
AAllmmaa  MMaatteerr  SSttuuddiioorruumm  ––  UUnniivveerrssiittàà  ddii  BBoollooggnnaa  
 
 

 

DOTTORATO DI RICERCA 
 

Fisica 
 

                                   Ciclo  XX 
 

                       Settore/i scientifico disciplinari di afferenza:  FIS02-MAT07  

 
 
 
 

TITOLO TESI 
 

NNOONN--MMAARRKKOOVVIIAANN  SSTTOOCCHHAASSTTIICC  PPRROOCCEESSSSEESS  
AANNDD  TTHHEEIIRR  AAPPPPLLIICCAATTIIOONNSS::  FFRROOMM  AANNOOMMAALLOOUUSS  

DDIIFFFFUUSSIIOONN  TTOO  TTIIMMEE  SSEERRIIEESS  AANNAALLYYSSIISS..  
  

 
 

 
 
 

Presentata da: AAnnttoonniioo  MMuurraa 
 
 
 
 
Coordinatore Dottorato:     Relatore: 
 
Prof. Fabio Ortolani                            Prof. Francesco Mainardi 
 
 
 
 

         Esame finale anno 2008 
  



2



Antonio Mura

Dipartimento di Fisica, Università e INFN
V. Irnerio 46, I-40126 Bologna, Italia, tel:051-2091109
e-mail: mura@bo.infn.it, anto.mura@gmail.com

Non-Markovian Stochastic Processes and their
Applications:
from Anomalous Diffusion to Time Series Analysis.

Phd thesis: XX Ciclo
Supervisor: Prof. Francesco Mainardi
Coordinator: Prof. Fabio Ortolani

Alma Mater Studiorum, Università di Bologna.



4



Acknowledgments

I thank Prof. Francesco Mainardi, for the precision and competence which always punctually characterizes his
scientific work, and especially, for many of the satisfactions and opportunities that he was able to give in these years.

Special thanks to Prof. Murad S. Taqqu, for the extraordinary hospitality and greetings that he gave during my
stay in Boston, and his immense scientific competence to which I have drawn in the short period that we spent
together.

Finally, I thank Prof. Massimo Campanino, with which it has been a pleasure, and an honour, to work together.

A special thanks to all my family for their love and support that I have ever miss.

Ringrazio il Prof. Francesco Mainardi, sia per la precisione e la competenza che sempre e puntual-
mente contraddistingue il suo lavoro scientifico, e soprattutto per le tante soddisfazioni ed opportunità
che è stato in grado di regalarmi in questi anni.

Un ringraziamento speciale al Prof. Murad S. Taqqu, per la straordinaria ospitalità ed accoglienza che
ci ha riservato durante il nostro indimenticabile soggiorno a Boston, e per la sua immensa competenza
scientifica al quale ho attinto voracemente nel breve periodo che abbiamo passato assieme.

Ringrazio infine il prof. Massimo Campanino con cui è stato un piacere, ed un onore, collaborare
professionalmente.

Un ringraziamento speciale a tutta la mia famiglia per l’affetto ed il supporto che non mi hanno mai
fatto mancare.

Antonio Mura



6



Contents 7

Contents

1 Introduction 11

2 Basics in probability 27
2.1 Measure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Measurable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Integration of real measurable functions . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.3 Absolute continuity and densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.1 Random variables and probability spaces . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.2 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.3 Characteristic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Convergence of random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.1 Almost-sure convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.2 Convergence in probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.3 Convergence in distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Conditional expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.1 Conditional expectation properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Basics in stochastic processes 49
3.1 Stochastic processes and filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Stationary processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Self-similar processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Markov processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Stochastic diffusion processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6 H-sssi processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.1 On the existence of H-sssi processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7 Fractional Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7.1 Fractional Brownian motion characterization . . . . . . . . . . . . . . . . . . . . . . 62
3.7.2 Fractional Brownian motion trajectories . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7.3 Discrete time fractional Gaussian noise . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7.4 Aggregation of fBms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8 Linear processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.8.1 ARMA processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8.2 FARIMA processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Introduction to stochastic integration 79
4.1 Ito integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1 Properties of the Ito integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.2 Extensions of Ito integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.3 Other stochastic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.4 Stochastic measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.4.1 Random measures properties . . . . . . . . . . . . . . . . . . . . . . . . . 88



8 Contents

4.1.4.2 Stochastic integration with random measures . . . . . . . . . . . . . . . . 88
4.2 One dimensional Ito formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Stochastic differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2.2 Ito diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2.3 Examples of SDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Integral representations of some non-Markovian processes 99
5.1 Moving average representation of fBm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Spectral representation of fBm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.1 Spectral density of fractional Brownian motion . . . . . . . . . . . . . . . . . . . . . 103
5.3 Integral representation of fractional Gaussian noise . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 Time domain representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2 Spectral representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.3 Spectral density of fGn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Integral representations of linear processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4.1 White noise spectral representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4.2 Spectral representation of a linear process . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.3 Spectral representation of FARIMA processes . . . . . . . . . . . . . . . . . . . . . . 108
5.4.4 Spectral density function of a FARIMA process . . . . . . . . . . . . . . . . . . . . . 108

6 Long-range dependence 113
6.1 Long-range dependence in the frequency domain . . . . . . . . . . . . . . . . . . . . . . . 114
6.2 Long-range dependence definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3 Interpretations of long-range dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 Physical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.1.1 Aggregation of short-memory processes . . . . . . . . . . . . . . . . . . . 117
6.3.1.2 Critical phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.1.3 Partial differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 Statistics of long-range dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4.1 Time series examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.1.1 Nile river minima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4.1.2 Tree rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4.1.3 Global temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4.1.4 Local temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.5 Estimation of long-range dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5.1 Heuristic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.5.2 Maximum likelihood methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5.2.1 Characterization of the parametric model . . . . . . . . . . . . . . . . . . 132
6.5.2.2 Exact MLE estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.5.2.3 Whittle approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7 Introduction to Fractional calculus 149
7.1 Fractional integrals and derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.1.1 Two forms of fractional derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.1.2 Fractional integrals and derivatives on the real line . . . . . . . . . . . . . . . . . . 157

7.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.2.1 Fractional relaxation of single order . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.2.2 The Mittag-Leffler function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2.3 Fractional relaxation of distributed order . . . . . . . . . . . . . . . . . . . . . . . . 163



Contents 9

7.2.4 Fractional drift equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.2.5 Time-fractional diffusion of single order . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2.6 Time-fractional diffusion of distributed order . . . . . . . . . . . . . . . . . . . . . . 180
7.2.7 Fractional representation of fractional Brownian motion . . . . . . . . . . . . . . . 187

8 Grey Brownian motion 193
8.1 White noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.1.1 White noise as a generalized stochastic process . . . . . . . . . . . . . . . . . . . . . 194
8.1.2 Characteristic functional and Minlos theorem . . . . . . . . . . . . . . . . . . . . . 196
8.1.3 White noise space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.2 Grey noises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.2.1 Generalized grey noise space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.2.2 Generalized grey Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
8.2.3 The ggBm master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8.3 Characterization of the ggBm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.3.1 Representation of ggBm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.4 ggBm path simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.4.1 Finite difference schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.4.2 Random walk models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.4.2.1 Explicit random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8.4.2.2 Implicit random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8.4.3 ggBm trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
8.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

9 Non-Markovian diffusion equations and processes 233
9.1 Historical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
9.2 The non-Markovian forward drift equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

9.2.1 Suitability conditions on the kernel K . . . . . . . . . . . . . . . . . . . . . . . . . . 238
9.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

9.3 Non-Markovian diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
9.3.1 The stochastic representation is not unique . . . . . . . . . . . . . . . . . . . . . . . 242

9.4 Non-Markovian Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
9.5 Examples involving standard Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . 245

9.5.1 Time fractional diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
9.5.1.1 Stochastic interpretations of the solution . . . . . . . . . . . . . . . . . . . 246

9.5.2 “Stretched” time fractional diffusion equation . . . . . . . . . . . . . . . . . . . . . 248
9.5.3 Exponential decay kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
9.5.4 Exponential decay kernel with logarithmic scaling time . . . . . . . . . . . . . . . . 258

9.6 Examples involving other diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
9.6.1 Brownian motion with drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

9.6.1.1 The β-power kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
9.6.1.2 Exponential-decay kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

9.6.2 Geometric Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
9.6.2.1 β-power kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
9.6.2.2 Exponential-decay kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

10 Concluding remarks 279



10 Contents



11

1 Introduction

The concept of diffusion processes in physics is quite different from those adopted in the mathematical
theory of stochastic processes. For mathematicians, diffusion processes are defined as continuous time
stochastic processes that satisfy the Markov property (eq. 3.18) and for which the sample paths are (with
probability one) continuous functions of time (see Section 3.5, Def. 3.12). In physics, diffusion processes
stand for general processes of re-distribution in space and time of the spatial density of an extensive
quantity (as mass, charge or probability) for which the total quantity is conserved and, when required,
the initial sign is preserved. We will be interested in processes for which a probabilistic interpretation is
possible.

A characteristic property of diffusion processes concerns the asymptotic growth of the variance for
large times, that is the centered second moment of the spatial density function (Section 2.2, Def. 2.22).
We call the diffusion process normal or anomalous if the asymptotic growth of the variance is linear or
not linear in time, respectively. Among these, we single out sub-diffusive processes, which have variance
asymptotically growing slower than linear, and super-diffusive processes, for which the variance grows
faster than linear (or also it does not exist, i.e. it is infinite).

Remark 1.1 (Historical remarks). Anomalous diffusion has been known since Richardson’s treatise on
turbulent diffusion in 1926. Within transport theory it has been studied since the late 1960s. In particu-
lar, its theoretical investigation was prompted by Scher and Montroll in their description of dispersive
transport in amorphous semiconductors, a system where the traditional methods actually were failing.
Today, the list of systems displaying anomalous dynamical behavior is very wide. It includes, among
the others, the following systems [14]:

◦ (Sub-diffusion) Charge carrier transport in amorphous semiconductors; nuclear magnetic reso-
nance (NMR); reptation dynamics in polymeric systems; transport on fractal geometries; diffusion
of scalar tracers in convection roll arrays, bead dynamics in polymeric networks.

◦ (Super-diffusion) Special domains of rotating flows; collective slip diffusion on solid surfaces; lay-
ered velocity fields; Richardson turbulent diffusion; bulk-surface exchange controlled dynamics in
porous glasses; transport in heterogeneous rocks; quantum optics; single molecule spectroscopy;
transport in turbulent plasma; bacterial motion.

Many diffusion processes are governed by second-order linear parabolic equations. A typical example
is provided by the one-dimensional equation

∂

∂t
u(x, t) = C(t)

∂2

∂x2 u(x, t), x ∈ R, t ≥ 0, (1.1)

subjected to the initial condition u(x, 0+) = u0(x), where C(t) is a positive function of time called
diffusivity, which has dimensions [L2 T−1] (length2/time).

Remark 1.2. If the diffusivity is taken constant in time, (eq. 1.1) reduces to the standard diffusion equation,
which describes, for instance, the variation in temperature as heat diffuses through a physical medium.
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From a physical point of view, (eq. 1.1) is originated from the system of two laws
∂

∂t
u(x, t) +

∂

∂x
F[u(x, t)] = 0,

F[u(x, t)] = −C(t)
∂

∂x
u(x, t) ,

(1.2)

where F is the one-dimensional flux. The first law is indeed a conservation law, whereas the second one
is an empirical law stating the phenomenological relationship between the flux and the gradient of the
field variable.

Remark 1.3. This phenomenological relationship is met in several physical contexts with different
names according to the meaning of the filed variable u. For instance, when u is the temperature it is
known as Fourier’s law, when u is the pore pressure as Darcy’s law, when u is a concentration of particles
as Fick’s law.

From a mathematical point of view, equations like (eq. 1.1) can be for instance obtained consider-
ing the time evolution of the marginal density function (Section 3.1, Rem. 3.1) of stochastic diffusions,
which satisfy the Fokker-Planck equation (eq. 3.33).

We observe that (eq. 1.1) can be written as a partial integral-differential equation

u(x, t) = u0(x) +
∫ t

0
C(s)

∂2

∂x2 u(x, s) ds, x ∈ R, t ≥ 0 . (1.3)

which has the advantage to take automatically into account of the initial condition. We interpret (eq. 1.3)
in the sense of generalized functions, namely we let u(x, t) be a distribution (see for instance Def. 8.1.3).
So that, when u0(x) = δ(x), where δ(x) is the Dirac distribution centered at x = 0, the corresponding
solution is termed fundamental solution, Green function or propagator as well.

Example 1.1. Let us consider:
C(t) = αKαtα−1, Kα > 0, α > 0. (1.4)

In this case, (eq. 1.1) can be written

∂

∂t
u(x, t) = αtα−1Kα

∂2

∂x2 u(x, t), x ∈ R, t ≥ 0. (1.5)

Namely,

u(x) = u0(x) + αKα

∫ t

0
sα−1 ∂2

∂x2 u(x, s) ds, x ∈ R, t ≥ 0 . (1.6)

When α 6= 1 the positive constant Kα is called effective diffusivity because it has dimensions [L2 T−α]. For
any α > 0, the fundamental solution of (eq. 1.5) turns out to be the Gaussian density

u(x, t) =
1√

4πKα tα
e−x2/(4Kα tα), (1.7)

which evolves in time with variance
σ2(t) = 2Kα tα . (1.8)

As a consequence, the diffusion process governed by (eq. 1.5) is Gaussian and anomalous. In particular,
one has sub-diffusion if 0 < α < 1 and super-diffusion if α > 1. Moreover, the normal standard diffusion
is recovered when α = 1.
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Set for simplicity Kα = 1 in (eq. 1.5). The standard Brownian motion B(t), t ≥ 01 (Section 3.4) is
naturally associated to the standard normal diffusion equation, that is (eq. 1.5) with α = 1, through the
Fokker-Planck equation (see eq. 3.26). But, which is the corresponding stochastic process X(t), t ≥ 0,
associated to (eq. 1.5)? If one has the Einstein interpretation of Brownian motion in mind, equation
(1.5) could be interpreted as associated to the random movements X(t) of a free particle in a frictionless
medium with time dependent diffusivity given by C(t). In fact, we can consider the following Langevin
equation (see eq. 4.47) describing the particle motion:

dX(t)
dt

= (αtα−1)1/2Z(t), (1.9)

where Z(t) is a white-noise process (Section 8.1). That is, one is considering the stochastic differential
equation (Section 4.2.1)

dX(t) = (αtα−1)1/2dB(t),

where B(t) is a standard Brownian motion. Then, the corresponding Fokker-Planck equation is actually
(eq. 1.5). We observe that the above equation must be interpreted as (see Section 4.2)

X(t) = X(0) +
∫ t

0
(αsα−1)1/2dB(s),

which, by setting X(0) = 0 and using the integration by parts formula (eq. 4.46), can be written

X(t) = (αtα−1)1/2B(t) +
∫ t

0

α(α− 1)sα−2

2
√

αsα−1
B(s)ds. (1.10)

Then, X(t) is indeed Gaussian with zero mean, variance 2tα and covariance cov(X(t1)X(t2)) =
2 min(tα

1 , tα
2).

Remark 1.4. The process X(t) of (eq. 1.10) is equal, in the sense of finite-dimensional distributions
(Chapter 3), to a “stretched” Brownain motion B(tα), as in fact (eq. 1.7) would suggest. Indeed, B(tα) is
Gaussian with zero mean and covariance cov(B(tα

1)B(tα
2)) = 2 min(tα

1 , tα
2), t1, t2 ≥ 0.

The process X(t) = B(tα), t ≥ 0, is actually a stochastic (Markovian) diffusion process (Def. 3.12)
and it is easy to understand that the “anomalous” behavior of the variance comes from the power-like
time stretching. However, the Brownian motion stationarity of the increments (Def. 3.9) is lost due just
to the non-linear time scaling. One can preserve this property on the condition to drop the Markovian
property. For instance, if 0 < α < 2 equation (1.7) is also the marginal density function of a standard
fractional Brownian motion (fBm) BH(t), t ≥ 0 of order H = α/2 (Section 3.7). Such a process is Gaussian,
self-similar and with stationary increments (H-sssi) (Section 3.6). It has zero mean and variance 2tα.
However, its autocovariance function is cov(BH(t1), BH(t2)) = tα

1 + tα
2 − |t1 − t2|α, t1, t2 ≥ 0, (see

eq. 3.36) and thus it is automatically non-Markovian (Remark 3.22).

Remark 1.5. Taking a fractional Brownian motion Bα/2(t), t ≥ 0, as stochastic model for the anomalous
diffusion described by (eq. 1.5) has many advantages. Even if the physical interpretation provided by
(eq. 1.9) is lost, the anomalous diffusion is linked now to the notion of long-range dependence (LRD)
(Chapter 6), which is a very common characteristic of time series concerning many different contexts
(Section 6.4.1). An H-sssi process is said to exhibit long-range dependence, or long-memory, if H > 1/2
(Prop. 6.1). Then, the fast-anomalous diffusion region of (eq. 1.5) actually corresponds to the long-range
dependence domain of fractional Brownian motion.

1) With the word standard Brownian motion here we mean that var(B(1)) = 2.
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Remark 1.6. The above example is useful to understand that there exists many different stochastic pro-
cesses which can serve as models for a given diffusion equation. Some have a ready made physical
interpretation, others are advisable because of their mathematical properties, which can make them
very useful for instance in statistical modeling.

Example 1.2. We have seen that a Gaussian anomalous diffusion can be obtained from a standard dif-
fusion equation with time dependent diffusivity. Anomalous diffusion processes can also be obtained
as Gaussian processes with time subordination. As a consequence, the probability density is no longer
Gaussian. In fact, let f (x, t) be the density function of a diffusive process and G(x, t) a standard Gaussian
density. Namely,

G(x, t) =
1√
4πt

exp
(
− x2

4t

)
, t ≥ 0. (1.11)

Let ϕβ(τ, t) = t−βφ(τt−β), with τ ≥ 0, t > 0 and β > 0, be the marginal probability density function
of a self-similar random time process. We remember that a process X(t), t ≥ 0, is said to be self-similar
with self-similarity exponent H if, for all a ≥ 0, the processes X(at), t ≥ 0, and aHX(t), t ≥ 0, have the
same finite-dimensional distributions (Section 3.8). We also suppose that φ has moments of any order.
If the subordination formula

f (x, t) =
∫ +∞

0
G(x, τ)ϕβ(τ, t)dø (1.12)

holds, then f (x, t) is the marginal density function of an anomalous diffusion process. In fact,

σ2
f (t) =

∫ +∞

−∞
x2 f (x, t)dx =

∫ +∞

−∞
x2n
{∫ +∞

0
G(x, τ)ϕβ(τ, t)dτ

}
dx

=
∫ +∞

0

{∫ +∞

−∞
x2G(x, τ)dx

}
ϕβ(τ, t)dτ = 2

∫ +∞

0
τϕβ(τ, t)dτ = Dtβ, (1.13)

where we set

D = 2
∫ +∞

0
ζφ(ζ) dζ,

which is finite by hypothesis. Equation (1.12) can be interpreted as the marginal density function of
a subordinated process X(t) = B(lβ(t)), t ≥ 0, where B(t) is a standard Brownian motion and lβ(t) is
an independent (see Def. 2.20) non-negative self-similar random time process with marginal density
ϕβ(τ, t).

We remember that the term “subordination” was introduced by Bochner (1962) and refers to processes
of the form Y(t) = X(l(t)), t ≥ 0, where X(t), t ≥ 0, is a Markov process and l(t), t ≥ 0, is a (non-
negative) random time process independent of X. The marginal distribution of the subordinated process
is clearly:

fY(x, t) =
∫ ∞

0
fX(x, τ) fl(τ, t)dτ, t ≥ 0, x ∈ R, (1.14)

where fX(x, t) and fl(τ, t) represent the marginal density functions of the processes X and l. Looking at
equation (1.12), we are interpreting G(x, t) = fB(x, t) and ϕβ(τ, t) = flβ

(τ, t).

Remark 1.7. Observe that the Markov property is in general lost in the process of subordination unless
l(t) has non-negative independent increments. If this is the case, l(t) is not decreasing and the process
X(l(t)) is still a Markov process.
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When working with subordinated processes, it is natural to study separately the models for the
Markovian diffusion and the random time process. Consider first a non-random process l(t) = t, t ≥ 0,
which depicts a non-random linear time evolution. Thus, fl(τ, t) = δ(τ− t) and it is natural to interpret
fl(τ, t) as the fundamental solution of the standard forward drift equation (see eq. 7.108), namely,

∂tu(τ, t) = −∂τu(τ, t), τ, t ≥ 0, (1.15)

which can be written in integral form as

u(τ, t) = u0(τ)−
∫ t

0
∂τu(τ, s)ds, u0(τ) = u(τ, 0). (1.16)

If we wanted a model which takes into account of memory effects, we could introduce a memory kernel
in order to obtain the following Volterra type equation

u(τ, t) = u0(τ)−
∫ t

0
K(t− s)∂τu(τ, s)ds, τ, t ≥ 0, (1.17)

where K(t), with t ≥ 0, is a suitable kernel, chosen such that the fundamental solution is still a proba-
bility density function at each t ≥ 0.

One can say that the stochastic interpretation through subordinated processes, even if not unique, is
very natural. In fact, Y(t) = X(l(t)) can have a direct physical interpretation. For example, in equipment
usage, X(t) can be the state of a machine at time t and l(t) the effective usage up to time t. In an
econometric study, X(t) may be a model for the price of a stock at time t. If l(t) measures the total
economic activity up to time t, the price of the stock at time t should be described by Y(t) = X(l(t))
rather than simply by X(t). A model for the “effective” time l(t) should take into account of possible
memory or non-local effects which can be present in many systems as, heuristically, social behavioral
systems.

Remark 1.8. Observe that, in the models obtained starting from (eq. 1.17) the memory component is
just within the definition of the marginal, that is one point, probability density function. We can say
that (eq. 1.17) is “non-local” (in time), because the definition of u(τ, t) involves u(τ, s) at all 0 ≤ s ≤ t.
Thus, if l(t) is a stochastic process associated to (eq. 1.17), it is automatically non-Markovian and the
process X(l(t)) cannot be Markovian at all. For this reasons (eq. 1.17) is called non-Markovian forward
drift equation (Section 9.2).

Example 1.3. For instance, if we choose an exponential decay kernel in (eq. 1.17), namely K(t) = e−at,
a > 0, the fundamental solution is actually a probability density function (Section 9.2, Example 9.4).
In this case, we obtain a model of a system for which non-local memory effects are initially negligible.
In fact, K(t) = e−at → 1 as t → 0 and thus the system appears Markovian at small times. More-
over, for large times the system relaxes becoming stationary (Section 9.5.3, Rem. 9.12) exponentially fast
(Rem. 9.13, eq. 9.83).

