the

active node set of dimension D − 1 should achieve the minimum performance

required by the application) we can assume that the probability of violating the

minimum accuracy is higher after a fault occurs. However at this point the DSS

algorithm starts and, in a short time, returns the new active cluster. Thus we

can define two level of violation: soft violation, critical violation. The former in-

dicates when a sub cluster violates the application constraints, the latter when

the cluster out of the DSS algorithm does it. According to the application, a

soft violation can be tolerated while a critical one not.

6.4.3 Power-performance tradeoff characterization

We compare the system lifetime and performance obtained when the DSS al-

gorithm selects the active nodes to the reference case where all sensors are si-

multaneously active. The system lifetime is defined as the time point from the
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start of operation when the system breaks the classification accuracy threshold

defined by the application. In this section we assume to have perfect cluster

performance estimation. Thus we do not consider soft or critical violations

due to incorrect cluster performance estimation.

We perform this characterization using the three fusing method (major-

ity voting, naı̈ve Bayes or Borda count), different minimum required perfor-

mances (80%, 85% or 90%) and different sensor selection method (random,

first, best or no sensor selection i.e. all sensor active at the same time). During

each simulation the sensors are selected in a ”node wise” manner, i.e. when us-

ing single axis sequences we activate all three axes from the same accelerometer

simultaneously. Moreover all three axes fail at the same time. The motivation is

that when we activate a sensor node we turn on all three axes of its accelerom-

eter and when the energy of the node is depleted all three acceleration axes are

lost simultaneously. In each case, 50 trials are performed and the results that

are presented are averages.

In figure 6.17 we show the average network lifetime as a function of the

minimum performance target, for different sensor selection criteria and input

features. As expected, when all the nodes are used at the same time the average

network lifetime is mostly independent from the performance target. In that

case, all the nodes are likely to run out of energy at about the same time µ and

the performance drops (given the lifetime model variance).

With the DSS algorithm, however, the system lifetime can be significantly

extended by better managing the number of nodes participating in activity

recognition. In this case, there is a strong dependency between the perfor-

mance target and the network lifetime. With a higher performance target more

nodes need to contribute to activity recognition, therefore depleting the avail-

able energy sooner than with a lower performance target.

The sensor selection criterion has limited effect on the power-performance

trade-off. The random selection criterion is slightly less effective than the first

and best selection criteria. However, the random selection criterion requires

less computational effort since the number of cluster to evaluate is smaller.

This is discussed in more details later in this section.

Borda count fusion typically results in the longest average network lifetime,

while majority voting fusion in the shortest lifetime (see figure 6.18). This is

linked to the performance after sensor fusion (see section 6.3.3): if a fusion

method provides higher performance with a smaller number of nodes, then a

larger number of sensors can be left into idle state for later use.

The use of single accelerometer axis input sequences results in longer net-

work lifetime in comparison to magnitude sequences (see figure 6.19). The

reasons are the same as the one presented for figure 6.18: higher performance
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Figure 6.17: Average network lifetime in multiple of µ as a function of the target perfor-
mance with Borda count as fusion method. The DSS sensor selection algo-
rithm best, first and random are compared with the reference case where all
the nodes are active together (no DSS algorithm). The DSS algorithm en-
ables longer network lifetime thanks to the better management of available
resources.

Figure 6.18: Average network lifetime in multiple of µ as a function of the target perfor-
mance with single accelerometer axis features. The majority voting, Borda
count and naı̈ve Bayes fusion methods are compared. The use of the Borda
count method results in longer network lifetime in comparison to the other
fusion methods.

results in smaller active cluster thus a larger number of nodes can be used to

replace active ones.

The performance evolution with the DSS algorithm selecting the sensors

that participate in the gesture classification is compared to the reference case

where all the nodes are used simultaneously (see figure 6.20). In all three exam-

ples the Borda count fusion method, single accelerometer axis sequences and

the first sensor selection criteria are used.

When all the nodes are active simultaneously, the starting performance is
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Figure 6.19: Average network lifetime in multiple of µ as a function of target perfor-
mance for single acceleration axis and acceleration magnitude features.
Borda count fusion method is used. The use of single accelerometer axis
features results in longer lifetime.

Majority voting Borda count Naı̈ve Bayes
Accuracy

(µ)
Best First Rand Best First Rand Best First Rand

80% 4.8747 5.0465 4.6045 7.679 7.6425 6.7808 6.4091 6.4252 6.0012
85% 3.6406 3.5753 3.4497 5.7394 5.3818 5.5703 5.3649 5.6105 4.7944
90% 2.5085 2.3142 2.2006 4.3989 4.3204 3.7569 3.9144 3.9357 3.4354

Table 6.4: Average network lifetime (single accelerometer axis features).

higher than when the DSS algorithm is used. However as time approaches the

average node life µ the nodes start to run out of energy and the performance

quickly drops below the target. When the DSS algorithm is used, the system

performance at start is usually lower than in the previous case yet still above

target. The sharp changes in performance result from node failure and their

replacement. Since the cluster performance estimator is assumed to be perfect

the performance never drops below the threshold until the system reaches end

of life.

In figure 6.21 we illustrate the sequence of activation of the nodes for the

example presented in figure 6.20. Dark spots indicate when a node is par-

ticipating in the gesture recognition. The figure illustrates the fact that with

a higher target performance the number of nodes that are active at the same

time tends to be higher. This results in a higher system power consumption

and smaller system lifetime.

Tables 6.4 and 6.5 summarize the results.

The computational cost of the DSS algorithm is a function of the sensor se-

lection criteria and of the fusion method. The computational cost of the fusion

method is presented in table 6.3. Thus, only the effect of the sensor selection
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Figure 6.20: Evolution of the classification accuracy over time, as a function of the tar-
get performance. The Borda count fusion method and single accelerometer
axis features with first sensor selection criteria are used. The continuous
line indicates the performance with the DSS algorithm selecting the nodes
participating to activity recognition. The dashed line indicates the perfor-
mance of the system where all the nodes are active simultaneously. Vertical
segments indicate when a sensor is turned off and replaced. The dotted
line indicates the target performance. When all the nodes are simultane-
ously used, the performance of the system quickly drops under the target
threshold once time approaches the average node lifetime. With the DSS
algorithm a better management of the active nodes allows to lengthen the
system operation time.

Majority voting Borda count Naı̈ve Bayes
Accuracy

(µ)
Best First Rand Best First Rand Best First Rand

80% 3.4941 3.6135 3.4228 4.6341 4.7779 4.3987 3.4870 3.4236 3.2841
85% 2.586 2.5454 2.3231 3.7537 3.7765 3.2538 2.4037 2.5310 2.1175
90% 1.5459 1.5425 1.2213 2.3421 2.3108 2.1357 1.1019 1.1044 1.0244

Table 6.5: Average network lifetime (acceleration magnitude features).

criteria is discussed here. We evaluate the complexity of the DSS algorithm by

the number of clusters that need to be evaluated until a cluster satisfying the

performance target is found.

