
ALMA MATER STUDIORUM
UNIVERSITÀ DEGLI STUDI DI BOLOGNA

Facoltà di Ingegneria
Dipartimento di Elettronica Informatica e Sistemistisca

Dottorato in Ingegneria Elettronica, Informatica e delle Telecomunicazioni

META-MODELS, ENVIRONMENT AND LAYERS:

AGENT-ORIENTED ENGINEERING OF COMPLEX

SYSTEMS
Disciplinary Sector: ING-INF/05

Cicle XX

Candidate: Supevisors :
Dott. Ing. AMBRA MOLESINI Chiar.mo Prof. Ing. ANTONIO NATALI

Ill.mo Prof. Ing. ENRICO DENTI
Ill.mo Prof. Ing. ANDREA OMICINI

Coordinator :
Chiar.mo Prof. Ing. PAOLO BASSI

FINAL EXAM YEAR 2008

iii

ALMA MATER STUDIORUM
UNIVERSITÀ DEGLI STUDI DI BOLOGNA

Facoltà di Ingegneria
Dipartimento di Elettronica Informatica e Sistemistisca

Dottorato in Ingegneria Elettronica, Informatica e delle Telecomunicazioni

March 2008

Supervisors : Chiar.mo Prof. Ing. ANTONIO NATALI
Ill.mo Prof. Ing. ENRICO DENTI
Ill.mo Prof. Ing. ANDREA OMICINI

External Reviewers : Prof. MARIE-PIERRE GLEIZES
Prof. MICHAEL LUCK

Coordinator : Chiar.mo Prof. Ing. PAOLO BASSI

iv

Acknowledgement

This thesis is the result of three years spent with a wonderful research group:
thanks to Enrico and Andrea for their guiding visions and stimuli, to Mirko
and Alessandro for their suggestions and infinite knowledge, and to Matteo and
Elena for the discussions, ideas and interactions. They have been guides as
well as friends helping me along all the stages of my Ph.D adventure. Thanks to
Antonio, who instilled in me the passion for the world of software engineering.
Thanks to Marie-Pierre and Michael for the great help that they gave me for
improving the thesis. This work is dedicated to my parents and my boyfriend
Alessandro.

Contents

Abstract xi

1 Preface 1
1.1 The Contributions . 2
1.2 The Structure of the Thesis . 4

I Background 7

2 The MAS Approach 9
2.1 The Agent Paradigm . 9

2.1.1 Complex Systems . 10
2.1.2 The Agents . 11
2.1.3 The Multi-Agent Systems Architecture 14

2.2 Societies . 16
2.3 The Environment . 18

2.3.1 Environment Abstractions . 18
2.3.2 Topology Abstractions . 19

3 From SE To AOSE 21
3.1 Software . 21
3.2 Traditional Software Engineering . 22

3.2.1 Software Development Processes . 23
3.2.2 Methodologies . 25
3.2.3 Tools . 26

3.3 Agent Oriented Software Engineering . 27
3.3.1 Paradigm Shift . 29
3.3.2 AOSE Ingredients . 30

3.4 Summing up . 33

4 Agent Oriented Methodologies 35
4.1 Methodologies for Agent-Oriented Systems 35
4.2 The most known AO Methodologies . 37

4.2.1 Gaia . 37
4.2.2 ADELFE . 39
4.2.3 Tropos . 41
4.2.4 PASSI . 43
4.2.5 MaSE . 44
4.2.6 INGENIAS . 46

v

4.2.7 MESSAGE . 49

4.2.8 Prometheus . 51

4.3 Methodologies Comparison . 54

4.3.1 Lifecycle Criteria . 54

4.3.2 Notation Criteria . 56

4.3.3 Summing up . 57

II Meta-models 59

5 Meta-models & Languages 61

5.1 Meta-Models . 61

5.2 Meta-Modelling Languages . 65

5.2.1 Meta-Modelling Languages for Abstractions 65

5.2.2 Meta-Modelling Languages for Processes 68

5.3 Meta-Modelling Languages for Infrastructures 73

5.4 Summing up . 76

6 AOSE & Meta-models 77

6.1 PASSI . 77

6.1.1 PASSI: Concepts Meta-model . 77

6.1.2 PASSI: Process Meta-model . 79

6.2 ADELFE . 82

6.2.1 ADELFE: Concepts Meta-model 82

6.2.2 ADELFE: Process Meta-model . 84

6.3 Tropos . 86

6.3.1 Tropos: Concepts Meta-model . 86

6.3.2 Tropos: Process Meta-model . 87

6.4 Gaia . 91

6.5 Summing up . 93

7 The Agents & Artifacts Meta-Model 95

7.1 A&A Meta-Model . 95

7.2 Artifacts . 97

7.2.1 Features . 99

7.2.2 Taxonomy of artifacts . 104

7.3 Workspaces . 105

7.4 Summing up . 106

vi

III Environment 107

8 AOSE & Environment 109
8.1 Classification of AO Methodologies . 110
8.2 Strong-Env Methodologies . 110

8.2.1 ADELFE . 111
8.2.2 OperA+Environment . 111
8.2.3 Strong-env Methodologies at a Glance 112

8.3 Weak-Env Methodologies . 112
8.3.1 Gaia . 112
8.3.2 PASSI . 113
8.3.3 MESSAGE . 113
8.3.4 INGENIAS . 114
8.3.5 Prometheus . 114
8.3.6 ROADMAP . 115
8.3.7 Weak-env Methodologies at a Glance 115

8.4 No-Env Methodologies . 115
8.4.1 Tropos . 115
8.4.2 MaSE . 116
8.4.3 No-env Methodologies at a Glance 116

8.5 Summing up . 117

9 Environment in AO Methodologies 119
9.1 Environment and Topology Abstractions 119
9.2 From No-Env to Weak-Env Methodologies 121

9.2.1 Requirement Specification . 121
9.2.2 Analysis . 122
9.2.3 Design . 123
9.2.4 An Example: Tropos from No-Env to Weak-Env 123

9.3 From Weak-Env to Strong-Env Methodologies 125
9.3.1 Requirement Specification . 125
9.3.2 Analysis . 125
9.3.3 Design . 125
9.3.4 An Example: Gaia from Weak-Env to Strong-Env 126

9.4 Related Work . 127
9.5 Summing up . 128

10 AOSE & Infrastructures 129
10.1 Definitions . 130
10.2 Infrastructures for MAS . 131

10.2.1 Enabling vs. Governing Infrastructures 132

vii

10.3 SE and Infrastructures . 134
10.3.1 Infrastructure Selection . 135
10.3.2 A Sketch of the State of the Art . 136

10.4 AOSE & Infrastructures . 137
10.4.1 Coordination, Organisation and Security 139

10.5 AO Infrastructures . 140
10.5.1 JADE . 141
10.5.2 TuCSoN . 145
10.5.3 CArtAgO . 150
10.5.4 TOTA . 153

10.6 Infrastructures: Summing up . 157

IV Representation Complexity 159

11 Complex Systems 161
11.1 Software Systems and Complexity . 162

11.1.1 Features of Complex Software Systems 163
11.2 Complex Systems and Hierarchies . 165
11.3 Complex Systems and Self-organisation . 166
11.4 Holonic Systems: Hierarchies and Self-organisation 169
11.5 Summing up . 172

12 Managing System Complexity 173
12.1 Middle-out as the de-facto Practice . 174
12.2 System Complexity in OO Methodologies and Notations 175

12.2.1 Detail Decomposition in OPM . 176
12.3 System Complexity in AO Methodologies 178

12.3.1 AO Methodologies & Layering . 178
12.4 Layering Mechanisms for AO Methodologies: A First Insight 180

12.4.1 Zoom & Artifacts . 181
12.5 Summing up . 183

V SODA 185

13 SODA: The Early Version 187
13.1 The Analysis Phase . 188

13.1.1 The Role Model . 189
13.1.2 The Resource Model . 190
13.1.3 The Interaction Model . 190
13.1.4 Analysis: the outcome . 191

viii

13.2 The Design Phase . 191

13.2.1 The Agent Model . 192

13.2.2 The Society Model . 192

13.2.3 The Environment Model . 193

13.2.4 Design: the outcome . 194

13.3 Meta-models . 194

13.3.1 Meta-model in UML . 195

13.3.2 Meta-model in OPM . 196

13.3.3 Discussion . 197

13.4 Limitations . 199

14 SODA: The New Version 201

14.1 Motivations . 201

14.2 The New Meta-model . 202

14.3 Layering . 205

14.4 The Analysis Phase . 206

14.4.1 Requirements Analysis . 207

14.4.2 From Requirements Analysis to Analysis 208

14.4.3 Analysis . 209

14.5 The Design Phase . 210

14.5.1 From Analysis To Architectural Design 210

14.5.2 Architectural Design . 210

14.5.3 From Architectural Design to Detailed Design 212

14.5.4 Detailed Design . 214

14.6 Summing up . 215

15 The SODA Process 217

15.1 The process . 218

15.2 The Analysis Phase . 220

15.2.1 The Analysis Discipline . 220

15.2.2 The Requirement Analysis step . 224

15.2.3 The Analysis step . 226

15.2.4 The Analysis Model . 228

15.3 The Design Phase . 229

15.3.1 The Design Discipline . 229

15.3.2 The Architectural Design step . 233

15.3.3 The Detailed Design step . 235

15.3.4 The Design Model . 237

15.4 Summing up . 238

ix

16 SODA & Infrastructures 239
16.1 From SODA to TuCSoN . 239
16.2 From SODA to CArtAgO . 241
16.3 From SODA to TOTA . 242
16.4 Discussion . 243
16.5 Summing up . 244

17 Case Study 245
17.1 Conference Management Systems . 246
17.2 CMS in the literature . 247
17.3 CMS & Agent-Oriented Approach . 249
17.4 Conference Management in SODA . 252

17.4.1 Requirements Analysis . 252
17.4.2 From Requirements Analysis to Analysis 254
17.4.3 Analysis . 255
17.4.4 From Analysis to Architectural Design 257
17.4.5 Architectural Design . 258
17.4.6 From Architectural Design to Detailed Design 259
17.4.7 Detailed Design . 260

17.5 From the design to a TuCSoN-based implementation 261
17.6 Discussion . 263

VI Conclusion 269

18 Conclusion and Research Directions 271
18.1 Summary of the Contributions . 271
18.2 Research Directions . 273

VII Appendix 277

A The Complete Case Study 279
A.1 Requirements Analysis . 279
A.2 From Requirements Analysis to Analysis 282
A.3 Analysis . 284
A.4 From Analysis to Architectural Design . 289
A.5 Architectural Design . 291
A.6 From Architectural Design to Detailed Design 297
A.7 Detailed Design . 299

Bibliography 302

x

Abstract

Traditional software engineering approaches and metaphors fall short when applied to
areas of growing relevance such as electronic commerce, enterprise resource planning,
and mobile computing: such areas, in fact, generally call for open architectures that
may evolve dynamically over time so as to accommodate new components and meet new
requirements. This is probably one of the main reasons that the agent metaphor and the
agent-oriented paradigm are gaining momentum in these areas.

This thesis deals with the engineering of complex software systems in terms of the
agent paradigm. This paradigm is based on the notions of agent and systems of in-
teracting agents as fundamental abstractions for designing, developing and managing at
runtime typically distributed software systems. However, today the engineer often works
with technologies that do not support the abstractions used in the design of the systems.
For this reason the research on methodologies becomes the basic point in the scientific
activity. Currently most agent-oriented methodologies are supported by small teams of
academic researchers, and as a result, most of them are in an early stage and still in the
first context of mostly “academic” approaches for agent-oriented systems development.
Moreover, such methodologies are not well documented and very often defined and pre-
sented only by focusing on specific aspects of the methodology. The role played by meta-
models becomes fundamental for comparing and evaluating the methodologies. In fact a
meta-model specifies the concepts, rules and relationships used to define methodologies.
Although it is possible to describe a methodology without an explicit meta-model, formal-
ising the underpinning ideas of the methodology in question is valuable when checking its
consistency or planning extensions or modifications. A good meta-model must address all
the different aspects of a methodology, i.e. the process to be followed, the work products
to be generated and those responsible for making all this happen. In turn, specifying
the work products that must be developed implies defining the basic modelling building
blocks from which they are built.

As a building block, the agent abstraction alone is not enough to fully model all the
aspects related to multi-agent systems in a natural way. In particular, different per-
spectives exist on the role that environment plays within agent systems: however, it is
clear at least that all non-agent elements of a multi-agent system are typically consid-
ered to be part of the multi-agent system environment. The key role of environment
as a first-class abstraction in the engineering of multi-agent system is today generally
acknowledged in the multi-agent system community, so environment should be explicitly
accounted for in the engineering of multi-agent system, working as a new design dimension
for agent-oriented methodologies. At least two main ingredients shape the environment:
environment abstractions – entities of the environment encapsulating some functions –,
and topology abstractions — entities of environment that represent the (either logical or
physical) spatial structure. In addition, the engineering of non-trivial multi-agent sys-
tems requires principles and mechanisms for supporting the management of the system

xi

representation complexity. These principles lead to the adoption of a multi-layered de-
scription, which could be used by designers to provide different levels of abstraction over
multi-agent systems.

The research in these fields has lead to the formulation of a new version of the SODA
methodology where environment abstractions and layering principles are exploited for en-
gineering multi-agent systems.

Keywords: Multi-agent Systems, Agent-oriented Software Engineering, Agent-oriented
Methodologies, Environment, Infrastructures, Meta-models, Layering Principle, SODA

xii

1
Preface

In the three years of PhD I have had the opportunity to continue on the studies and
work started in the last years of the Masters course at my university, reflecting a deep
attractiveness for the world of software engineering, and of its impact on the development
of quality software. This fascination was triggered by Enrico Denti, my professor of the
course on programming languages and my future master thesis advisor. The attractive-
ness was amplified by the research work of Ian Sommerville in the context of traditional
Software Engineering, and Michael Wooldridge and Nicholas Jennings on Agent Oriented
Software Engineering. The engineering attitude in analysis and design of systems pushed
me to search for a new and powerful paradigm for the engineering of complex systems
like the multi-agent systems paradigm. Then I discovered the research work on agent-
oriented of software engineering developed at DEIS by my thesis advisor, Antonio Natali,
with Andrea Omicini and Enrico Denti. That was a non-returning point. The interest on
agents in general and on agent-oriented software engineering in particular was enhanced
to cover all the software lifecycle: in particular agent-oriented methodologies became the
core of my investigations, as a fundamental element in the engineering of software systems.
These investigations started with my Masters thesis, “Analisi e Progetto di un sistema
multi-agente per l’interazione avanzata docente /studente: agenti e servizi” (“Analysis
and design of a multi-agent system for advanced teacher/student interaction: agents and
services”) where I have used the SODA methodology for designing the agents. This work
can be considered a sort of preface of this PhD thesis. The PhD period then focussed
on the improvement of SODA. The research investigations and work grew in a great in-
teractive research team, led by Andrea Omicini, with Enrico Denti, Alessandro Ricci and
Mirko Viroli, overall covering the whole spectrum from the development of suitable meta-
models for agent-oriented methodologies down to the role of both the environment – as
a new design dimension – and infrastructures for multi-agent systems – as a deployment
context of the systems. The interaction between these aspects, mixing top-down and
bottom-up issues, has been fundamental for the development of the research work. In
particular the studies about the environment have led to introduce the Agents&Artifacts
meta-model in SODA in order to improve the analysis and design of the environment in
the methodology. The studies of infrastructures have led to provide me some guidelines

1

2 CHAPTER 1. PREFACE

for filling up the conceptual gap among methodologies and infrastructures. Finally the
studies on the complexity of the system representation have led to the development of a
layering principle for representing the system along different layers of abstractions. Those
works have been captured and expressed in this thesis with the development of a new
version of SODA.

1.1 The Contributions

The main contribution of this thesis is the development of the new version of SODA, an
agent-oriented (AO) methodology. In order to achieve this result, the following contribu-
tions have been established:

• Methodologies — in general a methodology for software development (i) defines the
abstractions to use to model software – the mindset of the methodology – and (ii)
disciplines the software process—what to produce and when. My contribution in
this thesis is a detailed presentation of the state of art of AO methodologies: a
survey illustrates the best known AO methodologies and their peculiarities, another
presents the methodologies meta-models, and another one presents how environment
is managed by AO methodologies.

• Meta-models — a meta-model is a precise definition of the constructs and rules
for creating semantic models. The importance of meta-model becomes clear when
studying the completeness and the expressiveness of a methodology, and when com-
paring different methodologies. In this thesis meta-models are used as a tool for
understanding the deep semantics of the AO methodologies. In particular two dif-
ferent types of meta-model are adopted: a meta-model for describing the method-
ologies abstractions and their relationships and a meta-model for modelling the
software development process. One further my contribution in this research is the
study of a meta-modelling technique for infrastructures, aimed at representing both
the infrastructures’ concepts and the dynamics. This is done in order to fill the
gap between methodologies and infrastructure. In the last years, research on AO
methodologies and multi-agent system (MAS) infrastructures has developed along
two opposite paths: while AO methodologies have essentially undergone a top-down
evolution pushed by contributions from heterogeneous fields like human sciences,
MAS (multi-agent system) infrastructures have mostly followed a bottom-up path
growing from existing and widespread (typically object-oriented) technologies. This
dichotomy has produced a conceptual gap between the proposed AO methodolo-
gies and the agent infrastructures actually available, as well as a technical gap in
the MAS engineering practice, where methodologies are often built ad hoc out of
MAS infrastructures, languages and tools. By allowing structural representation of
abstractions to be captured along with their mutual relations, meta-models make

2

CHAPTER 1. PREFACE 3

it possible to map design-time abstractions from AO methodologies upon run-time
abstractions from MAS technologies, thus promoting a more coherent and effective
practice in MAS engineering.

• Environment — the key role of environment as a first-class abstraction in the en-
gineering of MAS is generally acknowledged in the MAS community. However,
the support for the notion of environment in today AO methodologies is still either
absent, weak, or incomplete at best. Current practice in MAS considers the environ-
ment as an implicit part of the MAS that is often dealt with in ad hoc way. Indeed,
the environment should be considered as an explicit part of MAS, to be modelled and
designed as a first-class abstraction. Since a commonly shared viewpoint is lacking,
it is seemingly useful first of all to analyse several AO methodologies studying the
support they provide for the environment. The aim of my study is to understand how
each of them models and designs the environment, and the abstractions it provides.
As first contribution, in this thesis I classify AO methodologies along the dimension
of environment support, and group them in three different categories: (strong-env)
strong environment viewpoint—methodologies that support both modelling and de-
sign of MAS environment; (weak-env) weak environment viewpoint—methodologies
that support only the modelling of MAS environment; (no-env) no environment
viewpoint—methodologies that do not explicitly model MAS environment. Next,
as second contribution in this field, I show how an explicit notion of MAS environ-
ment could be generally introduced in any AO methodology. Starting from no-env
AO methodologies, I suggest how to transform them in weak-env methodologies,
and subsequently in strong-env methodologies.

• Complexity management — A complex system is a system composed of intercon-
nected parts that as a whole exhibit one or more properties (behaviour among the
possible properties) not obvious from the properties of the individual parts. Ten
years ago, Moxley wrote [134] that for large software systems, the specification of
the software was the hardest part of the problem. Today the situation remains un-
changed. The problem has been attacked repeatedly using a variety of methods, and
the accepted thinking about the best way of doing it is still evolving. Some system
development methodologies have adopted the decomposition principle by breaking
the system into a number of models – aspect decomposition – each dealing with a
different aspect of the system. Some others have adopted the principle by breaking
the system into different levels of abstraction—detailed decomposition. One further
my contribution in this research is the study of a mechanism for managing the
complexity in AO methodologies. In particular taking inspiration from the detailed
decomposition I have conceived the layering principle adopted by SODA in order
to manage the complexity in the systems representations.

3

4 CHAPTER 1. PREFACE

1.2 The Structure of the Thesis

The thesis has been designed and developed according five hierarchical levels (see Figure
1.1), which reflect the development of my work during the Ph.D: background, meta-
models, environment, the complexity of the system representation and the SODA method-
ology.

Background
- Multi-Agent Systems: agents, societies, environment
- Agent-Oriented Software Engineering
- Agent-Oriented Methodologies

Meta-models- Meta-modelling
- Meta-modelling Languages
- Meta-models and Agent-Oriented Methodologies
- A&A Meta-model

Environment
- Environment & AOSE

- Environment & Agent-Oriented Methodologies
- Agent-Oriented Infrastructures

Representation
Complexity- Complex Systems

- Hierarchies and Self-Organisation
- Methodologies & Hierarchies

SODA
- SODA & Meta-models
- SODA & Layering
- SODA & Artifacts
- SODA & Infrastructures

Figure 1.1: Structure of the Thesis

• Part I: Background – This part discusses in detail the background context of the
thesis, that is the engineering of complex software systems through multi-agent
systems and agent societies. First the main features and benefits of the paradigm
are illustrated (Chapter 2), then the ingredients of software engineering in general
and of agent-oriented software engineering in particular are presented (Chapter 3),
finally a survey of the main agent-oriented methodologies is reported (Chapter 4);

• Part II: Meta-Models – This part discusses in detail the issues related to the use
and the construction of the methodology meta-models. In particular in Chapter 5
the meta-models and the languages that could be used for expressing meta-models

4

CHAPTER 1. PREFACE 5

are illustrated, while in Chapter 6 the meta-models of some main agent-oriented
methodologies are presented, then in Chapter 7 the Agents & Artifacts (A&A)
meta-model is presented as a support for the engineering of multi-agent systems;

• Part III: Environment — This part discusses in detail the issue related to the
role of environment in the engineering of MASs. In particular in Chapter 8 the
agent-oriented methodologies are classified according to the support they provide
for the modelling and design of environment, while in Chapter 9 a method for
introducing the modelling and the design of the environment in those agent-oriented
methodologies that do not support or support in a partial way the environment
engineering is presented. Then in Chapter 10 the agent-oriented infrastructures
as a deployment context for the MAS are presented and the meta-models of some
different agent-oriented infrastructures are reported;

• Part IV: Representation Complexity — This part discusses in detail the issues re-
lated to managing system complexity. In particular in Chapter 11 some theories
related to the complex systems are presented and a way for representing MAS as
composed of different layers of abstraction is illustrated. Then in Chapter 12 the
approaches for managing system complexity adopted both in the object-oriented
methodologies and in the agent-oriented methodologies are presented. In addition
a simple layering mechanism for the agent-oriented methodologies is presented;

• Part V: SODA — This part discusses in detail the SODA methodology. In particular
in Chapter 13 the early version of the methodologies with its relatives meta-models
and its limitations is presented. In Chapter 14 the new reformulated version of
SODA is presented that addresses the limitations presented in the previous version,
supporting both the environment design and the managing of system complexity.
Then Chapter 15 presents the SODA process modelled by SPEM (Software Process
Engineering Meta-model) and Chapter 16 presents a method based on the meta-
models mapping for filling the gap between methodologies and infrastructures. Fi-
nally in Chapter 17 a case study in order to illustrate the use of the methodology
is reported;

The thesis concludes by drawing some conclusions and identifying some research di-
rections promoted by the work (Chapter 18). In the Appendix A the complete case study
introduced in Chapter 17 is reported.

5

6 CHAPTER 1. PREFACE

6

Part I

Background

7

2
The MAS Approach

This chapter familiarises the readers with the concepts used throughout the thesis. In
particular Section 2.1 introduces the concepts of agent (Subsection 2.1.2), complex system
(Subsection 2.1.1) an multi-agent system (Subsection 2.1.3). Then Section 2.2 presents
the concepts of society of agents while Section 2.3 introduces the environment for MASs
and the concepts of environment abstraction (Subsection 2.3.1) and topology abstraction
(Subsection 2.3.2).

2.1 The Agent Paradigm

Agents and multi-agent systems (MASs) are a powerful technology to face the complexity
of a variety of today’s ICT scenarios. For instance, several industrial experiences already
testify to the advantages of using agents in manufacturing processes [17], Web services
and Web-based computational markets [105], and distributed network management [55].
In addition, several studies advise on the possibility of exploiting agents and MASs as
enabling technologies for a variety of future scenarios, i.e., pervasive computing, Grid
computing [65], Semantic Web [109]. However, the emergent general understanding is
that MASs, more than an effective technology, represent indeed a novel general-purpose
paradigm for software development [99, 231]. Agent-based computing promotes designing
and developing applications in terms of autonomous software entities (agents), situated
in an environment (Section 2.3), and that can flexibly achieve their goals by interacting
with one another in terms of high-level protocols and languages.

These features are well suited to tackle the complexity of developing software in mod-
ern scenarios: (i) the autonomy of application components reflects the intrinsically de-
centralised nature of modern distributed systems and can be considered as the natural
extension to the notions of modularity and encapsulation for systems that are owned by
different stakeholders; (ii) the flexible way in which agents operate and interact (both
with each other and with the environment) is suited to the dynamic and unpredictable
scenarios where software is expected to operate; (iii) the concept of agency provides for
a unified view of artificial intelligence (AI) results and achievements, by making agents
and MASs act as sound and manageable repositories of intelligent behaviours [230]. In

9

10 CHAPTER 2. THE MAS APPROACH

the last few years, together with the increasing acceptance of agent-based computing as
a novel software engineering paradigm, there has been a great deal of research related to
the identification and definition of suitable models and techniques to support the devel-
opment of complex software systems (Subsection 2.1.1) in terms of MASs. This research
endlessly proposes a variety of new metaphors, formal modelling approaches, develop-
ment methodologies and modelling techniques, specifically suited to the agent-oriented
paradigm.

In the reminder of this section the concepts of complex system and agent are illustrated
respectively in Subsection 2.1.1 and Subsection 2.1.2, while the architecture of multi-agent
systems is presented in Subsection 2.1.3.

2.1.1 Complex Systems

What are complex systems?

• A complex system is a system composed of interconnected parts that as a whole ex-
hibit one or more properties (behaviour among the possible properties) not obvious
from the properties of the individual parts (Wikipedia).

• A system comprised of a (usually large) number of (usually strongly) interacting
entities, processes, or agents, the understanding of which requires the development,
or the use of, new scientific tools, nonlinear models, out-of equilibrium descriptions
and computer simulations [182].

• A system that can be analysed into many components having relatively many re-
lations among them, so that the behaviour of each component depends on the be-
haviour of others [197].

• A system that involves numerous interacting agents whose aggregate behaviours are
to be understood. Such aggregate activity is nonlinear, hence it cannot simply be
derived from summation of individual components behaviour [132].

A complex system is any system featuring a large number of interacting components
(agents, processes, etc.) whose aggregate activity is nonlinear (not derivable from the
summations of the activity of individual components) and typically exhibits hierarchical
self-organisation under selective pressures.

Almost all interesting processes in nature are highly cross linked. In many systems,
however, a set of fundamental building blocks can be distinguished, which interact non-
linearly to form compound structures or functions with an identity that requires more
explanatory devices than those used to explain the building blocks. This process of emer-
gence of the need for new, complementary, modes of description is known as hierarchical
self-organisation, and systems that observe this characteristic are defined as complex

10

CHAPTER 2. THE MAS APPROACH 11

[184]. Examples of these systems are gene networks that direct developmental processes,
biological systems [130], social insect colonies, neural networks in the brain, social net-
works comprised of transportation, utilities, and telecommunication systems, as well as
economies.

It has become clear in recent years, that the modelling of some phenomena, partic-
ularly, industrial and social phenomena, requires agents whose behaviour is not simply
dictated by local, state-determined interaction: agents have access to knowledge which
escapes local constraints (via communication) and is stored in media beyond the agent
itself and its state. Indeed, many if not most researchers in Artificial Intelligence (AI),
Cognitive Science and Psychology, have come to pursue the idea that intelligence is not
solely an autonomous characteristic of agents, but heavily depends on social, linguistic,
and organisational knowledge which exists beyond individual agents.

2.1.2 The Agents

At present, there is still a great deal of ongoing debate about exactly what constitutes
an agent, yet there is nothing approaching a universal consensus. However, an increasing
number of researchers find the following characterisation useful [98]:

an agent is an encapsulated computer system that is situated in some environ-
ment, and that is capable of flexible, autonomous action in that environment
in order to meet its design objectives

This means that agents are:

• clearly identifiable problem solving entities with well-defined boundaries and inter-
faces,

• situated (embedded) in a particular environment – they receive inputs related to the
state of that environment through their sensors and they act on the environment
through their effectors,

• designed to fulfil a specific role – they have particular objectives to achieve, that
can either be explicitly or implicitly represented within the agents,

• autonomous – they have control both over their internal state and over their own
behaviour,

• capable of exhibiting flexible (context-dependent) problem solving behaviour: they
need to be reactive (able to respond in a timely fashion to changes that occur in
their environment in order to satisfy their design objectives) and proactive (able to
opportunistically adopt new goals and take the initiative in order to satisfy their
design objectives).

11

12 CHAPTER 2. THE MAS APPROACH

When adopting an agent-oriented view of the world, it soon becomes obvious that a
single agent is insufficient. Most problems require or involve multiple agents: to represent
the decentralised nature of the problem, the multiple loci of control, the multiple perspec-
tives, or the competing interests [230]. Moreover, the agents will need to interact with one
another, either to achieve their individual and social objectives or else to manage the de-
pendencies that ensue from being situated in a common environment. These interactions
range from simple semantic interoperation (the ability to exchange comprehensible com-
munications), through traditional client-server type interactions (the ability to request
that a particular action is performed), to rich social interactions (the ability to cooperate,
coordinate and negotiate about a course of action). Whatever the nature of the social
process, however, there are two points that qualitatively differentiate agent interactions
from those that occur in other software engineering paradigms. Firstly, agent-oriented
interactions generally occur through a high-level (declarative) agent communication lan-
guage (typically based on speech act theory [62]). Consequently, interactions are usually
conducted at the knowledge level: in terms of which goals should be followed, at what
time, and by whom (cf. method invocation or function calls that operate at a purely
syntactic level). Secondly, as agents are flexible problem solvers, operating in an environ-
ment over which they have only partial control and observability, interactions need to be
handled in a similarly flexible manner. Thus, agents need the computational apparatus
to make context-dependent decisions about the nature and scope of their interactions and
to initiate (and respond to) interactions that were not necessarily foreseen at design time.
In most cases, agents act to achieve objectives either on behalf of individuals/companies
or as part of some wider problem solving initiative. Thus, when agents interact there is
typically some underpinning organisational context. This context defines the nature of
the relationship between the agents. For example, they may be peers working together
in a team or one may be the boss of the others. In any case, this context influences an
agent’s behaviour. In many cases, relationships are subject to ongoing changes: social
interaction means existing relationships evolve and new relations are created.

Although there are certain similarities between object- and agent-oriented approaches
(both adhere to the principle of information hiding and recognise the importance of inter-
actions), there are also a number of important differences [99]. First, objects are generally
passive in nature: they need to be sent a message before they become active. Secondly,
although objects encapsulate state and behaviour realisation, they do not encapsulate
behaviour activation (action choice). Thus, any object can invoke any publicly accessible
method on any other object. Once the method is invoked, the corresponding actions are
performed. Additionally, object-orientation fails to provide an adequate set of concepts
and mechanisms for modelling complex systems: for such systems “we find that objects,
classes, and modules provide an essential yet insufficient means of abstraction” [12]. In-
dividual objects represent too fine a granularity of behaviour and method invocation is
too primitive as a mechanism for describing the types of interactions that take place.
Recognition of these facts led to the development of more powerful abstraction mecha-

12

CHAPTER 2. THE MAS APPROACH 13

Figure 2.1: MAS architecture [230]

nisms such as design patterns, application frameworks, and componentware. Although
these are undoubtedly a step forward, they fall short of the desired characteristics for
complex system development. By their very nature, they focus on generic system func-
tions and the mandated patterns of interaction are rigid and predetermined. Finally,
object-oriented approaches provide only minimal support for specifying and managing
organisational relationships (basically relationships are defined by static inheritance hier-
archies). To summarise, the traditional view of an object-oriented system and view of an
agent-oriented system have at least three distinctions [226]:

• agents embody a stronger notion of autonomy than objects, and in particular, they
decide for themselves whether or not to perform an action on request from another
agent;

• agents are capable of flexible (reactive, pro-active, social) behaviour, and the stan-
dard object model has nothing to say about such types of behaviour;

• a multi-agent system is inherently multi-threaded, in that each agent is assumed to
have at least one thread of control.

13

14 CHAPTER 2. THE MAS APPROACH

2.1.3 The Multi-Agent Systems Architecture

Looking at the above definition of agent, it is clear that a MAS cannot be simply reduced to
a group of interacting agents. Instead, the complete modelling of a MAS requires explicitly
focusing also on the environment (Section 2.3) in which the MAS and its constituent
agents are situated and on the society (Section 2.2) that a group of interacting agents
give rise to. Modelling the environment implies identifying its basic features, the resources
that can be found in the environment, and the way via which agents can interact with
it. Modelling agent societies implies identifying the overall rules that should drive the
expected evolution of the MAS and the various roles that agents can play in such a society.
All the above considerations lead to the very general characterisation depicted in Figure
2.1, whose basic abstractions and overall architecture totally differ from that of traditional
software engineering approaches (Figure 2.2).

Traditional object-based computing promotes a perspective of software components as
“functional” or “service-oriented” entities that directly influences the way that software
systems are architected [229]. Usually, the global design relies on a rather static archi-
tecture that derives from the decomposition (and modularisation) of the functionalities
and data required by the system to achieve its global goals and on the definition of their
interdependencies [196, 5]. In particular:

• objects are usually considered as service providers, responsible for specific portions
of data and in charge of providing services to other objects (the “contractual” model
of software development explicitly promotes this view);

• interactions between objects are usually an expression of inter-dependencies; two
objects interact to access services and data that are not available locally;

• everything in a system tends to be modelled in terms of objects, and any distinction
between active actors and passive resources is typically neglect.

In other words, object-oriented development, while promoting encapsulation of data
and functionality and a functional-oriented concept of interactions, tends to neglect mod-
elling and encapsulation of execution control. Some sort of “global control” over the
activity of the system is usually assumed (e.g., the presence of a single execution flow
or of a limited set of controllable and globally synchronised execution flows). However,
assuming and/or enforcing such control may be not feasible in complex systems. Thus,
rather than being at risk of losing control, a better solution would be to explicitly delegate
control over the execution to the system components [231]–as in MASs. In fact:

• Delegating control to autonomous components can be considered as an additional
dimension of modularity and encapsulation. When entities can encapsulate con-
trol in addition to data and algorithms, they can better handle the dynamics of a
complex environment (local contingencies can be handled locally by components)

14

CHAPTER 2. THE MAS APPROACH 15

Figure 2.2: Traditional software architecture [230]

and can reduce their interdependencies (limiting the explicit transfer of execution
activities). This leads to a sharper separation between the component-level (i.e.,
intra-agent) and system-level (i.e., inter-agent) design dimensions, in that also the
control component is no longer global.

• The dynamics and openness of application scenarios can make it impossible to know
a priori all potential interdependencies between components (e.g., what services
are needed at a given point of the execution and with what other components
to interact), as a functional-oriented perspective typically requires. Autonomous
components delegated of their own control can be enriched with sophisticated social
abilities, that is, the capability to make decisions about the scope and nature of their
interactions at run-time and of initiating interactions in a flexible manner (e.g., by
looking for and negotiating for service and data provision).

• For complex systems, a clear distinction between the active actors of the systems
(autonomous and in charge of their own control) and the passive resources (passive
objects without autonomous control) may provide a simplified modelling of the
problem. In fact, the software components of an application often have a real-world
counterpart that can be either active or passive and that, consequently, is better
suited to being modelled in terms of both active entities (agents) and passive ones
(environmental resources).

15

16 CHAPTER 2. THE MAS APPROACH

However, attempting to enrich more conventional approaches with novel features and
characteristics to meet the novel needs is likely to introduce a dangerous mismatch be-
tween the abstraction level adopted and the conceptual level at which application problems
have to be solved. Put simply, objects and components are too low level of abstraction
for dealing with the complexity of today’s software systems, and miss important concepts
such as autonomy, task-orientation, situatedness and flexible interactions. For instance,
object- and component-based approaches have nothing to say on the subject of design-
ing negotiation algorithms to govern interactions, and do not offer insights into how to
maintain a balance between reactive and proactive behaviour in a complex and dynamic
situations. This forces applications to be built by adopting a functionally oriented per-
spective and, in turn, this leads to either rather static software architectures or to the need
for complex infrastructures support to handle the dynamics and flexible reconfiguration
and to support negotiation for resources and tasks.

In summary, agent-based computing promotes an abstraction level that is suitable for
modern scenarios and that is appropriate for building flexible, highly modular, and robust
systems, whatever the technology adopted to actually build the agents. This leads us to
consider agent-based computing as a new software engineering paradigm (Chapter 3).

2.2 Societies

According to Castelfranchi [21, 24], sociality presupposes agents. At a very basic level, an
agent is any entity able to act, i.e., to produce some causal effect and some change in its
environment. Of course this broad notion is not enough for sociality. A more complex level
of agenthood is needed. Agents are individual entities with social abilities. In general,
they have a partial representation of the world around them, a limited ability to sense
and change it, and typically rely on other agents for anything falling outside of their scope
or reach (Figure 2.1). So, agents are to be thought as living dipped into societies: the
behaviour of an individual agent is often not understandable outside its social structure.
The behaviour of a buyer agent in an auction is difficult to be explained out of the context
of the auction itself and of the rules that govern it. Dually, the behaviour of a society of
agents cannot generally be expressed in terms of the behaviour of its composing agents.
So, the rules governing an auction, in conjunction with the behaviour of the individual
agents participating in it, lead to a global behaviour that could not be reduced to the
mere composition of the individual’s behaviour. Social rules harness agent interactions,
and drive the global behaviour of a society towards the accomplishment of its global goals.

So, the most appealing metaphor for modelling and design MASs seems to be the
human society or (human organisation) [229] in which

• A software system is conceived as the computational instantiation of a (possibly
open) group of interacting and autonomous individuals (agents).

16

CHAPTER 2. THE MAS APPROACH 17

• Each agent can be seen as playing one or more specific roles: it has a well defined
set of responsibilities or subgoals in the context of the overall system and is respon-
sible for pursuing these autonomously. Such subgoals may be both altruistic (to
contribute to a global application goal) or opportunistic (for an agent to pursue its
own interests).

• Interactions are no longer merely an expression of interdependencies, and are rather
seen as a means for an agent to accomplish its role in the system. Therefore,
interactions are clearly identified and localised in the definition of the role itself,
and they help to characterise the overall structure of the society and the position of
the agent in it.

• The evolution of the activities in the society, deriving from the autonomous ex-
ecution of agents and from their interactions, determines the achievement of the
application goal, whether an a priori identified global goal (as, e.g., in a workflow
management systems where altruistic agents contribute to the achievement of a spe-
cific cooperative project), or a goal related to the satisfaction of individual goals (as,
for example, in agent-mediated auctions, whose purpose is to satisfy the needs of
buyer and seller agents), or both (as, for example, in network enterprises exploiting
market mechanisms to improve efficiency).

The organisational metaphor – other than being a natural one for human developers
who are continuously immersed in a variety of organisational settings and opening up the
possibility of reusing a variety of studies and experiences related to real-world organisa-
tions – appears to be appropriate for a wide range of software systems. On one hand, some
systems are concerned with controlling and supporting the activities of some real-world
organisation (e.g., manufacturing control systems, workflow management and enterprise
information systems, and electronic marketplaces). Therefore, an organisation-based de-
sign may reduce the conceptual distance between the software system and the real-world
system it has to support. On the other hand, other software systems, even if they are not
associated with any pre-existing real-world organisation, may have to deal with problems
for which human organisations could act as fruitful source of inspiration, having already
shown to produce effective solutions (e.g., resource sharing, task assignment, and service
negotiation).

More generally, whenever a software system is complex enough to warrant an agent-
based approach and still requires a significant degree of predictability and reliability in
all its parts, the organisational metaphor may be the most appropriate one. In fact, by
relying on agents playing well-defined roles and interacting according to institutionalised
patterns, the organisational metaphor promotes both micro-level (at the agents level) and
macro-level (at the system level) control over the design and understanding of the overall
system behaviour.

17

18 CHAPTER 2. THE MAS APPROACH

2.3 The Environment

Traditionally, the environment of a MAS is considered simply as the deployment context
where agents are immersed—which includes e.g. the communication infrastructure, the
network topology, the physical resources available. In this case, the environment of a
MAS is basically considered as an output of system analysis, and designers are somehow
passively subject to it.

On the other hand, today there is a growing recognition that the environment is a
true design dimension of multi-agent applications [219]. It can encapsulate a significant
portion of the system complexity, in terms of services, mechanisms and responsibilities
that the agents can fruitfully be freed of. In [213, 219] a notion of environment is adopted
that is not limited to the external (MAS) environment—the deployment context where
the MAS has to work. Instead the focus is mostly on the agent environment, that is, the
portion of the MAS that is external to the agents, but is anyhow part of the MAS and
subject to the activity of MAS engineers.

Accordingly, as far as engineering is concerned, at least two main ingredients shaping
the agent environment are recognised, which will be described in detail in this section:
environment abstractions, entities of the environment encapsulating some functions; and
topology abstractions, entities of MAS environment that represent the (either logical or
physical) spatial structure.

2.3.1 Environment Abstractions

Following the work in [213], the agent abstraction is not the only one populating the MAS:
rather, the MAS environment could be seen as decomposed in building blocks called envi-
ronment abstractions. An environment abstraction is an entity of the MAS environment
encapsulating some functions or services for the agents. An agent perceives the existence
of such abstractions in the environment, has a (possibly implicit) awareness of the oppor-
tunities they provide, and accordingly interacts with them in order to achieve individual
as well as social goals. From the development viewpoint, environment abstractions are
seen as loci where the designer can enforce rules, norms, and functions, regulating the
agent social behaviour.

The notion of environment abstraction is a means for interpreting a number of com-
ponents and entities that populate MAS environment both at the conceptual and at the
implementation levels, introduced by several MAS research works—all of them sharing
the idea of being the target of agent interaction. Most existing infrastructures for agent
environment are in fact seen as providing some incarnation of environment abstractions
for the application at hand. Examples include tuple centres in TuCSoN [157], co-fields in
TOTA [114], shared virtual environments of the automatic guided vehicles application in
[222], stigmergic fields of the infrastructure for military operations in [192], e-institution
scenes in AMELI [61], and so on.

18

CHAPTER 2. THE MAS APPROACH 19

Agent Middleware /
Infrastructures Environment Middlewares

/ Infrastructures

Operating Systems, Virtual Machines & Other Middlewares

Hardware & Network

Action
Perception

M
AS

 A
pp

lic
at

io
n

Ph
ys

ica
l

Su
pp

or
t

Application EnvironmentApplication Agents

Ex
ec

ut
io

n
Pl

at
fo

rm

Physical World

SW
Deployment

Context

MAS
Middleware

Layer

HW
Deployment

Context

Application
Specific

Logic

Figure 2.3: MAS layers with environment-based supports [213, 223]

Figure 2.3 provides a visualisation of how the concept of environment abstraction
fits the different layers of a MAS—as discussed in detail in [213, 223]. At the lower
layer the whole MAS (agents and environment) is immersed in a software and hardware
deployment context; at the middleware layer, agent infrastructures (e.g. Jade [97]) are
coupled with environment infrastructures—TOTA, TuCSoN, and the other above men-
tioned ones. At the application layer, while the former provides the agent abstraction
(circles in the picture) – agent life-cycle, and typically direct agent communication – the
latter provides environment abstractions (boxes in the picture), with which agents inter-
act by an action/perception mechanism resembling more closely physical action rather
than communication [154].

2.3.2 Topology Abstractions

Besides considering the various abstractions populating the environment, it is also use-
ful to consider its spatial structure, or topology. In particular, abstractions that support
topology as a first-class notion – which is called topology abstractions – should be even-
tually considered part of MAS engineering. As a general definition, a topology is seen
as a collection of neighbourhood sets, providing a structured notion of locality for the
MAS, from local aspects up to the whole shape of the MAS. When considering a MAS
as made of situated agents and environment abstractions, it is then natural to conceive
MAS topology as a collection of sets of agents and environment abstractions. This affects
notions like visibility among agents (whether an agent can see and communicate with

19

20 CHAPTER 2. THE MAS APPROACH

another one), visibility between agents and environment abstractions (whether an agent
can see and interact with an environment abstraction), and agent mobility (which new
neighborhood can be reached by an agent). This concept is rather important in MAS,
because the visibility and accessibility of other entities strictly identifies which goals can
be delegated (to other agents), and which services can be obtained (by environment ab-
stractions), ultimately defining agent capability of achieving its objectives. In many cases,
the concept of topology is tied with the physical structure of the deployment context, in-
cluding both the network topology and the real physical environment – as in the case of
robot environment – but in general it can suitably take into account a virtual notion of
space.

As an example, among all the possible infrastructures there are two MAS infrastruc-
tures, TOTA [114] and CArtAgO [181], which explicitly deal with the notion of environment
topology. In TOTA the environment is formed by a dynamic network of nodes. Other than
agents, each site hosts one tuple space supporting the fabric of co-fields: a tuple can be
cloned and moved from one space to another in the neighborhood. Accordingly, the topol-
ogy abstraction is here implicitly defined by the neighborhood relation, and is made of
the set of agents and tuple spaces in a given locality.

CArtAgO is a general-purpose infrastructure for environments, based on artifacts as
an incarnation of the notion of environment abstraction—following the Agents & Artifacts
meta-model (see Chapter 7). CArtAgO adopts the concept of workspace as a topology
abstraction that can be used to define the topology of the computational environment.
A workspace can be defined as an open set of artifacts and agents: artifacts can be dy-
namically added to or removed from workspaces, agents can dynamically enter or exit
workspaces. A workspace is typically spread over the nodes of an underlying network
infrastructure. Workspaces define topologies to structure agents’ and artifacts’ organisa-
tion and interaction, in particular workspaces are used as scopes for event generation and
perception.

It is clear that even though environment abstractions, topology abstractions, and the
interplay between them can be considered as key points in the modelling and design of the
environment, existing MAS approaches generally do not explicitly take into account either
of them [4]. This happens in spite of the fact that a large class of problems is characterised
by unavoidable spatial features—several domains deal with space itself (e.g. geographical
location) or a model of it (e.g. information flow in an organisational structure)—and by
non-autonomous computational entities in the environment playing a significant role in
the overall MAS goals.

20

3
From Software Engineering to Agent

Oriented Software Engineering

This chapter deals with the shift from traditional software engineering to agent-oriented
software engineering. The researches in the area of AOSE mainly focuses on proposing
methodologies for agent systems, i.e., on identifying the guidelines to drive the various
phases of agent-based software development and the abstractions to be exploited in these
phases. However, very little attention has been paid so far to the basic issue of engineering
the process subjacent the development activity, i.e., of disciplining the execution of the
different phases involved in the software lifecycle. Since these aspects are related to the
software engineering in general independently from the specific building blocks adopted
for modelling the systems, the definition of these key concepts seems very useful in order
to allow readers to better understand the AOSE field – and the remainder of this thesis –
specially because for the meaning of some of these concepts there is no agreement in the
scientific community.

So, this chapter is organised as follows. Section 3.1 introduces a general view about
the software and its characteristics, while Section 3.2 introduces the traditional software
engineering and defines the concepts of software development process (Subsection 3.2.1),
methodology (Subsection 3.2.2) and tool (Subsection 3.2.3). Finally Section 3.3 introduces
the general concepts related to the AOSE illustrating the paradigm shift (Subsection 3.3.1)
and the main AOSE ingredients (Subsection 3.3.2), and Section 3.4 propose a summary
of this chapter.

3.1 Software

Software is abstract and intangible [199], it is not constrained by materials, or governed by
physical laws or by manufacturing process. This simplifies software engineering as there
are no physical limitations on the potential of software. However, this lack of natural
constraints means that software can easily become extremely complex and hence very
difficult to understand So, software engineers should adopt a systematic and organised
approach to their work and use appropriate tools and techniques depending on the problem

21

22 CHAPTER 3. FROM SE TO AOSE

Characteristic Description
Maintainability software should be written in such a way that it may

evolve to meet the changing needs of customers. This is a
critical attribute because software change is an inevitable
consequence of changing business environment

Dependability software dependability has a range of characteristics,
including reliability, security and safety. Dependable
software should not cause physical or economic damage
in the event of system failure

Efficiency software should not make wasteful use of system
resources such as memory and processor cycles. Efficiency
therefore includes responsiveness, processing time,
memory utilisation, etc. . .

Usability Software must be usable, without undue effort, by the type of
user for whom it is designed. This means that it should have
an appropriate user interface and adequate documentation

Figure 3.1: Essential attributes of good software

to be solved, the development constraints and the resources available.
As well as the services that they provide, software products have a number of associ-

ated attributes that reflect the quality of that software. These attributes are not directly
concerned with what software does. Rather, they reflect its behaviour while it is executing
and the structure and the organisation of the source program and associated documen-
tation. Example of these non-functional attributes are the software’s response time to a
user query and the understandability of the program code.

The specific set of attributes that might be expected from a software system obviously
depends on its applications. Therefore, a banking system must be secure, an interactive
game must be responsive, a telephone switch must be reliable, and so on. These can be
generalised into a set of attributes show in Figure 3.1, which are essential characteristics
of a well-designed software system [199].

3.2 Traditional Software Engineering

Sommerville [199] defines Software Engineering (SE) as

an engineering discipline that is concerned with all aspects of software pro-
duction from the early stage of system specification to maintaining the system
after it has gone into use.

In this definition there are two key phrases:

22

CHAPTER 3. FROM SE TO AOSE 23

1. Engineering discipline — Engineers make things work. They apply theories, method-
ologies and tools where these are appropriate, but they use them selectively and al-
ways try to discover solutions to problems even when there are no applicable theories
and methodologies. Engineers also recognise that they must work to organisational
and financial constraints, so they look for solutions within these constraints.

2. All aspects of software production — SE is not just concerned with the technical pro-
cess of software development but also with the development of tools, methodologies
and theories to support software production.

In general, software engineers adopt a systematic and organised approach to their
work, as this is often the most effective way to produce high-quality software. How-
ever, engineering is all about selecting the most appropriate methodology for a set of
circumstances and more creative, less formal approach to development may be effective
circumstances.

The first key challenge in the SE is the production of software with a well-defined
quality level, but this is not enough. There is also a need to model and engineer the
development process that should be controllable, and well documented. These needs
require abstractions, process, methodologies and tools.

Software deals with entities having a real-world counterpart such as numbers, dates,
names, persons, documents, etc. . . . These entities must be modelled in terms of abstrac-
tions. Abstractions are the building blocks for creating the models and they depend on
the available technologies: for example functions, objects, agents, etc.. . . . Different kinds
of abstraction lead both to different ways of thinking about the problems and the solu-
tions, and to different levels of model complexity : complicated problems are well captured
by object and agent abstractions, while functions could lead to have very very complex
models for representing the problem. In the same way the models of the solution are
heavily influenced by the paradigm.

In the reminder of this section are presented the definitions of software development
processes (Subsection 3.2.1) and methodologies (Subsection 3.2.2), while Subsection 3.2.3
presents tools for SE.

3.2.1 Software Development Processes

A Development Process [26] is an ordered set of steps that involve all those activities,
constraints and resources required to produce a specific desired output satisfying a set of
input requirements. Typically, a process is composed by different stages/phases put in
relation with each other. Each stage/ phase of a process identifies a portion of work to be
done in the context of the process, the resources to be exploited to that purpose and the
constraints to be obeyed in the execution of the phase. Case by case, the work in a phase
can be very small or more demanding. Phases are usually composed by a set of activities
that may, in turn, be conceived in terms of smaller atomic units of work (steps).

23

24 CHAPTER 3. FROM SE TO AOSE

A Software Development Process [67] is the coherent set of policies, organisational
structures, technologies, procedures and deliverables that are needed to conceive, de-
velop, deploy and maintain a software product. A software process exploits a number of
contributions and concepts [67]:

• Software development technology : technological support used in the process. Cer-
tainly, to accomplish software development activities there is the need for tools,
infrastructures, and environments.

• Software development methods and techniques : guidelines on how to use technology
and accomplish software development activities. The methodological support is
essential to exploit technology effectively.

• Organisational behaviour : the science of organisations and people.

• Marketing and economy : software development is not a self-contained endeavor. As
any other product, software must address real customers’ needs in specific market
settings.

There are four fundamental process activities that are common in all software pro-
cesses. These are [199]:

• Specification — is the process of understanding and defining what services are re-
quired from the system and identifying the constraints on the system’s operation
and development.

• Design and Implementation — is the process of description of the structure of the
software to be implemented, the data which is part of the system, the interface be-
tween the system’s components and, sometimes, the algorithms used. Subsequently
this specification is converted into an executable system.

• Validation — is the process that intended to show that a system conforms to its
specification and that the system meets the expectations of the customers.

• Evolution — is the process that changes the software in response to changing de-
mands.

There is not an ideal process. Different types of systems need different development
processes [199]: for example in real time software, an aircraft has to be completely spec-
ified before development begins, while in e-commerce systems, the specification and the
program are usually developed together. Consequently, the generic activities, specified
above, may be organised in different ways and described at different levels of detail for
different types of software. The use of an inappropriate software process may reduce the
quality or the usefulness of the software product to be developed and/or increased.

24

CHAPTER 3. FROM SE TO AOSE 25

A Software Process Model is a simplified representation of a software process, presented
from a specific perspective [199]. Process model prescribes around which phases a process
should be organised, in which order such phases should be executed, and when interactions
and coordination between the work of the different phases should be occur. In other words,
a process model defines a skeleton, a template, around which to organise and detail an
actual process. Examples of process models are:

• Workflow model — this shows the sequence of activities along with their inputs,
outputs and dependencies

• Activity model — this represents the process as a set of activities, each of which
carries out some data transformation

• Role/action model — this depicts the roles of the people involved in the software
process and the activities for which they are responsible

The best known generic process models are:

• Waterfall — separate and distinct phases of specification and development

• Iterative development — specification, development and validation are interleaved

• Component-based software engineering — the system is assembled from existing
components

3.2.2 Methodologies

Disagreement exists regarding the relationship between the terms method and methodol-
ogy. In common use, the methodology is frequently substituted for method; seldom does
the opposite occur. Some argue this occurs because methodology sounds more scholarly
or important than method. A footnote to the word methodology in the 2006 American
Heritage Dictionary notes that

the misuse of methodology obscures an important conceptual distinction be-
tween the tools of scientific investigation (properly methods) and the principles
that determine how such tools are deployed and interpreted (properly method-
ologies).

In Software Engineering the is no a common denominator: on one hand some authors
argue that a software engineering method is a recipe, a series of steps, to build soft-
ware, while a methodology is a codified set of recommended practices. In this way, a
software engineering method could be part of a methodology. On the other hand, some
authors believe that in a methodology there is an overall philosophical approach to the
problem. Using these definitions, Software Engineering is rich in methods, but has fewer
methodologies.

25

26 CHAPTER 3. FROM SE TO AOSE

The definitions adopted in this thesis for methodology and method are from Ghezzi and
Cernuzzi. In particular, Ghezzi et al. [73] define methodology as a collection of methods
covering and connecting different stages in a process. The purpose of a methodology is to
prescribe a certain coherent approach for solving a problem in the context of a software
process by preselecting and putting in relation a number of methods. A methodology has
two important components: one that describes the process elements of the approach, and
a second that focuses on the work products and their documentation. According to this
definition of methodology, Cernuzzi et al. [26] define a method as a way of performing
some kind of activity within a process, in order to properly produce a specific output (i.e.,
an model or a document) starting from a specific input (again, an artefact or a document).
Any phases of a process, to be successfully applicable, should be complemented by some
methodological guidelines (including the identification of the techniques and tools to be
used, and the definition of how artifacts have be produced) that could help the involved
stakeholders in accomplishing their work according to some defined best practices.

Based on the above definitions, and comparing software processes and methodologies,
some common elements can be found in their scope [26]:

• both focus on what we have to do in the different activities needed to construct a
software system

• however, while the software development process is more centered on the global
process including all the stages, their order and time scheduling, the methodology
focuses more directly on the specific techniques to be used and work to be produced

In this sense, methodologies focus more explicitly on how to perform the activity or
tasks in some specific stages of the process, while processes may also cover more general
management aspects, e.g., basic questions about who and when, and how much.

As for the software development process, there is not an ideal methodology, and dif-
ferent methodologies have different areas where they are applicable. For example, object-
oriented methodologies are often appropriate for interactive systems but not for systems’
stringent real-time requirements [199].

3.2.3 Tools

The acronym CASE stands for Computer-Aided Software Engineering. It covers a wide
range of different types of programs that are used to support software process activities
such as requirement analysis, system modelling, debugging and testing. All methodologies
should come with associated CASE technology such as editors for the notation used
in the methodologies, analysis modules which check the system model according to the
methodology rules and report generators to help create system documentation. The CASE
tools may also include a code generator that automatically generates source code from
the system model and some process guidance for software engineers.

26

CHAPTER 3. FROM SE TO AOSE 27

3.3 Agent Oriented Software Engineering

Traditional SE abstractions fall short when applied to areas of growing relevance such
as electronic commerce, enterprise resource planning, and mobile computing: such areas,
in fact, generally call for complex systems and open architectures that may evolve dy-
namically over time so as to accommodate new components and meet new requirements.
This is probably one of the main reasons why the agent metaphor and the agent-oriented
paradigm are gaining momentum in these areas.

Today’s software engineering approaches are increasingly adopting abstractions ap-
proaching that of agent-based computing. This trend can be better understood by recog-
nising that the vast majority of modern distributed systems scenarios are intrinsically
prone to be developed in terms of MASs, and that modern distributed systems are al-
ready de facto MASs, i.e., they are indeed composed of autonomous, situated, and social
components [230]. As far as autonomy is concerned, almost all of today’s software systems
already integrate autonomous components. At its weakest, autonomy reduces to the abil-
ity of a component to react to and handle events, as in the case of graphical interfaces or
simple embedded sensors. However, in many cases, autonomy implies that a component
integrates an autonomous thread of execution, and can execute in a proactive way. This
is the case of most modern control systems for physical domains, in which control is not
simply reactive but proactive, implemented via a set of cooperative autonomous processes
or, as is often the case, via embedded computer-based systems interacting with each other
or via distributed sensor networks. The integration in complex distributed applications
and systems of (software running on) mobile devices can be tackled only by modelling
them in terms of autonomous software components. Internet based distributed appli-
cations are typically made up of autonomous processes, possibly executing on different
nodes, and cooperating with each other – a choice driven by conceptual simplicity and by
decentralised management rather than by the actual request for autonomous concurrent
activities.

Today’s computing systems are also typically situated. That is, they have an explicit
notion of the environment where components are allocated and executed, and with which
components explicitly interact. Control systems for physical domains, as well as sensor
networks, tend to be built by explicitly managing data from the surrounding physical
environment, and by explicitly taking into account the unpredictable dynamics of the
environment via specific event-handling policies. Mobile and pervasive computing appli-
cations recognise (under the general term of context-awareness) the need for applications
to model explicitly environmental characteristics and environmental data rather than to
model them implicitly in terms of internal object attributes. Internet applications and
web-based systems, to dive into the existing Internet environment, are typically engi-
neered by clearly defining the boundaries of the system in terms of the “application”,
including the new application components to be developed, and “middleware” level, as
the environmental substrate in which components are to be embedded.

27

28 CHAPTER 3. FROM SE TO AOSE

Sociality in modern distributed systems comes in different flavors: (i) the capability of
components to support dynamic interactions, i.e., interaction established at run-time with
previously unknown components; (ii) the somewhat higher interaction level, overcoming
the traditional client-server scheme; (iii) the enforcement of some sorts of societal rules
governing the interactions. Control systems for critical physical domains typically run
forever, cannot be stopped, and sometimes cannot even be removed from the environment
in which they are embedded. Nevertheless, these systems need to be continuously updated,
and the environment in which they live is likely to change frequently, with the addition
of new physical components and, consequently, of new software components and software
systems. For all these systems, managing openness and the capability to automatically
re-organise interaction patterns is crucial, as is the ability of a component to enter new
execution contexts in respect of the rules that are expected to drive the whole execution of
the system. With reference to pervasive computing systems, lack of resources, power, or
simply communication unreachability, can make nodes come and go in unpredictable ways,
calling for re-structuring of communication patterns, as well as for high-level negotiations
for resource provision. Such issues are even exacerbated in mobile networking and P2P
systems, where interactions must be made fruitful and controllable despite the lack of
any intrinsic structure and dynamics of connectivity. Similar considerations apply to
Internet-based and open distributed computing. There, software services must survive
the dynamics and uncertainty of the Internet, must be able to serve any client component,
and must also be able to enact security and resource control policy in their local context,
e.g., a given administrative domain. E-marketplaces are the most typical examples of
this class of open Internet applications. The explicit adoption of agent-based concepts in
systems engineering would carry several advantages:

• autonomy of application components, even if sometimes directly forced by the dis-
tributed characteristic of the operational environment, enforces a stronger notion
of encapsulation (i.e., encapsulation of control rather than of data and algorithms),
which reduces the complexity of managing systems with a high and dynamically
varying number of components;

• taking into account situatedness explicitly, and modelling environmental resources
and active computational entities in a differentiated way, rather than being the
recognition of a matter of fact, provides for a better separation of concerns which,
in turn, help to reduce complexity;

• dealing with dynamic and high-level interactions (i.e., with societal rather than with
architectural concepts) enables to address in a more flexible and structured way the
intrinsic dynamics and uncertainties of modern distributed scenarios.

28

CHAPTER 3. FROM SE TO AOSE 29

Programming
Languages

Infrastructures Software
Engineering

New abstractions

Traditional

Agent-paradigm

Software
Engineering

Infrastructures Programming
Languages

Agent abstractions

Figure 3.2: Paradigms shift in traditional SE (top) and AOSE (bottom)

3.3.1 Paradigm Shift

A change of paradigm is always a dramatic event in any scientific and engineering field.
The rapid paradigm shift dropped technology behind: while in the past new abstractions
used to come from programming languages, and were later included in software engineering
practice, now it is often the case that technologies adopted for MAS development and
deployment do not support the novel abstractions adopted in the AOSE analysis and
design phases (Figure 3.2). Such a gap mainly depends on AO methodologies and AO
infrastructures having evolved along two parallel, yet somehow inverse, paths: a top-
down evolution for AO methodologies, a bottom-up path for AO infrastructures. In
fact, on the one side, abstractions and metaphors (models and structures) from human
organisations have been used to analyse, model and design software systems. There,
modelling agent societies means to identify the rules – global or local – that should
drive the expected MAS evolution, and the roles that agents should play. On the other
side, AO infrastructures have typically evolved out from existing (mainly, object-oriented)
programming languages and development environments, “stretching” the agent paradigm
on top of more traditional paradigms and technologies [155].

So a significant part of the work in SE is finding the right models and abstractions
for addressing the new systems issues. In general, there will be multiple candidates and
the difficult task is picking the most appropriate one. When designing software, the most
powerful abstractions are those that minimise the semantic gap between the units of
analysis that are intuitively used to conceptualise the problem and the constructs present

29

30 CHAPTER 3. FROM SE TO AOSE

in the solution paradigm.

In order to minimise this gap, complex systems such as MAS could be characterised in
terms of sub-systems, sub-system components, interactions and organisational relation-
ships. Sub-systems naturally correspond to agent organisations. They involve a number
of constituent components that act and interact according to their role within the larger
enterprise. The interplay between the sub-systems and between their constituent com-
ponents is most naturally viewed in terms of high-level social interactions: “at any given
level of abstraction, we find meaningful collections of entities that collaborate to achieve
some higher level view” [12]. This view accords precisely with the knowledge-level treat-
ment of interaction afforded by the agent-oriented approach. Multi-agent systems are
invariably described in terms of “cooperating to achieve common objectives”, “coordinat-
ing their actions” or “negotiating to resolve conflicts”. Complex systems involve changing
webs of relationships between their various components. They also require collections of
components to be treated as a single conceptual unit when viewed from a different level of
abstraction. Here again the agent-oriented mindset provides suitable abstractions. A rich
set of structures is typically available for explicitly representing and managing organisa-
tional relationships. Interaction protocols exist for forming new grouping and disbanding
unwanted ones. Finally, structures are available for modelling collectives. The latter point
is especially useful in relation to representing sub-systems since they are nothing more
than a team of components working to achieve a collective goal.

Organisational constructs are first-class entities in agent systems. Thus explicit repre-
sentations are made of organisational relationships and structures [98]. Moreover, agent-
based systems have the concomitant computational mechanisms for flexibly forming,
maintaining and disbanding organisations. This representational power enables agent-
oriented systems to exploit two facets of the nature of complex systems. Firstly, the
notion of a primitive component can be varied according to the needs of the observer.
Thus at one level, entire sub-systems can be viewed as a singleton, alternatively teams or
collections of agents can be viewed as primitive components, and so on until the system
eventually bottoms out. Secondly, such structures provide a variety of stable intermediate
forms, that, as already indicated, are essential for rapid development of complex systems.
Their availability means that individual agents or organisational groupings can be devel-
oped in relative isolation and then added into the system in an incremental manner. This,
in turn, ensures there is a smooth growth in functionality.

3.3.2 AOSE Ingredients

As far as software engineering is concerned, the key implication is that the design and
development of software systems according to a (new) paradigm can by no means rely on
conceptual tools and methodologies conceived for a totally different (old) paradigm [230].
Even if it is still possible to develop a complex distributed system in terms of objects and
client-server interactions, such a choice appears odd and complicated when the system

30

CHAPTER 3. FROM SE TO AOSE 31

is a MAS or it can be assimilated to a MAS. Rather, a brand new set of conceptual
and practical tools specifically suited to the abstractions of agent-based computing –
is needed to facilitate, promote, and support the development of MASs, and to fulfil the
great general-purpose potential of agent-based computing. A short summary of the AOSE
ingredients is worth reporting [230].

Agent modelling . Novel formal and practical approaches to component modelling are
required, to deal with autonomy, pro-activity, and situatedness. A variety of agent archi-
tectures is being investigated, each of which is suitable to model different types of agents
or specific aspects of agents: purely reactive agents, logic agents, agents based on belief,
desire and intentions. Overall, this research has so far notably clarified the very concept
of agency and its different facets.

Society modelling . The complexity of systems no longer allows any system components
to be completely controlled/designed/governed merely as individuals. Correspondingly,
intelligence embedded within agents is often not enough to build up intelligent systems.
The very notion of situated intelligence, when seen through the eyes of intelligent sys-
tems engineers, calls for a suitable design of what is outside the agents: societies that
agents form and where they get deployed, and environments where agents live. So, the
design of intelligent systems seems to require: on the one hand, suitable design abstrac-
tions to support social intelligence, i.e., intelligence exhibited by agent societies, which
cannot directly be ascribed to individual intelligent (component) agents; on the other
hand, suitable infrastructures shaping the agent environment so as to fully enable and
promote the exploitation of both individual and social intelligence. The former require-
ment clearly emerges from several AO methodologies, adopting organisational models to
describe and design systems in terms of organisational structure (roles involved), organi-
sational patterns (roles relationships), and organisational rules (constraints on roles and
their interactions).