We turn now back to Example (1.2). Here, we required that the random time process l(t) be self-
similar of order β. We can show (Section 9.2, Theor. 9.1) that the only one possible suitable choice of the
memory kernel K(t) turns out to be:

K(t) = tβ−1/Γ(β), (1.18)

where it must be 0 < β ≤ 1. Therefore, one gets:

u(τ, t) = u0(τ)− 1
Γ(β)

∫ t
0 (t− s)β−1∂τu(τ, s)ds

= u0(x)− Iβ
t ∂τu(τ, t), τ, t ≥ 0.

(1.19)
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The integral operator Iβ
t f (t) = 1

Γ(β)

∫ t
0 (t− s)β−1 f (s)ds is the so called Riemann-Liouville Fractional inte-

gral of order β (Section 7.1, Def. 7.2). For this reason, (eq. 1.19) is called fractional (forward) drift equation
(Section 7.2.4). Its fundamental solution can be written as flβ

(τ, t) = Mβ(τ, t) (eq. 7.121) and can be
expressed by the following power series (see eq, 7.122):

Mβ(τ, t) = t−β Mβ(τt−β) = t−β
∞

∑
k=0

(−τt−β)k

k!Γ [−βk + (1− β)]

=
1
π

∞

∑
k=0

(−r)k

k!
Γ [(β(k + 1))] sin [πβ(k + 1)], r ≥ 0.

(1.20)

The above series defines a transcendental function (entire of order 1/(1− β)), which is indeed a proba-
bility density function in τ ≥ 0 for any t ≥ 0 (see Remark 9.4) and satisfies the following properties:

1. The Laplace transform of Mβ(τ, t) with respect to t is:

L{Mβ(τ, t); t, s} = sβ−1e−τsβ
, τ, s ≥ 0, (1.21)

2. which suggests that in the singular limit β → 1 one has:

M1(τ, t) = δ(τ − t), τ, t ≥ 0. (1.22)

3. Moreover, by (eq. 1.20) follows:

M1/2(τ, t) =
1√
πt

exp(−τ2/4t), τ, t ≥ 0. (1.23)

4. Finally, one can show (see Section 7.2.4) that, for any η, β ∈ (0, 1):

Mν(x, t) =
∫ ∞

0
Mη(x, τ)Mβ(τ, t)dτ, ν = ηβ x ≥ 0. (1.24)

Remark 1.9. The property (1.22) is noteworthy, because is indeed desirable having a random time pro-
cess lβ(t) which for β = 1 gives l1(t) = t. Thus, the subordinated process B(lβ(t)) for β = 1 is the usual
Brownian motion, that is the standard stochastic model of a Gaussian normal diffusion.

What is in this case f (x, t)? By using equations (1.23) and (1.24) one finds:

f (x, t) =
∫ +∞

0
G(x, τ) flβ

(τ, t)dτ =
1
2

∫ ∞

0
M1/2(|x|, τ)Mβ(τ, t)dτ =

1
2
Mβ/2(|x|, t),

which is the fundamental solution of the so called time-fractional diffusion equation of order 0 < β ≤ 1
(Section 7.2.5, eq. 7.140). This equation can be written in terms of the Riemann-Liouville fractional
integral of order β

u(x, t) = u0(x) + Iβ
t ∂xxu(x, t), (1.25)

and actually represent a generalization of the standard diffusion equation, which is indeed recovered
for β = 1. The time fractional diffusion equation is deeply used to model evolution equations of sub-
diffusive-processes. In fact, the variance is given by (eq. 1.13) with β ≤ 1.
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Remark 1.10. Observe that (eq. 1.25) involves the same integral operator of (eq. 1.19), or in other words
the same memory kernel K(t) = tβ−1/Γ(β). This is a general result (Section 9.3, Theor. 9.2), which states
that the master equation of the marginal density function of the subordinated process X(t) = B(l(t)),
involves the same memory kernel of the non-Markovian equation (eq.1.17) which governs the one point
time evolution of the non-Markovian random time l(t). Namely, one has that fX(x, t) solves:

u(x, t) = u0(x) +
∫ t

0
K(t− s)∂xxu(x, s)ds. (1.26)

Equation (1.25) can be written in terms of Riemann-Liouville fractional derivative (Section 7.1, Def. 7.3):

∂

∂t
u(x, t) = Kβ D1−β

t
∂2

∂x2 u(x, t), 0 < β ≤ 1, (1.27)

where Dα
t ϕ(t) := DtI1−α

t ϕ(t), 0 < α < 1, and Kβ is a constant effective diffusivity with physical dimen-
sion [Kβ] = L2T−β.

Remark 1.11. Equation (1.27) is also equivalent to (Section 7.2.5)

∗Dβ
t u(x, t) =

∂2

∂x2 u(x, t), 0 < β ≤ 1, (1.28)

where ∗Dβ
t ϕ(t) := I1−β

t Dt ϕ(t) is the so called Caputo-Dzherbashyan fractional derivative (Section 7.1.1,
Def. 7.4). This formulation is very intuitive. In fact, it can be obtained from the standard diffusion
equation simply substituting the first order time derivative with a fractional derivative of order 0 < β <
1.

Also equation (1.27) can be written in a conservative form as a continuity equation:
∂

∂t
u(x, t) +

∂

∂x
F[u(x, t)] = 0,

F[u(x, t)] = −Kβ
∂

∂x

[
D1−β

t u(x, t)
]

.
(1.29)

This equation could be interpreted as generalized Fick’s law where non-local (memory) effects are taken
into account by the time fractional derivative of order 1− β .

By construction, the subordinated process X(t) = B(lβ(t)), t ≥ 0, provides automatically a stochastic
model for (eq. 1.25). Then, X(t) is clearly non-Markovian (Remark 1.8) and moreover, it has an in-
teresting physical interpretation provided that the random time lβ(t) is chosen in a suitable way. Let
us consider a continuous-time random walk (CTRW), which is a random-walk subordinated to a renewal
process2.

Remark 1.12. CTRWs were introduced to study random walks on a lattice and are now used in physics
to model a wide range of phenomena related to anomalous diffusion. The random walks increments
represent the magnitude particle jumps and the renewal epochs represent the particle jump times.

More in details, let {Jk := J(δτk), k ∈ N}, and δτ > 0, be non-negative independent identically
distributed (iid)3 random variables which describe the waiting times between the consecutive jumps of

2) Renewal processes are generalization of Poisson processes, which are continuous-time
Markov processes on the positive integers (usually starting at zero) which have indepen-
dent identically exponentially distributed waiting times at each integer i before advancing
(with probability 1) to the next integer i + 1.

3) We call such a process a purely random process.
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the particle. We set {T(n) = ∑n
k=1 Jk, n ≥ 0}, with T(0) = 0, the process describing the time of the

n-th jump. Moreover, we suppose that also the particle jumps are given by a purely random process
{Yk := Y(δtk), k ∈ N}, which is assumed independent of {Jk}. Then, the position of the particle after
n jumps is given by {S(n) = ∑n

k=1 Yk, n ≥ 0}, with S(0) = 0. For any t ∈ R+, let:

N(t) = max{n ≥ 0; T(n) ≤ t}, (1.30)

be the renewal process of the number of jumps up to time t. Therefore, the position of the particle at time
t ≥ 0 is given by:

X(t) = S(Nt) =
Nt

∑
k=1

Yk. (1.31)

Now, suppose that Jk belongs to the domain of attraction of some stable law with index 0 < β < 1.
Namely, there exist {b(n) > 0, n ≥ 1} such that

bn

n

∑
k=1

Jk → ξ, n → ∞,

where ξ is a stable random variable (Rem. 3.17) of index β. Then, it is possible to show [13] that

{c([τ/δτ])T([τ/δτ])}τ≥0 −→ {Lβ(τ)}τ≥0, δτ → 0,

in the sense of finite dimensional distributions, where [x] indicates the integer part of x. The process
Lβ(τ), τ ≥ 0, is a strictly β-stable process with stationary independent increments, that is a strictly stable
Lévy process. Moreover, Lβ(t) is increasing and self-similar of order H = 1/β. The “continuous limit” of
the renewal process N(t) turns out to be the hitting time process

lβ(t) = inf{τ; Lβ(τ) > t}, t ≥ 0. (1.32)

Remark 1.13. The process lβ(t) is just the inverse process of the strictly β-stable process Lβ(τ). In fact,
lβ(Lβ(τ)) = τ almost surely.

Moreover, lβ(t) is increasing, self-similar of order H = β, has not stationary increments and its
marginal density function is given by the M-function (eq. 1.20) [14, 13, 22]. If now one requires that
Yk be a Gaussian white noise, then heuristically, at the scaling limit, the position of the particle at time
t ≥ 0 would be given by:

X(t) = B(lβ(t)), t ≥ 0, (1.33)

where B(t) is a Brownian motion independent of lβ(t).

Remark 1.14. The above construction provides only a possible choice of the random time lβ(t). For
instance, with the suitable conventions [5], lβ(t), t ≥ 0, can be also viewed as the local time in zero at
time t of a d = 2(1− β) dimensional Bessel process [15].

We have seen how the theory of CTRWs provides a ready made physical interpretation of the subor-
dinated process B(lβ(t)). Such a process is self-similar of order H = β/2, non-Markovian and has not
stationary increments. Moreover, it reduces to a standard Brownian motion as β → 1.

However, as in example (1.1), one would like a stochastic model of (eq. 1.27) which preserves the
Brownian motion stationarity of the increments. In other words, one could have been looking for a
self-similar with stationary increments process which serves as stochastic model for the time-fractional
diffusion equation of order 0 < β ≤ 1. An example of such process is provided by the so called grey
Brownian motion (Chapter 8). It is defined through the explicit construction of the underline probability
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space (Section 8.2.1). The same construction could be used in order to define Brownian motion (Section
8.1.3), which is actually a particular case of grey Brownian motion, and is mainly based on the mathe-
matical theory of generalized grey noises (Section 8.2), such as white noise (Section 8.1).

The grey Brownian motion is not a subordinated type process (Section 8.2.1, Rem. 8.23), and therefore
the physical interpretation provided by the CTRW is lost. Indeed, we can show that it can be seen merely
as a fractional Brownian motion with stochastic variance (Section 8.3.1, Prop. 8.14).

Remark 1.15. Then, again we have two different kinds of stochastic processes associated to the same
anomalous diffusion model, given by the time-fractional diffusion (eq. 1.27); one is preferable because
of its physical interpretation, the other is advisable for its mathematical properties and its connection to
the long-range dependence theory of H-sssi processes (Chapter 6).

Example 1.4. We have already observed that because 0 < β < 1, (eq. 1.25) depicts a system with a slow-
anomalous diffusion behavior. In order to study the full range (slow and fast) of anomalous diffusion,
we introduce a suitable time-stretching g(t) = tα/β, 0 < β ≤ 1 and α > 0. Observe that if f (x, t) is a
solution of (eq. 1.25), then the function fα,β(x, t) = f (x, tα/β) is a solution of the stretched time-fractional
diffusion equation (Section 9.5.2)

u(x, t) = u0(x) +
1

Γ(β)
α

β

∫ t

0
s

α
β−1

(
t

α
β − s

α
β

)β−1 ∂2

∂x2 u(x, s)ds, (1.34)

with the same initial condition. Then, the fundamental solution of (eq. 1.34) is u(x, t) = 1
2Mβ/2(|x|, tα/β)

and defines a self-similar probability density function of order H = α/2, that is (eq. 9.64),

u(x, t) =
t−α/2

2
Mβ/2(|x|t−α/2), x ∈ R. (1.35)

We observe that, the diffusion is indeed slow when α < 1, standard when α = 1 and fast when α > 1.
Moreover, if β = 1, u(x, t) is the “stretched” Gaussian density (eq. 1.7), namely,

u(x, t) =
t−α/2

2
M1/2(|x|/tα/2) =

1√
4πtα

e−
x2
4tα , t > 0.

In the case α = β, 0 < β < 1, we recover the non-Gaussian probability density u(x, t) = 1
2Mβ/2(|x|, t).

Finally, in the general case 0 < β < 1 and α > 0, we have a non-Gaussian “full-ranged” anomalous
diffusion.

Let X(t), t ≥ 0, be a self-similar stochastic process with scaling parameter H = α/2 and marginal
probability density function defined by (eq. 1.35). At this point we know that there is a whole equiva-
lence class of such a stochastic processes. For instance, one could immediately take X(t) = B(lβ(tα/β)),
t ≥ 0, with a suitable choice of the independent random time lβ(t). However, one could require that the
process X(t) be also a stationary increments process, namely X(t) is H-sssi, with H = α/2.

Remark 1.16. The latter requirement forces the α-parameter to be in the range 0 < α < 2 (Section 3.6).
Moreover, it automatically excludes subordinated type processes, because we have seen that they have
in general not stationary increments.

Summarizing, we can ask that the stochastic process X(t), t ≥ 0, satisfies the following requirements:
let 0 < β ≤ 1 and 0 < α < 2, then

i. X(t) is self-similar with index H = α/2.
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ii. X(t) has marginal density function fα,β(x, t) =
t−α/2

2
Mβ/2(|x|t−α/2).

iii. X(t) has stationary increments.

Let Bα,β(t), t ≥ 0, be the so called generalized grey Brownian motion (ggBm) (Section 8.2.2, Def. 8.77).
Then, Bα,β(t) satisfies all the above properties (Prop. 8.10). It represents a generalization of Brownian
motion (α = β = 1), fractional Brownian motion (β = 1, 0 < α < 2) and grey Brownian motion (α = β)
as well (see Rem. 8.21 and Figure 8.1).

The ggBm is defined through the explicit construction of the underline probability space (Section
8.2). However, it can be defined in an unspecified probability space by giving explicitly all the fi-
nite dimensional probability density functions fα,β(x1, t1, x2, t2, . . . , xn, tn), n ∈ N. The latter are con-
structed only by making use of the M-function (eq. 1.20) and the autocovariance function γα,β(ti, tj) =

1
Γ(1+β) (tα

i + tα
j − |ti − tj|α) (Section 8.3, Prop. 8.13):

fα,β(x1, x2, . . . , xn; γα,β) =
(2π)−

n−1
2√

2Γ(1 + β)n det γα,β

∫ ∞

0

1
τn/2 M1/2

(
ξ

τ1/2

)
Mβ(τ)dτ, (1.36)

with:

ξ =

(
2Γ(1 + β)−1

n

∑
i,j=1

xiγα,β
−1(ti, tj)xj

)1/2

.

Remark 1.17. It is interesting to observe (see Remark 8.24) that the generalized grey Brownian motion
turns out to be a direct generalization of a Gaussian process. Indeed, it reduces to fractional Brownian
motion when β = 1, which is a Gaussian process, and, fixed β, it can be defined only by giving its
covariance structure. In other words, Bα,β(t) provides an example of a stochastic process characterized
only by the first and second moments, which is a property of Gaussian processes.

Looking at the remark above, it is not surprising that the generalized grey Brownian motion turns
out to be merely a fractional Brownian motion with stochastic variance (Section 8.3.1, Prop. 8.14), that
is Bα,β(t) = ΛβXα(t), t ≥ 0, where Λβ is a suitable independent random variable (see eq. 8.87). Such
a process is not ergodic4, as follows by the multiplication with the random variable Λβ. Indeed, it is
impossible with a single realization of the system Bα,β(t, ω), ω ∈ Ω, to distinguish a ggBm from a fBm
with variance 2Λ2

β(ω)tα, where Λβ(ω) indicates a single realization of the random variable Λβ.

Remark 1.18. This representation, highlights the H-sssi nature of the ggBm. Moreover, a number of
question, in particularly those related to the distribution properties of Bα,β(t), can be reduced to ques-
tions concerning the fBm Xα(t), which are easier since Xα(t) is a Gaussian process.

We have seen that H-sssi processes, even if they may not have a direct physical interpretation, are
sometimes preferable in the modeling of anomalous diffusion, mainly because they are connected to
long-range dependence. For instance, the fBm in Example (1.1), the gBm in Example (1.2) and the ggBm
in Example (1.4).

We have already remarked that the LRD (Section 6) is a quite common property of time-series related
to many different fields of studies. Heuristically, a data series has long-range dependence if the observa-
tions remain, in a certain sense, correlated even if they are very far apart in time. Such a phenomenon is

4) Here we mean that the increment process, which is indeed stationary, is not ergodic.
Namely, time averages do not necessary coincide with population averages.
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said to possess long-memory, in the sense that past events continue to affect future events for large time
intervals. More precisely, a stationary stochastic process exhibits long-range dependence if the autoco-
variance function tends to zero with a power-law and in such a way that it does not result integrable
(Section 6, Def. 6.1).

The more popular mathematical models used to treat the long-range dependence are the fractional
Gaussian noise, that is the increment process of fractional Brownian motion (Section 3.7.3, Def. 3.15),
and FARIMA models (Section 3.8.2, Def. 3.18). These stationary processes are both Gaussian and can
be characterized by the Hurst parameter 0 < H < 1 (Section 3.8, Rem. 6.2). Then, the LRD occurs if
1/2 < H < 1 (Section 6, Prop. 6.1 and Prop. 6.2 with d = H − 1/2). The greater the value of H, the
larger the long-range dependence between the data.

Time series manifesting LRD are often observed in nature. After the pioneering works of Mandelbrot
(1968), the study of long-range dependence has aroused a growing interests, followed by a fast develop-
ment. Because of the variety of applications, the corresponding literature is split in a large numbers of
journals concerning many different fields: physics, mathematics, meteorology, climatology, agronomy, astron-
omy, chemistry, economy, engineering, hydrology, geophysics, telecommunication sciences, and many others
(Section 6.4.1).

Remark 1.19. At a first analysis, long-range dependence can be recognized thanks to certain qualitative
characteristic of the graph, such as persistence and local cycles and trends (Section 6.4). Then, it can be
measured studying certain quantitative features that indeed can be used in order to obtain estimations
of the parameter H, and thus obtaning a measure of the LRD intensity (Section 6.5).

Suppose we have observed a certain time series {xt}t=1,...,n, which, for instance, exhibits long-
memory. The observations are generated by a certain process X, termed generator process, unknown
a priori. Assuming stationarity, one tries to model the series behavior through a certain class of para-
metric models, or in other words through a parametric class of stochastic processes {Yθ}θ∈Θ which are
in general lacking of a direct physical interpretation.

More precisely, suppose that the model depend on a certain parameter vector θ. One tries to obtain an
“optimal” estimate of θ, starting from the observed data, with the aim to forecast future observations or
to obtain a confidence interval for the mean µ (Section 6.5.2). At this purpose, it is not necessary to es-
tablish a direct link between the estimated parameters θ̂ and the series generating process X. Although
useful for statistical applications, this approach is not satisfactory from a scientific point of view. In fact,
a theoretical process, created in a certain statistical context, but without a direct physical connection
with the specific problem analyzed, will not permit, hardly ever, to give a physical explanation for the
behavior of the observed dynamical system.

One should then try to understand, from time to time, which is the physical cause of a certain ob-
served behavior. In the case of long-range dependence, it can look strange that events took place far
away in the past could have some influence on present and future events. Many physical explanation
could be given (Section 6.3.1). For instance, long-memory in a time series can be obtained thorough
the aggregation of a large number of Markov processes (Section 6.3.1.1). On the other hand, long-range
dependence characteristics are often encountered in the study of phase transition in termodynamics
(Section 6.3.1.2). Moreover, physical models of long-range dependence can be obtained using stochastic
partial differential equations (Section 6.3.1.3).

However, if a realistic physical model is not available, or if it can not be given with the necessary ac-
curacy, then a simple stationary model is often sufficient at least for practical and immediate purposes,
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for instance in the case that one wants to estimate certain characteristic parameters, such as the Hurst
parameter H (Section 6.5).

In this introduction we have tried to provide only a brief “hors d’oeuvre” of some of the topics which
have been faced in this piece of work. Moreover, any time we have encountered a key notion, we have
given the suitable cross references, which were reminding the interested reader to the devoted work-
sections.

Within any chapter, we tried to give a rough list of references which can be used to go into more depth
the corresponding argument. Chapters (8) and (9), as part of Chapter (7), are originals and contain ma-
terial, extracted by many paper of the author, which have been published, are in press, or which are
going to be published soon. All the code used all around the work to make statistical analysis or just to
simulate and visualize stochastic processes trajectories, have been developed and implemented by the
author in MatLab 7. However, in no case line-cods are reported.

The rest of the work is organized as follows:

◦ In Chapter 2 we give a basic introduction to stochastic analysis. We start with measure theory,
measurable functions, integration and absolute continuity and densities. Then, we introduce the notion
of random variables, which are just measurable functions defined on probability spaces (Def. 2.14),
and their laws. After having treated the notion of convergence for random variables sequences, we
end the chapter introducing the conditional expectation and its properties.

◦ In Chapter 3 we introduce the notion and the basic theory of stochastic processes. We give the notion
of filtration and martingales. Then, we define stationary processes and self-similarity. After introduced
the mathematical definition of Brownian motion and its properties, we focus on Markov processes
and stochastic diffusion processes. Then, we study H-sssi processes and in particular the fractional
Brownian motion and the fractional Gaussian noise. Finally, we study stationary linear sequences
such as FARIMA processes.

◦ Chapter 4 provides an introduction to stochastic integration. In particular we introduce the Ito
integral and the so called Ito calculus. Then, we study stochastic differential equations, providing some
examples. In this chapter, we also introduce the idea of Ito diffusions which are strong solution of
stochastic differential equations and particular cases of stochastic diffusions.

◦ In Chapter 5 we use the theory of stochastic integral to develop useful integral representations of
some non-Markovian processes. First, we study integral representation of fractional Brownian mo-
tion in the time domain and in the frequencies domain. Then, we use them to find out the spectral
density function of the fractional Gaussian noise. In the same way, we use integral representation
of linear processes in order to obtain the spectral density function of FARIMA processes.

◦ In Chapter 6 we study the theory of long-range dependence both from a probabilistic and from a
statistical point of view. After having given the mathematical definitions, we briefly discuss some
physical models of long-range dependence. Then, we go more depth into the statistic analysis of
long-memory time series. We give several examples of real data and we study several different
methods of LRD estimation. First, we study heuristic methods, such as the sample mean variance,
the correlogram and the periodogram methods. Finally, we introduce maximum likelihood methods,
providing example of estimations, and briefly discussing robustness against certain deviation from
the original parametric model.

◦ In Chapter 7 we introduce the fractional calculus which is the theory of fractional integrals and
derivatives. This theory is deeply used to develope mathematical models for anomalous diffu-
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sion. As example of applications, we study fractional relaxation and in particular fractional relaxation
of distributed order, which is a generalization of fractional relaxation obtained using the notion of
distributed order fractional derivatives, that is linear superpositions of fractional derivatives of differ-
ent orders. Then we study the time-fractional (forward) drift equation (eq. 1.19). We obtain the
fundamental solution (eq. 1.20) in terms of Fox H-functions, and we study many of its properties.
Then, we study the time-fractional diffusion equation (eq. 1.25) and in particular its generalization
obtained using distributed order fractional derivatives. Finally, we see how fractional Brownian
motion can be represented as a fractional integral of a Gaussian white noise, and this actually gives
reason of its name.