Larger clusters require more effort to be evaluated (see table 6.6). However,

table 6.3 indicates that the computational cost to classify an instance using any

fusion method is linear with the number of sensors fused. Thus, the computa-

tional cost to evaluate a cluster of N nodes will be N times the one to evaluate



166 Gesture Recognition In Redundant and Dynamic Sensor Networks

Figure 6.21: Node activation sequence corresponding to figure 6.20. The vertical axes
represents the time (increasing toward the bottom). Each column corre-
sponds to a node. Dark spots indicate when a node is active. Whenever a
node is turned off it is replaced by one or more idle nodes until all nodes
of the network have been used.

a single node, for a given fusion method and for a fixed number of reference

instances.

(a) Single accelerometer axis sequences

Best First Random
Majority 3105 1487 854

Borda 1786 675 389
Bayes 1949 697 485

(b) Magnitude sequences

Best First Random
Majority 5826 3716 1568

Borda 3664 1952 923
Bayes 5622 3853 1737

Table 6.6: Dynamic sensor selection algorithm computational effort when 85% mini-
mum classification accuracy is needed. The values in the table represent the
average number of equivalent clusters of size 1 that are evaluated during the
network evolution.

The processing cost of the best sensor selection criteria is almost twice that

of the first selection criteria. Yet, tables 6.4 and 6.5 indicate that the best and

first sensor selection criteria result in similar network lifetime. The processing

cost of the random criteria is half that of the first criteria, while resulting only in

slightly reduced the network lifetime.

The reason why the more exhaustive search within the space of the possible
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cluster does not produce noticeable improvements may come from the fact that

all three methods perform an optimization at a single time point, i.e. given the

actual cluster and actual state of the network they try to find the next best one.

A better approach may consider the optimization of the sequence of active nodes

as a whole, such as to keep the performance of the system above the desired

threshold while reducing the number of active nodes at the same time.

6.4.4 Implementation using TIny TAsk Networks (Titan)

The algorithm described above needs to be mapped on a wireless sensor net-

work. The Titan framework that we are developing for context recognition

in heterogeneous and dynamic wireless sensor networks can be used for this

purpose [126]. We develop Titan as part of the ongoing e-SENSE project as a

tool to enable and explore how context awareness can emerge in a dynamic

sensor network. Titan simplifies the algorithm description, automates data ex-

change between selected sensor nodes, and adapts execution to dynamic net-

work topologies. It thus qualifies for the implementation of the algorithm pre-

sented before.

Most context recognition algorithms can be described as a data flow from

sensors, where data is collected, followed by feature extraction and a classifica-

tion algorithm, which produces the context information. Within Titan, context

recognition systems are represented as Task Graphs. It offers for each processing

step (sampling, feature extraction, and classification) a set of predefined tasks.

A task is usually a simple signal processing function, such as a filter, but may

also be a more complex algorithm such as a classifier. A context recognition

algorithm can be composed from those modular building blocks, which are

provided by the nodes participating in the network.

A set of tasks are programmed into the sensor network nodes as a Task Pool.

These tasks are instantiated when they are needed (i.e. they use RAM and CPU

cycles only when they are used by a Task Graph). In a heterogeneous network,

node processing power may vary, and nodes with higher processing power can

provide more complex Task Pools than simpler nodes.

Figure 6.22 shows the Titan architecture and illustrates how a classification

task graph is distributed on the sensor network; the Task Graph Database con-

tains the classification algorithm description containing sensor tasks Si, feature

tasks Fi, a classification task C, and an actuator A1 receiving the end result.

Upon request to execute the algorithm, the Network Manager inspects the cur-

rently available nodes in the network, and decides on which node to instantiate

what tasks, such as to minimize processing load, overall power consumption,

or maximise network lifetime. The Network Manager then sends a configura-
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Figure 6.22: Titan configures an application task graph by assigning parts of the graph
to participating sensor nodes depending on their processing capabilities

tion message to the Task Managers on the sensor nodes, which instantiate the

tasks on the local node. The Task Manager assigns a share of dynamic memory

to the tasks for their state information and configures the connections between

tasks, including transmitting data to other nodes.

During execution of the task graph, the Network Manager receives error

messages from tasks or sensor nodes, and checks whether all participating sen-

sor nodes are still alive. If changes to the current configuration are required, it

adapts the distribution of the task graph on the network.

Titan provides several advantages. Ease of use, since a designer can de-

scribe his context recognition algorithm simply by interconnecting different

tasks and selecting a few configuration parameters for those tasks. Portability,

because it is based on TinyOS [85] which has been ported to a range of sensor

network hardware and due to the abstraction of tasks, it is able to run on het-

erogeneous networks. Flexibility and speed, since it can reconfigure nodes in

less than 1ms in order to quickly react to changes in dynamic sensor networks.

The meta classifier with dynamic sensor selection can be incorporated into

Titan by dividing it into a set of tasks that can be instantiated on different

nodes. In particular, we define three new tasks: 1) a ”gesture classification”

task, which implements the HMM algorithm, 2) a ”meta classification” task

that performs Bayesian inference and decides the gesture class, 3) a ”dynamic

sensor selection” task that defines the set of sensors contributing to the meta

classification task.

The initial cluster of nodes is created by the dynamic sensor selection task.

The Network Manager instantiates on each of the nodes within this cluster the

gesture classification task. The system runs as-is until a node fails (i.e. runs



6.4 Activity recognition accuracy-rowert rade-off by dynamic sensor selection 169

out of power). When the meta classification tasks senses that a node fails to

send data it sends an error message to the Network Manager. The Network

Manager instantiates the dynamic sensor selection task on a device with suf-

ficient computational power (PDA, mobile phone), and then adapts the con-

figuration of the nodes as needed. Since the cluster can tolerate the failure of

any one of his nodes and guarantee the desired classification performance, the

system can work continuously even when the dynamic sensor selection task

is running. This relaxes the time constraint on this task and allows relatively

complex clustering algorithms for the dynamic sensor selection task.

The task of the Network Manager for running the presented distributed

gesture recognition algorithm is light-weight. To remember the current config-

uration of the participating nodes, it has to store just 1 byte for the node ID,

1 byte for their status (active,failed,not used,meta classifier), and a single byte

for the current cluster size. This amounts to 39 bytes of storage for running

the gesture recognition algorithm on our example of 20 nodes. The processing

time is limited as well, as it just has to generate a small number of configu-

ration messages at every update of the network. We are thus confident that

the algorithm presented here is able to run on sensor network nodes, with the

exception of the non-optimized dynamic sensor selection task which runs on a

PDA or mobile phone.

6.4.5 Discussion

Several power-performance management approaches were presented in sec-

tion 6.2. Most of the ones specific to human activity recognition in wearable

system and ambient intelligence environments tend to reduce the set of used

sensors [149] or adjust processing parameters to achieve energy savings.

In the field of (wireless) sensor networks, energy considerations led to op-

timized routing protocol, radio transceivers, and communication protocols,

or data reduction techniques. These approaches are however disconnected

from a particular application goal, such as activity recognition accuracy. The

characteristic of this work is to manage power aspects at high level by taking

into account the application performance requirements. This complements ap-

proaches operating on signal processing parameter adjustment. This work also

benefits from and complements energy saving techniques typical of (wireless)

sensor network technologies by reflecting the application performance target

at the networking level.

The performance evaluation method proposed here is computationally effi-

cient since only the fusion of the decision of the nodes belonging to the cluster

needs to be computed at runtime, while the classification by individual nodes
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of the set of stored reference gesture instances is pre-computed during training.