MAS architectures . As it is necessary to develop new ways of modelling the com-
ponents of a MAS, in the same way it is necessary to develop new ways of modelling a
MAS as a whole. Detaching from traditional functional-oriented perspectives, a variety
of approaches are being investigated to model MASs. In particular, approaches inspired
by societal, organisational, and biological metaphors, are the subject of the majority of
researches and are already showing the specific suitability of the different metaphors in
different application areas.

AO methodologies . Traditional methodologies of software development, driving engi-
neers from analysis to design and development, must be tuned to match the abstractions
of agent-oriented computing. To this end, a variety of novel methodologies to discipline
and support the development process of a MAS have been defined in the past few years
(Chapter 4), clarifying the various sets of abstractions that must come into play during
MAS development and the duties and responsibilities of software engineers. The defini-

31

32 CHAPTER 3. FROM SE TO AOSE

tion of agent-specific methodologies is definitely one of the most explored topics in AOSE,
and a large number of AO methodologies – describing how the process of building a MAS
should/could be organised – has been proposed in the literature (Chapter 4). However,
what characterises most of the methodologies proposed so far is that they assume a very
traditional process models [199] (from analysis to design, implementation, and mainte-
nance) for organising the process of building a MAS. It appears rather odd that most
proposals for AO methodologies adopt a standard process model when, in the real world
of industrial software development, such a standard model is rarely applied. It is a mat-
ter of fact that, in many cases, software is developed following a non-structured process:
analysis, design, and implementation, often collapse into the frenetic work of a bunch of
technicians and programmers, directly interacting with clients (to refine typically vague
specifications), and striving to deliver the work on time [230]. In the mainstream com-
munity of SE, such a situation is getting properly attributed via the definition of novel
software process models, specifically conceived to give some flavor of “engineering” to
such chaotic and frenetic processes (e.g., agile and extreme software process models, and
method engineering [15, 16, 84]). In the area of AOSE, a similar direction should be ex-
plored too, possibly exploiting the fact that the very abstractions of agents may promote
the identification of different and more agile process models and method engineering [36].

Meta-models . AO methodologies, as well as non-AO ones typically start from a meta-
model, identifying the basic abstractions to be exploited in development (e.g., agents,
roles, environment, organisational structures). On this base, they exploit and organise
these abstractions so as to define guidelines on how to proceed in the analysis, design,
and development, and on what output to produce at each stage. Actually, several works
[86, 10] are focusing on the identification of appropriate meta-models for AO methodolo-
gies and process models, where a meta-model is intended as rational analysis and identi-
fication of the abstractions used in MAS development. Those efforts aim at unifying the
different abstractions adopted in existing methodologies and the process models, and also
at identifying which relationships may exist among them. This may be used to better
understand the real usefulness of the abstractions and to improve or unify processes and
methodologies. Also, those effort may help researchers and practitioners to identify and
develop conceptual instruments and practical tools for an efficient processes management
(see Chapter 5 and 6).

Notation techniques. The development of specific notation techniques to express the
outcome of the various phases of a MAS development process are needed, because tradi-
tional object- and component-oriented notation techniques cannot easily apply. In this
context, the AUML proposal [64], extending standard UML toward agent-oriented sys-
tems, is the subject of a great deal of research and it is rapidly becoming a de facto
standard: newly proposed AO methodologies tend to adopt AUML as the basic notation
technique and newly proposed interaction patterns in a variety of applications are usu-

32

CHAPTER 3. FROM SE TO AOSE 33

ally expressed in terms of AUML diagram. Despite the current enthusiasm for AUML,
AUML seems not be the ultimate answer. Beside the current period of transition, in
which AUML will play an important role, the complexity, dynamics, and situated nature
of modern software systems cannot be effectively dealt with by notations and modelling
techniques originated for static and not situated software architectures. Whatever exten-
sions will be proposed for AUML, they will intrinsically carry on the original shortcomings
of the original object-oriented proposal. In the traditional software engineering commu-
nity, the shortcomings of standard UML are becoming evident, and novel notations are
being explored to account for higher dynamics and complexities. Accordingly, a great chal-
lenge in the area of AOSE will be that of identifying brand new notations and modelling
techniques, conceived from scratch to suit the specific characteristics of MASs. Together
with AUML, novel proposals should be very welcome and not simply discarded because
they do not conform to widespread standards. The fact that reasonable proposals in this
direction can actually be formulated and effectively compete with AUML is witnessed by,
e.g., the work of Sturm et al. [201], describing a modified version of OPM [53] specifically
suited for MASs.

AO infrastructures. To support the development and execution of MASs, novel tools
and novel software infrastructures are needed. In this context, various tools are being
proposed to transform standard MAS specifications (i.e., AUML specifications) into ac-
tual agent code, and a variety of infrastructures have been deployed to provide proper
services supporting the execution of distributed MASs.

3.4 Summing up

Agents and multi-agent systems, other than a technology, represent a brand new paradigm
for software development [99, 229]. When adopting agents as the basic conceptual com-
ponents of software systems, software has to be conceived in terms of autonomous task-
oriented entities, interacting with each other in a high-level way, leading to possibly very
articulated organisations. Roughly speaking, this represents “only” a paradigm shift:
the building blocks – e.g. functions, object, agent – are changed according to the spe-
cific paradigm adopted, but the key concepts underpinning the software engineering –
processes, method and methodology – should be the same.

Obviously this is an high level viewpoint, in fact the paradigms adopted lead to dif-
ferent levels of model complexity : complicated problems are well captured by objects and
agents, while functions could lead to have very complex models for representing the prob-
lem. In the same way the models of the solution are heavily influenced by the paradigm,
so the construction of processes and methodologies is deeply influenced by the paradigm
adopted. However, the key definitions of processes and methodologies presented in this
chapter should be never forgotten when a new paradigm and its specialised software en-
gineer field are introduced.

33

34 CHAPTER 3. FROM SE TO AOSE

34

4
Agent Oriented Methodologies

This chapter presents an overview of the most known AO methodologies. In particular
Section 4.1 presents an introduction about the methodologies for agent-oriented systems
and their roots, while Section 4.2 presents the most known AO methodologies. Finally
Section 4.3 presents a discussion about methodologies.

4.1 Methodologies for Agent-Oriented Systems

Agent-oriented (AO) methodologies suggest a clean and disciplined approach to analyse,
design and develop multi-agent systems, using specific methods and techniques.

While there is a much debate on the use of terminology in various subcultures of
information systems and SE, it can be generally agreed that a methodology has two
important components: one that describes the process elements of the approach, and a
second that focuses on the work products and their documentation [186]. The second
of these is more visible in the usage of a methodology, which is why the object-oriented
(OO) modelling language UML [143] is so frequently (totally incorrectly) equated with
“all things OO” or even described as a methodology. Instead, in the AO methodologies
world are adopted several notations: someone uses UML or its agent-focused counterpart
AUML [64], while others eschew this as being inadequate to support the concepts of
agents introducing instead their own individualistic notation and underpinning concepts.
This is a consequence of that the existing methodologies have several roots. Some are
based on ideas from artificial intelligence (AI), others as direct extensions of existing OO
methodologies, whilst yet others try and merge the two approaches by taking a more
purist approach yet allowing OO ideas when these seem to be sufficient (Figure 4.1).

Several methodologies acknowledge a direct descendance from full OO methodologies.
In particular, MaSE [224] acknowledges influences from Kendall et al. [104] as well as an
heredity from AAII [106] which in turns was strongly influenced by the OO methodology
of Rumbaugh and colleagues called OMT [189]. Similarly, the OO methodology of Fusion
[32] was said to be highly influential in the design of Gaia [225, 229]. Two other OO
approaches have also been used as the basis for AO extensions. RUP [110] has formed the
basis for ADELFE [173] and also for MESSAGE [69], which, in turn, is the basis for IN-

35

36 CHAPTER 4. AGENT ORIENTED METHODOLOGIES

Figure 4.1: Influences of OO methodologies on AO methodologies [87]

GENIAS [170]. More recently, RUP has also been used as one of the inputs (together with
AOR [217]) for RAP [208]. Secondly, the OPEN approach to OO software development
has been extended significantly to support agents, sometimes called Agent OPEN [160].
Finally, two other methodologies exhibit influences from object-oriented methodological
approaches. Prometheus [163], although not an OO descendant, does suggest using OO
diagrams and concepts whenever they exist and are compatible with the agent-oriented
paradigm. Similarly, PASSI [35] merges OO and MAS ideas, using UML as its main
notation.

Somewhat different is the MAS-CommonKADS methodology [95]. This is a solidly-AI-
based methodology that claims to have been strongly influenced by OO methodologies,
notably OMT. Then there are the methodologies that do not acknowledge any direct
genealogical link to other approaches, OO or AO. Tropos [13] has a significant input
from i* ([227] and a distinct strength in early requirements modelling, focussing as it
does on describing the goals of stakeholders that describe the “why” as well as the more
standard support for “what” and “how”. This use in Tropos of the i* modelling language
(particularly in the analysis and design phases) gives it a different look and feel from those
that use Agent UML (a.k.a. AUML [64]) as a notation. It also means that the non-OO
mindset permits users of Tropos to take a unique approach to the modelling of agents in
the methodological context. Another example is SODA [3], which focuses exclusively on
the engineering of the interaction space of complex systems using the agent paradigm,
providing direct support at the analysis and design stage for describing social aspects and
MAS environment.

Other approaches include Nemo [92], MASSIVE [112], Cassiopeia [33] and CAMLE
[195]—although in CAMLE there are some parallels drawn between its notion of “caste”
and the concept of an OO class as well as some connection to UML’s composition and
aggregation relationships. Further comparisons of these methodologies are undertaken in
Tran and Low [140], which complements and extends earlier framework-based evaluative

36

CHAPTER 4. AGENT ORIENTED METHODOLOGIES 37

studies of, for instance, Cernuzzi and Rossi [27], Dam and Winikoff [39], and Sturm and
Shehory [203].

4.2 The most known AO Methodologies

This section shows an overview of the best known AO methodologies. In particular Subsec-
tion 4.2.1 presents the Gaia methodology, Subsection 4.2.2 presents the ADELFE method-
ology, Subsection 4.2.3 presents the Tropos methodology, Subsection 4.2.4 presents the
PASSI methodology, Subsection 4.2.5 presents the MaSE methodology, Subsection 4.2.6
presents the INGENIAS methodology, Subsection 4.2.7 presents MESSAGE, and finally
Subsection 4.2.8 presents Prometheus.

4.2.1 Gaia

Gaia [228, 229] (Figure 4.2) focuses on the use of organisational abstractions to drive the
analysis and design of MASs (see also Section 6.4). Gaia models both the macro (social)
aspect and the micro (agent internals) aspect of a MAS, and devotes a specific effort to
model the organisational structure and the organisational rules that govern the global
behaviour of the agents in the organisation.

The goal of the analysis phase in Gaia, covering the requirements in term of func-
tions and activities, is to firstly identify which loosely coupled sub-organisations possibly
compose the whole system and then, for each of these, produce four basic abstract mod-
els: (i) the environmental model, to capture the characteristics of the MAS operational
environment; (ii) a preliminary roles model, to capture the key task-oriented activities
to be played in the MAS; (iii) a preliminary interactions model, to capture basic inter-
dependencies between roles; and (iv) a set of organisational rules, expressing global con-
straints/directives that must underlie the MAS functioning.

The above analysis models are used as input to the architectural design phase. In
particular, the architectural design phase is in charge of defining the most proper or-
ganisational structure for the MAS, i.e., the topology of interactions in the MAS and
the control regime for the MAS which most effectively enables the fulfillment of the MAS
goals. The definition of the organisational structure has to account for a variety of factors,
including the need for somewhat reflecting the structure of the real-world organisation in
the MAS structure, the characteristics of the environment and of the patterns of access to
it, the need for simplifying the enactment of the organisational rules, the need to respect
any identified non-functional requirement, as well as the obvious need to keep the design
as simple as possible. Once the most appropriate organisational structure is defined, the
roles and interactions models identified in the analysis phase (which were preliminary, in
that they were not situated in any actual organisational structure) can be finalised, to
account for all newly identified interactions and possibly for newly identified roles.

37

38 CHAPTER 4. AGENT ORIENTED METHODOLOGIES

Figure 4.2: An overview of Gaia [229]

38

CHAPTER 4. AGENT ORIENTED METHODOLOGIES 39

Figure 4.3: An overview of ADELFE [2]

Past the architectural design phase, the detailed design involves identifying: (i) an
agent model, i.e. the set of agent classes in the MAS, implementing the identified roles,
and the specific instances of these classes; and (ii) a services model, expressing services
and interaction protocols to be provided within agent classes. The result of the design
phase is assumed to be something that could be implemented in a technology neutral way.

4.2.2 ADELFE

ADELFE [9, 173] (see also Section 6.2) is based on object-oriented methodologies, follows
the Rational Unified Process (RUP) [110] and uses UML [143] and AUML [64] notations.
Some steps have been added in the classical workflows to be specific to adaptive MAS
(Figure 4.3).

Adaptive software is used in situations in which the environment is unpredictable or
the system is open. To solve these problems ADELFE guarantees that the software is
developed according to the AMAS (Adaptive Multi-Agent System) theory. According to

39

40 CHAPTER 4. AGENT ORIENTED METHODOLOGIES

this theory, building a system which is functionally adequate (which realises the right
desired global function) is achieved by designing agents with a cooperation-driven social
attitude. Agents composing an AMAS ignore the global function of the system, only
pursue a local goal and try to always keep cooperative relations with one another. They
are called cooperative agents. The cooperative agents are equipped with five modules to
represent “physical”, “cognitive”, or “social” capabilities:

• Skill Module: represents knowledge on specific fields that enables agents to realise
their partial function

• Representation Module: enables an agent to create its own representation about
itself, other agents, or the environment it perceive

• Interaction Module: is composed of perceptions and actions.

• Aptitude Module: provides capabilities to reason about perceptions, skills, and rep-
resentations – for example, to interpret messages

• Cooperation Module: embeds local rules to be locally cooperative. Cooperative
means that agents are able to recognise “cooperation failures”

In ADELFE the requirements workflow is a fundamental step in software engineering.
In the AMAS theory, the adaptation process starts from the interactions between the sys-
tem and its environment. Therefore, it is important to give a model of the environment
during this workflow. The environment model consists in three steps: determining the
actors, defining the context and characterising the environment. In the analysis workflow,
two steps are added to the RUP: the identification of the agents and the adequacy of the
AMAS theory. ADELFE focuses on the identification of the agents. In the previous
workflow, the designer has identified the entities of the system, now ADELFE must help
him to identify what entities will be agents. In ADELFE, the notion of agent is restric-
tive: cooperative agents are the only kinds of agents considered. The designer has some
guidelines: an agent is an entity previously defined, and this entity may be faced with
unexpected events and it may have evolutionary representations about itself, other agents
or about its environment and/or evolutionary skills. Because an adaptive MAS is not
a technical solution for every application, ADELFE is the only methodology providing
a tool to help a designer to decide if the AMAS theory is adequate to implement his
application. For example, if the algorithm required to solve the task is already known, if
the task is not complex, if the system is closed or if no unexpected events can occur, this
kind of programming is useless.

In the design workflow, the agent model and the Non Cooperative Situations model are
added to the RUP. ADELFE is dedicated to a specific architecture of agent: cooperative
ones. Using the agent model, the designer must then describe the architecture of a
cooperative agent by giving the components realising its behaviour. A MAS which is

40

CHAPTER 4. AGENT ORIENTED METHODOLOGIES 41

not in a cooperative interaction with its environment needs to adapt itself to it. But,
according to the AMAS theory, the global function of the system is not coded, only the
local behaviour of the agents composing the society is coded. The adaptation will then
be managed by these agents through the “Non Cooperative Situations” (NCS) model.
An agent which locally detects cooperative failures acts to change its interaction with
others to remove this state. The NCS of an agent must be described by the designer
since they depend on the application. To help him, ADELFE provides the designer with
generic cooperative failures such as incomprehension, ambiguity, uselessness or conflict.
ADELFE also provides tables with fields to fill up concerning the name of the NCS, its
generic type, the state in which the agent must be to detect it, the conditions of its
detection and what actions the agent must perform to treat it.

Finally implementation and test workflows are similar to what is done in the RUP. Sys-
tems are realised through implementation of components. The process describes how you
reuse existing components, or implement new components with well defined responsibility,
making the system easier to maintain, and increasing the possibilities to reuse.

The tests are done throughout the project. This allows to find defects as early as
possible, which radically reduces the cost of fixing the defect. Tests are carried out along
four quality dimensions: reliability, functionality, application performance, and system
performance. For each of these quality dimensions, the process describes how to go
through the test lifecycle of planning, design, implementation, execution and evaluation.

4.2.3 Tropos

The Tropos methodology [13, 77] is intended to support all analysis and design activi-
ties in the software development process, from application domain analysis down to the
system implementation (see also Section 6.3). In particular, Tropos rests on the idea of
building a model of the system-to-be and its environment, that is incrementally refined
and extended, providing a common interface to various software development activities,
as well as a basis for documentation and evolution of the software. Tropos is composed
by five main development phases: Early Requirements, Late Requirements, Architectural
Design, Detailed Design and Implementation (Figure 4.4).

Requirements analysis represents the initial phase in many software engineering method-
ologies. As with other approaches, the ultimate objective of requirements analysis in Tro-
pos is to provide a set of functional and non-functional requirements for the system-to-be.

Requirements analysis in Tropos is split in two main phases: Early Requirements
and Late Requirements analysis. Both share the same conceptual and methodological
approach. Thus most of the ideas introduced for early requirements analysis are used for
late requirements as well. More precisely, during the first phase, the requirements engineer
identifies the domain stakeholders and models them as social actors, who depend on one
another for goals to be achieved, plans to be performed, and resources to be furnished.
By clearly defining these dependencies, it is then possible to state the why, beside the

41

42 CHAPTER 4. AGENT ORIENTED METHODOLOGIES

Early
Requirements

Early
Requirements

Late
Requirements

Late
Requirements

Architectural
Design

Architectural
Design ImplementationImplementationDetailed

Design
Detailed
Design

Actors in the
organisational

setting

System Actor Sub-system
Actors

Agents Sw Agents

Requirement driven approach

Figure 4.4: An overview of Tropos [211]

what and how, of the system functionalities and, as a last result, to verify how the final
implementation matches initial needs. In the Late Requirements analysis, the conceptual
model is extended including a new actor, which represents the system, and a number of
dependencies with other actors of the environment. These dependencies define all the
functional and non-functional requirements of the system-to-be.

The Architectural Design and the Detailed Design phases focus on the system spec-
ification, according to the requirements resulting from the above phases. Architectural
Design defines the system’s global architecture in terms of sub-systems, interconnected
through data and control flows. Sub-systems are represented, in the model, as actors and
data/control interconnections are represented as dependencies. The architectural design
provides also a mapping of the system actors to a set of software agents, each characterized
by specific capabilities. The Detailed Design phase aims at specifying agent capabilities
and interactions. At this point, usually, the implementation platform has already been
chosen and this can be taken into account in order to perform a detailed design that will
map directly to the code.

The Implementation activity follows step by step, in a natural way, the detailed design
specification on the basis of the established mapping between the implementation platform
constructs and the detailed design notions.

42

CHAPTER 4. AGENT ORIENTED METHODOLOGIES 43

4.2.4 PASSI

PASSI (Process for Agent Societies Specification and Implementation) [35, 38] (see also
Section 6.1) is a step-by-step methodology for the design and development of multi-agent
societies (Figure 4.5).

Figure 4.5: An overview of PASSI [168]

PASSI has adopted UML as the modelling language since it is widely accepted both in
the academic and industrial environments. Its extension mechanisms (constraints, tagged
values and stereotypes) helps in customizing the representations of agent-oriented designs
so as to avoid the adoption of a totally new modelling language. The models of PASSI
are: System Requirements Model, Agent Society Model, Agent Implementation Model,
Code Model and Deployment Model.

The System Requirements Model is anthropomorphic of the system requirements in
terms of agency and target. It comprises four steps:

• Domain Requirements Description: a functional description of the system made by
using conventional use case diagrams

• Agent Identification: the phase of attribution of responsibilities to agents, repre-
sented as stereotyped UML packages

• Role Identification: a series of sequence diagrams exploring the responsibilities of
each agent through role-specific scenarios

• Task Specification: specification of the capabilities of each agent with activity
diagrams

43

44 CHAPTER 4. AGENT ORIENTED METHODOLOGIES

The Agent Society Model is the model of the social interactions and dependencies
between the agents playing a part in the solution. It necessitates three steps:

• Ontology Description: use of class diagrams and OCL constraints to describe the
knowledge ascribed to individual agents and their communications

• Role Description: class diagrams are used to show the roles played by agent, the
task involved, communication capabilities and inter-agent dependency

• Protocol Description: use of sequence diagrams to specify the grammar of each
pragmatic communication protocol in terms of speech-act performative

The Agent Implementation Model is a model of the solution architecture in terms
of classes and methods; the most important differences with common object-oriented
approach is that there are two different levels of abstraction, the social (multi-agent) level
and the single level. This model is composed by:

• Agent Structure Definition: conventional class diagrams describe the structure of
solution agent classes

• Agent Behaviour Description: activity diagrams or state charts describe the be-
haviour of individual agent

The Code Model is a model of the solution at the code level requiring the following
steps to produce it:

• Generation of code from the model using one of the functionalities of the PASSI
add-in

• It is possible to generate not only the skeletons but also largely reusable parts of
the method’s implementation based on a library of reused patterns and associated
design description

• Manual completion of the source code

Finally the Deployment Model is a model of the distribution of the system’s parts
across hardware processing units, and of their migration. The only step in this model is
the Development configuration in which the deployment diagrams describe the allocation
of agents to the available processing units and any constraints on migration and mobility.

4.2.5 MaSE

The Multiagent System Engineering (MaSE) methodology [44, 135], takes an initial sys-
tem specification, and produces a set of formal design documents in a graphically based
style. An overview of the methodology and models is shown in Figure 4.6.

44

CHAPTER 4. AGENT ORIENTED METHODOLOGIES 45

Figure 4.6: An overview of MaSE [135]

The first phase in MaSE is Capturing Goals, which takes the initial system specification
and transforms it into a structured set of system goals as shown in a Goal Hierarchy
Diagram. A goal is always defined as a system-level objective. Lower-level constructs
may inherit or be responsible for goals, but goals always have a system-level context.
There are two parts of the Capturing Goals phase: identifying and structuring goals. The
goals are identified by distilling the essence of the set of requirements. Once these goals
have been captured and explicitly stated, they are less likely to change than the detailed
steps and activities involved in accomplishing them.

The second phase of MaSE looks down the road toward constructing conversations
between agents that are the real backbone of a MAS, and creates use cases to ease this
difficulty. The Applying Use Cases phase captures use cases from the initial system
requirements and restructures them as a Sequence Diagram. A sequence diagram depicts
a sequence of messages between multiple agent roles.

The third step of MaSE is to transform the structured goals of the Goal Hierarchy
Diagram into a form more useful for constructing MAS: roles. Roles are the building
blocks used to define agent classes and capture system goals during the design phase.
The general case transformation of goals to roles is one-to-one; each goal maps to a role.
However, there are many exceptional situations where it is useful to combine goals. Similar
or related goals may be combined into single roles for the sake of convenience or efficiency.

45

46 CHAPTER 4. AGENT ORIENTED METHODOLOGIES

Role definitions are captured in a traditional Role Model. The Role Model is useful at
the outset of the role definition process before tasks have been defined, as well as later in
the analysis to provide a high-level view of the system. After roles are created, tasks are
associated with each role. Every goal associated with a role can have a task that details
how the goal is accomplished. A task is a structured set of communications and activities,
depicted as a state diagram. Subsequently in the Creating Agent Classes phase, the agent
classes are identified from component roles. The product of this phase is an Agent Class
Diagram which depicts agent classes and the conversations between them. During this
phase of MaSE, agent classes consist of two components: roles and conversations.

Constructing Conversations is the next phase of MaSE. It is closely linked with the
phase that follows it, Assembling Agents. A MaSE conversation defines a coordination
protocol between two agents. Specifically, a conversation consists of two Communication
Class Diagrams, one each for the initiator and responder. A Communication Class Di-
agram is a pair of finite state machines that define the conversation states of the two
participant agent classes. After that, in the Assembly Agent phase of MaSE, the inter-
nals of agent classes are created. MaSE defines five different architectural style templates:
Belief-Desire-Intention (BDI), reactive, planning, knowledge based, and a user-defined ar-
chitecture. Each architecture template has a specific set of components. As discussed
above, constructing conversations and agent class assembly are closely related activities.
In practice, it is useful to alternate between these phases while staying within one func-
tional area of the design. The designer should design conversations first if the system
consists of many simple conversations, or if the initial context of the system includes
many use cases. It is generally better to define the agents first if there are complex
conversations, or if many of the agent classes are being reused.

The final phase of the MaSE methodology takes the agent classes and instantiates
them as actual agents. It uses a Deployment Diagram to show the numbers, types, and
locations of agents within a system. System design is actually the simplest phase of MaSE,
as most of the work was done in previous steps. The idea of instantiating agents from
agent classes is the same as instantiating objects from object classes in object-oriented
programming. Deployment Diagrams are used to define a system based on agent classes
defined in the previous phases of MaSE. Deployment Diagrams define system parameters
such as the actual number, types, and locations of the agents within the system.

4.2.6 INGENIAS

A MAS in INGENIAS [169, 170] is considered from five viewpoints (see Figure 4.7):
organisation, agent, goals/tasks, interactions, and environment. For each viewpoint, a set
of concepts and relationships among them are provided to the developer to describe the
MAS; the agent-oriented software developer can use those concepts and others such as
agent, organisation, goal, task, mental state, resource, etc. These concepts may appear in
the specification of one or several viewpoints, therefore the need to identify consistency

46

CHAPTER 4. AGENT ORIENTED METHODOLOGIES 47

rules among these.

Figure 4.7: An overview of Ingenias [81]

The organization describes a structure for agents, resources, goals and tasks. It is
defined by:

• Purpose and tasks of the organisation. An organisation has one or several purposes,
a goal, and is capable of performing certain tasks to achieve them

• A structure of groups and workflows. From a structural viewpoint, the organisation
is a set of entities with relationships of aggregation and inheritance. This structure
defines a framework where agents, resources, goals, and tasks are placed. And on
this structure there are relationships that induce the formation of workflows and
social rules

• Workflows define associations among tasks and general information about their ex-
ecution

• Groups may contain agents, roles, resources, or applications.

• Social relationships. They can be established at different levels: between organ-
isations, groups, agents, or roles. There are service relationships, conditional or
unconditional subordination, etc. They state restrictions on the interactions be-
tween entities.

The agent viewpoint is concerned with the functionality of each agent: responsibilities
(what goals an agent is forced to pursue) and capabilities (what tasks it is able to perform).
The behaviour of the agent is defined through three components:

47

48 CHAPTER 4. AGENT ORIENTED METHODOLOGIES

• Mental state, an aggregation of mental entities such as goals, beliefs, facts, compro-
mises

• Mental state manager, which provides for operations to create, destroy and modify
mental entities

• Mental state processor, which determines how the mental state evolves, and can be
described in terms of rules, planning, etc.

Mental state can be seen as all the information that allows the agent to take deci-
sions. This information is managed and processed in order to produce agent decisions
and actions, by the mental state manager and processor.

The tasks/goals viewpoint considers the decomposition of goals and tasks, and de-
scribes the consequences of performing a task, and why it should be performed (i.e., it
justifies the execution of tasks as a way to satisfy goals, and these change as tasks exe-
cute). The mental state processor takes the decision of which task to execute, and the
mental state manager provides the operations to create, destroy and modify the elements
of the mental state and their relationships. In fact, a goal may have associated a life-cycle.

The interaction viewpoint addresses the exchange of information or requests between
agents, or between agents and human users. The definition of an interaction requires the
identification of:

• Actors in the interaction: who plays the role of initiator and who are the collabo-
rators. Which is the reason (goal) that motivates each actor to participate in the
interaction

• Definition of interaction units: messages, speech acts

• Definition of the possible orders of interactions units: protocols

• Which actions are performed in the interaction

• Context of the interaction: which goal pursues the interaction and which are the
mental states of its participants

• Control model: coordination mechanisms

Finally, the environment viewpoint defines the entities with which the MAS interacts,
which can be:

• Resources. Elements required by tasks that do not provide a concrete API. Examples
of resources are the CPU, File descriptors, or memory. Resources are assigned to
agents or groups in the current system.

48

CHAPTER 4. AGENT ORIENTED METHODOLOGIES 49

• Applications. Normally they offer some (local or remote) API. In some cases, appli-
cations are wrapped by agents to facilitate their integration in the MAS. Their main
use is to express the perception of the agents: applications produce events that can
be observed. Agents define their perception indicating which events they listen to

• Other agents (from other organisations). The agents in the MAS interact with these
agents to satisfy system functionality

4.2.7 MESSAGE

The MESSAGE methodology [19, 69] has adopted the Rational Unified Process (RUP) as
its generic software engineering project life-cycle framework. MESSAGE focuses on the
analysis and design activities. Both of these are modelling activities: the main output of
each is a model of the system at an appropriate level of abstraction (Figure 4.8).

The purpose of analysis is to produce a system specification (or analysis model) that
interprets the problem to be solved (i.e., the requirements) represented as an abstract
model in order to (i) understand the problem better; (ii) confirm that this is the right
problem to solve (validation); and (iii) facilitate design of the solution. It must therefore
be related both to the statement of requirements and to the design model (which is an
abstract description of the solution). MAS analysis focuses on defining the domain of
discourse and describing the organisations involved in the MAS, their goals and the roles
they have defined to satisfy them. The high-level goals are decomposed and satisfied
in terms of services provided by roles. The interactions between roles that are needed
to satisfy the goals are also described. The analysis models are produced by stepwise
refinement.

In design, MESSAGE distinguishes between high-level design, which is implementa-
tion independent, and low-level design that takes into account the specific constraints of
a target agent platform such as the agent architecture and the knowledge representations.
In high-level design the analysis model is refined by assigning roles to agents and by de-
scribing how the services are provided in terms of tasks. The tasks can be decomposed
into direct actions on the agent’s internal representation of the environment, and commu-
nicative actions to send and receive messages in interaction protocols. The interactions
between roles identified in analysis are detailed using interaction protocols.

The low-level design assumes that the developer is thinking about possible imple-
mentations. This process implies considering different mappings from high-level design
concepts to computational elements provided by the target development platforms. By
computational we mean having an application program interface with an externally known
behaviour. These elements may already exist, e.g., as a software library, or will need to
be developed from scratch. Examples of both approaches will be shown later. Imple-
mentation from the low-level design is not different from the implementation stage in a
common software development, so it will not be considered further.

49

50 CHAPTER 4. AGENT ORIENTED METHODOLOGIES

Figure 4.8: An overview of MESSAGE [19]

In each stage, the developer needs to perform stepwise refinement of the model. MES-
SAGE has defined for analysis some refinement strategies. To structure the refinement,
MESSAGE proposes levels of refinement. Different levels are numbered starting with
level 0. Each level starts with a set of elements which are modified using different refine-
ment strategies. A level, then, contains information about the system with an abstraction
degree inversely proportional to the number of the level.

Level 0 is concerned with defining the system to be developed with respect to its
stakeholders and environment. The system appears as a set of organisations that interact
with resources, actors, or other organisations. Actors may be human users or other
existing agents. Subsequent stages of refinement result in the creation of models at level
1, level 2 and so on [19].

A MESSAGE analysis model is a complex network of inter-related classes and in-
stances. MESSAGE defines a number of views that focus on overlapping sub-sets of
entity and relationship concepts (Figure 4.8). Five views have been defined to help the
modeler focus on coherent subsets of the modelling language: Organisation, Goal/Task,
Agent/Role, Interaction, and Domain.

The Organisation view shows concrete entities, i.e., Agents, Organisations, Roles,
Resources (such as databases and application services), in the system and its environment
and coarse-grained relationships between them (aggregation, power, and acquaintance
relationships). The Goal/Task view shows a detail of the goals that the Agents/Roles

50

CHAPTER 4. AGENT ORIENTED METHODOLOGIES 51

pursue and the tasks that they perform to reach them. The Agent/Role view focuses
on the individual agents and roles. This view describes their characteristics, such as
what goals they are responsible for, what events they need to sense, what resources
they control, the behaviour rules needed, etc. The Interaction view shows, for each
interaction among Agents/Roles, the initiator, the collaborators, the motivator (generally
a goal the initiator is responsible for), the relevant information supplied/achieved by
each participant, the events that trigger the interaction, and other relevant effects of the
interaction (e.g., an agent becoming responsible for a new goal). Finally, the Domain
view shows the domain specific concepts and relations that are relevant for the system
under development. These five views may be graphically visualized through new diagram
types: Organisation, Goal/Task, Delegation and Interaction, which extend the UML Class
diagram, and Workflow which extends the UML Activity diagram.

The MESSAGE Design Model redefines the analysis model. It provides detailed agent
interaction constructs to describe inter-agent communication and information exchange
between agents and with their environment. The design model also provides means (such
as a facilitator or directory agent) whereby the agent can identify other agents with which
to communicate. The design model also models the agent organisation. This covers the
capability of agents to co-operate with other agents for problem solving. The Agent view
of the Design Model also describes the agent’s internal structure and behaviour. The
internal design of the individual agents is described in terms of reusable components.
Constructs for describing basic agent concepts are defined: observation, action, commu-
nication, goals, plans, etc. These design concepts are related to corresponding concepts in
the analysis model, but address issues about how these concepts should be implemented.
MAS design also takes into account platform choices and adherence to standards such as
FIPA. Although in principle high-level design should be independent of a specific platform,
design abstractions constrain designs to a specific family of platforms. The MESSAGE
design process is based on the selection for each agent of an agent architecture, the refine-
ment of the analysis model into a design model, and the allocation of the model elements
to the agent architecture.

4.2.8 Prometheus

The Prometheus methodology [163, 164] is a detailed process for specifying, designing,
and implementing intelligent agent systems. The goal in developing Prometheus is to
have a process with defined deliverables which can be taught to industry practitioners
and undergraduate students who do not have a background in agents and which they can
use to develop intelligent agent systems.

Prometheus supports the development of intelligent agents, providing “start-to-end”
support, having evolved out of practical industrial and pedagogical experience, having
been used in both industry and academia, and, above all, in being detailed and complete.
Prometheus is also amenable to tool support and provides scope for cross checking between

51

52 CHAPTER 4. AGENT ORIENTED METHODOLOGIES
prometheus.gif (Immagine GIF, 586x433 pixel) http://www.cs.rmit.edu.au/agents/prometheus/prometheus.gif

1 di 1 13/02/2008 10.55

Figure 4.9: An overview of Prometheus [49]

designs, and uses only UML diagrams without any support for standard languages.
The methodology consists of three phases (Figure 4.9):

• System Specification phase, which involves several activities:

– Identify system goals and sub-goals

– Develop use case scenarios

– Identify the agent system’s interface to the environment in terms of actions,
percepts, and external data

– Identify functionalities

– Identify data read and written by functionalities

– Prepare functionality schemas (name, description, actions, percepts, data used/
produced, interaction, and goals)

• Architectural Design phase, which involves several activities:

– Group functionalities to determine agent types using data coupling and agent
acquaintance diagrams to assess alternative groupings

– Define agent types (also define the number and life-cycle of the agent types)
and develop agent descriptors

52

CHAPTER 4. AGENT ORIENTED METHODOLOGIES 53

– Produce a system level overview diagram describing the overall structure of
the system

– Develop interaction protocols from use case scenarios (via interaction diagrams)

• Detailed Design phase, which involves several activities:

– Develop process diagrams

– Produce agent overview diagrams showing the internal workings of agents in
terms of capabilities, events, data and plans

– Refine capability internals (add included capabilities and interactions)

– Introduce plans to handle events

– Define details of events (external, between agents, between capabilities and
within agents)

– Define details of plans (relevance, context, subgoals)

– Define details of beliefs/data

In Prometheus an aspect of system specification is the use case scenarios, which de-
scribe examples of the system in operation and are a variant of the scenario part of UML’s
use cases [163]. In the Architectural Design phase the interaction between agents are de-
fined using interaction diagrams and interaction protocols. The notation used to do this
is a simplified variant of UML sequence diagrams for interaction diagrams, and AUML
for the interaction protocol. Prometheus describes structural overviews at various levels
(system, agent, capability) with a single diagram type. In addition, diagrams are used to
show data coupling and agent acquaintance relationship. Dynamic behaviour is described
with existing models from UML and AUML.

System’s goals and functionalities are determined in the System Specification phase,
and they are strongly considered. The determination of goal is an iterative process:
identify and refine system goals, group goals into functionalities, prepare functionality
descriptor, define use case scenarios (that help to identify missing goals), check that
all goals are covered by scenarios. An initial set of goals is identified from the initial
requirements; there are refined and elaborated into hierarchy of goals by asking how goals
will be achieved, and why goals are being achieved.

Here roles are defined as functionalities, analysed during the System Specification
phase. They have to be kept as narrow as possible, dealing with a single aspect or
sub-goal of the system, in fact, if functionalities are too broad they are likely to be less
adequately specified leading to potential misunderstanding. In defining a functionality, it
is important to define information required and produced by it; each functionality should
be linked to some system goals [163]. Roles definition is also used in the Architectural
Design phase, in constructing a Data Coupling Diagram that consists of the functionalities
and all identified data, but they are not so deeply treated.

53

54 CHAPTER 4. AGENT ORIENTED METHODOLOGIES

4.3 Methodologies Comparison

In the last years several methodologies evaluations are proposed in the literature. Tran
and Low [140, 210] have prosed an evaluation framework based on process-related criteria,
technique-related criteria, model-related criteria and supportive-feature criteria.

Sturm and Shehory [202, 203] have proposed an evaluation based on four major di-
vision: concepts and properties, notations and modelling techniques, process, and prag-
matics. The authors have highlighted that the evaluation of methodologies introduces
several difficulties: i) methodologies might address different aspects or differ in their ter-
minology, ii) some of the methodologies are influenced by a specific approach, e.g., BDI
or OO, iii) the completeness of various methodologies varies dramatically. So, comparing
methodologies is a very complex tasks.

Here we adopt the following criteria for evaluating the methodologies presented in this
chapter:

• Lifecycle criteria (Subsection 4.3.1).

• Notation criteria (Subsection 4.3.2).

A summary of this section is reported in Subsection 4.3.3

4.3.1 Lifecycle Criteria

These criteria look at the development approach followed by the methodologies and the
covered steps. These criteria are important because specify the support provided by the
methodology during the software lifecycle and evaluate the kind of process supported by
the methodology. In particular:

• Development Lifecycle expresses what development lifecycle best describes the method-
ology (e.g., iterative or sequential).

• Coverage Lifecycle specifies what phases of the lifecycle are covered by the method-
ology.

• Development Perspective specifies what development perspective is supported by
the methodology (e.g., top-down, bottom-up or hybrid).

• Support for verification specifies if the development process of the methodology
contains rules to allow for the verification of the correctness of the developed models
and specifications.

Figure 4.10 summarises the results of the comparative analysis of the methodologies
presented in this chapter. ADELFE, MESSAGE and INGENIAS adopt a formally de-
fined, prominent development lifecycle (RUP or the Unified Software Development Process

54

CHAPTER 4. AGENT ORIENTED METHODOLOGIES 55

Development Coverage Development Support for
Lifecycle Lifecycle Perspective Verification

Gaia sequential Analysis top-down No
Design

Tropos iterative Analysis top-down Yes
Design

Implementation
Prometheus iterative Analysis bottom-up Yes

Design
PASSI iterative Analysis bottom-up Yes

Design
Implementation

ADELFE RUP Analysis top-down Yes
Design

Implementation
MaSE iterative Analysis top-down Yes

Design
MESSAGE RUP Analysis hybrid Mentioned as

Design future
Implementation enhancement

INGENIAS USDP Analysis hybrid Yes
Design

Implementation

Figure 4.10: Comparison regarding lifecycle criteria

(USDP)), the other methodologies describe informally their lifecycle. In both cases the
development process of all methodologies involves a high degree of iteration within and/or
across the development phases.

Tropos, PASSI, ADELFE, MESSAGE and INGENIAS cover all the software lifecycle,
while the other methodologies provide support only for the analysis and the design phases.
A designer should consider the lifecycle coverage when choose a methodologies, because
the phases not covered by methodologies should be managed in an ad way by the designer.

The development perspective is different in the considered methodologies: Gaia, Tro-
pos, ADELFE and MaSE follow a top-down approach – an overview of the system is
first formulated, specifying but not detailing any first-level subsystems, each subsystem
is then refined in yet greater detail – while Prometheus and PASSI follow a bottom-up
approach—the individual base elements of the system are first specified in great detail,
then linked together to form larger subsystems, which then in turn are linked, sometimes
in many levels, until a complete top-level system is formed. Indeed, MESSAGE and
INGENIAS adopts an hybrid approach providing support for different system’s views.

55

56 CHAPTER 4. AGENT ORIENTED METHODOLOGIES

Notation Easy to Usability Supporting
understand Tool

Gaia ad hoc high medium No
Tropos ad hoc medium medium Yes

Prometheus UML, AUML high high Yes
PASSI UML high high Yes

ADELFE UML, AUML high high Yes
MaSE UML, AUML high medium No

MESSAGE ad hoc medium medium Yes
INGENIAS ad hoc medium medium Yes

Figure 4.11: Comparison regarding notation criteria

Finally, only Gaia and MESSAGE do not provide support for the verification of the
correctness of the developed models and specifications.

4.3.2 Notation Criteria

These criteria look at the notations adopted by methodologies, supporting tools and
usability (Figure 4.11). These criteria are important because sometimes the notation
adopted could establish the methodology’s success. In particular:

• Notation specifies the type of notation adopted by the methodology.

• Easy to understand specifies if the notation adopted is easy to understand for the
new users.

• Usability specifies the degree of usability of the methodology.

• Supporting tool specifies if exist one ore more tools that support the methodology.

Figure 4.11 summarises the results about the notation criteria of the methodologies
presented in this chapter.

Gaia, Tropos, MESSAGE and INGENIAS adopt an ad hoc notation for expressing
the outcomes of the development steps, while the other methodologies use a standard
notation like UML and AUML (Agent-UML). The kind of notation influences the “easy to
understand” criterion, in fact the methodologies that adopt a standard notation are easier
to understand than the others—except for Gaia, that has an high level of understanding.
This because for new users that typically come from the object-oriented field it is easier
to understand the standard UML or its variant for agent than to learn a new notation.
Obviously also the usability of the methodology is influenced by the notation adopted. In
fact, the methodologies that adopt a standard notation are more usable than the other
because the startup time – composed by the time to learn methodology plus the time

56

CHAPTER 4. AGENT ORIENTED METHODOLOGIES 57

to learn its notation – is typically higher in those methodologies that adopts an ad hoc
notation where the time for learning a new notation becomes relevant.

Finally, only Gaia and MaSE have not a supporting toolkit. This could be a limitation
because a methodology without a supporting tool is less usable than a methodology
supported by a tool.

4.3.3 Summing up

This section has presented a comparison of the AO methodologies presented in Section 4.2.
As for software development, individual methodologies are often created with specific
purposes in mind [85]: particular domains or particular segments of the lifecycle. However
users often make the assumption that a methodology in not in fact constrained but, rather,
is universally applicable. This can easily lead to methodology failure, and to the partial
rejection of methodological thinking by software development organisation. As highlighted
in Subsection 3.2.2, the creation of a single universally applicable methodology is an
unattainable goal. The question is how could we create a methodological environment in
which the various demands of different software developers might be satisfied altogether.
So, the decision about the best methodology should depend on the target application.
Each application entails a different set of requirements that indicate which evaluation
criteria are the most important and should be supported by the chosen methodology.

As a final remark, the comparison presented here has the following limitations:

• the comparison is solely based upon the available documentations of the method-
ologies and their documented case studies;

• some evaluation criteria are subjective in nature, particularly the usability and
understandability of the methodologies;

• the criteria adopted do not cover all the possible methodologies’ key features, but
only those considered relevant in the context of this chapter. In fact two other
comparisons are provided in Chapters 8 and 12 respectively about how method-
ologies supports the design of the environment and manege the complexity of the
representation.

57

58 CHAPTER 4. AGENT ORIENTED METHODOLOGIES

58

Part II

Meta-models

59

5
Meta-models & Languages

This chapter introduces the concept of meta-model and the different types of languages
for describing meta-models. In particular Section 5.1 presents several definition of the
meta-model, the level of abstraction inducted by meta-models, and illustrates the key
role that meta-models play in the context of methodologies and their evaluations and
integrations. Section 5.2 presents different types of meta-modelling languages. Like other
modelling languages, meta-modelling languages focus on specific aspects of the domain
to be modelled, and therefore lead to different types of representations. For example
the meta-models that represent the abstractions adopted by methodologies are different
from those meta-models that represent the software development processes. This means
that different kinds of meta-modelling languages are necessary in order to capture the
distinctiveness of each domain that requests a meta-model.

The meta-modelling technique could be very useful also for representing the abstrac-
tions supported by infrastructures in order to both study the deep infrastructure semantics
and evaluate the gap between methodologies and infrastructures. There is the need to
study the different AO infrastructures, to compare their abstractions, rules, relationships,
and the process they follow, and to have a comprehensive view of this variety of infras-
tructures (Section 10.5). So, Section 5.3 presents how to meta-modelling infrastructures.

The use of a meta-model formalism helps to compactly and precisely express each
methodology and infrastructure and provides a basis for analysing and comparing them.
It also helps to study the existing gap between AO methodologies in general and AO
infrastructures, and provides a starting point for developing methodologies together with
their counterpart AO infrastructures.

Finally a summary follows in Section 5.4.

5.1 Meta-Models

Software development processes and methodologies have always been described in terms
suitable for use by the developer [88]. They talk about what tasks and techniques should
be used, what sort of lifecycle is appropriate (e.g. waterfall) and how these process
elements should be organised in time and assigned to people. They are often described in

61

62 CHAPTER 5. META-MODELS & LANGUAGES

a manual or published as a book that the project manager and his/ her team of developers
follow closely. Previous comparisons of OO processes for software development have been
undertaken, for example, by Henderson-Sellers et al. [88] and by Hull et al. [93].

With the advent of CASE tools it became necessary to create a rule base within
each tool that would support these processes. These rules would say whether it was
appropriate to, for example, sequence two activities, three techniques and then four roles
(an occurrence that should be prevented since it is nonsensical). These rules are currently
commonly captured in a meta-model. In its most general acceptation, a meta-model is
defined as

Wikipedia (1) Meta-modeling is the analysis, construction and development of the
frames, rules, constraints, models and theories applicable and useful for the model-
ing in a predefined class of problems.
(2) meta-modelling is the construction of a collection of concepts (things, terms,
etc. . .) within a certain domain. A model is an abstraction of phenomena in the
real world, and a metamodel is yet another abstraction, highlighting properties of
the model itself. This model is said to conform to its metamodel like a program con-
forms to the grammar of the programming language in which it is written. Common
uses for meta-models are:

• As a schema for semantic data that needs to be exchanged or stored,

• As a language that supports a particular method or process,

• As a language to express additional semantics of existing information.

Metamodels.com A meta-model is a precise definition of the constructs and rules
needed for creating semantic models.

Bernon et al. The process of designing a system (object or agent-oriented) consists
of instantiating the system meta-model that the designers have in their mind in
order to fulfill the specific problem requirements. In the agent world this means
that the meta-model is the critical element because of the variety of methodology
meta-models [10].

Gonzalez-Perez et.al A meta-model is a model of a methodology or, indeed, of a
family of related methodologies [80].

Brian Henderson-Sellers A meta-model describes the rules and constraints of meta-
types and meta-relationships. Concrete meta-types are instantiated for use in regu-
lar modelling work. A meta-model is at a higher level of abstraction than a model.
It is often called a model of a model. It provides the rules/ grammar for the mod-
elling language itself. The modelling language consists of instances of concepts in
the meta-model.

62

CHAPTER 5. META-MODELS & LANGUAGES 63

Project

Methodology

Meta-model

constrains

constrains

Figure 5.1: Level of abstractions in the Meta-models

It’s also important to understand that meta-models are always made for a particular
purpose. Do not ever attempt to use a meta-model without understanding the particular
goal that the authors had in mind when they created the meta-model.

Although it is possible to describe a methodology without an explicit meta-model, for-
malising the underpinning ideas of the methodology in question is valuable when checking
its consistency or when planning extensions or modifications. A good meta-model should
address all of the different aspects of methodologies, i.e. the process to follow and the
work products to be generated. In turn, specifying the work products that must be devel-
oped implies defining the basic modelling building blocks from which they are built. The
importance of meta-model becomes clear when it is necessary to study the completeness
and the expressiveness of a methodology, and when comparing different methodologies.
Meta-models are extremely important for integrating methodologies, too. Integrating
methodologies without such a formalism might lead to two kinds of errors: assuming an
existence of differences of concerns when none exists, and the wrong assumption of con-
cerns similarity. The first type of errors might lead to repetition and consequently an
unnecessarily large methodology that is hardly understood and acceptable by developers.
The second type of errors will lead to inconsistency because of the false assumption of
concerns interpretation similarity.

Meta-models are often used by methodologists to construct or modify methodologies.
In turn, methodologies are used by software development teams to construct software
products in the context of software projects. Meta-model, methodology and project
constitute, in this approach, three different areas of expertise that, at the same time,
correspond to three different levels of abstraction and three different sets of fundamen-
tal concepts (Figure 5.1) [88]. As the work performed by the development team at the
project level is constrained and directed by the methodology in use, the work performed

63

64 CHAPTER 5. META-MODELS & LANGUAGES

Figure 5.2: The OMG’s layers

by the methodologist at the methodology level is constrained and directed by the chosen
meta-model (Figure 5.1).

Traditionally, these relationships between modelling layers are seen as instance-of re-
lationships, in which elements in one layer are instances of some elements in the layer
above. Most object-oriented process meta-modelling approaches define a metamodel as a
model of a methodology that a software development team may employ. Following this
conventional approach, classes in the meta-model are used by the methodologist to cre-
ate instances in the methodology layer and thus generate a methodology. However, these
objects in the methodology layer are often used as classes by the development team to
create elements in the project layer during methodology enactment. An example is the
Meta Object Facility an OMG standard (Figure 5.2) [142]. MOF is designed as a four-
layered architecture. It provides a meta-meta model at the top layer, called the M3 layer.
This M3-model is the language used by MOF to build meta-models, called M2-models.
The most prominent example of a Layer 2 MOF model is the UML [143] meta-model,
the model that describes the UML itself. These M2-models describe elements of the M1-
layer, and thus M1-models. These would be, for example, models written in UML. The
last layer is the M0-layer or data layer. It is used to describe the real-world. MOF is
a closed meta-modeling architecture; it defines an M3-model, which conforms to itself.
MOF allows a strict meta-modelling architecture; every model element on every layer is
strictly in correspondence with a model element of the layer above. MOF only provides
a means to define the structure of a language or of data.

64

CHAPTER 5. META-MODELS & LANGUAGES 65

5.2 Meta-Modelling Languages

This section presents different types of meta-modelling languages: Subsection 5.2.1 shows
meta-modelling languages for modelling the methodologies abstractions and their relation-
ships, while Subsection 5.2.2 depicts the languages for modelling the software development
processes.

5.2.1 Meta-Modelling Languages for Abstractions

Several research efforts are being devoted to developing meta-models for the abstractions
exploited by AO methodologies, however standardisations of methodologies for develop-
ment of meta-models are not going still a long way off. Although UML is often used for
that purpose, meta-modelling methodologies (and in particular agent-oriented method-
ologies) present several peculiarities.

A comparison among the meta-modelling power of UML and OPM is shown in Chapter
13, where the meta-models of the SODA in UML and in OPM methodology are depicted.

UML

The Unified Modelling Language (UML) [143] is a graphical language for visualising,
specifying, constructing, and documenting the artifacts of a software-intensive system.
The UML offers a standard way to write a system’s blueprints, including conceptual
things such as business processes and system functions as well as concrete things such as
programming language statements, database schemas, and reusable software components.

The important point to note here is that UML is a language for specifying and not
a methodology or procedure. The UML may be used in a variety of ways to support a
software development methodology (such as the Rational Unified Process [110])—but in
itself it does not specify that methodology or process.

UML diagrams represent three different views of a system model:

• Functional requirements view: emphasises the functional requirements of the system
from the user’s point of view. Includes use case diagrams.

• Static structural view: emphasises the static structure of the system using objects,
attributes, operations, and relationships. Includes class diagrams and composite
structure diagrams.

• Dynamic behaviour view: emphasises the dynamic behaviour of the system by show-
ing collaborations among objects and changes to the internal states of objects. In-
cludes sequence diagrams, activity diagrams and state machine diagrams.

In UML 2.0 there are thirteen types of diagrams. To understand them, it can be useful
to categorise them hierarchically, as shown in Figure 5.3.

65

66 CHAPTER 5. META-MODELS & LANGUAGES

Figure 5.3: UML’s diagrams

Structure diagrams emphasise what things must be in the system being modelled:
Class diagram, Component diagram, Composite structure diagram, Deployment diagram,
Object diagram, Package diagram. Behaviour diagrams emphasise what must happen in
the system being modelled: Activity diagram, State Machine diagram, Use case diagram.
Finally Interaction diagrams, a subset of behaviour diagrams, emphasise the flow of control
and data among the things in the system being modelled: Communication diagram,
Interaction overview diagram, Sequence diagram, UML Timing Diagram. The Protocol
State Machine is a sub-variant of the State Machine. It may be used to model network
communication protocols. UML does not restrict UML element types to a certain diagram
type. In general, every UML element may appear on almost all types of diagrams. This
flexibility has been partially restricted in UML 2.0.

The general adoption of UML as a world standard for system modelling makes it the
first natural choice for representing meta-models.

Some specific issues are raised by adopting UML to express meta-models of methodolo-
gies, since representing a methodology is inherently different from representing a system
at the object level. In particular, when meta-modelling methodologies, UML leads to em-
phasise objects and object relations, leaving aside the procedural aspects, which can be
revealed only indirectly, by object operations and message exchanges. Moreover, the five
behavioural diagrams provided by UML to capture the dynamic behaviour of a system
at the object level become of little use at the meta-level, as they were defined to express
which and how interaction occurs, rather than what interaction is and what role it plays—
which is what is needed when representing a methodology. So, UML-based meta-models

66

CHAPTER 5. META-MODELS & LANGUAGES 67

Figure 5.4: Top level specification of the OPM meta-model: the OPD (left) and the
OPL(right) [54]

usually exploit only package diagrams, class diagrams, and associations.

OPM

The Object Process Methodology (OPM henceforth) [53] is an integrated approach to
the study and development of systems in general, and of software systems in particular.
OPM is also a reflective methodology, i.e. a methodology that can model itself without
requiring any auxiliary means or external tools. OPM unifies the system’s life-cycle stages
(specification, design and implementation) within one single frame of reference, using
a single diagramming tool – Object-Process Diagrams (OPDs) – and a corresponding
textual language, called Object-Process Language (OPL) (Figure 5.4). A set of inter-
related OPDs, constitute the graphical, visual OPM formalism. Each OPM element is
denoted in an OPD by a dedicated symbol, and the OPD syntax specifies correct and
consistent ways by which entities can be connected via structural and procedural links.
The OPL, precisely defined by a grammar, is the textual counterpart modality of the
graphical OPD set. OPL is a dual-purpose language, oriented towards humans as well as
machines. Catering to human needs, OPL is designed as a constrained subset of English,
which serves domain experts and system architects.

OPM consists of two types of elements: entities and links. Entities are classified
into things and states. A thing is a generalisation of an object and a process. Objects
are entities that exist, while processes are entities that transform things by generating,
consuming, or affecting them. A state is a situation at which an object exists. Therefore,
a state is not a stand-alone entity, but rather an entity that is owned by an object. At

67

68 CHAPTER 5. META-MODELS & LANGUAGES

any given point in time, the state-owning object is at one of its states. The status of an
object, i.e., the current state of the object, is changed solely through an occurrence of a
process. A link is an element that connects two entities to represent some semantic relation
between them. Links can be structural or procedural. A structural link is a binary relation
between two entities, which specifies a structural aspect of the modelled system, such
as an aggregation-participation (whole-part) or a generalisation-specialization relation.
A procedural link connects an entity with a process to denote a dynamic, behavioural
flow of information, material, energy, or control. An event link is a specialization of
a procedural link which models a significant happening in the system that takes place
during a particular moment and might trigger a process if preconditions are met.

The basic assumption of OPM is that not only objects, but objects and processes con-
stitute two equally-important classes of things, which together describe the functioning,
structure and behaviour of a system in a single framework (i.e., without multiplying di-
agrams) in virtually any domain. OPM’s basic principle is that structure and behaviour
in a system are so intertwined that effectively separating them is extremely harmful, if
not impossible. Therefore, unlike the object-oriented approach, behaviour in OPM is
not necessarily encapsulated within a particular object class construct: using stand-alone
processes, one can model a behaviour that involves several object classes and is integrated
into the system structure. The behaviour of a system is manifested in three major ways:
(i) processes can transform (generate, consume, or change) things (objects and processes),
(ii) things can enable processes without being transformed by them, and (iii) things can
trigger events that (at least potentially, if some conditions are met) invoke processes. Pro-
cesses can be connected to the involved object classes through procedural links, which are
divided, according to their functionality, into three groups: enabling links, transformation
links, and control links.

The complexity of an OPM model is controlled through three scaling processes : in-
zooming/out-zooming, in which the entity being refined is shown enclosing its constituent
elements; unfolding/folding, in which the entity being refined is shown as the root of a
directed graph; and state expressing/suppressing, which allows for showing or hiding the
possible states of an object (see Chapter 12).

5.2.2 Meta-Modelling Languages for Processes

Research efforts are ongoing to define a unified meta-model of the process development
addressed by methodologies, aimed at representing the existing methodologies in a uni-
form way, so as to promote their mutual comparison, their composition and reuse—this
area is sometimes referred to as Method Engineering [14, 174].

SPEM (Software Process Engineering Meta-model, [200]) and OPF (Object-oriented
Process, Environment and Notation Process Framework, [160]) are two key references
for this purpose: as it could be expected, both were conceived for an object-oriented
context, since most current methodologies adopt this paradigm as the reference one.

68

CHAPTER 5. META-MODELS & LANGUAGES 69

Figure 5.5: SPEM Overview

Subsection 5.2.2 and Subsection 5.2.2 present these two notations.

Software Process Engineering Meta-model

SPEM [200] version 1.1 is an OMG standard object-oriented meta-model defined as a UML
profile and used to describe a concrete software development process or a family of related
software development processes. SPEM is based on the idea that a software development
process is a collaboration between active abstract entities called roles which perform
operations called activities on concrete and real entities called work products. Each role
interacts or collaborates by exchanging work products and triggering the execution of
activities. The overall goal of a process is to bring a set of work products to a well-defined
state (Figure 5.5).

Figure 5.6– from [200] – shows the main elements of the SPEM meta-model definition:

• WorkProduct is anything produced, consumed, or modified by a process. It may be
a piece of information, a document, a model, source code, and so on

• WorkProductKind describes a category of work product, such as Text Document,
UML Model, Executable, Code Library, and so on

• WorkDefinition is a kind of Operation that describes the work performed in the
process. It can be decomposed reflexively:

– Activity — describes a piece of work performed by one ProcessRole. An Ac-
tivity may consist of atomic elements called Steps

– Phase — is a specialization of WorkDefinition such that its precondition defines
the phase entry criteria and its goal defines the phase exit criteria

69

70 CHAPTER 5. META-MODELS & LANGUAGES

Figure 5.6: Process Structure package of SPEM

– Iteration — An Iteration is a composite WorkDefinition with a minor phases

– Lifecycle — A process Lifecycle is defined as a sequence of Phases that achieve
a specific goal. It defines the behaviour of a complete process to be enacted in
a given project or program

• ProcessPerformer defines a performer for a set of WorkDefinitions in a process

• ProcessPerformer has a subclass,ProcessRole

• ProcessPerformer represents abstractly the whole process or one of its components,
and is used to own WorkDefinitions that do not have a more specific owner

• ProcessRole defines responsibilities over specific WorkProducts, and defines the roles
that perform and assist in specific activities

• Guidance provides more detailed information to practitioners about the associated
ModelElement. I.e.: Technique is a kind of Guidance. A Technique is a detailed,
precise algorithm used to create a work product

In addition SPEM provides a complete set of icons for the newly introduced concepts
– the SPEM notation – that make it possible to build comprehensible models (Figure
5.7).

Object-oriented Process, Environment, and Notation

Object-oriented Process, Environment, and Notation (OPEN) [160] is a full lifecycle,
process-focussed, methodological approach that was designed for the development of soft-
ware intensive applications. OPEN is defined as a process framework, known as the OPF

70

CHAPTER 5. META-MODELS & LANGUAGES 71

UMLModel

Document

Process

Phase

ProcessPackage

ProcessRole

Activity

Guidance

WorkDefinition

WorkProduct

NotationStereotype

Figure 5.7: SPEM’s icons

71

72 CHAPTER 5. META-MODELS & LANGUAGES

Figure 5.8: OPEN Meta-level classes

(OPEN Process Framework), that is a process meta-model from which can be generated
an organisationally-specific process (instance). Each of these process instances is cre-
ated by choosing specific Activities, Tasks and Techniques (three of the major metalevel
classes) and specific configurations (Figure 5.8). The definition of process includes not
only descriptions of phases, activities, tasks, and techniques but issues associated with
human resources, technology, and the life-cycle model to be used. OPF leaves the choice
of a notation to the developer, though suggesting UML as a good candidate.

The OPEN Process Framework provides a cohesive class library of predefined compo-
nents that can be extended, instantiated and tailored for use on a specific project (Figure
5.8). These components are of the following five main types:

• work product is any significant thing of value (e.g., document, diagram, model, class,
application) that is developed during a project

• language is the medium used to document a work product. Use case and object mod-
els are written using a modelling language such as the Unified Modelling Language
(UML) or the OPEN Modelling Language (OML)

• producer is anything that produces (i.e., creates, evaluates, iterates, or maintains),
either directly or indirectly, versions of one or more work products. The OPF distin-
guishes between those direct producers (persons as well as roles played by the people
and tools that they use) and indirect producers (teams of people, organisations and
endeavours)

72

CHAPTER 5. META-MODELS & LANGUAGES 73

• work unit is a functionally cohesive operation that is performed by a producer
during an endeavour and that is reified as an object to provide flexibility during
instantiation and tailoring of a process. The OPF provides the following predefined
classes of work units:

– Task— functionally cohesive operation that is performed by a direct producer.
A task results in the creation, modification, or evaluation of a version of one
or more work products

– Technique — describes in full detail how a task is to be done

– Activity — cohesive collection of workflows that produce a related set of work
products. Activities in OPEN are coarse granular descriptions of what needs
to be done

• stage is a formally identified and managed duration or a point in time, and it
provides a macro organisation to the work units. The OPF contains the following
predefined classes of stage:

– Cycle — there are several types of cycle e.g. lifecycle

– Phase — consisting of a sequence of one or more related builds, releases and
deployments

– Workflow — a sequence of contiguous task performances whereby producers
collaborate to produce a work product

– Build — a stage describing a chunk of time during which tasks are undertaken

– Release — a stage which occurs less frequently than a build. In it, the contents
of a build are released by the development organisation to another organisation

– Deployment — occurs when the user not only receives the product but also,
probably experimentally, puts it into service for on-site evaluation

– Milestone — is a kind of Stage with no duration. It marks an event occurring

5.3 Meta-Modelling Languages for Infrastructures

To the best of our knowledge, in the infrastructures’ research field there is not a stan-
dard language for modelling and representing an infrastructure. Taking inspiration from
the traditional languages used in Software Engineering for representing methodologies’
abstractions, UML [143] could be also used as a language for meta-modelling the infras-
tructures. In particular the UML’s class diagrams are used for representing the static
model (Subsection 5.3) and the UML’s sequence diagrams for representing the dynamic
model (Subsection 5.3).

73

74 CHAPTER 5. META-MODELS & LANGUAGES

UML was chosen as notation after a careful evaluation of other specification languages
such as OPM [53] (see Subsection 5.2.1). However for the infrastructure the use of UML
should not be misunderstood. UML is used only as a notation language for representing
a high-level description of the infrastructures. This does not imply that the models
represent the “real” infrastructure’s structure, and also does not imply an object-oriented
implementation of the infrastructure.

In the reminder of this section the static and dynamic models which will be adopted
in Chapter 10 for meta-modelling infrastructures are presented.

Static Models

The static model describes the structure of a system in terms of abstract elements and the
relationships among them. The meta-model technique is chosen as a tool for representing
the infrastructure’s static model. As for the methodologies, all infrastructures introduce
some basic “run-time abstractions” (agents, organisations, resources, . . .) in order to
support deployment and execution of systems. So, it is not so strange to represent the
relationships between such abstractions by means of a meta-model. The infrastructure’s
meta-model becomes the key tool to compare an infrastructure with each other, and to
check the consistency of an infrastructure when planning extensions or modifications.
Meta-models are also an important guide for integrating different infrastructures avoid-
ing several errors, such as assuming differences of concern when none exists, or assuming
similarites of concern because of a common use of terms despite a different semantics.
In addition, infrastructure meta-models could be used for associating each methodol-
ogy’s concept to some suitable infrastructural abstraction(s): studying and comparing
methodologies with infrastructures in terms of meta-models makes it possible to provide
guidelines for mapping the design model of a methodology onto its implementation [124]
(see Chapter 16).

Among the possible choices the UML class diagram is adopted as a tool for represent-
ing the meta-model. A class diagram is a type of static structure diagram that describes
the structure of a system by showing the system’s classes, their attributes, and the rela-
tionships between the classes. Obviously the semantics associated to the UML’s elements
is quite different from the “traditional” semantics used in the object-oriented context.
For example in the infrastructure class diagram the “class elements” are not to be taken
as the traditional object-oriented classes but simply as abstract entities supported by
infrastructures.

Dynamic Models

The dynamic model describes and models the behaviour of the system at runtime. For the
representation of this model different alternatives were evaluated such as OPM [53] and
UML. OPM could be a good choice for representing the dynamic model, however OPM is

74

CHAPTER 5. META-MODELS & LANGUAGES 75

not well-known as UML, so as a tool for representing the infrastructure’s dynamic model
the UML sequence diagrams seems the best candidate.