◦ In Chapter 8 we introduce the parametric class of generalized grey Brownian motion {Bα,β(t)},
with 0 < α < 2, 0 < β ≤ 1. This class includes non-Markovian stochastic models either for slow
and fast-anomalous diffusion. After having presented and motivated the mathematical construc-
tion (Locally-convex spaces, Nuclear spaces, characteristic functionals, Minlos’ theorem, canonical noises),
in particular the development of the grey noise space, we show that this class is made up of H-
sssi processes and contain either Gaussian and non-Gaussian processes, like fractional Brownian
motion and grey Brownian motion. The time evolution of the Bα,β(t) marginal density function is
described by the partial integro-differential equations (eq. 1.34), which includes the time-fractional
diffusion equation. We study different characterizations of the ggBm notwithstanding the under-
line probability space. Then, we show that the ggBm could be represented by a process:

Bα,β(t) =
√

LβXα(t), t ≥ 0,

where Lβ is suitable chosen random variable independent of the fBm Xα(t). This representation is
useful for path simulations. Clearly, in order to simulate ggBm trajectories, we will need a method
to generate the random variable Lβ. So that, the end of the chapter is devoted in the development
of such a method. We make use of finite difference approximation of non-local partial integro
differential equation of fractional type, in order to build a suitable random walk scheme. The con-
struction follows two steps: using the Grünwald-Letnikov discretization of Caputo-Dzherbashyan
derivative, and then interpreting the corresponding finite difference scheme as a random walk
scheme. Following this idea, we will be able to simulate generalized grey Brownian motion trajec-
tories both in the short and long-range dependence domain.

◦ In Chapter 9 we study (eq. 1.26) for different choices of the memory-kernel K(t). Actually, we
consider non-local, fractional and stretched modifications of the diffusion equation. These mod-
ified equations are indeed a generalization of time fractional equations, and will be called Non-
Markovian diffusion equations, because, while they originate from a diffusion equation, the corre-
sponding process will be typically non-Markovian. We also consider what happens if instead of
the standard diffusion equation we start from a more general Fokker-Planck equation,

∂tu(x, t) = Pxu(x, t),

where Px is a linear operator independent of t acting on the variable x ∈ R associated to a certain
time homogeneous one-dimensional stochastic diffusion. In other words, we consider the non-
Markovian diffusion equation:

u(x, t) = u0(x) +
∫ t

0
g′(s)K(g(t)− g(s))Pxu(x, s)ds. (1.37)

After a brief historical remark, we study the suitability condition on the kernel K(t) giving many
examples. Then, we study (eq. 1.37) finding the general form of the solutions and we give many
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different stochastic models for the studied equations. We end the chapter studying many differ-
ent examples: we choose different suitable kernels and different Fokker-Planck operators. In all
the cases, we provide exact solutions and we study the corresponding stochastic models making
trajectory simulations.

◦ Chapter 10 is devoted to concluding remarks.
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2 Basics in probability

2.1 Measure Theory

The notion of measure is a straightforward generalization of the more familiar notions of length, area
and volume to more abstract settings.

Let E be a non empty set. Heuristically, a measure µ on E associates to certain subsets A ⊂ E, called
measurable sets, a positive (possibly infinite) number µ(A) ∈ [0, ∞), called the measure of A. By analogy
with the notions of area or volume, it is natural to say that the empty set ∅ has zero measure. Also,
if A and B are disjoint measurable sets, A ∪ B should also be measurable and its measure is naturally
defined to be µ(A ∪ B) = µ(A) + µ(B). This is the additivity property.

In order to consider limits, it is useful to extend this property to infinite sequences: if {An}n∈N is a
sequence of disjoint measurable subsets, then:

µ

(
∞⋃

n=1

An

)
=

∞

∑
n=1

µ(An). (2.1)

This countable additivity property is known as σ-additivity.

Remark 2.1. Note that we have not excluded that µ(A) = ∞ for some subset A, in analogy with volume.
For instance, the volume of a half space is infinite.

In particular µ(E) may be finite or infinite. We suppose that µ(E) < ∞. For any measurable set A ⊆ E,
its complements Ac verifies A∪ Ac = E. Thus, the additivity property can be used to define the measure
of Ac:

µ(Ac) = µ(E)− µ(A). (2.2)

Therefore, it is natural to require that for any measurable set A its complement Ac is also measurable.

We lead to the following definition:

Def. 2.1 (σ-algebra). let E be a non empty set and P(E) be its powerset. Let E ⊆ P(E) be a collection of
subsets of E such that:

1. contains the empty set: ∅ ∈ E ,

2. is “stable” under unions; i.e. for any numerable collection {An}n≥1 of disjoint elements of E , then:⋃
n≥1

An ∈ E , (2.3)

3. contains the complementary of every element; i.e. for any A ∈ E then: Ac ∈ E .

Such a collection E is called a σ-algebra (σ-field).
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Notation 2.1. We will usually denote σ-algebras by curly letters like E ,B,F . A measurable set will then
be an element of the σ-algebra.

Prop. 2.1. Let A ⊂ P(E). There exists a unique σ-algebra, denoted σ(A), such that for any σ-algebra F which
contains A, then σ(A) ⊂ F .

In fact, it is clear that if one defines:
σ(A) =

⋂
F⊇A

F σ−algebra

F ,

(σ(A) is the smallest σ-algebra which contain A) then σ(A) is still a σ-algebra (the intersesction of σ-
algebras is still a σ-algebra). Thus, σ(A) is termed σ-algebra generated by A. In the same way we say
that the class A is a generator of σ(A).

Def. 2.2 (Bases). Let A ⊆ P(E). If for any finite sequence {Ai, i = 1, 2, . . . , n} of elements of A one has

n⋂
i=1

Ai ⊆ A,

then A is said a base for σ(A). The class A is sometimes termed a π-system.

Therefore, a generator closed under finite intersection is said a base. A σ-algebra that has a countable
generator is said separable.

Example 2.1 (Borel field). Suppose that E has a topology. The σ-algebra generated by the open subsets
of E is called Borel σ-algebra and is denoted by B(E) or simply B. An element B ⊂ B is called a Borel
set.

Any open or closed set is a Borel set. Thus, defining measures on B ensures that all open and closed sets
are measurable. The following definition will be useful later:

Def. 2.3 (Dynkin Class). Let E be a non-empty set. A class D ⊆ P(E) is said a Dynkin class if:

1. E ∈ D;

2. for any increasing sequence {An}n∈N on D, then A =
⋃

n An ∈ D;

3. for any couple (A, B) on D with B ⊂ A, then A \ B ∈ D.

Therefore, a Dynkin class is closed under complementation (properties 1. and 3.). The following result
holds:

Theorem 2.1 (Dynkin lemma). Let D be a Dynkin class. If A is a class closed under intersection with A ⊆ D,
then σ(A) ⊆ D.

Having defined σ-algebras, we are now ready to properly define measures. Let E be a σ-algebra over
a non-empty set E. The couple (E, E) = EE is called measurable space.

Def. 2.4 (Measures). A (positive) measure on (E, E) is a function µ : E −→ [0, ∞) with the following
properties:

1. µ(∅)=0.

2. For any disjoint sequence {An}n∈N of E elements:

µ

(⋃
n≥1

An

)
= ∑

n≥1
µ(An). (2.4)
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Any element A ∈ E is a measurable set with measure µ(A).

Prop. 2.2. Consider a sequence of events An ↑ A; that is, A is the reunion event
⋃

n Anof the increasing sequence
{An}n≥1. Then,

P(An) → P(A).

The same result is true if An ↓ A. We have also the following relationships:

◦ P(lim infn An) ≤ lim infn P(An),

◦ P(lim supn An) ≥ lim supn P(An),

where:

lim inf
n

An =
∞⋃

n=1

(
∞⋂

m=n
Am

)
, lim sup

n
An =

∞⋂
n=1

(
∞⋃

m=n
Am

)
(2.5)

Remark 2.2 (Signed measures). In Definition 2.4, we required that µ(A) be positive for any measurable
set A. However, one can also consider non-positive measures. For instance, if µ+ and µ− are two
positive measures, then the measure µ = µ+ − µ− is called a signed measure.

Def. 2.5. Let (E, E , µ) be a measurable space with a measure µ. A property on E is said to hold a.e.
(almost everywhere) on a measurable set A ∈ E , if it is verified for all the points of A\N, where N ∈ E
is a zero-measure set; i.e. µ(N) = 0.

Example 2.2 (Lebesgue measure). Let E = Rd. The Lebesgue measure λ is defined on the measurable
space (Rd,B), where B is the Borel σ-algebra, and corresponds to the d-dimensional notion of volume:

λ(A) =
∫

A
dx, A ∈ B. (2.6)

Example 2.3 (Densities). To any positive continuous function ρ : Rd → R+ one can always associate a
positive measure defined on (Rd,B) such that for any Borel set A ∈ B:

µ(A) =
∫

A
ρ(x)dx =

∫
1Aρ(x)dx. (2.7)

The function ρ is called the density of the measure µ with respect to the Lebesgue measure λ. More
generally, the above equation defines a positive measure for every positive measurable function ρ (see
below).

Example 2.4 (Dirac measures). Dirac measures are other important examples of measures. The Dirac
measure δx associated to a point x ∈ E is defined as follows:{

δx(A) = 1, x ∈ A,
δx(A) = 0, x /∈ A.

More generally one can consider a sum of such Dirac measures. Given a countable set of points
X = {xi, i = 0, 1, 2, ...} ⊂ E the counting measure µX = ∑i δxi is defined in the following way: for any
A ∈ E :

µ(A) = ]{i, xi ∈ A} = ∑
i≥1

1A(xi), (2.8)

where 1A is the indicator function of the set A.
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Remark 2.3. A measurable set may have zero measure without being empty. Going back to the analogy
with length and volume, we can note that the area of a line segment is zero. The “length” of a point is
also defined to be zero.

The existence of non-trivial sets of zero measure is at the origin of many subtleties in measure theory.
If A is a measurable set with µ(A) = 0, it is then natural to set µ(B) = 0 for any B ⊆ A. Such sets
(subsets of sets of measure zero) are called null sets. If all null sets are not already included in E , one can
always include them by adding all null sets to E . The new σ-algebra is then said to be complete.

A measure µ, defined on a measurable space (E, E), is said to be integer valued if for any measurable
set A ∈ E , µ(A) is a (positive) integer. An example of an integer valued measure is a Dirac measure.
More generally, any counting measure is an integer valued measure.

A measure µ is said to be finite if µ(E) < +∞ (which entails that µ(A) is finite for any measurable set
A). The quantity µ(E) is usually called the (total) mass of µ. For example, a Dirac measure is a finite
measure with mass one. The counting measure µX (eq. 2.8), associated to the set X = {x1, x2, ...}, is
finite and its mass µX(E) is simply the number of elements in X.

Not all measure we will encounter, will be finite measures. A well-known examples is the Lebesgue
measure on R. In this case the total mass is infinite. A more flexible notion is that of a Radon measure:

Def. 2.6 (Radon measure). Let E ∈ Rd . A Radon measure on (E,B) is a measure µ such that for every
compact measurable set B ∈ B, µ(B) < ∞.

For example the Lebesgue measure on R is a Radon measure: the length of any bounded interval is
finite. Dirac measures and any finite linear combination of Dirac measures are also examples of Radon
measures. More generally, a measure µ on E ⊂ Rd is called σ-finite if

E =
∞⋃

i=1

Ei with µ(Ei) < ∞ (2.9)

This condition holds for the examples given above.

The Lebesgue measure and Dirac measures differ in a fundamental way: while Dirac measures are
concentrated on a finite number of points, the Lebesgue measure assigns zero measure to any finite set.
A measure µ0, defined on a measurable space (E, E), is said diffuse if the whole space E is the reunion
of zero-measure sets. When the one-point sets are measurable, the measure is diffuse if and only if it
gives zero mass to any point and is also said atomless. The Lebesgue measure is an example of a diffuse
measure. Measures with a continuous density with respect to the Lebesgue measure on Rd (Example
2.3) are other examples of diffuse measures.

We have te following important result:

Theorem 2.2 (Dynkin theorem). Two measures µ1 and µ2, defined on a measurable space (E, E), are equal if
they coincide on a base of E .

Proof: let D the class of the sets where the two measures coincide. Therefore, it is easy to see that D is a
Dynkin class and the result follows from the Dynkin lemma. �

Remark 2.4 (Uniqueness of the Lebesgue measure). The Lebesgue measure is unique. This result is just
an application of the previous result. Indeed, consider the unit interval Ω = [0, 1] with the Lebesgue
measure on Borel sets. Let µ be another measure on Ω satisfying µ[(a, b)] = b− a, for any 0 ≤ a ≤ b ≤ 1.
Let I = {(a, b), [a, b), (a, b], [a, b], 0 ≤ a ≤ b ≤ 1}. I is closed under finite intersections and generates B.
Thus, the measure µ coincides with the Lebesgue measure.



2.1 Measure Theory 31

2.1.1 Measurable functions

Let us consider two measurable spaces (E, E) and (F,F ). Let f : E → F. In most applications we will
be interested in evaluating a measure on a set of the form:

{x ∈ E, f (x) ∈ A} := { f ∈ A}, A ∈ F . (2.10)

For a given function f , there is no reason for this set to be measurable. This motivates the following
definition:

Def. 2.7 (Measurable function). A function f : E → F is called measurable if for any measurable set
A ∈ F , the set

f−1(A) = {x ∈ E, f (x) ∈ A} (2.11)

is a measurable subset of E.

In other words, a function f , between two measurable spaces, is measurable if for any measurable set
A ∈ F we have that the counter-imagine f−1(A) ∈ E . The following results are straightforward:

1. the composition of two measurable function is measurable;

2. a constant function is measurable.

Prop. 2.3 (Generator criterium). In order for a function f to be measurable with respect to a σ-algebra E , it is
enough that the counter-imagines through f of a generator of E be measurable.

Proof: let (E, E) and (F,F ) with F = σ(A) and f : E → F be given. If one indicates with B ⊆ P(F)
the class of measurable sets having counter-imagine measurable, then B ⊆ F . However, by ipothesis
A ⊂ B, than, by definition of σ(A), we must have B = F . �

Remark 2.5. As noted above we will often consider measures on sets which already have a metric
or topological structure, such as Rd, equipped with the Euclidean metric. On such spaces the notion
of continuity for functions is well defined and one can then ask whether there is a relation between
continuity and measurability for a function f : E −→ F. In general, there is no relation between these
notions. However it is desirable that the notion of measurability be defined such that all continuous
functions be measurable. Using the generator criterium, this is automatically true if the Borel σ-algebra
is chosen. This is because f is continuous if and only if f−1(A) is open for every open set A. Hence in
the following, whenever the notion of continuous functions makes sense, all continuous functions will
be measurable. The opposite is not true. That is there exists functions defined on topological spaces
which are measurable but not continuous. For instance, the indicator function of the rational set on the
real line is measurable but not continuous.

Def. 2.8. Let f : EE → FF an application between measurable spaces. We define σ( f ) as the σ-algebra
generated by the counter-images of measurable sets:

σ( f ) = σ
(
{ f−1(A), A ∈ F}

)
.

σ( f ) is the coarsest σ-algebra which makes f measurable and is said σ-algebra generated by f .

Def. 2.9 (Product space). Let G be a family of measurable spaces

G = {(Ω1,F1), . . . , (Ωj,Fj)};

we define product space the measurable space (Π = Ω1 × · · · ×Ωj, π), where

π := F1 ⊗ · · · ⊗ Fj,

is the σ-algebra generated by the projections, named product σ-algebra.
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Notation 2.2 (Cylinders and rectangles). Therefore, π is generated by the class of cylinder, which are
defined as the counter-images of measurable sets through projections. A base for the product σ-algebra
is given by finite intersection of cylinders, which are called rectangles.

We have the following

Theorem 2.3. An application f defined on a measurable space (Ω,F ), which assumes values on a product space
(Π, π), is measurable if and only if its composition with each of the projections is measurable.

Proof: the necessary condition is obvious, because the composition of measurable functions is measur-
able. On the other hand, we have f : ΩF → Ππ and, because of the generator criterium, we have just
to verify that the counter-images of cylinders, which generate π, through f are measurable. Let pi be
the projection of index i, if J is the cylinder {pi ∈ H}, the set { f ∈ J} = {pi ◦ f ∈ H} is measurable by
ipothesis. �

Consider real measurable functions defined on a measurable space. Than, we have:

Prop. 2.4. The set of real valued measurable functions form a real vector space closed under absolute value and
the operation of maximum, minimum and multiplication of two functions.

Proof: let (E, E) be a measurable space. Let f , g be real valued E -measurable functions. Than, for
any real numbers a and b, the application h = a f + bg is measurable; indeed, h = F ◦ ( f , g), where
F : R2 → R, with F(x, y) = ax + by is measurable. In the same way, also f g is measurable as composition
with G(x, y) = xy. Moreover, | f | is the composition of f with x →|x|. Finally, f ∨ g = 1

2 ( f + g+ | f − g |);
while, f ∧ g = −(− f ∨−g). �

Def. 2.10 (Imagine measure). Consider a measurable space (E, E) with a measure µ and a measurable
space (F,F ). Let f : E → F be a measurable function. Then, f induces a measure µ f on F said imagine
measure of µ through f . This measure is defined such that for any A ∈ F :

µ f (A) = µ{ f ∈ A}. (2.12)

2.1.2 Integration of real measurable functions

We want to define integration of real measurable functions f : EE → R.

Def. 2.11 (Simple functions). Given a measurable space (E, E), simple examples of real valued measur-
able functions are functions of the form:

f =
n

∑
j=1

cj1Aj , (2.13)

where {Aj}j=1,2,...,n are measurable sets and cj ∈ R for any j. These functions are sometimes called
simple f unctions.

The integral of such a simple function with respect to a measure µ defined on (E, E) is naturally
defined as

µ( f ) =
n

∑
j=1

cjµ(Aj). (2.14)

Having defined integrals for simple functions, we extend it to any positive measurable function f : E →
R by setting

µ( f ) = sup{µ(ϕ), ϕ simple function, ϕ ≤ f }. (2.15)
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The integral µ( f ) is allowed to be infinite. Since any measurable function f : E → R can be written as
the sum of its positive and negative parts: f = f+ − f−, where f+ = max(0, f ) and f− = max(0,− f ),
we can define separately µ( f +), µ( f−) as above. If µ( f +), µ( f−), are not infinite we say that f is µ-
integrable and we define µ( f ) = µ( f +)− µ( f−), called the integral of f with respect to µ.

When µ is the Lebesgue measure, µ( f ) is simply the Lebesgue integral of f . By analogy with this case,
µ( f ) is denoted using the “differential” notation µ( f ) =

∫
E f (x)µ(dx) =

∫
E f dµ, or simply

∫
f , if the

measure is implied. Finally we set: ∫
A

f dµ =
∫

E
f IAdµ.

Two measurable functions f , g on E are said to be equal µ-almost-everywhere (almost-surely), we write
a.e (a.s), if they differ only on a null set:

f = g a.e. ⇔ µ ({ f 6= g}) = 0 (2.16)

If f , g are integrable then

f = g a.e. ⇒
∫

E
f (x)µ(dx) =

∫
E

g(x)µ(dx). (2.17)

Remark 2.6. The latter equation states that the two functions f and g are equal a.s. with respect to the
σ-algebra E (we say that they are equivalent on E ); i.e. for any measurable set A ∈ E one has:∫

A
f =

∫
A

g. (2.18)

Let a measurable space (E, E , µ) be given. We indicate with Lp(E, µ), p > 0, the vector space of the
equivalence classes of measurable functions such that:

Lp(E, µ) =
{

f measurable,
∫

E
| f |pdµ < ∞

}
(2.19)

We have the following result:

Prop. 2.5. If the measure µ is finite, i.e. µ(E) < +∞, then:

Lq(E, µ) ⊂ Lp(E, µ), p < q;

Proof: the result is straightforward because | f |p≤| f |q +1. �

It is known that Lp is a Banach space with the norm ‖ f ‖p= (
∫
| f |p)1/p. Moreover, if p = 2, the

norm comes form a scalar product ( f , g) =
∫

f g. so that, L2 is an Hilbert space.

Remark 2.7. Given a sequence { fn}n∈N of measurable function, the almost everywhere convergence,
i.e. µ{ fn → f = 1} = 1, does not imply the Lp convergence, i.e. || fn − f ||p → 0. The converse is also not
true. However, any sequence which converges in the Lp norm admits a subsequence which converges
a.s. to the same limit.

The following results hold:

Theorem 2.4 (Dominated convergence). Let { fn}n∈N a sequence of measurable functions converging a.e. to
a function f . If there exists g ∈ Lp with | fn| ≤ g, then fn → f in the Lp norm. In particular,∫

fn →
∫

f .
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Theorem 2.5 (Integration with respect to the imagine measure). Given a measurable space (E, E) with a
measure µ and a second measurable space (F,F ). Let h : E → F be a measurable function on E and let f : F → R

be a real measurable function on F. Then,

f ◦ h ∈ L1(E, µ) ⇐⇒ f ∈ L1(F, µh);

In this case: ∫
E
( f ◦ h) dµ =

∫
F

f dµh. (2.20)

Def. 2.12 (Product measure). Given two finite measures P defined on (Ω,F ) and Q over (Ω′,F ′), we
indicate with P⊗Q the unique measure on (Ω×Ω′,F ⊗F ′) such that to any rectangle H×K associates
a measure P(H)Q(K). Such a measure is termed product measure:

P⊗Q(H × K) = P(H)Q(K), H × K ∈ F ⊗F ′ (2.21)

To its construction is related the well know Fubini-Tonelli theorem, which reduces the integration
with respect to P⊗Q to an iterated integration with respect to the factor measures P and Q.

Theorem 2.6 (Fubini Tonelli theorem). Let f be a real measurable function defined on the product space (Ω×
Ω′,F ⊗F ′, P⊗Q). Then, for any ω ∈ Ω the function f (ω, ·) is F ′ measurable (and viceversa). Moreover, the
function

∫
Ω′ f (·, ω′)dQ(ω′) is F -measurable (and viceversa). Besides, if f is integrable one has∫

Ω×Ω′ f (ω, ω′)dP⊗ dQ(ω, ω′) =
∫

Ω

[∫
Ω′ f (ω, ω′)dQ(ω′)

]
dP(ω)

=
∫

Ω′
[∫

Ω f (ω, ω′)dP(ω)
]

dQ(ω′).
(2.22)

2.1.3 Absolute continuity and densities

Consider now a measurable space (E, E) with measures µ1 and µ2 defined on it. How can these two
measures be compared? A natural idea to compare µ1 and µ2 is to look at the ratio µ2(A)/µ1(A) for
various measurable sets A. Of course this is only possible if µ2(A) = 0 every time µ1(A) = 0. This
remarks motivates the following definition:

Def. 2.13 (Absolute continuity). A measure µ2 is said to be absolutely continuous with respect to µ1 if
for any measurable set A

µ1(A) = 0 ⇒ µ2(A) = 0. (2.23)

We write µ2 � µ1.