It is also generic and applicable to any gesture set, and we showed how to

assess and control its accuracy. Given a more constrained target application,

an alternative approach may be to build a model linking system performance

to the nodes contributing to activity recognition, as well as the parameters

of these nodes (e.g. sampling rate). Such a model may be built from analy-

sis carried out during system training (e.g. the confusion matrix of a sensor,

parameter-performance linkage) [16, 189]. However, a model-based approach

needs to be devised for a specific application (gesture set) and decision fusion

algorithm. Although this may lead to more accurate performance prediction

or lower computational costs, it is at the expense of a loss of generality.

The DSS algorithm may be further enhanced by using class-specific perfor-

mance models instead of a global performance model as now as proposed in

[149]. This may allow to select the sensors more appropriate for specific ac-

tivity classes. It also allows to provide individual performance target for each

activity class. This provides more flexibility to define the performance target

and may translate in further energy savings. For instance wearable sensing

may be combined with ambient sensing. Presence sensors or smart cameras

in the environment may detect the location of the user. According to the user

location, the dynamic sensor selection algorithm may turn of the body-worn

sensors when the user is far from the car. This behavior may be obtained with

the appropriate system performance model without fundamental changes in

the DSS algorithm.

Systems relying on energy scavenging may also benefit from the approach

presented here. In fact, the constraints on the amount of energy to harvest are

more relaxed since nodes can be replaced with one or more others while re-

plenishing their energy buffer. A generalized performance model may allow

the DSS algorithm to select appropriate sensors according to the performance

target and available energy, and potentially also the likelihood of specific ac-

tivity classes.

To improve the analysis of the network evolution, the proposed nodes’ en-

ergy model can be improved. We assumed a Gaussian node lifetime model and

no power use for inactive nodes. In a real scenario the nodes use energy even in

sleep modes. Periodic wake-up is required to synchronize with the other nodes

of the network and, if required, change the node state. A more realistic energy

model may capture these characteristics. It may also include system reactiv-

ity considerations (i.e. how often nodes turn on to assess whether they should

start contributing to activity recognition). This however does not affect our

main result, which is to underscore the benefits of runtime power-performance

management through dynamic sensor selection.
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6.4.6 Conclusion

Wearable computing seeks to empower users by providing them context-aware

support. Context is determined from miniature sensors integrated into gar-

ments or accessories. In a general setting the sensor network characteristics

may change in unpredictable ways due to sensor degradation, interconnection

failures, and jitter in the sensor placement. The use of a dense mesh of sen-

sors distributed on the body may allow to overcome these challenges through

sensor fusion techniques. Since such systems must remain unobtrusive, the

reduction of node dimension and node interconnection is of high importance.

Wireless sensor networks help achieving this unobtrusiveness since they do

not require any wire connection. However, this implies that each sensor node

must be self powered. In order to reduce obtrusiveness, the battery dimension

must be kept at minimum, which results in low power availability.

Energy aware design aims to extend sensor nodes life by using low power

devices and power aware applications. Power aware applications typically rely

on duty cycling: they reduce the amount of time when the radio is active, and

they increase the amount of time when the node can be placed in a low power

state. In wearable computing, unpredictable duty cycles are proscribed. We

described a different approach to extend network life while achieving desired

accuracy. We capitalized on the availability of large number of nodes to im-

plement a dynamic sensor selection scheme together with a metaclassifier that

performs sensor fusion and activity recognition. This technique copes with

dynamically changing number of sensor without need to retrain the system.

The method minimizes the number of nodes necessary to achieve a given

classification ratio. Active nodes recognize locally gestures with hidden Markov

models. The output of active nodes is fused by a naive Bayes metaclassifier. In-

active nodes are kept in a low power state. Once an active node fails the system

activates one or more additional nodes to recover the initial performance.

The effectiveness of the DSS algorithm has been evaluated. Assuming a

Gaussian node lifetime model N(µ, σ) reflecting a generic battery size and

power consumption (this model can be tailored to specific hardware) we re-

ported the network lifetime as a multiple of the node lifetime µ. The average

network lifetime when all the nodes are simultaneously active is slightly more

than µ. We compared three cluster search heuristics. We showed that exhaus-

tive cluster evaluation returning the best performing cluster brings the same

benefits than a simpler algorithm returning the first cluster found that satis-

fies the performance goal. For instance, in both cases with Borda count fusion

method and a target of 90% classification accuracy, the system lifetime can be

increased respectively to 4.40µ and 4.32µ. Even with a primitive heuristic (here

one that adds randomly selected nodes to the cluster until a suitable cluster is
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found) significant improvements in network operation time can be reached

(3.76µ with the same conditions as above).

When accounting for the computational complexity of the DSS algorithm

the heuristic selecting the first cluster satisfying the performance goal shows a

good trade off between computational cost and network lifetime.

We described how this method fits within the Titan framework that we de-

velop to support context-aware applications in dynamic and heterogeneous

sensor networks. Titan allows fast network configuration and is well suited for

our technique as it allows to easily exploit network resources dynamically.

6.5 Tangerine SMCube: a smart device for human

computer interaction

With the objective of enhancing the interaction with smart environment, smart

objects can be used as tangible interfaces and play a fundamental role in im-

proving human experience within interactive spaces for entertainment and ed-

ucation (see section 6.2.2).

In this section we present the Tangerine Smart Micrel Cube (SMCube) a

smart device for Human Computer Interaction (HCI). The SMCube is a tan-

gible smart object equipped with sensors (digital tri-axes accelerometer) and

actuators (infrared LEDs, vibro-motors) embedded in a cube. The SMCube is

a tangible interface developed for the TANGerINE framework, a tangible table-

top environment where users manipulate smart objects in order to perform

actions on the contents of a digital media table [24].

Data from accelerometer is used to locally detect the active face (the one

directed upward) and a set of gesture performed by the user. These informa-

tion are wirelessly sent to a base station for processing. Furthermore, through

the LEDs the node can interact with a vision based system in a multi modal

activity detection scenario.

6.5.1 The TANGerINE framework

In the digital media table scenario, smart object based tangible interface (tangi-

bles) have to be considered both in relation to the shape of the surface around

which users stand and the digital contents visualized on it. From the physical

point of view, the suitable tangibles that can be easily used for the interaction

on a tabletop are those that assume a stable steady state when left on a hori-

zontal plane.

The tabletop scenario is characterized by different context according to the

area where the interaction occurs (see figure 6.23):
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Figure 6.23: Setup for the Tangerine framework and identification of the three contexts.

• Active Context (AC): it is the horizontal visualization surface, typically the

scene where users interact with tangibles (recognized by the system) as

well as digital elements. In this area there is a direct mapping between

the position and orientation of tangible objects and the digital ones.

• Nearby Context (NC): it is the area right around the tabletop where both

intentional and non intentional actions can be performed. The body of

the user can be tracked and this information can be used to study his be-

havior. The position of the user can be useful also for attributing the own-

ership of actions performed in the AC. In this context tangibles position

could not be precisely tracked, but can still be manipulated and provide

information about their orientation in space and some action performed.