As for the class diagram, the semantics associated to the language’s elements is quite
different from the “traditional” UML semantics. In particular, the only “interaction mech-
anism” supported by sequence diagram is message passing. In fact a sequence diagram
provides a sequential map of messages passed between objects over time. So in the se-
quence diagrams that are shown in Chapter 10, the interactions among infrastructure
entities are represented only by means of a message passing technique. This is obviously
an abstraction over the real mechanisms adopted by each infrastructure. Each infrastruc-
ture, in fact, supports its own interaction mechanism: some infrastructures use message
passing (like Jade), while others use different forms of mediated interaction (like TuC-
SoN, TOTA,. . .). In a similar way, even if the interaction among abstract entities is
illustrated with a synchronous semantics in the sequence diagrams, the interaction in the
infrastructures does not necessarily occur in a synchronous way.

Another limitation of the sequence diagram is the difficulty to express “alternative
paths” in the same diagram in order to have a global view of the interactions. For
example, let us suppose we represent the interactions among three different entities A,
B, C (Figure 5.9). The interaction initiator is the entity A that sends a message to B. B
executes an internal elaboration and the result of this elaboration determines the receiver
of the message that B will send. This is an example of “alternative paths”: the interactions
among entities depend on the result of internal elaboration. There are two possible ways
to represent this kind of interaction, as illustrated in Figure 5.9. The first solution – top
of the figure – represents each alternative path in a different diagram. Instead, the second
solution – bottom of the figure – depicts the different paths in the same diagram with
“explanatory notes” that explain the alternatives.

Even though both solutions can capture alternative path, each of them presents draw-
backs. The first solution leads to an easier-to-read dynamic model than the second.
However, the first solution also contains too many diagrams, so the general overview of
the system behaviour is difficult to obtain. Instead, the second solution leads to a more
compact model, which is however less readable, in particular when there are a lot of
alternative paths.

The first solution seems good both for the better readability and for a possible future
integration of all the different alternative diagrams relative to the same interaction in a
unique Interaction Overview diagram. This diagram is supported in the UML version 2.0,
but at the time of writing it is not so known as the sequence diagram and it is not so
supported by the different UML CASE tools.

75

76 CHAPTER 5. META-MODELS & LANGUAGES

AA BB

1: message 1

2: elaboration

3: message 2

AA BB CC

1: message 1

2: elaborat ion

3: message 2

a1) a2)

b)

AA BB CC

1: message 1

2: elaborat ion

3: message 2

4: message 2

The result of the eleboration
determines the receiver of
the "message 2"

Figure 5.9: Problem in Sequence Diagram: two different diagram express the interaction
(top), and the interaction in the same diagram (bottom)

5.4 Summing up

This chapter has presented the languages adopted for representing the different types
of meta-models. For the meta-model of abstractions two different languages are pro-
posed,UML and OPM. Both have strengths and drawbacks as illustrated in Section 5.2,
however in the reminder of this thesis we have decided to use UML as a language for rep-
resenting the meta-model for abstractions because UML is a standard and most known
than OPM. Similar consideration are done for the meta-model languages for processes,
where SPEM is our choice.

Finally, since there is not a standard for meta-modelling infrastructures, in the re-
minder of this thesis we adopted the method proposed in Section 5.3

76

6
AOSE & Meta-models

This chapter presents the abstractions and process meta-models for some of the most
known AO methodologies presented in Chapter 4.

Since in the agent context there is not a universally accepted definition of agent nor it
exists any very diffused model of the multi-agent system, the use of meta-models will help
to clarify formally and compactly each methodology main building blocks and process.
The importance of meta-modelling is not only for having a precise view of AO methodolo-
gies as a way to check their completeness and expressivity, or to compare them, but it is
also useful to clarify the distance between AO methodologies and AO infrastructures cur-
rent work. Expressing AO methodologies and AO infrastructures in formal meta-models
presents an initial step to reduce the conceptual and technical gap amongst these two
research areas. Consequently, there is the need to study the different AO methodologies,
to compare their abstractions, rules, relationships, and the process they follow, and to
have a comprehensive view of this variety of methodologies.

The reminder of this chapter is organised as follows: Section 6.1 presents the PASSI’s
meta-models, Section 6.2 presents the ADELFE’s meta-models, Section 6.3 presents the
Tropos’s meta-models, and Section 6.4 presents the Gaia’s meta-model. Finally Sec-
tion 6.5 reports a summary of this chapter.

6.1 PASSI

This section provides a description of the PASSI meta-models. In particular Subsec-
tion 6.1.1 shows the concepts meta-model, while Subsection 6.1.2 depicts and high level
description of the process meta-model.

6.1.1 PASSI: Concepts Meta-model

In the PASSI meta-model (Figure 6.1) [10], the Problem Domain deals with the user’s
problem in terms of scenarios, requirements, ontology and resources ; scenarios describe a
sequence of interactions among actors and the system.

77

78 CHAPTER 6. AOSE & META-MODELS

Figure 6.1: PASSI: concept meta-model

Requirements are represented with conventional use case diagrams. There is a strong
point behind these choices: a lot of highly skilled designers are already present in different
companies and can be more easily converted to the use of an agent-oriented approach if
they are already confident with some of the key concepts used within it. Analysis related
issues (like requirements and scenarios) being situated in the highest abstraction phase
are strategic in enabling this skill reuse and allow a smooth entrance to the new paradigm.
Ontological description of the domain is composed of concepts (categories of the domain),
actions (performed in the domain and effecting the status of concepts) and predicates
(asserting something about a portion of the domain). This represents the domain in a
way that is substantially richer than the classic structural representations produced in
the object-oriented analysis phase. As an example, we can consider ontologies devoted
to reasoning about strategies or problem solving methods whose essence is very difficult
to capture in object-oriented structures. Resources are the last element of the problem
domain. They can be accessed/ shared/manipulated by agents. A resource could be

78

CHAPTER 6. AOSE & META-MODELS 79

a repository of data (like a relational database), an image/video or also a good to be
sold/bought. We prefer to explicitly model them since goals of most systems are related
to using and capitalizing on available resources.

The Agency Domain contains the elements of the agent-based solution. None of these
elements is directly implemented; they are converted to the correspondent object-oriented
entity that constitutes the real code-level implementation. The concept of agent is the
real center of this part of the model; each agent in PASSI is responsible for realising
some functionalities descending from one or more requirements. The direct link between
a requirement and the responsible agent is one of the strategic decisions taken when
conceiving PASSI. Each agent during its life plays some roles which are portions of the
agent social behaviour characterised by some specificity such as a goal, or providing a
functionality/service. From this definition it is clear that roles could use communications
in order to realise their relationships or portions of behaviour (called tasks) to actuate
the role proclivity. In PASSI, the term task is used to mean an atomic part of the overall
agent behaviour and, therefore, an agent can accomplishing its duties by composing the
set of its own tasks. Tasks cannot be shared among agents, but their capabilities could
be offered by the agent to the society as services (often a service is obtained composing
more than one task); obviously according to agent autonomy, each single agent has the
possibility of accepting or refusing to provide a service if this does not match its personal
attitudes and will. A communication is composed of one or more messages expressed in
an encoding language (e.g. ACL [62]) that is totally transparent to agents.

Finally, the Implementation Domain describes the structure of the code solution in
the chosen FIPA-compliant implementation platforms and it is essentially composed of
three elements: (i) the FIPA-Platform Agent that represents the implementation class for
the agent entity represented in the Agency domain; (ii) the FIPA-Platform Task that is
the implementation structure available for the agent’s task and, finally, (iii) the Service
element that describes a set of functionalities offered by the agent under a specific name
that is registered in the platform service directory and therefore can be required by other
agents to reach their goals.

6.1.2 PASSI: Process Meta-model

The PASSI process modelled by SPEM is composed of five disciplines: system require-
ments, agent society, agent implementation, code and deployment [121]. In Figure 6.2
the PASSI process is shown in terms of the composing phases and their workproducts.
Each phase produces a document that is usually composed aggregating the UML models
and work products produced during the related activities. Each phase is composed of one
or more sub-phases, each one responsible for designing or refining one or more artefacts
that are parts of the corresponding model (for instance the System Requirements model
includes an agent identification diagram that is a kind of UML use case diagrams but also
some text documents like a glossary and the system use scenarios).

79

80 CHAPTER 6. AOSE & META-MODELS

Figure 6.2: PASSI Process

The system requirements discipline covers all the phases related to requirement elici-
tation, analysis and agents/roles identification (Figure 6.3).

Figure 6.3: PASSI: system requirement

80

CHAPTER 6. AOSE & META-MODELS 81

The agent society discipline faces all the aspects of the agent society: ontology, com-
munications, roles description, interaction protocols (Figure 6.4)

Figure 6.4: PASSI: agent society

The agent implementation discipline provides a view on the system architecture in
terms of classes and methods to describe the structure and the behaviour of single agent
(Figure 6.5).

Figure 6.5: PASSI: agent implementation

The code discipline provides a library of class and activity diagrams with associated
reusable code and source code for the target system (Figure 6.6 part a)).

Finally the deployment discipline depicts how the agents are deployed and which
constraints are defined/identified for their migration and mobility (Figure 6.6 part b)).

81

82 CHAPTER 6. AOSE & META-MODELS

a) b)

Figure 6.6: PASSI: code (a) and deployment (b)

6.2 ADELFE

This section provides a description of the ADELFE meta-models. In particular Subsec-
tion 6.2.1 shows the concepts meta-model, while Subsection 6.2.2 depicts a high level
description of the process meta-model.

6.2.1 ADELFE: Concepts Meta-model

The meta-model adopted for ADELFE (Figure 6.7) is fundamentally explained by AMAS
theory and by the features a cooperative agent possesses [10].

Local cooperation rules enable it to detect and solve Non Cooperative Situations (NCS).
These NCS are cooperation failures that are, from its point of view, inconsistent with its
cooperative social attitude. Different kinds of such failures can be detected according to
the context of the concerned application, such as Incomprehension (an agent does not
understand a perceived signal), Ambiguity (it has several contradictory interpretations
for a perceived signal), Incompetence (it cannot satisfy the request of another), Unpro-
ductiveness (it receives an already known piece of information or some information that
leads to no reasoning for it), Concurrency (several agents want to access an exclusive
resource), Conflict (several agents want to realise the same activity) or Uselessness (an
agent may make an action that is not beneficial, according to its beliefs, to other agents).
When detecting a NCS, an agent does all it is able to do to solve it to stay cooperative
for others. For example, faced with an incomprehension situation, it does not ignore the
message but will transmit it to agents that seem (from its point of view) relevant to deal
with it. An agent possesses world representations that are beliefs concerning other agents,

82

CHAPTER 6. AOSE & META-MODELS 83

Figure 6.7: ADELFE: concept meta-model

the physical environment or the agent itself. These representations are used by the agent
to determine its behaviour. If an agent has representations that may evolve (e.g., a se-
mantic network), these representations can be expressed using a multi-agent system. A
representation can be shared by different agents.

An agent is able to communicate with other agents or its environment. This com-
munication can be done in a direct manner (by exchanging messages) or an indirect one
(through the environment). Tools that enable an agent to communicate are interaction
languages. When an agent uses a direct communication through message exchanges,
agent interaction protocols may also be used to express the communication pattern be-
tween agents. An agent can interact with its environment (physical or social) by means of
perceptions and actions. For an agent, an action is a way to act on its environment during
its action phase and a perception enables it to receive information from this environment.
Aptitudes show the ability of an agent to reason both about knowledge and beliefs it owns.
For instance, an aptitude of a software agent can be expressed by an inference engine on a
base of rules or any other processing on perceptions and world representations. Aptitudes
can also be expressed using data, e.g. an integer value which represents the exploration
depth of a planning tree. An agent owns some skills that are specific knowledge that
enable it to realise its own partial function. For instance, a skill may be a simple datum
which is useful to act on the world (e.g., an integer distance which represents the min-
imal distance a robot has to respect to avoid obstacles) or may be more complex when

83

84 CHAPTER 6. AOSE & META-MODELS

Figure 6.8: ADELFE Process

expressing reasoning that the agent makes during its decision phase (e.g., a reasoning to
avoid obstacles). If they are complex and able to evolve, skills may also be implemented
by MAS.

An agent may possess some characteristics which are its intrinsic or physical proper-
ties. It may be, for instance, the size of an agent or the number of legs of a robot-like or
ant-like agent. A characteristic may also be something the agent can perform to modify
or update one of its properties; for example, if the agent is an ant, enabling it to modify
its number of legs.

6.2.2 ADELFE: Process Meta-model

The ADELFE process modelled by SPEM is composed of three disciplines: requirements,
analysis and design [1]. In Figure 6.8 the ADELFE process is shown in terms of the
composing phases and their workproducts:

• Requirements phase produces Functional Description model, Scenarios, Interface
Models, Environment Definition, Requirement Set, Keyword Set and Usage Interface
Prototypes.

• Analysis phase produces Domain Model, AMAS Adequacy Synthesis, Software Ar-
chitecture, Environment Definition, Internal Interaction between Domain Classes.

• Design phase produces the Detailed Architecture, Interaction Languages, Protocols
Diagram and Design Model.

During the requirements phase (Figure 6.9) it is necessary to give an Environment
Model that, in the AMAS theory, will serve as base for the process of adaptation. This
process begins with the interactions between the system and the environment. The envi-
ronment model includes the following activities: actors determination, context definition
and environment characterisation.

84

CHAPTER 6. AOSE & META-MODELS 85

Figure 6.9: ADELFE Requirements Phase

In the analysis phase (Figure 6.10), the previously defined entities are analyzed in
order to specify which will be agents. An agent is an entity having the capability to
evolve during an unexpected situation, showing new behaviours and skills. Two activities
are added to the classical RUP: the agent identification and the adequacy at the AMAS
theory.

Figure 6.10: ADELFE Analysis Phase

The design phase (Figure 6.11) aims to define the agent’s architecture describing their
behaviours; the result of this activity adds two models to the RUP: the Agent Model and
the Non Cooperative Situations (NCS) Model.

85

86 CHAPTER 6. AOSE & META-MODELS

Figure 6.11: ADELFE Design Phase

6.3 Tropos

This section provides a descriptions of the Tropos meta-models. In particular Subsec-
tion 6.3.1 shows the concepts meta-model, while Subsection 6.3.2 depicts a high level
description of the process meta-model.

6.3.1 Tropos: Concepts Meta-model

Tropos adopts extended i* notation with actor, goal, task/plan, softgoal, resource, and
dependency as basic modelling constructs. These concepts allow one to model both soft-
ware systems and organisations, and are used through the whole software development
process, from early requirements down to implementation. A goal represents the strategic
interests of an actor. A softgoal, as opposed to a hardgoal (or simply a goal), is a goal
that is typically a nonfunctional attribute or quality, with no clear-cut criteria as to when
it is achieved. A task/plan specifies a particular course of action that produces a desired
effect, and can be executed in order to satisfy a goal. Goals and tasks can be related
to softgoals through qualitative relationships (labelled “+” and “-”) to indicate that the
goal/task contributes positively or negatively to the fulfillment of the softgoal. A resource
represents a physical or an informational entity. Finally, a dependency between two actors
indicates that one actor depends on another to accomplish a goal, execute a task/plan,
or deliver a resource. Tropos modelling approach includes two types of diagrams, namely,
actor and goal diagrams. An actor diagram is a graph with actors (agents, positions,
or roles) as nodes, and dependencies among actors as edges. A goal diagram is used for

86

CHAPTER 6. AOSE & META-MODELS 87

Figure 6.12: Tropos: basic concept meta-model

supporting the means-ends analysis conducted by each actor as it attempts to ensure that
its goals will eventually be fulfilled (through goal decompositions and delegations).

In Figure 6.12 the portion of the Tropos meta-model taken from [31] with the basic
modelling constructs is shown. Agent, role and position are specializations of the concept
of actor. A position can cover 1..n roles, whereas an agent can play 0..n roles and occupy
0..n positions. An actor can have 0..n goals, which can be both hard and softgoals, and
each of them wanted by 1 actor. An actor dependency relates a depender, dependee,
and dependum (i.e. goal, task, or resource). It is possible to specify also a reason for
the dependency (labelled as why). The concepts related to the Tropos goal diagram are
depicted in Figure 6.13. As follows from the diagram, goals can be analyzed, from the
point of view of an actor, by means-end analysis, contribution analysis and boolean de-
composition. Means-end analysis allows one to specify the means (goals/plans/resources)
that are used in order to achieve the end (a goal). Contribution analysis aims at iden-
tifying goals that can contribute positively or negatively towards the fulfillment of other
goals. Decomposition defines a generic boolean decomposition of a root goal into AND- or
OR-subgoals. Means-end analysis and AND/OR decomposition can be applied to plans
also.

6.3.2 Tropos: Process Meta-model

The Tropos process modelled by SPEM is composed of five disciplines: early requirements,
late requirements, architectural design, detailed design and implementation [121]. In
Figure 6.14 the Tropos process is shown in terms of the composing phases and their
workproducts.

87

88 CHAPTER 6. AOSE & META-MODELS

Figure 6.13: Tropos: concepts of goal diagram

Figure 6.14: Tropos Process

The early requirements discipline shows stakeholders and their goals, dependencies
and resources (Figure 6.15).

88

CHAPTER 6. AOSE & META-MODELS 89

Figure 6.15: Tropos: early requirement

The late requirements discipline shows the “system-to-be” as new actor and its goals,
dependencies and resources (Figure 6.16).

Figure 6.16: Tropos: late requirement

The architectural design discipline defines the system architecture in terms of sub-
actors and their relatives goals, dependencies and relations. In addition the software
agents related to sub-actors are defined (Figure 6.17).

89

90 CHAPTER 6. AOSE & META-MODELS

Figure 6.17: Tropos: architectural design

The detailed design discipline covers the agent design in terms of capabilities, beliefs,
goals and plans (Figure 6.18).

Figure 6.18: Tropos: detailed design

The implementation discipline creates a code skeleton of the detailed design specifica-
tions (Figure 6.19).

90

CHAPTER 6. AOSE & META-MODELS 91

Figure 6.19: Tropos: implementation

6.4 Gaia

This section provides a description of the Gaia concept meta-model. The process meta-
model is not reported because it is currently not available for the new version of 2003
[229]. The process meta-model of the previous version [225] could be found in [121].

The meta-model of GAIA taken is depicted in Figure 6.20.
Organisations are viewed in GAIA as collections of roles, which are defined in terms

of responsibilities, permissions, activities and protocols. Responsibilities define the func-
tionality of the role, while permissions are the “rights” which allow the role to perform
its responsibilities. Activities are computations that can be executed by the role along,
and protocols define the interaction between roles. As soon as the complexity of systems
increases, modularity and encapsulation principles suggest dividing the system into dif-
ferent sub-organisations, with a subset of the agents being possibly involved in multiple
organisations.

In each organisation, an agent can play one or more roles, which defines what it is
expected to do in the organisation, both in concert with other agents and in respect to
the organisation itself. To accomplish their roles, agents typically need to interact with
each other to exchange knowledge and coordinate their activities. These interactions
occur according to patterns and protocols dictated by the nature of the role itself. In
addition, a MAS is typically immersed in an environment with which the agents may
need to interact in order to accomplish their roles. That portion of the environment that
agents can sense and effect is determined by the agent’s specific role, as well as by its
current status. Identifying and modelling the environment involves determining all the

91

92 CHAPTER 6. AOSE & META-MODELS

entities and resources that the MAS can exploit, control, or consume when it is working
towards the achievement of the organisational goal.

Figure 6.20: Gaia: concept meta-model

However, although role and interaction models can be useful to fully describe an exist-
ing organisation, they are of limited value in building an organisation. The organisational
structure is not implicitly defined via the role model, instead the identification of the roles
is explicitly derived from an analysis of the chosen organisational structure. As a con-
sequence the role model and the related interaction model will be completely defined in
the design phase when an accurate identification of the organisational structure will take
place. This motivates the introduction of the notions of organisational rules and organi-
sational structures. It is possible to distinguish between safety and liveness organisational
rules. The former refer to the invariants that must be respected by the organisation for
it to work coherently; the latter express the dynamics of the organisation. A role model
implicitly defines the topology of the interaction patterns and the control regime of the
organisations activities. That is, it implicitly defines the overall architecture of the MAS
organisation, i.e. its organisational structure.

92

CHAPTER 6. AOSE & META-MODELS 93

6.5 Summing up

This chapter has presented the meta-models of some most known AO methodologies. As
mentioned above a meta-model addresses all of the different aspects of methodologies
– i.e., the process to follow and the abstractions adopted by methodologies – and it is
necessary for studying the completeness and the expressiveness of a methodology, and
when comparing different methodologies. These characteristics are important and make
meta-modelling techniques very appealing in the the context of AOSE where there is a
incredible proliferation of methodologies.

However, the power of the meta-modelling is not only limited to the study and the
comparison of the methodologies. In fact, the use of meta-modelling techniques allows de-
signers to combine fragments [36] – i.e., pieces of methodologies – of existing AO method-
ologies for obtaining a new methodology that satisfies the requirements of a specific ap-
plication domain (Subsection 4.3.3). This method is called Method Engineering [15, 16]
that is the engineering discipline to design, construct and adapt methodologies, techniques
and tools for the development of information systems. Similarly as software engineering
is concerned with all aspects of software production, method engineering deals with all
engineering activities related to methodologies, techniques and tools.

The assembly of a new methodology starting from the fragments of the existing
methodologies – or fragments built ad hoc – is not a new idea. The study started in
the early nineties in the object-oriented field [16, 84, 185] and then it was introduced in
the agent-oriented field in 2003 by the IEEE-FIPA Methodology Technical Committee
(FIPA Foundation for Intelligent Physical Agents) [121]. This group have both defined
the method fragments for AO methodologies and developed a technique for the fragments
integration [36] and its relative tool [18].

So the study of the existing methodologies’s meta-models – for abstractions and for
processes – becomes the key tool for enabling the construction of new methodologies.

93

94 CHAPTER 6. AOSE & META-MODELS

94

7
The Agents & Artifacts Meta-Model

This chapter presents a new conceptual framework – called Agents&Artifacts – for mod-
elling and designing agent-oriented systems. According to social / psychological theories
like Activity Theory (AT) [137], artifacts plays a fundamental role in the context of human
organisations for supporting cooperative work and, more generally, complex collaboration
activities. Artifacts are either physical or cognitive tools that are shared and exploited
by the collectivity of individuals for achieving individual as well as global objectives. The
conceptual framework of artifacts for MAS is meant to bring the same sort of approach to
MAS. The adoption of artifacts in the MAS context changes the traditional view of the
MAS environment: from a simple deployment context MAS environment is transformed
to a new MAS design dimension.

Then agents and artifacts become the new “ingredients” for engineering agent-oriented
systems. More precisely, agents are the basic abstractions to represent active, task-/goal-
oriented components, designed to pro-actively carry out one or more activities towards the
achievement of an objective, requiring different levels of skill and reasoning capabilities.
On the other hand, artifacts are the basic abstractions to represent passive, function-
oriented building blocks, which are constructed and used by agents, either individually
or cooperatively, during their working activities. So agents can be used to model indi-
vidual activities, while artifacts can be well suited for mediating the interaction between
individual components and their environment (including the other components), and for
embodying the portion of the environment that is explicitly designed to support agents’
activities [146].

The reminder of this chapter is organised as follows: Section 7.1 presents the general
view of the A&A meta-model, Section 7.2 presents artifacts and their characteristics /
features, and Section 7.3 presents the concept of workspace, the third ingredient of the
A&A meta-model. Finally Section 7.4 summarises the chapter.

7.1 A&A Meta-Model

Agents&Artifacts (A&A) is a novel conceptual framework introduced in the context of
AOSE for modelling and designing agent-based software systems [146, 152, 153]. A&A

95

96 CHAPTER 7. THE AGENTS & ARTIFACTS META-MODEL

introduces three basic kinds of general-purpose abstractions to understand and model
complex systems [130]:

• agents : pro-active components of the systems, encapsulating the autonomous exe-
cution of some kind of activity inside some sort of environment.

• artifacts : passive components of the systems such as resources and media that are
intentionally constructed, shared, manipulated and used by agents to support their
activities, either cooperatively or competitively (Section 7.2).

• workspaces : logical containers of agents and artifacts, useful for defining the topol-
ogy for the environment and providing a way to define a notion of locality (Sec-
tion 7.3).

So one fundamental difference with respect to existing agent-based models is the adop-
tion of artifacts as a first-class abstraction also to model and design those parts of the
MAS which are function-oriented, i.e. designed to provide some kind of functions [130].

One of the key issues of in the A&A approach is how artifacts can be effectively
exploited to improve agent ability to achieve individual as well as social goals [152]. The
main questions to be answered are then: How should agents reason to use artifacts in
the best way, making their life simpler and their action more effective? How can agents
reason to select artifacts to use? How can agents reason to construct or adapt artifact
behaviour in order to fit their goals?

On the one hand, the simplest case concerns agents directly programmed to use specific
artifacts, with usage protocols directly defined by the programmer either as part of the
procedural knowledge / plans of the agent for goal-governed systems, or as part of agent
behaviour in goal-oriented system. In spite of its simplicity, this case can bring several
advantages for MAS engineers, exploiting separation of concerns for programming simpler
agents, by imposing some burden upon specifically-designed artifacts. On the other hand,
the intuition is that in the case of fully-open systems, the capability of the artifact to
describe itself, its function, interface, structure and behaviour could be the key for building
open MASs where intelligent agents dynamically look for and select artifacts to use, and
then exploit them for their own goals.

At first glance, it seems possible to frame the agent ability to use artifacts in a hier-
archy, according to five different cognitive levels at which the agent can use an artifact
[152, 153]:

unaware use at this level, both agents and agent designers exploit artifacts without
being aware of it: the artifact is used implicitly, since it is not denoted explicitly.
In other words, the representation of agent actions never refers explicitly to the
execution of operation on some kind of artifact.

96

CHAPTER 7. THE AGENTS & ARTIFACTS META-MODEL 97

embedded / programmed use at this level, agents use some artifacts according to
what has been explicitly programmed by the designer: so, the artifact selection
is explicitly made by the designer, and the knowledge about its use is implicitly
encoded by the designer in the agent. In the case of cognitive agents, for instance,
agent designers can specify usage protocols directly as part of the agent plan. From
the agent point of view, there is no need to understand explicitly artifact operating
instructions or function: the only requirement is that the agent model adopted could
be expressive enough to model in some way the execution of external actions and
the perception of external events.

cognitive use at this level, the agent designer directly embeds in the agent knowledge
about what artifacts to use, but how to exploit the artifacts is dynamically discov-
ered by the agent, reading the operating instructions. Artifact selection is still a
designer affair, while how to use it is delegated to the agent’s rational capabilities.
So, generally speaking the agent must be able to discover the artifact function, and
the way to use it and to make it fit the agent goals. An obvious way to enable
agent discovery is to make the artifact explicitly represent their function, interface,
structure and behaviour.

cognitive selection and use at this level, agents autonomously select artifacts to use,
understand how to make them work, and then use them: as a result, both artifact
selection and use are in the hands of the agents. It is worth noting that such a
selection process could also concern sets of cooperative agents, for instance interested
in using a coordination artifact for their social activities.

construction and manipulation at this level, agents are lifted to the role of designers
of artifacts. Here, agents are supposed to understand how artifacts work, and how
to adapt their behaviour (or to build new ones from scratch) in order to devise a
better course of actions toward the agent goals. For its complexity, this level more
often concerns humans: however, not-so-complex agents can be adopted to change
artifact behaviour according to some schema explicitly pre-defined by the agent
designers.

To enable such scenarios, proper models, theories and then supporting frameworks are
needed, making artifacts first-class entities from design to runtime.

7.2 Artifacts

The sources for a theory of artifacts can be found in a number of different research fields,
ranging from organisational / psychological theories – such as Activity Theory (AT) [137]
– to anthropology [75, 89], and obviously including the area of coordination models [159].
In particular, AT is based on a structured model that constitutes an activity, and on the

97

98 CHAPTER 7. THE AGENTS & ARTIFACTS META-MODEL

mediating role of artifacts. Any activity is characterised by a subject, an object and by
one or more mediating artifacts:

• a subject is an agent or group engaged in an activity;

• an object (in the sense of objective) is held by the subject and motivates the activity,
giving it a specific direction (the objective of the activity); the object of activity can
be a wide variety of things, from mental objectives (e.g., making a plan) as well as
physical ones (e.g., writing a paper);

• the mediation artifacts, which are the tools that enable and mediate subject actions
toward the object of the activity. The mediating artifacts can be either physical or
abstract / cognitive; examples are: symbols, rules, operating procedures, heuristics,
scripts, individual / collective experiences, and languages.

According to AT, mediating tools have both an enabling and a constraining function:
on the one hand, they expand out possibilities to manipulate and transform different
objects, but on the other hand the object is perceived and manipulated not ’as such’ but
within the limitations set by the tool. Mediating artifacts shape the way human beings
interact with reality [176]. Given this definition, artifacts could be fruitfully adopted as
enabling and constraining tools also in the agent paradigm, where MASs are built around
the concepts of society of agents. So, two basic aims can be immediately identified in the
artifact abstraction:

• social (constructive): an artifact is an abstraction essential for constructing social
activities, creating the agent interaction space;

• normative (regulatory): an artifact is an abstraction essential for ruling social ac-
tivities, ruling the agent interaction space.

So, artifacts functions as media enabling agent interaction (such as coordination ar-
tifacts [153]) play a key role in MAS, being what actually shapes the interaction space
among the agent. So, changing the behaviour of an artifact working as medium could
have a strong impact on the overall system behaviour.

In particular artifacts allow agents to use the same cognitive level when they inter-
act with other agents and with environment. Usually, agents speak with each other via
languages like FIPA-ACL (agent communication language) [62], while exploiting the en-
vironmental resources as a means for lower-level interaction. So, the agents’ interaction
space spans over different cognitive levels, because agents cannot interact with the other
components (agents and resources) of the MAS in a uniform way [188]. Artifacts, instead,
make it possible to wrap the resources of a MAS and bring them to the cognitive level of
agents, so that both the interaction among agents (on the one side) and between agents
and artifacts (on the other) can occur at the same cognitive level, exploiting the high-level

98

CHAPTER 7. THE AGENTS & ARTIFACTS META-MODEL 99

Figure 7.1: An abstract model of the artifact [180]

language that describes artifacts’ services as the common language. In order to make this
possible, the language should be standard enough to support both the MAS openness
and agent mobility, allowing heterogeneous agents to join a MAS, discover and use the
services provided by the artifacts. By the way, this choice also simplifies the design of the
MAS interaction space, since engineers no longer need to design ad-hoc protocols for each
resource in the environment (the relationship between each resource and the artifact that
wraps it concerns the internal design of the artifact and does not affect the interaction
space of the MAS).

A more detailed characterisation of the artifact abstraction, in terms of fundamental
properties and features, can be found in Subsection 7.2.1, while Subsection 7.2.2 outlines
a possible taxonomy for artifacts.

7.2.1 Features

According to [180], each artifact type is to be equipped by the artifact designer with a
manual composed essentially by the (i) a usage interface, (ii) operating instructions, and
(iii) a function description (Figure 7.1).

Usage Interface — One of the core differences between artifacts and agents, as com-
putational entities populating a MAS, lies in the concept of operation, which is the

99

100 CHAPTER 7. THE AGENTS & ARTIFACTS META-MODEL

means by which an artifact provides for a function [152]. An agent executes an
action over an artifact by invoking an artifact operation. Execution possibly ter-
minates with an operation completion, typically representing the outcome of the
invocation, which the agent comes to be aware of in terms of perception. The set of
operations provided by an artifact defines what is called its usage interface, which
(intentionally) resembles interfaces of services, components or objects in the object-
oriented sense of the term. In MASs, this interaction schema is peculiar to artifacts,
and makes them intrinsically different from agents. While an agent has no interface,
acts and senses the environment, encapsulates its control, and brings about its goals
proactively and autonomously, an artifact has instead a usage interface, is used by
agents (and never the opposite), is driven by their control, and automates a specific
service in a predictable way without the blessing of autonomy. Hence, owning an
interface strongly clearly differentiates agents and artifacts, and is therefore to be
used by the MAS engineer as a basic discriminative property between them (Figure
7.1).

Operating Instructions — Coupled with a usage interface, an artifact could provide
agents with operating instructions [152]. Operating instructions are a description
of the procedure an agent has to follow to meaningfully interact with an artifact
over time. Most remarkably, one such description is history dependent, so that
actions and perceptions occurring at a given time may influence the remainder of
the interaction with the artifact. Therefore, operating instructions are basically
seen as an exploitation protocol of actions / perceptions. This protocol is possibly
furthermore annotated with information on the intended preconditions and effects
on the agent mental state, which a rational agent should read and exploit to give a
meaning to operating instructions. Artifacts being conceptually similar to devices
used by humans, operating instructions play a role similar to a manual, which a
human reads to know how to use the device on a step-by-step basis, and depending
on the expected outcomes he/she needs to achieve (Figure 7.1).

Function Description — Finally, an artifact could be characterised by a function de-
scription [152]. This is a description of the functionality provided by the artifact,
which agents can use essentially for artifact selection. In fact, differently from oper-
ating instructions, which describe how to exploit an artifact, a function description
describes what to obtain from an artifact. Clearly, function description is an abstrac-
tion over the actual implementation of the artifact: it hides inessential details over
the implementation of the service while highlighting key functional (input/output)
aspects of it, to be used by agents for artifact selection.

For instance, consider the case of a digital camera. In order to choose a digital camera
among all that are available in the market, interested customers usually start by checking
the cameras’ technical specifications, such as its memory, zoom capabilities, etc.: these

100

CHAPTER 7. THE AGENTS & ARTIFACTS META-MODEL 101

INTERFACE
CONTROL
(COMMAND)

<NAME+PARAMS>

 OPERATION Y

 OPERATION Z

 OPERATION X

USAGE
INTERFACE

PROP_NAMEX
PROP_VALUEX OBSERVABLE

PROPERTIES
<NAME,VALUE>

OBSERVABLE
PROPERTIES

OBSERVABLE EVENTS
GENERATION ARTIFACT

MANUAL<DESCR,CONTENT>

Figure 7.2: A refined model of the artifact

are actually a form of function description—they explain what the camera does. Also,
each camera has its own buttons and panels, which must be operated according to the
instruction provided by the vendor in the user’s manual. Buttons and panels represent
the camera’s usage interface – i.e., how to access it – while the user’s manual describes
how to use them to suitably configure the camera resolution, the zoom ratio, etc.—thus
representing the operating instruction.

The artifact abstraction leads to a notion of use that is the basic kind of relationship
among agents and artifacts, besides creation and disposal. Accordingly, a more refined
notion of usage interface is defined as the basic set of operations and observable states and
events that an artifact exposes so as to be usable by agents [180]. Informally, an agent
can interact with an artifact through its usage interface as follows: an agent executes
actions that result in the triggering of some artifact operations, which then leads to the
observation of events or the evolution of the artifact state (Figure 7.2).

Such an abstraction strictly mimics the way in which humans use their artifacts: a
simple example is the coffee machine, whose usage interface includes suitable controls –
such as the buttons - and means to make (part of) the machine behaviour observable -

101

102 CHAPTER 7. THE AGENTS & ARTIFACTS META-MODEL

such as displays – and to collect the results produced by the machine–such as the coffee
can. It is quite evident by now that, differently from agents, artifacts are not meant to
be autonomous or pro-active: they are meant to represent passive entities that are useful
if and only if properly (created and) used by agents.

In addition, artifacts typically exhibit further relevant properties, which enhance MAS
engineers’ but also agents’ ability to use them for their own purposes. For instance, it
should be possible to monitor artifacts as an observable part of the environment, so as to
check the development of the activities, track the system history, and evaluate the overall
system performance.

In addition, artifacts should exhibit further relevant properties, which enhance MAS
engineers’ but also agents’ ability to use them for their own purposes. For instance, it
should be possible to monitor artifacts as an observable part of the environment, so as to
check the development of the activities, track the system history, and evaluate the overall
system performance. Desirable artifact features can then be listed as follows:

Inspectability — The state of an artifact, its content (whatever this means in a specific
artifact), its usage interface, operating instructions and function description might
be all or partially available to agents through inspectability. Whereas in closed
MASs this information could be hard-coded in the agent – the artifact engineer
develops the agents as well – in open MASs third-party agents should be able to
dynamically join a society and get aware at run-time of the necessary information
about the available artifacts. Also, artifacts are often in charge of critical MAS
behaviour: being able to inspect a part or the whole of an artifact features and
state is likely to be a fundamental capability in order to understand and govern the
dynamics and behaviour of a MAS.

Controllability — Controllability is an obvious extension of the inspectability property.
The operational behaviour of an artifact should then not be merely inspectable, but
also controllable so as to allow engineers (or even intelligent agents) to monitor
its proper functioning: it should be possible to stop and restart an artifact working
cycle, to trace its inner activity, and to observe and control a step-by-step execution.
In principle, this would largely improve the ability of monitoring, analysing and
debugging at execution time the operational behaviour of an artifact, and of the
associated MAS social activities as well.

Malleability — Also related to inspectability, malleability (also called forgeability) is a
key-feature in dynamic MAS scenarios, when the behaviour of artifacts could require
to be modified dynamically in order to adapt to the changing needs or mutable
external conditions of a MAS. Malleability, as the ability to change the artifact
behaviour at execution-time, is seemingly a crucial aspect in on-line engineering for
MASs, and also a prospective key issue for self-organising MASs.

102

CHAPTER 7. THE AGENTS & ARTIFACTS META-MODEL 103

UI-CNTR-NAME(PARAMS)

UI-CNTR-NAME(PARAMS)

...

OBSPROPNAME(CONTENT)

OBSPROPNAME(CONTENT)

...

USAGE
INTERFACE

ARTIFACT
MANUAL

OBSERVABLE
EVENTS
GENERATION
EVNAME(CONTENT)

OPERATION X

LINK
INTERFACE

OPERATION Y

OBSERVABLE
PROPERTIES

CONTROL PANEL

Figure 7.3: Artifact model with linkability

Predictability — Differently from agents – which as autonomous entities have the free-
dom of behaving erratically, e.g. neglecting messages - usage interface, operating
instructions and function description can be used as a contract with an artifact by
an agent. In particular, function description can provide precise details of the out-
comes of exploiting the artifact, while operating instructions make the behaviour of
an artifact predictable for an agent.

Formalisability — The predictability feature can be easily related with formalisability.
Due to the precise characterisation that can be given to an artifact behaviour,
until reaching e.g. a full operational semantics model – for instance, as developed
for coordination artifacts in [153] - it might be feasible to automatically verify the
properties and behaviour of the services provided by artifacts, for this is intrinsically
easier than services provided by autonomous agents.

Linkability — Artifacts can be used encapsulate and model reusable services in a MAS.
To scale up with complexity of an environment, it might be interesting to compose
artifacts, e.g. to build a service incrementally on top of another, by making a new
artifact realising its service by interacting with an existing artifact. To this end,

103

104 CHAPTER 7. THE AGENTS & ARTIFACTS META-MODEL

artifacts should be able to invoke the operation of another artifact: the reply to that
invocation will be transmitted by the receiver through the invocation of another
operation in the sender. This leads to refine again the artifact model accounting
the linkability feature (Figure 7.3).

Distribution — Differently from an agent, which is typically seen as a point-like ab-
straction conceptually located to a single node of the network, artifacts can also
be distributed. In particular, a single artifact can in principle be used to model
a distributed service, accessible from more nodes of the net. Using linkability, a
distributed artifact can then be conceived and implemented as a composition of
linked, possibly non-distributed artifacts–or vice versa, a number of linked artifacts,
scattered through a number of different physical locations could be altogether seen
as a single distributed artifact. Altogether, distribution and linkability promote the
layering of artifact engineering.

7.2.2 Taxonomy of artifacts

Many sorts of different artifacts populate a MAS, providing agents with a number of
different services, embodying a variety of diverse models, technologies and tools, and ad-
dressing a wide range of application issues. So, different categorisations could be made.
For instance, for coordination artifacts, which entail a form of mediation among the agents
using a given artifact and enact some coordination policy, two basic aims can be identified:
the constructive artifact, as an abstraction aimed at creating and composing social activ-
ities; and the normative artifact, essential for ruling social activities. This distinction is
particularly relevant when dealing with the concept of norm, however for our purposes a
different classification seems more useful. The taxonomy of artifacts presented in [151] dis-
tinguishes among individual artifacts, social artifacts, and environmental artifacts (Figure
7.4):

Individual artifacts are artifacts exploited by one agent, and mediate between an indi-
vidual agent and the environment. In general, individual artifacts are not directly
affected by the activity of other agents, but can, through linkability, interact with
other artifacts in the MAS.

Social artifacts are instead artifacts exploited by more than one agent, and mediate
between two or more agents in a MAS. In general, social artifacts typically provide
MASs with a service which is in the first place meant to achieve a social goal of the
MAS, rather than an individual agent goal.

Environmental artifacts are artifacts that conceptually wrap external resources, and
mediate between agents of a MAS and the external resources. In principle, resource
artifacts can be conceived as a means to raise external MAS resources up to the

104

CHAPTER 7. THE AGENTS & ARTIFACTS META-MODEL 105

Artifact

Individual
Artifact

Social
Artifact

Environmental
Artifact

Figure 7.4: Artifacts Taxonomy

agent cognitive level. In fact, they can equip external resources with a usage in-
terface, operating instructions, and a service description, and realise their task by
dynamically mapping high-level agent interactions upon lower-level interactions.

In the end, individual, social and resource artifacts can be used as the basis for build-
ing the glue keeping agents together in a MAS, and for structuring the environment
where agents live and interact: altogether, they can be taken as the conceptual, layered
foundation for artifact design in MAS engineering.

7.3 Workspaces

Workspaces can be used to define the topology of the working environment. A workspace
can be defined as an open set of artifacts and agents creating and using them: artifacts
can be dynamically added to or removed from workspaces, agents can dynamically enter
(join) or exit workspaces. The same artifact can belong to multiple workspaces. By
defining a topology of the environment, workspaces make it possible to structure agents
and artifacts organisation and interaction, in particular functioning as scopes for event
generation and perception, and artifact access and use. On the one side, a necessary
condition for an agent to use an artifact is that it must exist in a workspace where the
agent is located. On the other side, events generated by the artifacts of a workspace can
be observed only by agents belonging to the same workspace.

Intersection and nesting of workspaces are supported to make it possible to create ar-
ticulated topologies. In particular, intersection is supported by allowing the same artifacts
and agents to belong to different workspaces.

105

106 CHAPTER 7. THE AGENTS & ARTIFACTS META-MODEL

7.4 Summing up

This chapter has introduced the notion of artifact as first-class abstraction for MAS
engineering. Along with agents, artifacts constitute the basic building blocks both for
MAS analysis and modelling, and for MAS development and actual construction—i.e., real
first-class abstractions available to engineers throughout MAS design and development
process, down to run-time. Artifacts are objects explicitly designed to provide some
function, which guides their use. Typically, artifacts take the form of objects or tools
that agents share and use to support their activities, and to achieve their (individual
and social) objectives. By adopting a cognitive perspective over systems [153], agents
are the entities of a system that are characterised by some goals to be pursued, whereas
artifacts are the entities that are not intrinsically characterised by a goal (they are not
goal-oriented). Instead, artifacts are characterised by the concept of use, where an agent
using an artifact for its own goals implicitly (and temporarily) associates an external goal
to the artifact itself. So, agents and artifacts can be assumed as the two fundamental
abstractions required to model and shape the structure of MASs: a MAS is made by
agents speaking with other agents and using artifacts in order to achieve their goals.

106

Part III

Environment

107

8
AOSE & Environment

Different perspectives exist on the role that environment plays within agent systems: how-
ever, it is clear at least that all non-agent elements of a MAS are typically considered to be
part of the MAS environment [129]. Current practice in AOSE considers the environment
as an implicit part of the MAS that is often dealt with in ad hoc way. Indeed, following
[219], the environment should be considered as an explicit part of MAS, to be modelled
and designed as a first-class abstraction. Along this line, MAS environment should be
explicitly accounted for in the engineering of MAS, working as a new design dimension
for AO methodologies.

While this general perspective on MAS environment is commonly shared in the agent
community [220], today AO methodologies actually provide little or even no support for
the modelling and design of MAS environment: for instance, a number of them – such
as PASSI [35] and INGENIAS [170] – just support environment modelling, while others
do not consider MAS environment at all. Even more, it is often difficult to understand
how the concept of environment is actually supported by AO methodologies, also in
the cases when it is explicitly mentioned. In the PASSI meta-model, for instance, the
modelling of environment – from the agent viewpoint – is somehow “hidden” in the
ontology description, and is scarcely highlighted; then, typical environmental elements
like physical resources are represented as mere agent-related entities and are strangely
not related to the ontology description.

This chapter reviews some of the most significant AO methodologies according to
their approach to the engineering of MAS environment. First of all the methodologies
are classified in three different groups, and explain the rationale for this choice (Sec-
tion 8.1). Then an overview of the methodologies is presented according to the previous
classification. In particular, Section 8.2 presents the so-called strong-env methodologies,
Section 8.3 illustrates weak-env methodologies, whereas no-env methodologies are pre-
sented in Section 8.4. A summary is reported in Section 8.5

109

110 CHAPTER 8. AOSE & ENVIRONMENT

8.1 Classification of AO Methodologies

As mentioned above, the goal of this Chapter is to study AO methodologies (Chapter
4) in order to understand how they deal with the engineering of MAS environment. In
particular, the focus is on how methodologies model and design the environment, and
on what kind of environment abstractions and topology abstractions (see Chapter 2,
Section 2.3) they provide to MAS engineers.

Each of AO methodologies has obviously its own strengths and drawbacks, in general.
For example, Tropos is a good methodology for the requirements capturing and analysis
but it does not consider environment engineering, while ADELFE is good in the environ-
ment engineering but does not say enough on requirements capturing. However, the aim
of this classification is not to present a classical, general-purpose survey and comparison
of AO methodologies. Rather, the viewpoint is stuck to engineering MAS environments,
and to try to provide the reader with a clear overview of how existing AO methodologies
deal with them. So, this classification should not be taken as a statement of why a cer-
tain methodology is better or worse than another, but just as a measure of how much it
supports MAS engineers in dealing with the environment.

Accordingly, though AO methodologies are quite heterogeneous, it is obviously useful
to classify them according to the extent by which they tackle environment in MAS:

strong-env Strong environment viewpoint : this kind of methodology allows MAS engi-
neers to both model and design the environment at every stage of the methodology.

weak-env Weak environment viewpoint : methodologies belonging to this category take
into account only the modelling of the environment.

no-env No environment viewpoint : in short, these methodologies do not consider envi-
ronment at all, at least explicitly.

The difference between strong-env and weak-env methodologies is crucial here: in the
former case, MAS engineers can fully design the environment through suitable dedicated
abstractions provided by the methodology; in the latter case, environment structure and
behaviour are taken as given a priori, and MAS engineers can only model them. In other
terms, weak-env methodologies mostly deal with a notion of MAS environment as the
external environment, while strong-env methodologies typically recognise the existence of
an agent environment within a MAS that can be suitably modelled and designed by MAS
engineers.

8.2 Strong-Env Methodologies

Methodologies in the strong-env category promote MAS environment as a first-class ab-
straction [219] in the modelling and design of MAS from the early phases of the develop-

110

CHAPTER 8. AOSE & ENVIRONMENT 111

ment process. In this category we find ADELFE and OperA+Environment 1.

8.2.1 ADELFE

In ADELFE [9, 173], the environment is studied since the WorkDefinition 2 (WD2, Final
Requirements) stage, where MAS environment is characterised in terms of the entities
(either passive or active) that interact with the MAS. An active entity can behave au-
tonomously and is able to dynamically interact with the system, instead a passive entity
can be considered as a resource exploited by the system, which cannot change in an
autonomous way (these will later become objects of the environment). In the subse-
quent stage, MAS context is studied through the interactions between the entities and
the system. Finally, the environment is described in the terms of accessibility, continuity,
determinism and dynamism.

In the WD3 (Analysis) stage, active entities are split in two sets: cooperative entities
(that will become agents), and the active entities that autonomously evolve without hav-
ing a goal. The latter are autonomous resource or active objects, and will remain simple
objects in the environment. Afterwards, in WD3 interactions between entities (passive
and active) are designed by means of standard UML [143] sequences or collaboration di-
agrams, as advised by RUP. Then, the design of “environment abstractions”(passive and
active entities) is done according to the RUP guidelines, determining packages, classes
and using traditional design patterns. This implicitly defines the behaviour of the envi-
ronment abstractions. Also, the topology of environment is implicitly defined by means of
an agent internal module called “representation module”, which enables agents to create
their own representation of the environment they perceive, and also by means of the study
of MAS context in WD2.

8.2.2 OperA+Environment

The OperA+Environment approach [40] adopts the analysis from OperA [52], a method-
ology that uses organisation structures and provides for open agent systems. The authors
have refined OperA with the introduction of both the environment model and the design
phase.

The environment model in the analysis phase specifies the resources that are available
for the agents, like databases, etc. The model also specifies the available services – like
white or yellow pages, but also like the Mathematica package to support calculations of
any sort – as well as the way the system can interact with the environment.

In the design phase the Infrastructure Model makes use of the design models from two
existing methodologies: SODA [144] and Gaia [225]. This model consists of a resource
model, a service model, and a model of coordination facilities. Each resource model

1In this Chapter the SODA methodology is not considered. SODA will be extensively presented in
Chapters 13 and 14

111

112 CHAPTER 8. AOSE & ENVIRONMENT

Environment Behaviour of Topology
Abstractions Abstractions Abstractions

ADELFE passive and implicitly implicitly
active objects designed defined

OperA+ resources, services and explicitly not supported
Environment coordination facilities designed

Figure 8.1: Strong environment viewpoint in AO methodologies

contains a specification of the resource (e.g. document, database, or library) in terms of
various qualities and quantities, access permissions, and admissible actions. The service
model defines which services (e.g. any activity that processes information) can be deliv-
ered to a certain service request. The services can be defined as abstract operations in
terms of input and output functionality. For each service, the model specifies the per-
missions needed to use the service by an agent playing a certain role. It also specifies
the quality of service, such as the maximal delay in providing the service, the format of
messages it can process, and the protocols it can support. Finally, coordination facilities
are mechanisms that can be used by the agents to coordinate their activities. Exam-
ples are synchronisation, tuple spaces, subscribe-notify design pattern, or various types
of protocols.

8.2.3 Strong-env Methodologies at a Glance

Table 8.1 summarises how the methodologies support the key elements of strong environ-
ment viewpoint, and classifies them along three dimensions: environment abstractions,
behaviour of abstractions, and topology abstractions.

8.3 Weak-Env Methodologies

Methodologies in this category take into account the environment as an entity which is
given a priori, which MAS engineers can only model. Environment modelling may occur
at different stages of such methodologies. In this category Gaia, PASSI, MESSAGE,
INGENIAS, Prometheus, and ROADMAP can be found.

8.3.1 Gaia

In Gaia [228, 229], MAS environment is studied from the analysis phase. In particular
the environmental model is intended to make explicit the features of the environment in
which the MAS will be immersed. The identification and modelling of the environment
involves determining all the entities and resources that the MAS can exploit. Gaia suggests

112

CHAPTER 8. AOSE & ENVIRONMENT 113

treating the environment in terms of abstract computational resources (such as variables
or tuples) made available to agents for sensing, affecting or consuming. Following such an
identification, the environmental model can be viewed as a list of resources characterised
by the type of the actions that the agents can perform on it. In the preliminary role
model, roles are related to environment by means of permissions. Permissions discipline
how roles can access environmental resources and possibly change or consume them. In
order to represent permissions, Gaia adopts the same notation used for environmental
resources. However, the attributes associated with resources no longer represent what can
be done with such resources (i.e., reading, writing, or consuming) from an environmental
perspective, but rather what the agents playing the role are allowed to do (or not to do)
to accomplish the role goal(s).

In the architectural design, the preliminary role model is completed by the addition
of roles generated by the architectural choice. For each new role, permissions associated
to environmental resources are defined. In the detailed design, agents are associated with
roles, so that agents are related to environmental resources.

8.3.2 PASSI

In PASSI [35, 38], the environment is studied from the Agent Society Model, in particular
in the Ontology Description Phase. In the Domain Ontology Description, agents know
the environment through the abstractions of Concepts (categories, entities of the domain),
Predicates (describing the state of the instance of concepts that actually occur in the envi-
ronment), and Actions (performed in the domain), along with their mutual relationship.
In the Communication Ontology Description the agent interactions are represented: in
each communication, it is important to introduce the proper data structures (selected
from elements in Domain Ontology Description) within each agent in order to store the
exchanged data. In the PASSI meta-model the concept of Resource also appears, which
represents a tangible entity of the environment with which agents can interact, and which
is a part of agents’ environment awareness. This concept only relates with agents: no
relation exists with ontology elements.

In the Role Description Phase PASSI introduces a relationship called Resource Depen-
dency : a role depends on another for the availability of an entity (indicated by a resource
name)—however, it is unclear from the avilable documentation whether this resource is
the same that appears in the meta-model.

8.3.3 MESSAGE

MESSAGE [20, 69] has adopted the Rational Unified Process (RUP) as a generic software
engineering project lifecycle framework. MESSAGE adopts the abstraction of Resource
as a Concrete Element in the system. Resource is used to represent non-autonomous
entities such as databases or external programs used by Agents. Standard object-oriented

113

114 CHAPTER 8. AOSE & ENVIRONMENT

concepts are adequate for modelling Resources.
Then, in the analysis phase, several views take into account the concept of resource. In

particular the Organisation view shows Concrete Entities (Agents, Organisations, Roles,
Resources) in the system and its environment, as well as coarse-grained relationships
between them (aggregation, power, and acquaintance relationships). An acquaintance
relationship indicates the existence of at least one Interaction involving the entities con-
cerned. In addition, the Domain view shows the domain specific concepts and relations
that are relevant for the system under development. The Agent/Role view specifies for
each agent/role what resources it controls.

The purpose of the design phase is to define computational entities that represent the
MAS appearing at the analysis level. Analysis entities are thus translated into subsystem,
interface, classes, operation signatures, algorithms, objects, object diagrams, and other
computational concepts.

8.3.4 INGENIAS

INGENIAS [96, 170] provides a notation for modelling MAS, and a well-defined collection
of activities to guide the development process of MAS from tasks to code generation.
INGENIAS uses the concept of viewpoint as MESSAGE. Each viewpoint in INGENIAS
is constructed following two sets of activities structured into activity diagrams: one set
aims at elaborating the view at the analysis level, whereas the other focusses on the
design. In particular the Environment Viewpoint defines the entities with which the MAS
interacts, which could be Resources (such as CPU, File Descriptors or memory), Other
Agents (from existing organisations), and Applications (expressing the perception and
action of the agents, producing the events that can be observed).

In the Development Process INGENIAS suggests to identify in first place all the
software systems (usually non-agent based) that will coexist with the MAS. By using
the environmental model, it is possible to consider dependencies – in terms of agent
perceptions and actions – with legacy and proprietary systems from the beginning.

8.3.5 Prometheus

Prometheus [163, 164] is intended to be a practical methodology: it aims at being com-
plete and detailed, and to be usable by industrial software developer. In Prometheus the
environment is modelled since the System Specification phase. In particular, the envi-
ronment is defined by describing the percepts available to the system, the actions that it
will be able to perform, and any external data that are available as well as any external
bodies of code.

In the Architectural Design phase the environment appears in the design of the overall
structure of the systems: the overview diagram captures the agent types, the boundaries
of the system, and its interface in terms of actions and perceptions, but also in terms of

114

CHAPTER 8. AOSE & ENVIRONMENT 115

data and code that are external to the system. In the Detailed Design phase the overview
diagram is used to develop internals of agents and interaction protocols.

8.3.6 ROADMAP

The ROADMAP [103] methodology extends the first version of Gaia with several features:
support for requirements gathering, explicit models to describe the domain knowledge and
the execution environment, levels of abstraction during the analysis phase, to allow iter-
ative decomposition of the system, explicit models and representations of social aspects
and individual agent characteristics, from the analysis phase to the final implementation,
runtime reflection, modelling mechanisms to reason and change the social aspects and
individual agent characteristics at runtime. The environment model is proposed to pro-
vide a holistic description of the system environment and provides both the environment
abstractions and the modelling of the topology. By formally describing the environment,
the authors create a knowledge foundation on which environment changes are handled
consistently. The environment model is derived from the use-case model. The model con-
tains a tree hierarchy of zones in the environment, and a set of zone schema to describe
each zone in the hierarchy. A zone schema includes a text description of the zone, and
the following attributes: static objects, objects, constraints, sources of uncertainty and
assumptions made about the zone. Static objects are entities in the environment whose
existences are known to agents, with which agents do not interact explicitly. Objects are
similar entities with which agents interact. Sources of uncertainty in the environment are
identified and analysed. The zone hierarchy uses OO-like inheritance and aggregation to
relate zones and various objects inside zones.

8.3.7 Weak-env Methodologies at a Glance

Table 8.2 summarises the environment-related abstractions adopted by weak-env method-
ologies. This table, unlike Table 8.1, only presents environment and topology abstractions,
while the behaviour of the abstractions is omitted because here MAS environment is only
modelled and not designed.

8.4 No-Env Methodologies

Methodologies in this category do not deal with the concept of MAS environment. Tropos
and MaSE can be taken as representatives of this category.

8.4.1 Tropos

Tropos [13, 77] is a requirements-driven methodology and adopts the abstractions offered
by i*, a modelling framework proposing concepts such as actor (actors can be agents,

115

116 CHAPTER 8. AOSE & ENVIRONMENT

Environment Abstractions Topology Abstractions

Gaia abstract computational not supported
resources

PASSI resource, concepts, not supported
predicates and actions

MESSAGE resources not supported
INGENIAS resources, other agents not supported

and applications
Prometheus actions, perceptions, not supported

external data and code
ROADMAP static objects and objects zones, zones schema,

constraints

Figure 8.2: Weak Environment Viewpoint in AO methodologies

positions or roles), as well as social dependencies among actors, including goal, softgoal,
task and resource dependencies. These concepts are used in all software development
phases of Tropos, from the early requirements analysis down to the actual implementa-
tion. Resources are always involved in dependencies among actors. A resource is not an
abstraction that models the environment, instead it could be thought of as an item for
knowledge exchange among actors: more precisely, a resource represents a physical or an
informational entity that one actor may want and another could deliver.

8.4.2 MaSE

MaSE [44, 224] guides a designer through the software lifecycle from a prose specification
to an implemented agent system. MaSE is independent of a particular MAS architecture,
agent architecture, programming language, or message-passing system. The abstractions
used by MaSE are goals, tasks, roles and agents. Each goal is associated to the role that
achieves it. Any mention of separate machines or other forms of distribution requires one
role for each “side” of the distributed relationship. Interfacing with an external source
is the same. One role may interface with the source while another may be required to
bridge the gap back to the system. This is also true for any database, file interface, or user
interface in the system. A user interface implies a role by itself, and should be separated
from other roles as if it were a distinct data source. Then role are assigned to agents—so
in the end everything is an agent in MaSE.

8.4.3 No-env Methodologies at a Glance

In this subsection two different examples of methodologies that do not explicitly consider
the environment, yet have been briefly reviewed. Typically in this kind of methodology

116

CHAPTER 8. AOSE & ENVIRONMENT 117

the environment is not totally forgotten, instead it is typically represented by means of
agents—so, not as a first-class entity. A common viewpoint is that as far as AOSE is con-
cerned using agents for modelling everything means somehow to pervert the nature of the
agent abstraction itself [219]. For instance, the agent abstraction is not the most suitable
one for modelling resources, for which crucial agent concepts like autonomy and proac-
tiveness simply do not apply. Instead, relying on notions like environment and topology
abstraction is a key step to tackle the peculiarities of environment in AO methodologies.

8.5 Summing up

The key role of environment as a first-class abstraction in the engineering of MAS is today
generally acknowledged in the MAS community.

However, this chapter has highlighted that in the AOSE field a small number of
methodologies actually deal with environment as a first-class abstraction, while some
others provide MAS engineers with only one model of the environment, and a few others
do not consider environment as a first-class abstraction at all, yet. Furthermore, even in
the case of methodologies actually modelling MAS environment, such a feature is often
somehow hidden or not-well documented. The proposed survey has tried to understand
in depth how each methodology handles MAS environment, and which sorts of envi-
ronment abstractions it adopts. The results are then a classification of methodologies in
three different categories: strong-environment viewpoint (methodologies that consider en-
vironment as a first-class abstraction for MAS engineering), weak-environment viewpoint
(methodologies that only model environment) and no-environment viewpoint (method-
ologies that do not consider environment), and an overview of how the environment is
managed by the methodologies presented according to the previous classification.

117

118 CHAPTER 8. AOSE & ENVIRONMENT

118

9
Environment in AO Methodologies

This chapter presents a viable approach to introduce the notion of environment within
existing AO methodologies [129]. This wil be done by extending AO methodologies with
ad hoc method fragments – e.g. portions of the development process – [63] that allow
methodologies to support modelling and designing of the environment without re-drawing
the whole methodology. First of all, an identification of the environment-related abstrac-
tion which will be adopted in the approach should be done (Section 9.1). This abstraction
should be general enough to fit most methodologies. Among the available alternatives,
the abstractions introduced by the A&A meta-model (A&A) [178] – namely, artifacts and
workspaces – seem good candidates. These abstraction are adopted by the new version
of the SODA methodology (Chapter 14). While this choice is obviously not the only
one possible (Section 9.1), the remainder of this chapter presents how AO methodologies
can be extended with artifacts and workspaces to generally deal with the engineering of
environment in MAS.

In the discussion that follows, no-env and weak-env methodologies are kept distinct:
whereas neither has a complete handling of environment, each has a different approach
toward it. So, the indentification of the environment and topology abstraction is reported
in Section 9.1, while the next sections first show how to introduce environment in a no-
env methodology so as to make it a weak-env one (Section 9.2), then discuss how to
transform a weak-env methodology to a strong-env one (Section 9.3). Related work and
the summary follows in Section 9.4 and Section 9.5.

9.1 Environment and Topology Abstractions

When dealing with the introduction of the environment in a methodology, the first issue
to consider is the choice of the most suitable environment abstraction. The notion of
environment abstraction as introduced in Section 2.3 is a high-level notion: while it is
a good way for discussing the environment in general, it might be practical to exploit
a more concrete notion at the methodological level. In fact, since it is an abstraction
over the real entities used by infrastructures, there is no clear definition of its concrete
structure, and of the concrete interaction modality it promotes.

119

120 CHAPTER 9. ENVIRONMENT IN AO METHODOLOGIES

In order to choose a suitable environment abstraction, it might be useful to take
inspiration from the abstractions already used both by existing infrastructures for MAS
and by AO methodologies. Entities provided by infrastructures seem to be too specific
because they are typically conceived for a particular application domain, so they are not
easy to adapt to general modelling—as required by a general-purpose methodology. On
the other hand, AO methodologies – especially those in the weak-env group – use very
different notions of environment abstractions, belonging to different cognitive levels: from
lower-level ones such as external data and code, ontologies and objects, to higher-level ones
such as resources, abstract computational resources, and artifacts.

This problem, associated with the typical openness requirements for MAS, leads to
seeing the agent interaction space as spanning over different levels. There, agents cannot
interact with the other components (agents and environment abstractions) of the MAS in
a uniform way: they communicate with each other via high-level languages, while often
using lower-level languages – one for each different kind of environment abstraction – as
a way to interact with the environment. From the general software engineering point of
view this situation is not acceptable because it produces an unnecessary complication in
the engineering of both the agent internal structure and the interaction protocols. The
proliferation of environment abstractions seems to be more a drawback than a strength
because it does prevent a clear and common view of environment engineering. In addi-
tion, it also seems an obstacle in the path toward the creation of a general-purpose AO
methodology. The first and obvious choice among the environment abstractions could
be the adoption of the object as a unique building block in the environment engineering
because the object is a well-known and widely used technology and design paradigm.
However, objects seem to be not so suitable in the context of environment engineering
because the provide a too low level of abstraction than agents and they do not provide
natively all the mechanisms for supporting the agents in the discovering and the selection
of the most suitable service among different choices. These mechanisms are fundamental
in order to promote the MAS openness and the agent’s mobility. In addition the objects
are not able to wrap several of the other environment abstractions since many of them
belong to an higher level of abstraction.

Seemingly, one of the most promising environment abstraction is the notion of arti-
fact—as highlighted in Subsection 2.3.1. In fact, artifacts are generally defined as both
conceptual and runtime entities that mediate agent activities [215], providing some kind
of function, or service, that agents can fruitfully exploit to achieve their individual or
social objectives. In particular, in the Agents & Artifacts (A&A) meta-model [146, 153]
recently proposed for MAS engineering, artifacts – along with agents – are adopted as
the basic building blocks to engineer complex software systems. Artifacts are the basic
abstractions to represent passive, function-oriented building blocks, which are constructed
and used by agents, either individually or cooperatively, during their working activities.
Many sorts of artifact can populate a MAS: in particular, artifacts are used to mediate
between individual agents and the MAS (individual artifacts), to build up agent societies

120

CHAPTER 9. ENVIRONMENT IN AO METHODOLOGIES 121

(social artifacts), and to mediate between a MAS and external resources (environmental
artifacts) [152].

The second issue concerns the choice of the most suitable abstraction for modelling
MAS topology. As for the environment abstraction, there is a need for a general-purpose
abstraction able to capture different deployment contexts. However, different from the
environment abstraction case, the topology abstractions provided by both MAS infras-
tructures and AO methodologies are few, and the level of abstraction provided by them is
very low. Here, workspaces – introduced by CArtAgO in the A&A meta-model, and also
adopted by SODA – seem a suitable choice since they are general enough for abstracting
any sort of topology, and are also closely tied with the concept of artifact.

9.2 From No-Env to Weak-Env Methodologies

The introduction of the environment in a methodology implies a significant modification
of the first phases of the methodology, and as a consequence a partial modification of the
other phases.

9.2.1 Requirement Specification

The first step is a thorough analysis of the requirements specification that concerns envi-
ronment, with the following goals—see top of Figure 9.1:

(i) Detecting the presence of legacy systems that the MAS should interact with. Legacy
systems are computational systems that have already been installed and are working,
and which the designer of a new MAS should exploit without the possibility of
changing them in a significant way. These systems obviously will become part
of MAS environment, since they often provide several services to the MAS under
development.

(ii) Recognising those requirements concerning function-oriented and passive entities,
which should not become agents for they have neither goals nor autonomy. However
in some cases it is not so easy to understand when an entity is not an agent, since the
concept of “function-orientation” is not always tied with the concept of passivity.