Example 2.5. If a measure µ has a density with respect to the Lebesgue measure λ (example 2.3), then
µ � λ.

Example 2.6. Dirac measures are not absolutely continuous with respect to the Lebesgue measure.

Absolute continuity can be characterized in the following way:

Theorem 2.7 (Radon-Nikodym theorem). If µ2 is absolutely continuous with respect to µ1 then there exists
an E -measurable function Z : E → [0, ∞) such that for any measurable set A

µ2(A) =
∫

A
Zdµ1 = µ1(Z1A) (2.24)
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The function Z is uniquely defined, up to a zero-measure set, and it is called the density or Radon-
Nikodym derivative of µ2 with respect to µ1 and denoted as dµ2/dµ1. For any µ2-integrable function f

µ2( f ) =
∫

E
f dµ2 = µ1( f Z) =

∫
E

dµ1Z f (2.25)

Therefore if µ2 is absolutely continuous with respect to µ1, an integral with respect to µ2 is a weighted
integral with respect to µ1, the weight being given by the density Z.

If both µ2 is absolutely continuous with respect to µ1 and µ1 is absolutely continuous wit respect to
µ2 then µ1 and µ2 are said to be equivalent measures. This is equivalent to stating that Z > 0.

Remark 2.8. In the case of (R,B), a measure µ has density with respect to the Lebesgue measure λ if
and only if µ � λ.

2.2 Random Variables

2.2.1 Random variables and probability spaces

Consider a set Ω, called the set of scenarios, equipped with a σ-algebra F . In modeling context, each
scenario ω ∈ Ω being described in terms of the evolution. A probability measure on (Ω,F ) is a positive
finite measure P with total mass P(Ω) = 1. The triple (Ω,F , P) is then called a probability space.

A measurable set A ∈ F , called an event, is therefore a set of scenarios to which a probability can be
assigned. A probability measure assigns a probability between 0 and 1 to each event A ∈ F :

P : F −→ [0, 1], A −→ P(A).

An event A with probability P(A) = 1 is said to occur almost surely. If P(A) = 0 this is interpreted by
saying the event A is impossible.

If we are dealing with several probability measures defined on the same set then one should be more
specific: we will then replace “almost surely” or “impossible” by “P-almost surely” or “impossible”
under P. Therefore, a P-null set is a subset of an impossible event under P.

As before, we can complete F to include all null sets. This means that we assign probability zero to
subsets of impossible events, which is intuitively reasonable. Unless stated otherwise, we shall consider
complete versions of all σ-algebras. As in (def. 2.5), we say that a property holds P-almost surely if the
set of ω ∈ Ω for which the property does not hold is a P-null set.

One can speak of absolute continuity and equivalence for probability measures: two probability mea-
sures P and Q on (Ω,F ) are equivalent (or comparable) if they define the same impossible events:

P ∼ Q ⇔ {∀A ∈ F , P(A) = 0 ⇔ Q(A) = 0}.

Def. 2.14 (Random variable). A measurable function with values in the measurable space (E, E),

X : Ω → E,

where (Ω,F , P) is a probability space is called random variable (with values on E).

An element ω ∈ Ω is called a scenario of randomness. X(ω) represents the outcome of the random
variable if the scenario ω happens and is called the realization of X in the scenario ω. If X and Y are two
random variables defined on the same probability space, if

P{ω ∈ Ω, X(ω) = Y(ω)} = P(X = Y) = 1,

we write
X = Y a.s. (almost surely) (2.26)
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Def. 2.15 (Law). The law (or distribution) µX of X is the imagine measure PX of P through X on E:

µX(A) = P{ω ∈ Ω; X(ω) ∈ A} = P(X ∈ A), A ∈ E . (2.27)

The law of a r.v. X describes the probability distribution of the possible values of the random quantity
X. If µX = µY then X and Y are said to be identical in law (or in distribution) and we write

X =
d

Y. (2.28)

The law-equivalence doesn’t imply the a.s. equivalence. This is the case for example of r.v.s defined in
different probability space. For instance, consider the r.v. X defined on the probability space (Ω,F , P)
with values on (R,B), and the r.v. id defined on (R,B, µX), such that id(y) = y, for any y ∈ R. It is easy
to see that they are identical in law.

Remark 2.9. On the other hand, if X = Y almost surely, then X =
d

Y.

A random variable X : Ω → E is called a real-valued random variable when E ⊂ R. As in Section
2.1.2, one can define the integral of a positive random variable X with respect to P.

Def. 2.16 (Cumulative distribution function). Let X be a real random variable defined on the probability
space (Ω,F , P). For any x ∈ R, the function:

FX(x) = P(X ≤ x) =
∫ x

−∞
dµX(y), (2.29)

is said cumulative distribution function.

Remark 2.10. The cumulative distribution completely characterizes the probability distribution of the
r.v. X. Indeed, the class {(−∞, x], x ∈ R} is a base of B (see Dynkin’s Theorem 2.2). Moreover, if X
possesses density function fX , i.e. if the law µX � λ, then:

FX(x) =
∫ x

−∞
fX(y)dλ(y), (2.30)

and fX(x) = F′X(x). Sometimes, it is useful to study the opposite question and ask how often the random
variable is above a particular level. This is called the complementary cumulative distribution function

Fc
X(x) = P(X > x) = 1− FX(x), x ∈ R. (2.31)

In survival analysis, Fc
X is called the survival function and is denoted by SX(x).

Let (Ω,F , P) be a probability space. If the probability measure P can be only one and zero the σ-
algebraF is said degenere. A random variable is said trivial if it is equal to a constant almost everywhere.
We have the following

Prop. 2.6. Given a probability space (Ω,F , P), with F degenere. Then, any real random variable is trivial.

Proof: if A ∈ F , then A = Ω P-a.s.; the result is thus obvious for characteristic function. Therefore, it
is true for linear finite combinations, and also for simple functions. So that, the result is proven for any
positive measurable function and, by difference, for any r.v. �

Def. 2.17 (Expectation). The integral of a positive r.v. X, defined on a probability space (Ω,F , P), is
called the expectation of X with respect to P and is denoted by

EP[X] =
∫

Ω
X(ω)dP(ω),

or simply E(X) or EX. It could be either a positive number or +∞. If EP[X] < ∞ then X is said to be
P-integrable.
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By decomposing any real-valued random variable Y into its positive and negative parts Y = Y+−Y−,
it is clear that if E(|Y|) < ∞ then both Y− and Y+ are integrable and the expectation E(Y) =
E(Y+)− E(Y−) is well-defined.

It is sometimes useful to allow “infinite” values for positive random variables, i.e., choose E = [0, ∞)∪
{+∞}. Of course if Y ∈ L1(Ω, P) then Y is almost surely finite.

Remark 2.11. Let X be a real valued r.v. defined on (Ω,F , P). Using Theorem 2.5, with f (x) = x, x ∈ R,
one has:

EP(X) =
∫

Ω
XdP =

∫
R

xdµX(x). (2.32)

2.2.2 Independence

Consider a probability space (Ω,F , P). The evaluation of the probability of random events is not a
steady characteristic, but depends on the information about them. Therefore, it changes when we have
new information. For instance, if one knows that an event H ∈ F occurred, then the probability P must
be changed with a new probability PH :

Def. 2.18 (Conditional probability). We define the conditional probability with respect to an event H, the
probability measure PH such that, for any event A ∈ F :

PH(A) =
P(A ∩ H)

P(H)
.

We also write P(A|H) to indicate the probability of A conditioned to H.

The following properties follow directly from the definition:

1. PH(Hc) = 0.

2. PH has density P(H)−1 IH with respect to P.

3. Let X be a r.v. then the expectation value of X conditioned to the event H is the integral of X
evaluated with PH :

E(X|H) =
∫

XdPH =
1

P(H)

∫
H

XdP. (2.33)

Def. 2.19 (Independent events). Two events A and B are said to be independent (with respect to P) if:

P(A ∩ B) = P(A)P(B).

Remark 2.12. We observe that if one of the two events has zero probability, then the events are always
independent. On the other hand if P(B) > 0, then the definition is equal to

PB(A) = P(A),

namely, the knowledge of B does not change the probability of A and this corresponds to the intuitive
idea of independence.

Prop. 2.7. The class of the independent events with respect to an event H ∈ F form a Dynkin class.
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Proof: indeed, Ω belong to the class. Moreover, if B ⊂ A then:

PH(A \ B) = PH(A)− PH(B) = P(A)− P(B) = P(A \ B).

Finally, if An ↑ A, then (see prop. 2.2):

PH(A) = lim
n

PH(An) = lim
n

P (An) = P(A). �

Def. 2.20 (Independent random variables). Two random variables X and Y, defined on the probability
space (Ω,F , P), with values on the measurable spaces EE and GG , are said to be independent if the
corresponding σ-algebras (Def. 2.8) are independent. That is, for any A ∈ σ(X) and B ∈ σ(Y), then A is
independent of B.

The independence entails the fact that information about a random variable (enclosed in its σ-algebra),
does not influence the law of the second random variable. Indeed, if B ∈ σ(Y) has non-zero probability,
then, for any A ∈ E , PB(X ∈ A) = P(X ∈ A), and viceversa.

We have the following result:

Prop. 2.8. Two random variables X and Y, defined on the probability space (Ω,F , P), are independent if and only
if the law of the couple (X, Y) is the product measure of the single variable laws.

Proof: we can see the couple (X, Y) as a random variable defined on (Ω,F , P) with values in the product
space (E× G, E ⊗ G). For any event A× B ∈ E ⊗ G the law of the couple is:

P(X,Y)(A× B) = P(X ∈ A, Y ∈ B) = P({X ∈ A} ∩ {Y ∈ B}).

The sufficient condition is obvious. Moreover, if we assume the independence, we have (Def. 2.19):

P(X,Y)(A× B) = P(X ∈ A)P(Y ∈ B),

for any event A× B. �

Remark 2.13. Suppose that the two random variables X and Y are real valued with density fX and fY
with respect, for example, to the Lebesgue measure. Therefore, the couple (X, Y) has density

f(X,Y) = fX fY. (2.34)

Theorem 2.8. Given two real valued integrable independent random variables X and Y, defined on (Ω,F , P),
then the random variable Z = XY is integrable with expectation value:

E(XY) = E(X)E(Y).

Proof: let µ indicates the law of X and ν the law of Y. Because of the result above, the couple (X, Y) has
law µ⊗ ν (Def. 2.12). Using the theorem of integration with respect to the imagine measure (Teor. 2.5),
one has:

E(XY) =
∫

R2
xy µ⊗ ν(dx, dy) =

∫
R

xµ(dx)
∫

R
yν(dy) = E(X)E(Y),

where we have used the Fubini theorem. �

Theorem 2.9 (Reduction lemma). Let X and Y r.v.s and let F be a σ-algebra independent of Y which makes X
measurable. Let f a real function defined on the product of the arrival spaces of X and Y such that:

Z = f (X, Y),

results integrable. Set g(x) = E[ f (x, Y)], the r.v. g ◦ X is equal to Z on F .
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Proof: let IA the indicator function of an element A ∈ F . The couple (IA, X) is independent of Y. We
indicate with µ the law of (IA, X) and ν the law of Y. We have:∫

A
Z =

∫
IAZ =

∫
u
∫

f (v, w)ν(dw)µ(du, dv) =
∫

ug(v)µ(du, dv) =
∫

IAg(X) =
∫

A
g(X)

for any A ∈ F . �

The reduction lemma allows to evaluate, for any couple of independent random variables X and Y,
the expectation value of f (X, Y) in two steps: one first calculates the function g(x) = E[ f (x, Y)], then
evaluates this function on X and finally takes the expectation with respect to X.

Prop. 2.9. Let X and Y be real independent r.v.s. We have that:

1. if X + Y is trivial, then X and Y are trivial;

2. if X + Y belong to Lp, then both X and Y belong to Lp.

Proof: there exists c ∈ R such that X + Y = c almost surely. Then, the random variable c − X = Y
almost surely. However, Y is independent of X and this implies that X is independent of itself. That is,
for any A ∈ σ(X) one must have:

P(A ∩ A) = P(A)2 = P(A) ⇔ P(A) = 0∧ 1;

thus, σ(X) is degenere; and using Proposition 2.6 follows that X is trivial. The same for Y.

Let |X + Y|p integrable. Let ν indicates the law of Y, then

E(| X + Y |p) =
∫

E(| X + y |p)ν(dy) < ∞,

so that, X + y ∈ Lp ν-a.e., therefore, X ∈ Lp, and the same for Y. �

Prop. 2.10. Let X and Y be two independent real r.v.s. We also suppose that they have density fX and fY with
respect to the Lebesgue measure λ. Then, the random variable Z = X + Y has density

fZ(z) = ( fX ∗ fY)(z) =
∫

R
fX(z− x) fY(x)dx. (2.35)

Proof: we have that:

FZ(z) = P(Z ≤ z) = P(X + Y ≤ z) =
∫

R2
Ix+y≤z fX(x) fY(y)dxdy =

∫
R

fX(x)
∫

R
Iy≤z−x fY(y)dydx

(with the change of variables x + y = y′)

=
∫ z

−∞

∫
R

fX(x) fY(y′ − x)dxdy′. �

The above proposition states that the density function of the sum Z of two independent real random
variables X and Y is given by the convolution fX ∗ fY of the two corresponding densities. What happens
if we consider products XY of real independent random variables.

Prop. 2.11. Let X and Y be two independent real r.v.s such that P(X ≥ 0) = 1 with densities fX and fY with
respect to the Lebesgue measure λ. Then, the random variable Z = XY has density:

fZ(z) = ( fX ? fY)(z) =
∫ ∞

0
fX(x) fY(z/x)dx/x, z ∈ R, (2.36)

where ( f ? g)(x) indicates the Mellin convolution of the two integrable functions f and g evaluated in x ∈ R.
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Proof: the cumulative distribution of Z is:

FZ(z) = P(Z ≤ z) = P(XY ≤ z) =
∫ ∞

0
dx
∫

R
dyIxy≤z fX(x) fY(y)

(with the change of variables y′ = xy)∫ z

−∞

∫ ∞

0
fX(x) fY(y′/x)dx/xdy′. �

2.2.3 Characteristic function

The characteristic function of a random variable is the Fourier transform of its distribution. Many prob-
abilistic properties of random variables correspond to analytical properties of their characteristic func-
tions.

Def. 2.21 (Characteristic function). The characteristic function of a Rd-valued random variable X is the
function ΦX : Rd → R defined by

ΦX(y) = E(eiy·X) =
∫

Rd
eiy·xdµX(x), ∀y ∈ Rd. (2.37)

Remark 2.14. The characteristic function of a random variable completely characterizes its law. Two
variables with the same characteristic function are identically distributed.

Example 2.7 (Gaussian characteristic function). Let X = {X1, X2, . . . , Xn} be a collection of Gaussian
random variables with covariance matrix γ(i, j) = E(XiXj) and mean vector m = {E(X1), . . . , E(Xn)}.
Therefore, for any real vector y = {y1, . . . , yn}, one has:

E(eiy·X) = exp

(
−1

2

n

∑
k,j=1

ykγ(k, j)yj + i
n

∑
k=1

mkyk

)
(2.38)

A characteristic function is always continuous and verifies ΦX(0) = 1. Additional smoothness prop-
erties of ΦX depend on the existence of moments of the random variable X.

Def. 2.22 (Moments). The moments of a random variable may or may not exist, depending on how fast
the distribution µX decays at infinity:

◦ the n-th moment mn of a random variable X on R is defined by mn(X) = E[Xn];

◦ the absolute moments of X are the quantities mn(|X|) = E[|X|n];

◦ the n-th centered moment µn is defined as the n-th moment of X− E[X]

µn(X) = E[(X− E[X])n]. (2.39)

Remark 2.15 (Characteristic function and moments). The moments of a random variable are related to
the derivatives at 0 of its characteristic function:

1. If E[|X|n] < ∞ then ΦX has n continuous derivatives at y = 0 and

∀k = 1, ..., n; mk ≡ E[Xk] =
1
ik

∂kΦX

∂yk (0). (2.40)



2.2 Random Variables 41

2. If ΦX has 2n continuous derivatives at y = 0 then E[|X|2n] < ∞ and

∀k = 1, ..., 2n; mk ≡ E[Xk] =
1
ik

∂kΦX

∂yk (0). (2.41)

3. X possesses finite moments of any order if ΦX(y) is C∞(R) at y = 0.

Then the moments of X are related to the derivatives of ΦX by:

mn ≡ E[Xn] =
1
in

∂nΦX
∂zn (0). (2.42)

Remark 2.16. We observe that if {Xi, i = 1, . . . , n} is a sequence of independent random variables,
then (see Proposition 2.8) the characteristic function of Sn = X1 + X2 + ... + Xn is the product of the
characteristic functions of the individual variables:

ΦSn(y) =
n

∏
i=1

ΦXi (y). (2.43)

Def. 2.23 (Moment generating function). The moment generating function of Rd-valued random vari-
able X is the function MX defined by

MX(u) = E(eu·X), ∀u ∈ Rd. (2.44)

Contrarily to the characteristic function, which is always well-defined (as the Fourier transform of a
probability measure ), the moment generating function is not always defined: the integral in (eq. 2.44)
may not converge for some (or all) values of u.

Remark 2.17. When the moment generating function MX is well-defined, it can be formally related to
the characteristic function ΦX by:

MX(u) = ΦX(iu). (2.45)

If the moment generating function MX of a random variable X on R is defined on a neighborhood
[−ε, ε] of zero, then in particular all (polynomial) moments of X are finite and can be recovered from the
derivatives of M in the following manner:

mn =
∂n MX

∂un (0). (2.46)

Let X be a random variable and ΦX its characteristic functions. As mentioned above ΦX(0) = 1 and ΦX
is continuous in zero. One can then define a continuous version of the logarithm of ΦX .

Def. 2.24 (Cumulant generating function). There exists a unique continuous function ΨX defined in a
neighborhood of zero such that

ΨX(0) = 0 and ΦX(y) = exp[ΨX(y)]. (2.47)

The function ΨX is called the cumulant generating function or log-characteristic function of X.

Note that if Φx(y) 6= 0 for all y, the cumulant generating function can be extended to all Rd. The
cumulants or semi-invariants of X are defined by:

cn(X) =
1
in

∂nΨX
∂un (0). (2.48)

By expanding the exponential function at y = 0 and using (eq. 2.47), the n-th cumulant can be ex-
pressed as a polynomial function of the moments mk(X), k = 1, . . . , n or the central moments µk(X). For
instance:
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• c1(X) = m1(X) = E(X),

• c2(X) = µ2(X) = E(X2)− E(X)2 = m2(X)−m1(X)2 = Var (X),

• c3(X) = µ3(X)− 3m2(X)m1(X) + 2m1(X)3,

• c4(X) = µ4(X)− 3µ2(X).

Scale-free versions of cumulants can be obtained by normalizing cn by the n-th power of the standard
deviation:

s(X) =
c3(X)

c2(X)3/2 , k(X) =
c4(X)
c2(X)2 . (2.49)

◦ The quantity s(X) is called the skewness coefficient of X. If s(X) > 0, X is said to be positively
skewed.

◦ The quantity k(X) is called the excess kurtosis of X. If k(X) > 0, X is said to be leptokurtic or
“fat-tailed”.

Remark 2.18. If X follows a normal distribution, ΨX is a second degree polynomial (eq. 2.38), so that for
any n ≥ 3, one has cn(X) = 0. Therefore, s(X) and k(X) (or higher cumulants) can be seen as measures
of deviation from normality.

Remark 2.19. By construction, the skewness and the kurtosis are scale invariant; i.e. for any λ > 0:

s(λX) = s(X), k(λX) = k(X). (2.50)

2.3 Convergence of random variables

When considering sequences or families of random variables, one can give several different meaning to
the notion of convergence. In this section we define and compare these different notions of convergence
which will be useful in the sequel. While we define convergence in terms of sequences (indexed by
integers), our definitions also hold for continuously indexed families.

2.3.1 Almost-sure convergence

Consider a sequence of random variables {Xn}n∈N with values in some normed vector space E, for
instance E = Rd.

Remark 2.20. A random variable is defined as a function X : Ω → E of the “randomness” ω ∈ Ω. One
could then apply to random variable sequences, all the various notions of convergence which exist for
function sequences.

The simplest notion of convergence for function is the pointwise convergence, which requires that for
every ω ∈ Ω, the sequence {Xn(ω)}n≥1 converges to X(ω) in the E-norm. This notion turns out to be
too strong in many cases since we are asking convergence for all samples ω ∈ Ω without taking into
account that many events may in fact be negligible, i.e., of probability zero. The notion of almost-sure
convergence takes this fact into account and requires pointwise convergence only for realizations which
have nonzero probability of occurrence.

Def. 2.25 (Almost-sure convergence). A sequence {Xn}n≥1 of random variables, defined on (Ω,F , P),
is said to converge almost-surely to a random variable X if

P
(

lim
n→∞

Xn = X
)

= 1. (2.51)
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For the above definition to make sense, the variables {Xn}n≥1 have to be defined on the same prob-
ability space (Ω,F , P). Note that almost sure convergence does not imply convergence of moments: if
Xn → X almost surely, E(Xk

n) may be defined for all n ≥ 1 but have no limit as n → ∞.

2.3.2 Convergence in probability

While the almost-sure convergence deals with the behavior of typical samples {Xn(ω)}n≥1, the notion
of convergence in probability puts a condition on the probability of events when n → ∞.

Def. 2.26 (Convergence in probability). A sequence {Xn}n≥1 of random variables, defined on (Ω,F , P),
is said to converge in probability to a random variable X if, for each ε > 0

lim
n→∞

P ( |Xn − X| > ε) = 0. (2.52)

We denote convergence in probability by

Xn −→
P

X. (2.53)

Almost sure convergence implies convergence in probability but the two notions are not equivalent.
Also note that convergence in probability requires that the variables (Xn)n≥1 be defined on the same
probability space (Ω,F , P).

2.3.3 Convergence in distribution

In many situations, especially in a modeling context, the random variable is not a directly observable
quantity itself and the only observable quantities are expectations of various functions of this random
variable, E( f (X)). These quantities will in fact be the same for two random variables having the same
distribution. From the point of view of observation, a meaningful notion of convergence is asking that
E( f (Xn)) converges to E( f (X)) for a given set of “observables” or test functions f : E −→ R. If the set
of test functions is rich enough, this will ensure the uniqueness of the law of X but will not distinguish
between two limits X and X′ with the same distribution µ. A commonly used choice of test functions is
the set of bounded continuous functions f : E −→ R, which we denote by Cb(E, R).