• External Context (EC): it is the outer area, unrelated with the first two

contexts. In this area no position tracking occurs, but the user can still

interact with the tangible object and carry it with him across different

tabletops. The object therefore becomes a bridge between different inter-

active artifacts. The user could perform some actions on a tabletop and

use the same tangible on other artifacts, in this case the physical object

can become a container of different kind of information (e.g. session data

or user profile).

The current TANGerINE system layout consists of a ceiling mounted case

that embeds all of the required elements: computer, projector, camera and il-

luminator, targeting the horizontal surface of a normal table that is positioned

under the case, where also the interface is visualized [9].

Users interact with the system manipulating a physical object. We chose

a cube shape for the availability of six steady states, as well as its clear affor-

dance.

• The user intuitively considers the uppermost face “active”, as if reading
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the face of a die, and therefore identifies the object as being able to em-

body six different actions or roles.

• The cube faces can be used as visualization areas for symbols related to

the current object role (augmentation) and also to provide the space for

markers needed to object detection and tracking..

In the active context the relation between the cube steady state and the “ac-

tive face” is the most important: users can place the object on the surface and

move it sliding over the table while keeping the same upper face, or grab it

and rotate it to choose another face. The cube can also be taken by the user

and manipulated out of the active area, in the nearby context. In this case

the manipulation has more degrees of freedom. The variety of these actions

allows for a more expressive interaction language and provides to the appli-

cation designer an environment with richer modes of operation that depend

on the context in which the user acts. In the latter situation the possibility by

the cube to recognize gesture performed by the user can greatly enhance the

expressiveness of the interaction.

6.5.2 SMCube overview

The SMCube is a smart object equipped with sensors (a digital tri-axes ac-

celerometer from STM, LIS3LV02DQ, and 6 photo transistors) and actuators

(infrared LEDs and vibro motors) (see figure 6.24). It embeds an ATMega 168

low-power, low-cost microcontroller to sample and process data from its sen-

sors, and a Bluetooth 2.0 transceiver from BlueGiga (WT12) to wirelessly com-

municate with a PC. The ATMega 168 features a RISC architecture that can

operate up to 24MHz and offers 16 KB of Flash memory, 1 KB of RAM and

512 Bytes of EEPROM. The microcontroller includes a multiplier and several

peripherals (ADC, timers, SPI and UART serial interfaces etc.). The firmware

has been implemented in C using the Atmel AVR Studio 4 IDE that provides

all the APIs necessary to exploit the peripherals and perform operations with

8, 16, and 32 bit variables.

Originally, the SMCube was used as a tilt-aware artifact, with intelligence

on board to perform sensing, actuation, storage and processing of data. The

cube is identified by an id number, which helps disambiguating when more

than one cube is present at a time. Thanks to its wireless communication ca-

pabilities it can receive queries and controls and exchange bidirectional infor-

mation with the environment in which is placed. Therefore, the use of the

SMCube in a multi sensory enhanced context enables the use of redundancy to

improve recognition abilities of the overall system. The cube can provide both
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Figure 6.24: The Tangerine SMCube and its use within the tabletop environment

direct feedback on its state via wireless communication and visual, or tactile

feedback by use of its actuation capabilities.

The tri-axial accelerometer embedded in the cube measures static and dy-

namic acceleration. The former is used to extract the tilt of the cube with re-

spect to gravity acceleration vector by use of simple trigonometric considera-

tion on the acceleration collected along the three axes. Therefore, the SMCube

is able to derive which of the six faces is the top or the bottom face at a certain

instant. The result is both stored on the cube and translated in visual feedback,

i.e. the led matrix on the top face is turned on for the CV subsystem to track

and identify the object. In a similar way, the tilt can be translated in vibration.

The cube tilt, and more generally all the information stored in it (e.g. its

id number, other attributes relating to its state, etc.) can be sent wirelessly

to any device enabled with Bluetooth communication capabilities. At present

the packet effectively sent contains different fields, in particular the raw ac-

celerometers data, the code corresponding to the cube face currently lighted,

the id of the cube. The cube provides two operational modalities: Inquiry mode

or Continuous mode

Inquiry mode When a transition from a face to another is detected, a single

transmission is carried out. We have introduced a configurable latency

(or reaction time), consisting of the number of data frames after which

the cube is considered halted at a certain tilt. This functionality is added

to hide transitional states. In this mode, the cube is responsive to inquiry

commands, e.g. requests of further transmissions of the packet contain-

ing the state of the cube.
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Continuous mode The data-packet is sent continuously at a configurable frame-

rate. The overall system is then informed frame by frame of the actual

cube state and can monitor its movements. This mode enables, for exam-

ple, signal processing for gesture recognition and cube motion tracking

on the fixed, and more powerful, PC.

Furthermore, in both operational modes, additional inquiry commands can

be performed, as turning off and on the LEDs, changing the frame rate, switch-

ing between modes or modifying the configurable latency for face detection.

6.5.3 Gesture detection algorithm

We augmented the intelligence of the SMcube implementing an on board ges-

ture recognition algorithm based on a decision three. The algorithm is able to

distinguish between three gestures performed by the user: cube placed on the ta-

ble, cube held, cube shake and tap. The latter one, in particular, happen when the

cube is placed on the table and the user gently hits the upper (active) face. The

gestures recognized provoke reactions defined by the system or application the

cube is interacting with.

Data from the three axes accelerometer is sampled at 40Hz. To detect the

first three gestures we classify partially overlapped windows of 16 consecutive

samples. The variance of the data within each window is used to classify the

gesture performed using a C4.5 decision tree classifier [167] previously trained

with the WEKA [230] toolkit using a set of pre-stored instances. The choice of

this algorithm is motivated by its easiness of implementation and the limited

amount of resources needed.

A valid gesture is detected when the classifier returns the same class for N

(N = 3) consecutive windows. N defines a trade-off between robustness of

classification and reactiveness.

To detect the tap event we implemented an ad-hoc technique. This tech-

nique is based on a Finite State Machine (FSM) that checks if the actual status

is placed on the table and than analyzes the accelerometer output waveform.

Figure 6.25 shows the accelerometer output when a tap event happen.

From this picture it is easy to understand that a tap can be recognized when

the waveform presents a rapid spike than the signal return quickly to its quiet

state.

Figure 6.26 presents a diagram of the application implemented on the SM-

Cube. As can be seen 2 tasks operate in parallel. The first implements the C4.5

tree classifier (see figure 6.27(a)), the second the FSM for the tap recognition

(see figure 6.27(b)).

Preliminary tests showed that the performance (calculated as correct classi-



6.5 Tangerine SMCube: a smart device for human computer interaction 177

Figure 6.25: Accelerometer output waveform when a tap event happen.

Figure 6.26: Micrel SMCube application.
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(a) C4.5 tree classifier.

(b) tap FSM.

Figure 6.27: Micrel SMCube tasks.
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fication ratio) of our approach tested on a small group of students which were

not involved in the development of this application is above 98% for the three

actions cube placed on the table, cube held and cube shaked.

Tap recognition is 96,25% and increase up to 98,75% if we increase the ac-

celerometer sampling frequency from 40 to 100Hz. This behaviour is simply

due to the best identification of the the accelerometer waveform.