So, recognising when a requirement deals with non-agent entities is a non-trivial
job as well, because a requirement typically deals with both several (future) agents
and non-agent entities, and such entities are closely tied. As a remark, here such
function-oriented entities are supposed to be already implemented, or anyway pro-
vided by someone, so they are only modelled. The design of these entities is one of
the topics of next subsection.

(iii) Individuating topological constraints over the structure of the deployment context.
Typically in the early phase of requirements analysis, such constraints represent

121

122 CHAPTER 9. ENVIRONMENT IN AO METHODOLOGIES

physical ties over the environment, but sometimes some constraints could come
from requirements.

It would be useful to keep track of the relations between requirements and legacy systems
/ function-oriented entities in order to create those links that will become the interaction
protocols between agents and artifacts. The protocols will be properly designed later in
the design phase. In addition, also the relations between requirements and constraints
could be examined in order to facilitate the definition of workspaces.

Active Entities
Function-Oriented

Entities Legacy Services

Requirement Specification

Topological
Constraints

interaction

apply

Passive Entities

Analysis

Agents (Tasks
Roles) Artifacts

Workspaces

use / sense

allocated in Mapping between
requirement’s
abstractions and
analysis’s abstractions

apply

situated

Figure 9.1: Relations between requirement abstractions (top) and analysis abstractions
(bottom)

9.2.2 Analysis

In the analysis phase, a model of environment composed of artifacts and workspaces is
built: both the legacy systems and the function-oriented entities are modelled as arti-
facts (see Figure 9.1). According to [178], this means specifying for each of them the
usage interface (the operations provided by the artifact), the operating instructions (how
to access the artifact), and the function description (what services are provided by the
artifact). Then the relationships previously identified, between requirements and the
function-oriented entities / legacy systems, are refined in more concrete relations between
the system abstract entities (adopted in the other original models of the methodology)
and artifacts. Finally, the topological constraints generate the workspaces for structuring
the environment. Sometimes, intersection and nesting of workspaces are here necessary

122

CHAPTER 9. ENVIRONMENT IN AO METHODOLOGIES 123

in order to create articulated topologies coming from very complex constraints. More-
over, artifacts are allocated to the most suitable workspace(s) according to the specific
topological constraints.

9.2.3 Design

In the design phase(s) of the methodology, the environment model does not change, only
the interaction protocols are designed starting from the relations sketched out in the
analysis phase. If the methodology schedules other phases such as fast prototyping or
code generation, these should be adapted in order to support the generation of the new
interaction protocols between agents and the entities in the environment. As interactions
with the environment are uniformly seen as interactions between agents and artifacts,
all the above phases should apparently be no more complex than the design of MAS
relying on standard agent communication protocols. In addition, if the methodology
to be extended presents deployment models, these should be changed so as to support
the structure of environment coming from workspaces. Simply, that model will need to
be extended so that it can support the new “workspace” abstraction and the relations
between workspaces.

9.2.4 An Example: Tropos from No-Env to Weak-Env

As an example methodology to ground our discussion we consider Tropos, which is a
methodology where requirements are well structured and documented. Tropos could
represent an exception in the proposed method, since it adopts a particular framework
for the requirement analysis and needs a careful investigation. Requirements analysis in
Tropos is split in two main phases: Early Requirements and Late Requirements analysis
[13]. More precisely, during the first phase, the requirements engineer identifies the domain
stakeholders and models them as social actors, who depend on one another for goals to
be achieved, plans to be performed, and resources – remember that this concept does not
represent an environment abstraction – to be provided.

Following our method, first of all in the Early Requirement analysis the identifica-
tion of legacy system is needed. So, while the requirements engineer identifies the domain
stakeholders, he/she should also analyse the system specification in order to discover those
legacy systems the new MAS will interact with. In particular the requirements engineer
should identify the relationships between the legacy systems and stakeholders (if any ex-
ist). If legacy systems are related with actors’ goals, then such relations need to be traced.
In addition, the requirements engineer should also recognise whether legacy systems are
subject to some particular constraints over the environment structure. Legacy systems
are then modelled as artifacts, and the topological constraints generate the workspaces.
All the relationships among the entities should be traced.

123

124 CHAPTER 9. ENVIRONMENT IN AO METHODOLOGIES

In the Late Requirements analysis, the conceptual model previously identified is ex-
tended including a new actor representing the system, and a number of dependencies
with other actors. These dependencies define all the functional and non-functional re-
quirements of the system-to-be. Following our approach, this is the right stage for in-
dividuating function-oriented and passive entities, and the other topological constraints.
In particular, the requirements engineer should check carefully both the functional and
non-functional requirements searching those function-oriented entities that either provide
services to actors or support them in the achievement of their goals. Topological con-
straints typically come from non-functional requirements, so they should be studied more
deeply in order to recognise all the constraints over the environment structure. Subse-
quently, these entities become respectively artifacts and workspaces, and the links among
artifacts and goal / actor should be traced.

The Architectural Design and the Detailed Design phases in Tropos focus on the
system specification, according to the requirements resulting from the above phases. Ar-
chitectural Design defines the system global architecture in terms of sub-systems, inter-
connected through data and control flows. Sub-systems are represented as actors, and
data/control interconnections are represented as dependencies. Following our approach,
in this phase the interaction protocols among actors/agents and artifacts should be re-
fined according to the specific architectural structure adopted. In particular the choice of
a specific architecture could lead to refining the actor model and as a consequence new
and/or more refined relations among actors and artifacts could be discovered. In a similar
way, the choice of the architecture could lead to identifying new topological constraints
over the environment and as a consequence a new refined workspaces structure could be
outlined.

The architectural design provides also a mapping of the system actors onto a set of
software agents, each characterised by specific capabilities. The Detailed Design phase
aims at specifying agent capabilities and interactions. At this point, usually, the imple-
mentation platform has already been chosen: this can be taken into account so as to
perform a detailed design that will map directly onto the code. Following our approach,
in this phase the interaction protocols among agents and artifacts should be designed.

Finally the Implementation activity in Tropos follows step by step, in a natural way,
the detailed design specification on the basis of the established mapping between the im-
plementation platform constructs and the detailed design notions. Following our approach
in this activity it is necessary to implement the interaction protocols among artifacts and
agents, and to organise the environment structure according to the workspaces structure.

In all, then, our method makes the introduction of the environment in Tropos not so
difficult. Similar considerations could be done also for MaSE, and possibly for any other
no-env AO methodology.

124

CHAPTER 9. ENVIRONMENT IN AO METHODOLOGIES 125

9.3 From Weak-Env to Strong-Env Methodologies

Weak-env methodologies already deal with some kinds of environment abstractions. In
order to simplify their treatment, and also to make methodologies homogeneous, as a
first step we suggest the artifact-based wrapping of the different existing environment
abstractions, as explained in Section 9.1. Then, in order to complete the analysis phase it
is possible to go back to the requirements, and acting in a similar way as discussed in the
previous subsection. However, the identification of legacy systems is not necessary here,
since they have yet been modelled according to the original environment model.

9.3.1 Requirement Specification

The recognition of function-oriented entities – as highlighted in point (ii) of requirement
specification in the previous subsection – here it is not simply aimed at modelling entities
already implemented in the environment, but also at discovering new function-oriented
entities that are necessary to the MAS but have not already been identified. Obviously,
the relations of these new entities with other abstract entities should be soon determined:
first, by outlining the links between function-oriented entities and other requirements,
then sketching out the more refined relations between function-oriented entities and the
abstract entities adopted by the methodology—see top of Figure 9.1. Subsequently, if
the methodology does not deal with topological aspects, these should be introduced by
finding out the topological constraints from the requirements.

9.3.2 Analysis

In this phase the function-oriented entities are modelled as artifacts. In addition the
discovery of new artifacts is also possible during this phase, when the requirements are
well structured and modelled by means of appropriate abstract entities such as roles,
tasks, goals and so on. In this case, it is easier to understand whether an active entity
needs some kinds of services that are not present yet in order to achieve one or more
objectives.

Finally, workspaces are generated from topological constraints, and allocating artifacts
and agents inside them. As for artifacts, during the analysis phase new workspaces could
be discovered so as to better structure the environment.

9.3.3 Design

In the design phase, the discovery of new artifacts is also possible. In this phase the
choices about how to structure the system are made, and the detection of new services
is not so difficult. As an example, let us suppose we use a group of roles/agents for the
achievement of a particularly complex task/goal. Borrowing a group of roles/agents as

125

126 CHAPTER 9. ENVIRONMENT IN AO METHODOLOGIES

responsible for one task/goal leads to manage the problem of how to coordinate these
entities so as to achieve such task/goal. In this case, the solution could be the adoption
of a suitable coordination artifact [153, 216] for managing coordination among roles. This
artifact could not be discovered in the previous phases because it comes from a specific
design choice—whereas other choices could lead to other solutions, as for example the
design of complex coordination protocols among agents/roles without using artifacts.

Then, first of all the interaction protocols between agents and artifacts are designed
starting from the relations sketched out in the analysis phase; moreover, the required
artifacts are designed. The “external behaviour” of an artifact is defined by means of in-
teraction protocols in which it is involved. The internal design could be made by following
a traditional software engineering design, as for example the object oriented design, since
the internal machinery of artifacts pretty much resembles that of objects— both being
passive entities with no proactive behaviour. Note that, though specific guidelines for the
internal artifact design have not been defined yet, some guidelines about the design of
operating instructions are presented in [216].

If the methodology supports other phases such as fast prototyping or code generation,
these should be adapted in order to support the generation of the new interaction protocols
between the agents and the artifacts, as well as the code generation for the artifacts and for
the workspaces. In addition, if the methodology presents deployment models, these should
be changed for supporting the structure of environment as it comes from workspaces.

9.3.4 An Example: Gaia from Weak-Env to Strong-Env

For the sake of concreteness, a sketch of how to transform Gaia in a strong environment
methodology is reported. In Gaia the environmental model can be viewed as a list of
resources, each denoted by a symbolic name, characterised by the type of actions that
the agents can perform on it, and possibly associated with additional textual comments
and descriptions [229]. Following our approach, first of all the resources already belonging
to the environmental model should be wrapped by means of artifacts; then the require-
ments should be investigated looking for other function-oriented entities and for all the
existing legacy systems. Both should become artifacts. In addition the requirements
engineer should recognise whether legacy systems are subject to some particular topo-
logical constraints over the environment structure. Such constraints eventually generate
the workspaces. All the relationships among the roles identified in the Preliminary Role
Model and the artifacts should be traced during the construction of the Preliminary In-
teraction Model. Finally during the Analysis phase topological aspects could be deduced
also from organisational rules, generating workspaces and allocating roles and artifacts
inside them.

In the architectural design, the choice of the best system architecture is made, leading
to the refinement of the role model – adding new specific roles coming from the choice
of the architecture – and the interaction model. Following our approach, in this phase

126

CHAPTER 9. ENVIRONMENT IN AO METHODOLOGIES 127

the choice of the particular architectural structure typically leads to the discovery of new
artifacts needed to support the new role activities. In addition, the architecture choice
leads to refine the interaction model and as a consequence new and/or more refined
interaction protocols among roles and artifacts could be discovered. In a similar way the
choice of the architecture could lead to identifying new topological constraints over the
environment and as a consequence a new refined workspaces structure could be delineated.

Finally in Gaia, in the detailed design stage, roles are assigned to agents, and artifacts
should be internally designed according to a traditional software engineering design. In
addition the interaction protocols among agents and artifacts should be designed.

In the end, this example apparently suggests that there is a general way for artifacts
and workspaces to be adopted inside a weak-env methodology so as to make it a strong-env
one.

9.4 Related Work

Literature dealing with both environment and agent-oriented methodologies is not abun-
dant. Work of that sort is usually more focussed on sociality features, so they typically
present some comparison among methodologies (one example is in [87]) and simply point
out whether a methodology supports the concept of environment or not. As an example
in [203] a good framework for the evaluation of the methodologies is presented, accounting
for a large number of agent features (organisations, roles, beliefs, desires and so on) as
well as some criteria for the evaluation of the development process: however, environment
is not considered at all.

At the same time, so little research has been devoted to the issue of how to introduce
the notion of environment in a methodology—an AO methodology, in particular. To
the best of our knowledge, there is only one work [45] investigating how to introduce
an environmental model in a methodology. The methodology considered there is O-
MaSE (Organisation-Based Multiagent System Engineering [42]), an evolution of MaSE
dealing with the design of organisational MAS. The authors describe an approach to the
modelling of MAS interactions with its environment: the key concepts in their approach
are capabilities and the environment model. In particular, the environment is modelled as
a set of objects/agents, and a set of relations between such objects/agents. Through a set
of capabilities belonging to agents, agents have access to a set of operations that they may
perform upon environment objects, whose effect is governed by environmental laws. This
work is obviously very interesting in this context, and in the conclusions the authors argue
about a possible integration of the concepts of their AEI (Agent-Environment Interaction)
Model into existing methodologies. However, they do not specify how to introduce their
key concepts into other methodologies, so their approach turns to be too strict in scope.
Also, even in principle, such a process looks not so easy: in fact, the meta-model of AEI is
largely tailored upon the MaSE meta-model, and some of the elements implicitly require

127

128 CHAPTER 9. ENVIRONMENT IN AO METHODOLOGIES

the MaSE specific agent model. As a result, the introduction of environment according to
AEI seems to be potentially invasive, since it would involve the creation of a new model for
the environment, and also affect the agent model: in fact, adopting the AEI meta-model
would tie agents with the concept of “capabilities”, thus requiring a substantial change to
the original agent model of the methodology to be extended. Even more, AEI does not
consider topology at all.

Another interesting work is the methodology proposed by Simonin and Gechter [198]
that establishes the link between the representation of the problem, expressed as environ-
mental constraints, and agent behaviours, which are regulation items of the environmental
perturbations. The environment is modelled by means of the definition of its structure
(the topology) and the laws that govern its dynamics. Then no environment abstractions
are considered by the methodology for representing the environment, so it is not clear
how and where the environment laws are enforced.

Finally, also the work on methodology fragmentation conducted by IEEE-FIPA Method-
ology Technical Committee [63] is very interesting in our enviroment-AO perspective. In
fact, the Committee has developed a method for assembling pieces out of the method-
ology processes starting from a meta-model of methodologies. An interesting fragment
[1] is provided by the ADELFE methodology: there, in fact, the environment model is
extracted from the methodology, and a new fragment is create. However, the fragment
uses the specific environment abstractions adopted by ADELFE, which appear not gen-
eral enough to be widely applied to other methodologies. In addition the fragment is not
yet well documented, and it is then not so clear what is actually needed for merging the
fragment within a methodology.

9.5 Summing up

This chapter has proposed a possible method for introducing the treatment of environment
in no-env methodologies—thus transforming them in weak-env methodologies; afterwards,
it has shown how to transform weak-env methodologies into strong-env methodologies. To
this end, the chapter has shown how to exploit artifacts as general-purpose environment
abstractions, and workspaces as abstractions for modelling topologies. These abstractions
have already been fruitfully used in a strong-env methodology like SODA [144].

The adption of this method seems easy and immediated as the above examples (Sub-
section 9.2.4 and Subsection 9.3.4) have shown. In addition this method is potentially
applicable to every AO methodology, since it does not require many changes: the only
modifications required concern the design of the interaction protocols that tie the agents to
the environmental entities, and obviously also the insertion of the proposed environmental
models into all the phases of the methodology to be extended.

128

10
AOSE & Infrastructures

Today, infrastructure is a fundamental notion for complex systems in general, not only
in computer science and engineering, but also in the context of organisational, political,
economical and social sciences [148]. A large class of distributed systems need not to
be built from scratch but can exploit infrastructures to resolve heterogeneity and dis-
tribution of the system components. The software engineering challenges lie in devising
methodologies, notations and tools for distributed system construction that systemati-
cally build and exploit what infrastructure products will deliver. However, to the best of
our knowledge, no work in the literature – traditional software engineering and AOSE –
explicitly deals with the identification of how the infrastructure impacts on the software
engineering process. This appears very strange because the presence of a specific infras-
tructure could influence the engineering process. For example, an engineer could design
or could not design specific functions according to the services / functionality provided
by the infrastructure. This is specially true in the context of on-line engineering where
the infrastructure’s abstractions have a great impact on the engineering process.

In the last years, research on AO methodologies and multi-agent system (AO) infras-
tructures has developed along two opposite paths: while AO methodologies have essen-
tially undergone a top-down evolution pushed by contributions from heterogeneous fields
like human sciences, AO infrastructures have mostly followed a bottom-up path growing
from existing and widespread (typically object-oriented) technologies. This dichotomy
has produced a conceptual gap between the proposed AO methodologies and the agent
infrastructures actually available, as well as a technical gap in the MAS engineering prac-
tice, where methodologies are often built ad hoc out of MAS infrastructures, languages
and tools. This chapter presents the infrastructures research field in order to provide an
overview of the state the art for both the traditional – often called middleware – and
AO infrastructures. In addition, this chapter provides the meta-modelling representa-
tion of several AO infrastructures: by allowing structural representation of abstractions
to be captured along with their mutual relations, meta-models make it possible to map
design-time abstractions from AO methodologies upon run-time abstractions from MAS
technologies, thus promoting a more coherent and effective practice in MAS engineering.
On one hand, this approach allows software engineers to investigate the depth of the gap

129

130 CHAPTER 10. AOSE & INFRASTRUCTURES

between specific couples of methodology and infrastructure, so they could choose the one
with the smaller gap. On the other hand, this approach allows software engineers to
create new methods for filling the gap between methodogies and infrastructures.

So, the reminder of this chapter is structured as follows. Section 10.1 presents some
general definition of infrastructures. Section 10.2 discusses the peculiarities of the infras-
tructures for MAS, while the relationships between infrastructures and Software Engineer-
ing and between infrastructures and AOSE are depicted respectively in Section 10.3 and
Section 10.4. Then, Section 10.5 presents some example of agent-oriented infrastructures,
finally conclusions are reported in Section 10.6.

10.1 Definitions

In its most general sense, an infrastructure is defined as:

Merriam-Webster – (1) the underlying foundation or basic framework (as of a system
or organisation) (2) the permanent installations required for military purposes; (3)
the system of public works of a country, state, or region; also: the resources (as
personnel, buildings, or equipment) required for an activity;

Cambridge – (4) the basic systems and services, such as transport and power supplies,
that a country or organisation uses in order to work effectively;

The American Heritage – (5) the basic facilities, services, and installations needed
for the functioning of a community or society, such as transportation and commu-
nications systems, water and power lines, and public institutions including schools,
post offices, and prisons.

Every definition underlines the role of infrastructure as (part of) the environment that
provides basic resources and critical services to complex systems (such as organisations,
communities, societies, countries) living on top of it. In particular, definition (2) remarks
that an infrastructure is a persistent entity: once installed, an infrastructure typically
survives the many systems it supports. Also, definitions (4) and (5) remark on the key role
of infrastructures: their services typically cover critical system issues, and provide features
that individual system components could not afford to provide or obtain elsewhere. In the
context of MAS, infrastructure obviously plays a key role, given the potential complexity
of both the system components (agents) and the component interplay (agent societies).
Gasser [70] defines an infrastructure as:

“a technical and social substrate that stabilises and rapidly enables instrumen-
tal (domain-centric, intentional) activity in a given domain. . . (solving) typi-
cal, costly, commonly accepted community (technical) problems in a systematic
and appropriate ways”

130

CHAPTER 10. AOSE & INFRASTRUCTURES 131

Here, it is important to emphasise the notion of infrastructure as a social, enabling support
for providing MAS with cheap and systematic solutions to common problems. Another
interesting definition is provided by Sycara et al. [205]:

“Agents in a MAS are expected to coordinate by exchanging services and in-
formation, to be able to follow complex negotiation protocols, to agree on com-
mitments and to perform other socially complex operations. We define the
infrastructure of a MAS as the set of services, conventions, and knowledge
that support such complex interactions.”

The stress is here on the support of complex agent (social) interplay, which is expressed
in terms of services, convention and knowledge.

10.2 Infrastructures for MAS

With regard to MAS, infrastructure obviously plays a key role, given the potential com-
plexity of both the system components (agents) and the component interplay (agent soci-
eties), and in this project will be defined as the set of services, conventions, and knowledge
that support agents in coordinating by exchanging services and information, in following
complex negotiation protocols, in agreeing on commitments and in performing other so-
cially complex operations [148]. In a more abstract sense than the ones above, the main
role of infrastructures in MAS is to model and shape the agent environment, from the two
points of view (i) of the agents living in the MAS; and (ii) of MAS designers.

From the inner viewpoint of an individual agent, the infrastructure typically provides
the means to deal with the agent environment: to perceive and affect its state and dy-
namics (in general), to access resources and services, to obtain and store information,
to interact with other agents (in particular). Typically, a suitably expressive and well-
engineered infrastructure allows agents to represent their environment only through the
runtime abstractions provided by the infrastructure, and to modify the agent environment
according to the agent’s needs and goals through infrastructure services.

From the external viewpoint of a human designer, MAS are typically open systems,
both in terms of the unpredictability of their environment (due to components and in-
teractions not under the control of MAS designers), and of the dynamism of both MAS
structures (e.g., the set of agents in a MAS) and MAS processes as well (e.g., the coordina-
tion activities within a MAS). Infrastructures are then the suitable place for designers to
embed some elements of “social control” – like coordination rules or security constraints
– of MAS despite their inherent openness: such control can be exerted by means of run-
time abstractions provided by the infrastructure that can embody and enforce interaction
constraints, coordination laws and social norms. Even more, once they are suitably de-
scribed and made accessible to agents, the same runtime abstractions can be exploited by
intelligent agents in order to represent coercive structures of a MAS, and to act upon its
global behaviour by introducing and/or modifying constraints, laws and norms [149].

131

132 CHAPTER 10. AOSE & INFRASTRUCTURES

Infrastructures play then a key role in the engineering of MAS, too. This is quite
obvious when considering the last stages of the engineering process, that is, the develop-
ment and deployment of MAS. Nevertheless this also holds when taking the early stages
into account, that is, the modelling and design of MAS: the abstractions provided by
the infrastructure could be good candidates to be adopted and exploited in the design of
MAS structures and activities, which are then to be engineered on top of such abstrac-
tions. So, runtime abstractions should be flexible enough to support the engineering of
heterogeneous systems, and – at the same time – effective in minimising the gap between
the design and development / deployment / runtime of systems.

In this context, the tools provided by an infrastructure are fundamental to enable
the manipulation of the abstractions through all the engineering stages, in particular
at runtime. The definition of the engineering tools is a primary issue, that should be
necessarily inspired and driven by the model embodied by the MAS infrastructure itself
[48]. In the end, MAS infrastructures and tools play an essential engineering role by
keeping abstractions alive through the whole engineering process, thus enabling software
engineers to first design and then observe and act on MAS structures and processes at
runtime, working upon abstractions adopted and exploited for the design of a MAS. This
feature is particularly important to support forms of online engineering, i.e., the capability
of supporting system design / development / evolution while the systems are running—a
particularly relevant feature in the context of MAS, given their intrinsic complexity and
openness.

10.2.1 Enabling vs. Governing Infrastructures

Infrastructures are useful to encapsulate and support critical features and properties of
MAS; these properties typically concern the interaction dimension [148]. For this extent,
current MAS infrastructures can be considered enabling infrastructures, since they provide
abstractions that basically enable agent interaction at different levels: from communica-
tion to interoperability, to basic interaction services. This is apparent when considering
the abstract architecture of one of the most important infrastructure currently adopted
for MAS development and deployment: JADE [7]. There, in fact, services like agent com-
munication, inter-operation, security, naming, location, etc., are necessary preconditions
that make it possible for agents to live, coexist and interact within a MAS. Enabling
infrastructures, then, basically define the nature of the agent interaction space within a
MAS. However, the increasing complexity and articulation of MASs for today’s applica-
tion scenarios call for a most effective engineering support from infrastructure, beyond the
mere enabling of agent interaction. A well known example is Electronic Institutions [139]:
the social and normative capabilities required to infrastructures supporting eInstitutions
go far beyond the services provided by general purpose MAS enabling infrastructures,
and cannot be straightforwardly engineered on top of it. Another example comes from
team-oriented coordination: in order to be independent of the specific agent model, the

132

CHAPTER 10. AOSE & INFRASTRUCTURES 133

TEAMCORE [207, 209] approach introduces the PROXY abstraction, an infrastructure
component provided to agents for managing automatically all coordination dependencies
with respect to the teams that agents belong to [206]. Similar team-oriented capability
has been added to RETSINA by enhancing its Individual Agent Architecture [74]: in this
way, contrary to the TEAMCORE approach, no real infrastructure support is provided
from the infrastructure to team-oriented coordination, since the team-oriented capability
is obtained by relying on augmented capabilities of the individual agents. In the end, cur-
rent general purpose MAS infrastructures typically lack suitable abstractions to govern
agent interaction. This seems instead a fundamental feature for enabling the specification
and enactment of social norms, but also – more generally – for defining and executing
social activities, such as agent coordination. In other words, complex system engineering
calls for governing infrastructures, providing flexible and robust abstractions to model and
shape the agent interaction space, in accordance with the social and normative objectives
of systems.

Governing infrastructures become the natural loci in which to embody a conceptual
framework that uniformly accounts for organisation, coordination and security of MAS
altogether [150]. From the organisational point of view, infrastructures are to provide
explicit abstractions for modelling the structure of an organisation and its rules — e.g.,
using the notion of role and related permissions to access to resources. This is the case, for
instance, of the information system infrastructure that support the RBAC model [190],
which is attracting attention also in the context of MAS. From the coordination point of
view, infrastructure support can be described effectively by adopting the notion of coor-
dination as a service [147, 214]: according to this vision, the infrastructure itself is the
provider of runtime (coordination) abstractions designed for specifically supporting the
specification, execution and maintenance of MAS social activities. These abstractions be-
come a fundamental tool to face the engineering complexity of coordination in MAS: both
from the designer’s and the agents’ point of view, the coordination burden is distributed
between agents and the specialised services provided by the infrastructure.

The coordination abstraction is promoted to a first class entity in coordinated systems,
amenable to an explicit characterisation in terms of an interactive abstraction, with the
goal of supporting the design of coordination models down to the deployment of coordina-
tion infrastructures. Coordination abstraction is the conceptual locus where coordination
takes place. The expressiveness and flexibility of coordination abstractions strongly influ-
ence the engineering of social activities, and, consequently, the complexity of the solutions
adopted for the challenging application scenarios. Since they are part of the infrastruc-
ture, these coordination abstractions are typically expected to be robust and reliable, and
specifically designed to support a critical activity as coordination is. An example of a
powerful coordination abstraction is represented by coordination artifact [153]. Coordi-
nation artifacts are of particular interest in the context of agent societies, where they are
usually exploited to achieve or maintain a global behaviour which is coherent with the so-
ciety’s social goal. As such, a coordination artifact is an essential abstraction for building

133

134 CHAPTER 10. AOSE & INFRASTRUCTURES

social activities, in that it is crucial both for enabling and mediating agent interaction,
and for governing the social activities by ruling the space of agent interaction. Examples
range from artifacts for concurrency management – such as semaphores, synchronisers,
barriers, etc. – to artifacts for communication management – such as blackboards, event
services – up to artifacts with articulated behaviours, such as workflow engines or auction
engines. So, coordination artifacts generalise the common notion of coordination medium
as coming from the field of coordination models and languages: simply put, coordination
artifacts are the artifacts for MAS encapsulating the activity of MAS coordination. As
such, they are the main tool for engineering the space of agent interaction, taking care of
issues like concurrency, synchronisation, sharing of resources, and the like.

Two observations are worthwhile here. Firstly, the evolution from enabling to gov-
erning infrastructures can be devised also in other computer science fields, characterised
as well by complex organisations and collaboration activities: Computer Supported Co-
operative Work (CSCW) and Workflow Management are relevant examples. Especially
in the CSCW context the need for suitable infrastructure support for coordination has
already emerged as a fundamental issue. Schmidt and Simone [193], for instance, iden-
tify basic properties that coordination abstractions provided by an infrastructure should
feature. Secondly, the approach of coordination as a service has also a deep impact on
AO methodologies, since coordination abstractions – as they embody the social aspect of
MAS – are meant to become explicitly subject to all the engineering stages, as it happens
in SODA methodology (Chapter 14).

10.3 SE and Infrastructures

As mentioned above, an infrastructure – or middleware, as it is often called in traditional
SE field – is a technical and social substrate that stabilises and rapidly enables instru-
mental (domain-centric, intentional) activity in a given domain [70]. Said another way,
infrastructure solves typical, costly, commonly-accepted community problems in system-
atic and appropriate ways. So, infrastructure allows much greater community attention
to unique, domain-specific activities.

For example, the construction of a distributed system is considerably more difficult
than building a centralised or client/server system. This is because there are multiple
points of failure in a distributed system, heterogeneous components need to communicate
with each other through a network, which complicates communication and opens the door
for security attacks. Infrastructure has been devised in order to conceal these difficulties
from application engineers as much as possible [29]. Infrastructure resolves heterogeneity,
and facilitates communication and coordination of distributed components.

Existing infrastructure products enable software engineers to build systems that are
distributed across a local-area network, and they offer pre-built services that support, for
example, off-the-shelf distributed transaction processing, security, and directory and nam-

134

CHAPTER 10. AOSE & INFRASTRUCTURES 135

ing services. The infrastructures also provide specialised components that let developers
integrate many different legacy systems and design and deploy new business processes
that integrate multiple distributed applications.

From the software engineering viewpoint the infrastructures present two key challenges
illustrated in the following: the infrastructure selection (Subsection 10.3.1) and the impact
of the infrastructures in the engineering process.

10.3.1 Infrastructure Selection

Two widely used but very different infrastructure styles (see Subsection 10.3.2) are object-
oriented and message-oriented. Within each of these styles, there are multiple products to
choose from. Moreover, any of these products may be used alone or in combination with
other products. Thus the problem of infrastructure selection is increasingly important in
the engineering of enterprise software systems [102].

Infrastructure selection is important for a number of reasons. It is an essential part
of the way in which distributed systems get built, both by new development and by in-
tegration of existing applications and services. Moreover, infrastructure is a key enabling
technology: it provides services, supports application functions and features, separates
concerns, and integrates components [102]. In these roles, infrastructure interacts with
and may impact on many other kinds of technologies, such as database systems, work-
flow engines, web servers, and applications. It further affects system architecture and
development processes.

Infrastructure selection is also challenging, for these same reasons. Infrastructure
selection can be an involved software (and systems) engineering process in its own right,
with all the technological, organisational, economic, and political aspects that this may
imply. Because of the central position and critical function of infrastructure, if it is
selected or applied inappropriately, it can become a key disabling technology. Integration
projects may present more or fewer challenges for infrastructure selection, depending on
the diversity of systems and applications to be integrated. For new development, the
constraints on infrastructure may be initially less restrictive, but infrastructure selection
must be closely integrated with the design of other elements of the system, so selection
can still be complex. In addition, the role of infrastructure selection must be defined with
respect to the rest of the software life cycle. Infrastructure selection should generally
be based on system requirements specifications (that account for both technological and
organisational factors), but infrastructure selection should not be wholly determined by
those specifications. Depending on circumstances, infrastructure selection may occur
prior to, along with, or subsequent to system architectural specifications. Consequently,
infrastructure selection may constrain, or be constrained by, architectural design.

Despite the potential variety of middleware selection processes, a number of guidelines
or recommendations regarding infrastructure selection processes can be identified [102]:

• selection may be made based on a number of approaches to comparing and evalu-

135

136 CHAPTER 10. AOSE & INFRASTRUCTURES

ating infrastructure technologies;

• the frameworks, taxonomies, and criteria that are used for comparing and evaluating
infrastructure must reflect enterprise-specific and project-relevant conditions;

• standards can be useful for enhancing communication among stakeholders as well
as facilitating technical integration;

• the selection process should allow for the adoption of multiple alternative (or com-
plementary) technologies in the solution to any particular problem.

Three other important factors should be considered in the infrastructure selection [156]:

• Programming paradigm. Adopting a new technology changes the concepts, the tech-
niques and the programming styles used to create software and to reason about it
(paradigm shift).

• Development Process. Adopting a new technology affects the actual software devel-
opment activities and how they are related.

• Economical Environment. Adopting a new technology can benefit some stakeholders
more than others, and a market situation can turn out to be more or less favorable
to a new technology.

An example of an infrastructure selection process can be found in [113]. The authors
present the i-Mate process that offers three tools to help organisations more effectively
engineer Internet-based applications that require infrastructure technology. i-Mate pro-
vides a defined process for gathering, ranking, and weighting application requirements
that the infrastructure must meet.

10.3.2 A Sketch of the State of the Art

Current middleware technologies fall into four broad categories: Corba-based technology,
Java-based technology, messaging and integration technologies, proprietary technologies
[113].

Corba-based technologies [141] enable transparent, synchronous inter-object commu-
nication across different processes, written in different languages, running on different
hosts. These technologies hide the complexities of low-level networking details from the
application programmer and provide easy integration across heterogeneous computing
platforms. Further, IIOP (Internet Inter-ORB Protocol) enables integration of systems
built on different Corba products.

Java-based technologies have evolved through Sun’s Java 2 Enterprise Edition specifi-
cation (J2EE) [204]. This defines the Enterprise Java Beans programming model, which is
built on the Java Remote Method Invocation (RMI) communication protocol. It enables

136

CHAPTER 10. AOSE & INFRASTRUCTURES 137

communication between different Java components across different machines and simplifies
many distributed-programming issues by incorporating transaction services, component
life-cycle, integration and persistence services, and security.

Messaging and integration technologies include message-oriented middleware such as
IBM’s Websphere MQ family [94]. These widely deployed messaging products provide
asynchronous communication models for autonomous systems to exchange messages in
both point-to-point and multicast modes. Add-on services such as message transformation
and translation engines simplify business integration by unifying message formats and
offering event-triggering services.

Proprietary technologies include for example Microsoft .Net platform [122], which pro-
vides component-based technology for deploying applications on the Windows platform.
.Net includes class libraries that give components access to base-level middleware ser-
vices. All .Net compilers then generate a common intermediate code representation that
is translated to machine code as the application executes. .Net also includes extensive
support for Web services technologies, which provide a nonproprietary access mechanism
for .Net applications.

10.4 AOSE & Infrastructures

The availability of infrastructures has a considerable impact on the process of MAS engi-
neering, and therefore should play a significant role within agent-oriented methodologies.
As already mentioned, infrastructures impact on both the final stages of the engineering
process (development and deployment) as well as on the analysis and design stages, by
means of the abstractions provided by the infrastructure model to represent the environ-
ment and to support coordination and organisation [148].

Infrastructure should provide flexible and robust abstractions to model and shape the
agent interaction space, in accordance with the social and normative objectives of sys-
tems. As illustrated for instance by the SODA methodology (Chapter 13), coordination
abstractions provided by a MAS infrastructure should represent the runtime embodiment
of the same analysis / design abstractions used from the early stages of the MAS engi-
neering process. Keeping abstractions alive along the whole engineering process is in fact
essential to support advanced practices like online engineering : there is no viable way to
evolve a system online when the design abstractions are no longer in place at runtime.
Here, then, infrastructures should play a key role: they should provide MAS engineers
with the same abstractions used in the analysis / design phases, as well as the tools to
for their off-line / online development, deployment, monitoring and debugging.

Infrastructures also represent an effective approach to the general issue of formalis-
ability of complex systems, which may come from either pragmatical or theoretical prob-
lems [153]. By their very nature, infrastructures intrinsically encapsulate key portions of
systems—often in charge of the critical system behaviour. As a result, providing well-

137

138 CHAPTER 10. AOSE & INFRASTRUCTURES

specified infrastructures promotes the discovery and proof of critical system properties.
Most notably, a system property can be assessed at design time through the formal def-
inition of some design abstraction. Then, by ensuring compliance of the corresponding
run-time abstraction provided by the infrastructure, such a property can be enforced at
execution time and be automatically verified for any system based on the infrastructure.

Infrastructures, being the concrete realisation of a conceptual model with software
artefacts, can help with technology transfer in all the three dimensions described above
(the last three points in Subsection 10.3.1). In short [156],

• the paradigm shift or adaptation is eased by a well-defined set of APIs,

• infrastructure can effectively cooperate with tools to shape the development process,

• and a good quality, freely available infrastructure can rapidly increase the adop-
tion of a new technology, thereby creating market opportunities for services and
applications based on that technology.

While the above applies to infrastructure in general, agent-oriented infrastructure has
some more peculiar features of its own. In the case of agent technology, the pivotal
concept of situated agent brings about some interesting consequences when considered
in the context of heterogeneous software integration. In complex applications, where a
high degree of system integration is needed, a trend towards seamless situated agents can
be observed; that is, a multi-agent system can be embedded in an application and work
together with other sub-systems adopting different component models. In principle, this
is in contrast with the wrapper agent approach, where every non-agent software entity or
subsystem has to be hidden behind an agent.

From the perspective of a software agent, the outcome is that most interactions with
non-agent software are modelled as interactions with the physical environment [156]. So,
the balance between social and physical environment critically depends on the amount
of agent wrapping performed on non-agent components. In a highly wrapped solution,
such as the one specified in the FIPA Agent-Software Integration document [66], nearly
all interactions are likely to occur through agent communication language (ACL).

Language is about representation, so while it is not possible to physically act on a
language-level entity, often there is the need to talk about physical domain entities. This
means that the actions and events that describe the physical situatedness of a software
agent must also have representations at the language level. The most common way to
achieve this is by combining ACL and domain ontologies—this is the approach followed
by FIPA specifications, too. The greater balance between the social and the physical
environment of an agent, spurred by the trend towards seamless situated agents, puts
forth the role played by the dimension of interaction.

There, in fact, complexity is no longer simply bound to the granularity of the indi-
vidual system’s components, but rather to the many different ways in which components

138

CHAPTER 10. AOSE & INFRASTRUCTURES 139

relate to and interact with each others, and with the overall system, too. Managing
and governing the dimension of interaction is exactly the goal of coordination, which has
emerged as a fundamental research area in many several fields—from software engineer-
ing to artificial intelligence, from social theory to economics, from organisational theory
to biology. Coordination is perceived as issue to be the main challenge to address and
solve in order to actually obtain seamlessly situated MASs; the complex spectrum that
spans from purely linguistic interaction to lower level physical-like perception must be
covered and effectively exploited to really connect agents with their social and physical
environment.

10.4.1 Coordination, Organisation and Security

In the context of MAS, organisation and coordination are strictly related and interde-
pendent issues, and so MAS coordination infrastructures have a fundamental engineering
role also in MAS organisation [149], Generally speaking, organisation mainly deals with
the structure and the long-term relationships between the components of a system, while
coordination mainly concerns the processes and the dynamic interactions between the
components of a system—often related to roles that usually frame agents in the structure
/ pattern of system organisation. In any case, both organisation and coordination con-
cern and affect the way in which agents interact with each other, so that conceiving and
representing them in the same framework is likely to provide several advantages. Con-
ceptual economy is obviously the first benefit: for instance, the notion of role, usually
introduced by organisational models, typically constrains agent actions, which is one of
the cornerstones of coordination. Also, a common framework is the most obvious way to
consistently support adaptation and evolution of organisation and coordination within an
agent society: for instance, by managing explicitly the dependencies between the changes
in the organisational settings (such as removal of a role, or changes in its capabilities in
terms of interaction protocols) and the related effects on coordination activities. Even
more, there are system aspects that can be modelled and engineered in their complex
articulation only by considering organisation and coordination settings at the same time:
security and electronic institutions are well-known examples. In particular, the multiple
aspects related to the security issue in MAS can be tackled in a coherent and satisfactory
framework only by covering the whole spectrum that ranges from organisation – with
issues related to system structures and relations among the components – to coordina-
tion with issues related to collective processes. Facing security modelling and engineering
within this range increases system conceptual integrity, by promoting the reuse of ab-
stractions such as roles, permissions, and societies – which have already proved to be
effective in the context of organisation and coordination – in order to enforce complex
and dynamic security policies [148].

Even though the need for run-time liveness of design abstractions supported by the
MAS infrastructure follows from basic system engineering considerations, it has an impact

139

140 CHAPTER 10. AOSE & INFRASTRUCTURES

on the engineering of intelligent systems [144]. When dealing with MAS organisation
abstractions, their liveness allows in principle to dynamically inspect and, possibly, change
or adapt it. This is obviously useful for promoting human activities over systems such as
monitoring and incremental evolution: however, when dealing with intelligent systems,
the liveness of (organisation/coordination) abstractions is particularly relevant since the
properties they embody can be in principle made available not only to humans, but
also to intelligent agents. This clearly promotes self-reconfiguration and self-adaptation
of intelligent systems: in fact, once an intelligent agent is enabled to inspect the social
structure, and allowed to change it, it may reason about the organisation, make inferences,
and possibly plan its evolution, for instance to fix some undesired behaviour, or to adapt
to environmental changes [149].

Summing up, it is both possible and useful to conceive a MAS infrastructure that
supports the modelling and enactment of organisation aspects in synergy with the coordi-
nation ones, by keeping the abstractions alive throughout the whole engineering process:
that is, by providing MAS engineers with design abstractions also suitable for organisa-
tions (such as the notions of role, society, group) and then enabling their management
(construction, inspection, adaptation) at both development and execution time. This syn-
ergy makes it possible to model and enact coordination activities taking into account the
organisation context where they take place, characterised by some structure – in terms of
roles, groups, or societies – and organisation rules, such as access control policies. Agents
participate to social activities always by virtue of their position (roles) inside the organ-
isation, which define what kind of coordination artifacts they can access and use, and
what kind of actions they are allowed (or forbidden) to do on them.

As an example, introduced in [145], the Agent Coordination Context (ACC) abstrac-
tion is an infrastructural notion suitable for the integration of organisation issues in a
coordination context, especially in the case of artifact-based coordination infrastructure.
The ACC notion is meant to model and enact agent position inside an organisational
context acting as its environment, so as to define and constrain the agent actions on re-
sources, in this case coordination artifacts [150]. Therefore, it is possible to conceive a
MAS infrastructure which fruitfully adopts ACC to model and rule agent presence inside
the organisation, and, more specifically, agent participation in social activities; this par-
ticipation includes accessing and using the coordination artifacts as part of organisation
resources.

10.5 AO Infrastructures

This section presents some agent-oriented infrastructures: JADE (Subsection 10.5.1),
TuCSoN (Subsection 10.5.2), CArtAgO (Subsection 10.5.3) and TOTA (Subsection 10.5.4).
Each infrastructure is presented by means of its meta-model composed by the static and
dynamic models as discussed in Chapter Section 5.3.

140

CHAPTER 10. AOSE & INFRASTRUCTURES 141

10.5.1 JADE

JADE (Java Agent DEvelopment Framework) [6, 7] is a software framework fully imple-
mented in the Java language, and provides an agent-oriented infrastructure. It is based
on a middleware compliant with the FIPA specifications and offers a set of graphical tools
that supports the debugging and deployment phases.

Static Model

Agents are the main entity in JADE, since it is an agent-oriented framework to develop
MASs. In Figure 10.1 is depicted a fragment of the general version of the meta-model
of JADE, extracted from [172]. The class AgentJ represents the agent: each agent has
an associated Agent State, a Scheduler, and a Message Queue. An agent can be in dif-
ferent states, that represent the possible states listed by FIPA specifications: ACTIVE,
DELETED, IDLE, INITIATED, SUSPENDED, TRANSIT, WAITING. Agents can move
from one state to another according to the admitted transitions: the possible behaviours
can be represented by a finite state machine. The scheduler is implemented by the base
Agent class, it is hidden to the programmer, and carries out a round-robin non-preemptive
scheduling policy among all behaviours available in the ready queue. Every behaviour is
executed until the behaviour releases the control. The message queue is a sort of mailbox
associated to every agent: it stores all the messages (written using the Agent Communi-
cation Language) sent by other agents and that have to be read by the agent. In the class
diagram representing the meta-model, the class Message Queue is composed by a set of
ACL Messages.

Behaviour is used to model a generic task, and is specialized into CompositeBehaviour
and SimpleBehaviour. SimpleBehaviour models simple tasks, namely tasks that are not
decomposed into sub-tasks. It is in turn specialized into OneShotBehaviour and CyclicBe-
haviour, respectively used to represent tasks to be executed only once and cyclic tasks
that are restarted after finishing their execution cycle. CompositeBehaviour models com-
plex tasks, that are made up by composing a number of other tasks: in order to represent
the necessity of composition there is an aggregation between CompositeBehaviour and
Behaviour, with cardinality 0..*. There are three specializations of the composite be-
haviours: FSMBehaviour, SequentialBehaviour, and ParallelBehaviour. FSMBehaviour
is used when the complex task is composed by tasks corresponding to the states of a
Finite State Machine; SequentialBehaviour is a classical sequential composition of sub-
tasks; ParallelBehaviour allows the definition of concurrency, where tasks are executed in
virtual parallelism.

Figure 10.2 shows a detail of the JADE meta-model focused on the Agent, the key
concept of the architecture. Every agent has one or more associated AID (Agent IDenti-
fier) that can be used to reference an agent, and whose role is describing agents. There is
also an association towards the class Codec, which represents the tool used to codify and
decodify ACL messages and is internally called by the JADE framework. A set of agents

141

142 CHAPTER 10. AOSE & INFRASTRUCTURES

Figure 10.1: JADE Meta-model

share an Agent-Toolkit, namely the place where they live and execute: a typical example
of agent toolkit is the JADE container. Agents also have an associated Ontology, needed
to give semantics to the content of the ACL messages agents exchange.

JADE is provided with a content reference model (Figure 10.3), which is needed to
perform the proper semantic checks on a given content expression, by identifying all
possible elements in the domain of discourse.

The classification is derived from the ACL language specifications. A Predicate is an
expression that says something about the status of the world and can be either true or
false. A Term is an expression identifying both abstract and concrete entities, that exist
in the world and that the agents talk and reason about. The class Term is abstract, and
is refined into IRE, Concept, Primitive, Aggregate, and Variable. An IRE (Identifying
Referential Expression) is an expression that identifies the entities for which a given
predicate is true. A Concept is an expression that indicates entities with a complex
structure that can be defined in terms of slots. A Primitive represents atomic entities such
as strings and integers. An Aggregate is an expression indicating entities that are a group
of other entities. A Variable is an expression used to indicate a generic element not known
a-priori. As well as the class Term is used to represent entities, the class ContentElement
is introduced to express the content of an ACL message, and the class Predicate derives
from it. ContentElementList is used to indicate a list of content elements. The class
AgentAction derives from both ContentElement and Concept. JADE ontologies have to
deal with predicates, concepts, and agent actions.

142

CHAPTER 10. AOSE & INFRASTRUCTURES 143

Figure 10.2: JADE Meta-model: focus on agent [119]

Figure 10.3: JADE Meta-model: focus on content

143

144 CHAPTER 10. AOSE & INFRASTRUCTURES:Agent A :AMS :Container :Agent B

:Agent A:Agent A :AMS:AMS :Container:Container :Agent B:Agent B

1: search(agentID)

2: search

3: information

4: generate FIPA message

5: send(address, message)

6: message

7: elaboration

8: response

9: response

File: C:\Documents and Settings\Ambra Molesini\Documenti\MyPaperi\Meta-Infrastrutture\JADE\jade.mdl 9.45.35 giovedì 22 novembre 2007
Sequence Diagram: Logical View / message Page 1

Figure 10.4: Message passing

Dynamic Model

From the functional point of view, JADE provides the basic services necessary for dis-
tributed peer-to-peer applications in a fixed and mobile environment. JADE allows each
agent to dynamically discover other agents and to communicate with them according to
the peer-to-peer paradigm. From the application point of view, each agent is identified by
a unique name and provides a set of services: it can register and modify its services and/
or search for agents providing given services, it can control its life cycle and, in particular,
communicate with all other peers.

The first service / agent is the Agent Management System (AMS) whose responsibility
is to manage the life cycle of all agents in the platform, and to provide a white pages service
associating a logical agent identifier to status and address information [183] as illustrated
in Figure 10.4. The agent A asks the AMS for address of a particular agent B. The AMS
executes an internal search and produces a result for A. Now A is able to send a FIPA
message to B through the infrastructure layer.

In Figure 10.5 is an example of the interaction among an agent and AMS: the AMS
must authorise each operation that the agent makes inside the infrastructure. In the
specific case of the Figure 10.5 an agent A asks the AMS for suspension of another
agent B. If the AMS authorises this suspension the message is propagated through the
infrastructure layer (indicated as Container in the figure) to agent B (part a) of the
figure); otherwise A is informed that the suspension of B is not possible.

The second service / agent is the Directory Facilitator (DF), that works as a yellow
pages service with basic matchmaking capabilities. A special instance of this agent –
named the Default DF – must be available in a FIPA compliant agent platform. An

144

CHAPTER 10. AOSE & INFRASTRUCTURES 145

3: error

:Agent A:Agent A :AMS:AMS

1: suspend B

2: verify

:Agent A:Agent A :AMS:AMS :Container:Container : Agent B: Agent B

1: suspend B

2: verify

3: suspend B

4: suspend

5: suspend yourself

a) b)

Figure 10.5: The request of a suspension of an agent: a) the authorised case, b) the
non-authorised case

example of this is reported in Figure 10.6 where the agent A contacts the Default DF
searching an agent that provides a specific service. The Default DF executes an internal
search and produces the information for A. So A is now able to send its request to the
agent B.

10.5.2 TuCSoN

TuCSoN (Tuple Centres Spread over Networks) [157, 212] is an infrastructure providing
services for the communication and coordination of distributed / concurrent independent
agents.

Static Model

TuCSoN’s meta-model is depicted in Figure 10.7 [124].

In detail, TuCSoN supports agent communication and coordination via tuple centres
coordination media [71]: these are shared & reactive information spaces, distributed over
the infrastructure nodes. In turn, this inducts a topology over the network. Agents access
tuple centres associatively, by writing (out), reading (rd, rdp), and consuming (in, inp)
tuples – i.e., ordered collections of heterogeneous information chunks – via the above
coordination primitives.

A tuple centre is a tuple space enhanced with the notion of behaviour specification.
More precisely, a tuple centre is a coordination abstraction perceived by the interacting
entities as a standard tuple space [72], but whose behaviour in response to events can
be defined so as to embed the coordination laws. So, defining a new behaviour for a
tuple centre basically amounts to specifying state transitions in terms of reactions to
events [157]. In particular, reactions are specified in TuCSoN via the ReSpecT (Reaction

145

146 CHAPTER 10. AOSE & INFRASTRUCTURES

:Agent A :Default DF :Container :Agent B

:Agent A:Agent A :Default DF:Default DF :Container:Container :Agent B:Agent B

1: search(service)

2: search(service)

3: response: B

4: generate request

5: request(B, service)

6: request(B, service)

7: execution of service

8: response

9: response

File: C:\Documents and Settings\Ambra Molesini\Documenti\MyPaperi\Meta-Infrastrutture\JADE\jade.mdl 9.46.45 giovedì 22 novembre 2007
Sequence Diagram: Logical View / yellow Page 1

Figure 10.6: Discovery of a service

TuCSoN

TopologyNetworkNode

Reaction

Tuple Centre
nn

runs

Event

Tuple
0..n0..n

stored

ACC

accesses

OrganisationRole
** **

Reaction Spec

nn

t riggers exectuion of

Agent
read/write

uses

negotiation/join

plays

programs

Events can be both
internally generated and
perceived from the tuple
centre.

Figure 10.7: TuCSoN Meta-model

146

CHAPTER 10. AOSE & INFRASTRUCTURES 147

Specification Language) language [146]: a reaction is defined as a set of non-blocking
operations [157], and has a success/failure transactional semantics: a successful reaction
may atomically produce effects on the tuple centre state, a failed reaction yields no result
at all. Typically, a tuple centre contains a set of reactions (reaction spec in Figure 10.7),
each tied to a specific event: the same event could trigger multiple, different reactions.
Tuple centres are connected to each other through link operations, having the same form
and a similar semantics as TuCSoN coordination primitives, but invoked by successful
reactions rather than by agents [146].

The Agent Coordination Context (ACC), introduced in [145] as the conceptual place
where to set the boundary between the agent and the environment, encapsulates the
interface enabling agent actions and perceptions inside the environment. More precisely,
an ACC (i) works as a model for the agent environment, by describing the environment
where an agent can interact, and (ii) enables and rules the interactions between the agent
and the environment, by defining the space of the admissible agent interactions. The
ACC dynamics is characterised by two basic steps: negotiation and use. In fact, an ACC
is meant to be first negotiated by the agents with the MAS infrastructure, in order to
start a working session inside an organisation. To this end, the agent specifies which roles
to activate: if the agent request is compatible with the (current) organisation rules, a
new ACC is created, configured according to the characteristics of the specified roles, and
is released to the agent for active playing inside the organisation. The agent can then
use the ACC to interact with other agents in the organisation, and with the organisation
environment, by performing the actions and activating the perceptions made possible by
the ACC.

Dynamic Model

The ACC dynamics is characterised by two basic steps: negotiation and use. In fact,
an ACC is meant to be first negotiated by the agents with the MAS infrastructure in
order to start a working session inside an organisation (Figure 10.8 part a)). To this
end, the agent specifies which roles to activate: if the agent request is compatible with
the (current) organisation rules, then a new ACC is created and configured according to
the characteristics of the specified roles, and is released to the agent for active playing
inside the organisation (Figure 10.8 part a)). However, an ACC could be re-negotiated
by an agent during its life cycle (Figure 10.8 part a)). In this case the agent contacts the
organisation asking for the activation of new different roles. The organisation evaluates
the request and if this last is compatible with the organisation rules then the ACC is
updated and released again to the agent.

The agent can then use the ACC to interact with other agents in the organisation,
and with the organisation environment, by performing the actions and activating the
perceptions made possible by the ACC. In particular each action an agent performs must
be authorised by ACC (Figures 10.10 and 10.9): if the action is not allowed according

147

148 CHAPTER 10. AOSE & INFRASTRUCTURES

::Agent::Agent : :Organisation: :Organisation

1: join(list of roles)

2: decision

3: create ACC

4: acceptance(ACC)

::Organisation::Organisation::Agent::Agent

1: negotiate(ACC, list of roles)

2: decision

3: update ACC

4: return(ACC)

a) b)

Figure 10.8: Agent joins organisation (a) and agent re-negotiate ACC (b)
::Agent ::ACC

::Agent::Agent ::ACC::ACC

1: doAction(tc,action)

2: check(action)

3: exception

File: C:\Documents and Settings\Ambra Molesini\Documenti\MyPaperi\Meta-Infrastrutture\Tucson\Meta-Tucson.mdl 9.55.57 giovedì 22 novembre
2007 Sequence Diagram: Logical View / Action_Neg Page 1

Figure 10.9: Execution of action not authorised by ACC

to the ACC policy, an exception is generated, preventing action execution (Figure 10.9);
otherwise, the action is executed.

Typically an agent action is the execution request of a coordination operation. The
coordination operations are the tuple centre coordination primitives, for inserting, reading
and retrieving tuples from the tuple centre (Figure 10.10). The execution of the incoming
action triggers one or more reactions that are executed inside the tuple centre. The
execution of reactions generates a partial response in the tuple centre, and this could
trigger other reactions that are executed and generate the final result inside the tuple
centre (Figure 10.10 points 5-8). The result is sent to the ACC, and the agent retrieves
it from the ACC.

A particular case of the tuple centre coordination primitives are the primitives for
inspecting / changing the behaviour specification of a tuple centre (Figure 10.11). When
a primitive of this kind is executed in the tuple centre no reactions are triggered and the
tuple centre sends immediately the generated result to the ACC.

A tuple centre is also able to perceive events generated in the network (for example
events generated by other tuple centres or agents). When an event is perceived by a

148

CHAPTER 10. AOSE & INFRASTRUCTURES 149
::Agent ::ACC ::Tuple Centre

::Agent::Agent ::ACC::ACC ::Tuple Centre::Tuple Centre

1: doAction(tc,action)

2: check(action)

3: action

5: reaction to incoming action

6: execution of reaction

7: generation of response

9: result

4: isActionComplete

10: actionComplete

11: actionResult

12: result

8: reaction to response

File: C:\Documents and Settings\Ambra Molesini\Documenti\MyPaperi\Meta-Infrastrutture\Tucson\Meta-Tucson.mdl 9.57.15 giovedì 22 novembre
2007 Sequence Diagram: Logical View / Action_Pos Page 1

Figure 10.10: Execution of action authorised by ACC
::Agent ::ACC ::Tuple Centre

::Agent::Agent ::ACC::ACC ::Tuple Centre::Tuple Centre

1: doAction(tc,specAction)

2: check(specAction)

3: specAction

4: execution of specAction

5: generation of result

7: isActionComplete

8: actionComplete

6: result

9: actionResult

10: result

File: C:\Documents and Settings\Ambra Molesini\Documenti\MyPaperi\Meta-Infrastrutture\Tucson\Meta-Tucson.mdl 9.58.24 giovedì 22 novembre
2007 Sequence Diagram: Logical View / ProgTC Page 1

Figure 10.11: Programming of a Tuple Centre

149

150 CHAPTER 10. AOSE & INFRASTRUCTURES

::Network::Network ::Tuple Centre::Tuple Centre

1: event(data)

2: trigger event

3: execution of reactions

4: generate event

5: propagate event

::Network::Network ::Tuple Centre::Tuple Centre

1: event(data)

2: nop

a) b)

Figure 10.12: Managing of event

tuple centre, it could react by executing the triggered reactions (Figure 10.12 part a), and
eventually it could generate and propagate an event in the network; otherwise no reaction
could be triggered by the event (Figure 10.12 part b).

10.5.3 CArtAgO

CArtAgO [23, 181] is a framework for developing artifact-based working environments
for multi-agent systems. The framework is based on the notion of artifact, as a basic
abstraction to model and engineer objects, resources and tools designed to be used and
manipulated by agents at runtime to support their working activities, in particular the
cooperative ones. CArtAgO makes it possible for MAS engineers to design and develop
suitable kinds of artifacts, and to extend existing agent platforms with the possibility to
create artifact-based working environments, and programming agents to exploit them.

Static Model

The abstract architecture of CArtAgO (Common Artifact for Agents Open environment)
[181, 23] is composed of three main elements (see Figure 10.13 [124]): (i) agent bodies –
as the entities that make it possible to situate agents inside the working environment; (ii)
artifacts – as the basic building blocks to structure the working environment; and (iii)
workspaces – as the logical containers of artifacts, aimed at defining the topology of the
working environment.

Agent bodies. The agent body contains effectors to perform actions upon the work-
ing environment, and a dynamic set of sensors to collect events from the working environ-
ment. Agents interact with their working environment by “piloting” their bodies: they

150

CHAPTER 10. AOSE & INFRASTRUCTURES 151CArtAgO
Topology

NetworkWorkplace Node

Usage

Workspace

governs
inducts

interesection/nesting

Usage Interface

Events
Construction

Operat ing Instruction

uses

Function Description

Selection

discovers

Role
**

Rules
**

Contract

Sensor

*

*

*

*

collects

Agent Body

**

**

generates

**

Agent

allocated in

sensing

uses

Action

performs

Effector**

*

*

*

*executes

Arti fact

*

*

*

*

allocated in

exposes

ables to observe

**

generates

constructs

exposes

exposes

Operation

acts on
**

**
provides

Figure 10.13: CArtAgO Meta-model

execute actions to construct, select and use artifacts, and perceive the observable events
generated by artifacts.

Artifacts. Artifacts are the basic bricks managed by CArtAgO: agents use artifacts
by triggering the execution of operations listed in the artifact usage interface. The exe-
cution of an operation typically causes the update of the internal state of an artifact, and
the generation of one or more observable events: these are then collected by the agent
sensors and perceived by means of explicit sensing actions. In order to support a rational
exploitation of artifacts by intelligent agents, each artifact is equipped with a function
description, i.e. an explicit description of the functionalities it provides, and operating
instructions, i.e. an explicit description of how to use the artifact to get its function.

Workspaces. Artifacts are logically located in workspaces, which define the topology
of the working environment.

In addition, CArtAgO also introduces the concept of workplace as an organisational
layer on top of workspaces. More precisely, a workplace is the set of roles and organisa-
tional rules being in force in a workspace: there, contracts define the norms and policies
that rule agent access to artifacts and allow the generation of agent bodies. So, for in-
stance, an agent may or may not be granted permission to use some artifacts or to execute
some specific operations on selected artifacts depending on the role(s) that the agent is
playing inside the workplace [179].

151

152 CHAPTER 10. AOSE & INFRASTRUCTURES

::Artifact::Artifact

:.Agent:.Agent ::Factory::Factory

1: creation(art,spec)

2: creation

3: new

4: result(artifactID)

::Agent::Agent ::Registry::Registry

1: lookup(logicname)

2: search

3: result(arti fac tID)

a) b)

Figure 10.14: Agent creates a new artifact (a) and agent searchs an artifact

Dynamic Model

CArtAgO provides two default artifacts in each workspace in order to support agents in
the creation and discovery of artifacts. In particular the Factory Artifact creates new
artifacts and the Registry Artifact provides a white page services.

In order to create an artifact, an agent uses the Factory Artifact (Figure 10.14 part
a) providing to it information about the new artifact: a logic name, the template that
identifies the type of the artifact to be created, the initial configuration parameters and
optionally the workspace where the artifact should be created. The action can fail if the
template is unknown or the artifact instantiation is not completed due to some kind of
problem. In order to search an artifact, an agent uses the Registry Artifact (Figure 10.14
part b) providing the logic name of the artifact. Then the Registry Artifact sends the
artifact identifier to the agent.

In order to execute an operation over an artifact, an agent must first join the workspace
where the artifact is allocated, then a workspace produces the relative agent body (Figure
10.16 points 1-3). By means of agent body the agent is able to use an artifact specifying
the artifact identifier, and the operation name (Figure 10.16 points 5-7).

The artifact executes the requested operation, eventually changes its state and the
generates one or more events propagated to the agent body (Figure 10.16 points 5-11).
The action can fail either because the specified artifact is not available, or because the
operation cannot be executed since it is not part of artifact usage interface (as illustrated
in Figure 10.15). Action success means that the execution of the specified operation has
been successfully triggered. After that the agent is able to access the operation results by
means of a sensing operation (Figure 10.16 points 13-14).

However an agent could observe all the events produced by a specific artifact without
using it. In this case the agent manifests this intention by means of the focus action: each

152

CHAPTER 10. AOSE & INFRASTRUCTURES 153::Agent1 ::Workspace ::AgentBody ::Artifact

::Agent1::Agent1 ::Workspace::Workspace

::AgentBody::AgentBody

::Artifact::Artifact

1: join

2: generate

3: result (AgentBody)

4: use(art,action)

5: use(action)

6: error

File: C:\Documents and Settings\Ambra Molesini\Documenti\MyPaperi\Meta-Infrastrutture\Cartago\Meta-Cartago.mdl 10.07.52 giovedì 22
novembre 2007 Sequence Diagram: Logical View / Use_Neg Page 1

Figure 10.15: Problems in the use of artifact

time the artifact generates an event, this event is propagated to the agent (Figure 10.16
points 4,12).

10.5.4 TOTA

TOTA (Tuples On The Air) [114, 115] is an infrastructure for multi-agent coordination,
in distributed computing scenarios.

Static Model

A meta-model of the infrastructure is presented in Figure 10.17 [124]. TOTA assumes
the presence of a network of possibly mobile nodes, each running a tuple space [71]: each
agent is supported by a local middleware and has only a local (one-hop) perception of
its environment. Nodes are connected only by short-range network links, each holding
references to a (limited) set of neighbour nodes: so, the topology of the network, as
determined by the neighbourhood relations, may be highly dynamic.

In TOTA, tuples are not associated to a specific node (or to a specific data space) of
the network: rather, they are “injected” in the network by an agent from some node, then
autonomously propagate hop-by-hop, diffuse, and evolve according to specified propaga-
tion patterns. Thus, TOTA tuples form a sort of spatially-distributed data structure, that
can be used to acquire contextual information about the environment and to support the
mechanisms required for stigmergic interaction [167]. More precisely, TOTA distributed
tuples T=(C,P,M) are characterised by a content C, a propagation rule P, and a mainte-
nance rule M: the content C is an ordered set of typed fields representing the information
carried by the tuple, the propagation rule P determines how the tuple propagates across
the network (called “migration” in the Figure 10.17) and how the tuple content should

153

154 CHAPTER 10. AOSE & INFRASTRUCTURES

::Agent1 ::Workspace ::AgentBody ::Artifact ::Agent2

::Agent1::Agent1 ::Workspace::Workspace

::AgentBody::AgentBody

::Artifact::Artifact ::Agent2::Agent2

1: join

3: result (AgentBody)

2: generate

5: use(art,action)

6: use(action)

8: execution Operation

7: ok

9: generation of events

10: change state

11: propagation events

13: sensing

14: result

4: focus

12: propagation events

File: C:\Documents and Settings\Ambra Molesini\Documenti\MyPaperi\Meta-Infrastrutture\Cartago\Meta-Cartago.mdl 10.04.50 giovedì 22
novembre 2007 Sequence Diagram: Logical View / ArtifactUse Page 1

Figure 10.16: Agent uses an artifact

154

CHAPTER 10. AOSE & INFRASTRUCTURES 155TOTA

Topology

Neighborough inducts

Network

Agent

NODE

runs

Content

TupleSpace runs

Tuple injects/senses

*

*

*

*

stored
executes

MigrationPropagation Rule

affects

*

*

*

*
accesses

inducts

The propagation rule could
induct a tuple migrat ion from
one node to another

Event

*

*

Maintance Rule

*

*

*

*
accesses

affec ts

triggers

occurs
*

*

Figure 10.17: TOTA Meta-model

change while the tuple is propagated; finally, the maintenance rule M determines how a
tuple distributed structure should react to events occurring in the environment. Specify-
ing the tuple propagation rule includes determining the “scope” of the tuple and how such
propagation is affected by the presence or absence of other tuples in the system. In turn,
events handled by the maintenance rule can range from simple time alarms, to changes in
the network structure: the latter kind of event is of fundamental importance to preserve
a coherent structure of the environment properties represented by tuple fields.

Dynamic Model

In TOTA tuples are injected in the network and can autonomously propagate, diffuse, and
evolve in the network according to specified patterns. Figure 10.18 shows an example of
the tuple injection: an agent injects a tuple in the local tuple space when executes the
propagation stored inside the tuple and propagates the tuple according to the propagation
rule. The execution of the propagation rule could affect the content of the tuple (useful
in the context of stigmergic coordination).