Def. 2.27 (Convergence in distribution). A sequence {Xn}n≥1 of random variables with values in a
measurable space (E, E) is said to converge in distribution to a random variable X if, for any bounded
continuous function f : E −→ R, one has:

E( f (Xn)) −→n→∞ E( f (X)). (2.54)

If one denotes by µn the distribution of Xn, then µn is a probability measure on (E, E). Therefore,
using (Theo. 2.5), the above equation is equivalent to:∫

E
dµn(x) f (x) −→n→∞

∫
E

dµ(x) f (x), (2.55)

for any f ∈ Cb(E, R). In this form it is clear that, unlike almost-sure convergence, convergence in distri-
bution is defined not in terms of the random variables themselves, but in terms of their distributions.

Remark 2.21. Convergence in distribution is sometimes called weak convergence of the measure (µn)n≥1
on E. We write:

µn ⇒ µ or Xn →
d

X. (2.56)
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An important feature of convergence in distribution is that, unlike the other notions of convergence
mentioned above, it does not require the variables to be defined on a common probability space. Never-
theless, in the case where the variables {Xn} are defined on the same space, convergence in distribution
leads to converge of probabilities of (regular) events in the following sense:

Prop. 2.12. If (Xn) converges in distribution to X, then for any set A with boundary ∂A, such that µ(∂A) = 0,
then

P(Xn ∈ A) = E(IA(Xn)) −→n→∞ E(IA(X)) = P(X ∈ A). (2.57)

Note also that, unlike other notions of convergence, convergence in distribution is not “stable under
sums”. This means that if {Xn}≥1 and {Yn}n≥1 converge in distribution to X and Y, it is not true in gen-
eral that {Xn + Yn}n≥1 converges in distribution to X + Y. However, by definition, it is readily observed
that if {Xn}n≥1 converges in distribution to X then for any continuous function g, then {g(Xn)}n≥1
converges in distribution to g(X).

The notion of weak convergence is relevant in studying numerical approximations obtained by dis-
cretizing continuous time models. The following characterization of convergence in distributions in
term of pointwise convergence of characteristic function is useful in practice:

Prop. 2.13. The sequence {Xn}n≥1 converges in distribution to X, if and only if for every y ∈ Rd

ΦXn(y) → ΦX(y). (2.58)

Remark 2.22. Note however that pointwise convergence of the characteristic functions {ΦXn}n≥1 does
not imply the existence of a weak limit for {Xn}n≥1. This is becasue the pointwise limit of {ΦXn}n≥1 is
not necessarily a characteristic function.

Convergence in distribution does not necessarily entail convergence of the moments. One cannot
choose f to be a polynomial in (eq. 2.55) because polynomials are not bounded. In fact, the moments of
Xn and X need not even exist.

When {Xn}n≥1 and X are defined on the same probability space, convergence in distribution is the
weakest notion of convergence among the above. Almost sure convergence entails convergence in prob-
ability, which entails convergence in distribution.

2.4 Conditional expectation

Let X be a real random variable defined in the probability space (Ω,F , P). For any event B ∈ F , we
have defined (eq. 2.33) the expectation value of X conditioned to the event B

E(X|B) =
1

P(B)

∫
B

XdP.

Consider now the σ-algebra generated by B:

σ({B}) = {∅, Ω, B, Bc} := G.

We can define a new random variable, the expectation of X conditioned to G, in the following way:

E(X|G)(ω) =
{

E(X|B) , ω ∈ B,
E(X|Bc), ω ∈ Bc. (2.59)

The above definition satisfies the following properties:
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1. E(X|G) is G-measurable;

2.
∫

A XdP =
∫

A E(X| G)dP, for any A ∈ G, that is, X and E(X|G) are equivalent on G (Rem. 2.6).

Moreover, E(X|G) is the unique r.v. which satisfies the above properties.

Remark 2.23. E(X|G) is G-measurable even if X may not be. One can say that (8.1) gives the best
estimate of X when G is known.

Consider a real integrable r.v. X defined on (Ω,F , P). Let G ⊆ F be a σ-algebra contained on F . The
following proposition defines the conditional expectation of X with respect to G.

Theorem 2.10. Let X and G as above. Then, there exists a r.v. Z : Ω → R such that:

1. Z ∈ L1(Ω, P), is integrable;

2. Z is G-measurable;

3.
∫

A ZdP =
∫

A XdP, ∀A ∈ G;

4. Z is unique (almost-surely) and is said conditional expectation of Xwith respect to G.

Proof: for any B ∈ G we define Q(B) =
∫

B XdP. Q is a finite measure on (Ω,G) and Q � P. Using the
Radon-Nikodyn theorem (Theo. 2.7), there exists a unique (a.s.) random variable Z on (Ω,G) such that,
for any B ∈ G, one has Q(B) =

∫
B ZdP. �

2.4.1 Conditional expectation properties

The conditional expectations of a real integrable r.v. X with respect to a σ-algebra G has the following
properties:

1. If X is G-measurable, then E(X|G) = X.

2. If X and G are independent, that is σ(X) and G are independent, then E(X|G) = E(X).

3. E(X) = E(E(X|G)).

Moreover, we have also the following:

a. E(aX + bY|G) = aE(X|G) + bE(Y|G), linearity;

b. if X ≤ Y a.s., then E(X|G) ≤ E(Y|G) a.s., monotonicity;

c. if {Xn}n∈Z, with 0 ≤ Xn ∈ L1(Ω, P), is an increasing sequence which converges a.s. to X, then
E(Xn|G) → E(X|G) a.s.;

d. if Y is G-measurable, then E(XY|G) = YE(X|G);

e. if X and Y are independent, then E(XY|G) = E(X|G)E(Y|G);

f. if H ⊆ G, then E(E(X|G)|H) = E(X|H).
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3 Basics in stochastic processes

Let (Ω,F , P) be a probability space. A random variable X is a rule for assigning to every outcome ω of
an experiment Ω a number X(ω). A stochastic process Xt is a rule for assigning to every ω ∈ Ω a function
Xt(ω). Thus, a stochastic process could be seen as a family of time functions depending on the parameter
ω (a collection of paths or trajectories) or, equivalently, a family of random variables depending on a
time parameter t, or a function of t and ω as well.

3.1 Stochastic processes and filtrations

Def. 3.1 (Stochastic process). We define real valued (one-dimensional) stochastic process a family of
random variables {Xt}t∈I defined on (Ω,F , P):

Xt : Ω → R, t ∈ I ⊆ R+.

We shall say that {Xt}t∈I is a discrete-state process if its values are countable. Otherwise, it is a
continuous-state process. The set S ⊆ R, whose elements are the values of the process, is called state
space. A stochastic process could be a discrete time or a continuous time process, according as the set I
is countable or continuous.

Notation 3.1. We sometimes write X(t) instead of Xt. Moreover, we shall use the notations: {X(t)}t∈I ,
{X(t), t ∈ I}, or X(t), t ∈ I, to represent a stochastic process. We would use simply X or X(t) if the
specification of the set I were redundant. Moreover, we often refer at the parameter t as a time variable
and thus we often take I = R+ = {t ∈ R, t ≥ 0}.

Def. 3.2 (Finite dimensional distributions). For any natural number k ∈ N and a “time” sequence
{ti}i=1,...,k ∈ I, the finite-dimensional distributions of the real valued stochastic process X = {Xt}t∈I are
the measures µt1,...,tk , defined on Rk, such that

µt1,...,tk (A1 × · · · × Ak) = P
(
{Xt1 ∈ A1, . . . , Xtk ∈ Ak}

)
, (3.1)

where {A1, . . . , Ak} are Borel sets on R.

Remark 3.1 (Marginal distribution). If one takes µt(A) = µt,t2 ...,tk (A × R × · · · × R), is the same as
considering the one-dimensional (one-point) distribution µt(A) = P(Xt ∈ A), A ∈ B, in (eq. 3.1). In
this case, we refer to µt as the marginal distribution of the process X.

The family of all finite-dimensional distributions determines many (but not all) important properties
of the process X. Conversely, given a family {νt1,...,tk , k ∈ N, ti ∈ I} of probability measures on Rk,
it is important to be able to construct a stochastic process Y = {Yt}t∈I which have νt1,...,tk as its finite-
dimensional distributions. One of Kolmogorov’s famous theorems states that this can be done provided
νt1,...,tk satisfies two natural consistency conditions:

Theorem 3.1 (Kolmogorov extension heorem). For all {ti}i=1,...k ∈ I, k ∈ N, let νt1,...,tk be probability
measures on Rk, such that:

1. for all permutations π on {1, 2, . . . , k},

νtπ(1),...,tπ(k) (A1 × · · · × Ak) = νt1,...,tk

(
Aπ−1(1) × · · · × Aπ−1(k)

)
.
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2. for any m ∈ N,

νt1 , . . . , tk (A1 × · · · × Ak) = νt1,...,tk ,tk+1,...,tk+m (A1 × · · · × Ak ×R× · · · ×R) ,

where of course the set on the right side as a total of k + m factors.

Then, there exists a probability space (Ω,F , P) and a real valued stochastic process X defined on it, such that:

νt1,...,tk (A1 × · · · × Ak) = P
(
{Xt1 ∈ A1, . . . , Xtk ∈ Ak}

)
), (3.2)

for any ti ∈ I, k ∈ N and Ai ∈ B.

All the above results are still valid if one considers d-dimensional processes. Of great importance is
the notion of:

Def. 3.3 (Filtration). An increasing family Ft = {Ft}t∈I of complete sub σ-fields of F is said a filtration
on (Ω,F , P).

Consider a stochastic process X = {Xt}t∈I and let:

FX
t = σ ({Xs; 0 ≤ s ≤ t}) = σ

(
{N ∪ {X−1

s (H); 0 ≤ s ≤ t, H ∈ B}}
)

,

where B is the Borel σ-algebra and N indicates the class of null-sets. Clearly if 0 ≤ s ≤ t one has

FX
s ⊆ FX

t ⊆ F .

Therefore, FX = {FX
t }t∈I defines a filtration, termed natural filtration of {Xt}t∈I .

Def. 3.4 (Adapted process). A stochastic process {X(t)}t∈I is said adapted to the filtration {Ft}t∈I if for
each t ≥ 0:

FX
t ⊆ Ft.

In other words, for each t, the r.v. X(t) isFt-measurable. Heuristically, FX
t represents all the information

for the process X(t) which is available up to time t.

Example 3.1. For example, the process Y1(t) = X(t/2), t ≥ 0, is FX
t -adapted, whereas the process

Y2(t) = X(2t), t ≥ 0, is not.

Obviously, if X(t), t ∈ I, is an integrableFt-adapted process (i.e. for each t ∈ I the r.v. Xt is integrable),
we have (see Section 2.4.1):

E(Xt | Ft) = X(t), t ∈ I.

Consider a probability space with filtration (Ω,F ,Ft, P). An important class of stochastic processes are
the so called martingales.

Def. 3.5 (Martingale). A stochastic process M = {Mt}t≥0 is a martingale with respect to the filtration
Ft and the measure P if, for any t ≥ 0, one has:

1. Mt ∈ L1(Ω, P);

2. E(Mt | Fs) = Ms, for any 0 ≤ s ≤ t.

This means that Mt isFt-adapted. Moreover, the expected value of Mt does not depend on time. Indeed,

E(Mt) = E (E(Mt | F0)) = E(M0).
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Example 3.2 (Gaussian process). A real stochastic process {Xt}t∈I is Gaussian if and only if, for every
finite sequence {t1, t2, . . . , tk} ∈ I,

Xt1,...,tk = (Xt1 , . . . , Xtk )

has a multivariate normal distribution. That is, there are a positive semi-definite symmetric matrix
{γ(ti, tj) = γi,j, i, j = 1, . . . , k} and real numbers {µi}i=1,...,k such that:

E

(
exp

(
i

k

∑
`=1

t` Xt`

))
= exp

(
−1

2 ∑
`,j

γ`jt`tj + i ∑
`

µ`t`

)
, (3.3)

where γ is the covariance matrix and µ is the vector of the means. Alternatively, the random variable
Z = f (Xt1 , . . . , Xtk ), where f is a linear functional, is normally distributed.

3.2 Stationary processes

Def. 3.6 (Stationary process). A stochastic process {Xt}t≥0 is said a stationary process if any collection
{Xt1 , Xt2 , . . . , Xtn} has the same distribution of {Xt1+τ , Xt2+τ , . . . , Xtn+τ}, for each τ ≥ 0. That is,

{Xt1 , Xt2 , . . . , Xtn} =
d {Xt1+τ , Xt2+τ , . . . , Xtn+τ}. (3.4)

The above equation (eq. 3.4) expresses the time translational invariance of the finite dimensional distri-
butions of a stationary process. Let X be a stationary process, then the following elementary properties
hold:

◦ Varying t, all the random variables Xt have the same low; i.e. Xt1 =
d

Xt2 for any t1, t2 ≥ 0.

◦ All the moments, if they exist, are constant in time.

◦ The distribution of Xt1 and Xt2 depends only on the difference τ = t2 − t1 (time lag).

Therefore, the autocovariance function γ(t1, t2) = γ(t2 − t1) depends only on τ = t2 − t1. We write

γ(τ) = E(Xt − µ)(Xt−τ − µ) = Cov(Xt, Xt−τ), (3.5)

where µ = E(X(t)) and γ(τ) indicates the autocovariance coefficient at the lag τ.

Remark 3.2 (Wide-sense stationary process). If the mean and the variance are finite and constant and
the autocovariance function satisfies (eq. 3.5), then the stochastic process X is said wide-sense stationary.
No further request is given for high order moments. Clearly, stationarity always implies wide-sense
stationarity, but the converse is not in general true. Observe that, a wide-sense stationary Gaussian
process is strictly stationary.

Def. 3.7 (Stationary increment process). A stochastic process {Xt}t≥0 is said a stationary increment
process, shortly si, if for any h > 0:

{Xt+h − Xh}t≥0 =
d {Xt − X0}t≥0. (3.6)

Remark 3.3. If X is an si-process, than, for any δt > 0, the increment process

{Yδt(t)}t≥0 = {∆δtXt}t≥0 = {Xt+δt − Xt}t≥0

is a stationary process.
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3.3 Self-similar processes

Def. 3.8. A real valued stochastic process X = {Xt}t≥0 is said self-similar with index H > 0, shortly
H-ss, if for any a > 0:

{Xat}t≥0 =
d {aHXt}t≥0.

We observe that the transformation scales differently “space” and “time”, for this reason one often
prefers using the word self-affine process. The index H is said Hurst’s exponent or scaling exponent of the
process. In the same way, it is possible to define self-similarity for processes {Xt}t∈R.

Remark 3.4. Observe that, if X is an H-ss process, then all the finite-dimensional distributions of X in
[0, ∞[ are completely determined by the distribution in any finite real interval.

Prop. 3.1. Let X = {Xt}t≥0 be a non-degenerate stationary process1, then X can not be an H-ss process.

Proof: indeed, for any a > 0:
Xt =

d
Xat =

d
aHXt,

and we get a contradiction when a → ∞. �

We have the following proposition that relates stationary and self-similar processes:

Prop. 3.2. Let {Xt}t be an H-ss process; then the process

Y(t) = e−tHX(et), t ≥ 0, (3.7)

is stationary. Moreover, if Y = {Yt}t≥0 is a stationary process; then

X(t) = tHY(log t), t ≥ 0, (3.8)

is an H-ss process.

Dim: consider a collection of real numbers {θi, i = 1, 2, . . . , n} and let {Xt}t be an H-ss process.
Let a collection of “times” {t1, t2, . . . , tn} be given and consider {Y(t1), Y(t2), . . . , Y(tn)}. Then, using
(eq. 3.7), for any h ∈ R, we could write:

n

∑
j=1

θjY(tj + h) =
n

∑
j=1

θje
−(tj+h)HX(etj+h) =

d
n

∑
j=1

θje
−tj HX(etj) =

n

∑
j=1

θjY(tj);

then the random variables
y1 = ∑n

j=1 θjY(tj + h),

y2 = ∑n
j=1 θjY(tj),

have the same low and the same characteristic function:

E
(

eiξy1
)

= E
(

eiξy2
)

.

Putting ξ = 1 one finds:

E

(
exp

(
i

n

∑
j=1

θjY(tj + h)

))
= E

(
exp

(
i

n

∑
j=1

θjY(tj)

))
.

1) A process {Xt}t≥0 is said to be degenerate if for any t ≥ 0, Xt = 0 almost surely.
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This means that the families {Y(ti), i = 1, . . . , n} and {Y(ti + h), i = 1. . . . , n} have the same char-
acteristic function, i.e. the same probability distribution. This proves that Y, as defined in (3.7), is a
stationary process. In the same way it is possible to show (3.8). �

The above result shows how could be possible to construct self-similar processes starting from sta-
tionary processes.

3.4 Brownian motion

Def. 3.9 (Brownian motion). Let (Ω,F ,Ft, P) be a probability space with filtration. A stochastic process
B = {Bt}t≥0 is an ordinary linear (one dimensional) one-sided (because t ≥ 0) Brownian motion2 (Bm)
if:

i) B is a Gaussian H-ss process with H = 1/2 and with stationary increments.

ii) B is Ft-adapted;

One could ever take the natural filtration associated to B, i.e. Ft = FB
t .

Let B(t) be a one-sided Brownian motion, it is possible to show that (see next section):

1. The Bm trajectories starts in zero a.s. and are continuous.

2. Let σ2 = E(B(1)2), than for any t ≥ 0, B(t) has zero mean , variance E(B(t)2) = σ2t and covariance
E(B(t)B(s)) = σ2 min(t, s).

3. From above follows that the Bm increments are independent. That is, the random variables Bt2 −
Bt1 and Bt4 − Bt3 are independent for any 0 ≤ t1 < t2 ≤ t3 < t4.

Remark 3.5. The independence of the increments of a Bm could be stated in terms of the filtration: for
each h > 0, then Bt+h − Bt is independent on Ft.

For any δt ≥ 0, the Bm increment process Zt = Bt+δt − Bt, t ≥ 0, form a stationary Gaussian process
with variance E(Z2

t ) = σ2δt. Therefore, it provides an example of an iid (idependent identically dis-
tributed) process, also said a purely random process.

Another interesting Brownian motion property is entailed in the following proposition.

Prop. 3.3. The Brownian motion B(t) is an Ft-martingale.

Proof: for any t ≥ 0, from the Hölder inequality3, one has:

E(|Bt|)2 ≤ E(B2
t ) = σ2t,

then Bt ∈ L1(Ω, P). Moreover, for any 0 ≤ s < t:

E(Bt | Fs) = E(Bt − Bs | Fs) + E(Bs | Fs) = Bs, (3.9)

because Bt − Bs is independent on Fs and Bs is Fs-measurable. �

2) We sometimes refer to Brownian motion as Wiener process, reserving the term Brownian
motion to the physical phenomenon of the random movements of particles suspended in
a fluid.

3) Given a probability space (Ω,F , P), let p, q ≥ 1 such that 1/p + 1/q = 1, then Hölder
inequality reads:

E(|XY|) ≤ (E|X|p)1/p(E|X|q)1/q, X ∈ Lp(Ω, P), Y ∈ Lq(Ω, P).
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Example 3.3 (Ornstein-Ulhenbeck process). The Ornstein-Ulhenbeck process with parameter γ > 0 is a
stationary Gaussian process {X(t)}t≥0 such that X(0) is standard normally distributed, i.e. X(0) ∼
N(0, 1), has zero mean and with covariances E(X(s)X(t)) = e−γ|t−s|, for any t, s ≥ 0.

Remark 3.6. The Ornstein-Ulhenbeck process, introduced in the example above, is the stationary pro-
cess related to Brownian motion through the transformation defined by (eq. 3.7). Indeed, suppose B(t)
is a Brownian motion with E(B(1)2) = 1, thus, for any γ > 0, the stationary process

X(t) = e−γtB(e2γt), t ≥ 0, (3.10)

is an Ornstein-Ulhenbeck process with parameter γ.

3.5 Markov processes

We turn to a discussion of the particular class of normal densities occurring in Markov processes. Without
loss of generality we consider only densities centered at the origin. Consider for first a Gaussian discrete
time real stochastic process {Xk, k > 0}, defined on a certain probability space, such that:

E(X2
k ) = σ2

k , E(XiXj) = σiσjρik, (3.11)

where ρjk = γjk/σiσj are the correlation coefficients. We have the following definition:

Def. 3.10 (Normal Markov density). The n-dimensional normal density of {X1, . . . , Xn} is Markovian
if, for k ≤ n, the conditional density of Xk for given X1, . . . Xk−1 is identical with the conditional density
of Xk for given Xk−1.

Remark 3.7. We remember that, if the couple (X, Y) of real r.v.s, defined on the same probability space,
has continuous density f(X,Y)(x, y), then for any h > 0

Pr{Y ≤ y| x < X ≤ x + h} =

∫ x+h

x

∫ y

−∞
f(X,Y)(ξ, ν)dνdξ∫ x+h

x fX(ξ)dξ
.

Taking h → 0 one has:

Pr{Y ≤ y|X = x} =
1

fX(x)

∫ y

−∞
f(X,Y)(x, ν)dν. (3.12)

Therefore, one can define the conditional density of Y given that X = x being:

f(X,Y)(y|x) =
f(X,Y)(x, y)

fX(x)
. (3.13)

Roughly speaking, if we know Xk−1 (the “present”) then the additional knowledge of the “past”
X1, . . . , Xk−2 does not contribute any relevant information about the “future”, that is, about Xj, with
j ≥ k.

Remark 3.8. As usual in similar situations, we apply the term Markovian interchangeably to the process
X and its finite-dimensional densities.

Theorem 3.2. For a Gaussian sequence {Xk, k > 0} to be Markovian each of the following condition is necessary
and sufficient.
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◦ For any k ≤ n
E(Xk|X1, . . . , Xk−1) = E(Xk|Xk−1). (3.14)

◦ For j ≤ l ≤ k ≤ n
ρjk = ρjlρlk. (3.15)

Remark 3.9. For (eq. 3.15) to hold the Gaussian condition is necessary. Moreover, it suffices that

ρjk = ρj,k−1ρk−1,k, j ≤ k. (3.16)

Example 3.4 (Independent increment processes). Let X a discrete time Gaussian stochastic process with
zero mean and independent increments. Namely, for any k > 0, E(Xk) = 0 and the increment Xk − Xj,
j < k, is independent of {X1, . . . , Xj}. This implies,

E(Xj(Xk − Xj)) = 0,

that is
ρkj = σj/σk, j < k. (3.17)

The above equation implies (eq. 3.15). Therefore, a normal process with independent increments is
automatically Markovian. Its structure is rather trite: Xk is the sum of the k mutually independent
normal random variables {X1, X2 − X1, . . . , Xk − Xk−1}.