The latency of detection in the case of sampling rate equal to 100Hz is pre-

sented in table 6.7

Latency Next State (sec)
Leaned dw Lifted Shake Tap

Previous state

Leaned dw 0.47 0.42 0.35
Lifted 0.48 0.47
Shake 0.25 0.36

Tap 0.25

Table 6.7: Latency in gesture recognition.

6.5.4 HMM for SMCube, a feasibility study

Hidden Markov Models (HMMs) allow to handle temporal dynamics and clas-

sify more complex gestures than the ones described in the previous section.

Typically, classification with HMM is performed using a recursive algorithm

called forward algorithm. In section 4.5.1 we shown how a recursive approach

that requires few memory resources can be applied for this algorithm. Al-

though this process is a lightweight task, several issues must be considered

in order to implement it on a low-power, low-cost microcontroller such as the

one embedded on the SMCube.

In this section we evaluate the fixed point implementation of the forward

algorithm. Discussion of ad-hoc solution to solve numerical problems while

keeping low overall computational complexity are presented. Consideration

about the complexity of the algorithm, both in terms of computational and

memory cost, and its performance are discussed.

Lets recall here the steps of the forward algorithm presented in 4.5.1.

1. Initialization: α1(i) = πi(O1)bi(O1), 1 ≤ i ≤ N

2. Induction: αt+1(j) = [
N∑

i=1

αt(i)aij ]bj(Ot+1), 1 ≤ j ≤ N and 1 ≤ t ≤ T − 1

3. Termination: P (O|λ) =
N∑

i=1

αT (i)
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Normalization

According to the induction step of the forward algorithm we can see that the

αt(j) are sum of a large number of terms in the form (
t−1∏
s=1

aqs,qs+1

t∏
s=1

bqs(Os)).

Since both the aij and the bi(k) are smaller than 1 as t become large αt(j) tends

to zero exponentially and soon it will exceed the range of any machine.

In order to avoid underflow, the αt(j) are normalized at every step using

the scaling factor ct = 1
N∑

i=1

αt(i)

. The scaled α̂t(j) are used in place of the αt(j).

This normalization procedure is not suitable for low-power microcontrollers

since it requires to perform N division each time a new sample is processed.

Thus we propose an alternative scaling approach:

1. check if all αt(j) are smaller than 1
2 , otherwise scaling is not needed;

2. calculate the number of shift to the left l needed to render the highest

αt(j) greater than 1
2 ;

3. shift all αt(j) to the left of l bits.

This procedure requires only shifts and can be efficiently implemented on a

microcontroller.

Likelihood

To compute the final sequence probability we can not use the scaled α̂t(j). The

motivation can be easily understood if we think to the classical normalization

where
N∑

i=1

α̂T (i) = 1.

However we can notice that:

N∑

i=1

α̂T (i) =
T∏

t=1

2lt ·
N∑

i=1

αT (i) =
T∏

t=1

2lt ·P (O|λ) = r −→ P (O|λ) =
r

T∏
t=1

2lt

(6.5)

Since P can be very small, we compute log P (O|λ) = log(v)−
T∑

t=1

log 2lt .

If we decide to use log2 we already have the value of
T∑

t=1

log 2lt by keeping

track of how many shift we computed for scaling. Furthermore, we do not

need to compute log(v) since logarithm is a monotonically increasing function.

Thus, to compare 2 models, we simply check for the one that required less shifts

for scaling, in case of tie the one with higher v is the most probable model.
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Evaluation

To evaluate this implementation we used a dataset made up of 10 complex

gestures collected on a car assembly scenario (see section 6.3.2). The dataset

has been extended since its first use and now includes 70 repetition for each

gesture. These gestures can be compared to the ones that may be used within

role-playing games.

To recognize these gestures we used a discrete HMM with 4 states (N = 4).

Accelerometer’ streams have been quantized to 3 symbols (M = 3).

To assess the complexity of the forward algorithm we assumed the values

presented in tables 6.8 and 6.9, where N is the number of HMM states and C is

the number of gestures we want to recognize (here C = 10). The memory cost

is given by data size
8 · C · (N2 + N · M + 2 · N). Where M is the number of

symbols in the accelerometer stream.

Operation Cost
Shift 1

Variables comparison 1
Sum 8 bits 1

Sum 16 bits 2
Sum 32 bits 4

Multiplication 8 bits 2
Multiplication 16 bits 4
Multiplication 32 bits 6

Table 6.8: Computational complexity

Algorithm Cost
αt+1(i) Calculation (N + 1) mul. + N sum.

Normalization 2 ·N + 1 + 2 · data size
Single step (8-bit) C · [N · (3 ·N + 2) + 2 ·N + 17]
Single step (16-bit) C · [N · (6 ·N + 4) + 2 ·N + 33]
Single step (32-bit) C · [N · (10 ·N + 6) + 2 ·N + 65]

Table 6.9: Algorithm complexity

To evaluate the performance loss due to the use of fixed point data repre-

sentation, we classified the dataset using a floating point representation of the

data and the traditional normalization algorithm (optimal performance), and

using a fixed point representation and the shift scaling algorithm.

Performances are evaluated using the following indexes (see table 6.10):

• Correct Classification Ratio: CCR =
number of correctly classified instances

total number of instances ;

is a global indication of the performance of the classifier.

• Precision: PRi =
number of instances correctly classified for class i

number of instances classified as class i ;

is an indication of the exactness of the classifier.



182 Gesture Recognition In Redundant and Dynamic Sensor Networks

• Recall: RCi =
number of instances correctly classified for class i

total number of instances from class i ;

is an indication of the performances of the classifier over a specific class

Class PR 8b PR 16b PR 32b PR fl RC 8b RC 16b RC 32b RC fl
Gesture 1 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99
Gesture 2 0.50 0.66 0.66 0.66 0.01 0.64 0.64 0.64
Gesture 3 0.38 0.54 0.54 0.54 0.41 0.56 0.56 0.56
Gesture 4 0.54 0.60 0.61 0.61 0.64 0.67 0.69 0.69
Gesture 5 0.29 0.67 0.69 0.69 0.36 0.50 0.50 0.50
Gesture 6 0.36 0.53 0.53 0.53 0.43 0.36 0.36 0.36
Gesture 7 0.53 0.65 0.65 0.65 0.59 0.86 0.86 0.86
Gesture 8 0.47 0.56 0.56 0.56 0.52 0.63 0.63 0.63
Gesture 9 0.77 0.87 0.87 0.87 0.81 0.89 0.89 0.89
Gesture 10 0.93 0.96 0.96 0.96 0.90 0.99 0.99 0.99

CCR 56.71% 70.71% 70.86% 70.86%

Table 6.10: Classification performances

Table 6.10 and 6.11 presents PR, RC, CCR, computational and memory cost

for our implementations. The implementations that use 16 and 32 bits fixed

Variables Size (bits) CCR (%) Memory cost (bytes) Computational cost
8 56.71 360 810
16 70.71 720 1370
32 70.86 1440 2090

Floating point 70.86

Table 6.11: Performance and cost comparison

point data representation achieve similar or even equal CCR than the floating

point solution. On the other hand the 8 bits fixed point implementation worsen

the CCR by 14.15 %. However, the 32 bit solution can not be implemented on

the ATmega168 since it requires more RAM than available, therefore the 16 bits

solution is the optimal choice for the SMCube.