The read action accesses the local TOTA tuple space and returns a collection of the
tuples locally present in the tuple space and matching the template tuple passed as pa-
rameter (Figure 10.19 points 1-3). The readOneHop action returns a collection of the
tuples present in the tuple spaces of the node’s one-hop neighborhood and matching the

155

156 CHAPTER 10. AOSE & INFRASTRUCTURES::Agent ::Tuple Space ::Neighborough

::Agent::Agent ::Tuple Space::Tuple Space ::Neighborough::Neighborough

1: inject(tuple)

2: execution of Propagation rule

4: propagation(tuple)

3: change(tuple_content)

File: C:\Documents and Settings\Ambra Molesini\Documenti\MyPaperi\Meta-Infrastrutture\Tota\Meta-Tota.mdl 10.16.36 giovedì 22 novembre 2007
 Sequence Diagram: Logical View / Insertion Page 1

Figure 10.18: Agent injects a tuple
::Agent ::Tuple Space 1 ::Neighborough ::Tuple Space 2

::Agent::Agent ::Tuple Space 1::Tuple Space 1 ::Neighborough::Neighborough ::Tuple Space 2::Tuple Space 2

1: read(TT)

3: list of tuples

2: check match

4: readOneHop(TT)

5: readOneHop(TT)

6: readOneHop(TT)

7: check match

8: list of tuples

9: list of tuples

10: list of tuples

File: C:\Documents and Settings\Ambra Molesini\Documenti\MyPaperi\Meta-Infrastrutture\Tota\Meta-Tota.mdl 10.18.44 giovedì 22 novembre 2007
 Sequence Diagram: Logical View / Perceive Page 1

Figure 10.19: Agent reads tuples

template tuple (Figure 10.19 points 4-10).

As mentioned above, the maintenance rule M determines how a tuple’s distributed
structure should react to events occurring in the environment. These types of event
can be simple time alarms or they can be events associated to changes in the network
structure. To this end, TOTA supports tuples’ propagation actively and adaptively: by
constantly monitoring local events, the network local topology and the income of new
tuples, the infrastructure automatically re-shapes tuples and their distributed structure
whenever appropriate with respect to the maintenance rule (Figure 10.20). In particular
the tuple space first executes all the maintenance rules associated to the stored tuples,
changes the tuples’ contents according to maintenance rules and if necessary it propagates
the tuples to the other tuple spaces.

In addition, subscribe and unsubscribe operations are defined in order for agent to

156

CHAPTER 10. AOSE & INFRASTRUCTURES 157::Neighborough ::Tuple Space

::Neighborough::Neighborough ::Tuple Space::Tuple Space

1: event(information)

2: execution of all maintenance rules

3: change tuples' contents

5: execution of propagation rules

4: check propagation rules

6: propagation

File: C:\Documents and Settings\Ambra Molesini\Documenti\MyPaperi\Meta-Infrastrutture\Tota\Meta-Tota.mdl 10.11.56 giovedì 22 novembre 2007
 Sequence Diagram: Logical View / Event Page 1

Figure 10.20: Tuple space reacts to events
::Agent ::Tuple Space ::Network

::Agent::Agent ::Tuple Space::Tuple Space ::Network::Network

1: subscribe(event)

3: event

4: react(event)

5: elaboration

6: unsubscribe(event)

2: store subscription

File: C:\Documents and Settings\Ambra Molesini\Documenti\MyPaperi\Meta-Infrastrutture\Tota\Meta-Tota.mdl 10.20.34 giovedì 22 novembre 2007
 Sequence Diagram: Logical View / Subscribe Page 1

Figure 10.21: Agent subscribes and unsubscribes event

handle events (Figure 10.21). These operations rely on the fact that any event occurring
in TOTA (including: arrival of new tuples, connection and disconnection of peers, system-
level events) can be represented as a tuple. Thus: the subscribe operation associates
the execution of a reaction method in the agent in response to the occurrence of events
matching the template tuple passed. Specifically, when a matching event happens, the
tuple space sends the matching event to the agent. The unsubscribe operation removes
matching subscriptions.

10.6 Infrastructures: Summing up

MAS infrastructures play a fundamental role in the engineering of complex software sys-
tems. Infrastructure is a fundamental notion for complex systems in general, not only
in computer science and engineering, but also in the context of organisational, political,

157

158 CHAPTER 10. AOSE & INFRASTRUCTURES

economical and social sciences.
The importance of infrastructure is even more evident when considering agents and

MAS as the main paradigm, whose typical scenarios involve complex systems composed
by a multitude of distributed active entities organised according to some model, im-
mersed in specific software / hardware environments, executing some kind of individual
and collective tasks that require their fruitful interaction and coordination. Complexity
of such scenarios can be framed at different levels of abstraction: from concurrency and
distribution (control, space, time,. . .), to system / environment openness in terms of dy-
namism, heterogeneity, unpredictability, and so on. As in the case of human societies,
infrastructures in MAS are meant to play a fundamental role in governing such com-
plexity, factorising critical issues of systems in terms of services at different levels, from
sustainability to security, from communication to coordination and organisation, and so
on.

Currently, most of the available state of the art MAS infrastructures have been con-
ceived and designed in academic contexts, and can be still considered in their infancy, in
particular with respect to mainstream infrastructures. Among the others, such an imma-
turity affects three different aspects: (i) abstractions and services provided (ii) available
tools and technologies (iii) integration with agent-oriented methodologies.

Then, the research on MAS infrastructure models and supporting tools, on the inte-
gration with agent-based methodologies, and on architectures and technologies used for
MAS development is considered essential for advancing the state of the art on software
engineering, in particular for what concerns complex software systems.

158

Part IV

Representation Complexity

159

11
Complex Systems

This chapter presents complex systems. Roughly speaking, a system is a collection of
interacting elements making up a whole such as, for instance, a mechanical clock. While
many systems may be quite complicated, they are not necessarily considered to be complex
[11]. There is no precise definition of complex system: a complex system is any system
featuring a large number of interacting components, whose aggregate activity is nonlinear
and typically exhibits hierarchical self-organisation under selective pressures. In order
to give a physical context to the definition, we should qualitatively discuss some typical
systems that may be denoted truly complex.

The various branches of science offer us a large number of examples, some of which turn
out to be rather simple, whereas others may be called truly complex. Let us start with a
simple physical example. Granular matter is composed of many similar granules. Shape,
position, and orientation of the components determine the stability of granular systems.
The complete set of the particle coordinates and of all shape parameters defines the
actual structure. Furthermore, under the influence of external force fields, the granules
move around in quite an irregular fashion, whereby they perform numerous more or
less elastic collisions with each other. A driven granular system is a standard example
of a complex system. The permanent change of the structure due to the influence of
external fields and the interaction between the components is a characteristic feature of
complex systems. Another standard complex system is Earth’s climate, encompassing all
components of the atmosphere, biosphere, cryosphere, and oceans and considering the
effects of extraterrestrial processes such as solar radiation and tides.

In biology, we are again dealing with complex systems. Each animal consists of various
strongly interacting organs with an enormous number of complex functions. Each organ
contains many partially very strong specialised cells that cooperate in a well-regulated
fashion. Probably the most complex organ is the human brain, composed of millions
nerve cells. Their collective interaction allows us to recognise visual and acoustic pat-
terns, to speak, or to perform other mental functions. Each living cell is composed of a
complicated nucleus, ribosomes, mitochondria, membranes, and other constituents, each
of which contain many further components. At the lowest level, we observe many simul-
taneously acting biochemical processes, such as the duplication of DNA sequences or the

161

162 CHAPTER 11. COMPLEX SYSTEMS

formation of proteins. This hierarchy can also be continued in the opposite direction.
Animals themselves form different kinds of societies. Probably the most complex system
in our world is the global human society with its numerous participants, its capital goods
(such as machines, factories, and research centers), its natural resources, its financial and
political systems, which provides us with another large class of complex systems.

In the software world, complex systems consist again of a number of related subsystems
organised in a hierarchical fashion [99]. At any given level, subsystems work together
to achieve the functionality of their parent system. Moreover, within a subsystem, the
constituent components work together to deliver the overall functionality. Thus, the same
basic model of interacting components, working together to achieve particular objectives
occurs throughout the system: each component can be thought of as achieving one or more
objectives. A second important observation is that complex systems have multiple loci
of control: “real systems have no top”. Applying this philosophy to objective-achieving
decompositions means the individual components should localise and encapsulate their
own control. For the active and autonomous components to fulfill both their individual
and collective objectives, they need to interact. However the system’s inherent complexity
means it is impossible to a priori know about all potential links: interactions will occur at
unpredictable times, for unpredictable reasons, between unpredictable components, i.e.,
the interactions emerge. For this reason, it is futile to try and predict or analyse all the
possibilities at design time. It is more realistic to endow the components with the ability
to make decisions about the nature and scope of their interactions at runtime.

This discussion has highlighted two important characteristics of the complex systems:
the complex system can typically be represented as hierarchies and the complex systems
have typically an emergent behaviour. So, the reminder of this chapter is organised as
follows: Section 11.1 introduces the complex software systems and some of their features,
Section 11.2 presents the hierarchical software system, and Section 11.3 presents the self-
organising systems. Section 11.4 propose and example of hierarchical self-organisation
system: the holonic systems. Finally Section 11.5 reports a summary of this chapter.

11.1 Software Systems and Complexity

Software entities are more complex for their size than perhaps any other human construct
because no two parts are alike [100]. In this respect, software systems differ profoundly
from computers, buildings, or automobiles, where repeated elements abound. Digital
computers are themselves more complex than most things people build: they have very
large numbers of states. This makes conceiving, describing, and testing them hard.

Software systems have orders-of-magnitude more states than computers do [100]. Like-
wise, a scaling-up of a software entity is not merely a repetition of the same elements in
larger sizes; it is necessarily an increase in the number of different elements. In most cases,
the elements interact with each other in some nonlinear fashion, and the complexity of

162

CHAPTER 11. COMPLEX SYSTEMS 163

the whole increases much more than linearly. The complexity of software is an essential
property – i.e., the difficulties are inherent in the nature of the software – not an acci-
dental one—difficulties that attend the software production but are not inherent. Hence,
descriptions of a software entity that abstract away its complexity often abstract away its
essence [101].

For three centuries, mathematics and the physical sciences made great strides by con-
structing simplified models of complex phenomena, deriving properties from the models,
and verifying those properties by experiment. This paradigm worked because the com-
plexities ignored in the models were not the essential properties of the phenomena. It
does not work when the complexities are the essence.

Many of the classic problems of developing software products derive from this essential
complexity and its nonlinear increases with size. From the complexity comes the diffi-
culty of communication among team members, which leads to product flaws, cost overruns,
and schedule delays. From the complexity comes the difficulty of enumerating, much less
understanding, all the possible states of the software, and from that comes the unrelia-
bility. From the complexity of structure comes the difficulty of extending programs to
new functions without creating side effects [100]. From the complexity of structure come
the security trapdoors. Not only technical problems, but management problems as well
come from the complexity. It makes overview hard, thus impeding conceptual integrity.
It makes it hard to find and control all the software lifecycle.

The next subsection presents some features of complex software systems.

11.1.1 Features of Complex Software Systems

Industrial-strength software is complex: it has a large number of parts that have many
interactions [99]. Moreover this complexity is not accidental, it is an innate property of
large systems. Given this situation, the role of software engineering is to provide structures
and techniques that make it easier to handle complexity. Fortunately for designers, this
complexity exhibits a number of important regularities [99]:

• Complexity frequently takes the form of a hierarchy. That is, a system composed
of interrelated subsystems, each of which is in turn hierarchic in structure, until the
lowest level of elementary subsystem is reached. The precise nature of these organi-
sational relationships varies between subsystems; however, some generic forms (such
as client/server, peer, team, and so forth) can be identified. These relationships are
not static: they often vary over time.

• The choice of which components in the system are primitive is relatively arbitrary
and is defined by the observer’s aims and objectives.

• Hierarchic systems evolve more quickly than non hierarchic ones of comparable size
(that is, complex systems will evolve from simple systems more rapidly if there are
clearly identifiable stable intermediate forms than if there are not).

163

164 CHAPTER 11. COMPLEX SYSTEMS

Sub-system Sub-system
component

Frequent
interaction

Related to
Infrequent
interaction

Figure 11.1: View of canonical complex system

• It is possible to distinguish between the interactions among subsystems and those
within subsystems. The latter are both more frequent (typically at least an order of
magnitude more) and more predictable than the former. This gives rise to the view
that complex systems are nearly decomposable: subsystems can be treated almost
as if they are independent, but not quite since there are some interactions between
them. Moreover, although many of these interactions can be predicted at design
time, some cannot.

Drawing these insights together, it is possible to define a canonical view of a com-
plex system (Figure 11.1). The system’s hierarchical nature is expressed through the
“related to” links, components within a subsystem are connected through “frequent in-
teraction” links, and interactions between components are expressed through “infrequent
interaction“ links. Given these observations, software engineers have devised a number of
fundamental tools of the trade for helping to manage complexity [12]:

• Decomposition: The most basic technique for tackling large problems is to divide
them into smaller, more manageable chunks, each of which can then be dealt with
in relative isolation (note the nearly decomposable subsystems in Figure 11.1). De-
composition helps tackle complexity because it limits the designer’s scope.

• Abstraction: The process of defining a simplified model of the system that empha-
sises some of the details or properties, while suppressing others. Again, this works
because it limits the designer’s scope of interest at a given time.

164

CHAPTER 11. COMPLEX SYSTEMS 165

• Organisation: The process of defining and managing the interrelationships between
the various problem-solving components (note the subsystem and interaction links of
Figure 11.1). The ability to specify and enact organisational relationships helps de-
signers tackle complexity by: enabling a number of basic components to be grouped
together and treated as a higher-level unit of analysis, and providing a means of
describing the high-level relationships between various units.

11.2 Complex Systems and Hierarchies

The goal of science is to understand and appreciate the Nature and to use that under-
standing to create materials, devices and software that enhance our lives. We can learn
much from Nature. Certainly we can learn how she approaches problems. We can also
learn how she solves specific problems sensing, repairing damage, creating mechanical
strength. Beyond that, the study of organisms tells us what can be achieved, what prob-
lems can be solved, where we can set our goals in exploiting this understanding to benefit
society.

Nature’s approach to building complex structures and functions is hierarchical. This
guides us in two ways. On a practical level, we can mimic this scheme by building our
own structures hierarchically: combining simple molecules to fashion more complex ones,
then combining those, repeatedly, until very complex structures with greatly enhanced
properties emerge. At the conceptual level, Nature can be our guide in designing a multi-
component research program to mirror this hierarchy. At the base of this program is the
continuous studying of simple structures and phenomena–continuing because there is still
much to learn, and because it provides the fundamental building blocks for the study
of complexity. In most systems in Nature where we leave off the partitioning and what
subsystems we take as elementary is somewhat arbitrary.

For example, one of the most recent results in evolutionary biology is that complex
systems call for layered, hierarchical explanations. A first fundamental result is the so-
called theory of the hierarchies [82]: in order to understand biological systems, and their
evolution over time as well, several different layers has to be accounted for—from genes,
to cells, up to organisms, species and higher taxa. While each layer is in some sense
autonomous, and exhibit its own independent laws and dynamics, at the same time layers
are organised in a hierarchy, each one strictly connected with the upper and lower levels,
each parts of bigger totalities, each also wholeness composed of smaller parts. When
observing / understanding / explaining a biological system, then, many different levels
of abstraction can be adopted in which in the case of biological systems may correspond,
for instance, to the gene, cell, organism, or species levels [59]—and provide different but
equally meaningful views over the systems.

Simon defined a hierarchy system as a system composed of interrelated subsystems,
each of the latter being in turn hierarchic in structure until we reach some lowest level of

165

166 CHAPTER 11. COMPLEX SYSTEMS

elementary subsystem [197]. Note that this is only taken to imply a structural relationship
and not necessarily a formal organisational hierarchy, in which subordinate subsystems
each report to a “boss” at a higher level. Simon then went on to examine the timescale
of evolution of complex systems and to argue that hierarchic systems will evolve more
quickly than non-hierarchic systems of comparable size. This is illustrated with a parable
of two watchmakers, Hora and Tempus [197]. Each makes watches composed of 1000 parts
each, but while those of Tempus have to be assembled in one whole, Hora’s are made up
of three levels of subassemblies of 10 elements each. So, Tempus has to make a complete
assembly in one go, and it is assumed that if he is interrupted, the partially completed
assembly will fall apart. Hence, for each interruption, he will lose more work, and he will
take many more attempts to produce a complete assembly. Hora, on the other hand, has
to complete 111 subassemblies for each complete watch, but she will lose less work for
each interruption and will take far fewer attempts to make a complete assembly. If the
probability of interruption is about 1 in 100, then Tempus will take around 4000 times as
long as Hora to assemble a complete watch.

Simon argued that the same principle of faster evolution of a complex structure con-
sisting of relatively stable substructures will apply to any biological or social system and
so such hierarchic systems are likely to be much more common than non-hierarchic com-
plex systems. For example, a problem-solving process, such as safe cracking, consisting
of selective trial and error, in which partially successful approaches are retained, will find
a solution much more rapidly than a completely random trial and error process.

Furthermore, many hierarchies form nearly decomposable systems, in which the in-
teractions between subsystems are weak but not negligible compared to those within
subsystems. In this case, the short-run behaviour of each subsystem may be analysed as
approximately independent of the short-run behaviour of the other components, and the
long-run behaviour similarly is seen to only depend in an aggregate way on the behaviour
of the other components.

Thus, hierarchic complex systems are argued both to be more common and to be more
comprehensible, often in terms of a process description of the dynamics of how they are
constructed rather than a state description of their final configuration.

11.3 Complex Systems and Self-organisation

Self-organisation may be defined as a spontaneous (i.e. not steered or directed by an ex-
ternal system) process of organisation, i.e. of the development of an organised structure
as a result of many local interactions. In other words, organisation occurs without any
central organising structure or entity. Such self-organisation has been observed in systems
at scales from neurons to ecosystems. The cooperative behaviour of self-organising sys-
tems results from local interactions between its members and not from the existence of a
central controller is referred to as emergent behaviour. Swarms are one of the many self-

166

CHAPTER 11. COMPLEX SYSTEMS 167

organising systems that are now being studied. The behaviour of such complex systems
is typically unpredictable, yet exhibits various forms of adaptation and self-organisation.
The idea that an ant colony is a system that organises itself without any leader is intrigu-
ing. Each individual ant, acting with limited information, contributes to the emergence
of an organised whole. Another typical example is an ecosystem, consisting of organisms
belonging to many different species, which compete or cooperate while interacting with
their shared physical environment.

When we consider a highly organised system, we usually imagine some external or
internal entity that is responsible for guiding, directing or controlling that organisation
[90]. For example, most human organisations have a president, chief executive or board of
directors that develops the policies and coordinates the different departments. Although
the controlling entity (president) is part of the system, it is in principle possible to sep-
arate it from the rest. The controller is a physically distinct subsystem, that exerts its
influence over the rest of the system. In this case, we may say that control is centralised.
In self-organising systems, on the other hand, “control” of the organisation is typically
distributed over the whole of the system. All parts contribute evenly to the resulting
arrangement. Others interesting characteristics of self-organising systems are:

• Robustness or resilience — This means that self-organising systems are relatively
insensitive to perturbations or errors, and have a strong capacity to restore them-
selves, unlike most human designed systems. For example, an ecosystem that has
undergone severe damage, such as a fire, will in general recover relatively quickly.
One reason for this fault-tolerance is the redundant, distributed organisation: the
non-damaged regions can usually make up for the damaged ones. Another reason for
this intrinsic robustness is that self-organisation thrives on randomness, fluctuations
or “noise”; a third reason for resilience, the stabilising effect of feedback loops.

• Non-linearity — Most of the systems modelled by the traditional mathematical
methods of physics are linear. This means basically that effects are proportional
to their causes: if you kick a ball twice as hard, it will fly away twice as fast. In
self-organising systems, on the other hand, the relation between cause and effect
is much less straightforward: small causes can have large effects, and large causes
can have small effects. This non-linearity can be understood from the relation
of feedback that holds between the systems components. Each component affects
the other components, but these components in turn affect the first component.
Thus the cause-and-effect relation is circular : any change in the first component
is fed back via its effects on the other components to the first component itself.
Feedback can have two basic values: positive or negative. Feedback is said to be
positive if the recurrent influence reinforces or amplifies the initial change. In other
words, if a change takes place in a particular direction, the reaction being fed back
takes place in that same direction. Feedback is negative if the reaction is opposite
to the initial action, that is, if change is suppressed or counteracted, rather than

167

168 CHAPTER 11. COMPLEX SYSTEMS

reinforced. Negative feedback stabilises the system, by bringing deviations back to
their original state. Positive feedback, on the other hand, makes deviations grow
in a runaway, explosive manner. It leads to accelerated development, resulting in a
radically different configuration.

In the context of MAS, agents naturally play the role of autonomous entities subject to
self-organise themselves. Usually agents are used for simulating self-organising systems,
in order to better understand or establish models. The tendency is now to shift the role
of agents from simulation to the development of distributed systems where components
are software agents that once deployed in a given environment self-organise and work
in a decentralised manner towards the realisation of a given (global) possibly emergent
functionality. Researchers have been experimented with several mechanisms leading to
self-organisation and often at the same time to emergent phenomenon on different kinds
of applications. The different approaches can be divided in five classes depending on the
mechanisms they are based [50]:

• direct interactions : the approaches proposed consist in using few basic principles,
such as localisation and broadcast, coupled with local interactions and local com-
putations done by agents in order to provide a final coherent global state. These
mechanisms focus on changing the structural aspects of the agent organisation, such
as topological placement of agents and agent communication lines.

• indirect interactions and stigmergy : the mechanisms aim at achieving complex sys-
tem behaviours resulting of indirect interactions between agents. These interactions
are due to changes in the environment. This behaviour leads towards the desired
global system behaviour. In these cases, due to the non-linearity and the complexity
of the phenomena involved, neither it is possible to have direct control of the system
behaviour nor can it be proven that the desired behaviour will be achieved. The re-
sulting system state cannot be accurately known in advance and multiple solutions
can be reached. One can only obtain some statistical confidence about the system
convergence to the desired globally behaviour with experimentation.

• reinforcement : these approaches are based on adaptive behaviour capabilities of
individual agents which are dependent on particular agent architectures. Agents
dynamically select a new behaviour based on the calculation of a probability value
which is dependent on the current agent state and the perceived state of the envi-
ronment, as well as on the quality of the previous adaptation decisions. It consists
in the following basic principles: rewards increase agent behaviour and punishments
decrease agent behaviour.

• cooperation: composition merges two agents into one and can be useful when com-
munication overheads between the two agents are too high. The system tries to be

168

CHAPTER 11. COMPLEX SYSTEMS 169

cooperative with its environment in creating one agent or in merging two agents
in order to improve the response time to the environment. The initial organisation
starts with one agent containing all domain and organisational knowledge. Simula-
tion results demonstrate the effectiveness of the approach in adapting to changing
environmental demands.

• generic architecture: a particular class of self-organisation mechanisms is based on
generic reference architectures or meta-models of the agents’ organisation which
are instantiated and subsequently dynamically modified as needed according to the
requirements of the particular application. A common aspect in reference architec-
tures is that they involve characteristic agent types from which the basic agents of
a holonic organisation are derived.

Self-organisation and emergence interest more and more the community of computer
scientists and in particular the MAS developers. This craze is due to the fact that self-
organisation enables to tackle a new field of applications and that multi-agent systems
are well adapted to implement self-organisation.

11.4 Holonic Systems: Hierarchies and Self-organisation

The idea of hierarchy and of their constituent part-wholes, or holons [107], has a long and
distinguished history. There are many philosophers who have proposed abstract systems
for explaining natural and social phenomena. In pre-Socratic Greece Leucippus and Dem-
ocritus developed the abstract concept of the atom and used it to develop a philosophy
that could explain all observed events. Aristotle used hierarchy as the methodology for
accumulating and connecting biological knowledge. Hierarchy was perhaps the dominant
way of viewing the connection between the natural, the human and the supernatural
orders of being through the middles ages.

The word holon is a combination of the Greek “holos” meaning whole, with the suffix
“on” which, as in proton or neutron, suggests a particle or part. The holon, then, is a
part-whole. It is a nodal point in a hierarchy that describes the relationship between
entities that are self-complete wholes and entities that are seen to be other dependent
parts. As one’s point of focus moves up, down, and / or across the nodes of a hierarchical
structure so one’s perception of what is a whole and what is a part will also change [58].

Koestler noted that in every order of existence, from physical to chemical to biological
and social systems, entirely self supporting, non-interacting entities did not exist [107].
And more importantly, that entities can be seen to lie in holarchical relationship with
each other. Every identifiable unit of organisation, such as a single cell in an animal or
a family unit in a society, comprises more basic units (mitochondria and nucleus, parents
and siblings) while at the same time forming a part of a larger unit of organisation (a
muscle tissue and organ, community and society). A holon, as Koestler devised the term,

169

170 CHAPTER 11. COMPLEX SYSTEMS

is an identifiable part of a system that has a unique identity, yet is made up of sub-
ordinate parts and in turn is part of a larger whole. Koestler’s holons were not thought
of as entities or objects but as systematic ways of relating theoretical structures. In other
words, holons were arbitrary points of reference for interpreting reality. Because holons
are defined by the structure of a hierarchy each identified holon can itself be regarded
as a series of nested sub-hierarchies in the same way that a set of Russian dolls is an
inclusive series of dolls contained within each other [58]. Holons are, then, both parts
and wholes because they are always parts of larger hierarchies and they always contain
sub-hierarchies. Holons simultaneously are self-contained wholes to their subordinated
parts, and dependent parts when seen from the inverse direction. Hence, holons can be
seen as reference points in hierarchical series or holarchies. Koestler also recognised that
holons are the representative stages or nodal structures that define the developmental
hierarchies. As he says “the different levels represent different stages of development, and
the holons reflect intermediary structures at these stages”.

The strength of holonic organisation, or holarchy, is that it enables the construction of
very complex systems that are nonetheless efficient in the use of resources, highly resilient
to disturbance, and adaptable to changes in the environment in which they exist [78].
Moreover, holons may participate in multiple hierarchies at the same time. Holarchies
are recursive in the sense that a holon may itself be an entire holarchy that acts as
an autonomous and cooperative unit in the first holarchy. The stability of holons and
holarchies stems from holons being self-reliant units, which have a degree of independence
and handle circumstances and problems on their particular level of existence without
asking higher level holons for assistance. The self-reliant characteristic ensures that holons
are able to survive disturbance. The subordination to higher level holons ensures the
effective operation of the larger whole.

Holons was initially successful adopted in manufacturing system where they are viewed
as intelligent, autonomous, and cooperative building blocks, within a manufacturing sys-
tem, for transforming, transporting, storing and/or validating information and physical
objects [116]. The direct linkage of holons with the physical elements of manufacturing
and material handling infrastructure is stressed. A holon always contains an informa-
tion processing part and, optionally, a physical processing part. The appearance and the
whole existence of holons is tightly connected with the requirement of reconfigurability
and holons are considered as the lowest level of granularity in the reconfiguration tasks.
Cooperation among holons is supported by an evolutionary self-organising holarchy. The
other important feature of holons is their recursiveness that means holons can contain
another holons of the same architecture/ structure. Holons are able to communicate via
information exchange, cooperate via participation in one or more cooperation domains in
which they are able to perform a certain group-decision making exploring simple negoti-
ations.

The holonic terminology is used mainly in the control-engineering domain. Several
industrial holonic-based solutions were already presented, but special products supporting

170

CHAPTER 11. COMPLEX SYSTEMS 171

a holonic-based automation for manufacturing and control are still missing on the market.
The HMS (Holonic Manufacturing Systems) consortium [91] did a significant progress in
defining first standards for holonic systems. The basic holonic attributes defined by HMS
consortium are [91]:

• Autonomy: each holon must be able to create, control and monitor the execution of
its own plans and/or strategies, and to take suitable corrective actions against its
own malfunctions.

• Cooperation: holon must be able to negotiate and execute mutually acceptable plans
and take mutual action against malfunctions.

• Openness: the system must be able to accommodate the incorporation of new
holons, the removal of existing holons, or modification of the functional capabil-
ities of existing holons, with a minimal human intervention, where holons or their
functions may be supplied by a variety of diverse sources.

Now it has been clearly recognised that intelligent solutions for engineering holonic
systems can be achieved by encapsulating the function block solutions into a certain kind
of higher-level software enabling more sophisticated, more intelligent negotiation process
based on a richer knowledge representation schemas. Thus, the holonic research started
to look for suitable agent-based solutions.

The progress achieved on both the areas of holonic and multi-agent systems as well
as mutual convergence of these areas during the last year has been really significant. The
researchers in these areas clearly identified the role of each of them in manufacturing and
industrial control and recognised weak and strong points of each of these approaches [79].
Giret and Botti [78] compared holons and agents and the results are summarised in Figure
11.2

As it is possible to see in the figure, holon paradigm and agent paradigm share similar
concepts: we can say that a holon is a special case of agent. At the lowest implementation
level, both models are simple blocks of executable code with data flowing from / to them
according to the particular implementation [78].

In MAS design, a holon constitutes a way to gather local and global, individual and
collective points of view. A holon is thus a self-similar structure composed of holons as
sub-structures and the hierarchical structure composed of holons is called a holarchy [37].
A holon can be seen, depending on the level of observation, either as an autonomous
“atomic” entity or as an organisation of holons.

Two overlapping aspects have to be distinguished in holons: the first is directly related
to the holonic nature of the entity (a holon, called “super-holon”, is composed of other
holons, called sub-holons or members) and deals with the government and the administra-
tion of a super-holon. This aspect is common to every holon and thus called the holonic
aspect. The second aspect is related to the problem to solve and the work to be done. It

171

172 CHAPTER 11. COMPLEX SYSTEMS

Figure 11.2: Holons vs. Agents [78]

depends on the application or application domain. It is therefore called the production
aspect.

11.5 Summing up

This chapter has introduced the complex systems and their two key features: hierarchies
and self-organisation. Although there is no universally accepted definition of a complex
system, most researchers would describe as complex a system of connected entities that
exhibits an emergent global behaviour resulting from the interactions between the entities.
As shown in this chapter the agent paradigm seems very suitable for modelling and sim-
ulating this kind of systems. Traditional software engineering techniques are well-suited
for capturing the hierarchical system organisations but they are insufficient for capturing
self-organising aspects, since they are based on interfaces fixed at design time, or well
established ontologies. As for current methodologies, they only make it possible to define
a global behaviour when it is a mere sum of the behaviour of the various parts. Current
practices in multi-agent systems directly address self-organisation and consist in design-
ing distributed algorithms taking inspiration from natural mechanisms both bio-inspired
and socially-inspired. Some agent-oriented methodologies such as ADELFE provide to
the designer means to design self-organising systems [50]. However the whole engineering
process underpinning methodologies remains open issue.

172

12
Managing System Complexity

As highlighted in the previous chapter, complexity is inherent in real-life systems [53].
While modelling complex systems and understanding their behaviour and dynamics is
the most relevant concern in many areas, such as economics, biology, or social sciences, in
the software systems also the complexity of construction becomes an interesting challenge.
An integral part of a system development methodology must therefore be a set of tools for
controlling and managing this complexity. So this chapter presents the tools that support
the complexity of the system representations. In particular this chapter focus on those
tools for managing the hierarchical aspects of complex systems. Even if self-organisation
and emergent behaviour are very important characteristics of complex system they are
not considered in this chapter because they are out of the scope of this thesis.

The very need for systems analysis and design strategies stems from complexity. If
systems or problems were simple enough for humans to be grasped by merely glancing at
them, no methodology would have been required. Due to the need for tackling sizeable,
complex problems, a system development methodology must be equipped with a compre-
hensive approach, backed by set of reliable and useful tools, for controlling and managing
this complexity. Like most classical engineering problems, complexity management en-
tails a tradeoff that must be balanced between two conflicting requirements: completeness
and clarity. On one hand, completeness requires that the system details be stipulated
to the fullest extent possible—the system must be specified to the last relevant detail.
On the other hand, the need for clarity imposes an upper limit on the level of complex-
ity of each individual diagram and does not allow for a diagram that is too cluttered or
loaded—the documentation must be legible and comprehensible. To tackle complex sys-
tems, a methodology must be equipped with adequate tools for complexity management
that address and solve this problem of completeness-clarity tradeoff by striking the right
balance between these two contradicting demands. The theories and tools adopted in the
managing of complex system (Chapter 11) – in particular decomposition, abstraction and
layering – could be very useful in the formulation of a new approach for managing the
complexity in the system representation.

The remainder of this chapter is organised as follows: Section 12.1 presents the middle-
out approach for system’s analysis and design, Section 12.2 and Section 12.3 illustrate

173

174 CHAPTER 12. MANAGING SYSTEM COMPLEXITY

respectively as the object-oriented and AO notations and methodologies manage the
complexity of representation. Section 12.4 propose a new mechanism for managing the
complexity in AO methodologies. Finally Section 12.5 presents a summary of the chapter.

12.1 Middle-out as the de-facto Practice

Analysing is the process of gradually increasing the human analyser’s knowledge about
the system’s structure and behaviour. Designing is the process of gradually increasing
the amount of detail on the system’s architecture, i.e., the structure and behaviour com-
bination that enables the system to attain its function. For both analysis and design,
managing the system’s complexity therefore entails being able to present and view the
system at various levels of detail that are consistent with each other [53]. Ideally, anal-
ysis and design start at the top and make their way gradually to the bottom—from the
general to the detailed. In real life, however, analysis typically starts at some arbitrary
detail level and it is rarely linear [128]. The design is not linear either. Usually these are
iterative processes, during which knowledge, followed by understanding, is accumulated
and refined by degrees.

The system architect usually cannot know in advance the precise structure and be-
haviour of the very top of the system—this requires analysis and becomes apparent at
some point along the analysis process. Step by step, the analyst builds the system speci-
fication by accumulating and recording facts and observations about things in the system
and relations among them. The sheer amount of detail contained in any real world system
of reasonable size overwhelms the system architects soon enough during the architecting
process. Trying to incorporate the details into one diagram and their interconnections
quickly becomes an entangled web. This information overload happens even if the method
advocates using multiple diagram types for the various system aspects. Because the di-
agram has become so cluttered, it is increasingly difficult to comprehend it. System
architects experience this detail explosion phenomenon on a daily basis, and anyone who
has tried to analyse a system will endorse this description. The problem calls for effective
and efficient tools to manage this inherent complexity.

Due to the non-linear nature of these processes, linear, unidirectional “bottom-up”
or “top-down” approaches are rarely applicable to real-world systems. Rather, it is fre-
quently the case that the system under construction or investigation is so complex and
unexplored, that neither its top nor its bottom is known with certainty from the outset.
More commonly, analysis and design of real-life systems start in an unknown place along
the system’s detail level hierarchy. The analysis proceeds middle-out by combining top-
down and bottom-up techniques to obtain a complete comprehension and specification of
the system at all the detail levels. It turns out that even though the architect usually
strives to work in an orderly top-down fashion, more often than not, the de-facto practice
is the middle-out mode of analysis and design.

174

CHAPTER 12. MANAGING SYSTEM COMPLEXITY 175

During the middle-out analysis and design, facts and ideas about objects in the system
and its environment, and processes that transform them, are being gathered and recorded.
As the development proceeds, the system architect tries to concurrently specify both the
structure and the behaviour of the system in order to enable it to fulfill its function. For an
investigate system, the researcher tries to make sense of a long list of gathered observations
and to understand their cause and effect relations. In both cases, the system’s structure
and behaviour go hand in hand, and it is very difficult to understand one without the
other.

12.2 System Complexity in OO Methodologies and

Notations

Rooted in military art, the decomposition principle, also known as the divide and con-
quer strategy, has been recognised for a long time and in many domains as an effective
means to overcome complexity and enable the solving of complex problems. The idea is
basically to break a complex problem (such as understanding and/or designing a complex
system) into smaller, manageable pieces, solve each of them separately and combine the
partial solutions to obtain a complete solution. Obviously this principle in not enough for
managing the complexity in those systems where the system behaviour emerge from the
local interactions at run-time (see Section 11.3). These systems need different tools that
are out of the scope of this work.

System development methodologies have adopted the decomposition principle, either
intentionally or not. Most methodologies apply this strategy by breaking the system into
a number of models, each dealing with a different aspect of the system, such as structure,
behaviour and function. Each model applies a different set of symbols and concepts,
and together they are expected to convey a complete system specification. This aspect
decomposition is at the heart of standard, state-of-the-art object-oriented development
languages like UML. A system is then expressed as a multiplicity of different models, each
representing a specific system aspect: actually, UML defines thirteen types of diagrams,
four of which represent the static application structure, five are devoted to capture the
system’s dynamic behaviour, and three are related to the organisation and management of
application modules [123]. Altogether, all these models are expected to convey a complete
system specification.

However, although the availability of so many models constitutes a richness from the
expressiveness viewpoint, each model introduces its own set of symbols and concepts, thus
leading to an unnatural complexity in terms of vocabulary, model multiplicity and model
integration [54]. This is a problem both for maintaining consistency among the different
system models and views, and for the mental integration of such views, since integrating
several models within one’s mind is a very difficult process. That is why the need to
concurrently refer to different models in order to understand a system and the way it

175

176 CHAPTER 12. MANAGING SYSTEM COMPLEXITY

Figure 12.1: Example of folding in a object process diagram [54]

operates and changes over time is a critical issue, known as the multiplicity problem [171].
A different notation, OPM, adopts a different approach. A basic principle in OPM

is that structure and behaviour within a system are so intertwined that effectively sep-
arating them is extremely harmful, if not impossible. OPM has adopted the detailed
decomposition: rather then decomposing a system according to its various aspects, the
decomposition is based on the system’s levels of abstraction. OPM controls complexity
through granularity levels, refinement, and abstraction similar to zooming in and zoom-
ing out in a digital map. Three built-in refinement/abstraction mechanisms are built into
OPM. They enable presenting the system elements at various detail levels without losing
the comprehension of the system as a whole.

12.2.1 Detail Decomposition in OPM

OPM controls the complexity through granularity levels, refinement, and abstraction
similar to zooming in and zooming out in a digital map. There are three scaling modes
with respect to the three entities of OPM—object, process and state. Visibility scal-
ing zooms in or zooms out of a process, hierarchy scaling unfolds or folds an object,
and manifestation scaling expresses or suppresses a state. These are done via three re-
finement/abstraction mechanisms : unfolding/folding, in-zooming/out-zooming, and state
expressing/suppressing.

Unfolding/folding is applied by default to objects for detailing/hiding their structural

176

CHAPTER 12. MANAGING SYSTEM COMPLEXITY 177

Figure 12.2: Example of in-zooming in a object process diagram [54]

components (parts, specialisations, features, or instances). Unfolding reveals a set of
lower-level entities that are hierarchically below a relatively higher-level thing. The hier-
archy is with respect to one or more structural links. The result of unfolding is a graph,
the root of which is the thing being unfolded. Linked to the graph are the things that
are exposed as a result of the unfolding. Conversely, folding is applied to a tree from
which a set of unfolded entities is removed, leaving just the root. Figure 12.1 shows an
example in which the Order object is unfolded, showing its operations and event triggers.
Unfolding/folding can be applied fully or partially to any subset of descendants (parts,
specialisations, features, or instances) of a thing (object or process).

A state is a situation in which an object can be for some period of time. At any point
in time an object is in exactly one of its states. State expressing is a refinement mechanism
applied to objects which reveals a set of states inside an object. State suppressing is the
abstraction mechanism which conceals a set of states inside an object. Figure 12.1 shows
an example in which Order Status is expressed.

In-/out-zooming is applied by default to processes for detailing/hiding their sub-
process components and details of the process execution. In-zooming of (i.e., zooming
into) an entity decreases the distance of viewing it, such that lower-level elements en-
closed within the entity become visible. Conversely, out-zooming (i.e., zooming out) of
a refined entity increases the distance of viewing it, such that all the lower-level ele-
ments that are enclosed within it become invisible. Figure 12.2 shows an example of the
in-zooming of the Ordering process.

177

178 CHAPTER 12. MANAGING SYSTEM COMPLEXITY

Despite the different names, all the OPM scaling mechanisms allow engineers to work
middle-out: MAS engineers can choose to start at any arbitrary abstraction level, and
then achieve both the most detailed level and the most abstract level, along with the
entire spectrum of intermediate levels between these two extremes.

12.3 System Complexity in AO Methodologies

As advocated in [158], MASs, once developed up to their full potential, can be generally
seen as representing a class of complex artificial systems, wide and meaningful enough
to legitimise, in principle, the application to MASs of the general principles and laws
governing complex systems. This means that it is possible to apply the “hierarchy prin-
ciple” (see Section 11.2) to the design of MASs: this first suggests that MAS models,
abstractions, patterns and technologies can be suitably categorised and compared using a
layered description. More simply and directly, when applied to the engineering of MASs,
the hierarchy principle suggests that agent-oriented processes and methodologies should
support some forms of MAS layering, allowing engineers to design and develop MAS along
different levels of abstractions—a number of independent, but strictly related, MAS layers
(Chapter 11).

Accordingly, one should expect that existing methodologies actually do support ab-
stractions and processes for MAS layering—like for example the OPM’s zooming. Quite
interestingly, however, current AO methodologies offer very little (if any) support for hi-
erarchical representation of MASs. So, in the following subsection the main AO method-
ologies are surveyed to look for some support for layered representation of MAS.

12.3.1 AO Methodologies & Layering

Many methodologies exist in the literature aimed at the engineering of artificial systems
in terms of MASs (Chapter 4). Although none of those methodologies provides MAS
engineers with an explicit layering mechanism, some of them exhibit some implicit mech-
anisms that make it possible in some sense to analyse the system at different levels of
detail.

To the best of our knowledge, the most cited AO methodology, Gaia, does not intro-
duce any mechanism providing for MAS layering. In MaSE, instead, two models allow
MASs to be represented at different levels of abstraction: the creating-agent-classes model
should provide a high-level vision of the MAS agents and of their main conversations; the
assembling-agent-classes model “zooms” on the inner agent structure, and provides for a
number of predefined components, which may also have sub-architectures (with further
sub-components) of their own.

Tropos promotes a form of refinement across different stages of the MAS analysis
process, such as when the actor and dependency models built in the early requirements

178

CHAPTER 12. MANAGING SYSTEM COMPLEXITY 179

phase are extended during the late requirements phase by adding the system-to-be as
another actor, along with its inter-dependencies with social actors. Also MESSAGE
[69] uses a refinement model in the analysis phase: the level 0 model gives an overall
view of the system, its environment, and its global functionality; next level 1 defines
the structure and the behaviour of entities such as organisation, agents, tasks, goals,
domain entities; further levels (2, 3, . . .) might be defined for pointing out specific
aspects of the system dealing with functional requirements, as well as non-functional
requirements such as performance, distribution, fault tolerance, security. In Prometheus
[164], a progressive refinement process is used which starts by describing agents internals
in terms of capabilities. The internal structure of each capability is then given, optionally
using or introducing further capabilities, which are refined in turn until all capabilities
have been defined: capability nesting is allowed, thus allowing for arbitrarily many layers,
in order to achieve an understandable complexity at each level.

Finally a recent proposed methodology called ASPECS [37] suggests a method for
managing the complexity of the representation tied to the system holonic structure (Sec-
tion 11.4) where holons can be seen, depending on the level of observation, either as
an autonomous “atomic” entity or as an organisation of holons. The main vocation of
ASPECS is towards the development of societies (organisations) of holonic (as well as not-
holonic) multi-agent systems. ASPECS proposes a multiview approach that consists in
merging the various points of view on the system (including the functional and ontological
views). This approach respects the hierarchical nature of the system revealed by the onto-
logical approach – where the system ontology is hierarchical decomposed, and Uses cases
referring to ontological concepts of the same level are grouped – but it clearly separates
use cases attached to different system functionalities. The granularity of functionalities
and the different levels of abstraction present in the system are respected. The hierarchi-
cal decomposition of ontology inducts a decomposition of the global behaviour embodied
by an organisation into smaller interacting behaviours. Each organisation is decomposed
and it is specified the precise behavioural contribution of sub-level organisations to an
upper-level organisation.

The above forms of layering, however, are quite limited and more tied to the struc-
ture of the system – ASPECS in particular – then to view the system at different level
of abstractions. First of all, they enforce only a top-down, mono-directional form of
zooming—so, refinement is allowed, abstraction is not allowed. Then, they have only a
pre-fixed scope and structure, which limits in principle their flexibility and possibly their
ability to fit the many different MAS application scenarios. Mechanisms for zooming are
then not explicit, and no ontological support is currently provided by any of the available
AO methodologies to the best of our knowledge.

So, it is no surprise that OPM was extended in order to support concepts from the
agent field. OPM/MAS [201] takes MAS building-blocks from the Gaia methodology. The
set of MAS building blocks is divided into two groups: the first contains static, declarative
building blocks, while the second group contains building blocks with a behavioural,

179

180 CHAPTER 12. MANAGING SYSTEM COMPLEXITY

dynamic nature. The building blocks in the first group – which include organisation,
society, platform, rule, role, user, protocol,belief, desire, fact, goal, intention, and service
– are modelled as OPM objects; the building blocks in the second group – which include
agent, task, and messaging – are modelled using the process concept.

OPM/MAS is indeed the first actual effort to introduce the zooming mechanism into
a methodology for modelling multi-agent systems. However, apart from the obvious prob-
lems arising from the uneven mixture of the very different OPM and Gaia approaches,
OPM zooming mechanisms appear too generic for Gaia-derived agent abstractions, which
were not conceived with zooming in mind. For instance, in-zooming an agent according
to OPM rules would generally lead to another object or to another agent, more plausibly:
there is no way that an activity represented at a given abstraction level as an agent could
become a society of agents at the next, more refined level.

12.4 Layering Mechanisms for AO Methodologies: A

First Insight

Taking inspiration from the OPM’s in-zooming/out-zooming and from the hierarchical
structure of complex system (Section 11.2), a simple layering principle with the specific
aim of scaling with the complexity of system description can be added to AO method-
ologies. Different form OPM that provides other two different mechanisms – unfold-
ing/folding and expressing/suppressing – for managing the complexity, the proposed prin-
ciple adopts only one mechanism – zooming – in order to simplify the layering managing.
Even if the OPM approach seems very easy but if we careful analyse the OPM meta-
model related to the scaling process [53] it appears not so easy: we can note that this
process presents different attributes that specifies the kind of scaling and the relative
default entities subject to the scaling operation and so on. Indeed, our purpose is to
have a mechanism applicable in an uniform way at all the abstractions supported by
methodologies.

The layering principle comes from the basic intuition that what can be described as
a complex task or goal assigned to a role R at a generic layer L, can be zoomed into a
different subtasks or subgoals assigned to a group of roles at the layer L+1—and vice
versa. Each layer contains a description of the models at a given level of abstraction, and
is labelled with a number: as a convention, the uppermost layer is the layer 0—which
represents the most abstract view of the MAS: so, zooming a model at layer L results
in a model at either layer L+1 (in-zooming) or layer L-1 (out-zooming) [128]. That is,
zooming allows for different viewpoints over the system at different levels of abstraction
(see Figure 12.3). The zooming mechanism provided for the models at one stage directly
impacts on the models and diagrams identified at all the other stages. For example in
Figure 12.3 the effect of the application of the in-zoom at a model in one stage inducts
in the subsequently models an in-zoom operation: the agent mapping a role at the layer

180

CHAPTER 12. MANAGING SYSTEM COMPLEXITY 181

Task/Goal Role

Role

composed of
m

Layer L

Layer L+1

Group GSubtasks/
Subgoal Society Society

Agent Agent

Agent

Figure 12.3: Zooming: the basic intuition

L is in-zoomed into a society of agents at the layer L+1, mapping the group which
results from in-zooming R. Dually, as in-zoom allows for more and more detailed views
over the systems, out-zooming provides engineers with a mechanism for abstraction. For
example, a social task ST assigned to a group at layer L could be abstracted (out-zoomed)
into an individual task IT assigned to an individual role R at (more abstract) layer L-
1, thus concealing the roles of the group. In this way, we allow engineers to provide
a more concise description of MASs, where the unnecessary details that could hinder
system understanding are abstracted away, and only the main entities and their mutual
relationships are actually accounted for. The availability of symmetric and uniform in-
/out-zooming mechanisms promote middle-out approaches to the engineering of MASs.

12.4.1 Zoom & Artifacts

As mentioned in Chapters 7 and 9 artifacts have a relevant impact on the way in which
any AO methodology could be organised.

What might not be so obvious is that the very notion of artifact is itself affected by the
principles of the methodology, as it happens when they are introduced in a methodology.
This is particularly evident when artifacts are introduced in a methodology that supports
the layering principle [127](Chapter 14). For instance, an environmental artifact at layer
L could be zoomed and become an aggregation of one or more social artifacts (managing

181

182 CHAPTER 12. MANAGING SYSTEM COMPLEXITY

the access policy) and one or more environmental artifacts at layer L+1 (Figure 12.4).

L L+1

Artifact

op1

op2
Social
Artifact

Environmental
Artifact

Environmental
Artifact

interface

op1

op2

Zooming out

Zooming in

Figure 12.4: Zooming: exploding / imploding artifacts

Zooming artifacts also allows for different levels of abstraction over resources. As a
simple example, taken from the real world, one may think of a simple desktop computer
as an artifact: at layer L, it may be seen as a single resource artifact, but would become a
composition of different environmental artifacts (a CPU, a hard-disk, a DVD unit, wires,
and so on) when zoomed at layer L+1. If we further zoom in the hard-disk, this could
be seen at layer L+2 as the composition of a case, disks, heads—just to mention a few;
and zooming could continue until the desired / required level of detail / abstraction is
reached.

However, zooming artifacts is not restricted only to “exploded” artifacts (Figure 12.4—
i.e., an artifact that “generates” several artifacts. Instead, it could involve a refinement of
the artifact’s features (Figure 12.5), such as its usage interface. So, an artifact could ex-
pose at layer L an interface that provides all the operations required at that layer, whereas
at layer L+1 the same artifact could expose further, more detailed operations according
to the level of abstraction required. For instance, an individual artifact operation could

182

CHAPTER 12. MANAGING SYSTEM COMPLEXITY 183

result in a number of (more refined) artifact operations at layer L+1.

L L+1

Artifact

op1

op2

interface

Artifact

op1.1

op2

interface

op1.2

op1.3

Zooming out

Zooming in

Figure 12.5: Zooming: refining artifacts

12.5 Summing up

This chapter has presented tools for managing the hierarchical aspects of complex systems
both in the object-oriented and agent-oriented methodologies. In addition, this chapter
has proposed a simple yet expressive layering principle for managing the complexity in
AO methodologies. This principle takes inspiration from both the scaling mechanisms of
OPM and the theory of the hierarchies (Section 11.2).

In the traditional literature, other object-oriented methodologies are defined that sup-
port some sort of layering: among these, the Booch method [83], EROOS [60] and OSA
[162]. Both Booch method and EROOS define iterative processes: phases are often re-
peated, each time focusing on a more detailed level of abstraction. OSA is somehow
similar to our principle in the uniform, bidirectional application of its zooming mecha-
nism, as “. . . High-Level Object Classes have exploded and imploded views. An exploded
view shows what a High-Level Object Class contains, while the imploded view hides its

183

184 CHAPTER 12. MANAGING SYSTEM COMPLEXITY

contents . . . ”. However, how OSA mechanism could provide for recursion (to allow for an
unlimited number of abstraction layers), and how it could be generalised to be applicable
to anything else than Object Classes is frankly unclear from the available literature.

So, it is now clear that any methodology aimed at engineering complex artificial sys-
tems should provide engineers with some tool allowing for expressive and consistent hier-
archical descriptions of systems.

184

Part V

SODA

185

13
SODA: The Early Version

This chapter presents the first version of the SODA (Societies in Open and Distributed
Agent spaces) methodology created by Andrea Omicini in 2000 [144]. This version rep-
resents the starting point of my Ph.D work that has led to a new formulation of SODA
presented in the next chapters.

SODA in its first version is a methodology for the analysis and design of multi-agent
systems. The goal of SODA is to define a coherent conceptual framework and a com-
prehensive software engineering procedure that accounts for the analysis and design of
individual agents, agent societies, and agent environments.

The analysis phase is characterised by three models: the role model, the resource model
and the interaction model. The design phase is based on three strictly-related models,
deriving from the models defined in the analysis phase; in particular, the analysis’ role
model maps to the design’s agent model and society model, while the analysis’ resource
model maps to the design’s environment model. The analysis’ interaction model, in its
turn, generates the interaction protocols and coordination rules referenced by the design’s
models.

SODA is not concerned with intra-agent issues: designing a multi-agent system with
SODA leads to defining agents in terms of their required observable behaviour and their
role in the multi-agent system. Then, whichever methodology one may choose to de-
fine the agent structure and inner functionality, it could be easily used in conjunction
with SODA. Instead, SODA concentrated on inter-agent issues, like the engineering of
societies and infrastructures for multi-agent systems. Since this conceptually covers all
the interactions within an agent system, the design phase of SODA deeply relies on the
notion of coordination model [165, 166]. Coordination models and languages were taken
as the sources of the abstractions and mechanisms required to engineer agent societies:
social rules were designed as coordination laws and embedded into coordination media,
and social infrastructures were built upon coordination systems.

In the first formulation, SODA does not adopt a specific language notation for sup-
porting the designers’ work. This is because the available notations – such as UML [143]
or its extension for agents AUML [64] – were not suitable for agent modelling and the
SODA author did not create a new specific notation. However this choice is not so good

187

188 CHAPTER 13. SODA: THE EARLY VERSION

because the methodology is not actually usable: a designer that would use SODA should
first create an ad hoc representation of the models and then integrate this representation
with the SODA process. On one hand this gives great freedom to the designers for adopt-
ing the notation language they prefer, on the other hand this does not allow the creation
of a set of case studies developed with SODA that help the new users to understand the
methodology.

This lack has been resolved by the introduction of a tabular representation [128], which
describes and relates SODA’s entities by means of tables. This formalism has been chosen
for its simplicity and clearness: the designers are still free to adopt a specific language
for the entity description ranging from an informal textual description to more formal
languages; however now there are guidelines for the organisation of the entities, their
related features and their relationships.

Therefore, in the following first the analysis phase and the design phase – along with
the tabular representation – are respectively illustrated in Section 13.1 and Section 13.2,
the SODA meta-models are presented (Section 13.3), and finally a discussion about the
limitation of this version is reported in Section 13.4.

13.1 The Analysis Phase

During the analysis phase, the application domain is studied and modelled, the available
computational resources and the technological constraints are listed, the fundamental
application goals and targets are pointed out.

The result of the analysis phase is typically expressed in terms of high-level abstrac-
tions and their mutual relationships, providing designers with a formal or semi-formal
description of the intended overall application structure and organisation. Since by def-
inition agents have goals that they pursue pro-actively, agent-oriented analysis can rely
on agent responsibility to carry on one or more tasks. Furthermore, agents live in an
environment, which may be distributed, heterogeneous, dynamic, and unpredictable. So,
the analysis phase should explicitly take into account and model the required and desired
features of the agent application environment, by modelling it in terms of the required
resources and the services made available to agents. Finally, since agents are basically
interactive entities, which depend on other agents and available resources to pursue their
tasks, the analysis phase should explicitly model the interaction protocols in terms of the
information required and provided by agents and resources.

So, the SODA analysis phase exploits three different models:

• the role model — the application goals are modelled in terms of the tasks to be
achieved, which are associated to roles and groups (Subsection 13.1.1)

• the resource model — the application environment is modelled in terms of the ser-
vices available, which are associated to abstract resources (Subsection 13.1.2)

188

CHAPTER 13. SODA: THE EARLY VERSION 189

Role Task Interaction
Protocol

role task list of
name name protocols

Figure 13.1: Role Table

• the interaction model — the interaction involving roles, groups and resources is
modelled in terms of interaction protocols, expressed as information required and
provided by roles and resources, and interaction rules, governing interaction within
groups (Subsection 13.1.3)

The above models represent the basis of the SODA analysis phase. Even though
conceptually distinct, they are obviously strictly related, and should be defined in a
consistent way.

13.1.1 The Role Model

Tasks are expressed in terms of the responsibilities they involve, of the competences
they require, and of the resources they depend upon. Responsibilities are expressed
in terms of the state(s) of the world that should result from the task accomplishment.
Tasks are classified as either individual or social ones. Typically, social tasks are those
that require a number of different competences, and access to several different resources,
whereas individual ones are more likely to require well-delimited competence and limited
resources. Each individual task is associated to an individual role, which by consequence
is first defined in terms of the responsibilities it carries. Analogously, social tasks are
assigned to groups. Groups are defined in terms of both the responsibility related to their
social task, and the social roles participating in the group. A social role describes the
role played by an individual within a group, and may either coincide with an already
defined (individual) role, or be defined ex-novo, in the same form as an individual one,
by specifying its task as a sub-task of its groups one.

The role model can be represented by defining a Role Table (Figure 13.1) and a Group
Table (Figure 13.2), respectively [128]. In addition, since SODA associates interaction
protocols to roles and interaction rules to groups, one extra column is added to such tables,
to represent these associations. Each group is associated to a set of roles: correspondingly,
further Role Tables can be introduced to express these relationships—one (social) Role
Table for each group. As a result, Role Tables are exploited to express both the individual
roles (one table) and the social roles (as many tables as the groups are). Of course, the
interaction protocols associated to roles and the interaction rules associated to groups are
further detailed in the interaction model (Figures 13.4 and 13.5 below).

189

190 CHAPTER 13. SODA: THE EARLY VERSION

Group Social Task Interaction
Rule

group social task list of
name name rules

Figure 13.2: Group Table

13.1.2 The Resource Model

Services express functionalities provided by the agent environment to a multi-agent system—
like recording information, querying a sensor, verifying an identity. In this phase, each
service is associated to an abstract resource, which is then firstly defined in terms of the
services it provides. Each resource defines abstract access modes, modelling the differ-
ent ways (policies) in which the services it provides can be exploited by roles. If a task
assigned to a role or a group requires a given service, the access modes are determined
and expressed in terms of the granted permission to access the resource in charge of that
service. Such a permission is then associated to that role or group.

The Resource Table (Figure 13.3) expresses this relationship, also listing the interac-
tion protocols associated to each resource (again, details about interaction protocols and
rules are provided in the interaction model—Figures 13.4 and 13.5).

Resource Service Policy Interaction
Protocol

resource list of list of list of
name services permissions protocols

Figure 13.3: Resource Table

13.1.3 The Interaction Model

Analysing the interaction model in SODA amounts to the definition of interaction pro-
tocols for roles and resources, and interaction rules for groups. An interaction protocol
associated to a role is defined in terms of the information required and provided by the
role in order to accomplish its individual task. An interaction protocol associated to a
resource is defined in terms of the information required to invoke the service provided by
the resource itself, and by the information returned when the invoked service has been
brought to an end, either successfully or not.

An interaction rule is instead associated to a group, and governs the interactions among
social roles and among social roles and resources so as to make the group accomplish its
social task.

It is worth noting that this approach ensures a form of uncoupling: each inter-
action protocol is not specifically bound to any other, and can be defined somehow

190

CHAPTER 13. SODA: THE EARLY VERSION 191

Interaction Information Information
Protocol Required Provided

name of protocol

Figure 13.4: Interaction Protocols Table

Interaction rule Rule description
name of rule description

Figure 13.5: Interaction Rules Table

independently—by simply requiring the specification of the information needed, but not
its source: the same interaction protocol could potentially be exploited by different roles.
Obviously, the final outcome of the analysis phase should account for this, too, by ensur-
ing that for any information required by any protocol, there is at least one entity in the
system in charge of supplying such information.

The interaction model can be represented by defining Interaction Protocol Table (Fig-
ure 13.4) and an Interaction Rule Table (Figure13.5)

13.1.4 Analysis: the outcome

The results of the SODA analysis phase are expressed in terms of roles, groups, and
resources.

To summarise:

• a role is defined in terms of its individual task and the corresponding interaction
protocols,

• a group is defined in terms of its social task, the participating social roles, and the
corresponding interaction rules,

• a resource is defined in terms of the service it provides, its access modes, the per-
missions granted to roles and groups to exploit its service, and the corresponding
interaction protocol,

• an interaction protocol is defined in terms of information provided and information
required,

• an interaction rule is defined by means of a textual description.

13.2 The Design Phase

Design is concerned with the representation of the abstract models resulting from the
analysis phase in terms of the design abstractions provided by the methodology [144].

191

192 CHAPTER 13. SODA: THE EARLY VERSION

Agent Role Interaction Resource Permission
Protocol

agent role list of list of list of
name name protocols resources permissions

Figure 13.6: Agent Table

Different from the analysis phase, a satisfactory result of the design phases is typically
expressed in terms of abstractions that can be mapped one-to-one onto the actual com-
ponents of the deployed system.

The SODA design phase is based on three strictly related models:

• the agent model — individual and social roles are mapped to agent classes (Subsec-
tion 13.2.1)

• the society model — groups are mapped onto societies of agents, which are designed
and organised around coordination abstractions (Subsection 13.2.2)

• the environment model — resources are mapped onto infrastructure classes, and
associated to topological abstractions (Subsection 13.2.3)

13.2.1 The Agent Model

An agent class is defined as a set of (one or more) roles, both individual and social ones.
As a result, an agent class is first characterised by the tasks, the set of the permissions,
and the interaction protocols associated to its roles.

The design of the agents of a class should account for all the specifications coming from
the SODA analysis phase but may exploit in principle any other methodology for the
design of individual agents, since this issue is not covered by SODA. What is determined
by SODA is the outcome of this phase, that is, the observable behaviour of the agent
in terms of all its interactions with the surrounding environment. Such a behaviour is
defined by the interaction protocols, delimited by the permission sets, and finalised to the
achievement of the agent tasks.

The agent model is described by means of the Agent Table (Figure 13.6). Again, the
interaction protocols referenced here are those defined in the Figure 13.4 of the analysis
phase.

13.2.2 The Society Model

Each group is mapped onto a society of agents. So, an agent society is first characterised
by the social tasks, the set of the permissions, the participating social roles, and the
interaction rules associated to its groups. The agent model also assigns social roles to

192

CHAPTER 13. SODA: THE EARLY VERSION 193

Society Group Coordination Resource Coordination
Medium Rule

society group medium list of list of
name name name resources rules

Figure 13.7: Society Table

agents, so that the main issue in the society model is how to design interaction rules so
as to make societies to accomplish their social tasks. Since it deals with managing agent
interaction, the problem of achieving the desired social behaviour by means of suitable
social rules is basically a coordination issue. As a result, societies in SODA are designed
around coordination media, that is, the abstractions provided by coordination models for
the coordination of multi-component systems.

So, the first point in the design of agent societies is the choice of the fittest coordination
model—that is, the one providing the abstractions that are expressive enough to model the
society interaction rules [46]. Thus, a society is designed around coordination media [47]
embodying the interaction rules of its groups in terms of coordination rules (Figure 13.5).
The behaviour of the suitably-designed coordination media, along with the behaviour
of the agents playing social roles and interacting through such media, makes an agent
society pursue its social tasks as a whole. This allows societies of agents to be designed
as first-class entities.

The society model is described by means of the Society Table (Figure 13.7). Again,
for each society, the required resources should also be specified.

13.2.3 The Environment Model

Resources are mapped onto infrastructure classes. So, an infrastructure class is first
characterised by the services, the access modes, the permissions granted to roles and
groups, and the interaction protocols associated to its resources.

The design of the components belonging to an infrastructure class may follow the
most appropriate methodology for that class. Since SODA does not specifically address
these issues, components like databases, expert systems, or security facilities, can all be
developed according to the most suited specific methodology. Again, what is determined
by SODA is the outcome of this phase, that is, the services to be provided by each
infrastructure component, and its interfaces, as resulting from its associated interaction
protocols.

Finally, SODA assumes that a topological model of the agent environment is provided
by the designer—but does not provide for topological abstractions by itself, since any
system and any application domain may call for different approaches to this problem.

The society model is described by means of the Environment Table (Figure 13.8)

193

194 CHAPTER 13. SODA: THE EARLY VERSION

Infrastructure Resource Topological Policy
Classes Abstraction

infrastructure resource abstraction list of
name name name permissions

Figure 13.8: Environment Table

13.2.4 Design: the outcome

In all, the results of the SODA design phase are expressed in terms of agent classes,
societies of agents, and infrastructure classes. To summarise,

• an agent class is defined in terms of its individual and social roles and its interaction
protocols, as well as the resources accessed and the relative access permissions

• a society of agents is defined in terms of its groups, as well as its corresponding
coordination media and relative coordination rules, and resources

• an infrastructure class is defined in terms of its resources, as well as its topological
abstraction and policies.

13.3 Meta-models

SODA is a methodology which explicitly focuses on suitably modelling inter-agent issues.
As such, it assumes interaction to be the key aspect of its modelling process: a system
entity appears in a SODA model only in that it is involved in some interactions.

Interaction is a major source of complexity in software systems. This is particular true
in multi-agent systems, where interaction can take different forms: for instance, social
interaction is concerned with agents interacting with each other, while environmental
interaction regards the agents’ interaction with their environment. So the purposes here
are both to present the SODA meta-model – a deeper analysis of the meta-model is
reported in Section 13.4 – and to exploit an agent-oriented methodology as a reference
for stressing the pros and cons of different meta-modelling languages (Chapter 5). A
methodology addressing only intra-agent issues would not fit: we need a methodology
that deals with inter-agent issues, so that the social aspects of multi-agent systems are
in the front line [123].

Therefore, in the following, first we define the SODA meta-model in UML (Subsec-
tion 13.3.1) and in OPM (Subsection 13.3.2), then we discuss the pros and cons of such
meta-models and, by doing so, of the two approaches in general (Subsection 13.3.3).

194

CHAPTER 13. SODA: THE EARLY VERSION 195

Figure 13.9: SODA Meta-model

13.3.1 Meta-model in UML

The meta-model of SODA (Figure 13.9) reflects the SODA distinction between the analy-
sis phase (top) and the design phase (bottom) [123]. In the analysis phase, the boundaries
between the models are well defined; in the design phase, instead, no such boundaries are
shown, because the entities of the analysis sub-models do not map one-to-one onto anal-
ogous entities of the design model. It is worth noting that this meta-model clearly em-
phasises the centrality of interaction which is typical of SODA: in fact, if the interaction
model were deleted, along with the corresponding classes in the design phase, concepts
such as roles and resources would turn out to be separate and unrelated from one another.

Although this meta-model captures the SODA concepts and associations as far as
UML’s [143] graphical vocabulary makes it possible, the result is not completely sat-
isfactory, for several reasons [123]. First, UML provides basically a unique type of
concept/symbol (the class) to represent entities which are conceptually distinct in the
meta-model. More precisely, while using the UML class notion to capture the SODA
organisational structure – i.e., entities such as roles, tasks, groups, society, agents, re-
sources, infrastructure classes – leads to a satisfactory representation of these aspects,
the same cannot be said for interaction, whose classes are qualitatively different from the
others (both in the analysis and in the design phase), as they try to model an intrinsically
dynamic dimension by means of an intrinsically static abstraction.