Consider now a Gaussian stochastic process X(t), t ∈ I ⊆ R.

Def. 3.11 (Markovian process). We say that X is Markovian if any finite collection {X(t1), . . . , X(tn)},
ti ∈ I, is Markovian.

Let the process X be Gaussian and Markovian. In view of (eq. 3.14) we have the Markov property:

E(X(t + h)|{X(s), s ≤ t}) = E(X(t + h)|X(t)), (3.18)

for any h > 0. Moreover, by (eq. 3.15), one has:

ρ(s, t) = ρ(s, h)ρ(h, t), s ≤ h ≤ t, (3.19)

with ρ(s, t) = E(X(s)X(t))/σ(s)σ(t).

Remark 3.10. A real stochastic process {X(t)}t∈I , not necessarily Gaussian, is a Markov process if it
satisfies the Markov property (eq. 3.18). Let X be defined in a filtered probability space (Ω,F ,Ft, P).
For instance, suppose that Ft is the natural filtration of X. If we indicate with

Ex(X(t)) = E (X(t)|X(0) = x) , x ∈ R,

then the Markov property (eq. 3.18) reads:

E(X(t + h)|Ft) = EX(t)(X(h)), h > 0. (3.20)

Let X be a Markov process and let fX(x, t) denote the probability density function of X(t). Further-
more, we indicate with fX(x2, t2|x1, t1), t1 < t2, the value at x2 of the conditional density of X(t2) given
that X(t1) = x1, namely the transition density from X(t1) to X(t2).

Remark 3.11. In the case of Gaussian processes, fX(x, t) is the normal density with zero expectation and
variance σ2

t , and by (eq. 3.13), the transition density is:

fX(y, s|x, t) =
1√

2π(1− ρ(t, s)2)σ2
s

exp

(
− (y− σ−1

t ρ(t, s)σsx)2

2(1− ρ(s, t)2)σ2
s

)
. (3.21)
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The joint density of {X(t1), X(t2)} is given by (see eq. 3.13)

fX(x1, x2, t1, t2) = fX(x1, t1) fX(x2, t2|x1, t1).

Moreover, the joint density of {X(t1), X(t2), X(t3)} is then:

fX(x1, x2, x3, t1, t2, t3) = fX(x1, t1) fX(x2, t2|x1, t1) fX(x3, t3|x1, t1, x2, t2).

But, in view of the Markovian property of X, the latter reduces to:

fX(x1, x2, x3, t1, t2, t3) = fX(x3, t3|x2, t2) fX(x2, t2|x1, t1) fX(x1, t1). (3.22)

Namely, we have the following:

Prop. 3.4. If X is a Markovian process, then all the finite dimensional probability density functions are of the form
of (eq. 3.22).

Integrating (eq. 3.22) with respect to x2, we easily find the following corollary:

Cor. 3.1 (Chapman-Kolmogorov equation). If X is a Markovian process, then the transition probability
fX(x3, t3|x1, t1) is given by

fX(x3, t3|x1, t1) =
∫

fX(x3, t3|x2, t2) fX(x2, t2|x1, t1)dx2, t1 < t2 < t3. (3.23)

Very roughly, it expresses that a transition from x1 at time t1 to x3 at time t3 takes place via an arbitrary
intermediate position x2, the transition from x2 to x3 being independent of the past.

Example 3.5. Because the Brownian motion B(t), t ≥ 0, is a Gaussian process with independent in-
crements, then it is a Markovian process. Moreover, the transition densities from (x, s) to (y, t), with
0 ≤ s < t, are normal densities with mean x and variance σ2(t− s) (see eq. 3.21). Namely,

fB(y, t|x, s) =
1√

2π(t− s)σ2
exp

(
− (y− x)2

2σ2(t− s)

)
. (3.24)

They depend only on (y− x)/(t− s) and the Chapman-Kolmogorov equation reduces to a convolution.

A Markov process X which have transition density fX(y, t|x, s), 0 ≤ s < t, that depends only on the
time difference t − s rather than on the specific values of t and s, is said homogeneous. The Brownian
motion is an example of homogeneous Markov process.

Example 3.6. Another example of homogeneous Markov process is provided by the Ornstein-Ulhenbeck
process (Example 3.3), which has transition density:

fX(y, t|x, s) =
1√

2π(1− e−2γ(t−s))σ2
exp

(
− (y− xe−γ(t−s))2

2σ2(1− e−2γ(t−s))

)
. (3.25)

3.5.1 Stochastic diffusion processes

The transition density (eq. 3.24) of the Brownian motion is obviously a smooth function of its variables
for t > s. Evaluating its partial derivatives explicitly, we find that they satisfy the partial differential
equations:

∂t f − σ2

2 ∂yy f = 0, (s, x) fixed, (3.26)
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and
∂s f + σ2

2 ∂xx f = 0, (t, y) fixed. (3.27)

The first equation (eq. 3.26) is called a forward equation because differentiation with respect to the final
time is involved. While, for obvious reasons, the second equation (eq. 3.27) is termed backward equation.
The transition density of the Ornstein-Ulhenbeck process satisfies related, but more complicate partial
differential equations.

Remark 3.12. Observe that (eq. 3.26) is an example of a heat equation which describes the temperature
variation as heat diffuses through a physical medium.

It is not surprising that the Brownian motion serves as prototype of a very rich and useful class of
Markov processes termed diffusion processes.

Def. 3.12 (Diffusion processes). A Markov process X, defined on a certain probability space, with tran-
sition density fX(y, t|x, s) is called a (linear or one dimensional) diffusion process if the following three
limits exists for all ε > 0, t > s ≥ 0 and x ∈ R:

lim
t→s

1
t− s

∫
|y−x|>ε

fX(y, t|x, s)dy = 0, (3.28)

lim
t→s

1
t− s

∫
|y−x|<ε

(y− x) fX(y, t|x, s)dy = a(s, x), (3.29)

lim
t→s

1
t− s

∫
|y−x|<ε

(y− x)2 fX(y, t|x, s)dy = σ2(s, x), (3.30)

where a and σ are well defined functions.

The first condition (eq. 3.28) prevents a diffusion process from having instantaneous jumps. The
quantity a(s, t) is called drift coefficient and σ(s, x) is called diffusion coefficient.

Remark 3.13. The drift a(s, x) is the instantaneous rate of change in the mean of the process given that
X(s) = x. Indeed, by (eq. 3.29):

a(s, x) = lim
t→s

1
t− s

E (X(t)− X(s)|X(s) = x) , t ≥ s. (3.31)

Furthermore, σ2(s, t) denotes the instantaneous rate of change of the squared fluctuations of the process
given that X(s) = x. In fact, by (eq. 3.30) one has:

σ2(s, x) = lim
t→s

1
t− s

E
[
(X(t)− X(s))2|X(s) = x

]
, t ≥ s. (3.32)

Example 3.7. In the case of Brownian motion, one has a = 0 and σ constant. In the case of a γ = 1
Ornstein-Ulhenbeck process, one can show that a(s, x) = −x and σ(s, x) =

√
2.

When the drift a and the diffusion coefficient σ of a diffusion process X are quite well behaved, then
its transition density fX(y, t|x, s) = u(y, t, x, s) satisfies partial differential equations. These are the Kol-
mogorov forward equation

∂tu + ∂y[a(t, y)u]− 1
2 ∂yy[σ2(t, y)u] = 0, (s, x) fixed, (3.33)

and the Kolmogorov backward equation:

∂su + a(s, x)∂xu− 1
2 σ2(s, x)∂xxu = 0, (t, y) fixed. (3.34)

The first equation gives the forward evolution with respect to the final state (y, t), while the latter gives
the backward evolution with respect to the initial state (x, s).
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Remark 3.14 (Fokker-Planck equation). The forward Kolmogorov equation is also called Fokker-Planck
equation.

Both the equations (eq. 3.33 and 3.34) follow from the Chapman-Kolmogorov equation (eq. 3.23).

Example 3.8. A class of Markovian diffusion processes is provided by the so called Ito diffusions, which
are strong solutions of stochastic differential equations (see Section 4.10).

3.6 H-sssi processes

Let (Ω,F ,Ft, P) be a filtered probability space. A stochastic process X = {Xt}t∈I , Ft-adapted, which is
H-ss with stationary increments, is said H-sssi process with exponent H.

Example 3.9. We have already encountered an example of H-sssi process when we have introduced
Brownian motion in (Section 3.4).

In the following we always suppose that E(X2
t ) < ∞, t ∈ I. Thus, we always consider finite variance

H-sssi processes. H-sssi processes with finite variance possess many interesting properties. Then, let
X = {Xt}t∈I be an H-sssi process with finite variance, the following properties hold:

1. X0 = 0 almost surely.

Indeed, for any a > 0, one has:
X(0) = X(a0) =

d
aHX(0).

Then, it follows that σ(X(0)) is degenere, that is it is made up of only by null-events or measure
one events with respect to P. From (Prop. 2.6) follows that X(0) is trivial, i.e. constant almost
everywhere. But, if we set X(0) = c, then:

E(X(0)) = c = E(X(a0)) = aHc ⇔ c = 0.

2. If H 6= 1, then for any t ≥ 0, E(Xt) = 0.

Indeed: E(X(2t)) = 2HE(X(t)). On the other hand, from the stationary increments property
and from property 1:

2HE(X(t)) = E(X(2t)) = E(X(2t)− X(t)) + E(X(t)) = 2E(X(t)) ⇔ E(X(t)) = 0.

3. One has:
X(−t) =

d −X(t);

it follows from the first property and the stationarity of the incremenets:

X(−t) =
a.s.

X(−t)− X(0) =
d

X(0)− X(t) =
a.s. −X(t).

The above property allows us to extend the definition of an H-sssi process to the whole real line:
{Xt}t∈R.

4. Let σ2 = E(X2
1). Then,

E(X2
t ) =| t |2H σ2. (3.35)

Indeed, from the third property and the self-similarity:

EX(t)2 = EX2(| t | sign(t)) =| t |2H EX2(sign(t)) =| t |2H E(X2
1) =| t |2H σ2.
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Notation 3.2. Sometimes, we refer to the H-sssi process {Xt}t∈I with the word standard if σ2 = 1 or,
depending on the context, if σ2 = 2.

5. The autocovariance function of an H-sssi process X, with E(X2
1) = σ2, turns out to be:

γH
s,t =

σ2

2

(
| t |2H + | s |2H − | t− s |2H

)
. (3.36)

It follows from the fourth property and the stationarity of the increments

E(XsXt) =
1
2

(
EX2

s + EX2
t − E(Xt − Xs)2

)
.

6. If X = {Xt}∈I is an H-sssi process, then one must have H ≤ 1.

The constraint of the scaling exponent follows directly from the stationarity of the increments:

2HE |X1 |= E |X2 |= E |X2 − X1 + X1 |≤ E |X2 − X1 | +E |X1 |= 2E |X1 |,

therefore, 2H ≤ 2 ⇔ H ≤ 1.

Remark 3.15. The case H = 1 corresponds a.s. to Xt = tX1. Indeed, on the L2(Ω, P) norm:

E(Xt − tX1)2 = E(X2
t + t2X2

1 − 2tXtX1) = σ2(2t2 − 2t2) = 0.

Remark 3.16. The Brownian motion is a Gaussian H-sssi process with H = 1/2 (Section 3.4), so that its
properties follow from those of a generic H-sssi process. In particular here we focus on the indepen-
dence of the increments, which is due to (eq. 3.36) together with the definition of Gaussian process. We
observe that for a generic H-sssi process this is not longer true. Indeed, let Xt be an H-sssi process with
H ≤ 1 and take:

Xt1 − Xt2 , Xt3 − Xt4 , 0 ≤ t1 < t2 ≤ t3 < t4,

then, using (eq. 3.36), one has:

E(Xt1 − Xt2)(Xt3 − Xt4) = γH
t1,t3

− γH
t1,t4

− γH
t2,t3

+ γH
t2,t4

=

σ2

2

(
| t1 − t4 |2H + | t2 − t3 |2H − | t1 − t3 |2H − | t2 − t4 |2H

)
, (3.37)

which is always zero if H = 1
2 , but is non-zero if H 6= 1

2 .

The above remark states that a generic adapted H-sssi process X is not a martingale provided that
H 6= 1/2. In fact, (eq. 3.9) is in general not verified.

3.6.1 On the existence of H-sssi processes

We want now briefly discuss the question related to the existence of an H-sssi process. We remember
that:

Prop. 3.5. Let ξ be a symmetric α-stable r.v., with scaling exponent σ, defined on the probability space (Ω,F , P).
Then, its characteristic function is:

E(eitξ) = e−σα |t|α . (3.38)



60 3 Basics in stochastic processes

Remark 3.17 (Lèvy distribution). More in general, we remember that a Lévy skew α-stable distribution or
just stable distribution, is actually a family of probability distributions, characterized by four parameters
α, µ, σ ∈ R and −1 < θ < 1, such that

L(x; α, θ, µ, σ) =
1

2π

∫ +∞

−∞
ϕ(t)e−itx dt,

where ϕ(t) is given by:
ϕ(t) = exp [itµ− σ|t|α(1− iθ sign(t)Φ)] , (3.39)

with Φ = tan(πα/2), α 6= 1 and Φ = −(2/π) log |t| if α = 1. The parameter µ is a shifting parameter,
while θ is a measure of asymmetry. In fact, θ = 0 yields a distribution symmetric about µ. Moreover, σ
is a scale factor which is a measure of the width of the distribution and α is the exponent or index of the
distribution and specifies the asymptotic behavior of the distribution for α < 2.

Remark 3.18 (Strictly stable laws). The stable distribution has the important property of stability.
Namely, if a number of independent identically distributed random variables have a stable distribu-
tion, then a linear combination of these variables will have the same distribution, except for possibly
different shift and scale parameters. To be more precise, If X1 and X2 are distributed according to a
stable distribution L(x; α, θ, µ, σ), and if Y = AX1 + BX2 + C, A, B, C ∈ R, then there exist D, E ∈ R

such that DY + E is distributed according to a stable distribution L(DY + E; α, θ, µ, σ) or, equivalently,
Y is distributed according to a stable distribution L(Y; α, θ, (µ− E)/D, σ/D). If E = 0 for all A, B and C
then Y is said to have a strictly stable distribution.

Since the normal distribution, the Cauchy distribution, and the Lévy distribution all have the above
property, it follows that they are special cases of the stable distribution.

We have the following result:

Prop. 3.6. Let 0 < H ≤ 1. The function:

CH(s, t) =| t |2H + | s |2H − | t− s |2H , s, t ∈ R,

is positive semi-defined.

Proof: we have to show that for any collection of rela numbers {ti}i=1,2,...,n and {ui}i=1,2,...,n, one has:

n

∑
i=1

n

∑
j=1

CH(ti, tj)uiuj ≥ 0.

Define t0 = 0 and u0 = −
n

∑
i=1

ui, such that:

n

∑
i=0

ui = 0.

Therefore,
n

∑
i=1

n

∑
j=1

| ti |2H uiuj =
n

∑
i=1

| ti |2H ui

n

∑
j=1

uj = −
n

∑
i=1

| ti |2H uiu0 = −
n

∑
i=1

| ti − t0 |2H uiu0.

Then,
n

∑
i,j=1

CH(ti, tj)uiuj =
n

∑
i,j=1

(| ti |2H + | tj |2H − | ti − tj |2H)uiuj = −
n

∑
i=0

n

∑
j=0

| ti − tj |2H uiuj.
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We observe that, for any c > 0:

n

∑
i=0

n

∑
j=0

e−c|ti−tj |2H
uiuj =

n

∑
i=0

n

∑
j=0

(e−c|ti−tj |2H
− 1)uiuj = −c

n

∑
i=0

n

∑
j=0

| ti − tj |2H uiuj + o(c),

as c → 0. The proof reduces to show that:

n

∑
i=0

n

∑
j=0

e−c|ti−tj |2H
uiuj ≥ 0.

Using (Prop. 3.5), there exists a symmetric 2H-stable r.v. ξ, with scaling exponent σ = c1/2H , such that:

E(eitξ) = e−c|t|2H
.

Then,
n

∑
i=0

n

∑
j=0

e−c|ti−tj |2H
uiuj =

n

∑
i=0

n

∑
j=0

E(ei(ti−tj)ξ uiuj)

= E

(
n

∑
i=0

uieitiξ
n

∑
j=0

uje
−itjξ

)
= E

(∣∣ n

∑
i=0

uieitiξ
∣∣2) ≥ 0,

which ends the proof. �

From the proposition above follows that it is always possible to define a Gaussian H-sssi process,
with zero mean, covariance matrix γH(s, t) and with σ2 = E(X2

1). In fact, a Gaussian process is entirely
characterized by its first and second moments (eq. 3.3).

Remark 3.19. Given H ≤ 1, all the Gaussian H-sssi processes differ by a multiplicative constant.

3.7 Fractional Brownian motion

Let (Ω,F ,Ft, P) be a probability space with filtration and let I ⊆ R 4

Def. 3.13 (Fractional Brownian motion). Let BH = {BH(t)}t∈I , be a Gaussian H-sssi stochastic process,
with 0 < H < 1, defined on ΩF adapted to Ft, with σ2 = E(BH(1)2). Such a process BH is called
fractional Brownian motion (shortly fBm) of order H.

Remark 3.20. Let {BH(t)}t∈I , 0 < H < 1, be a fractional Brownian motion, then:

◦ if H = 1/2, {B1/2(t)}t∈I is the ordinary Brownian motion (Def. 3.4), with auto-covariance func-
tion:

γ(s, t) = σ2 min(| s |, | t |), if
| s |
s

=
| t |
t

, γ(s, t) = 0, otherwise. (3.40)

◦ the case H = 1 won’t be considered because it corresponds to the trivial case of a line with random
slope (Remark 3.15):

B1(t) = tB1(1).

In the following we implicitly assume that the filtration is the natural filtration of the fBm.

Remark 3.21. If one has I = R one speaks about two-sided fBm. On the other hands, if I = R+ one
speaks about one-sided fBm.

4) In this section we always take I = R+. However, it is straightforward to generalize to nega-
tive values using the property 3. of H-sssi processes.
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3.7.1 Fractional Brownian motion characterization

The following proposition characterizes the fBm and gives a useful criterium which allows to recognize
whether a given process is a fractional Brownian motion.

Prop. 3.7 (fBm characterization). Let X = {Xt}t≥0 be a stochastic process, defined on the probability space
(Ω,F , P), such that:

i) P(X0 = 0) = 1.

ii) X is a zero-mean Gaussian process such that, for any t ≥ 0, E(X2
t ) = σ2tα for some σ > 0 and 0 < α < 2.

iii) X is a si-process.

Then, {Xt}t≥0 is a (one-sided) fractional Brownian motion of order H = α/2.

Proof: since X is a zero-mean Gaussian process, its finite-dimensional distributions are completely
characterized by its autocovariance function. Given that, for any t > 0:

E(X2
t ) = σ2 | t |α

and X has stationary increments, it follows that the autocovariance function is given by (eq. 3.36), which
is the autocovriance of a fBm with H = α/2. �

The corollary below follows immediately:

Cor. 3.2. Let X = {Xt}t≥0 be a stochastic process defined on the probability space (Ω,F , P). Let 0 < H < 1
and σ2 = E(X2

1). The following statements are equivalent:

1. X is an H-sssi Gaussian process.

2. X is a (one-sided) fractional Brownian motion with scaling exponent H.

3. X is Gaussian with zero mean and autocovariance function given by (eq. 3.36).

Remark 3.22 (Non-Markovian property). Fractional Brownian motion is non-Markovian provided that
H 6= 1/2. In fact, if H 6= 1/2, (eq. 3.19) is not satisfied by (eq. 3.36).

3.7.2 Fractional Brownian motion trajectories

We focus now on the characterization of the fBm trajectories. Let B = {BH(t)}t≥0 be a fBm with 0 <
H < 1, defined on the probability space (Ω,F , P). Therefore,

Prop. 3.8. for any ω ∈ Ω, the function t → BH(t, ω) is continuous.

Proof: in order to prove the above proposition, we make use of the following theorem, which guarantees
that a stochastic process that satisfies certain constrains on the increment moments is (path)- continuous
or, more precisely, has a continuous version.

Def. 3.14 (Version). Let X = {Xt}t∈I be a stochastic process on the space (Ω,F , P). A process X̃, defined
in the same probability space, is a version of the process X if, for any t ∈ I, P(Xt = X̃t) = 1.

Theorem 3.3 (Kolmogorov continuity theorem). A stochastic process {Xt}t∈I has a version with continuous
trajectories if there exist: p ≥ 1 and η > 1 and a constant c, such that, for any t1, t2 ∈ I:

E |Xt2 − Xt1 |
p≤ c | t2 − t1 |η . (3.41)
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Choose now p > 1/H thus, for any t1, t2 ≥ 0, using the self-similarity and the stationarity of the
increments one has:

E |BH(t2)− BH(t1) |p= E |BH(1) |p| t2 − t1 |pH ,

which, by using (Theorem 3.3), completes the proof. �

So that, Proposition 3.8 states that we can always find a version of the fBm which has continuous tra-
jectories. We then suppose we always work with such a continuous version. The following proposition
allows to better understand the fbm trajectories behavior.

Prop. 3.9. For any ω ∈ Ω, the function t → BH(t, ω) is not-differentiable in the L2(Ω, P)-norm.

Proof: indeed, for any t1, t2 ≥ 0:

E
(

BH(t2)− BH(t1)
t2 − t1

)2

= σ2 | t2 − t1 |2H−2→ ∞,

as t1 → t2. �

Depending on the qualitative behavior of the fBm trajectories, it is common the following fBm parti-
tioning, which can be actually used to characterize any H-sssi process:

1. If 0 < H < 1/2, the fBm is termed anti-persistent.

2. If H = 1/2, the fBm is termed purely random, or chaotic.

3. If 1/2 < H < 1, the fBm is termed persistent.

This division is due to the behavior of the autocovariance function of the increment process. Indeed, as
we are going to see in the next section (Section 3.7.3), in the first case the covariance of two consecutive
increments is negative. Therefore, the fBm increments tend to have opposite sign. So that, the trajectories
manifest an extremely alternating behavior (top panel in Figure 3.1). On the other hand, in the third case
the covariance is always positive and one has a less “zigzaging” behavior of the paths (bottom panel in
Figure 3.1). The case H = 1/2 corresponds to the Bm, which has independent identically distributed
increments, i.e. a purely random increment process.

3.7.3 Discrete time fractional Gaussian noise

Let (Ω,F , P) be a probability space and consider a fBm BH = {BH(t)}t∈R defined on it. Consider a time
grid Iδt = {tk = kδt, k ∈ Z}, with δt > 0. Then, we can define a discrete time process {BH(tk)}k∈Z

defined as the restriction to Iδt of the continuous time process BH(t). Thus, we indicate BH(k) ≡ BH(tk).