6.5.5 Conclusion

In this section we introduced the TANGerINE project, a natural interactive

framework that exploits both wireless sensors electronics and video techniques

in order to enrich tabletop interaction.

Within the framework two application scenarios have been developed.

TANGerINE Theater This project concerns a new kind of long form impro-

visation performance in which the audience is able to change the multi-

media contributions (used as scenographies) manipulating the SMCube;

the actors consequently improvise adapting the stories to the different

changing settings.
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A new tangible dialogue device has been introduced to enable the com-

munication between audience and actors. By manipulating the SMCube,

the audience is able to switch through six different multimedia scenogra-

phies projected in a large screen used as a frame for the stage. Every

scenography is associated to a particular story improvised by the actors

so that the audience can switch the story by switching the scenography,

becoming de facto a “director-audience”.

A first version of the performance has been presented to the Creativity

Festival 2007 in Florence where a numerous audience have enjoyed and

joined the show.

TANGerINE Tales Another application scenario focuses on supporting chil-

drens face-to-face collaborative story-making.

One of the main concerns when designing for collaboration is that of

supporting distributed participation: in a synchronous setting such as

a face-to-face collaborative story-making activity, a system should enable

multiple users simultaneous interaction. SMCubes can support this by

allowing each child to use his own cube to interact with the system at

the same time as other children. By switching the cube functionalities,

the roles can also be fluidly re-assigned to different children according

to emerging or predefined activity scripts. The spatial configuration of

sensitive areas can also encourage different levels of engagement: a child

in the Nearby Area can be involved in the activity peripherally, while a

child in the Active Area is taking the leading role.

Finally, lessons from the design of collaborative systems have stressed the

importance of accounting for authoring identity, especially when the sup-

ported activity is an open ended, creative one. The TANGerINE frame-

work supports this, because it delivers a clear history of the actions per-

formed by each individual, the system provides not only a strong moti-

vational aspect for childrens participation, but also a useful tool for edu-

cators to assess each childs level of participation both in quantitative and

qualitative terms.

We extended the capabilities of the SMCube in order to locally classify a

set of four simple gesture performed by the user through a simple but efficient

C4.5 decision tree and an ad-hoc algorithm. This enhancement allow multi-

user, multi-context human computer interaction.

HMM is a common approach in gesture recognition, thus the possibility

to implement this algorithm on a smart object and use it as a tangible interface

greatly enhances potential for using the smart object as an effective HCI device.



184 Gesture Recognition In Redundant and Dynamic Sensor Networks

Here we presented our evaluation of a fixed point implementation of the

forward algorithm for HMM and our solutions to the peculiar numerical prob-

lems of this classification algorithm.

The 16-bit implementation is the best solution that can be implemented

on our target microcontroller (ATMega168). This solution shows performance

only slightly worse than the optimal ones of the floating point implementa-

tion (70.71% CCR, 16 bit fixed point; 70.68% floating point) and makes this

implementation suitable for smart object equipped with low-power, low-cost

microcontrollers such as the SMCube.

6.6 Pervasive datasets

Ambient intelligence envisions a world where the environment is able to sense

its own physical state, the presence of people, their state and current activ-

ity. With this information, the environment itself can provide context-aware

services to support its inhabitants. In such an environment, a dense mesh of

sensors is integrated into stationary objects, artifacts, clothing. An important

aspect of context information is the activity of people within the smart envi-

ronment. Consequently the development of activity recognition algorithms is

a very active field of research. One of the main challenges is that both the de-

sign and the validation of activity recognition techniques require large datasets

that must be obtained through time-consuming and expensive test sessions.

In this section, we describe our considerations and experiences with collect-

ing data from an sensorized environment with end goal of producing a high-

quality, freely available reference dataset for benchmarking activity recogni-

tion algorithms. Our experiments include 5 different sensing modalities and

up to 12 wireless sensors communicating at the same time. The dataset is con-

structed out of 8 different scenarios of everyday life, which include 17 activ-

ities composed of 64 micro-activities. The activities have been performed by

two test subjects 10 times each. During the time a subject performed the activi-

ties, the experiment supervisor recorded time markers to identify the start and

duration of each activity.

The dataset will be available for research purposes and is intended to be

a common benchmark for design, evaluation and comparison of different ac-

tivity recognition approaches. To the best of our knowledge, it is the first that

includes such detailed labeling of activities recorded from body worn and en-

vironmental sensors and smart objects. In this paper we describe our recording

setup and recommendations and hope that others will contribute to the dataset

to make it grow to a commonly useful resource.
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6.6.1 Experiment setup

The 8 scenarios of the dataset involve: cooking a soup in the kitchen (Kitchen),

assembling a shelf with three boards (Shelf assembly), then attaching a metal

crossbar to it (Crossbar assembly), three sets where the subject is working on

its desk reading, writing, and using the computer (Relaxing 1+2, Working), a

set where two subjects collaboratively assemble the shelf (Collaboration), and

a last set where the subjects perform activities which are not to be recognized,

but may cause false positives in the recognition algorithms, such as scratching

the head or using a mobile phone (Distractions).

The activities were recorded by body-worn sensors featuring accelerome-

ters at both wrists and on the left leg right above the knee and bend sensors

monitoring the extension of the fingers of the right hand. Further accelerom-

eters were placed on 12 objects and tools the subjects interacted with and on

a shelf leg, a shelf board, and a chair. Additional 8 light sensors were placed

into drawers and cupboards to monitor whether they have been opened by the

test subject. Work on the computer was sensed by recording the number of key

presses and mouse movements. A pyroelectric infrared (PIR) motion sensor

recorded when the subject entered and left the room after each recording (see

table 6.13). Finally, a camera filmed the room during the experiment.

The raw data samples from the sensors have been collected through wire-

less communication to a laptop PC where a supervisor labeled the beginning

and the end of each activity using custom software developed for this project.

Only the PIR was connected by a serial cable. For synchronization, a timestamp

was added at the reception of every message on the recording PC.

Due to the complexity of the recording setup we have considered several

points to successfully conduct the experiment. We report here on our experi-

ences with labeling the activities and with ensuring a good performance of the

wireless communication.

Activities and labeling

Our goal was to have a detailed record of micro activities performed during

our experiments. We thus defined 64 atomic activities, such as picking up a

screwdriver or turning a screw, which should allow identifying which of the

17 composite activities the subject has been performing at that time, such as

fixing a crossbar on the shelf. Table 6.12 lists the different scenarios and the

number of different composite and atomic activities they include. Some atomic

and composite activities occur multiple times during a recording, and some

distracting activities, such as scratching the head, were occasionally inserted.

The average number of labels to be set during a recording is indicated in the
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last column of table 6.12.

Scenario Composite activities Atomic Activities Average occurrences
Relaxing 1 3 9 27
Relaxing 2 2 9 18
Crossbar Assembly 4 12 27
Kitchen 8 37 68
Shelf Assembly 5 14 99
Working 5 17 31
Collaboration 6 17 87
Distraction 6 10 60

Totals 17 64 400

Table 6.12: Number of composite and atomic activities and total number of activity oc-
currences.