195

196 CHAPTER 13. SODA: THE EARLY VERSION

The model entities are connected to each other by different relations—inheritance,
composition, aggregation, and generic association. In particular, the relations between
Group and (respectively) Individual role / Social role emphasise that a Social role may
either coincide with an already defined Individual role (aggregation), or be defined ex-novo
(composition). Moreover, the relations between the structural entities and the “interaction
entities” are critical from the modelling viewpoint, since such entities are qualitatively
different; this is why they are expressed by a generic (tagged) association.

Another key aspect concerns the connections from the analysis phase to the design
phase. The label “map onto” is somehow vague, yet underlines the intrinsic difficulty
in expressing the complex mapping from the analysis to the design phase via a single
association link. For instance, when mapping Role onto Agent, the association itself is
unable to express that Agent inherits task, permissions and interaction protocols from
Role: so, a suitable label is the only (yet unsatisfactory) way to express this fact.

13.3.2 Meta-model in OPM

Figure 13.10 shows the SODA meta-model in OPM. Of course, many aspects discussed
above – the distinction between the two phases, the analysis sub-models, the centrality
of interaction, the association “map onto” – still hold: so, the overall model structure is
basically the same as in Figure 13.9.

However, the richer expressiveness of OPM’s graphical vocabulary with respect to
UML makes it possible to model the key aspect of interaction as an OPM process, rather
than as a class, thus expressing the dynamic aspects that the (static) class notion alone
could not capture. By doing so, the OPM meta-model of SODA captures the transient
nature of interaction in much a better way than its UML counterpart. Furthermore,
the richness of the OPM graphical vocabulary offers a better alternative to replace UML
generic (tagged) associations with a new, semantically-clear symbology. For instance, the
relation between Resource and Policy (and between Coordination Medium and Coordina-
tion Rule) now adopts a specific symbol to express that Policy not only has a structural
relation with Resource, but is also an attribute of Resource.

On the other hand, since OPM introduces just one symbol (the solid black triangle)
to represent both composition and aggregation, distinguishing between different relations
(e.g Group/Individual Role, Group/Social Role) now requires a careful reading of the
participation constraint of the relation (where * means “optional”, m means “many”,
etc.).

Despite the richness of OPM’s vocabulary, some meta-modelling relations are still
difficult to express: this is particularly true for the relations between structural entities
and “X -Interacting” processes, that even the (several) object/process link types provided
by OPM are unable to capture at a semantically-satisfactory level (more details in Section
13.3.3).

196

CHAPTER 13. SODA: THE EARLY VERSION 197

Analysis

Design

Role ModelInteraction ModelResource
Model

Figure 13.10: SODA Metamodel in OPM

13.3.3 Discussion

This section discusses and compares the SODA meta-models in UML and OPM, outlining
the respective pros and cons. Generally speaking, both meta-models fall short in modelling
the SODA concept of interaction and the relations between the structural parts and
dynamic parts; in particular, this applies to the relation of “participation”, as outlined
below.

Pros and Cons of SODA Meta-model in UML

The structural parts of the SODA methodology are well modelled. Due to its graphical
vocabulary, UML is forced to model the SODA concept of interaction via its class notion,
thus giving a static view of interaction, as if it were always present in the system—which
is obviously misleading, since interaction has intrinsically a transient nature; indeed,
capturing the transient aspects through a class diagram can be difficult.

On the other hand, UML enables the concept of “participation” in interaction to be
expressed better than in OPM, thanks to the a generic tagged association: interestingly,
this is possible just because interaction is represented as a class. However, distinguishing
the semantic peculiarities of such associations based just on the label is not easy. For
instance, although the same generic association for modelling the participation is used
both in the analysis and in the design phases, in the first case the semantics is that Role

197

198 CHAPTER 13. SODA: THE EARLY VERSION

participates in Interaction, while in the latter this mean that not only Agent plays an
active part in interaction, but its internal state is changed by interaction, too.

Pros and Cons of SODA Meta-model in OPM

As mentioned above, the main advantage of OPM with respect to UML concerns interac-
tion modelling, which exploits OPM’s notion of process to represent the dynamic aspects.
During the construction of the meta-model, however, the lack of a sort of “tagged instru-
ment link” to connect objects and processes is perceived: currently, OPM’s instrument
link is only untagged. Such a link would have been appreciable, for instance, to express
that Role participates in the A-Interacting process—not just that it is necessary, as ex-
pressed by the standard instrument link. In fact, necessity is a static concept, while
playing an active part in interaction, as Role does, implies dynamics. A similar prob-
lem emerges in the relation between the A-Social Interacting process and the Interaction
Rule object, where it is not possible to express that Interaction Rule governs the social
interaction—again, a more specific concept than just “being necessary”.

Analogously, in the design phase, an Effect link is used to represent the relations
between the Agent object and the X -Interacting processes; this is semantically correct
because the internal state of Agent is modified by interaction, but does not express the
crucial fact that Agent takes an active part in interaction, while the Effect link just
expresses that its internal state is modified as a consequence of interaction. As a last issue,
in the relation between the D-Social Interacting process and the Coordination Medium
object, we cannot express that the Coordination Medium mediates the social interaction
by enacting the Coordination Rule—which, again, is more than just a mere “necessity”.

Summing up

Both UML and OPM are expressive enough to capture in their meta-model the structural
parts of the SODA methodology: so, for instance, the role model and the resource model
are expressed in a clear way, with a specific semantics. At the same time, as partially
mentioned above, both approaches present some problems, the main one being that they
fall short when asked to appropriately model the concept of interaction. In particular,
the relation of participation, even though existing in both approaches, seems unable to
capture the general concept of “participating in interaction” in a satisfactory way. This
seems to indicate that while both UML and OPM methodologies are suitable to model
the dynamic behaviour of systems, this ability is not conserved if they are used to build
meta-models – actually, quite a different usage – although OPM is expressiveness under
this viewpoint is a little better than UML’s.

So, the feeling is that neither OPM nor UML are fully adequate to capture the real
essence of MAS methodologies, where interaction, in all its nuances – from a simple
message exchange to mediated interaction via coordination media – is a key issue. In
fact, suitably meta-modelling MAS methodologies seems to call for a specific approach,

198

CHAPTER 13. SODA: THE EARLY VERSION 199

which is able to model both the structural and the dynamic parts of a methodology, and
to explicitly express the idea of participating in interaction.

13.4 Limitations

Meta-models, as explained in Chapter 6, are useful tools because they enable checking
and verifying the completeness and expressiveness of a methodology by understanding its
deep semantics. In the case of SODA, the analysis of its meta-models highlights different
limitations in the methodology.

First of all, the environment is not designed in a good way even if SODA could be
enrolled in the strong-env category (Chapter 8). In fact SODA deals with the environment
since the analysis phase and it provides support both for the modelling and design of the
environment. However the environment abstraction adopted by SODA – infrastructure
classes – are too simple to express the complexity of the environment of MAS. The role of
the environment in cognitive agency is mainly concerned with the agent’s cognitive model
of the environment, the agent’s action over the environment, and the practical reasoning
over these actions [220]. According to Weyns and Omicini [220] the role of the environment
in cognitive agent systems could be considered from five different perspectives: (i) the
environment as a container and a means for communication, (ii) the environment as an
organisational layer, (iii) the environment as a coordination infrastructure for cognitive
agents, (iv) Markovian environments, and finally (v) task environments. Infrastructure
classes address only (i), in fact they represents the world of the resources of the MAS and
are related to the topology abstractions—that are not designed yet. The third perspective,
instead, is addressed by SODA by means of the coordination media designed in the society
model. These media are thought of as a piece of the organisational structure of the system
rather then as a part of the environment. This leads also to a wrong representation of the
environment: the environment is conceptually designed in two different and “unrelated”
times. In addition, two different environment abstractions (Section 2.3) are adopted for
representing the environment and each one is not expressive enough for capturing the
whole environment.

Second, the interactions are not expressed best since they are strictly tied to protocols,
which are not suitable in the context of cognitive agents. A cognitive agent is typically
presented as able to perform actions over the environment, where the environment rep-
resents everything outside the agent [220]. A good interaction model should be able to
express the actions that agents can perform, not just the protocols underpinning them.
In the same way, interaction rules are not expressive enough in order to shape and bound
the agent’s interaction space. In fact, these rules support coordination in agent societies,
but they do not allow the expression of constraints over the actions that agents are able
to do. These constraints are necessary in open MASs where self-interested agents could
try to violate system security.

199

200 CHAPTER 13. SODA: THE EARLY VERSION

Another limitation of SODA is that the methodology captures only a part of the whole
software development process. The methodology, in fact, addresses only the analysis and
design phases, while the requirements capturing and analysis, and the architectural design
require a different approach. The adoption of a different approach for the requirements
capturing and analysis is not so difficult because this applies before the beginning of the
SODA process; for example the traditional use case technique [110] has been fruitfully
adopted. Indeed, the adoption of a different approach for the architectural design is not
straightforward, since it should “break” the SODA process and it should adopt the same
abstractions exploited by SODA.

Finally, the engineering of non-trivial MASs requires principles and mechanisms for
a multi-layered description, which could be used by MAS designers to provide different
levels of abstraction over MASs as illustrated in Chapter 12. SODA in its first formulation
does not provide any support for the scalability of the system representation.

200

14
SODA: The New Version

This chapter presents the new version of SODA that represents the work of my Ph.D.
The chapter is organised as follows: Section 14.1 presents the motivations that have led
to the reformulation of the methodology. Then the SODA meta-model and the layering
principle adopted by SODA are depicted respectively in Section 14.2 and Section 14.3,
the analysis phase and the design phase are illustrated in Section 14.4 and Section 14.5.
Finally Section 14.6 reports a summary of the chapter.

14.1 Motivations

SODA [144, 127, 3, 128] has recently been extended to address the limitations of the
previous version (Section 13.4). The reformulation process begins from the meta-model
presented in the Chapter 13 which has been redrawn from scratch. Subsequently the
features of the chosen abstractions are described by means of a relational table.

In particular the A&A meta-model (Chapter 7) is adopted in order to improve the
environment modelling and design, and a new mechanism to manage the complexity of
system description is proposed (Section 14.3). The interactions, that are again the core
of the methodology, have been fully redesigned. In addition, SODA is reformulated by
organising it in two phases, each structured in two sub-phases: the Analysis phase, which
includes the Requirements Analysis and the Analysis steps, and the Design phase, includ-
ing the Architectural Design and the Detailed Design steps. In this way the requirements
analysis and the architectural design are now part of the SODA process and they do not
require the ad hoc approach as in the first SODA definition. An overview of the method-
ology structure is shown in Figure 14.1: each step is practically described in terms of a
set of relational tables, listed in the figure.

SODA provides only a tabular representation of the system, as in the first formulation,
however the tables have been fully redesigned. Each table in the methodology has both
a full name and a unique acronym, which specifies the layer where the table belongs
(in round brackets) and the involved entities. For instance, (L)ARt refers to the Actor
(specified by the “A”)-Requirement (specified by the “R”) table (specified by the “t”) at
layer L.

201

202 CHAPTER 14. SODA: THE NEW VERSION

Requirements
Analysis Analysis

Architectural
Design

Detailed
Design

References
Tables

Transitions
Tables

Mapping
Tables

Requirements Tables

Domain Tables

Relations Tables

Responsibilities Tables

Dependencies Tables

Topologies Tables

Entities Tables

Interaction Tables

Topological Tables

Agent/Society
Design Tables

Environment Design
Tables

Analysis

Design

Figure 14.1: An overview of the SODA process

14.2 The New Meta-model

The meta-model that represents the abstract entities adopted by SODA is depicted in
Figure 14.2.

Requirements Analysis. Several abstract entities are introduced for requirement
modelling (see Figure 14.2 “requirements analysis” part): in particular, requirement and
actor are used for modelling the customers’ requirements and the requirement sources,
respectively, while the external-environment notion is used as a container of the legacy-
systems that represent the legacy resources of the environment. The relationships between
requirements and legacy systems are then modelled in terms of suitable relation entities.

Analysis. The Analysis step expresses the abstract requirement representation in
terms of more concrete entities such as tasks and functions (see Figure 14.2, “analysis”
part). Tasks are activities requiring one or more competences, while functions are reactive
activities aimed at supporting tasks. The relations highlighted in the previous step are

202

CHAPTER 14. SODA: THE NEW VERSION 203

Requirements
Analysis
Analysis

Architectural
Design

Detailed
Design

Society Aggregate

Action Operation

Interaction

*

*

*

*

constraint

*

*

*

*

constraint

Actor

Agent
0..n1..n 0..n1..n

Artifact

1..n1..n 1..n1..n use

0..n 1..n0..n 1..n

Environment

Role

1..n

1..n

1..n

1..n

** **

part ic ipate

Dependency

Resource

1..n

1..n

1..n

1..n
* ** *participate

Requirement** **

Task

** **
participate

Workspace
1..n

1..n

1..n

1..n

perceive
*

*

*

*

is allocated

0..n0..n connection

1..n1..n

*

*

*

*

is allocated in

1..n

1..n

1..n

1..n

perceive

ExternalEnvironmentRelation

** **
participate

Function
* ** *

participate

Topology *

*

*

*

affect

*

*

*

*influence

LegacySystem
*** ** *

participate

Environmental Artifact Social Arti fact Individual Arti fac t

Figure 14.2: SODA Meta-model

203

204 CHAPTER 14. SODA: THE NEW VERSION

now the starting point for the definition of dependencies (interactions, constraints, etc.)
among the abstract entities. The structure of the environment is also modelled in terms
of topologies, i.e. topological constraints over the environment.

Topologies are often derived from functions, but can also constrain / affect task
achievement.

Architectural Design. The main goal of this stage is to assign responsibilities of
achieving tasks to roles, and responsibilities of providing functions to resources (see Figure
14.2, “architectural design” part). To this end, roles should be able to perform actions,
and resources should be able to execute operations providing one or more functions.
The dependencies identified in the previous phase become here interactions, i.e. “rules”
enabling and bounding the entities’ behaviour. Finally, the topology constraints lead to
the definition of workspaces, i.e. conceptual places structuring the environment.

Detailed Design. Detailed Design is expressed in terms of agents, agent societies,
artifacts and aggregates (see Figure 14.2 “detailed design” part). Agents are intended
here as autonomous entities able to play several roles, and the resources identified in the
previous step are now mapped onto suitable artifacts. In the meta-model the artifact is
reported specifying its “type” – individual, social and environmental – derived from the
taxonomy presented in Subsection 7.2.2. it in an easier way. We recall here the taxonomy
already shown:

• Individual artifact handles the interaction of a single agent within a MAS, and es-
sentially works as a mediator between the agent and the MAS itself. Since they can
be used to shape of admissible interactions of individual agents in MAS, individ-
ual artifacts play an essential role in engineering both organisational and security
concerns in MAS.

• Environmental artifact brings an external resource within a MAS, by mediating
agent actions and perceptions over resources. As such, environmental artifacts play
an essential role in enabling, disciplining and governing the interaction between
agents and MAS environment.

• Social artifact rules social interactions within a MAS—enven though indirectly, since
it technically mediates interactions between individual, environmental, and possibly
other social artifacts. Social artifacts in SODA play the role of the coordination
artifacts that embody the rules around which societies of agents can be built.

In SODA a society can be seen as a group of interacting agents and artifacts when its
overall behaviour is essentially an autonomous, proactive one; it can be seen an aggregate
when its overall behaviour is essentially a functional, reactive one.

The workspaces defined in the Architectural Design step take now the form of an open
set of artifacts and agents—that is, artifacts can be dynamically added to or removed
from workspaces, and agents can dynamically enter (join) or exit workspaces.

204

CHAPTER 14. SODA: THE NEW VERSION 205

Layer

layering

in-zoom out-zoom

Zoom Projection

Layering

a) b)

Figure 14.3: Meta-models of the layering principle (left) and of the layering mechanisms
(right)

14.3 Layering

Following the principles sketched in Chapter 12, a simple layering principle is introduced
in SODA: the system is represented as composed by different layers of abstraction and
it is possible to move from one layer to another layer by means of a layering operation
(Figure 14.3 part b)).

This layering operation consists of two mechanisms (Figure 14.3 part b)), zoom and
projection: zoom makes it possible to pass from an abstract layer to another, while
projection projects the entities of a layer into another. Zoom is the only mechanism
relating layers to each other: more precisely, in-zooming the entities of a (more abstract)
layer leads to a more detailed layer, while out-zooming the entities of a (more detailed)
layer leads back to to a more abstract layer.

Of course, not all the entities of a layer should be in-zoomed in another (more detailed)
layer at the same time, since this could easily lead to mistakes; so, in order to preserve
the internal consistency of each layer, the entities of the more abstract layer that are not
in-zoomed are projected (i.e, made available) in the more detailed layer “as they are” by
the projection mechanism (see Figure 14.4).

In general, when working with SODA, the starting layer, called core layer, is labelled
with “C” and is always complete—that is, it contains all the entities required to fully

205

206 CHAPTER 14. SODA: THE NEW VERSION

E9

Core
Layer

C-1

C+1

C+2E8E6 E7

E4 E5

E1

-E1 E0

E3E2

+E2

+E2 E10 E11

Figure 14.4: Layers in SODA

describe a given abstract layer. Any other layer contains just i) the entities that have
been possibly (in/out-) zoomed from another layer, as well as ii) the entities possibly
projected “as they are” from other layers: so, in general, these layers are not necessarily
complete—though of course they might be so, as in the case of layer C+2 in Figure 14.4.

The layering principle is represented by means of a Zooming Table ((C)Zt)(Figure
17.2) The Zooming Table formalises the in-zoom of a layer into the more detailed layer;
of course, the same table can be used to represent the dual out-zoom process.

Layer L Layer L+1
out-zoomed entity in-zoomed entities

Figure 14.5: (L)Zt

14.4 The Analysis Phase

This section presents the Analysis phase of SODA. In particular Subsection 14.4.1 explains
the tables of the Requirements Analysis, Subsection 14.4.2 shows the tables for moving
from Requirements Analysis to Analysis, and Subsection 14.4.3 presents the tables of the
Analysis step.

206

CHAPTER 14. SODA: THE NEW VERSION 207

14.4.1 Requirements Analysis

The goal of Requirements Analysis is the characterisation of both the customers’ require-
ments and the legacy systems with which the system should interact, as well as to highlight
the relationships among requirements and legacy systems.

The Requirements Analysis step consists of three sets of tables: Requirements Tables,
Domain Tables and Relations Tables.

Requirements Tables (Figure 14.6) define the abstract entities tied to the concept of
“requirement”: in particular, the Actor-Requirement table ((L)ARt) specifies the collec-
tion of the requirements associated to each actor, while the Requirement table ((L)Ret)
describes each single requirement.

Actor Requirement
actor name requirement names

Requirement Description
requirement name requirement description

Figure 14.6: Requirements Tables, in top-down order: (L)ARt, (L)Ret

Domain Tables (Figure 14.7) define the abstract entities tied to the concept of “ex-
ternal environment”. This group of tables is composed of the ExternalEnvironment-
LegacySystem table ((L)EELSt), which specifies the legacy systems associated to the
external environment, and the LegacySystem table ((L)LSt), which describes each single
legacy system.

External-Environment Legacy-System
external-environment Legacy-System

name names

Legacy-System Description
legacy-system legacy-system

name description

Figure 14.7: Domain Tables, in top-down order: (L)EELSt, (L)LSt

Finally Relations Tables (Figure 14.8) link the abstract entities with each other. In
particular, the Relation table ((L)Relt) describes all the relationships among abstract
entities, while the Requirement-Relation table ((L)RRt) specifies the relations where each
requirement is involved, and the LegacySystem-Relation table ((L)LSRt) specifies the
relations where each legacy-system is involved.

207

208 CHAPTER 14. SODA: THE NEW VERSION

Relation Description
relation name relation description

Requirement Relation
requirement name relation names

Legacy-System Relation
legacy-system name relation names

Figure 14.8: Relations Tables, in top- down order: (L)Relt, (L)RRt, (L)LSRt.

14.4.2 From Requirements Analysis to Analysis

In order to move from Requirements Analysis to Analysis, the relations between the
different abstractions adopted in the two steps must be precisely identified: this is done
by means of the References Tables (Figure 14.9).

Requirement Task
requirement name task names

Requirement Function
requirement name function names

Legacy-System Function
legacy-system name function names

Legacy-System Topology
legacy-system name topology names

Relation Dependency
relation name dependency names

Figure 14.9: References Tables, in top-down order: (L)RRTt, (L)RRFt, (L)RLSFt,
(L)RLSTt, (L)RRDt.

In particular, i) the Reference Requirement-Task table ((L)RRTt) specifies the map-
ping between each requirement and the generated tasks, the Reference Requirement-
Function table ii)((L)RRFt) specifies the mapping between each requirement and the
generated functions; iii) the Reference LegacySystem-Function table ((L)RLSFt), which
specifies the mapping between each legacy-system and the corresponding functions; iv)
the Reference LegacySystem-Topology table ((L)RLSTt), which specifies the mapping
between legacy-systems and topologies; and v) the Reference Relation-Dependency table
((L)RRDt), which specifies the mapping between relations and dependencies.

208

CHAPTER 14. SODA: THE NEW VERSION 209

14.4.3 Analysis

The Analysis step expresses the abstract requirement representation defined in the pre-
vious step in terms of more concrete entities such as tasks and functions. Functions can
come both from the legacy-system entities or be designed ex-novo: in the former case
they should just be modelled, in a sort of reverse engineering step, while in the latter they
have to modelled (and later designed) as brand-new functionalities.

The Analysis step exploits three sets of tables: Responsibilities Tables, Dependencies
Tables and Topologies Tables. Responsibilities Tables (Figure 14.10) define the abstract
entities tied to the concept of “responsibilities centre”—namely, tasks and functions. So,
this set of tables includes the Task table ((L)Tt), which lists all the tasks, and the Function
table ((L)Ft), which lists all the functions.

Task Description
task name task description

Function Description
function name function description

Figure 14.10: Responsibilities Tables, in top-down order: (L)Tt, (L)Ft

Dependencies Tables (Figure 14.11) relate functions and tasks with each other. More
precisely, the Dependency table ((L)Dt) describes all the dependencies among abstract
entities, while the Task-Dependency table ((L)TDt) specifies the set of dependencies
where each task is involved, and the Function-Dependency table ((L)FDt) specifies the list
of dependencies where each function is involved. Typically, when a requirement generates
both a task and a function, the function is necessary to achieve the task. Correspondingly,
other dependencies arise, in addition to the dependencies originating from the SODA
relations.

Dependency Description
dependency name dependency description

Task Dependency
task name dependency names

Function Dependency
function name dependency names

Figure 14.11: Dependencies Tables in top-down order (L)Dt,(L)TDt and (L)FDt.

Topologies Tables (Figure 14.12), in turn, express the topological constraints over
the environment. So, the Topology table ((L)Topt) describes the topological constraints,

209

210 CHAPTER 14. SODA: THE NEW VERSION

while the Task-Topology table ((L)TTopt) specifies the list of the topological constraints
which affect the task, and the Function-Topology table ((L)FTopt) specifies the list of
the topological constraints affected by the function.

Topology Description
Topology name topology description

Task Topology
task name topology names

Function Topology
function name topology names

Figure 14.12: Topologies Tables in top-down order: (L)Topt, (L)TTopt, (L)FTopt.

14.5 The Design Phase

This section presents the Design phase of SODA. In particular Subsection 14.5.1 shows the
tables for moving from Analysis to Architectural Design, Subsection 14.5.2 explains the
tables of the Architectural Design, Subsection 14.5.3 shows both the carving operation and
the tables for moving from Architectural Design to Detailed Design, and Subsection 14.5.4
presents the tables of the Detailed Design step.

14.5.1 From Analysis To Architectural Design

In order to link the Analysis step with the Architectural Design step, the Analysis enti-
ties are related to the Architectural Design by means of Transition Tables (Figure 14.13).
So, for each layer, the Transition Role-Task table ((L)TRTt) relates tasks and roles, the
Transition Resource-Function table ((L)TRFt) links functions and resources, the Transi-
tion Interaction-Dependency table ((L)TIDt) maps interactions onto dependencies, and
the Transition Topology-Workspace table ((L)TTopWt) specifies the mapping between
topologies and workspaces.

14.5.2 Architectural Design

At this stage, the main goal is to assign responsibilities of achieving tasks to roles, and
responsibilities of providing functions to resources. The Architectural Design step consists
of three sets of tables: Entities Tables, Interaction Tables and Topological Tables.

Entities Tables (Figure 14.14) describe both the active entities (the roles) able to
perform some action in the system, and the passive entities (the resources) which provide
services. In particular, the Action table ((L)At) describes the actions executable by some

210

CHAPTER 14. SODA: THE NEW VERSION 211

Role Task
role name task names

Resource Function
resource name function names

Dependency Interaction
dependency name interaction names

Topology Workspace
topology name workspace names

Figure 14.13: Transition Tables, in top-down order: (L)TRTt, (L)TRFt, (L)TIDt,
(L)TTopWt.

role, while the Operation table ((L)Ot) specifies the operations provided by resources.
Then, the Role-Action table ((L)RAt) specifies the actions that each role can do, while
the Resource-Operation table ((L)ROt) specifies the operations that each resource can
provide.

Action Description
action name description

Operation Description
operation name description

Role Action
role name action names

Resource Operation
resource name operation names

Figure 14.14: Entities Tables, in top- down order: (L)At, (L)Ot, (L)RAt, (L)ROt

Interaction Tables (Figure 14.15) describe the interaction between roles and resources:
more precisely, the Interaction table ((L)It) defines the single interactions, the Role-
Interaction table ((L)RoIt) specifies the interactions where each role is involved, and
the Resource-Interaction table ((L)ReIt) specifies the interactions where each resource is
involved.

Finally, Topological Tables (Figure 14.16) describe the logical structure of the envi-
ronment. More precisely, the Workspace table ((L)Wt) describes the workspaces, the
Workspace-Connection table ((L)WCt) shows the connections among the workspaces of
a given layer (the hierarchical relations between workspaces are expressed via the Zoom-

211

212 CHAPTER 14. SODA: THE NEW VERSION

Interaction Description
interaction name description

Role Interaction
role name interaction names

Resource Interaction
resource name interaction names

Figure 14.15: Interaction Tables, in top- down order: (L)It, (L)RoIt, (L)ReIt

ing Table), and the Workspace-Resource table ((L)WRet) shows the allocation of the
resources to workspaces. It should be noted that a resource could be allocated in several
different workspaces at the same time. For instance, a single, distributed resource can
in principle be used to model a distributed service, accessible from multiple nodes of a
network. Similarly, the Workspace-Role table ((L)WRot) lists the workspaces that each
role can perceive in the system.

Workspace Description
workspace name description

Workspace Connection
workspace name workspace names

Workspace Resource
workspace name resource names

Role Workspace
role name workspace names

Figure 14.16: Topological Tables, in top-down order: (L)Wt, (L)WCt, (L)WRet and
(L)WRot

14.5.3 From Architectural Design to Detailed Design

The goal of Detailed Design is to choose the most adequate representation level for each
architectural entity, thus leading to depict one (detailed) design from the several potential
alternatives outlined above. For the sake of concreteness, let us refer to Figure 14.17 (left),
where the hypothesis that the Architectural Design phase outlined roles R1, R2 at the
core layer C, roles R4, R5 and the projection of R2 at layer C+1, and roles R6, R7, R8
and R9 at layer C+2, is made. Turning this conceptual view into a real design view
means to choose one representation (i.e., zoom) level for each entity, starting from the

212

CHAPTER 14. SODA: THE NEW VERSION 213

core layer: so, for instance, we could decide to zoom only R1, keeping R2 at the basic
(core) representation level. Moreover, we could choose to further in-zoom R4 as the set
of (sub)roles R6,R7, while keeping R5 as is. The result can be graphically expressed by
carving out the roles R1, R2, R4, R5, R6 and R7 from the Architectural Design view, as
shown with the curbed line in Figure 14.17 (centre).

A4
Society

A1
Society

R2

+R2

R1

R5

R9R8

R4

R7R6

C+1

C

C+2

A6 A7

A5

Carving Operation Detailed DesignArchitectural Design

R2

+R2

R1

R5

R9R8

R4

R7R6

A2

Figure 14.17: Design steps and Carving Operation

A similar approach is adopted for the environmental entities: the un-zoomed resources
identified in the previous step are now mapped onto suitable artifacts (intended as entities
providing some services), and in-zoomed resources are mapped onto aggregates of artifacts.

This “carving operation” represents the boundary between Architectural Design –
expressed in terms of roles, services, resources and workspaces – and Detailed Design—
expressed in terms of agents, agent societies, artifacts and aggregates. In the case of our
example (see Figure 14.17 (right)), role R1 is to be mapped onto an agent society (A1),
while role R2 is to be mapped onto an individual agent (A2). Going further, the agent
society A1 is composed of two entities, representing roles R4 and R5: again, the first is to
be mapped onto an agent society (A4), since role R4 is in-zoomed in the carving, while
R5 is to be mapped onto an individual agent (A5); the same process applies to A4, which
turns out to be composed of agents A6 and A7, mapping roles R6 and R7, respectively.

The result is the set of Mapping Tables (Figure 14.18), which relate the Architectural
Design entities to the Detailed Design. In particular, the Mapping Agent-Role table
((L)MARt) maps roles onto agents, the Mapping Artifact-Resource table ((L)MArRt)
maps resources onto artifacts, and the Mapping Artifact-Interaction table ((L)MArIt)
maps the rules specified in the Architectural Design onto the artifacts that implement
and enforce them.

213

214 CHAPTER 14. SODA: THE NEW VERSION

In order to support and simplify the designer work, in the tables the “kind” of the
artifact – as reported in Subsection 7.2.2 – is specified. For example in table (L)MArRt

(Figure 14.18) the resources are associated to environmental artifact, in table (L)MArIt

(Figure 14.18) the interactions are mapped to social artifact and the same social artifact
is associate to society in table (L)SArt (Figure 14.19). Finally in table (L)AAt (Figure
14.19) agents are associated to individual artifact.

Agent Role
agent name role names

(Environmental) Artifact Resource
artifact name resource names

Interaction (Social) Artifact
interaction name artifact names

Figure 14.18: Mapping Tables in top- down order: (L)MARt, (L)MArRt, (L)MArIt

14.5.4 Detailed Design

The Detailed Design step exploits two sets of tables: Agent/Society Design Tables, and
Environment Design Tables. The first set of tables (Figure 14.19) depicts agents, individ-
ual artifacts, and the agent societies derived from the carving operation. More precisely,
the Agent-Artifact table ((L)AAt) specifies the individual artifacts related to each agent,
the Society-Agent table ((L)SAt) lists the agents belonging to a specific society, and the
Society-Artifact table ((L)SArt) specifies the social artifacts related to each agent society.

Agent (Individual) Artifact
agent name artifact names

Society Agent
Society name agent names

Society (Social) Artifact
society name artifact names

Figure 14.19: Agent/Society Design Tables in top- down order: (L)AAt, (L)SAt, (L)SArt

In turn, Environment Design Tables concern the design of artifacts and workspaces:
the Artifact-UsageInterface table ((L)AUIt) details the operations provided by each ar-
tifact, the Aggregate-Artifact table ((L)AggAt) specifies which artifacts are part of the
Aggregate generated by the carving, while the Workspace-Artifact table ((L)WAt) spec-
ifies the location of artifacts in the workspace. Here the distinction between the artifact

214

CHAPTER 14. SODA: THE NEW VERSION 215

types is not presented because the design of the usage interface, the allocation of the
artifacts to workspaces and the aggregates are done in the same way for all the artifact’s
types.

Artifact Usage Interface
artifact name list of operations

Aggregate Artifact
aggregate name artifact names

Workspace Artifact
Workspace name artifact names

Figure 14.20: Environment Design Tables in top- down order: (L)AUIt, (L)AggAt,
(L)WAt

14.6 Summing up

This chapter has introduced the new version of the SODA methodology. The limitations
of the previous version of SODA are now resolved by means of the introduction of the
A&A meta-model and of the layering principle.

As a conclusion, here we presents an evaluation of SODA as regards the criteria pro-
posed in Section 4.3:

• Lifecycle criteria

– Development Lifecycle: iterative.

– Coverage Lifecycle: analysis and design.

– Development Perspective: middle-out (Section 12.1).

– Support for verification: no.

• Notation criteria

– Notation: ad hoc.

– Easy to understand : high.

– Usability : medium.

– Supporting tool : no.

215

216 CHAPTER 14. SODA: THE NEW VERSION

216

15
The SODA Process

This chapter presents the SODA process modelled by SPEM version 1.1 (Subsection 5.2.2).
The “silver bullet”, one-size-fits-all methodology is nowadays a recognised chimera in the
Software Engineering field. Quite naturally, each SE methodology has its own approach
and peculiarities, its pros and cons—and none is general enough to fit with any possible
application scenario (Chapter 4). As a consequence, it has been observed that software
designers tend to define/refine their own problem-specific methodology, as an ad hoc
tool specially suited to the typical application scenarios of interest. Of course, such
methodological approaches can be hardly reused in different contexts, or for different
problems, without significant changes: in the overall, this results in considerable costs of
the system development process.

For these reasons, research efforts are ongoing meant to define a unified meta-model,
aimed at representing the existing methodologies in a uniform way, so as to promote their
mutual comparison, their composition and reuse—this area is sometimes referred to as
Method Engineering [15]. SPEM and OPEN (Subsection 5.2.2) are two key references
for this purpose: as it could be expected, both were conceived for an object-oriented
context, since most current methodologies adopt this paradigm as the reference one. In
particular, SPEM seems a natural candidate for representing the meta-models of Software
Engineering methodologies, both because it is an OMG standard, and because it is based
on formal descriptions that can lead to consistent, comparable models: so, an interesting
challenge is to test its applicability to other, non object-oriented Software Engineering
domains.

In this chapter, in particular, we explore its applicability to the SODA methodology,
whose abstractions and mechanisms are particularly suited to the design and development
of complex software systems. While some AO methodologies have already been modelled
in SPEM by the FIPA Methodology Technical Committee (Chapter 6), here we mean to
exploit SPEM to model the SODA methodology process, taken as a significant case study
for stressing SPEM’s strengths and weaknesses because of its specific features—namely, its
focus on modelling the social issues and the application environment, and its mechanisms
for capturing the layered structure of complex systems. In particular, Section 15.1 presents
the general SODA process, Section 15.2 presents the detail of the Analysis phase and

217

218 CHAPTER 15. THE SODA PROCESS

Section 15.3 shows the Design phase. Section 15.4 presents an evaluation of the adoption
of SPEM for modelling SODA.

15.1 The process

The SODA process is composed of two disciplines (see Figure 15.1):

• Analysis : it includes the requirements analysis and the system analysis;

• Design: it includes the architectural design and the detailed design.

<<Discipline>>
Analysis

<<Discipline>>
Design

Figure 15.1: The disciplines of the SODA process

Figure 15.2 shows the complete SODA process. Each phase of SODA produces a
system model (Analysis Model and Design Model) constituted by a set of relational tables.
SODA is an iterative process, so when each phase is terminated it is possible to re-start
the phase or also re-start the previous phase.

218

CHAPTER 15. THE SODA PROCESS 219

Analysis Design

Analysis
WorkProduct

Design
WorkProduct

[new iteration]

Figure 15.2: The complete SODA process

Each phase of the SODA process is composed by two steps as showed in Figure 15.3.
Since the Phase element of SPEM could be decomposed in a set of WorkDefinition [200], it
is possible to model each step of the SODA process by means of WorkDefinition elements
and the include relation between Phase and WorkDefinition elements.

<<include>>

<<include>>

Analysis

Requirements
Analysis

Analysis

Design

Architectural
Design

Detailed Design

<<include>>

<<include>>

Figure 15.3: Use-case diagram of the SODA process

219

220 CHAPTER 15. THE SODA PROCESS

15.2 The Analysis Phase

This section presents the Analysis phase process. In particular Subsection 15.2.1 presents
the Analysis discipline, Subsection 15.2.2 details the Requirements Analysis step, while
Subsection 15.2.3 details the Analysis step. Finally Subsection 15.2.4 details the Analysis
Model.

15.2.1 The Analysis Discipline

The Analysis discipline (Figure 15.4) can be naturally characterised by three actors
(Roles): one is responsible for the activities of Requirements Analysis step, another for
the activities of the Analysis step, while the third is an application-domain expert aimed
at assisting the two previous actors when analysing the application domain.

Domain Definition and Description ()

Requirements Tables Domain Tables Relations Tables Referencies Tables

Responsibilities Tables Dependencies Tables Topologies Tabels

Requirements Analyst

Requirements Definition and Description ()

System Analyst

Domain Expert

Relations Definition and Description ()

Referencies Identification ()
Responsibilities Definition and Description ()
Dependencies Definition and Description ()Relations Definition and Description ()

References Identification ()

Topologies Definition and Description ()

Problem Statement

Domain Definition and Description ()

Dependencies Definition and Description ()

Topologies Definition and Description ()

Zooming Tables

Layering () Layering ()

Referencies Identification ()

Responsibilities Definition and Description ()

Figure 15.4: The Analysis Discipline

220

CHAPTER 15. THE SODA PROCESS 221

Figure 15.5 shows the Use-case diagram for the Analysis phase. The two WorkDefini-
tions of this phase – Requirements Analysis and Analysis – are decomposed in two sets
of activities related to the WorkDefinitions by means of the include relations.

<<include>>

<<include>>

Requirements
Analisys

Analisys

<<include>>

<<include>>

Layering

Requirements Definition
and Description

Domain Definition
and Description

Relations Definition
and Description<<include>>

<<include>>

Topologies
Definition and

Description

References
Identification

Responsabilities
Definition and Description

Dependencies
Definition and

Description

Layering

<<include>>

<<include>>

<<include>>

Figure 15.5: Use-case diagram of the Analysis phase

221

222 CHAPTER 15. THE SODA PROCESS

This discipline provides nine WorkProducts as showed in Figure 15.4: one text doc-
ument and eight sets of relational tables. In particular Figure 15.6 depicts the process
of the Analysis: this is composed by two WorkDefinitions (Requirements Analysis and
Analysis) and their relative WorkProducts. The Analysis phase is an iterative process
so when the Analysis step is terminated it is possible to re-start again the Requirements
Analysis step. In addition the iteration could be done by means of the layering principle
(see Section 14.3) both inside each step and between the steps (see Figures 15.8, 15.9 for
the detail).

Requirements Analysis

Analysis

Requirements
Tables Relations

Tables

Domain
Tables

References
Tables

Responsibilities
Tables

Dependencies
Tables

Topologies
Tables

Problem
Statement

Zooming
Tables

(if exists)

Zooming
Tables

(if exists)

[new iteration]

Figure 15.6: The Analysis phase described in terms of work definitions and work products

The actors are modelled by three ProcessRole instances: Requirement Analyst, System
Analyst and Domain Expert. In particular:

• The Requirement Analyst is responsible (performer) of all the Requirements Anal-

222

CHAPTER 15. THE SODA PROCESS 223

ysis step activities and assists (assistant) the System Analyst during the Reference
Identification activity.

• The System Analyst is responsible (performer) of all the Analysis step activities.

• The Domain Expert is the expert of the application domain, knows the legacy-
systems and assists (assistant) the Requirement Analyst and the System Analyst
during the modelling of the External-Environment.

Figure 15.7 shows the use-case diagram that models the relationships between the activ-
ities instances and the ProcessRole instances in SODA’s Analysis phase [138].

Figure 15.7: Work definition of the Analysis phase.

223

224 CHAPTER 15. THE SODA PROCESS

15.2.2 The Requirement Analysis step

Table 15.1 presents a summary of the activities of the Requirements Analysis steps that
are presented in detail in Figure 15.8.

Activity Description Roles
Requirements The input of this activity is the Requirements
Definition and requirements specification Analyst (perform)

Description (Problem Statement). The activity defines
and describes the abstractions tied to
the requirement concept. In particular
the requirements are described and associated
to their respective Actors.

Domain The input of this activity is the Requirements
Definition and requirements specification Analyst (perform)

Description (Problem Statement). The activity defines Domain
and describes the abstractions tied to Expert (assist)
the external-environments concept.
In particular the legacy-systems are
identified and described.

Relation The input of this activity is the Requirements
Definition and requirements specification Analyst (perform)

Description (Problem Statement). The activity puts in Domain
relation the abstractions of this steps. Expert (assist)
In particular the relations among
requirements, among legacy-systems and among
requirements and legacy systems are defined

Layering This activity represents the Requirements
execution of both zooming and Analyst (perform)
projection mechanisms

Table 15.1: Requirements Analysis step activities

As it is possible to see in Figure 15.8, the Requirements Definition and Description
and the Requirements Definitions and Description activities can be executed at the same
time because they analyse different aspects of the problem domain. Indeed, the Relation
Definition and Description activity can be executed when the abstract entities associated
to at least one relation exist. Since this step is iterative, the Relation Definition and
Description activity could start before the other two activities are finished. Obviously
the layering can be applied during any activities of this step.

224

CHAPTER 15. THE SODA PROCESS 225

Requirements
Definition and
Description

Requirement
Analist

Domain Definition and
Descritpion DomainTables

Problem
Statement

Layering

[layering]

Requirements
Tables

Relations Definition and
Description

Relations Tables

[new iteration]

[layering]

[exist the elements
of relation]

[layering influences only
this activity]

Layering

Zooming Tables
(updated)

Zooming Tables
(updated)

Zooming Tables
(if exist)

Zooming Tables
(if exists)

Zooming Tables
(if exist)

Zooming Tables
(if exists)

Figure 15.8: Description of the Requirements Analysis step work definition

225

226 CHAPTER 15. THE SODA PROCESS

15.2.3 The Analysis step

Table 15.2 presents a summary of the activities of the Analysis steps that are presented
in detail in Figure 15.9.

Activity Description Roles
Reference This activity defines the relationships Requirements

Identification between the Requirements Analysis and Analyst (assist)
Analysis steps. In particular the activity System
specifies the relation between the requirements Analyst (perform)
and tasks, between the requirements and Domain
functions, between legacy-systems and functions, Expert (assist)
between legacy-systems and topologies, and
between relations and dependency.

Responsibilities The activity defines and describes the System
Definition and abstractions tied to the responsibility Analyst (perform)

Description concept. In particular the sets of tasks Domain
and functions are described. Expert (assist)

Dependencies The activity puts in relation the abstractions System
Definition and of this steps. In particular the dependencies Analyst (perform)

Description among tasks, among functions and among Domain
tasks and functions are defined. Expert (assist)

Topologies The activity defines and describes the System
Definition and topological constraints. In particular the Analyst (perform)

Description constraints are listed and are putted in relation Domain
with tasks and functions Expert (assist)

Layering This activity represents the System
execution of both zooming and Analyst (perform)
projection mechanisms

Table 15.2: Analysis step activities

The first activity in this step is the Reference Identification that represents the transi-
tion form the Requirements Analysis step to the Analysis step (Figure 15.9). The Topology
Definition and Description can be executed at the same time of the Responsibilities Def-
inition and Description and the Dependencies Definition and Description activities. It is
possible to start the Dependencies Definition and Description activity before the Respon-
sibility Definition and Description are finished because the Dependencies Definition can
already begin when the entities associated to at least one dependency exist.

The Topology Definition activity could influence the Responsibilities Definition and
Description and the Dependencies Definition activities, and in the same way the Respon-
sibilities Definition could influence the Topology Definition. In the former case the table

226

CHAPTER 15. THE SODA PROCESS 227

modified by the Topology Definition activity must be provided to the Responsibilities
Definition activity, and vice versa.

Obviously the layering can be applied during any activities of this step except the
References Identification.

Responsibilities
Definition and

Description

References Tables

Responsibilities
Tables

(updated)

System
Analyst

Topologies Definition
and Description

Topologies Tables
(updated)

Dependencies
Definition and

Description

Dependencies
Tables

Requirements Tables

Domain Tables

Relations Tables

Zooming Tables
(if exists)

Layering

Zooming Tables
(updated)

[layering influences only
these three activities]

References
Identification

Zooming Tables
(if exists)

Zooming Tables
(if exists)

[new iteration]

[exist the elements of
dependency]

[layering or
new iteration]

[new function affects
topology or new

topology influences
task(s)]

Responsibilities
Tables

(if exists)

Topologies Tables
(if exists)

[layering]

[new iteration]

Figure 15.9: Description of the Analysis step work definition

227

228 CHAPTER 15. THE SODA PROCESS

15.2.4 The Analysis Model

Figure 15.10 shows the structure of the Analysis Model: the tables depicted in figure have
already been explained in Section 14.4.

Requirements
Tables

Domain
Tables

Relations
Tables

References
Tables

Dependences
Tables

Problem
Statement

Analysis
WorkProduct

((L)ARt)

((L)Ret)

((L)EECt)

((L)LSt)

((L)Relt)

((L)RRt)
((L)LSRt)

((L)RRTt)
((L)RRFt)

((L)RLSFt)

((L)RLSTt)

((L)RRDt)

((L)Tt)

((L)Ft)

Zooming
Tables

1

1

1

1

1

1

1

Resposibilities
Tables

Topologies
Tables

((L)Topt)

((L)Dt)

((L)TTopt)
((L)FTopt)

((L)TDt)
((L)FDt)

((L)Zt)
1

Figure 15.10: Structure of the Analysis Model

228

CHAPTER 15. THE SODA PROCESS 229

15.3 The Design Phase

This section presents the Design phase process. In particular Subsection 15.3.1 presents
the Design discipline, Subsection 15.3.2 details the Architectural Design step, while Sub-
section 15.3.3 details the Detailed Design step. Finally Subsection 15.3.4 details the
Design Model.

15.3.1 The Design Discipline

The Design discipline is characterised by four actors: the Architectural Designer, respon-
sible for the activities of the Architectural Design step; the System Designer, responsible
for the activities of the Detailed Design step; and the aforementioned System Analyst and
Domain Expert, which support the two previous actors in performing their tasks.

Entities Definition and Description ()

Architectural Designer

Transition Identification ()

System Designer

Domain Expert

Entities Definition and Description ()

Choose Design View ()

Mapping Execution ()
Agent/Society Design ()Interactions Description ()

Interactions Description ()
Topologies Definition and Description ()

Transition Identification ()

Mapping Execution ()

Enviroment Design ()

Zooming Tables

Layering ()

Agent/Society Design ()

Transition Tables Topological TablesInteraction TablesEntities Tables

Mapping Tables Agent/Society Tables Enviroment Tables

Workspaces Definition and Descripiton ()

System Analyst

Transition Identification ()

Enviroment Design ()

Mapping Execution ()

Figure 15.11: The Design Discipline

Figure 15.12 shows the Use-case diagram for the Design phase. The two WorkDefini-
tions of this phase – Architectural Design and Detailed Design – are decomposed in two

229

230 CHAPTER 15. THE SODA PROCESS

sets of activities related to the WorkDefinitions by means of the include relations.

<<include>>

<<include>>

Architectural
Design

Detailed
Design

<<include>>

Layering

Transition Identification

Entities Definition
and Description

Interactions Definition
and Description

<<include>>

<<include>>

Agent/Society
Design

Choose View

Mapping Execution

Eviroment
Design

<<include>>

<<include>>

<<include>>

Workspaces Definition
and Description

<<include>>

Figure 15.12: Use-case diagram of the Design phase

This discipline provides eleven WorkProducts as showed in Figure 15.11 that are sets
of relational tables. In particular Figure 15.13 depicts the process of the Design: this is
composed by the two WorkDefinitions (Architectural Design and Detailed Design) and
their relative WorkProducts. The Design phase is an iterative process so when the Detailed

230

CHAPTER 15. THE SODA PROCESS 231

Design step is terminated it is possible to re-start again the Architectural Design step. In
addition the iteration could be done by means of the layering principle (see Section 14.3)
only for the Architectural Design step (see Figure 15.15 for the detail).

Architectural Design

Detailed Design

Zooming Tables

Zooming Tables

Responsibilities Tables

Dependences Tables
Topologies Tables

Transition Tables Entities Tables Topological TablesInteraction Tables

Mapping Tables

Agent/Society Tables

Enviroment Tables

(from Analysis phase)

(from Analysis phase)

(from Analysis phase)
(from Analysis phase)

[new iteration]

Figure 15.13: The Design phase described in terms of work definitions and work products

The actors are modelled by three ProcessRole instances: Architectural Designer, Sys-
tem Designer, System Analyst and Domain Expert. In particular:

• The Architectural Designer is responsible (performer) for the activities of the Archi-
tectural Design step and assists (assistant) the System Designer during the Mapping
Execution activity.

• The System Analyst assists (assistant) the Architectural Designer during the Tran-
sition Identification activity.

231

232 CHAPTER 15. THE SODA PROCESS

• The System Designer is responsible (performer) for all the activities of the Detailed
Design step.

• The Domain Expert is the expert of the application domain and assists (assistant)
the Architectural Designer and the System Designer during the design of the Envi-
ronment.

Figure 15.14 shows the Use-case diagram that models the relationships between the ac-
tivities instances and the ProcessRole instances in SODA’s Design phase [138].

Architectural Design

Detailed Design

Transition
Identification

Interactions
Description

Workspaces Definition
and Description

Agent/Society Design Enviroment Design

Architectural Designer

System Designer

Domain Expert

<<perform>> <<perform>>
<<assist>>

<<assist>>

Mapping Execution

<<perform>>

<<perform>>

Layering

Choose
Design View

<<perform>> <<perform>>

<<perform>>

<<perform>>

<<assist>>
<<assist>>

<<assist>>

System Analyst

Entities Definition
and Description

<<perform>>

<<assist>>

<<assist>>

<<assist>>

<<assist>>

Figure 15.14: Work definition of the Design phase

232

CHAPTER 15. THE SODA PROCESS 233

15.3.2 The Architectural Design step

Table 15.3 presents a summary of the activities of the Analysis steps that are presented
in detail in Figure 15.15.

Activity Description Roles
Transition This activity defines the relationships Architectural

Identification between the Analysis and Architectural Designer (perform)
Design steps. In particular the activity System
specifies the relation between the tasks and Analyst (assist)
roles, between the functions and Domain
resources, between dependencies and Expert (assist)
interactions, between topologies and
workspaces.

Interaction The activity defines and describes the Architectural
Description abstractions tied to the responsibility Designer (perform)

concept. In particular the sets of tasks Domain
and functions are described. Expert (assist)

Entities The activity describes roles and resources. Architectural
Definition and In particular the activity specifies the actions Designer (perform)

Description that each role is able to perform, Domain
and the operations provided by Expert (assist)
by the each resources

Workspaces The activity defines and describes the Architectural
Definition and workspaces. In particular the connection between Designer (perform)

Description workspaces of the same layer are showed, Domain
the resources are allocated in the workspaces, and Expert (assist)
the workspaces perceived by each role are illustrated

Layering This activity represents the Architectural
execution of both zooming and Designer (perform)
projection mechanisms

Table 15.3: Architectural Design step activities

The first activity in this step is the Transition Identification that represents the tran-
sition form the Analysis step to the Architectural Design step (Figure 15.15). The
Workspaces Definition and Description can be executed at the same time of the Enti-
ties Definition and Description and The Interaction Description activities. It is possible
to start the Interaction Description activity before the Entities Definition and Descrip-
tion are finished because the Interaction Description can already begin when the entities
associated to at least one interaction exist. Obviously the layering can be applied during
any activities of this step except the Transition Identification.

233

234 CHAPTER 15. THE SODA PROCESS

Entities Definition and
Description

Transition Tables

Entities Tables

Architectural
Designer

Workspaces
Definition and
Description

Topological
Tables

Interaction
Tables

Transitions
Identification

Responsibilities
Tables

Dependencies
Tables

Topologies
Tables

Zooming Tables
(if exists)

[layering]

Layering

[layering influences only
these three activity] Zooming Tables

(if exists)

Interactions
Description

[exist the elements of
Interaction]

[new iteration]

Zooming Tables
(if exists)

Zooming Tables
(updated) [layering

or new
iteration]

[new iteration]

Figure 15.15: Description of the Architectural Design step work definition

234

CHAPTER 15. THE SODA PROCESS 235

15.3.3 The Detailed Design step

Table 15.4 presents a summary of the activities of the Analysis steps that are presented
in detail in Figure 15.16.

Activity Description Roles
Choose The activity allows to choose the System
Design most suitable architecture by means Designer (perform)
View the carving operation

Mapping This activity defines the relationships Architectural
Execution between the Architectural Design and Designer (assist)

the Detailed Design steps. In particular System
the activity specifies the association between Designer (perform)
roles and agents, between the resources and Domain
artifacts, between interactions and artifacts Expert (assist)

Agent/Society The activity specifies the relations between System
Design agents and artifacts, agents and their relative Designer (perform)

societies (if the carving has produced societies), Domain
and which artifacts are associated Expert (assist)
to each society

Environment The activity specifies the artifacts’ usage System
Design interfaces, the aggregations of artifact Designer (perform)

(if the carving has produced aggregates), Domain
and how artifacts are allocated to workspaces Expert (assist)

Table 15.4: Detailed Design step activities

The first activity in this step is the Choose Design View where the System Designer
chooses the system architecture among the all the possible architectures identified in the
Architectural Design step (Figure 15.16). The choice is done by means of the carving
operation already explained in Subsection 14.5.3. Then it is possible to execute the
Mapping Execution that maps the entities belonging to different layers in the Architectural
Design step to the entities of the Detailed Design step. After that the Agent/Society
Design and the Environment Design activities can be executed at the same time. At
the end of this step if the architecture is not satisfactory is it possible to re-iterate the
Detailed Design choosing a differen carving. Obviously the layering is forbidden in this
step.

235

236 CHAPTER 15. THE SODA PROCESS

Agent/Society
Design

Mapping
Tables

Agent/Society
Tables

System
Designer

Enviroment
Design

Enviroment
Tables

Zooming
Tables

Entities
Tables

Topological
Tables

Interaction
Tables

Choose
Design View

[new iteration]

Mapping
Execution

Figure 15.16: Description of the Detailed Design step work definition

236

CHAPTER 15. THE SODA PROCESS 237

15.3.4 The Design Model

Figure 15.17 shows the Design Model: the tables depicted in figure have already been
explained in Section 14.5.

Design
WorkProduct

Transition
Tables

Entities
Tables

Interactions
Tables

Topological
Tables

Enviroment
Tables

Agent/Society
Tables

Mapping
Tables

Zooming
Tables

((L)TRTt)

((L)TRFt)

((L)TIDt)

((L)TTopWt)

1

((L)At)

((L)Ot)

((L)RAt)
((L)ROt)

1

((L)It)

((L)RoIt)
((L)ReIt)

1

((L)Wt)

((L)WCt)

((L)WRet)
((L)WRot)

1

((L)MARt)
((L)MArRt)

((L)MArIt)

1

((L)AAt)

((L)SAt)
((L)SArt)

1

((L)AUIt)

((L)AggAt)
((L)WAt)

1

((L)Zt)
1

Figure 15.17: Structure of the Design Model

237

238 CHAPTER 15. THE SODA PROCESS

15.4 Summing up

Despite its origin in the object-oriented context, SPEM could be applied to the agent-
oriented SODA process quite naturally, yet with some limits in expressiveness and read-
ability. On the one side, in fact, the software development process and its phases are
similar in any methodology, and mostly independent from the computational paradigm
adopted. On the other, however, AO methodologies introduce a richer set of abstractions
and mechanisms, which naturally lead to define a more articulated software development
process: this sometimes stresses SPEM to its limits, showing its weakness in facing the in-
creasing complexity—in particular, UML diagrams often become nearly unreadable when
applied to AO methodologies.

In the specific case of SODA, for instance, the key issues of interaction and environ-
ment are apparently well modelled, instead the management of complexity presents some
problems [138]. In fact, process iterations and applications of the layering principle are
not easily captured by Activity diagrams—see Figure 15.15. Moreover, the WorkProduct
elements are characterised by a unique symbol, which makes it very difficult to express
their change of state during process iteration. Currently, the only means provided by
SPEM to face this issue is the Guidance element, which can be used to express these as-
pects by barely adding descriptions (comments) to the Activity diagrams: of course, an ad
hoc diagram specifically designed for process modelling would be a much better solution.
Use-case diagrams, too, become very complex when modelling actors’ activities (Figure
15.15). In fact, SPEM provides just only one symbol to represent two different types of
association, perform and assist : so, it has to adopt different stereotypes – �perform�
and �assist� – to tell one from the other. This choice makes the diagram unreadable if
there are many activities and roles: again, enhancing SPEM to provide different symbols
for modelling such associations would be a more effective and expressive solution.

Other methodologies modelled by the FIPA Methodology Technical Committee [121]
apparently do not suffer from such limitations, mainly because they do not include mech-
anisms similar to the SODA layering principle: so, in such cases SPEM turns out to be
able to capture the whole methodology process in quite an easy way. For instance, it-
erations of the activities in ADELFE can be modelled quite easily, and also the activity
diagrams obtained from this methodology are clear, while SODA diagrams are nearly un-
readable due to the considerably larger number of WorkProducts. However, in the overall
the SPEM notation is not expressive enough for correctly modelling all the dynamics
of the AO methodologies: for instance, the change in the WorkProduct status above is
represented only in the label associated to the WorkProduct itself—there is no standard
way to do this inside the notation.

Summing up, SPEM is apparently a good base to model AO software development
processes, although the above limits make it difficult to represent the process effectively,
leading to models that are sometimes uneasy to understand. So, an extension seems nec-
essary in order to enable SPEM to overcome its limits in expressiveness and readability.

238

16
SODA & Infrastructures

This chapter discusses a method and some guidelines for correctly mapping the abstrac-
tions promoted by SODA design-level abstractions onto the infrastructural abstractions
of TuCSoN (Section 16.1), CArtAgO (Section 16.2) and TOTA (Section 16.3) already pre-
sented in Chapter 10: the abstractions used in the SODA analysis phase are left aside, as
they would be too high-level with respect to infrastructures. In order to do this we apply
the meta-modelling technique both to SODA and infrastructures and map the method-
ologies’ abstractions onto the infrastructures’ abstractions at the meta-model level This
method allows to fill the gap between methodologies and infrastructures that can lead
to dangerous inconsistencies between the design and the actual implementation of the
system (Subsection 3.3.1). These are the consequences of the use of concepts and ab-
stractions in the analysis and design stages which are different from those used to deploy
and implement the system: methodologies can be exploited precisely to overcome such
a gap, however monitoring and incrementally evolving 24/24-7/7 systems call for design-
to-deployment abstractions and keeping the abstractions alive.

Among the many AO infrastructures available in the literature, we choose TuCSoN
and TOTA because interaction – and coordination, in particular – is at the core of both
infrastructures, in the same way as in SODA. Finally we choose CArtAgO because it is
the only infrastructure that natively supports the concepts of artifacts.

Such infrastructures are then compared so as to evaluate their support to SODA
abstractions (Section 16.4). A summary follows in Section 16.5.

16.1 From SODA to TuCSoN

Since SODA is defined on top of the A&A meta-model, the first step is to define how
agents and artifacts can be represented as TuCSoN abstractions. In order to simplify the
presentation the TuCSoN meta-model from Chapter 10 is reported in Figure 16.1.

Mapping the agent notion is straightforward, given TuCSoN native support for this
concept: so there is a one-to-one mapping between the SODA agent abstraction and the
TuCSoN one. However, the concept of agent action, explicitly considered in the SODA
meta-model, is more or less reduced to the notion of coordination primitives, as performed

239

240 CHAPTER 16. SODA & INFRASTRUCTURES

TuCSoN

TopologyNetworkNode

Reaction

Tuple Centre
nn

runs

Event

Tuple
0..n0..n

stored

ACC

accesses

OrganisationRole
** **

Reaction Spec

nn

t riggers exectuion of

Agent
read/write

uses

negotiation/join

plays

programs

Events can be both
internally generated and
perceived from the tuple
centre.

Figure 16.1: TuCSoN Meta-model

by agents. The coordination primitives supported by TuCSoN are: out(t) is used to put
a passive tuple t in the tuple centre, in(t) retrieves a passive tuple t from the tuple centre,
rd(t) retrieves a copy of t from the tuple centre (i.e., t is still there) and eval(p) puts an
active tuple p (i.e., a process) in the tuple centre.

Mapping the artifact notion, instead, is less obvious, as SODA defines three different
artifact types – social, individual and environmental artifacts – each requiring its own
mapping. With respect to this issue, TuCSoN tuple centres can be seen as a special
case of social artifacts: they mediate and govern agent interaction by encapsulating the
laws of agent coordination. Such coordination laws, expressed in terms of reactions to
interaction events, are well suited to mapping SODA interactions—i.e., the rules that
enable and bound the entities’ behaviour. In turn, the notion of individual artifact can
be mapped onto the TuCSoN ACC concept, since its purpose is precisely to represent
the interface of an agent towards the environment [215]. In fact, agents ask for an ACC
specifying the roles to be activated: the ACC is then negotiated with the infrastructure as
the agent joins the MAS organisation. If the negotiation is successful, the ACC is created
and released to the agent, which, henceforth, exploits it to access the MAS services: the
ACC redirects the agent invocations to the other artifacts in the environment. Finally,
the environmental artifact is not natively supported by TuCSoN, so it must be developed
if/when needed. Also, the notion of artifact operation is reduced here to the notion of
tuple centre operation, and has not the generality required. The general form for any
admissible TuCSoN operation is tc?operation(tuple) asking tuple centre tc to perform
operation using tuple.

Given that, link operations through tuple centres are the way in which TuCSoN
“artifacts” are somehow composed and represent the SODA aggregates.

Widening the view, the organisation concept provided by TuCSoN is well suited to

240

CHAPTER 16. SODA & INFRASTRUCTURES 241CArtAgO
Topology

NetworkWorkplace Node

Usage

Workspace

governs
inducts

interesection/nesting

Usage Interface

Events
Construction

Operat ing Instruction

uses

Function Description

Selection

discovers

Role
**

Rules
**

Contract

Sensor

*

*

*

*

collects

Agent Body

**

**

generates

**

Agent

allocated in

sensing

uses

Action

performs

Effector**

*

*

*

*executes

Arti fact

*

*

*

*

allocated in

exposes

ables to observe

**

generates

constructs

exposes

exposes

Operation

acts on
**

**
provides

Figure 16.2: CArtAgO Meta-model

represent SODA societies, in the same way as the TuCSoN role concept can represent
the SODA role notion. From the topological viewpoint, the SODA notion of workspace
may be mapped onto the TuCSoN node concept, which, indeed, represents an open set of
agents, tuple centres and ACCs; as a consequent step, the TuCSoN network can be used
to map SODA environments. On the other hand, workspace connection, as introduced
by SODA, has no mapping in TuCSoN, so it should be developed in an ad hoc way when
needed.

16.2 From SODA to CArtAgO

CArtAgO and SODA share the same root in the A&A meta-model: so, quite expect-
edly, CArtAgO abstractions can easily support all SODA concepts. In order to simplify
the presentation the CArtAgO meta-model from Chapter 10 is reported in Figure 16.2.
CArtAgO provides the artifact notion as a first-class abstraction, which can be used and
easily specialised in social and environmental artifacts according to the developer’s needs.
Therefore, unlike TuCSoN, the SODA notion of artifact operation is directly mapped
onto the operation abstractions supported by CArtAgO; the same holds for the SODA
agent action supported by CArtAgO’s action. Moreover, individual artifacts can be more
specifically mapped to the CArtAgO agent body abstraction, instead of using the generic

241

242 CHAPTER 16. SODA & INFRASTRUCTURES

artifact notion.

Aggregate can also be easily realised, thanks to the linkability property [152] natively
supported by CArtAgO artifacts to scale up with environment complexity. So, an artifact
can be conceived and implemented as a composition of linked, possibly non-distributed,
artifacts, or, conversely, a set of linked artifacts, scattered through a number of different
physical locations, can be seen altogether as a single distributed artifact.

In addition, SODA organisational structure, which is defined in terms of roles and so-
cieties, can be easily translated on CArtAgO roles and workplaces. This makes it possible
to capture the SODA interaction concept in a straightforward way: in fact, interactions
in SODA are aimed at enabling and constraining agent behaviour, which is precisely what
the workplace rules and contract do—a CArtAgO agent may or may not have permission
to use some artifacts or to execute some specific operations on some specific artifacts
depending on the role(s) that the agent itself is playing inside the workplace.

Finally, the CArtAgO workspace concept can be directly used to map the SODA
workspace concept, in the same way as the CArtAgO workspace nesting supports the
SODA workspace connection. The CArtAgO abstractions of node, network and topology
can be used to represent the SODA environment, too.

16.3 From SODA to TOTA

TOTA provides native support to the agent concept, while the artifact concept is supported
only in the case of social artifacts. So, SODA agents can be directly mapped onto TOTA
agents, while social artifacts are mapped onto TOTA tuple spaces. In order to simplify the
presentation the TOTA meta-model from Chapter 10 is reported in Figure 16.3. Unlike
tuple centres, tuple spaces provide only a fixed coordination service: so, they are unable to
support the SODA interaction concept. However, SODA social rules can be mapped onto
the maintenance rule and the propagation rule associated to TOTA distributed tuples,
exploiting the fact that propagation rules determine how tuples propagate through the
network, and maintenance rules determine how the tuple distributed structure reacts to
environment events. Of course, this mapping is less straightforward than in TuCSoN
(whose reactions map the SODA interaction concept directly): indeed, a set of many
tuples must be used to describe a single SODA interaction—each tuple representing one
propagation and one maintenance rule. As a side effect of this one-to-many mapping,
maintaining coherency is quite a hard task, and the rules/interaction mapping can often
be very dispersed.

From the topology viewpoint, the TOTA node concept maps to the SODA workspace
concept: each node holds references to a limited set of neighbour nodes, and neighbour-
hood relations express the network topology. Such inter-node relations can be exploited
also to provide an abstraction for mapping to the SODA workspace connection concept.
Finally, the TOTA network concept maps to the SODA environment, too. All the others

242

CHAPTER 16. SODA & INFRASTRUCTURES 243TOTA

Topology

Neighborough inducts

Network

Agent

NODE

runs

Content

TupleSpace runs

Tuple injects/senses

*

*

*

*

stored
executes

MigrationPropagation Rule

affects

*

*

*

*
accesses

inducts

The propagation rule could
induct a tuple migrat ion from
one node to another

Event

*

*

Maintance Rule

*

*

*

*
accesses

affec ts

triggers

occurs
*

*

Figure 16.3: TOTA Meta-model

SODA concept are not natively supported by TOTA, and should therefore be developed
in an ad hoc way when needed.

16.4 Discussion

Figure 16.4 highlights the SODA abstractions that are supported natively from each of
the three infrastructures. The agent and resource abstractions are both omitted—the
first because it is explicitly supported by each infrastructure, the latter for the opposite
reason.

Quite expectedly, CArtAgO provides the best support for SODA design abstractions,
as they are both rooted in the A&A meta-model: in particular, both consider the environ-
ment as the key element, adopt artifacts as their basic building blocks for modelling the
environment resources, and workspaces for structuring the environment. Moreover, both
SODA and CArtAgO support the MAS organisational structure by explicitly enabling the
specification of social rules.