Def. 3.15 (Fractional Gaussian noise). The discrete time increment process of BH , namely the process
{Zt}t∈Z such that

Zk = ∆BH(k) = BH(k + 1)− BH(k), k ∈ Z,

is called (discrete time) fractional Gaussian noise (shortly fGn) of order H.

Fractional Gaussian noise properties

Consider for simplicity δt = 1, that is tk = k indeed. Then, let {Zt}t∈Z be a fGn. The following properties
are straightforward:

1. Zt is stationary.
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Figure 3.1: Fractional Brownian motion trajectories for H = [0.2, 0.5, 0.8].

2. For any k ≥ 1, then EZk = 0.

3. For any k ≥ 1, then EZ2
k = σ2 = E(BH(1)).

4. the autocovariance function of the process {Zt}t∈Z, is:

γ(k) = E(ZtZt+k) =
σ2

2
(| k + 1 |2H −2 | k |2H + | k− 1 |2H) =

σ2

2
∆2 | k |2H , (3.42)

where ∆2 indicates the second order finite differencing operator, namely ∆2Xk = Xk+1 − 2Xk + Xk−1.

Properties of the autocovariance function

The following propositions characterize the fGn autocovariance function.

Prop. 3.10. Let k 6= 0. Therefore,

◦ γ(k) = 0, if H = 1/2 (purely random region);

◦ γ(k) < 0, if 0 < H < 1/2 (antipersistent region);

◦ γ(k) > 0, if 1/2 < H < 1 (persistent region).

Proof: the case H = 1/2 is trivial. Let 1/2 < H < 1, the function f (k) = k2H is strictly convex, therefore,
for any k ≥ 1:

f (k + 1) + f (k− 1)
2

=
(k + 1)2H + (k− 1)2H

2
> f (k) = k2H .
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Figure 3.2: Fractional Gaussian noise for H = [0.2, 0.5, 0.8] and δt = 1.

Then, γ(k) > 0. In the same way, in the case 0 < H < 1/2 one finds γ(k) < 0. �

Prop. 3.11. If H 6= 1/2, then:

γ(k) ∼ σ2H(2H − 1) | k |2H−2, k → ∞. (3.43)

Proof: if k → ∞, we have that:

σ2

2

(
(k + 1)2H − 2k2H + (k− 1)2H

)
' σ2

2
d2

dk2 k2H = σ2H(2H − 1)k2H−2. �

Remark 3.23. We observe that if H = 1/2, the fractional Gaussian noise is a Gaussian i.i.d (independent
identically distributed) process. Namely, a purely Gaussian random process, or (discrete time) white-
noise.

Remark 3.24. We have defined the fGn simply as the discrete time increment process of fBm (Def. 3.15).
However, the term fractional Gaussian noise, or Gaussian white noise, is also associated to the fractional
Brownian motion time derivative

ḂH(t) = lim
δt→0

BH(t + δt)− BH(t)
δt

, t ≥ 0, (3.44)

or Brownian motion derivative Ḃ. But, even if such a process could be approximated to any desired
degree of accuracy by its discrete time counterpart, it cannot be defined by (eq. 3.44). Indeed, the sample
paths are almost surely not differentiable anywhere (Prop. 3.9). We will come back later on this problem.
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3.7.4 Aggregation of fBms

We have seen that fBm is a Gaussian H-sssi process with 0 < H < 1. We can construct Gaussian self
similar processes with Hurst parameter H greater than one simply taking linear averages of fBm. More-
over, the obtained process has a number of well defined time derivatives (vide infra). Let {BH(t)}t≥0,
be a standard fractional Brownian motion; i.e. for each t > 0 we require E(BH(t)2) = t2H . It is possible
to define a process YH , such that:

YH(t) =
∫ t

0
BH(s)ds, t ≥ 0. (3.45)

Therefore, YH is a Gaussian process and, heuristically, it is self similar with Hurst parameter H′ = H + 1.
For instance, for any a > 0 and t > 0:

YH(at) =
∫ at

0
BH(s)ds

(with the change of variables s = as′)

= a
∫ t

0
BH(as′)ds′ =

d
aH+1

∫ t

0
BH(s′)ds′.

However, YH is no longer a stationary increment process. We want here briefly to study the covariance
structure of the process YH .

Example 3.10. Let H = 1/2, in this case we have a standard Brownian motion and

Y(t) =
∫ t

0
B(s)ds.

In this case, it is very easy to evaluate the variance of the process. For instance, let us introduce the time
grid

GN
δt = {ti = iδt, i = 0, 1, . . . , N − 1}, δt = t/(N − 1).

Thus, one could write

Y(t) = lim
N→∞

N−1

∑
i=0

B(ti)δt.

Therefore,
E(Y(t)2) = lim

N→∞
∑
i,j

min(ti, tj)δt

and one is looking for the limit of:

δt2
N−1

∑
j=0

(
j

∑
i=0

ti +
N−1

∑
i=j+1

tj

)
= δt2

N−1

∑
j=0

(
j(j + 1)

2
δt + (N − j− 2)jδt

)

=
δt3

2

N−1

∑
j=0

(
2Nj− j2 − 3j

)
=

δt3

2

(
N2(N − 1)− (N − 1)3

3
− (N − 1)2

2
− N − 1

6
− 3

N(N − 1)
2

)
.

Which, taking N → ∞, becomes:

E(Y(t)2) =
t3

3
.
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Remark 3.25. We could have used directly the definition:

E(Y(t)2) =
∫ t

0

∫ t

0
min(u, s)duds =

∫ t

0

[∫ u

0
sds +

∫ t

u
uds
]

du

=
∫ t

0

[
u2

2
+ u(t− u)

]
du =

t3

3
.

In the general case 0 < H < 1, we have:

1. YH(0) = 0 a.s.

2. EH(Y(t)) = 0 for any t ≥ 0,

3. E(YH(t)2) =
t2H+2

2H + 2
for any t ≥ 0.

3. For any t, s > 0:

E(YH(t)YH(s)) =
1

2(2H + 2)(2H + 1)

[
(2H + 2)(ts2H+1 + st2H+1) + |t− s|2H+2 − t2H+2 − s2H+2

]
.

(3.46)

The first two are obvious, the third comes from the fourth. In order to show (eq. 3.46), we have to
evaluate:

1
2

∫ t

0

∫ s

0

(
u2H + v2H − |u− v|2H

)
dudv,

which easily gives (eq. 3.46). Summarizing: suppose to have a standard fractional Brownian motion BH
with Hurst parameter 0 < H < 1, then the aggregating process:

YH(t) =
∫ t

0
BH(s)ds

is Gaussian with zero mean and autocovariance given by (eq. 3.46). This means that YH is self-similar
with parameter H′ = H + 1 and variance t2H+2/(2H + 2).

Example 3.11. We define the time average process

AH(t) =
1
t

YH(t) =
1
t

∫ t

0
BH(s)ds, t > 0. (3.47)

Then, AH is a Gaussian self similar process of order 0 < H < 1, and autocovariance matrix:

E(AH(t)AH(s)) =
1

2ts(2H + 2)(2H + 1)

[
(2H + 2)(ts2H+1 + st2H+1) + |t− s|2H+2 − t2H+2 − s2H+2

]
,

(3.48)
with t, s > 0.

Remark 3.26. The trajectories of YH are clearly continuous and also differentiable. Heuristically, we
have:

ẎH(t) = BH(t), t ≥ 0. (3.49)

Indeed, for any real h, the process

∆hYH(t) =
Y(t + h)−Y(t)

h
, t ≥ 0,
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Figure 3.3: Paths of YH(t), the time average AH(t) and the fBm BH(t) for H = [0.4, 0.8].

is Gaussian with zero mean and autocovariance function (see eq. 3.46):

E(∆hYH(t)∆hYH(s))
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=
1

2(2H + 2)(2H + 1)

{
(2H + 2)

(t + h)2H+1 − t2H+1

h
+

(s + h)2H+1 − s2H+1

h

}
− 1

2(2H + 2)(2H + 1)

{
|t− s + h|2H+2 − 2|t− s|2H+2 + |t− s− h|2H+2

h2

}
.

Therefore, as h goes to zero, one finds (eq. 3.36) with σ2 = 1. Thus, by Corollary 3.2, we must have
(eq. 3.49).

Example 3.12. The time average process AH(t), t ≥ 0. It is “differentiable” and we have:

ȦH(t) =
BH(t)− AH(t)

t
, t ≥ 0, (3.50)

which could be seen as the “instantaneous rate of change” of BH(t) from the average up to time t, AH(t).
The variance is:

E(ȦH(t)2) =
t2H−2

2H + 2
. (3.51)

3.8 Linear processes

Let (Ω,F ,Ft, P) be a filtered probability space and let X(t), t ∈ Z, be an adapted discrete time stochastic
process defined on it. The process X(t) is called a linear process if it can be expressed as a linear super-
position of past and futures values of a Ft-measurable white-noise process ε = {εt, t ∈ Z}, sometimes
called innovation process. In the following we consider only zero-mean innovation processes, we write
εt = WN(0, σ2). Therefore, we define:

Def. 3.16 (Linear processes). The process X(t) is called linear stochastic process if

Xt =
∞

∑
j=−∞

ct−jεj =
∞

∑
j=−∞

cjεt−j, j ∈ Z

where {cj}j∈Z ∈ R. In order to have a stationary process, we require that

∞

∑
j=−∞

c2
j < ∞. (3.52)

The linear process X is causal if cj = 0 for any j < 0. Indeed, in this case X(t) is defined only by the
“present” and the “past” of the innovation process. Clearly, only in this case X(t) can be Ft-measurable.
The process X is Gaussian if for any i ∈ Z, εi ∼ N(0, σ2), that is provided that the innovation process is
a Gaussian white-noise.

Remark 3.27. By (eq. 3.52), a linear stochastic process is a second-order stationary process5. Moreover,
it is stationary if it is Gaussian.

The causal process X(t) is called invertible if the innovation εt can be expressed as a convergent sum
of past and future values of Xt. Namely,

εt =
∞

∑
j=0

πjXt−j, (3.53)

where ∑ | πj |< ∞.

5) A second order stationary process, or a wide-sense statioanry process, is a process with finite
and constant mean and variance, and with covariance γ(t, s) that depends only on |t − s|
(see Remark widest).
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Figure 3.4: A collection of trajectories of of ȦH(t) for H = 0.8 (top figure) and H = 0.4 (bottom figure).
Observe the blow up of the variance for small t.
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Remark 3.28. This property is actually connected to the possibility of making future forecasting. In fact,
the invertible property of the linear process X allows to explicit X(t) as a function of X(s), s < t.

Example 3.13 (Linear Markov processes). Consider a Gaussian causal linear process:

X(t) =
∞

∑
j=0

c(j)ε(t− j).

By (eq. 3.15), one finds that X is Markovian if and only if for any s ≤ w ≤ t one has ρ(t − s) =
ρ(t− w)ρ(w− s). That is, after a little algebra, if and only if

∞

∑
j=0

c(j)c(j + s− t) =

∞

∑
j,l=0

c(j)c(l)c(j + w− t)c(l + s− w)

∞

∑
j=0

c(j)2
. (3.54)

For instance, choose c(j) = φj with |φ| < 1. Then, one has

X(t) =
∞

∑
j=0

φjε(t− j). (3.55)

In this case, equation (3.54) is clearly satisfied, so that X(t) is a Markov process.

Example 3.14 (Moving average processes). A process X(t), t ∈ Z, is called (Gaussian) moving average
process of order q > 0, shortly MA(q), if:

Xt =
q

∑
j=0

θjεt−j = Θ(B)εt, (3.56)

where εt is a zero mean Gaussian white-noise with variance σ2
ε . The operator Θ(B) is called moving

average operator of order q and is actually a polynomial function of the “backward” operator Bεt = εt−1.
The following properties are straightforward:

◦ Xt is stationary with E(Xt) = 0 and Var(Xt) = σ2
ε ∑

q
j=0 θ2

j .

◦ The autocorrelation function γ(k)
γ(0) = E(Xt+kXt)

γ(0) is

ρk =
∑

q−k
j=0 θjθj+k

∑
q
j=0 θ2

j

for k ≤ q and zero for k > q.

Remark 3.29. We observe that different moving average processes can have the same autocorrelation
function. However, this ambiguity is avoided if we require the process to be invertible. An MA(q)
process Xt = Θ(B)εt is invertible if the roots zi of the characteristic function Θ(z) = 0 with z ∈ C are
outside the unite circle. Namely, | zi |> 1.
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Example 3.15 (Autoregressive processes). A process {Xt} is called (Gaussian) autoregressive process of
order p > 0, shortly AR(p), if:

Xt =
p

∑
j=1

φjXt−j + εt, (3.57)

where εt is a Gaussian white noise as in the previous example. We have that:

◦ Xt is always invertible with εt = Φ(B)Xt.

◦ Xt is stationary if and only if the roots of the characteristic equation Φ(z) = 0 are outiside the unite
circle.

◦ The autocorrelation function is given by the so called Yule-Walker equation ρk = φ1ρk−1 + φ2ρk−2 +
· · ·+ φpρp−k, with k > 0.

3.8.1 ARMA processes

The above examples are particular cases of the so called ARMA(p, q) processes.

Def. 3.17. Let Y = {Yt}t∈Z be a discrete time stochastic process defined on the probability space
(Ω,F ,Ft, P). Then, Y is called (Gaussian) ARMA(p, q) process if it verifies the following equation:

Yt − φ1Yt−1 − · · · − φpYt−p = εt − θ1εt−1 − · · · − θqεt−q, t ∈ Z (3.58)

where {φj}j=1,...,p and {θj}j=1,...,q are real numbers, p, q ∈ N ∪ {0} and where {εt}t∈Z is a Gaussian
white-noise.

If one introduces the operators:

Φp(B) = 1− φ1B− · · · − φpBp,

Θq(B) = 1− θ1B− · · · − θqBq.

Thus, the above equation reads:
Φp(B)Yt = Θq(B)εt. (3.59)

ARMA(p,q) properties

Let Y = {Yt}t∈Z be an ARMA(p,q) process, then:

1. Y is causal and Ft-adapted.

2. Y is stationary if the solutions of the characteristic equation Φp(z) = 0 are outside the unit circle.

3. Y is invertible if the solutions of the characteristic equation Θq(z) = 0 are outside the unit circle.

4. The autocovariance function tends to zero with a behavior depending of the nature of the roots of
the autoregressive polynomial Φp(z); the decay is fast if the autoregressive component is station-
ary.

The last property is entailed in the following result [1]:
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Prop. 3.12. Let Y be a stationary ARMA(p, q). Then, the autocovariance function γ(k) tends exponentially to
zero as k → ∞:

γ(k) ∼ csk, k → ∞ (3.60)

where c > 0 and 0 < s < 1.

Example 3.16 (Short memory). The AR(1) process

X(t) = φX(t− 1) + εt,

sometimes used as the prototype of a Markovian process, is a stationary process provided that |φ| < 1.
It actually corresponds to the process defined in (eq. 3.55). In fact, one can write:

(1− φB)Xt = εt =⇒ Xt = (1− φB)−1εt =
∞

∑
j=0

φjBjεt

which is (eq. 3.55). In this case, the autocorrelation function is simply ρ(k) = γ(k)/γ(0) = φk. This
exponential behavior, which is (asymptotically) a characteristic of the whole stationary ARMA class
processes (see Prop. 3.12), is usually used to explain the idea of short-memory processes. Otherwise, the
so called long-memory processes have a power-decay correlation function (see Chapter 6).

3.8.2 FARIMA processes

The so called FARIMA processes are Gaussian linear causal processes specified by three real parameters

FARIMA(p, d, q), p, q ∈ Z∪ {0}, d ∈ R.

We start defining FARIMA(0,d,0) processes.

Def. 3.18. A discrete stochastic process X = {Xt}t∈Z, defined on the probability space (Ω,F ,Ft, P), is
called FARIMA(0,d,0) if satisfies:

∆dXt = (1− B)dXt = εt, (3.61)

where {εt}t∈Z is a Gaussian white-noise with variance σ2 and B is the lag (or backward) operator.

Remark 3.30. We observe that if d were an integer number, the process X could heuristically be ob-
tained integrating d times the innovation process. Such processes are indeed called integrated ARMA
processes, shortly ARIMA. For instance the ARIMA(0,1,0) process can be seen just as a “digital” Brown-
ian motion. If one let d be real, then one could speak about fractional integrated ARMA processes, and
from that actually derives the FARIMA acronym.

Let now X = {Xt}t∈Z be a FARIMA(0,d,0) process. Then, it has the following properties:

1. X is causal and Ft-adapted.

2. X is stationary if and only if d < 1/2.

3. X is invertible if and only if d > −1/2.

4. If X = {Xt}t∈Z is a FARIMA(0,d,0) with −1/2 < d < 1/2, thus

γ(0) = σ2 Γ(1− 2d)
Γ2(1− d)

. (3.62)
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5. Furthermore,

γ(k) = σ2 Γ(k + d)Γ(1− 2d)
Γ(k− d + 1)Γ(d)Γ(1− d)

. (3.63)

In fact, let X = {Xt}t∈Z be a solution of (eq. 3.61). Then,

Xt = (1− B)−dεt =
∞

∑
j=0

bjBjεt =
∞

∑
j=0

bjεt−j,

where b0 = 1 and bj are the generalized binomial coefficients

bj = (−1)j Γ(1− d)
Γ(j + 1)Γ(1− j− d)

=
Γ(j + d)

Γ(j + 1)Γ(d)
=

j

∏
k=1

k− 1 + d
k

, j ∈ N, (3.64)

which is easily obtained using the Euler reflection formula for the gamma function

Γ(1− z) =
π

sin πzΓ(z)
. (3.65)

In order to have stationarity we must have {bj}∈N ∈ l2. Using Stirling’s formula,

Γ(p) ∼
√

2πe−p+1(p− 1)p−1/2, p → ∞

on has:

bj ∼
jd−1

Γ(d)
, j → ∞.

Then, it is necessary that ∑j j2(d−1) < ∞. That is, 2(d− 1) + 1 < 0 and thus d < 1/2.

Moreover, the process X is invertible if it is convergent the series:

∆dXt = εt =
∞

∑
j=0

πjBjXt,

where:

πj =
j

∏
k=1

k− 1− d
k

=
Γ(j− d)

Γ(j + 1)Γ(−d)
, j ∈ N. (3.66)

If one imposes that {πj}∈N ∈ l2, one finds d > −1/2.

Finally, in order to show (eq. 3.62) and (eq. 3.63) we cross-refer to (Remark 5.16).

One of the noteworthy property of FARIMA processes is the asymptotic behavior of the autocovari-
ance function. In fact, let X = {Xt}t∈Z be a FARIMA(0,d,0) process with −1/2 < d < 1/2, then:

γ(k) ∼ c | k |2d−1, k → ∞, (3.67)

where

c = σ2 Γ(1− 2d)
Γ(d)Γ(1− d)

.

The above equation follows from (eq. 3.63) and from Stirling’s formula.
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Remark 3.31. Observe that the asymptotic behavior (eq. 3.67) of the FARIMA autocovariance has the
same powek-like behavior of the fGn autocovariance (eq. 3.43) provided that H = d + 1/2.

The above formal identification of the FARIMA parameter d with H is entailed in the following result
which relate FARIMA processes to fBm [12].

Prop. 3.13. Let {Xt}t∈Z be a FARIMA(0,d,0) process with 0 < d < 1/2, then

1
nH

[nt]

∑
j=1

Xj → BH(t), n → ∞, (3.68)

where H = d + 1/2, [x] is the integer part of x and {BH(t)}t∈R is a fBm defined in the same probability space of
X. The convergence has to be meant in the sense of finite dimensional distributions.

Finally, a general FARIMA(p,d,q) is defined below.

Def. 3.19. A stochastic process X = {Xt}t∈Z, defined in the filtered space (Ω,F ,Ft, P), is called
FARIMA(p,d,q) if satisfies:

Φp(B)∆dXt = Θq(B)εt; (3.69)

where Yt = ∆dXt is an ARMA(p,q) process.

As we shall see later, a FARIMA(p,d,q) process combines the long-memory power-like asymptotic
behavior of the correlation function of the fractional component FARIMA(0,d,0) with the flexibility in
modeling short range correlation of an ARMA(p,q) process. We end this section summarizing the prin-
cipal properties of a FARIMA(p,d,q) process.

Let X = {Xt}t∈Z be a FARIMA(p,d,q) process, then:

1. X is stationary if and only if d < 1/2 and the roots of the characteristic autoregressive polynomial
Φp(z) are outside the unit circle.

2. X è invertibile if and only if d > −1/2 and the roots of the characteristic moving average polyno-
mial Θq(z) are outside the unit circle.

3. The X covariance structure depends on the value of the d parameter and on the value of the roots
of the characteristic polynomials.
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4 Introduction to stochastic integration

If we introduce some randomness in the coefficients of a differential equation, we could obtain a more
realistic mathematical model. For instance, consider the simple population growth model:

dN(t)
dt

= r(t)N(t), N(0) = N0, (4.1)

where N(t) is the size of the population at time t ≥ 0 and r(t) is the relative rate of growth. It might
happen that r(t) is not completely known but subjected to some random environmental effects. So that,
we have:

r(t) = r0(t) + noise, t ≥ 0, (4.2)

where we do not know the exact behavior of the noise term but only its probability distribution. The
function r0(t) is assumed non-random. Then, one obtains the following equation:

dN(t)
dt

= (r0(t) + noise) · N(t), t ≥ 0. (4.3)

More generally, we consider equations of the form:

dXt

dt
= a(t, Xt) + σ(t, Xt) · Zt, t ≥ 0. (4.4)

Based on many situations, for example in engineering, one is led to assume that the process Z(t), t ≥ 0,
defined on certain probability space (Ω,F , P), has, at least approximately, the following properties:

1. for any t1 6= t2 the r.v.s Z(t1) and Z(t2) are independent.

2. Z(t) is a stationary process.

3. EX(t) = 0.

However, it turns out that there does not exist any “reasonable” stochastic process satisfying the above
properties. Nevertheless, as we shall see later, it is possible to represent Z(t) as a generalized stochastic
process called white noise process (see for instance Remark 3.24 concerning Gaussian white noise).