One option to annotate the recordings would have been to record all data

without labels and to add the activity information after the experiments by

inspecting the recorded films. However, we expected this to take considerably

more time than labeling the activities online and manually check the labels

later on. The drawback of this approach is that due to the large number of

different activities, the sequence of the activities needs to be fixed, such that

the experiment supervisor can find them in a list in useful time.

We have therefore designed a simple user interface which displayed the

sequence of activities to be performed by the subject (see figure 6.28). The

experiment supervisor could select the activity to be performed next and con-

veniently start and stop the time during which it was performed. After a short

training session, a user is able to efficiently annotate the activities. The soft-

ware added the time-stamped event to the recorded data flow. An important

addition is a sensor health indication showing the active sensors. The sensor

identifiers are colored green when data has been received during the last sec-

onds. When data was missing, the corresponding identifier turns red, such that

the experiment supervisor is alerted and can decide whether or not to stop the

recording. We experienced several times during the experiment that sensors

failed to deliver data only for short time, than quickly recovered the transmis-

sion. By monitoring the network status we were able to stop the experiment if

critical sensors were not responding for an extended amount of time.

In a post-processing step, the labels were inspected and corrected manually

by cross-checking against the video recording of the experiment. The accuracy

of the online labeling by the experiment supervisors was evaluated, such that

it can be compared to automatic context recognition algorithms. For the eval-

uation, we accepted a human-set label as true positive if it intersected at least

on one sample with the ground truth label. This definition does not allow re-

porting events early or late. Labels that had no match on ground truth were
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Figure 6.28: Labeling software with a) atomic label sequence, b) composite label se-
quence c) start/stop button, and d) sensor health status.

reported as false positives while ground truth labels without matching event

as false negatives. Multiple matches between labels and ground truth were all

counted as true positives.

It is interesting to note that even the ”gold reference” activity recognition

performed by the human brain is not perfect. The accuracy of the human la-

beling was determined to be 96.75%, with a precision of 97.83% and a recall of

98.87%. Most errors came from mixing up two different activities or setting the

label too late.

Wireless communication

Data from the sensors has been collected through different media by a single

laptop PC. The PIR sensor readings were gathered using a serial cable, data

from the right wrist and the bend sensors was sent using a Bluetooth radio,

all other sensor nodes were based on Tmote platforms and use the TinyOS

wireless stack based on IEEE 802.15.4. The accelerometers on the sensor nodes

were sampled at 50 Hz on three axes, requiring a sensor data throughput of 2.4

kbit/s. As expected (Shnayder, 2005), early tests showed that at this data-rate

we suffer for high message loss when more than 3 nodes are streaming on a

single channel, thus we decided to use multiple parallel channels and assign

only 2 sensors to each.

During the experiment we still experienced nodes failures or communica-

tion loss which reduced the quality of the acquired streams. Messages losses

vary from 0% up to 38.0% (PIR sensor) with an average of 8.7% (see table 6.13).
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Higher packet losses are due to sensor that failed at the beginning of an ex-

periment and whose failure was not recognized until the end of the test, while

lower data losses are mainly due to temporary occlusion due to movements

of the user or to interference between sensors streaming on the same channel.

The high data loss on the PIR sensor is not a real loss of packets, but it is simply

due to the fact that this sensor was not available during all experiments. This

analysis shows that we successfully reduced the data loss by using different

channels. However, wireless sensor nodes communication is still unreliable

and depends on body positions and movements, as shown also in [116].

Category Position Message Loss (%)

Infrastructure PIR 38.0
Computer 0.0

Tools

Hammer 0.9
Screw Driver 2.1
Scissors 0.0
Knife 10.9
Book 1 12.7
Book 2 9.8
Phone 13.8
Stirring Spoon 3.7
Drill 0.6
Wrench Small 23.7
Wrench Big 15.3
Pen 0.7

Furniture

Shelf Board 3.4
Chair 4.3
Food Cupboard 2.0
Dish Cupboard 2.1
Cutlery Drawer 2.6
Garbage 0.6
Pot Drawer 1.8
Shelf Leg 5.9
Tool Drawer 0.1
Desk Drawer 2.6

Body Worn
Glove 0.5
Wrist 0.6
Left Leg 10.2

Average 8.7

Table 6.13: Overall experiment message loss.

6.6.2 Benchmark for context recognition

The dataset we built is suitable for the development and the comparison of sev-

eral activity recognition approaches and techniques. Possible usages include

[96]:

• Comparison of Approaches. Typical activity recognition techniques rely

on sensors that are either placed on user body, or on objects, or in the

environment. As a consequence, different algorithms are tested on dif-

ferent datasets and their comparison is almost impossible. We believe
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that the possibility to test different approaches on a common benchmark

will allow a better understanding of the benefit provided by different

techniques. Furthermore, since sensor networks are dynamic systems, a

researcher can compare different scenarios where the user (or different

users) may or may not be equipped with smart garments or performs

her/his activity with or without smart objects and moves within or out-

side a smart environment.

• Distributed vs. centralized recognition. The authors of (Amft, 2007) have

shown how distributed recognition of activities can be performed. An

evaluation of a centralized recognition algorithm, which has all the data

available, vs. a distributed recognition algorithm, which recognizes ac-

tivities locally on the individual sensors while a centralized node only

fuses their results, can be performed. There are as well some intermedi-

ate solutions where sensor data on different sensors may be correlated.

• Hierarchical Activity Recognition. In a multilevel hierarchical approach

to activity recognition, researchers can develop activity recognition tech-

niques specifically for each level. By feeding back their recognition re-

sults to the dataset, higher- level or lower level algorithm designers can

investigate the influences of different approaches on other levels on the

overall performance. Furthermore they can test the benefit of cross-level

information exchange.

• Context-aware activity recognition. The knowledge of the higher level

activities may be used to restrict the search space of the lower-level ac-

tivities to improve their recognition accuracy. As classifiers have then

to only discriminate a limited subset, an improvement of their perfor-

mance can be expected. For example, micro activity detection can benefit

from the knowledge that the user is currently mounting a shelf board

by restricting its detection to relevant micro activities and omitting the

detection of activities related to cooking.

6.6.3 Conclusion

This paper summarizes our experiences setting up and running a diverse set

of scenarios within an ambient intelligence environment. The experiments in-

cluded multiple sensing modalities on sensors mounted on the body, embed-

ded within tools used by the subject, and sensors in the environment. With

respect to the datasets presented in 6.2.3 we produced a dataset with a high

number of repetition of each activity performed by multiple user and moni-
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tored through a heterogeneous set of wore, embedded in tools and environ-

mental sensors.

In contrast to the other dataset presented in section 6.2.3 here we focus on

activity recognition through a set of inertial sensors. The addition of our work

are:

• Combination of body worn sensors, smart objects, environmental sensor.

• Several repetition of the same activity.

• Multiple user.

• Hierarchical organization of gestures.

• Fully labeled activities.

We described how to perform efficient labeling and ensure a good perfor-

mance of the wireless channel. The resulting dataset will be publicly available

and we hope that it may support different researchers to engage into the re-

search challenges we have outlined.
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Conclusion

Ambient Intelligence (AmI) is a vision on the future of the information society

where smart, electronic environment are aware and responsive to their con-

text. In such smart environment, technology is invisible and embedded into

the surrounding. People moving into this settings engage many computational

devices and systems simultaneously even if they are not aware of their pres-

ence. AmI stems from the convergence of three key technologies: ubiquitous

computing, ubiquitous communication and natural interfaces.