TuCSoN and TOTA, instead, provide support for fewer SODA abstractions: so, the
developer needs to implement by himself the abstractions which are not supported by
the infrastructure natively. In particular, none of the two infrastructures supports envi-
ronmental artifacts, while both support social artifacts: this is not surprising, since they
take both inspiration from coordination models, where interaction is typically mediated

243

244 CHAPTER 16. SODA & INFRASTRUCTURES

SODA TuCSoN CArtAgO TOTA
Role Role Role -

Action Coordination Primitive Action -

Interaction Reaction Specification Rules Maintenance Rule

Reaction Contract Propagation Rule

Operation Tuple Centre Operation Operation -

(Social) Artifact Tuple Centre Artifact Tuple Space, Tuples

(Individual) Artifact ACC Agent Body -

(Environmental) Artifact - Artifact -

Aggregate Linked Tuple Centres Artifact -

Society Organisation Workplace -

Workspace Node Workspace Node

Workspace Connection - Workspace Nesting Neighborough

Figure 16.4: Abstractions Mapping

by some coordination media [71] (like a tuple space or a tuple centre) that could be easily
seen as a special case of social artifact. Individual artifacts, in turn, find their counterpart
only in TuCSoN—namely, in the ACC abstraction. Moreover, SODA interaction abstrac-
tion, which represents the rules that enable and shape agent behaviour, can be expressed
directly by TuCSoN reactions, and indirectly via TOTA maintenance and propagation
rules. Finally, as far as the organisational structure of the MAS is concerned, TuCSoN
provides explicit abstractions such as organisation, role and ACC; on the other hand,
TOTA does not provide any support for this issue yet, so the developer must provide for
managing the MAS organisations on his/her own.

16.5 Summing up

This chapter comparatively analysed the meta-models of the SODA methodology and
of CArtAgO, TuCSoN, and TOTA infrastructures, with double purpose of (a) providing
a method for filling the gap between the design and implementation phases, and (b)
evaluating the quality of the mapping of SODA concepts onto infrastructural abstractions
in terms of naturalness, clearness, and directness of the mapping. The method presented
in this chapter exploits the meta-models as a tool for mapping between methodologies
and infrastructure.

As for the methodologies, a meta-model enables the representation of an AO infras-
tructure, exposing its inner architecture and behaviour in a technology-independent way.
A well-defined meta-model should represent both the static and the dynamic aspects of
an infrastructure, so we can exploit infrastructure meta-models to associate each method-
ology concept to some suitable infrastructural abstraction.

244

17
Case Study

The complexity of today’s software systems makes the scientific study of computational
models, technologies and methodologies a non-trivial issue—including, in particular, the
choice of significant case studies. In fact, the necessarily limited size of presentations and
articles in scientific conferences and journals – as well as the limited attention span of
reviewers, one may add – typically makes researchers lean towards application scenarios
that are small enough to be discussed and understood in a few pages. However, this often
undermines the general validity of the approaches presented when applied to complex
computational systems – that is, precisely those they were meant to – in spite of the
usual claims by authors.

This is exactly what makes the Conference Management System (CMS) scenario such
an appealing one to put technologies and methodologies to test, and a so-frequently chosen
one in the literature [30, 56, 117, 191, 194]:

• it is apparently simple—actually, the goal of the CMS is simple and easy to un-
derstand, that is, revising and selecting scientific papers for conference presentation
and proceedings;

• yet, it is quite an articulated application scenario, characterised by a wide range of
interaction aspects (coordination, organisation, and security problems), as well as
by frequent requirements for structural evolution and changes;

• it is usually known in most of its fine-print details and subtle nuances by readers /
reviewers, who have often taken part in such a kind of process;

• it has been used as a testbed for technologies and methodologies in the literature,
and as such it has been described and analysed in depth several times.

These features allow authors to concentrate on the specific aspects of interest, avoiding the
description of most well-known issues while preserving the effectiveness of the application
scenario in representing complex systems.

The goal of this chapter is twofold. On the one hand, the aim is to demonstrate
the power of AO methodologies, in particular when based on an expressive meta-model

245

246 CHAPTER 17. CASE STUDY

like the A&A one. On the other hand, we mean to prove the effectiveness of SODA, in
particular when extended with layering mechanisms to handle the engineering of complex
computational systems.

So, the chapter is structured as follows. Section 17.1 introduces the conference man-
agement application scenario: in particular, Section 17.2 discusses CMS in the literature
and emphasises some key lessons to be learned, while Section 17.3 presents the CMS sce-
nario from the MAS engineering viewpoint, and gives the fundamentals of the A&A meta-
model. Next, Section 17.4 provides details about the design and modelling of conference
management in SODA, while Section 17.6 reports on the benefits of the methodological
approach presented.

17.1 Conference Management Systems

The management of scientific conferences is an interesting case study [30, 229] in that
it involves several aspects, from the main organisation issues to paper submission and
peer review, which are typically performed by a number of people distributed over the
world who exploit the Internet as the infrastructure for communication and cooperation.
Setting up and running a conference is a multi-phase process, involving several individuals
and groups. During the submission phase, authors send papers, and are informed that
their papers have been received and have been assigned a submission number. In the
review phase, the program committee (PC) handles the paper review, contacting potential
referees and asking them to review one or more papers. Eventually, reviews come in and
are used to decide about the acceptance / rejection of the submissions. There are various
ways to distribute the papers: i) the PC scans all papers and distributes them according
to personal preferences; ii) there can be an automatic match according to keywords; iii)
titles and abstracts may be broadcast, then a bidding mechanism can be implemented;
iv) the PC-chair decides to distribute the papers based on the expertise of the various
PC-members. The situation gets more complex if, as it is often the case, PC-members
are allowed to submit papers: in this case, one must prevent them from accessing (or
even just inferring) information about their own submissions. In the final phase, authors
are notified of these decisions and, in case of acceptance, are asked to produce a revised
version of their paper. The publisher then collects these final versions and prints the
proceedings.

In addition, the overall structure of the conference organisation may dramatically vary
from year to year, for two main reasons [28]. First, the involved organisers often change
every year, thus inducing changes in the organisation due to their personal attitudes and
opinions. Second, the conference topics and the effectiveness of the conference advertising
may strongly affect the number of submitted papers, possibly forcing to change the struc-
ture of the management process in order to keep it manageable while scaling with the
conference dimension. This is particularly true for the reviewing process, which involves

246

CHAPTER 17. CASE STUDY 247

a large number of actors, with different duties and variously interacting with each other.

17.2 CMS in the literature

Conference management has been considered in several research areas, each highlighting
some specific problem issues—from coordination to workflow management, from mobile
computing to the organisational structure.

CMS: The Coordination Viewpoint. Ciancarini [30] is one of the first authors
to study conference management from the viewpoint of coordination. There, this case
study is considered as an example of a real life application with prominent coordination
aspects, since it involves a set of coordination activities but also requires coordination for
its own workflow. In particular, managing the conference workflow is expressed as man-
aging the dependencies of the activities needed to produce the proceedings of a scientific
conference. Scutellà [194], instead, presents a simulation based on MANIFOLD, whose
scope is the automation of the paper submission process and the distribution of papers
to referees. Since MANIFOLD is a strongly-typed, block-structured, event-driven coor-
dination language with asynchronous communication, aimed at enforcing the separation
between computation and communication concerns, the proposed solution is structured
into a hierarchy of processes: a PC-chair (the coordinator), and a set of PC-members (the
coordinated processes). Event-based methods are used as the coordination means, while
the information flow is enacted using point-to-point channels. Analogously, in [131], the
conference management problem is used to pragmatically validate Oikos adtl, a specifica-
tion language for distributed systems based on asynchronous communication via remote
writing, which makes it possible to express the global properties of coordination tem-
plates. There, however, the only addressed issue is the allocation of submitted papers
to PC members for reviewing. As a last example, Rossi and Vitali [187] discuss a solu-
tion based on PageSpace, an architecture for Web-based applications where autonomous
agents can perform their tasks regardless of their physical positions. This architecture
is instantiated with a coordination language offering mobility facilities, and follows the
Multi-User Dungeon metaphor – a cooperative interactive environment shared by several
people to socialise and interact. The virtual space is partitioned in rooms, which con-
tain users and items: users can move from a room to another, and can interact with the
items and with the other users in the current room. Accordingly, in the implemented
system, ConfManager, submitted papers are stored in rooms, while authors, reviewers,
and PC-Members are represented by avatars, exploiting both synchronous (online) and
asynchronous (e-mail) communication interactions.

CMS: The Organisation Viewpoint. Organisational issues are central in [229],
where the conference management system is structured as a number of different MAS
organisations, one for each phase of the conference management process. In each organi-
sation, the corresponding MAS can be viewed as a set of agents associated to the people

247

248 CHAPTER 17. CASE STUDY

involved in the process (authors, PC-chair, PC-members, reviewers), who represent the
active part of the system. In addition, Cernuzzi and Zambonelli [28] argue that, although
the process of designing a MAS to support the organisation of a conference may con-
ceptually appear quite simple, the most critical issue is the extreme variety of real-world
organisations, which often change from year to year. This aspect not only impacts the
design of the MAS in terms of the types and roles of the involved agents, of the organi-
sational structure and of inter-agent interactions: it also calls for adaptive MAS and for
a design approach coherent with a “design-for-change” perspective.

CMS: The Mobility Viewpoint. From a totally different viewpoint, Cardelli ex-
ploits conference management as a “challenge for any wide area language to demonstrate
its usability” [22], highlighting the issues of code mobility. Another example can be found
in [56], where Mobile Maude – an extension of Maude supporting mobile computation –
is used to represent and specify ambitious wide-area applications. A conference reviewing
system is then used as a testbed for executable Maude specifications, in particular with
the aim of identifying possible bugs and experimenting with different alternatives.

CMS: The Systems Viewpoint. Implementations of conference management sys-
tems can be found in [117, 191], which describe the electronic management systems de-
veloped, respectively, for the 4th and 5th International World Wide Web Conferences, and
for the 7th International Conference on Concurrency Theory and the 24th International
Colloquium on Automata, Languages, and Programming. Other applications are avail-
able for conference management [57, 136, 34, 218, 161]: they all try to automate the long
or repetitive tasks (possibly using sophisticate algorithms, as in the case of [136]), such
as assigning papers to reviewers and collecting paper reviews. Some applications also try
to face the most common security issues, adding some form of access control (usually,
username and password) to paper information, so that each author can access only the
information about his/her own paper.

CMS: Lessons Learned and Requirements. Conference management is popular
in the literature because it is at the same time easy-to-understand, real-life, yet complex
enough in terms of coordination, organisation, security, and scalability to be an effective
testbed for a variety of programming paradigms, methodologies and technologies. How-
ever, such a versatility has sometimes led authors to use it just to model some specific
aspects – the ones which are best suited to their own approach or technology (paper
assignment to reviewers, collecting paper reviews, mobility. . .) – rather than to actually
design and engineer a real application.

For this purpose, several requirements should be met:

• the whole set of actors and interaction should be modelled – not just the “part
of interest” – using suitable high-level metaphors and adequate software engineer-
ing methodologies; such metaphors should have their counterpart in the selected
implementation technology both at design time and run time.

• it should be possible to specify any kind of coordination pattern, as required to

248

CHAPTER 17. CASE STUDY 249

suitably coordinate several activities (paper assignment, peer review, discussions
among PC members, collecting reviews, etc.);

• adequate organisational abstractions should be available in order to express organi-
sational constraints, environmental aspects and security issues as needed; these may
include, for instance, concepts such as roles, workspaces, etc.

• last but not least, the selected software infrastructure should be based on open
architectures, so as to support dynamic evolution and meet the new requirements
in response to possible modifications of the organisational structure.

17.3 CMS & Agent-Oriented Approach

Conference management is popular in the literature because it involves interaction among
loosely-coupled peers spread over the world, thus intrinsically stressing the issue of suit-
ably coordinating several activities. The agent-oriented approach is seemingly good in
managing these scenarios: agents are autonomous and proactive, and can engage in elab-
orate interactions both with other agents and with the environment. This is why it
appears natural to think of MAS for the design of complex software systems like CMS.

CMS & Multi-Agent Systems The MAS approach enables designers to face the
complex workflow underpinning conference management in a more natural way: indeed,
agents are viewed as responsible for pursuing activities such as, for instance, retrieving
paper information (keywords, title, state of evaluation,. . .), reviewers’ information (their
research fields, the list of assigned papers,. . .), selecting the possible reviewers for each
paper, etc. They can do so by playing roles (possibly evolving over time), such as authors,
reviewers, PC-members, etc., and exploiting resources of different granularity—papers,
database managers, etc.

In addition, agents can collaborate at a very fine-grained level: in particular, a group
of strictly-interacting agents can sometimes be seen as a whole accomplishing a set of
goals/tasks. In such a case, we say then that they play a social role —a complex role that
cannot be played by a single agent because of the many different capabilities (and system
resources) required. In the CMS context, a typical social role is the PC-chair, due to
the several different activities to be carried out. Some such activities, like the scheduling
of the deadlines and the publication of the call for papers, are relatively simple, but
others are more complex and therefore call for different entities to work together. This
is the case of paper assignment and collecting reviews: in particular, paper assignment
requires autonomous “intelligent” entities, able to perform articulated interactions, while
respecting key constraints like the familiarity of each reviewer with paper subjects, authors
not reviewing their own papers, etc. So, the PC-chair role could be decomposed into a
set of “basic roles”, each assigned to a suitable agent. The result is a very flexible system,

249

250 CHAPTER 17. CASE STUDY

which can easily adapt to changes in the system organisation or in the system constraints,
with little modifications at the implementation level.

Moreover, the above MAS approach should also count on adequately-expressive forms
of (inter-)agent interaction in a distributed scenario—which, in turn, call for suitable
design metaphors and run-time entities usable as coordination media; altogether, these
should be able to enforce the correctness and integrity rules that guarantee the key system
properties. For this approach to be effective, the corresponding software engineering
methodology and process should be explicitly rooted into the agent paradigm – not just
an adaptation of general software engineering approaches for component-based or object-
oriented systems – so as to exploit the agent abstractions from the earliest requirements
analysis phase, and considering the issue of modelling the environment as one of the most
fundamental system aspects: that is what Agent-Oriented Software Engineering is for.

CMS & Agent-Oriented Software Engineering The paradigms and abstrac-
tions used in traditional software engineering are inadequate to effectively face the above
aspects, as they cannot support the above processes in natural way – in particular, the
specification and enactment of coordination patterns. Objects, for instance, are basically
neither autonomous nor proactive: their internal activity can be stimulated only by service
requests coming from an external thread of control. Moreover, traditional object-oriented
applications usually do not have any explicit model of the external “environment”: ev-
erything is modelled in terms of objects, which perceive the world only in terms of other
objects‘ names/references [230] and wrap the environment resources in terms of their
internal attributes.

AOSE aims precisely at identifying suitable analysis & design methodologies where
the concepts of the agent paradigm (agents, roles, resources, organisational structures)
can be fruitfully exploited as the basic building abstractions: each specific methodology
then proposes its own view of modelling the system, both in terms of the set of models
to define, and of the phases in which the engineering process is articulated. Moreover,
the agent-oriented metaphors used to express the system design and architecture should
later find their counterpart in suitable MAS items at implementation time. In particular,
an AOSE approach typically starts by defining the key roles to be played by agents, and
identifying (and suitably expressing) the constraints about inter-role playing that achieve
the desired properties: the MAS infrastructure is then asked to guarantee that agents are
not allowed to play incompatible roles at any time.

For instance, in conference management, two obvious roles are paper author and paper
reviewer: a clear inter-role constraint is that such roles cannot be played simultaneously
by the same agent, which means that we must be able to control role assignment and
interchange at run time, too. PC-members are another interesting example: in general,
they should be authorised to access all the paper reviews in the system, but there should
be an exception for their own papers, for obvious fairness reasons. Moreover, some in-
formation could be reserved, and rated as accessible only by some predefined roles. To
face all such cases, the MAS has to include the capability to check agent operations dy-

250

CHAPTER 17. CASE STUDY 251

namically, so as to possibly prevent agents from accessing reserved information (or part
of the system) if needed: in turn, this means that suitable protection should be in place.
Of course, unknown external (or unauthorised) agents should be kept out of the system,
too—which means that authentication/authorisation schemes should be included.

The above considerations lead to specifying other features that an AO methodology
should possess in order to properly support the CMS design:

• A support for the organisational structure — Since the organisational structure rep-
resents a variable design dimension, the methodology should operate in a design
for change perspective: the analysis should describe the system requirements with-
out committing to a specific organisational structure, and the architectural design
should support several possible architectures. In this way, designers can produce a
new detailed design if the conference requirements change. In addition, the method-
ology should enable the specification of organisational rules that are invariant with
respect to any architectural solution.

• Support for interaction — Interaction and coordination protocol are clear key issues
in CMS: accordingly, the methodology should consider interaction as a key design
dimension, making it possible to easily express all the constraints that enable and
bound the system interaction space.

• Support for the security constraints — Access control is a key problem is CMS,
and involves both confidentiality and integrity issues, especially if PC-members are
allowed to submit papers. So, the methodology should support some form of access
control strategy, like, for instance, Role Base Access Control (RBAC) [175], where
the access to a particular resource is granted or denied according to the role currently
played by the requesting agent.

CMS & A&A More generally, artifacts make it easier to enrich the MAS design
with social and organisational structures, as well as with complex security models: roles,
permissions, policies, commitments, and the like can be represented explicitly as first-class
entities, and encapsulated within suitable artifacts.

In the context of conference management, artifacts can be exploited to structure and
create the workspaces used by PC-members to work together and organise the event.
For instance, fine-grained artifacts could represent the papers, while larger-grained ar-
tifacts could represent the database managers of the system, etc.; of course, choosing
one or another kind of artifact is a design dimension which is up to the MAS engineers.
Whatever the choice, (intelligent) agents will then use such artifacts to retrieve both the
required paper information (keywords, title, state of evaluation,. . .) and the reviewers’
information (their research fields, the list of assigned papers,. . .) needed to assign papers
to reviewers while respecting all the organisational constraints (such as the maximum
number of papers for each reviewer, the minimum number of reviews for each paper,. . .).

251

252 CHAPTER 17. CASE STUDY

Artifacts can also contribute to the system security and integrity, at three levels: by con-
trolling the roles played by agents and their interchange, by denying access to (external)
unknown/unauthorised agents, as well as by preventing (known) agents to access some
specific, reserved information (or part of the system).

17.4 Conference Management in SODA
This section presents a sketch of a conference management system designed with SODA:
for obvious space reasons, the core layer has been chosen at a high abstraction level and
only a limited set of tables is reported; readers interested in further details can see the
Appendix A containing all the tables of the core layer.

The section is organised as follows: Subsection 17.4.1 presents the Requirements Anal-
ysis step, Subsection 17.4.2 presents how to move from Requirements Analysis to Analysis,
Subsection 17.4.3 shows the Analysis step, while Subsection 17.4.4 explains how to move
from Analysis to Architectural Design. Subsection 17.4.5 presents the Architectural De-
sign step, Subsection 17.4.6 shows how to move from Architectural Design to Detail Design
by means of the carving operation, and Subsection 17.4.7 presents the Detailed Design
step.

17.4.1 Requirements Analysis

The Requirement Analysis step consists of three sets of tables: Requirements Tables,
Domain Tables and Relations Tables.

Requirements Tables define the abstract entities tied to the concept of “requirement”:
Figure 17.1 illustrates the requirements associated to the actor “Conference Organisers”,
which is the only actor individuated in the system at this level of abstraction. In this
case, the requirements are related to the “macro activities” composing the conference
management workflow already explained and analaised in Section 17.1: startup process,
submission process, paper partitioning process, paper assignment process and review pro-
cess. These are obviously functional requirements – i.e., statements or services the system
should provide – but it is also possible to express non-functional requirements—constraints
on the services or functions offered by the systems, examples of non-functional require-
ments are those tied to the system security.

If needed, each requirement could be decomposed into other, more detailed require-
ments: for instance, the ManagePartitioning requirement could be in-zoomed into a set of
requirements about the management of sub-committees, the classification of papers, and
paper partitioning. Figure 17.2 shows the corresponding Zooming table ((C)Zt), which
formalises the in-zoom of core layer C into the more detailed layer C+1; of course, the
same table can be used to represent the dual out-zoom process.

Domain Tables define the abstract entities tied to the concept of “external environ-
ment”. In our case, there is only one legacy system, called “WebServer” (Figure 17.3),

252

CHAPTER 17. CASE STUDY 253

Requirement Description
ManageStartUp creating call for papers and defining

the rules of the organisation
ManageSubmission managing user registration

and paper submissions
ManagePartitioning partitioning papers based on

the conference structure
ManageAssignment managing the assignment process according to

the organisation rules
ManageReview managing the review process and

sending reviews to authors

Figure 17.1: Requirement table (C)Ret

Layer C Layer C+1
ManagePartitioning UpdateStartUp

ManageSubCommittee
ManageClassification

PartitionPapers

Figure 17.2: Zooming table ((C)Zt): Paper Partitioning in-zoom

which represents the container for the web application of the conference: the reason to
include it in the description is that the conference management system will obviously have
to interact with it and these interactions must be captured and constrained.

Legacy-System Description
WebServer it is the container for the

web application of the conference

Figure 17.3: LegacySystem table (C)LSt

Relations Tables link the abstract entities with each other. In our system, there is just
one relation, called “Web”, which involves all the abstract entities, since all requirements
need to access the web server to retrieve or store information. The Relation table is
illustrated in Figure 17.4.

In Figure 17.5 the Relation-Requirement table at layer C+1 is reported. Since the
ManagePartitioning requirement is involved in the Web relation, this relation is “inher-
ited” by all the sub-requirements at layer C+1. In order to maintain consistency of the
layer C+1 both the Web relation and the legacy-system WebServer are projected at layer
C+1.

Figure 17.6 summarises the outcome of this step. In particular the figure depicts the

253

254 CHAPTER 17. CASE STUDY

Relation Description
Web access to the web in order to

retrieve or storage some information

Figure 17.4: Relation table (C)Relt

Requirement Relation
UpdateStartUp + Web

ManageSubCommittee + Web
ManageClassification + Web

PartitionPapers + Web

Figure 17.5: Relation-Requirement table (C + 1)RRt

requirements, the only legacy-system and the relation individuated among requirements
and legacy-system (the cyan curved lines) that compose the core layer. In addition the
figure shows the two layers that compose the system with the in-zoom operation (the red
curved lines) and the projection operation (the black lines).

17.4.2 From Requirements Analysis to Analysis

In order to move from Requirements Analysis to Analysis, the relations between the dif-
ferent abstractions adopted in the two steps must be precisely identified: this is done
by means of the References Tables. In particular, the Reference Requirement-Task ta-
ble ((L)RRTt) specifies the mapping between each requirement and the generated tasks
(Figure 17.7).

Requirement Task
ManageStartUp start up

ManageSubmission submission
ManagePartitioning paper partitioning
ManageAssignment assignment papers

ManageReview review process

Figure 17.7: Reference Requirement-Task table (C)RRTt

Typically, relations are not one-to-one, since a requirement is likely to generate several
tasks; however, in this case each requirement can be actually mapped into one task,
as a consequence of setting the core layer at very high abstraction level. The same
consideration applies to the other Reference Tables.

Since our system is composed of two layers, a similar set of tables will be defined also
for the C+1 layer. Figure 17.8 shows the Reference Requirement-Task table at layer C+1.

254

CHAPTER 17. CASE STUDY 255

Manage
StartUp

Manage
Assignment

Manage
Submission

Manage
ReviewManage

Partitioning

C
C+1

Requirement Legacy system

WebServerWeb

Manage
Classification

Partition
Papers

Manage
SubCommittee

Update
StartUp

+ WebServer
+ Web

Figure 17.6: An overview of the Requirement Analysis step

Requirement Task
UpdateStartUp modifying startup

ManageSubcommittee create sub-committees
Vice-Chair elections

ManageClassification papers classification
PartitionPapers partition papers

Figure 17.8: Reference Requirement-Task table (C + 1)RRTt

17.4.3 Analysis

The Analysis step exploits three sets of tables: Responsibilities Tables, Dependencies
Tables and Topologies Tables.

Responsibilities Tables define the abstract entities tied to the concept of “responsibil-
ities centre” – namely, tasks and functions. The conference management tasks have been
already reported in Figure 17.7, while the functions are reported in Figure 17.9. The last
function in the table is the only one coming from the legacy system: all the others are
generated from the requirements in order to support the achievement of tasks.

255

256 CHAPTER 17. CASE STUDY

Function Description
management user managing user information

management review managing review information
management paper managing paper information

management assignment managing assignment information
management partitioning managing partitioning information

management process managing start-up information
webSite web interface of the conference

Figure 17.9: Function table (C)Ft

In Figure 17.10 the Zooming Table for the Analysis step is reported. In this table both
the sub-tasks of the paper partitioning task and the new dependencies – underlined in
the table – generated by the in-zoom operation are listed. These dependencies coordinate
the execution of sub-tasks at layer C+1 in order to achive the original task at layer C.

Layer C Layer C+1
paper partitioning modifying startup

create sub-Committees
Vice-Chair elections
papers classification

partition papers
new organisation

classification
partition
election

Figure 17.10: Zooming table (C)Zt

Dependencies Tables relate functions and tasks with each other. Figure 17.11 shows
the dependencies for conference management: “webAccess” derives from the relation de-
fined in the Requirement Analysis, while the others come from the relationship among
tasks and functions.

256

CHAPTER 17. CASE STUDY 257

Dependency Description
start up access of all the information

information about start up process
user information access to all the users’ information

paper information access to all the paper information
partitioning access to all the information
information about partitioning process
submission access to all the information
information about submission process
assignment access to all the information
information about assignment process. A reviewer

cannot be the author of the papers that
are assigned to him

review access to all the information
information about review process
webAccess access to the web site of the conference

Figure 17.11: Dependency table (C)Dt

Topologies Tables, in turn, express the topological constraints over the environment.
As a web-based system, the conference management system does not impose many topo-
logical constraints over the environment: in fact, one constraint is identified—the locus
where the functions are allocated.

17.4.4 From Analysis to Architectural Design

In order to link the Analysis step with the Architectural Design step, the Analysis entities
are related to the Architectural Design by means of Transition Tables. As an example,
Figure 14.13 shows the mapping between tasks and roles: in this case, three different
tasks are assigned to the same role (PC-chair) because the capabilities requested for the
achievement of the three tasks are similar. Since our system is composed of two layers, a
similar set of tables will be defined also for the C+1 layer.

Role Task
PC-chair paper partitioning

start-up
assignment papers

Author submission
PC-member review process

Figure 17.12: Transition Role-Task table (C)TRTt

257

258 CHAPTER 17. CASE STUDY

17.4.5 Architectural Design

The Architectural Design step consists of three sets of tables: Entities Tables, Interaction
Tables and Topological Tables.

Entities Tables describe both the active entities (the roles) able to perform some action
in the system, and the passive entities (the resources) which provide services. Figure 17.13
reports the Role-Action table for conference management.

Role Action
PC-chair login, assignment

publish deadline
partition

Author login, send paper
PC-member login, read paper

write review
download paper

Figure 17.13: Role-Action table (C)RAt

Interaction Tables describe the interaction between roles and resources: Figure 17.14
shows only a subset of the rules for conference management—namely, the organisational
rules. For example, the AutRev-Rule specifies that an author cannot be the reviewer of
his/her own paper, while the Author-Rule specifies that the author can access only the
public information about his/her own paper even if he/she is a PC-member.

258

CHAPTER 17. CASE STUDY 259

Interaction Description
Deadline-Rule send paper is possible if and

only if time is minus then
deadline submission

User-Rule get user is possible if the request
user is the requester

or the requester is the PC-chair
Author-Rule author can access and modify only his

public paper information
Match-Rule papers can be partitioned

according key words
AutRev-Rule the PC-member cannot be the author of paper
Review-Rule the PC-member cannot access to

private information about his papers
Access-Rule the access to the system

must be authorised

Figure 17.14: Interaction table (C)It

Finally, Topological Tables describe the logical structure of the environment. As
outlined above, the conference management system does not present a complex topology:
so, a single workspace is enough for representing the logical structure of the environment.

17.4.6 From Architectural Design to Detailed Design

Now, in order to transit to the Detailed Design phase, the “carving operation” has to be
performed. Figure 17.15 - a) shows the key layers of our system. Since the three roles at
layer C derive from the same role (“Organisation”) at layer C-1, the carving operation is
very simple: the three roles at layer C become agents, and the role at layer C-1 becomes
a society (Figure 17.15 - b). The result is the set of Mapping Tables, which relate the
Architectural Design entities to the Detailed Design.

259

260 CHAPTER 17. CASE STUDY

C

C-1

C+1

Carving OperationArchitectural Design

PC-
member

Organisation

a) b)

PC-
chair Author

ReviewerVice-
chair

PC-
member

Organisation

PC-
chair Author

ReviewerVice-
chair

Figure 17.15: Carving operation in the Conference Management

In conference management, each role is assigned to a specific agent (Figure 17.16)
and each resource is assigned to a specific (environmental) artifact; on the contrary, some
interactions could be mapped onto the same (social) artifact, as in the case of the Author-
Rule and the Match-Rule, because both rules are used in the partitioning process and
they are enforced in the same society.

Agent Role
PC-Chair Agent PC-Chair
Author Agent Author

PC-Member Agent PC-member

Figure 17.16: Mapping Agent-Role table (C)MARt

17.4.7 Detailed Design

The Detailed Design step exploits two sets of tables: Agent/Society Design Tables, and
Environment Design Tables. The first set of tables depicts agents, individual artifacts,
and the agent societies derived from the carving operation.

Figure 17.17 reports the Society-Artifact table for conference management: as dis-
cussed above, there is only one agent society, along with the social artifacts used for
enforcing the corresponding social rules.

260

CHAPTER 17. CASE STUDY 261

Society Artifact
Org StartUp Artifact

User-Rule Artifact
Partitioning Artifact
Assignment Artifact

Review Artifact

Figure 17.17: Society-Artifact table (C)SArt

In their turn, Environment Design Tables concern the design of artifacts and workspaces:
Figure 17.18 reports an excerpt of the Artifact-UsageInterface table: as an example, the
Review Artifact features two operations, each implying a check of the user’s credentials.

Artifact Usage Interface
StartUp Artifact deadline extension, update rule, read rule

User-Rule Artifact get user, modify user
Partition Artifact partition paper, access classification

Assignment Artifact check authors, check reviewers
Review Artifact access review information, insert review

Figure 17.18: Artifact-UsageInterface table (C)AUIt

The system design at layer C is now complete. Of course, this is still quite a high-level
system view: several in-zoom operations are needed, until the system design is refined
enough for implementation purposes.

17.5 From the design to a TuCSoN-based implemen-

tation

As highlighted in Chapter 16 the SODA design phase could be mapped onto AO infras-
tructures. In order to complete the case study a mapping between SODA design and
the TuCSoN infrastructure is presented. In Figure 17.19 an excerpt of the figure already
showed in Chapter 16 is reported. This figure reports only the columns related to SODA
and TuCSoN.

261

262 CHAPTER 17. CASE STUDY

SODA TuCSoN
Role Role

Action Coordination Primitive
Interaction Reaction Specification

Reaction
Operation Tuple Centre Operation

(Social) Artifact Tuple Centre
(Individual) Artifact ACC

(Environmental) Artifact -
Aggregate Linked Tuple Centres

Society Organisation
Workspace Node

Workspace Connection -

Figure 17.19: Abstractions Mapping

The three roles individuated in the Architectural Design step – PC-chair, Author and
PC-member – are mapped to the corresponding three TuCSoN roles and as a consequence
these three roles are played by three different agents (Figure 17.16). In SODA each agent
is associated to an (individual) artifact (PC-Chair Artifact, Author Artifact and PC-
Member Artifact) – see Appendix A for the complete case study – which generates the
creation of three different ACCs in TuCSoN, each of them associated to a specific TuCSoN
agent.

The actions associated to the roles and executed by agents are transformed to coor-
dination primitives. For example the action “write review” (see Figure 17.13) is mapped
onto the coordination primitive [166] “out”.

The operation associated to the resources and performed by artifacts are transformed
to the tuple centre operations. For example the operation “store review” that supports
the action “write review” is mapped onto:

PaperArt?out(review(pc-member, paper_id, rev))

where “PaperArt” is the name of the tuple centre that stores the information about papers
and “review” is the tuple posted in the tuple centre. The tuple’s arguments are the id
of the PC-member that has done the review (pc-member), the id of the paper (paper id)
and finally the review made by PC-member (rev) [146].

The interactions individuated in the Architectural Design step (Figure 17.14) are trans-
formed in reactions. For example let us suppose that a PC-member needs to download a
specific paper for making the review. This action is critical from the fairness point of view
because a PC-member could be the author of that paper; in fact the action is subject to
the “Review-Rule”. So the PC-member should invoke the operation

262

CHAPTER 17. CASE STUDY 263

PaperArt?in(download(paper_id, Paper_link))

onto “PaperArt” tuple centre. The tuple centre should execute the reaction

reaction(in(download(Paper_id, Paper_link)), (request, from_agent),

(

current_source(Agent),

rd(association(Agent, PC_member)),

rd(authorised(PC_member, Paper_id)),

rd(link(Paper_id, Link)),

out(download(Paper_id, Link))

)).

reaction(in(download(Paper_id, Paper_link)), (request, from_agent),

(

current_source(Agent),

rd(association(Agent, PC_member)),

no(authorised(PC_member, Paper_id)),

out(download(Paper_id, nil))

)).

If the PC-member is authorised to download the paper the tuple retrieved will contain
the link to the paper, otherwise the tuple will contain a null pointer.

As highlighted in Subsection 17.4.6, in conference management a society (Org) created
by the carving operation is presented, so this society is mapped onto an organisation in
TuCSoN. This organisation will be responsible for the creation and management of the
ACCs representing the individual artifacts. The environmental artifacts are not supported
by TuCSoN so these abstractions must be created in an ad hoc way by developers.

Finally the SODA design presents only one workspace so a single TuCSoN node is
enough for this system.

17.6 Discussion

The requirements of our agent-based CMS derive partially from CMS general issues (Sec-
tion 17.2), and partially from its concretisation within the agent-oriented approach (Sec-
tion 17.3): altogether, they determine the features required by an agent-oriented method-
ology to be suitably used for CMS analysis and design. Accordingly, it is first discussed
to which extent SODA meets the general CMS issues, then the discussion is extended to
the latter requirements—in both cases, comparing the SODA approach with some other
major methodologies (Gaia [229, 228] and O-MaSE [43, 41]), which considered the same
CMS case study. In addition this case study was already designed with the SODA early

263

264 CHAPTER 17. CASE STUDY

version – called SODA-EV in the reminder of this section – by Emanuela Mattiolo in her
Masters thesis [118]. The Mattiolo’s thesis was written in italian so here it is reported
only a qualitative explanation of the work.

Let us consider first the four basic requirements highlighted in Section 17.2:

1. “The whole set of actors and interaction should be modelled using suitable high-level
metaphors . . . ” In SODA the whole set of actors, resources, and interactions of the
CMS has been modelled using the (high-level) metaphors of the A&A meta-model
– both becoming actual “live” entities at run-time. In the two other methodolo-
gies this issue is only partially addressed: both Gaia and O-MaSE model agents
and interaction, but the environment is not fully captured. Indeed, Gaia provides
support for the modelling of the environment only in the analysis and architectural
design phase, while O-MaSE does not provide any support for this issue. Finally
in SODA-EV the whole set of actors, resources, and interactions has been modelled
using agents, coordination media and the relatives coordination rules, and infras-
tructure classes. The outcome is similar to that obained from SODA however the
abstractions used by SODA-EV are not so expressive like those used in the new
version of the methodologies.

2. “It should be possible to specify any kind of coordination pattern (. . .) to coordi-
nate several activities.” The coordination and interaction problems are addressed
by SODA artifacts, which on the one side model the MAS environment, on the
other enable/constrain the interactions among agents. Again, Gaia and O-MaSE
address this issue only partially, as there is no way to express complex coordination
patterns—both support only one-to-one interaction protocols. Indeed, this aspects
in SODA-EV is well addressed by means of coordination media and coordination
rules. However these abstractions can be exploied only in the context of the agents
societies, coordination medium cannot be used alone.

3. “Adequate organisational abstractions should be available to express organisational
constraints, environmental aspects and security issues (. . .)” The organisational
structure is modelled via SODA society abstraction, along with its social artifacts.
In particular, some social artifacts are exploited to enforce both the organisational
rules (the definition of the deadline, the structure of the event,etc.) and the security
policies for access control and confidentiality. Both Gaia and O-MaSE support the
design of the organisational structure, but only Gaia allow the designer to express
organisational constraints: in particular, environmental aspects and security issues
are not addressed. In SODA-EV the organisational structure is modelled via soci-
eties of agent that exploits coordination medium in order to coordinate the work
of agents belonging to the society. The coordination medium enforces the organisa-
tional rules but it is not able to enforce the security policy for the access control, so
if comlex and fine-grained policies are necessary a specfic infrastructure class should
be designed for this purpose.

264

CHAPTER 17. CASE STUDY 265

4. “The software infrastructure should be based on open architectures, so as to support
dynamic evolution (. . .)”. The output of the SODA design phase is easily supported
by several different infrastructures (Chapter 16) – for instance, TuCSoN (see Sec-
tion 17.5) , TOTA and CArtAgO - which provide native support for coordination
among agents. Gaia and O-MaSE do not directly deal with implementation issues.
The outcome of the two processes is a technology-neutral specification, that the
developer needs to “adapt” to the specific, selected technology. The outcome of the
SODA-EV design is supported by TuCSoN: coordination medium and coordina-
tion rules are respectively mapped in tuple centre and reactions while infrastructure
classes should be designed in an ad hoc way because the are not supported by
TuCSoN.

The other features required from an AO methodology to properly support the CMS design
(Section 17.3) concern three main aspects: the support for the organisational structure,
the support for interaction, and the support for the security constraints. With respect to
such issues, the SODA approach is compared to Gaia O-MaSE and SODA-EV .

Support for the organisational structure — In SODA, the layering principle
supports scalability by allowing different system architectures to be managed in a uniform
way: so, any change in the organisational structure implies – in principle – only a different
carving and some little modifications in the Detailed Design.

For instance, if a (small) conference becomes larger, the basic Program Committee
structure, made up of a PC-chair and PC-members, may no longer be adequate for the
purpose: there might be need for sub-committees, each with its own Vice-chair. To take
care of this change, it is necessary to go back to the Architectural Design step and adopt a
different carving, which, in turn, calls for a revision in the Detailed Design. However, since
the Vice-chair in the sub-committee plays the same role as the PC-chair in the Program
Committee, the basic conference structure can be reused in the sub-committees, which
are governed by the same interaction rules defined for the basic conference structure;
correspondingly, the related social artifacts can be reused with no changes. Analogously,
the agent individual artifacts of the basic conference structure can be reused for the
agents belonging to sub-committees, with minimal changes – just those required by the
1-1 relationship holding between each agent and its individual artifact.

Instead, Gaia, O-MaSE and SODA-EV do not provide any similar mechanism for
managing complexity. In particular, Gaia requires that the (assumedly better) organisa-
tional structure is chosen in the architectural design phase, and it does not support the
creation of different architectural designs: so, if, after that step, the organisation structure
changes for any reason – like the introduction of sub-committees as above – the designer is
forced to redo the system design from scratch. Moreover, only guidelines are provided to
support the designer in such a key choice. Similar considerations hold for both O-MaSE
and SODA-EV , too: specific CMS organisational problems are simply not considered.
So, once again, if the organisational structure changes the designer is forced to restart the

265

266 CHAPTER 17. CASE STUDY

development cycle from the first analysis phase.

Furthermore, neither Gaia nor O-MaSE provide any abstraction to encapsulate and
enforce the organisational rules, like SODA social artifacts: so, agents are left alone in
dealing with the enforcing of such rules by themselves. Indeed, SODA-EV provides the
coordination medium abstraction that enforces the organisational rules.

Support for interaction — As highlighted above, this issue is addressed in SODA
by means of suitable artifacts: in particular, a social artifact enables and bounds the agent
behaviour by applying the organisational rules and the coordination laws underpinning
the CMS workflow, while an individual artifact provides the agent with all the “sensors
and actuators” needed for living in a MAS. Accordingly, it stores the protocols for each
role played by an agent and contains the list of all the actions that an agent can perform
when playing a given role.

In SODA-EV interactions are modelled in terms of interaction protocols and interac-
tion rules. Interaction protocols do not provide support for expressing the actions that
agents can perform so they are not so suitable for modelling the interaction of cognite
agents. In a similar way the interaction rules support coordination in the agent societies
but they are not able to express constrants over the agents’ intercation space.

In the other two methodologies, instead, the interaction and coordination protocol
issues are only partially addressed. More precisely, the Gaia interaction model is based
on one-to-one interaction protocols, which seem inadequate and not expressive enough,
for supporting the complex coordination patterns required by CMS: for instance, no con-
straints over the interaction space can be easily expressed, nor are there any specific
abstractions to properly enforce the coordination laws as encapsulated in social artifacts.
Similar consideration can be done for O-MaSE, too. Due to these limitations, Gaia and
O-MaSE may lead to systems that are not flexible enough: in particular, each time the
coordination patterns change, the designer is forced to re-design both all the entities and
the interaction protocols involved, because the coordination is spread all over these enti-
ties and protocols. This is not the case in SODA, where the designer should just re-design
the specification of the modified coordination laws.

Support for the security constraints — Security policies such as Role-Based
Access Control (RBAC) [175, 177] can be easily designed in SODA, by just associating a
social artifact to each environmental artifact so as to “implement” the RBAC policy; as
a result, each time an agent needs to access an environmental artifact, the social artifact
can grant access based on the role currently played by the agent.

In Gaia, O-MaSE and SODA-EV , instead, the security issue is only partially ad-
dressed. In Gaia, for instance, some access policies can be expressed by means of the
organisational rules: however, no specific abstraction is provided to encapsulate such
rules and enforce them at run time, so agents may have to take care of this issue by
themselves. In a similar way, SODA-EV could express access policies by means of coor-
dination rules: however this rules was not designed for this purpose so coordination rules
can express only simple and coarse-grained access policies. On the other hand, O-MaSE

266

CHAPTER 17. CASE STUDY 267

support for security is quite limited, as there is no way to express access constraints with-
out designing a “special role / agent” for each resource that checks the accessed operation
– a very expensive approach in terms of computational resources.

Summing up, SODA seems better equipped than other methodologies – and than
its previous version SODA-EV – when facing many CMS issues, including the ability to
operate in a design-for-change perspective. Indeed, SODA is able to meet all the above
features at a satisfactory level, proving to be an effective tool for the CMS case study:
in particular, its orientation towards “inter-agent” issues, like the engineering of agent
societies and the interactions between agents and environment, helps to model the CMS at
an adequately-natural abstraction level, with a direct counterpart at the implementation
level in infrastructures.

267

268 CHAPTER 17. CASE STUDY

268

Part VI

Conclusion

269

18
Conclusion and Research Directions

This chapter presents a summary of this thesis. In particular, Section 18.1 summarises
the contributions of the thesis and Section 18.2 presents the plans for the future works.

18.1 Summary of the Contributions

This thesis can be considered as a bidirectional path from concepts at meta-model level
down to concepts at infrastructure level and back, centered on agent-oriented methodolo-
gies for the engineering of complex software systems. Several different sources have driven
the main contribution of this thesis: the extension of the SODA methodology (Chapters
14, 15), and its adoption for the design, development and management of some classes of
software systems requiring articulated form of interactions and support for environment
engineering, such as conference management systems (Chapter 17). In particular:

• Methodologies — my contribution in this thesis is a detailed presentation and com-
parison of the state of art of AO methodologies (Chapters 3, 4 and 6)

• Meta-models — my contributions in this thesis are:

– a detailed presentation of the state of art of meta-model techniques and a review
of different meta-modelling languages proposed in the literature (Chapter 5)

– a proposal of a technique for meta-modelling the infrastructures. As for method-
ologies where two different types of meta-model are proposed – one for abstrac-
tions and the other for the process – the technique that I have proposed is for
meta-modelling both the static part of an infrastructure – i.e., the run-time
abstractions and their relationships supported by the infrastructure – and the
dynamic part—the run-time abstractions behaviour (Chapter 5).

– a proposal of the adoption of the A&A meta-model for modelling and designing
the agent-oriented systems. The agent abstraction sometimes seems too com-
plex for modelling some parts of the MAS like for example the environment
where agents live and interact. The environment’s resources typically have

271

272 CHAPTER 18. CONCLUSION AND RESEARCH DIRECTIONS

a passive, function-oriented behaviour that is not properly addressed by the
agents that are pro-active and autonomous entities. So the agent abstraction
is not enough for designing MASs, a new function-oriented abstraction should
be introduced for design the MAS environment. The abstraction prosed in this
thesis for design the environment is the artifact (Chapter 7).

• Environment — my contributions in this thesis are:

– classifying AO methodologies along the dimension of environment support,
and grouping them in three different categories: (strong-env) strong environ-
ment viewpoint—methodologies that support both modelling and design of
MAS environment; (weak-env) weak environment viewpoint—methodologies
that support only the modelling of MAS environment; (no-env) no environ-
ment viewpoint—methodologies that do not explicitly model MAS environ-
ment (Chapter 8)

– a proposal of a mechanism for introducing the environment in those method-
ologies that not support or support only partially the environment. Starting
from no-env AO methodologies, I suggest how to transform them in weak-env
methodologies, and subsequently in strong-env methodologies.

– a detailed presentation of the state of art of of the agent-oriented infrastructures
and the development of the meta-models of some agent-oriented infrastructures
(Chapter 10).

• Complexity management — my contributions in this thesis are:

– a presentation of the state of the art of the complexity management both in
object-oriented and in agent-oriented methodologies (Chapters 11 and 12).

– a proposal of the layering principle in order to manage the complexity in the
systems representations (Chapter 12).

These studies have led the the formulation of a new version of SODA addressing the
limitations of the original version (Chapters 14 and 15). SODA now is the first agent-
oriented methodology that explicitly adopted mechanisms for scaling the complexity of
the system representations by means of the layering principle. The new version of SODA
supports environment engineering by adopting artifacts as the second milestone for MAS
modelling and engineering, side-by-side to agents, clearly distinguishing between agents
and the entities they use—i.e., between goal/ task-driven entities, and entities whose goal
is assigned by agents at the time of their usage. The modelling and design of the SODA
core element – i.e., interaction space – are improved by the adoption of concepts such
as “action” – that agents are able to perform – “operation” – that artifacts are able to
provide – and “interaction”—that enables and bounds the interaction space. In addition
now SODA has well-defined and formally described meta-models both for the abstractions

272

CHAPTER 18. CONCLUSION AND RESEARCH DIRECTIONS 273

and for the process underpinning the methodology. Finally in order to fill the gap between
methodologies and infrastructure we have proposed a general method based on the meta-
models mapping (Chapter 16): the concepts of the SODA design phase are mapped to
the concepts of three different AO infrastructures—TuCSoN, CArtAgO and TOTA.

18.2 Research Directions

The thesis has not exhausted the space of investigations opened with the adoption of A&A
meta-model and layering principle. Among the research directions which we consider most
interesting and worth of exploration as a natural next step following this thesis, we have:

Tools & Languages — The tabular representation adopted by SODA is powerful be-
cause it allows to model and design in a clear and ordered way all the entities and their
relative features, relationships and constraints. However this kind of representation seems
more suitable for an automatic tool than for a human one. In fact, currently it is not so
easy to model a system with SODA because there is not an automatic tool that support
the designer. So, one of the first new contributions will be the development of a tool for
supporting the designers. In addition we are planning to develop a graphical language
for modelling and designing systems with SODA. This new language will not replace the
tabular representation but it will provide a different view of the system like in OPM which
adopts both a graphical and textual description.

Another interesting extension of SODA could be involved in the creation – or adoption
– of a further language for specifying in a more suitable way the SODA interactions. At
the moment the natural language supported by the tabular representation seems to be
ambiguous and not so suited for expressing rules over the agents’ interaction space.

Fragmentation & Intra-agent issue — The development of complex software systems
using the agent-oriented approach requires suitable methodologies which provide explicit
support for the key abstractions of the agent paradigm [36]. To date, several method-
ologies supporting the analysis, design and implementation of MAS have been proposed
in the context of AOSE (Chapter 4). Although such methodologies have different advan-
tages when applied to specific problems, it is a fact that a unique methodology cannot
be general enough to be useful for everyone without some level of customisation. Thus
an approach that combines the designer’s need to define his/her own methodology with
the advantages and the experiences coming from the existing and documented method-
ologies is required. A possible solution to this problem is to adopt the method engineering
paradigm [15, 16], thus enabling designers of MAS to (re)use parts coming from different
methodologies in order to build up a customised approach to their own problems. Accord-
ing to this approach, the “development methodology” is constructed by assembling pieces
of other methodologies (method fragments) from a repository of methods (method base).

273

274 CHAPTER 18. CONCLUSION AND RESEARCH DIRECTIONS

The Method Engineer
analyses the problem and

the development
context/people to deduce
new methodology features

Method
Engineer

Uses

Design
Methodology

Defines Is adopted by

System
Designer

CAME
ToolsFragments

Repository

Uses

CASE
Tools

Perceives

Problem

Designs Solve

Agents

Instantiate

System
Specifications

Produce

Specify

The CAME tool is
used to instantiate

a methodology
specific tool

The System Designer
using the CASE tool

specifies and
develops the agent

solution

The Method
Engineer uses a CAME tool

to compose the new methodology
by reusing fragments from the

repository

Figure 18.1: FIPA Method Engineering Idea [121]

This approach has been adopted, in the past few years, by the FIPA Methodology Tech-
nical Committee (TC) (FIPA Foundation for Intelligent Physical Agents)[121](Figure
18.1).

Accordingly, our work could follow two different paths:

• on one hand the adoption of one or more fragments dealing with the internal agent
architecture can address the intra-agent issue which is still not considered in SODA;
for example this new fragment could be integrated in SODA by exploiting the lay-
ering principle and specialising the zooming mechanism. In-zoom could have two
different employments: (i) the current “explosion” of agents into societies and (ii)
the design of the internal agent architecture.

• on the other hand, the extraction of different fragments from SODA could be useful
for other AO methodologies. For example fragments like ones dealing with envi-
ronment engineering or with the layering principle could be easily adopted by the
no-env or weak-env methodologies (Chapter 8).

Artifacts Engineering — As for the intra-agent issue, currently SODA does not provide
support for the internal engineering of artifacts. Following the above ideas it will possible
to specialise also the zooming for the artifacts. How to design the internal architecture
of artifacts is currently under investigation [180] by our research group rooted in Cesena
and at the time of writing there is no definitive solution. As long there is no a definitive
solution it is possible to use the traditional object-oriented design for the artifacts.

AOSE & Security — Security is the process of protecting data from unauthorised

274

CHAPTER 18. CONCLUSION AND RESEARCH DIRECTIONS 275

access, use, disclosure, destruction, modification, or destruction [120]. These fields are
interrelated and share the common goals of protecting the confidentiality, integrity and
availability of information; however, there are some subtle differences between them.
These differences lie primarily in the approach to the subject, the methodologies used, and
the areas of concentration [111]. Information security is concerned with the confidentiality,
integrity and availability of data regardless of the form the data may take. In the context of
MAS access control seems the key security problem, and it involves both the confidentiality
and the integrity issues. The integration of access control techniques – such as RBAC
[175] – or security techniques – such as risk analysis – in general inside AO methodologies
is in its early stage of investigation [133]. We are planning an extension of SODA for
addressing the access control issue.

Architectural Styles & AOSE — An architectural style specifies a vocabulary of
component and connector types and a set of constraints defining these elements can be
combined [196]. Some investigations in the context of MAS and software architecture is
done [76] and different architectural styles are already developed [108, 125, 126] but other
deep investigations are necessary for developing suitable architectural styles for MAS.

In addition to these research directions, we consider of primary importance to put to
test SODA with a number of different case studies belonging to different areas ranging
from workflow management since to biological applications [119] which are very complex
applications that can stress the methodology. These tests will be very useful for the
improvement of the methodology.

275

276 CHAPTER 18. CONCLUSION AND RESEARCH DIRECTIONS

276

Part VII

Appendix

277

A
The Complete Case Study

This Appendix presents all the tables for the conference management system designed
with SODA not reported in Chapter 17: for obvious space reasons, the core layer has
been chosen at a high abstraction level.

A.1 Requirements Analysis

The Requirement Analysis step consists of three sets of tables: Requirements Tables,
Domain Tables and Relations Tables.

Requirements Tables define the abstract entities tied to the concept of “requirement”:
Figure A.2 illustrates the requirements associated to the actor “Conference Organisers”,
which is the only actor individuated in the system as illustrated in Figure A.1. The re-
quirements are related to the “macro activities” composing the conference management
workflow: startup process, submission process, paper partitioning process, paper assign-
ment process and review process.

Actor Requirement
Conference ManageStartUp
Organisers ManageSubmission

ManagePartitioning
ManageAssignment

ManageReview

Figure A.1: Actor-Requirement table (C)ARt

279

280 APPENDIX A. THE COMPLETE CASE STUDY

Requirement Description
ManageStartUp creating call for papers and defining

the rules of the organisation
ManageSubmission managing user registration

and paper submissions
ManagePartitioning partitioning papers based on

the conference structure
ManageAssignment managing the assignment process according to

the organisation rules
ManageReview managing the review process and

sending reviews to authors

Figure A.2: Requirement table (C)Ret

If needed, each requirement could be decomposed into other, more detailed require-
ments: for instance, the ManagePartitioning requirement could be in-zoomed into a set
of requirements about the management of both sub-committees and papers.

Figure A.3 shows the corresponding Zooming table ((C)Zt) for the Requirement Anal-
ysis step, which formalises the in-zoom operation of core layer C into the more detailed
layer C+1.

Layer C Layer C+1
ManagePartitioning UpdateStartUp

ManageSubCommittee
ManageClassification

PartitionPapers

Figure A.3: Zooming table ((C)Zt): Paper Partitioning in-zoom

Figure A.4 shows the Requirement Table at layer C+1, where the four requirements
generated by the in-zoom operation are described. In particular the first two requirements
(UpdateStartUp and ManageSubCommittee) are devoted to managing the organisation
structure of the conference – updating conference rules and/or creating sub-committees –
while the last two requirements are devoted to managing both the classification and the
partitioning of the submitted papers.

280

APPENDIX A. THE COMPLETE CASE STUDY 281

Requirement Description
UpdateStartUp It could be necessary to update the

structure and the rules of the organisation
in order to manage the great number

of paper submitted
ManageSubCommittee If it is necessary

the sub-committes will be created
ManageClassification classification of the

papers according to key
words suggested by authors

PartitionPapers partitioning of papers
in order to accomplish at the

organisation’s rules

Figure A.4: Requirement table (C + 1)Ret

Domain Tables define the abstract entities tied to the concept of “external environ-
ment”. In our case, there is only one legacy system, called “WebServer”, which represents
the container for the web application of the conference: the reason to include it in the
description is that the conference management system will obviously have to interact
with it and this interaction must be captured and constrained. Figure A.5 presents the
ExternalEnvironment-LegacySystem table and Figure A.6 presents LegacySystem Table
where the WebServer system is described.

External-Environment Legacy-System
External WebServer

Figure A.5: ExternalEnvironment-LegacySystem table (C)EELSt

[h]
Legacy-System Description

WebServer it is the container for the
web application of the conference

Figure A.6: LegacySystem table (C)LSt

Relations Tables link the abstract entities with each other. In our system, there is just
one relation, called “Web”, which involves all the abstract entities, since all requirements
need to access the web server to retrieve or store information. The Relations Tables are
illustrated in Figures A.7, A.8 and A.10.

281

282 APPENDIX A. THE COMPLETE CASE STUDY

Relation Description
Web access to the web in order to

retrieve or storage some information

Figure A.7: Relation table (C)Relt

Requirement Relation
ManageStartUp Web

ManageSubmission Web
ManagePartitioning Web
ManageAssignment Web

ManageReview Web

Figure A.8: Relation-Requirement table (C)RRt

In Figure A.9 the Relation-Requirement table at layer C+1 is reported. Since the
ManagePartitioning requirement is involved in the Web relation, this relation is “inher-
ited”, in this case, by all the sub-requirements at layer C+1. In order to maintain the
consistency of the layer C+1 both the Web relation and the legacy-system WebServer
are projected at layer C+1. The tables related to legacy-system and to relation are not
reported in the layer C+1 because are already presented at layer C with the exception of
the label “+” indicating the projection.

Requirement Relation
UpdateStartUp + Web

ManageSubCommittee + Web
ManageClassification + Web

PartitionPapers + Web

Figure A.9: Relation-Requirement table (C + 1)RRt

Legacy-System Relation
WebServer Web

Figure A.10: Relation LegacySystem table (C)RLSt

A.2 From Requirements Analysis to Analysis

In order to move from Requirements Analysis to Analysis, the relations between the dif-
ferent abstractions adopted in the two steps must be precisely identified: this is done

282

APPENDIX A. THE COMPLETE CASE STUDY 283

by means of the References Tables. In particular, the Reference Requirement-Task ta-
ble ((L)RRTt) specifies the mapping between each requirement and the generated tasks
(Figure A.11).

Requirement Task
ManageStartUp start up

ManageSubmission submission
ManagePartitioning paper partitioning
ManageAssignment assignment papers

ManageReview review process

Figure A.11: Reference Requirement-Task table (C)RRTt

Typically, relations are not one-to-one, since a requirement is likely to generate several
tasks; however, in this case each requirement can be actually mapped onto one task,
as a consequence of setting the core layer at a very high abstraction level. The same
consideration applies to the other Reference Tables illustrated in Figures A.12, A.13,
A.14 and A.15.

Requirement Function
ManageStartUp management process

management user
ManageSubmission management user

management paper
ManagePartitioning management partitioning

management paper
ManageAssignment management assignment

management paper
ManageReview management review

management paper

Figure A.12: Reference Requirement-Function table (C)RRFt

Legacy-System Function
WebServer webSite

Figure A.13: Reference LegacySystem-Function table (C)RLSFt

Legacy-System Topology

Figure A.14: Reference LegacySystem-Topology table (C)RLSTt

283

284 APPENDIX A. THE COMPLETE CASE STUDY

Relation Dependency
Web webAccess

Figure A.15: Reference Relation-Dependency table (C)RRDt

Since our system is composed of two layers, a similar set of tables will be defined also
for the C+1 layer. Figure A.16 shows the Reference Requirement-Task table at layer
C+1.

Requirement Task
UpdateStartUp modifying startup

ManageSubcommittee create sub-commettees
Vice-Chair elections

ManageClassification papers classification
PartitionPapers partition papers

Figure A.16: Reference Requirement-Task table (C + 1)RRTt

A.3 Analysis

The Analysis step exploits three sets of tables: Responsibilities Tables, Dependencies
Tables and Topologies Tables.

Responsibilities Tables define the abstract entities tied to the concept of “respon-
sibilities centre” — namely, tasks and functions. The conference management tasks are
reported in Figure A.17, while the functions are reported in Figure A.18. The last function
in the table is the only one coming from the legacy system: all the others are generated
from the requirements in order to support the achievement of tasks.

Task Description
start up insertion of the setup information

submission submission of paper
paper partitioning partitioning of the set of papers

assignment papers assignment papers to
PC-members

review process creation and submission
of the reviews

Figure A.17: Task table (C)Tt

284

APPENDIX A. THE COMPLETE CASE STUDY 285

Function Description
management user managing user information

management review managing review information
management paper managing paper information

management assignment managing assignment information
management partitioning managing partitioning information

management process managing start-up information
webSite web interface of the conference

Figure A.18: Function table (C)Ft

In Figure A.19 the Zooming Table for the Analysis step is reported. In this table the
sub-task of the paper partitioning task are listed. In addition the table contains the list
of the new dependencies – underlined in the table – generated by the in-zoom operation.
The tasks of layer C+1 are then reported in Figure A.20.

Layer C Layer C+1
paper partitioning modifying startup

create sub-commettees
Vice-Chair elections
papers classification

partition papers
new organisation

classification
partition
election

Figure A.19: Zooming table (C)Zt

285

286 APPENDIX A. THE COMPLETE CASE STUDY

Task Description
modifying startup update the structure and the rules

of the organisation
create sub-commettees creating of sub-commettes

Vice-Chair elections for each sub-commette
it is necessary to elect

the Vice-Chair
papers classification classification of papers in

base of key words
partition papers partitioning papers in base

of their classification

Figure A.20: Task table (C + 1)Tt

Dependencies Tables relate functions and tasks with each other. Figure A.21 shows the
dependencies for conference management: “webAccess” derives from the relation defined
in the Requirements Analysis, while the others come from the relationship among tasks
and functions. The links among tasks and dependencies are reported in Figure A.22,
while the links among functions and dependencies are depicted in Figure A.23.

Dependency Description
start up access of all the information

information about start up process
user information access to all the users’ information

paper information access to all the paper information
partitioning access to all the information
information about partitioning process
submission access to all the information
information about submission process
assignment access to all the information
information about assignment process. A reviewer

cannot be the author of the papers that
are assigned to him

review access to all the information
information about review process
webAccess access to the web site of the conference

Figure A.21: Dependency table (C)Dt

286

APPENDIX A. THE COMPLETE CASE STUDY 287

Task Dependency
start up start up information

submission submission information
user information

paper information
webAccess

paper partitioning start up information
partitioning information

paper information
user information

assignment papers assignment information
paper information
user information

review process review information
paper information

webAccess

Figure A.22: Task-Dependency table (C)TDt

Function Dependency
management user user information

submission information
assignment information

management review review information
management paper paper information

submission information
assignment information

review information
partitioning information

management assignment assignment information
management partitioning partitioning information

management process start up information
webSite webAccess

Figure A.23: Function-Dependency table (C)FDt

Figures A.24 and A.25 illustrate the dependencies and the their links with tasks at
layer C+1.

287

288 APPENDIX A. THE COMPLETE CASE STUDY

Dependency Description
new organisation organisation is changed

election start the election of vice-chairs
classification it is necessary to start

the classification of papers
partition it is necessary to start

the partitioning of papers

Figure A.24: Dependency table (C + 1)Dt

Task Dependency
modify startup +start up information

new organisation
classification
+ webAccess

create sub-committees + user information
election

+ webAccess
Vice-Chairs elections +user information

election
classification
+ webAccess

paper classification classification
+ paper information

partition
+ webAccess

partition paper partition
+ paper information

+ partitioning information
+ webAccess

Figure A.25: Task-Dependency table (C + 1)TDt

Topologies Tables, in turn, express the topological constraints over the environment.
As a web-based system, our conference management system does not impose many topo-
logical constraints over the environment: in fact, we identify just one constraint — the
locus where the functions are allocated. Figures A.26, A.27 and A.28 present the Topolo-
gies Tables, while Figure A.29 presents the Task-Topologies Table at layer C+1.

288

APPENDIX A. THE COMPLETE CASE STUDY 289

Topology Description
place this is the locus where the

functions are allocated

Figure A.26: Topology table (C)Topt

Task Topology
start up place

submission place
paper partitioning place

assignment papers place
review process place

Figure A.27: Task-Topology table (C)TTopt

Function Topology
management user place

management review place
management paper place

management assignment place
management partitioning place

management process place
webSite place

Figure A.28: Function-Topology table (C)FTopt

Task Topology
modify start up +place

create sub-commettes +place
Vice-Chair elections +place
paper classification +place

partition paper +place

Figure A.29: Task-Topology table (C + 1)TTopt

A.4 From Analysis to Architectural Design

In order to link the Analysis step with the Architectural Design step, we relate the Analysis
entities with the Architectural Design by means of Transition Tables. Figure A.30 shows

289

290 APPENDIX A. THE COMPLETE CASE STUDY

the mapping between tasks and roles: in this case, three different tasks are assigned to
the same role (PC-chair). Since our system is composed of two layers, a similar set of
tables will be defined also for the C+1 layer (Figure A.31).

Figure A.32 shows the mapping between resources and functions, Figures A.33 and
A.34 show the mapping between dependencies and interactions respectively at layer C
and at layer C+1, and finally Figure A.35 shows the mapping between topologies and
workspaces.

Role Task
PC-chair paper partitioning

start-up
assignment papers

Author submission
PC-member review process

Figure A.30: Transition Role-Task table (C)TRTt

Role Task
ManagerStartUp modify start up
Sub-Commette create sub-commettees

Vice-chair elections
Partitioner papers classification

partition papers

Figure A.31: Transition Role-Task table (C + 1)TRTt

Resource Function
People DB management user
Paper DB management paper

management review
management partitioning
management assignment

Process DB management process
WebService webSite

Figure A.32: Transition Resource-Function table (C)TRFt

290

APPENDIX A. THE COMPLETE CASE STUDY 291

Dependency Interaction
start up information

user information User-Rule
paper information Author-Rule

partitioning information Match-Rule
submission information Deadline-Rule
assignment information AutRev-Rule

Review-Rule
review information Author-Rule

webAccess Access-Rule

Figure A.33: Transition Interaction-Dependency table (C)TIDt

Dependency Interaction
new organisation Org-Rule

election Vice-Rule
classification Class-Rule

partition Part-Rule

Figure A.34: Transition Interaction-Dependency table (C + 1)TIDt

Topology Workspace
place Wplace

Figure A.35: Transition Topology-Workspace table (C)TTopWt

A.5 Architectural Design

The Architectural Design step consists of three sets of tables: Entities Tables, Interaction
Tables and Topological Tables.

Entities Tables describe both the active entities (the roles) able to perform some action
in the system, and the passive entities (the resources) which provide services.

The Zooming Table for the architectural design is reported in Figure A.36. In the
table the entities derived from the in-zoom operation on role PC-Chair are listed. In
particular the firsts three entities are sub-roles of PC-Chair, the underlined entities are
interactions and the wave underlined entities are actions.

291

292 APPENDIX A. THE COMPLETE CASE STUDY

Layer C Layer C+1
PC-chair ManagerStartUp, Sub-Committee

Partitioner, . . .
Vice-Rule, Org-Rule
Part-Rule, Class-Rule

::::::::
change

::::::::::::::
information

:::::
read

:::::::
paper

::::::::::::::
information

::::::::
modify

:::::::
paper

::::::::::::::
information

:::::::
define

::::::::::::
vice-chair

Figure A.36: Architectural Zooming table (C)Zt

Figures A.37, A.38, A.39 and A.40 report respectively the Action table and the Role-
Action table for the layer C, and Action table and the Role-Action table for the layer
C+1.