The dependence on a large amount of fixed and mobile sensors embedded

into the environment makes of Wireless Sensor Network (WSN) one of the most

relevant enabling technologies for AmI. WSN are complex systems made up

of a number of sensor nodes, simple devices that typically embed a low power

computational unit (microcontrollers, FPGAs etc.), a wireless communication

unit, one or more sensors and a some form of energy supply (either batteries

or energy scavenger modules). Low-cost, low-computational power, low en-

ergy consumption and small size are characteristics that must be taken into

consideration when designing and dealing with WSN.

In order to handle the large amount of data generated by a WSN several

multi sensor data fusion techniques have been developed. The aim of multi-

sensor data fusion is to combine data to achieve better accuracy and inferences

than could be achieved by the use of a single sensor alone.

In this dissertation we presented our results in building several AmI ap-

plications suitable for a WSN implementation. All the presented applications

exploit data collected from either a homogeneous or heterogeneous sensor net-

work and fuses such information to gather high level inferences about the con-

text.

The work can be divided into two main areas: Multimodal Surveillance and

Activity Recognition.
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Within the field of multimodal surveillance we developed new techniques

to track people movement through the use of a dense mesh of Pyroelectric

InfraRed (PIR) sensors. PIR sensors are low-power, low-cost devices able to

transduce changes in incident infrared radiation into an electric signal. Such

devices typically are used as simple presence-absence detectors. In section 5.3

and 5.4 we shown how we can extract more information than simple presence

by fusing simple features from a mesh of PIR sensor. In particular we pre-

sented 2 system able to detect number and direction of movement of people

and distance of movement.

In section 5.5 we shown how this PIR sensor network can be integrated

with a video surveillance system in order to overcame to several limits of the

vision system such as changes in direction of movement behind occlusion and

reflections.

Section 5.6 describes how we can extend the lifetime of a wireless video

node powered by a solar scavenger using a PIR sensor and a tunable wake-up

threshold.

Within the field of activity recognition we studied how we could perform

gesture recognition in a future scenario where a redundant number of low-cost,

low-power sensors are deployed in the environment. In particular in section

6.3 we proposed a novel approach where a large number of nodes placed on the

user arm classify his gesture. Through the use of a meta classifier we exploit

the redundant information in order to increase single sensor accuracy while

increase noise and fault tolerance. Furthermore in section 6.4 we shown how

redundancy can be used to perform an application driven power-performance

trade off. Such technique allow the whole network lifetime extension while

achieving a minimum, application defined, quality of recognition.

Activity recognition techniques can be used to build natural, tangible inter-

faces with the smart environment. In section 6.5 we presented our Smart Micrel

Cube (SMCube), a tangible interface used within the TANGerINE framework.

In this section we presented our work in increasing the power of this smart ob-

ject by developing gesture recognition algorithm for this low-power, low-cost

device.

The development of activity recognition algorithm often is slowed down

due to the lacking of available datasets to build and compare new techniques.

Aware of this limit we built a dataset that will be available for research pur-

poses and is intended to be a common benchmark for design, evaluation and

comparison of different activity recognition approaches. Our experience is pre-

sented in section 6.6.
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[78] H. Harms, O. Amft, and D. R. G. Tröster. Smash: A distributed sensing and pro-

cessing garment for the classification of upper body postures. In Third interational

conference on body area networks, 2008.
[79] K. Hashimoto, K. Morinaka, N. Yoshiike, C. Kawaguchi, and S. Matsueda. People

count system using multi-sensing application. Solid State Sensors and Actuators,

1997. TRANSDUCERS ’97 Chicago., 1997 International Conference on, 2, Jun 1997.
[80] T. He, S. Krishnamurthy, L. Luo, T. Y. andLin Gu andRadu Stoleru, G. Zhou,

Q. Cao, P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. H. Krogh.

Vigilnet: An integrated sensor network system for energy-efficient surveillance.

ACM Transactions on Sensor Networks (TOSN), 2(1):1–38, 2006.
[81] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao,

P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh. Vigilnet: An



198 BIBLIOGRAPHY

integrated sensor network system for energy-efficient surveillance. ACM Trans.

Sen. Netw., 2(1):1–38, 2006.
[82] E. Heinz, K. Kunze, M. Gruber, D. Bannach, and P. Lukowicz. Using wearable

sensors for real-time recognition tasks in games of martial arts - an initial exper-

iment. In Proc. IEEE Symposium on Computational Intelligence and Games (CIG).

2006.
[83] J. L. Hernandez-Rebollar. Gesture-driven american sign language phraselator.

In ICMI ’05: Proceedings of the 7th international conference on Multimodal interfaces,

pages 288–292, New York, NY, USA, 2005. ACM Press.
[84] Hill. Mica: a wireless platform for deeply embedded networks. Micro, IEEE,

22(6):12–24, Nov/Dec 2002.
[85] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System archi-

tecture directions for network sensors. In Architectural Support for Programming

Languages and Operating Systems, Nov. 2000.
[86] T. Ho, J. Hull, and S. Srihari. Decision combination in multiple classifier systems.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 16:66–75, 1994.
[87] Honeywell security and custom electronic. Is-215t datasheet, 2008.
[88] IBM. Planet blue project overview.

http://www.research.ibm.com/compsci/planetblue.html.
[89] IEEE 802.15.4 Task Group 4. http://www.ieee802.org/15/pub/TG4.html.
[90] M. Ilyas, I. Mahgoub, and L. Kelly. Handbook of Sensor Networks: Compact Wireless

and Wired Sensing Systems. CRC Press, Inc., Boca Raton, FL, USA, 2004.
[91] Image Lab. http://imagelab.ing.unimore.it/.
[92] Information Society Technology. Istag mission.

http://cordis.europa.eu/ist/istag.htm, 1999.
[93] InfraTech. http://www.infratec.de/index.php?id=134&L=.
[94] S. S. Intille, K. Larson, J. S. Beaudin, J. Nawyn, E. M. Tapia, and P. Kaushik. A

living laboratory for the design and evaluation of ubiquitous computing tech-

nologies. In CHI ’05: CHI ’05 extended abstracts on Human factors in computing

systems, pages 1941–1944, 2005.
[95] H. Ishii. The tangible user interface and its evolution. Commun. ACM, 51(6):32–

36, 2008.
[96] A. Jaimes and N. Sebe. Multimodal human-computer interaction: A survey. Com-

put. Vis. Image Underst., 108(1-2):116–134, 2007.
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activity recognition with fuzzy-enabled wireless sensor networks. In International

Conference on Distributed Computing in Sensor Systems (DCOSS), June 2008.

[131] M. Maroti, G. Simon, A. Ledeczi, and J. Sztipanovits. Shooter localization in

urban terrain. Computer, 37(8):60–61, Aug. 2004.



BIBLIOGRAPHY 201

[132] K. Martinez, J. K. Hart, and R. Ong. Environmental sensor networks. Computer,

37(8):50–56, 2004.
[133] C. Mattmann, O. Amft, H. Harms, G. Tröster, and F. Clemens. Recognizing upper
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