Action Description
login user authentication

send paper user compiles form and sends his paper
publish deadline user generates/modifies deadline

partition user splits papers according to key words
assignment user assigns papers
read paper user reads papers

download paper user download paper from the web
write review user writes the review

Figure A.37: Action table (C)At

Role Action
PC-chair login, assignment

publish deadline
partition

Author login, send paper
PC-member login, read paper

write review
download paper

Figure A.38: Role-Action table (C)RAt

292

APPENDIX A. THE COMPLETE CASE STUDY 293

Action Description
change information changing an information in

start up process
read paper information reading information

about a paper
modify paper information modifying an information

about a paper
define vice-chair election of Vice-Chair

Figure A.39: Role-Action table (C + 1)At

Role Action
ManagerStartUp + login

change information
Sub-Committee + login

define vice-chair
Partitioner +login

+ partitions
read paper information

modify paper information

Figure A.40: Role-Action table (C + 1)RAt

Figures A.41 and A.42 report respectively the Operation table and the Resource-
Operation table for the layer C.

Operation Description
store paper storing paper and its information
get paper providing paper and its information
store user storing user information
get user providing user information

store process storing process information
get process providing process information

store assignment storing assignment information
access web friendly interface of the application
store review storing review information

Figure A.41: Operation table (C)Ot

293

294 APPENDIX A. THE COMPLETE CASE STUDY

Resource Operation
People DB store user

get user
Paper DB store paper

get paper
store assignment

store review
Process DB get process

store process
WebService access Web

Figure A.42: Resource-Operation table (C)ROt

Interaction Tables describe the interaction between roles and resources: more pre-
cisely, the Interaction table ((L)It) defines the single interactions, the Role-Interaction
table ((L)RoIt) specifies the interactions where each role is involved, and the Resource-
Interaction table ((L)ReIt) specifies the interactions where each resource is involved. Fig-
ure A.43 shows the organisational rules for conference management. For example, the
AutRev-Rule specifies that an author cannot be the reviewer of his/her own paper, while
the Author-Rule specifies that the author can access only the public information about
his/her own paper even if he/she is a PC-member.

Interaction Description
Deadline-Rule send paper is possible if and

only if time is minus then
deadline submission

User-Rule get user is possible if the request
user is the requester

or the requester is the PC-chair
Author-Rule author can access and modify only his

public paper information
Match-Rule papers can be partitioned

according key words
AutRev-Rule the PC-member cannot be the author of paper
Review-Rule the PC-member cannot access to

private information about his papers
Access-Rule the access to the system

must be authorised

Figure A.43: Interaction table (C)It

Figures A.44 and A.45 depict the links among roles and interactions and among re-

294

APPENDIX A. THE COMPLETE CASE STUDY 295

sources and interactions.

Role Interaction
PC-chair Deadline-Rule

User-Rule
Author-Rule
Match-Rule
AutRev-Rule
Review-Rule
Access-Rule

Author Deadline-Rule
User-Rule

Author-Rule
Access-Rule

PC-member User-Rule
Author-Rule
AutRev-Rule
Review-Rule
Access-Rule

Figure A.44: Role-Interaction table (C)RoIt

Resource Interaction
People DB User-Rule

Match-Rule
Paper DB Author-Rule

AutRev-Rule
Review-Rule

Process DB Deadline-Rule
WebService

Figure A.45: Resource-Interaction table (C)ReIt

Figures A.46 and A.47 depict respectively the Interaction table and the Role- Inter-
action Table at layer C+1.

295

296 APPENDIX A. THE COMPLETE CASE STUDY

Interaction Description
Org-Rule if the organisation is changed

then start Sub-Commette
Vice-Rule the Vice-Chair must be

an expert of the filed
Class-Rule a paper can belong only

at one class
Part-Rule papers can be partitioned

according their classification

Figure A.46: Interaction table (C + 1)It

Role Interaction
ManagerStartUp +Deadline-Rule

+User-Rule
+Access-Rule

Org-Rule
Sub-Committee +User-Rule

+Access-Rule
Vice-Rule

Partitioner +User-Rule
+Match-Rule
+Access-Rule

Class-Rule
Part-Rule

Figure A.47: Role-Interaction table (C + 1)RoIt

Finally, Topological Tables describe the logical structure of the environment. As
outlined above, the conference management system does not present a complex topology:
so, a single workspace is enough for representing the logical structure of the environment
(Figures A.48, A.50, A.49, A.51 and A.52).

Workspace Description
Wplace this is the workspace where the

resources are be allocated

Figure A.48: Workspace table (C)Wt

296

APPENDIX A. THE COMPLETE CASE STUDY 297

Workspace Resource
Wplace People DB

Paper DB
Process DB
WebService

Figure A.49: Workspace-Resource table (C)WRet

Workspace Connection
Wplace

Figure A.50: Workspace-Connection table (C)WCt

Role Workspace
PC-Chair Wplace

Author Wplace
PC-member Wplace

Figure A.51: Workspace-Role table (C)WRot

Role Workspace
ManagerStartUp +Wplace
Sub-Commette +Wplace

Partitioner +Wplace

Figure A.52: Workspace-Role table (C + 1)WRot

A.6 From Architectural Design to Detailed Design

Now, in order to transit to the Detailed Design phase, the “carving operation” has to be
performed. Figure A.53 - a) shows the key layers of our system. Since the three roles at
layer C derive from the same role (“Organisation”) at layer C-1, the carving operation is
very simple: the three roles at layer C become agents, and the role at layer C-1 becomes
a society (Figure A.53 - b). The result is the set of Mapping Tables, which relate the
Architectural Design entities to the Detailed Design.

297

298 APPENDIX A. THE COMPLETE CASE STUDY

[b]

C

C-1

C+1

Carving OperationArchitectural Design

PC-
member

Organisation

a) b)

PC-
chair Author

ReviewerVice-
chair

PC-
member

Organisation

PC-
chair Author

ReviewerVice-
chair

Figure A.53: Carving operation in the Conference Management

In particular, the Mapping Agent-Role table ((L)MARt) maps roles onto agents, the
Mapping Artifact-Resource table ((L)MArRt) maps resources onto artifacts, and the
Mapping Artifact-Interaction table ((L)MArIt) maps the rules specified in the Architec-
tural Design onto the artifacts that implement and enforce them. In conference man-
agement, each role is assigned to a specific agent (Figure A.54) and each resource is
assigned to a specific artifact (Figure A.55); on the contrary, some interactions could be
mapped onto the same artifact (Figure A.56), as in the case of the Author-Rule and the
Match-Rule, because both rules are used in the partitioning process.

Agent Role
PC-Chair Agent PC-chair

Author Agent Author
PC-Member Agent PC-member

Figure A.54: Mapping Agent-Role table (C)MARt

Artifact Resource
Paper Artifact Paper DB
People Artifact People DB
Process Artifact Process DB

Web Artifact WebService

Figure A.55: Mapping Artifact-Resource table (C)MArRt

298

APPENDIX A. THE COMPLETE CASE STUDY 299

Interaction Artifact
Deadline-Rule StartUp Artifact

User-Rule User-Rule Artifact
Access-Rule User-Rule Artifact
Author-Rule Partition Artifact
Match-Rule Partition Artifact
AutRev-Rule Assignment Artifact
Review-Rule Review Artifact

Figure A.56: Mapping Artifact-Interaction table (C)MArIt

A.7 Detailed Design

The Detailed Design step exploits two sets of tables: Agent/Society Design Tables, and
Environment Design Tables. The first set of tables depicts agents, individual artifacts,
and the agent societies derived from the carving operation. Figures A.57, A.58 and A.59
report the Agent/Society Design Tables.

Agent Artifact
PC-Chair Agent PC-Chair Artifact

Author Agent Author Artifact
PC-Member Agent PC-Member Artifact

Figure A.57: Agent-Artifact table (C)AAt

Society Agent
Org PC-Chair Agent

Author Agent
PC-Member Agent

Figure A.58: Society-Agent table (C)SAt

Society Artifact
Org StartUp Artifact

User-Rule Artifact
Partitioning Artifact
Assignment Artifact

Review Artifact

Figure A.59: Society-Artifact table (C)SArt

299

300 APPENDIX A. THE COMPLETE CASE STUDY

In turn, Environment Design Tables concern the design of artifacts and workspaces:
the Artifact-UsageInterface table (Figure A.60) details the operations provided by each
artifact, the Aggregate-Artifact table (Figure A.61) – that is empty in this example –
specifies which artifacts are part of the Aggregate generated by the carving, while the
Workspace-Artifact table (Figure A.62) specifies the location of artifacts in the workspace.

Artifact Usage Interface
PC-Chair Artifact read start up information

modify start up information
login

partition
assignment

Author Artifact login
send paper

PC-Member Artifact login
read paper
write review

download paper
People Artifact store user

get user
Paper Artifact store paper

get paper
store assignment

store review
Process Artifact get process

store process
Web Artifact access Web

StartUp Artifact deadline extension
update rule
read rule

User-Rule Artifact get user
modify user

Partition Artifact partition paper
access classification

Assignment Artifact check authors
check reviewer

Review Artifact check access to review information

Figure A.60: Artifact-UsageInterface table (C)AUIt

300

APPENDIX A. THE COMPLETE CASE STUDY 301

Aggregate Artifact

Figure A.61: Aggregate-Artifact table (C)AggAt

Workspace Artifact
Wplace PC-Chair Artifact, Author Artifact

PC-Member Artifact, People Artifact
Process Artifact, Web Artifact

StartUp Artifact, User-Rule Artifact
Partition Artifact, Assignment Artifact

Review Artifact, Paper Artifact

Figure A.62: Workspace-Artifact table (C)WAt

The system design at layer C is now complete. Of course, this is still quite a high-level
system view: several in-zoom operations are needed, until the system design is refined
enough for implementation purposes.

301

302 APPENDIX A. THE COMPLETE CASE STUDY

302

Bibliography

[1] ADELFE. http://www.pa.icar.cnr.it/~cossentino/FIPAmeth/docs/
adelfe_july05.pdf.

[2] ADELFE Group. ADELFE home page. http://www.irit.fr/ADELFE/.

[3] aliCE Research Group. SODA home page. http://soda.alice.unibo.it.

[4] Stefania Bandini, Sara Manzoni, and Carla Simone. Supporting the application of situated
cellular agents in non-uniform spaces. Future Generation Computer Systems, 21(4):627–
631, 2005.

[5] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice, Second
Edition. Addison-Wesley, 2003.

[6] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Developing multi-agent systems
with a fipa-compliant agent framework. Software-Practice & Experience, 31(2):103–128,
2001.

[7] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Jade: a fipa2000 compliant
agent development environment. In AGENTS ’01: Proceedings of the fifth international
conference on Autonomous agents, pages 216–217, New York, NY, USA, 2001. ACM.

[8] Federico Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli, editors. Methodologies
and Software Engineering for Agent Systems: The Agent-Oriented Software Engineering
Handbook, volume 11 of Multiagent Systems, Artificial Societies, and Simulated Organiza-
tions. Kluwer Academic Publishers, jun 2004.

[9] Carole Bernon, Valérie Camps, Marie-Pierre Gleizes, and Gauthier Picard. Engineering
adaptive multi-agent systems: The ADELFE methodology. In Henderson-Sellers and
Giorgini [87], chapter VII, pages 172–202.

[10] Carole Bernon, Massimo Cossentino, Marie Pierre Gleizes, Paola Turci, and Franco Zam-
bonelli. A study of some multi-agent meta-models. In James Odell, Paolo Giorgini, and
Jörg P. Müller, editors, Agent Oriented Software Engineering V, volume 3382 of Lecture
Notes in Computer Science, pages 62–77. Springer, 2004.

[11] Nino Boccara. Modeling Complex Systems (Graduate Texts in Contemporary Physics).
Springer, 2003.

[12] G. Booch. Object-oriented analysis and design with applications. Addison Wesley, 1994.

[13] Paolo Bresciani, Paolo Giorgini, Fausto Giunchiglia, John Mylopoulos, and Anna Perini.
Tropos: An agent-oriented software development methodology. Autonomous Agent and
Multi-Agent Systems, 8(3):203–236, May 2004.

[14] S. Brinkkemper, K. Lyytinen, and R. Welke. Method engineering: Principles of method
construction and tool support. Kluwer Academic Publishers, 1996.

303

304 BIBLIOGRAPHY

[15] Sjaak Brinkkemper. Method engineering: engineering of information systems development
methods and tools. Information & Software Technology, 38(4):275–280, 1996.

[16] Sjaak Brinkkemper, Motoshi Saeki, and Frank Harmsen. Meta-modelling based assembly
techniques for situational method engineering. Information Systems, 24(3):209–228, 1999.

[17] Stefan Bussmann. Agent-oriented programming of manufacturing control tasks. In ICMAS
’98: Proceedings of the 3rd International Conference on Multi Agent Systems, pages 57–63,
Washington, DC, USA, 1998. IEEE Computer Society.

[18] Roberto Caico, Massimo Cossentino, Luca Sabatucci, Valeria Seidita, and Salvatore
Gaglio. Metameth: a tool for process definition and execution. In Flavio De Paoli,
Antonella Di Stefano, Andrea Omicini, and Corrado Santoro, editors, WOA, volume 204
of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

[19] Giovanni Caire, Wim Coulier, Francisco Garijo, Jorge Gòmez-Sanz, Juan Pavòn, Paul
Kearney, and Philippe Massonet. The MESSAGE methodology. In Bergenti et al. [8],
chapter 9, pages 177–194.

[20] Giovanni Caire, Wim Coulier, Francisco J. Garijo, Jorge Gomez, Juan Pavòn, Francisco
Leal, Paulo Chainho, Paul E. Kearney, Jamie Stark, Richard Evans, and Philippe Mas-
sonet. Agent oriented analysis using Message/UML. In Michael Wooldridge, Gerhard
Weiss, and Paolo Ciancarini, editors, Agent-Oriented Software Engineering II, volume
2222 of LNCS, pages 119–135. Springer, 2002. 2nd International Workshop (AOSE 2001),
Montreal, Canada, 29 May 2001. Revised Papers and Invited Contributions.

[21] Cosmin Carabelea, Olivier Boissier, and Cristiano Castelfranchi. Using social power to
enable agents to reason about being part of a group. In Marie Pierre Gleizes, Andrea
Omicini, and Franco Zambonelli, editors, Engineering Societies in the Agents World V,
volume 3451 of Lecture Notes in Computer Science, pages 166–177. Springer, 2005.

[22] Luca Cardelli. Abstractions for mobile computation. In Jan Vitek and Christian D. Jensen,
editors, Secure Internet Programming, volume 1603 of Lecture Notes in Computer Science,
pages 51–94. Springer, 1999.

[23] CArtAgO. Home page. http://www.alice.unibo.it:16080/projects/cartago/.

[24] Cristiano Castelfranchi. Modelling social action for ai agents. Artificial Intelligence, 103(1-
2):157–182, 1998.

[25] Cristiano Castelfranchi and W. Lewis Johnson, editors. Proceedings of the 1st Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2002),
Bologna, Italy, 15–19 July 2002. ACM Press.

[26] Luca Cernuzzi, Massimo Cossentino, and Franco Zambonelli. Process models for agent-
based development. Engineering Applications of Artificial Intelligence, 18(2):205–222,
March 2005.

304

BIBLIOGRAPHY 305

[27] Luca Cernuzzi and Gustavo Rossi. On the evaluation of agent oriented methodologies. In
J. Debenham, B. Henderson-Sellers, N. Jennings, and J. Odell, editors, Proceedings of the
OOPSLA 2002 Workshop on Agent-Oriented Methodologies, 2002.

[28] Luca Cernuzzi and Franco Zambonelli. Dealing with adaptive multiagent systems organi-
sations in the Gaia methodology. In Jörg P. Müller and Franco Zambonelli, editors, Agent-
Oriented Software Engineering VI, volume 3950 of LNCS, pages 109–123. Springer, 2006.
6th International Workshop (AOSE 2005), Utrecht, The Netherlands, 25–26 July 2005.
Revised and Invited Papers.

[29] John Charles. Middleware moves to the forefront. Computer, 32(5):17–19, 1999.

[30] Paolo Ciancarini, Oscar Nierstrasz, and Robert Tolksdorf. A
case study in coordination: Conference management on Internet.
ftp://ftp.cs.unibo.it/pub/cianca/coordina.ps.gz, 1996.

[31] Paolo Ciancarini and Alexander L. Wolf, editors. Coordination Languages and Models,
3rd International Conference, volume 1594 of LNCS. Springer, 1999.

[32] Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris Dollin, Helena Gilchrist, Fiona
Hayes, and Paul Jeremaes. Object-Oriented Development. The Fusion Method. Prentice-
Hall, 1994.

[33] Anne Collinot and Alexis Drogoul. Using the cassiopeia method to design a robot soccer
team. Applied Artificial Intelligence, 12(2–3):127–147, 1998.

[34] Confious. Home page. http://confioussite.ics.forth.gr/.

[35] Massimo Cossentino. From requirements to code with the PASSI methodology. In
Henderson-Sellers and Giorgini [87], chapter IV, pages 79–106.

[36] Massimo Cossentino, Salvatore Gaglio, Alfredo Garro, and Valeria Seidita. Method frag-
ments for agent design methodologies: from standardisation to research. International
Journal of Agent Oriented Software Engineering, 1(1):91–121, 2007.

[37] Massimo Cossentino, Nicolas Gaud, Stéphane Galland, Vincent Hilaire, and Abder
Koukam. A holonic metamodel for agent-oriented analysis and design. In Vladimı́r Mavŕık,
Valeriy Vyatkin, and Armando W. Colombo, editors, Holonic and Multi-Agent Systems
for Manufacturing, volume 4659 of Lecture Notes in Computer Science, pages 237–246.
Springer, 2007. Holonic and Multi-Agent Systems for Manufacturing, Third International
Conference on Industrial Applications of Holonic and Multi-Agent Systems, HoloMAS
2007, Regensburg, Germany, September 3-5, 2007, Proceedings.

[38] Massimo Cossentino, Luca Sabatucci, and Antonio Chella. Patterns reuse in the PASSI
methodology. In Andrea Omicini, Paolo Petta, and Jeremy Pitt, editors, Engineering
Societies in the Agents World IV, volume 3071 of LNAI, pages 294–310. Springer-Verlag,
June 2004. 4th International Workshop (ESAW 2003), London, UK, 29–31 October 2003.
Revised Selected and Invited Papers.

305

306 BIBLIOGRAPHY

[39] Khanh Hoa Dam and Michael Winikoff. Comparing agent-oriented methodologies. In
Paolo Giorgini, Brian Henderson-Sellers, and Michael Winikoff, editors, Agent-Oriented
Information Systems, volume 3030 of LNCS, pages 78–93. Springer, 2004. 5th Interna-
tional Bi-Conference Workshop, Agent-Oriented Information Systems 2003, Melbourne,
Australia, July 14, 2003 and Chicago, IL, USA, October 13th, 2003, Revised Selected
Papers.

[40] Mehdi Dastani, Joris Hulstijn, Frank Dignum, and John-Jules Ch. Meyer. Issues in mul-
tiagent system development. In Castelfranchi and Johnson [25], pages 922–929.

[41] Scott A. DeLoach. Engineering organization-based multiagent systems. In Garcia [68],
pages 109–125.

[42] Scott A. DeLoach. Engineering organization-based multiagent systems. In Alessandro F.
Garcia, Ricardo Choren, Carlos José Pereira de Lucena, Paolo Giorgini, Tom Holvoet,
and Alexander B. Romanovsky, editors, Software Engineering for Multi-Agent Systems
IV, Research Issues and Practical Applications, volume 3914 of LNCS, pages 109–125.
Springer, 2006. 4th International Workshop on Software Engineering for Large-Scale Multi-
Agent Systems (SELMAS 2005), St. Louis, Missouri, USA, 15-16 May 2005. Revised
Selected Papers.

[43] Scott A. DeLoach. Developing a multiagent conference management system using the
o-mase process framework. In 8th International Workshop on Agent Oriented Software
Engineering, Honolulu, Hawaii, USA, 14 May 2007. Invited paper.

[44] Scott A. DeLoach and Madhukar Kumar. Multi-agent systems engineering: An overview
and case study. In Henderson-Sellers and Giorgini [87], chapter XI, pages 317–340.

[45] Scott A. DeLoach and Jorge L. Valenzuela. An agent-environment interaction model.
In Lin Padgham and Franco Zambonelli, editors, Agent-Oriented Software Engineering
VII, volume 4405 of LNCS. Springer, 2007. 7th International Workshop (AOSE 2006),
Hakodate, Japan, 8 May 2006. Selected Revised and Invited Papers.

[46] Enrico Denti, Antonio Natali, and Andrea Omicini. On the expressive power of a language
for programming coordination media. In 1998 ACM Symposium on Applied Computing
(SAC’98), pages 169–177, Atlanta, GA, USA, 27 February – 1 March 1998. ACM. Special
Track on Coordination Models, Languages and Applications.

[47] Enrico Denti and Andrea Omicini. Designing multi-agent systems around a programmable
communication abstraction. In John-Jules Ch. Meyer and Pierre-Yves Schobbens, editors,
Formal Models of Agents, volume 1760 of LNAI, pages 90–102. Springer-Verlag, 1999.
ESPRIT Project ModelAge Final Workshop, Selected Papers.

[48] Enrico Denti, Andrea Omicini, and Alessandro Ricci. Coordination tools for MAS de-
velopment and deployment. Applied Artificial Intelligence, 16(9–10):721–752, October–
December 2002. Special Issue: Engineering Agent Systems – Best of “From Agent Theory
to Agent Implementation (AT2AI-3)”.

306

BIBLIOGRAPHY 307

[49] Developers. Prometheus home page. http://www.cs.rmit.edu.au/agents/SAC2/methodology.html.

[50] Giovanna Di Marzo Surugendo, Marie-Pierre Gleizes, and Anthony Karageorgos. Self-
organisation and emergence in mas: An overview. Informatica, 30(1):45–54, 2006.

[51] Frank Dignum, Virginia Dignum, Sven Koenig, Sarit Kraus, Munindar P. Singh, and
Michael Wooldridge, editors. Proceedings of Autonomous Agents and Multiagent Systems
2005. ACM Press, 25–29 July 2005.

[52] Virginia Dignum. A Model for Organizational Interaction, based on Agents, founded in
Logic. PhD thesis, University of Utrecht, 2003.

[53] Dov Dori. Object-Process Methodology: A Holistic System Paradigm. Springer, 2002.

[54] Dov Dori and Iris Reinhartz-Berger. An opm-based metamodel of system development
process. In Il-Yeol Song, Stephen W. Liddle, Tok Wang Ling, and Peter Scheuermann,
editors, ER, volume 2813 of Lecture Notes in Computer Science, pages 105–117. Springer,
2003.

[55] Timon C. Du, Eldon Y. Li, and An-Pin Chang. Mobile agents in distributed network
management. Communication ACM, 46(7):127–132, 2003.

[56] Francisco Durán and Alberto Verdejo. A conference reviewing system in Mobile Maude.
In Fabio Gadducci and et al., editors, 4th International Workshop on Rewriting Logic and
its Applications, volume 71 of ENTCS, pages 79–95. Elsevier, 2002.

[57] EDAS. Home page. http://edas.info/.

[58] Mark Edwards. A brief history of holons. http://www.integralworld.net/index.html?edwards13.html.

[59] Niles Eldredge. Unfinished Synthesis: Biological Hierarchies and Modern Evolutionary
Thought. Oxford University Press, 1985.

[60] EROOS. Home page. http://www.cs.kuleuven.ac.be/cwis/research/som/EROOS/.

[61] Marc Esteva, Bruno Rosell, Juan A. Rodŕıguez-Aguilar, and Josep Llúıs Arcos. AMELI:
An agent-based middleware for electronic institutions. In Nicholas R. Jennings, Carles
Sierra, Liz Sonenberg, and Milind Tambe, editors, 3rd international Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), volume 1, pages 236–243,
New York, USA, 19–23 July 2004. IEEE Computer Society.

[62] FIPA. Fipa-acl. http://www.fipa.org/specs/fipa00061/index.html.

[63] FIPA. Methodology home page. http://www.pa.icar.cnr.it/~cossentino/
FIPAmeth/.

[64] FIPA Group. AUML home page. http://www.auml.org.

[65] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, 1999.

307

308 BIBLIOGRAPHY

[66] Foundation for Intelligent Physical Agents. FIPA home page. http://www.fipa.org.

[67] Alfonso Fuggetta. Software process: a roadmap. In ICSE ’00: Proceedings of the Con-
ference on The Future of Software Engineering, pages 25–34, New York, NY, USA, 2000.
ACM Press.

[68] Alessandro F. et al. Garcia, editor. Software Engineering for Multi-Agent Systems IV,
Research Issues and Practical Applications, volume 3914 of LNCS. Springer, 2006.

[69] Francisco J. Garijo, Jorge J. Gòmez-Sanz, and Philippe Massonet. The MESSAGE
methodology for agent-oriented analysis and design. In Henderson-Sellers and Giorgini
[87], chapter VIII, pages 203–235.

[70] Les Gasser. MAS infrastructure: Definitions, needs and prospects. In Thomas Wagner
and Omer F. Rana, editors, Agents Workshop on Infrastructure for Multi-Agent Systems,
volume 1887 of Lecture Notes in Computer Science, pages 1–11. Springer, 2001. Interna-
tional Workshop on Infrastructure for Multi-Agent Systems, Barcelona, Spain, June 3-7,
2000, Revised Papers.

[71] David Gelernter. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, January 1985.

[72] David Gelernter and Nicholas Carriero. Coordination languages and their significance.
Communications of the ACM, 35(2):97–107, February 1992.

[73] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Foundamental of Software Engineer-
ing. Prentice Hall, second edition, 2002.

[74] Joseph Andrew Giampapa and Katia Sycara. Team-oriented agent coordination in the
RETSINA multi-agent system. Technical Report CMU-RI-TR-02-34, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, December 200. Presented at AAMAS 2002
Workshop on Teamwork and Coalition Formation.

[75] Kathleen R. Gibson and Tim Ingold, editors. Tools, Language & Cognition in Human
Evolution. Cambridge University Press, 1993.

[76] Paolo Giorgini, Manuel Kolp, and John Mylopoulos. Multi-agent and software architec-
tures: A comparative case study. In Fausto Giunchiglia, James Odell, and Gerhard Weiß,
editors, Agent-Oriented Software Eengineering III, volume 2585 of LNCS, pages 101–112.
Springer, 2003. Third International Workshop, AOSE 2002, Bologna, Italy, July 15, 2002,
Revised Papers and Invited Contributions.

[77] Paolo Giorgini, Manuel Kolp, John Mylopoulos, and Jaelson Castro. Tropos: A
requirements-driven methodology for agent-oriented software. In Henderson-Sellers and
Giorgini [87], chapter II, pages 20–45.

[78] Adriana Giret and Vicente Botti. Holons and agents. Journal of Intelligent Manufacturing,
15(5):645–659, Nov 2004.

308

BIBLIOGRAPHY 309

[79] Adriana Giret, Vicente J. Botti, and Soledad Valero. Mas methodology for hms. In
Vladimı́r Maŕık, Robert W. Brennan, and Michal Pechoucek, editors, Holonic and Multi-
Agent Systems for Manufacturing, volume 3593 of Lecture Notes in Computer Science,
pages 39–49. Springer, 2005. Holonic and Multi-Agent Systems for Manufacturing, Second
International Conference on Industrial Applications, of Holonic and Multi-Agent Systems,
HoloMAS 2005, Copenhagen, Denmark, August 22–24, 2005, Proceedings.

[80] Cesar Gonzalez-Perez, Tom McBride, and Brian Henderson-Sellers. A metamodel for
assessable software development methodologies. Software Quality Journal, 13(2):195–214,
2005.

[81] Grasia Group. INGENIAS home page. http://grasia.fdi.ucm.es/ingenias/index.php.

[82] Marjorie J. Grene. Hierarchies in biology. American Scientist, 75:504–510, 1987.

[83] John A. Hamilton, Jr. and Udo W. Pooch. A survey of object-oriented methodologies.
In Conference on TRI-Ada ’95: Ada’s role in global markets: solutions for a changing
complex world, pages 226–234, New York, NY, USA, 1995. ACM Press.

[84] Brian Henderson-Sellers. Method engineering for objcet oriented systems development.
Communication ACM, 46(10):73–78, 2003.

[85] Brian Henderson-Sellers. Creating a comprensive agent-oriented methodology: Using
method engineering and the OPEN metamodel. In Henderson-Sellers and Giorgini [87],
chapter XIII, pages 368–397.

[86] Brian Henderson-Sellers. Evaluating the feasibility of method engineering for the creation
of agent-oriented methodologies. In Michal Pechoucek, Paolo Petta, and László Zsolt
Varga, editors, Multi-Agent Systems and Applications IV, 4th International Central and
Eastern European Conference on Multi-Agent Systems, CEEMAS 2005, Budapest, Hun-
gary, September 15-17, 2005, Proceedings, volume 3690 of Lecture Notes in Computer
Science, pages 142–152. Springer, 2005.

[87] Brian Henderson-Sellers and Paolo Giorgini, editors. Agent Oriented Methodologies. Idea
Group Publishing, Hershey, PA, USA, June 2005.

[88] Brian Henderson-Sellers and Cesar Gonzalez-Perez. A comparison of four process meta-
models and the creation of a new generic standard. Information & Software Technology,
47(1):49–65, 2005.

[89] Gordon W. Hewes. A history of speculation on the relation between tools and languages.
In Gibson and Ingold [75], pages 20–31.

[90] Francis Heylighen, Paul Cilliers, and Carlos Gershenson. Complexity and philosophy.
Computing Research Repository, abs/cs/0604072, 2006.

[91] HMS. Holonic manufacturing systems. http://hms.ifw.uni-hannover.de/index.htm.

309

310 BIBLIOGRAPHY

[92] Marc-Philippe Huget. Nemo: an agent-oriented software engineering methodology. In
J. Debenham, B. Henderson-Sellers, N. Jennings, and J. Odell, editors, Proceedings of the
OOPSLA 2002 Workshop on Agent-Oriented Methodologies, 2002.

[93] M.E.C. Hull, P.S. Taylor, J.R.P. Hanna, and R.J. Millar. Software development processes
- an assessment. Information and Software Technology, 44:1–12, January 2002.

[94] IBM. WebSphere home page. www-3.ibm.com/software/ts/mqseries.

[95] Carlos A. Iglesias and Mercedes Garijo. Agent-oriented methodology MAS-
CommonKADS. In Henderson-Sellers and Giorgini [87], chapter III, pages 46–78.

[96] INGENIAS. Home page. http://grasia.fdi.ucm.es/ingenias/.

[97] JADE. Home page. http://jade.tilab.com/.

[98] Nicholas R. Jennings. Agent-oriented software engineering. In Ibrahim F. Imam, Yves
Kodratoff, Ayman El-Dessouki, and Moonis Ali, editors, IEA/AIE, volume 1611 of LNCS,
pages 4–10. Springer, 1999. 12th International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, IEA/AIE-99, Cairo, Egypt,
May 31 – June 3, 1999, Proceedings.

[99] Nicholas R. Jennings. An agent-based approach for building complex software systems.
Communication ACM, 44(4):35–41, 2001.

[100] Frederick P. Brooks Jr. No silver bullet – essence and accidents of software engineering.
IEEE Computer, 20(4):10–19, 1987.

[101] Frederick P. Brooks Jr. The Mythical Man-Month: Essays on Software Engineering, An-
niversary Edition. Addison-Wesley Professional, 2nd edition edition, Aug 1995.

[102] Stanley M. Sutton Jr. Middleware selection. In Wolfgang Emmerich and Stefan Tai,
editors, Engineering Distributed Objects, EDO 2000, volume 1999 of Lecture Notes in
Computer Science, pages 2–7. Springer, 2001. Second International Workshop, EDO 2000,
Davis, CA, USA, November 2-3, 2000, Revised Papers.

[103] Thomas Juan, Adrian R. Pearce, and Leon Sterling. ROADMAP: extending the Gaia
methodology for complex open systems. In Castelfranchi and Johnson [25], pages 3–10.

[104] Elizabeth A. Kendall, Margaret T. Malkoun, and Chong H. Jiang. A methodology for
developing agent based systems. In Chengqi Zhang and Dickson Lukose, editors, DAI,
volume 1087 of LNCS, pages 85–99. Springer, 1996. Distributed Artificial Intelligence:
Architecture and Modelling, First Australian Workshop on DAI, Canberra, ACT, Aus-
tralia, November 13, 1995, Proceedings.

[105] Jeffrey Kephart. Software agents and the route to the information economy. Proceedings
of National Accademy of Science, 99:7207–7213, May 2002.

310

BIBLIOGRAPHY 311

[106] David Kinny, Michael P. Georgeff, and Anand S. Rao. A methodology and modelling
technique for systems of bdi agents. In Walter Van de Velde and John W. Perram, editors,
MAAMAW, volume 1038 of LNCS, pages 56–71. Springer, 1996. 7th European Workshop
on Modelling Autonomous Agents in a Multi-Agent World, Eindhoven, The Netherlands,
January 22-25, 1996, Proceedings.

[107] Arthur Koestler. The ghost in the machine. Arkana, 1989.

[108] Manuel Kolp, Paolo Giorgini, and John Mylopoulos. Organizational multi-agent architec-
tures: a mobile robot example. In AAMAS ’02: Proceedings of the first international joint
conference on Autonomous agents and multiagent systems, pages 94–95, New York, NY,
USA, 2002. ACM.

[109] Jaceký Kopecky, Dumitru Roman, Matthew Moran, and Dieter Fensel. Semantic web
services grounding. aict-iciw, 0:127, 19–25 February 2006. International Conference on
Internet and Web Applications and International Conference on Internet and Web Appli-
cations and Services.

[110] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley Pro-
fessional, 3rd edition, December 2003.

[111] Timothy P. Layton. Information Security: Design, Implementation, Measurement, and
Compliance. AUERBACH, Grover, Missouri, USA, 1st edition, July 2006.

[112] Jurgen Lind. Iterative Software Engineering for Multiagent Systems: The Massive Method.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2001.

[113] Anna Liu and Ian Gorton. Accelerating cost middleware acquisition: The i-mate process.
IEEE Software, 20(2):72–79, 2003.

[114] Marco Mamei and Franco Zambonelli. Programming stigmergic coordination with the
TOTA middleware. In Dignum et al. [51], pages 415–422.

[115] Marco Mamei and Franco Zambonelli. Programming modular robots with the tota mid-
dleware. In Hideyuki Nakashima, Michael P. Wellman, Gerhard Weiss, and Peter Stone,
editors, 5th International Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2006), pages 485–487. ACM, 2006.

[116] Vladimı́r Maŕık and Michal Pechoucek. Holons & agents: Recent development and mutual
impacts. In DEXA ’01: Proceedings of the 12th International Workshop on Database
and Expert Systems Applications, pages 605–607, Washington, DC, USA, 2001. IEEE
Computer Society.

[117] G. Jason Mathews and Barry E. Jacobs. Electronic management of the peer review process.
In 5th International WWW conference on Computer networks and ISDN systems, pages
1523–1538. Elsevier Science Publishers, 1996.

311

312 BIBLIOGRAPHY

[118] Emanuela Mattiolo. Ingegnerizzazione di applicazioni
con metodologie agent oriented: un caso applicativo.
http://www.alice.unibo.it/alice/Controller?area=Theses&id=28, 2006.

[119] MEnSA group. MEnSA home page. http://www.mensa-project.org/download.php.

[120] Mark Merkow and James Breithaupt. Information Security: Principles and Practices.
Security Series. Prentice Hall, August 2005.

[121] Methodology Working Group. IEEE-FIPA methodology working group home page.
http://www.fipa.org/activities/methodology.html.

[122] Microsoft. .Net home page. www.microsoft.com/net.

[123] Ambra Molesini, Enrico Denti, and Andrea Omicini. MAS meta-models on test: UML vs.
OPM in the SODA case study. In Michal Pĕchouc̆ek, Paolo Petta, and László Zsolt Varga,
editors, Multi-Agent Systems and Applications IV, volume 3690 of LNAI, pages 163–172.
Springer, 2005. 4th International Central and Eastern European Conference on Multi-
Agent Systems (CEEMAS’05), Budapest, Hungary, 15–17 September 2005, Proceedings.

[124] Ambra Molesini, Enrico Denti, and Andrea Omicini. From AOSE methodologies to MAS
infrastructures: The SODA case study. In 8th International Workshop “Engineering So-
cieties in the Agents World” (ESAW 2007), 2007.

[125] Ambra Molesini, Alessandro Garcia, Christina Chavez, and Thais Batista. On the inter-
play of crosscutting and mas-specific styles. In Flavio Oquendo, editor, Software Architec-
ture, volume 4758 of Lecture Notes in Computer Science, pages 317–320. Springer Berlin,
September 2007. First European Conference, ECSA 2007 Aranjuez, Spain, September
24–26, 2007. Proceedings.

[126] Ambra Molesini, Alessandro Garcia, Christina Chavez, and Thais Batista. On the quan-
titative analysis of architecture stability in aspectual composition. 2008. Accepted to
Working IEEE/IFIP Conference on Software Architecture, WICSA 2008 18-21 February
2008, Vancouver, BC, Canada.

[127] Ambra Molesini, Andrea Omicini, Enrico Denti, and Alessandro Ricci. SODA: A roadmap
to artefacts. In Oğuz Dikenelli, Marie-Pierre Gleizes, and Alessandro Ricci, editors, En-
gineering Societies in the Agents World VI, volume 3963 of LNAI, pages 49–62. Springer,
June 2006. 6th International Workshop (ESAW 2005), Kuşadası, Aydın, Turkey, 26–
28 October 2005. Revised, Selected & Invited Papers.

[128] Ambra Molesini, Andrea Omicini, Alessandro Ricci, and Enrico Denti. Zooming multi-
agent systems. In Jörg P. Müller and Franco Zambonelli, editors, Agent-Oriented Software
Engineering VI, volume 3950 of LNCS, pages 81–93. Springer, 2006. 6th International
Workshop (AOSE 2005), Utrecht, The Netherlands, 25–26 July 2005. Revised and Invited
Papers.

312

BIBLIOGRAPHY 313

[129] Ambra Molesini, Andrea Omicini, and Mirko Viroli. Environment in Agent-Oriented
Software Engineering methodologies. Multiagent and Grid Systems, 4, 2008. Special Issue
on Environment Engineering for MAS.

[130] Sara Montagna, Alessandro Ricci, and Andrea Omicini. A&A for modelling and engi-
neering simulations in Systems Biology. International Journal of Agent-Oriented Software
Engineering, 2(2), 2008. Special Issue on Multi-Agent Systems and Simulation.

[131] Carlo Montangero and Laura Semini. Composing specifications for coordination. In Cian-
carini and Wolf [31], pages 118–133.

[132] Harold J. Morowitz. The Mind, the Brain, and Complex Adaptive Systems: Proceedings
(Santa Fe Institute Studies in the Sciences of Complexity Proceedings). Addison Wesley
Publishing Company, jan 1995.

[133] Haralambos Mouratidis, Paolo Giorgini, and Gordon A. Manson. Modelling secure multia-
gent systems. In Proceedings of the Second International Joint Conference on Autonomous
Agents & Multiagent Systems, pages 859–866. ACM, 2003. The Second International Joint
Conference on Autonomous Agents & Multiagent Systems, AAMAS 2003, July 14–18,
2003, Melbourne, Victoria, Australia.

[134] F.I. Moxley. On the specification of complex software systems. In Engineering of Complex
Computer Systems, 1996. Proceedings., pages 134–138, 21–25 October 1996. Second IEEE
International Conference on Engineering of Complex Computer Systems. Montreal, Que.,
Canada.

[135] Multiagent & Cooperative Robotics Laboratory. MaSE home page.
http://macr.cis.ksu.edu/projects/mase.htm.

[136] MyReview. Home page. http://myreview.lri.fr/.

[137] B.A. Nardi. Context and Consciousness: Activity Theory and Human-Computer Interac-
tion. MIT Press, 1996.

[138] Elena Nardini, Ambra Molesini, Andrea Omicini, and Enrico Denti. SPEM on test: the
SODA case study. In 23th ACM Symposium on Applied Computing (SAC 2008), Fortaleza,
Ceará, Brazil, 16–20 March 2008. ACM. Special Track on Software Engineering.

[139] Pablo Noriega and Carles Sierra. Electronic institutions: Future trends and challenges.
In Matthias Klusch, Sascha Ossowski, and Onn Shehory, editors, Cooperative Information
Agents VI, volume 2446 of Lecture Notes in Computer Science, pages 14–17. Springer,
2002. 6th International Workshop, CIA 2002, Madrid, Spain, September 18-20, 2002,
Proceedings.

[140] Quynh-Nhu Numi Tran and Graham C. Low. Comparison of ten agent-oriented method-
ologies. In Henderson-Sellers and Giorgini [87], chapter XII, pages 341–367.

[141] Object Management Group. CORBA home page. http://www.corba.org.

313

314 BIBLIOGRAPHY

[142] Object Management Group. MOF home page. http://www.omg.org/mof/.

[143] Object Management Group. UML home page. http://www.uml.org.

[144] Andrea Omicini. SODA: Societies and infrastructures in the analysis and design of agent-
based systems. In Paolo Ciancarini and Michael J. Wooldridge, editors, Agent-Oriented
Software Engineering, volume 1957 of LNCS, pages 185–193. Springer, 2001. 1st Interna-
tional Workshop (AOSE 2000), Limerick, Ireland, 10 June 2000. Revised Papers.

[145] Andrea Omicini. Towards a notion of agent coordination context. In Dan C. Marinescu
and Craig Lee, editors, Process Coordination and Ubiquitous Computing, chapter 12, pages
187–200. CRC Press, Boca Raton, FL, USA, October 2002.

[146] Andrea Omicini. Formal ReSpecT in the A&A perspective. Electronic Notes in Theoretical
Computer Sciences, 175(2):97–117, June 2007. 5th International Workshop on Foundations
of Coordination Languages and Software Architectures (FOCLASA’06), CONCUR’06,
Bonn, Germany, 31 August 2006. Post-proceedings.

[147] Andrea Omicini and Sascha Ossowski. Objective versus subjective coordination in the
engineering of agent systems. In Matthias Klusch, Sonia Bergamaschi, Peter Edwards, and
Paolo Petta, editors, Intelligent Information Agents: An AgentLink Perspective, volume
2586 of LNAI: State-of-the-Art Survey, pages 179–202. Springer-Verlag, March 2003.

[148] Andrea Omicini, Sascha Ossowski, and Alessandro Ricci. Coordination infrastructures in
the engineering of multiagent systems. In Bergenti et al. [8], chapter 14, pages 273–296.

[149] Andrea Omicini and Alessandro Ricci. Reasoning about organisation: Shaping the infras-
tructure. AI*IA Notizie, XVI(2):7–16, June 2003.

[150] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Formal specification and enactment
of security policies through Agent Coordination Contexts. Electronic Notes in Theoreti-
cal Computer Science, 85(3):17–36, August 2003. 1st International Workshop “Security
Issues in Coordination Models, Languages and Systems” (SecCo 2003), Eindhoven, The
Netherlands, 28–29 June 2003. Proceedings.

[151] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Agens Faber: Toward a theory of
artifacts for MAS. Electronic Notes in Theoretical Computer Sciences, 2005. 1st Inter-
national Workshop “Coordination and Organization” (CoOrg 2005), COORDINATION
2005, Namur, Belgium, 22 April 2005. Proceedings.

[152] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Agens Faber: Toward a theory
of artefacts for MAS. Electronic Notes in Theoretical Computer Sciences, 150(3):21–36,
29 May 2006. 1st International Workshop “Coordination and Organization” (CoOrg 2005),
COORDINATION 2005, Namur, Belgium, 22 April 2005. Proceedings.

[153] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Coordination artifacts as first-class
abstractions for MAS engineering: State of the research. In Garcia [68], pages 71–90.

314

BIBLIOGRAPHY 315

[154] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Marco Cioffi, and Giovanni Rimassa.
Multi-agent infrastructures for objective and subjective coordination. Applied Artificial
Intelligence, 18(9–10):815–831, October–December 2004. Special Issue: Best papers from
EUMAS 2003: The 1st European Workshop on Multi-agent Systems.

[155] Andrea Omicini and Giovanni Rimassa. Towards seamless agent middleware. In IEEE 13th
Inter. Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WET ICE 2004), pages 417–422, 2nd Inter. Workshop “Theory and Practice of Open
Computational Systems” (TAPOCS 2004), Modena, Italy, 14–16June 2004. IEEE CS.

[156] Andrea Omicini and Giovanni Rimassa. Towards seamless agent middleware. In IEEE
13th International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WET ICE 2004), pages 417–422, 2nd International Workshop “Theory and
Practice of Open Computational Systems” (TAPOCS 2004), Modena, Italy, 14–16 June
2004. IEEE CS. Proceedings.

[157] Andrea Omicini and Franco Zambonelli. Coordination for Internet application develop-
ment. Autonomous Agents and Multi-Agent Systems, 2(3):251–269, September 1999.

[158] Andrea Omicini and Franco Zambonelli. MAS as complex systems: A view on the role
of declarative approaches. In João Alexandre Leite, Andrea Omicini, Leon Sterling, and
Paolo Torroni, editors, Declarative Agent Languages and Technologies, volume 2990 of
LNAI, pages 1–17. Springer, May 2004.

[159] Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert Tolksdorf, editors.
Coordination of Internet Agents: Models, Technologies, and Applications. Springer-Verlag,
March 2001.

[160] OPEN Working Group. Open home page. http://www.open.org.au/index.html.

[161] OpenConf. Home page. http://www.zakongroup.com/technology/openconf.shtml.

[162] OSA. Home page. http://osm7.cs.byu.edu/OSA/tutorial.html.

[163] Lin Padgham and Michael Winikof. Prometheus: A methodology for developing intelligent
agents. In Fausto Giunchiglia, James Odell, and Gerhard Weiss, editors, Agent-Oriented
Software Engineering III, volume 2585 of LNCS, pages 174–185. Springer, 2003. 3rd
International Workshop (AOSE 2002), Bologna, Italy, 15 July 2002. Revised Papers and
Invited Contributions.

[164] Lin Padgham and Michael Winikoff. Prometheous: A practical agent oriented methodol-
ogy. In Henderson-Sellers and Giorgini [87], chapter V, pages 107–135.

[165] George A. Papadopoulos. Models and technologies for the coordination of internet agents:
A survey. In Omicini et al. [159], pages 25–56.

[166] George A. Papadopoulos and Farhad Arbab. Coordination models and languages. Ad-
vances in Computers, 46:330–401, 1998.

315

316 BIBLIOGRAPHY

[167] H. Van Dyke Parunak. “go to the ant”: Engineering principles from natural agent systems.
Annals of Operation Research, 75:69–101, 1997.

[168] PASSI Group. PASSI home page. http://mozart.csai.unipa.it/passi/.

[169] Juan Pavón and Jorge J. Gómez-Sanz. Agent oriented software engineering with ingenias.
In Vladimı́r Maŕık, Jörg P. Müller, and Michal Pechoucek, editors, CEEMAS, volume 2691
of LNCS, pages 394–403. Springer, 2003. 3rd International Central and Eastern European
Conference on Multi-Agent Systems, CEEMAS 2003, Prague, Czech Republic, June 16-18,
2003, Proceedings.

[170] Juan Pavòn, Jorge J. Gòmez-Sanz, and Rubén Fuentes. The INGENIAS methodology and
tools. In Henderson-Sellers and Giorgini [87], chapter IX, pages 236–276.

[171] Mor Peleg and Dov Dori. The model multiplicity problem: Experimenting with real-time
specification methods. IEEE Transactions on Software Engineering, 26(8):742–759, 2000.

[172] Loris Penserini, Anna Perini, Angelo Susi, and John Mylopoulos. From stakeholder inten-
tions to software agent implementations. In Eric Dubois and Klaus Pohl, editors, Advanced
Information Systems Engineering, volume 4001 of Lecture Notes in Computer Science,
pages 465–479. Springer, 2006. 18th International Conference, CAiSE 2006, Luxembourg,
Luxembourg, June 5-9, 2006, Proceedings.

[173] Gauthier Picard, Carole Bernon, and Marie-Pierre Gleizes. Cooperative agent model
within ADELFE framework: An application to a timetabling problem. In Nicholas R.
Jennings, Carles Sierra, Liz Sonenberg, and Milind Tambe, editors, Proceedings of the 3rd
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2004), volume 3, pages 1506–1507, New York, USA, 19–23 July 2004. ACM Press.

[174] Jolita Ralyté and Colette Rolland. An approach for method reengineering. In Concep-
tual Modeling, pages 471–484, London, UK, 2001. Springer-Verlag. 20th International
Conference (ER 2001), Yokohama, Japan, 27-30 November 2001. Proceedings.

[175] RBAC. Role Base Access Control- home page. http://csrc.nist.gov/rbac/.

[176] Alessando Ricci. Engineering Agent Societies with Coordination Artifacts and Supporting
Infrastructures. PhD thesis, march 2008.

[177] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. An RBAC approach for securing
access control in a MAS coordination infrastructure. In Mike Barley and et al., editors,
1st International Workshop Safety and Security in MultiAgent Systems, pages 110–124,
2004.

[178] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Programming MAS with artifacts. In
Rafael P. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni, editors,
Programming Multi-Agent Systems, volume 3862 of LNAI, pages 206–221. Springer, March
2006. 3rd Inter. Workshop (PROMAS 2005), AAMAS 2005, The Netherlands, Revised
and Invited Papers.

316

BIBLIOGRAPHY 317

[179] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. CArtAgO: An infrastructure for
engineering computational environments in MAS. In Danny Weyns, H. Van Dyke Parunak,
and Fabien Michel, editors, 3rd Inter. Workshop “Environments for Multi-Agent Systems”
(E4MAS 2006), pages 102–119, 8 May 2006.

[180] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. “Give agents their artifacts”: The
A&A approach for engineering working environments in MAS. In Edmund Durfee, Makoto
Yokoo, Michael Huhns, and Onn Shehory, editors, 6th International Joint Conference
“Autonomous Agents & Multi-Agent Systems” (AAMAS 2007), pages 601–603, Honolulu,
Hawai’i, USA, 14–18 May 2007. IFAAMAS.

[181] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. CArtAgO: A framework for proto-
typing artifact-based environments in MAS. In Danny Weyns, H. Van Dyke Parunak,
and Fabien Michel, editors, Environments for MultiAgent Systems, volume 4389 of LNAI,
pages 67–86. Springer, February 2007. 3rd International Workshop (E4MAS 2006). Se-
lected Revised and Invited Papers.

[182] Diana Richards, Brendan D. McKay, and Whitman A. Richards. Collective choice and
mutual knowledge structures. Advances in Complex Systems, 1:221–236, jun & sep 1998.

[183] Giovanni Rimassa. Runtime support for distributed multi-agent systems. PhD thesis,
University of Parma, 2003.

[184] Luis M Rocha. Complex systems modeling: Using
metaphors from nature in simulation and scientific models.
http://www.informatics.indiana.edu/rocha/complex/csm.html, 1999.

[185] Colette Rolland. A comprehensive view of process engineering. In Barbara Pernici and
Costantino Thanos, editors, CAiSE, volume 1413 of Lecture Notes in Computer Science,
pages 1–24. Springer, 1998. Advanced Information Systems Engineering, 10th Interna-
tional Conference CAiSE’98, Pisa, Italy, June 8-12, 1998, Proceedings.

[186] Colette Rolland, Naveen Prakash, and A. Benjamen. A multi-model view of process
modelling. Requirement Engineering, 4(4):169–187, 1999.

[187] Davide Rossi and Fabio Vitali. Internet-based coordination environments and document-
based applications: A case study. In Ciancarini and Wolf [31], pages 259–274.

[188] Rossella Rubino, Ambra Molesini, and Enrico Denti. Owl-s for describing artifacts. In An-
drea Omicini, Barbara Dunin-Keplicz, and Julian Padget, editors, 4th European Workshop
on Multi-Agent Systems (EUMAS 2006), number 223 in CEUR Workshop Proceedings,
pages 195–206. Sun SITE Central Europe, RWTH Aachen University, 14-15 December
2006. Fourth European Workshop on Multi-Agent Systems Lisbon, Portugal.

[189] James E. Rumbaugh, Michael R. Blaha, William J. Premerlani, Frederick Eddy, and
William E. Lorensen. Object-Oriented Modeling and Design. Prentice-Hall, 1991.

317

318 BIBLIOGRAPHY

[190] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based
access control models. IEEE Computer, 29(2):38–47, 1996.

[191] Vladimiro Sassone. Management of eletronic submission, refereeing, and PC meeting.
http://www.logic.at/staff/salzer/confpack/README.icalp, 1996.

[192] John A. Sauter, Robert S. Matthews, H. Van Dyke Parunak, and Sven Brueckner. Per-
formance of digital pheromones for swarming vehicle control. In Dignum et al. [51], pages
903–910.

[193] Kjeld Schmidt and Carla Simone. Coordination mechanisms: Towards a conceptual foun-
dation of CSCW systems design. Computer Supported Cooperative Work, 5(2/3):155–200,
1996.

[194] Adriano Scutellà. Simulation of conference management using an even-driven coordination
language. In Ciancarini and Wolf [31], pages 243–258.

[195] Lijun Shan and Hong Zhu. Camle: A caste-centric agent-oriented modelling language and
environment. In Ricardo Choren, Alessandro F. Garcia, Carlos José Pereira de Lucena,
and Alexander B. Romanovsky, editors, SELMAS, volume 3390 of LNCS, pages 144–161.
Springer, 2005. Software Engineering for Multi-Agent Systems III, Research Issues and
Practical Applications [the book is a result of SELMAS 2004].

[196] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging Dis-
cipline. Prentice Hall, May 1996.

[197] Herbert A. Simon. The Sciences of the Artificial. The MIT Press, 3rd edition, 1996.

[198] Olivier Simonin and Franck Gechter. An environment-based methodology to design reac-
tive multi-agent systems for problem solving. In Weyns et al. [221], pages 32–49. 2nd In-
ternational Workshop Environments for Multi-Agent Systems 2005, Utrecht, The Nether-
lands, July 25, 2005, Selected Revised and Invited Papers.

[199] Ian Sommerville. Software Engineering 8th Edition. Addison-Wesley, 2007.

[200] SPEM. SPEM Software Process Engineering Meta-Model home page.
http://www.omg.org/technology/documents/formal/spem.htm.

[201] Arnon Sturm, Dov Dori, and Onn Shehory. Single-model method for specifying multi-
agent systems. In AAMAS ’03: Proceedings of the Second International joint conference
on Autonomous Agents and Multiagent Systems, pages 121–128. ACM Press, 2003.

[202] Arnon Sturm and Onn Shehory. A comparative evaluation of agent-oriented methodolo-
gies. In Bergenti et al. [8], chapter 7, pages 127–149.

[203] Arnon Sturm and Onn Shehory. A framework for evaluating agent-oriented methodologies.
In Paolo Giorgini, Brian Henderson-Sellers, and Michael Winikoff, editors, Agent-Oriented
Information Systems, volume 3030 of LNCS, pages 94–109. Spinger, 24 June 2004. 5th

318

BIBLIOGRAPHY 319

International Bi-Conference Workshop, AOIS 2003, Melbourne, Australia, July 14, 2003
and Chicago, USA, October 13, 2003, Revised Selected Papers.

[204] Sun Microsystems. J2EE home page. http://java.sun.com/j2ee.

[205] Katia P. Sycara, Massimo Paolucci, Martin Van Velsen, and Joseph A. Giampapa. The
RETSINA MAS infrastructure. Autonomous Agents and Multi-Agent Systems, 7(1-2):29–
48, 2003.

[206] M. Tambe, D. Pynadath, N. Chauvat, A. Das, and G. Kaminka. Adaptive agent inte-
gration architectures for heterogeneous team members. In International Conference on
Multi-Agent Systems, pages 301–308. IEEE Computer Society, 2000. 4th International
Conference on Multi-Agent Systems (ICMAS 2000), 10-12 July 2000, Boston, MA, USA.

[207] Milind Tambe and Weixiong Zhang. Towards flexible teamwork in persistent teams: Ex-
tended report. Autonomous Agents and Multi-Agent Systems, 3(2):159–183, 2000.

[208] Kuldar Taveret and Gerd Wagner. Towards radical agent-oriented sotware engineering
processes based on AOR modelling. In Henderson-Sellers and Giorgini [87], chapter X,
pages 277–316.

[209] TEAMCORE Group. TEAMCORE home page. http://teamcore.usc.edu/.

[210] Quynh-Nhu Numi Tran, Graham Low, and Mary-Anne Williams. A preliminary com-
parative feature analysis of multi-agent systems development methodologies. In Paolo
Bresciani, Paolo Giorgini, Brian Henderson-Sellers, Graham Low, and Michael Winikoff,
editors, Agent-Oriented Information Systems II, volume 3508 of Lecture Notes in Com-
puter Science, pages 157–168. Springer, 2005. 6th International Bi-Conference Workshop,
AOIS 2004, Riga, Latvia, June 8, 2004 and New York, NY, USA, July 20, 2004,Revised
Selected Papers.

[211] Tropos Group. Tropos home page. http://www.troposproject.org/.

[212] TuCSoN at SourceForge. http://tucson.sourceforge.net.

[213] Mirko Viroli, Tom Holvoet, Alessandro Ricci, Kurt Schelfthout, and Franco Zambonelli.
Infrastructures for the environment of multiagent systems. In Autonomous Agents and
Multi-Agent Systems [220], pages 49–60.

[214] Mirko Viroli and Andrea Omicini. Coordination as a service: Ontological and formal foun-
dation. Electronic Notes in Theoretical Computer Science, 68(3):457–482, March 2003. 1st
International Workshop “Foundations of Coordination Languages and Software Architec-
ture” (FOCLASA 2002), Brno, Czech Republic, 24 August 2002. Proceedings.

[215] Mirko Viroli, Andrea Omicini, and Alessandro Ricci. Engineering MAS environment with
artifacts. In Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors, 2nd Inter-
ational Workshop “Environments for Multi-Agent Systems” (E4MAS 2005), pages 62–77,
AAMAS 2005, Utrecht, NL, 26 July 2005.

319

320 BIBLIOGRAPHY

[216] Mirko Viroli, Alessandro Ricci, and Andrea Omicini. Operating instructions for intelligent
agent coordination. The Knowledge Engineering Review, 21(1):49–69, March 2006.

[217] Greg Wagner. The agent-object relationship metamodel: towards a unified view of state
and behaviour. Information Systems, 28(5):475–504, July 2003.

[218] Webchairing. Home page. http://www.webchairing.com/webchairing/index-eng.asp.

[219] Danny Weyns, Andrea Omicini, and James Odell. Environment as a first-class abstraction
in multi-agent systems. In Autonomous Agents and Multi-Agent Systems [220], pages 5–30.

[220] Danny Weyns and H. Van Dyke Parunak. Special issue on environments for multi-agent
systems. Autonomous Agents and Multi-Agent Systems, 14(1):1–116, February 2007.

[221] Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors. Environments for
Multi-Agent Systems II, volume 3830 of Lecture Notes in Computer Science. Springer,
2006. 2nd International Workshop Environments for Multi-Agent Systems 2005, Utrecht,
The Netherlands, July 25, 2005, Selected Revised and Invited Papers.

[222] Danny Weyns, Kurt Schelfthout, Tom Holvoet, and Tom Lefever. Decentralized control
of E’GV transportation systems. In Dignum et al. [51], pages 67–74.

[223] Danny Weyns, Giuseppe Vizzari, and Tom Holvet. Environments for situated multi-agent
systems: Beyond infrastructure. In Weyns et al. [221], pages 1–17. 2nd International
Workshop Environments for Multi-Agent Systems 2005, Utrecht, The Netherlands, July
25, 2005, Selected Revised and Invited Papers.

[224] Mark F. Wood and Scott A. DeLoach. An overview of the multiagent systems engineering
methodology. In Paolo Ciancarini and Michael J. Wooldridge, editors, Agent-Oriented
Software Engineering, volume 1957 of LNCS, pages 207–221. Springer-Verlag, 2001. 1st
International Workshop (AOSE 2000), Limerick, Ireland, 10 June 2000. Revised Papers.

[225] M. Wooldridge, N. R. Jennings, and D. Kinny. The gaia methodology for agent-oriented
analysis and design. Autonomous Agents and Multi-Agent Systems, 3(3):285–312, Septem-
ber 2000.

[226] Michael Wooldridge and Paolo Ciancarini. Agent-oriented software engineering: The state
of the art. In Paolo Ciancarini and Michael Wooldridge, editors, AOSE, volume 1957 of
LNCS, pages 1–28. Springer, 2000. First International Workshop, AOSE 2000, Limerick,
Ireland, June 10, 2000, Revised Papers.

[227] Eric Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis, Uni-
versity of Toronto, 1995.

[228] Franco Zambonelli, Nicholas Jennings, and Michael Wooldridge. Multiagent systems as
computational organizations: the Gaia methodology. In Henderson-Sellers and Giorgini
[87], chapter VI, pages 136–171.

320

BIBLIOGRAPHY 321

[229] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing multia-
gent systems: The Gaia methodology. ACM Transactions on Software Engineering and
Methodology (TOSEM), 12(3):317–370, July 2003.

[230] Franco Zambonelli and Andrea Omicini. Challenges and research directions in agent-
oriented software engineering. Autonomous Agents and Multi-Agent Systems, 9(3):253–
283, November 2004. Special Issue: Challenges for Agent-Based Computing.

[231] Franco Zambonelli and H. Van Dyke Parunak. Towards a paradigm change in com-
puter science and software engineering: a synthesis. The Knowledge Engineering Review,
18(4):329–342, 2003.

321

	Abstract
	Preface
	The Contributions
	The Structure of the Thesis

	I Background
	The MAS Approach
	The Agent Paradigm
	Complex Systems
	The Agents
	The Multi-Agent Systems Architecture

	Societies
	The Environment
	Environment Abstractions
	Topology Abstractions

	From SE To AOSE
	Software
	Traditional Software Engineering
	Software Development Processes
	Methodologies
	Tools

	Agent Oriented Software Engineering
	Paradigm Shift
	AOSE Ingredients

	Summing up

	Agent Oriented Methodologies
	Methodologies for Agent-Oriented Systems
	The most known AO Methodologies
	Gaia
	ADELFE
	Tropos
	PASSI
	MaSE
	INGENIAS
	MESSAGE
	Prometheus

	Methodologies Comparison
	Lifecycle Criteria
	Notation Criteria
	Summing up

	II Meta-models
	Meta-models & Languages
	Meta-Models
	Meta-Modelling Languages
	Meta-Modelling Languages for Abstractions
	Meta-Modelling Languages for Processes

	Meta-Modelling Languages for Infrastructures
	Summing up

	AOSE & Meta-models
	PASSI
	PASSI: Concepts Meta-model
	PASSI: Process Meta-model

	ADELFE
	ADELFE: Concepts Meta-model
	ADELFE: Process Meta-model

	Tropos
	Tropos: Concepts Meta-model
	Tropos: Process Meta-model

	Gaia
	Summing up

	The Agents & Artifacts Meta-Model
	A&A Meta-Model
	Artifacts
	Features
	Taxonomy of artifacts

	Workspaces
	Summing up

	III Environment
	AOSE & Environment
	Classification of AO Methodologies
	Strong-Env Methodologies
	ADELFE
	OperA+Environment
	Strong-env Methodologies at a Glance

	Weak-Env Methodologies
	Gaia
	PASSI
	MESSAGE
	INGENIAS
	Prometheus
	ROADMAP
	Weak-env Methodologies at a Glance

	No-Env Methodologies
	Tropos
	MaSE
	No-env Methodologies at a Glance

	Summing up

	Environment in AO Methodologies
	Environment and Topology Abstractions
	From No-Env to Weak-Env Methodologies
	Requirement Specification
	Analysis
	Design
	An Example: Tropos from No-Env to Weak-Env

	From Weak-Env to Strong-Env Methodologies
	Requirement Specification
	Analysis
	Design
	An Example: Gaia from Weak-Env to Strong-Env

	Related Work
	Summing up

	AOSE & Infrastructures
	Definitions
	Infrastructures for MAS
	Enabling vs. Governing Infrastructures

	SE and Infrastructures
	Infrastructure Selection
	A Sketch of the State of the Art

	AOSE & Infrastructures
	Coordination, Organisation and Security

	AO Infrastructures
	JADE
	TuCSoN
	CArtAgO
	TOTA

	Infrastructures: Summing up

	IV Representation Complexity
	Complex Systems
	Software Systems and Complexity
	Features of Complex Software Systems

	Complex Systems and Hierarchies
	Complex Systems and Self-organisation
	Holonic Systems: Hierarchies and Self-organisation
	Summing up

	Managing System Complexity
	Middle-out as the de-facto Practice
	System Complexity in OO Methodologies and Notations
	Detail Decomposition in OPM

	System Complexity in AO Methodologies
	AO Methodologies & Layering

	Layering Mechanisms for AO Methodologies: A First Insight
	Zoom & Artifacts

	Summing up

	V SODA
	SODA: The Early Version
	The Analysis Phase
	The Role Model
	The Resource Model
	The Interaction Model
	Analysis: the outcome

	The Design Phase
	The Agent Model
	The Society Model
	The Environment Model
	Design: the outcome

	Meta-models
	Meta-model in UML
	Meta-model in OPM
	Discussion

	Limitations

	SODA: The New Version
	Motivations
	The New Meta-model
	Layering
	The Analysis Phase
	Requirements Analysis
	From Requirements Analysis to Analysis
	Analysis

	The Design Phase
	From Analysis To Architectural Design
	Architectural Design
	From Architectural Design to Detailed Design
	Detailed Design

	Summing up

	The SODA Process
	The process
	The Analysis Phase
	The Analysis Discipline
	The Requirement Analysis step
	The Analysis step
	The Analysis Model

	The Design Phase
	The Design Discipline
	The Architectural Design step
	The Detailed Design step
	The Design Model

	Summing up

	SODA & Infrastructures
	From SODA to TuCSoN
	From SODA to CArtAgO
	From SODA to TOTA
	Discussion
	Summing up

	Case Study
	Conference Management Systems
	CMS in the literature
	CMS & Agent-Oriented Approach
	Conference Management in SODA
	Requirements Analysis
	From Requirements Analysis to Analysis
	Analysis
	From Analysis to Architectural Design
	Architectural Design
	From Architectural Design to Detailed Design
	Detailed Design

	From the design to a TuCSoN-based implementation
	Discussion

	VI Conclusion
	Conclusion and Research Directions
	Summary of the Contributions
	Research Directions

	VII Appendix
	The Complete Case Study
	Requirements Analysis
	From Requirements Analysis to Analysis
	Analysis
	From Analysis to Architectural Design
	Architectural Design
	From Architectural Design to Detailed Design
	Detailed Design

	Bibliography