Here, we will avoid this kind of construction and rather we will try to rewrite (eq. 4.4) in a form that
suggests a replacement of Z(t) by a proper stochastic process. Consider a time grid Iδt = {tk = kδt, k ≥
0}, with δt > 0, then we can take a discrete version of (eq. 4.4):

Xk+1 − Xk = a(tk, Xk)δt + σ(tk, Xk)Zkδt. (4.5)

We replace Wkδt by ∆Vk = Vk+1 − Vk, where {Vt, t ≥ 0} represents some suitable stochastic process.
The conditions 1, 2 and 3 on Zt suggest that Vt have stationary independent increments with zero mean.
However, the only such process which has continuous paths is the Brownian motion B(t), t ≥ 0 [3]. We
obtain:

Xk = X0 +
k−1

∑
j=0

a(tj, Xj)δt +
k−1

∑
j=0

σ(tj, Xj)∆Bj. (4.6)



80 4 Introduction to stochastic integration

Is it possible to show that the limit of the right hand side of (eq. 4.6) exists indeed, “in some sense”,
when δt → 0. Then, by applying the usual integration notation, we can write:

Xt = X0 +
∫ t

0
a(s, Xs)ds + “

∫ t

0
σ(s, Xs)dBs”. (4.7)

In the following we shall prove the existence of “
∫ t

0 f (s, ω)dBs(ω)”, ω ∈ Ω, for some suitable function
f : [0, ∞)×Ω → R. Suppose 0 < S < T and let f (t, ω) be given. We want to define:∫ T

S
f (t, ω)dBt(ω).

It is reasonable to start with a definition for a simple class of functions. Then, we will extend this
definition by using some approximation procedure. Let {ek, k ≥ 0} be a sequence of real random
variables, and consider a function of the form

ϕ(t, ω) = ∑
k≥0

ek(ω)1[k2−n ,(k+1)2−n)(t), n ∈ N. (4.8)

In this case it is reasonable to define:∫ T

S
ϕ(t, ω)dBt(ω) = ∑

k≥0
ek(ω) (B(tk+1)− B(tk)) (ω), (4.9)

where:

tk = t(n)
k =

 k2−n, S ≤ k2−n ≤ T,
S, k2−n < S,
T, k2−n > T.

(4.10)

As shown in the example below, we will need some hypothesis on the r.v.s {ek} in order to avoid many
problems.

Example 4.1. Let
φ1(t, ω) = ∑

k≥0
Bk(ω)1[k2−n ,(k+1)2−n)(t)

φ2(t, ω) = ∑
k≥0

Bk+1(ω)1[k2−n ,(k+1)2−n)(t).

With these choices one has:

E
(∫ T

0
φ1dBt

)
= ∑

k≥0
E(Bk(Bk+1 − Bk)) = 0,

whereas:

E
(∫ T

0
φ2dBt

)
= ∑

k≥0
E(Bk+1(Bk+1 − Bk)) = T.

Therefore, even if both φ1 and φ2 appear to be very reasonable approximations of f (t, ω) = Bt(ω), their
stochastic integrals (eq. 4.9) are not close to each other no matter how large n is taken.

Remark 4.1. This only reflects the fact that the variations of the paths of Bt are too big to enable us
to define the integral in the Riemann-Stieltjes sense. In fact, the paths t → Bt of Brownian motion are
nowhere differentiable, almost surely. In particular, the total variation of the paths is infinite, a.s (see [6]).
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In general is natural to approximate a given function f (t, ω) by

f (t, ω) = ∑
k≥0

f (t∗k , ω)1[tk ,tk+1)(t),

where the t∗k ∈ [tk, tk+1), then one can define the integral
∫ T

S f (t, ω)dBt(ω) as a suitable limit of
∑ f (t∗k , ω)(Bk+1 − Bk)(ω). However, the example above shows that, unlike the Riemann-Stieltjes in-
tegral, the definition depends on the choice of the points t∗k . The following two choices have turned out
to be the most useful ones:

1. t∗k = tk (left end point), which leads to the Ito integral.

1. t∗k = tk+1+tk
2 (mid point), which leads to the Stratonovic integral.

Notation 4.1. We shall denote the Ito integral simply by:∫ T

S
f (t, ω)dBt(ω), (4.11)

and the Stratonovic integral by: ∫ T

S
f (t, ω) ◦ dBt(ω). (4.12)

Remark 4.2. In any case, one must restrict oneself to a special class of functions f (t, ω) in order to obtain
a reasonable definition of the integral, even if they have the particular form of (eq. 4.8).

Therefore, let us consider the filtered probability space (Ω,F ,Ft, P), where {Ft}t≥0 is the natural filtra-
tion of the Bm B(t), t ≥ 0. We introduce the following class of functions.

Def. 4.1. Let V(S, T) be the class of real measurable functions f (t, ω), defined on [0, ∞)×Ω, such that:

1. f (t, ω) is Ft-adapted.

2. E
(∫ T

S f (t, ·)2dt
)

< ∞.

4.1 Ito integral

Let f ∈ V(S, T). We want to define the Ito integral of f in the interval [S, T). Namely:

I( f )(ω) =
∫ T

S
f (t, ω)dBt(ω), (4.13)

where Bt is a standard (E(B(1)2) = 1) one dimensional Brownian motion. We begin defining the integral
for a special class of functions:

Def. 4.2 (Simple functions). A function ϕ ∈ V(S, T) is called simple function (or elementary), if it can be
expressed as a superposition of characteristic functions.

ϕ(t, ω) = ∑
k≥0

ek(ω)1[tk ,tk+1)(t), (4.14)

where tk is defined as in (eq. 4.10) and {ek}k≥0 is a sequence of r.v.s defined on (Ω,F , P), such that
P(ek = ek−1) = 0 for any k ≥ 0.
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Remark 4.3. In order to have ϕ ∈ V we must have that ek be Ftk -measurable. Indeed, ϕ(tk, ω) = ek(ω).
For instance, in (Exa. 4.1) the function Φ1 is simple, while Φ2 is not.

Remark 4.4. Moreover, observe that ek ∈ L2(Ω, P) and one has:

E
(∫ T

S
ϕ(t, ·)2dt

)
= ∑

k≥0
E(e2

k)(tk+1 − tk). (4.15)

Let ϕ ∈ V(S, T) be a simple function of the form of (eq. 4.14), then we define the stochastic integral
according to (eq. 4.9): ∫ T

S
ϕ(t, ω)dBt = ∑

k≥0
ek(ω)(Btk+1 − Btk )(ω); (4.16)

Example 4.2. One has: ∫ T

S
dBt = BT − BS.

Indeed, it follows from the definition by setting ϕ = 1[S,T).

We have the noteworthy result:

Lemma 4.1 (Ito isometry). Let ϕ ∈ V(S, T) be a simple function, then:

E
(( ∫ T

S
ϕ(t, ·)dBt

)2
)

= E
( ∫ T

S
ϕ(t, ·)2dt

)
. (4.17)

Proof: by definition:

E
(( ∫ T

S
ϕ(t, ·)dBt

)2
)

= E

(
∑
k≥0

∑
h≥0

ekeh∆Bk∆Bh

)

= E

(
∑
k≥0

e2
k∆B2

k

)
+ E

(
2 ∑

k<h
ekeh∆Bk∆Bh

)
= ∑

k≥0
E(e2

k)(tk+1 − tk),

because ek is independent of ∆Bk and ekeh∆Bk is independent of ∆Bh when k < h. Then, using (eq. 4.15)
one has the result. �

Remark 4.5. Observe that (eq. 4.17) is indeed an isometry. In fact, it can been written as equality of
norms in L2 spaces: ∥∥∥ ∫ T

S
ϕ(t, ·)dBt

∥∥∥
L2(Ω,P)

= ‖ϕ‖L2([S,T]×Ω).

We have the following important proposition.

Prop. 4.1. Let f ∈ V , then there exists a sequence of simple functions φn ∈ V , n ∈ N, which converges to f in
the L2-norm. Namely,

lim
n→∞

∫ T

S
E
(
( f (t, ·)− φn(t, ·))2

)
dt = lim

n→∞
|| f − φn||2L2([S,T]×Ω) = 0. (4.18)

Proof: We give te proof when f (t, ω) is continuous on [S, T] for each ω ∈ Ω. In this case consider:

φn(t, ω) = ∑
k≥0

f (ξk, ω)1[tk ,tk+1)(t), (4.19)



4.1 Ito integral 83

with tk given by (eq. 4.10) and where

ξk ≡ ξ
(n)
k = λtk+1 + (1− λ)tk, 0 ≤ λ ≤ 1. (4.20)

Then, φn(t, ω) converges as n → ∞ to f (t, ω) in the L2([S, T]×Ω) norm. In fact, since f (·, ω) is uni-
formly continuous1 for each ω ∈ Ω, for any ε > 0 there exists nε > 0 such that for any n > nε∫ T

S
( f (t, ω)− φn(t, ω))2dt = ∑

k≥0

∫ tk+1

tk

( f (t, ω)− f (ξk, ω))2dt < ε(T − S).

Hence, E(
∫ T

S ( f − φn)2dt) → 0 as n → ∞ by bounded convergence. If we require φn ∈ V , then we must
have λ = 0 and this is indeed the Ito condition (see Remark 4.3). For the general case see [5]. �

Given f ∈ V(S, T), the proposition above, together with Ito isometry, implies that the sequence{∫ T
S φn(t, ω)dBt(ω), n ∈ N

}
is Cauchy on L2(Ω, P). So that, it converges to a limit in L2(Ω, P). We

call this limit the Ito integral of f . Summarizing:

Def. 4.3 (Ito integral). Let f ∈ V(S, T). The Ito integral from S to T of f is defined as the L2(Ω, P) limit:

I( f ) =
∫ T

S
f (t, ω)dBt(ω) = lim

n→∞

∫ T

S
φn(t, ω)dBt(ω), (4.21)

where φn ∈ V , n ∈ N, is a sequence of simple functions which converges to f in L2([S, T]×Ω).

Remark 4.6. Observe, in view of (eq. 4.18), that the definition above does not depend on the actual
choice of {φn, n ∈ N}.

By definition, we have that Ito isometry holds for Ito integrals:

Cor. 4.1 (Ito isometry for Ito integrals). Let f ∈ V(S, T), then:

E
(( ∫ T

S
f (t, ·)dBt

)2
)

= E
( ∫ T

S
f (t, ·)2dt

)
. (4.22)

Moreover,

Cor. 4.2. If fn(t, ω) ∈ V(S, T) converges to f (t, ω) ∈ V(S, T) as n → ∞ in the L2([S, T]×Ω)-norm, then:∫ T

S
fn(t, ·)dBt →

∫ T

S
f (t, ·)dBt, (4.23)

in the L2(Ω, P)-norm.

Example 4.3. Consider f (t, ω) = Bt(ω). Then, one has

∫ t

0
BsdBs =

B2
t

2
− t

2
. (4.24)

In fact, the sequence of simple functions φn(t, ω), such that:

φn(t, ω) = ∑
k≥0

Bk(ω)1[tk ,tk+1)(t), (4.25)

1) f (·, ω), ω ∈ Ω, is continuous on a compact then, using Heine-Cantor theorem, it is also
uniformly continuous.
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converges in the L2-norm to Bt(ω). Thus,∫ t

0
BsdBs = lim

n→∞

∫ t

0
φn(s, ·)dBs = lim

ε→0
∑
k≥0

Bk∆Bk,

where ε = 2−n (see eq. 4.10). We observe that:

∆(B2
k) = ∆B2

k + 2Bk∆Bk ⇒ B2
t = ∑

k≥0
∆B2

k + 2 ∑
k≥0

Bk∆Bk.

Therefore, ∫ t

0
BsdBs =

B2
t

2
− 1

2
lim
ε→0

∑
k≥0

∆B2
k ,

and the result follows from the fact that the so called quadratic variation of Bt is

〈B〉t := lim
ε→0

∑
k≥0

∆B2
k = t, a.s. (4.26)

In fact,

E

[(
∑
k≥0

∆B2
k − t

)2
]

= ∑
k≥0

E
[
(∆B2

k − ε)2
]
+ 2 ∑

k<j
E
[
(∆B2

k − ε)(∆B2
j − ε)

]
,

the right hand side is zero for independence, whereas the left hand side goes to zero when ε → 0. In
fact,

∑
k≥0

E
[
(∆B2

k − ε)2
]

= ∑
k≥0

E(∆B4
k)− εt = 2tε.

Remark 4.7. Observe that if in the previous example we had taken the right end point approximation of
Bt we would have obtained:

lim
ε→0

∑
k≥0

Bk+1∆Bk =
B2

t
2

+
t
2

. (4.27)

Looking at Example 4.1, the latter corresponds to φ2 (or λ = 1 in (eq. 4.20)), while the choice in Example
4.3 corresponds to φ1 (λ = 0).

The extra term in (eq. 4.24) shows that the Ito stochastic integral does not behave like an ordinary
integral. In the following we will establish the Ito formula, which explains this result and which makes
easy the evaluation of many stochastic integrals.

4.1.1 Properties of the Ito integral

First we observe the following:

Prop. 4.2. Let f , g ∈ V(0, T) and let 0 ≤ S < U < T . Then:

i.
∫ T

S
f dBt =

∫ U

S
f dBt +

∫ T

U
f dBt.

ii. For some constant a ∈ R,
∫ T

S
(a f + g)dBt = a

∫ T

S
f dBt +

∫ T

S
gdBt.

iii. E
[∫ T

S
f dBt

]
= 0.
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iv.
∫ T

S
f dBt is FT-measurable.

v. The process Mt(ω) =
∫ t

0
f (t, ω)dBs(ω), where f (t, ω) ∈ V(0, t) for any t > 0, is a martingale with

respect to Ft.

Proof: These properties clearly holds for all simple functions, so that, by taking limits, we obtain them
for all f , g ∈ V(0, T). Let us check just the martingale property. Mt is Ft-measurable. Moreover, Mt is
also integrable. Indeed, using Hölder inequality:

E(|Mt|)2 ≤ E(M2
t ) = E

(∫ t

0
f 2(s, ·)ds

)
< ∞,

where we have used the Ito isometry and the fact that f ∈ V . Let 0 < s < t. Then,

E(Mt | Fs) = E(Ms | Fs) + E
(∫ t

s
f (τ, ·)dBτ | Fs

)
= Ms,

because Ms is Fs-measurable, whereas:

E
(∫ t

s
f (τ, ·)dBτ | Fs

)
= lim ∑

k≥0
E( f (tk, ·)(Btk+1 − Btk ) | Fs)

(being f (tk, ·) and Btk+1 − Btk independent)

= lim ∑
k

E( f (tk, ·) | Fs)E(Btk+1 − Btk | Fs) = 0

because Btk+1 − Btk is independent of Fs and s ≤ tk for any k. �

4.1.2 Extensions of Ito integral

The construction of the Ito Integral can be extended to a class of function f (t, ω) which satisfies a
weak integration condition. This generalization is indeed necessary because it is not difficult to find
functions which do not belong to V . For instance, take a function of Bm which increase rapidly
f (t, ω) = exp(Bt(ω)2). Therefore, we introduce the following class of functions:

Def. 4.4. Let W(S, T) be the class of real measurable functions f (t, ω), defined on [0, ∞)×Ω, such that

• 1. f (t, ω) is Ft-adapted.

• 2. P
(∫ T

S f (t, ·)2dt < ∞
)

= 1.

Remark 4.8. Clearly, V ⊂ W .

In the construction of stochastic integrals for the class of functions belonging to W we can no longer
use the L2 notion of convergence, but rather we have to use convergence in probability (Section 2.3.2).
In fact, for any f ∈ W , one can show that there exists a sequence of simple functions φn ∈ W such that∫ T

S
|φn(t, ·)− f (t, ·)|2dt → 0 (4.28)

in probability. For such a sequence one has that the sequence
{∫ T

S φn(t, ω)dBt(ω), n ∈ N
}

converges
in probability to some random variable. Moreover, the limit does not depends on the approximating
sequence φn. Thus, we may define:
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Def. 4.5 (Ito integral II). et f ∈ W(S, T). The Ito integral from S to T of f is defined as the limit in
probability: ∫ T

S
f (t, ω)dBt(ω) = lim

n→∞

∫ T

S
φn(t, ω)dBt(ω), (4.29)

where φn ∈ W , n ∈ N, is a sequence of simple functions which converges to f in probability.

Remark 4.9. Note that this integral is not in general a martingale. However, it is a local martingale
(see [5]).

4.1.3 Other stochastic integrals

We have seen that the Ito integral of a function f ∈ V is equal to the mean-square limit

lim
n→∞ ∑

k≥0
f (ξ

(n)
k , ω)∆Bk, (4.30)

where ξ
(n)
k = t(n)

k = k2−n, n ∈ N (left end point approximation). We have also pointed out that different

choices of the evaluation points ξ
(n)
k ∈ [t(n)

k , t(n)
k+1) are possible, but generally lead to different random

variables in the limit. Suppose that, like in (eq. 4.20), these evaluation points are chosen such that for
some 0 ≤ λ ≤ 1:

ξ
(n)
k = (1− λ)t(n)

k + λt(n)
k+1. (4.31)

Then, we shall denote the corresponding stochastic integral with:

(λ)
∫ T

S
f (t, ω)dBt(ω), f ∈ V(S, T). (4.32)

Remark 4.10. The case λ = 0 corresponds to Ito integral. The other cases 0 < λ ≤ 1 differ in that the
process they define is no longer a martingale.

Suppose that the integrand f has continuously differentiable sample paths we obtain

f ((1− λ)tk + λtk+1, ω) = (1− λ) f (tk, ω) + λ f (tk+1, ω) + O(ε). (4.33)

Therefore, we see that the (λ)-integrals could be evaluated as the mean-square limit:

lim
n→∞ ∑

k≥0
[(1− λ) f (tk, ω) + λ f (tk+1, ω)] ∆Bk. (4.34)

In th general case the (λ)-integrals are usually defined in terms of the sum above rather than by
(eq. 4.30).

Remark 4.11. When λ = 0 we recover Ito integral, whereas the Stratonovic integral corresponds to the
choice λ = 1/2.

Using (eq. 4.24) and (eq. 4.27), one can easily find:

(λ)
∫ t

0
BsdBs =

1
2

Bt +
(

λ− 1
2

)
t. (4.35)

Unlike any of the others the case λ = 1/2, namely the Stratonovic integral, doest not contain a term in
addition to that given by classical integration. As suggested by the previous argument, the Stratonovic
integral obeys the transformation rules of classical calculus, and this is a major reason for its use. In fact,
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let h : R → R be a continuously differentiable function and consider the Stratonovic integral of h(Bt).
Then, we have: ∫ t

0
h(Bs) ◦ dBs = lim

{
∑
k≥0

h(Bk)∆Bk +
1
2 ∑

k≥0
h′(Bk)[∆Bk]2

}

which converges in the L2-sense to:∫ t

0
h(Bt) ◦ dBt =

∫ t

0
h(Bs)dBs +

1
2

∫ t

0
h′(Bs)ds. (4.36)

Let now U(x) = U(0) +
∫ x

0 h(y)dy. Applying Ito’s formula (see Section 4.2) to the process Yt = U(Bt),
we obtain

dUt = h(Bt)dBt +
1
2

h′(Bt)dt,

that is using (eq. 4.36), ∫ t

0
h(Bs) ◦ dBs = U(Bt)−U(B0),

as in classical calculus. Then, the major advantage of the Stratonovic integral is that it obeys the usual
transformation rules of calculus. For this reason it is often used to formulate stochastic differential
equations on manifolds such as circle or sphere, as is required, for instance, for a stability analysis of
stochastic dynamical systems. Equation (4.36) is also useful for the explicit evaluation of certain Ito
integrals. Stochastic processes defined through Stratonovic integrals are not, however, martingales as
the Ito counterparts are.

4.1.4 Stochastic measures

Let B = {Bt}t≥0 be a Brownain motion defined on the filtered probability space (Ω,F ,Ft, P). Consider
(R,B, m) Euclidean space with the Borel sets and the Lebesgue measure. Let us define:

B0 = {A ∈ B; m(A) < ∞}.

Then,

Def. 4.6. For any A ∈ B0, set:

M(A) =
∫

R
1A(x)dB(x) =

∫
A

dB(x). (4.37)

Therefor, varying A ∈ B0, the family of r.v.s M = {M(A), A ∈ B0} defines a Gaussian real stochastic
process with the following properties:

4.1.4.1 Random measures properties

1. EM(A) = 0, for any A ∈ B0.

2. E
(

M(A)M(B)
)

= 0, if A ∩ B = ∅ and A, B ∈ B0.

3. E
(
|M(A) |2

)
= m(A)2, for any A ∈ B0;

2) We use complex notation looking for a future generalization.



88 4 Introduction to stochastic integration

4. M is σ - additive. That is, for any disjoint collection{Ai}i=1,2,... such that
⋃

i
Ai ∈ B0; then,

M
( ⋃

i
Ai

)
= ∑

i
M(Ai).

Properties 1. and 2. follow directly from the zero mean property of Ito integral. Moreover, 3. is a
consequence of Ito isometry. Finally, 4. follows from linearity.

The process M is called (real Gaussian) random measure.

Notation 4.2 (Control measure). We use the following notation:

E |M(dx) |2= m(dx), E(M(dx)M(dy)) = 0, dx 6= dy.

The Lebesgue measure m is called control measure of the random measure M.

More generally, let (E, E , m) be a measurable space and E0 = {A ∈ E ; m(E) < ∞}.

Def. 4.7 (Random easure). We define random measure (generally complex valued) a stochastic process
M = {M(A), A ∈ E0}, defined on (Ω,F , P), such that it verifies the properties above. The measure m
is the control measure of M.

Example 4.4 (Complex Gaussian random measure). Let M1 and M2 be two real Gaussian independent
random measures such that:

EM1(dx)2 = EM2(dx)2 = m(dx)/2,

then the M = M1 + iM2 defines a random measure and it is called complex Gaussian random measure.

4.1.4.2 Stochastic integration with random measures

By the time we have defined random measures, it is possible, following the steps of the previous sec-
tions, to construct a definition of stochastic integration. We limit ourself to the case of deterministic
integrands. Then, let f be a complex measurable function defined on the measurable space (E, E , m)
such that ϕ ∈ L2(E, m). We suppose that ϕ is a simple function, that is:

ϕ(ξ) =
n

∑
i=1

ci1Ai (ξ), ξ ∈ E,

with {ci}i=1,...,n ∈ C and {Ai}i=1,...,n is a disjoint collection of E0 elements. In this case we define

I(ϕ) =
n

∑
i

ci M(Ai). (4.38)

The following properties are straightforward consequence of the random measure definition:

1. E(I(ϕ)) = 0, for any simple function ϕ ∈ L2(E, m).

2. E | I(ϕ) |2=
∫

E | ϕ(x) |2 m(dx) = ‖ϕ‖2
L2(E,m) (isometry).

3. EI(ϕ)I(φ) =
∫

E ϕ(x)φ(x)m(dx), for any simple functions ϕ, φ.

We know that for any f ∈ L2(E) there exists a sequence of simple functions φn ∈ L2(E, m), n ∈ N,
which converges to f in the L2(E, m)-norm.
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Prop. 4.3. The sequence I( fn), n ∈ N, converges in L2(Ω, P).

Proof: indeed, the sequence φn is Cauchy on L2(E, m). Using the isometry property, for each n, m → ∞:

E | I(φn)− I(φm) |2= ‖φn − φm‖2
L2(E,m) → 0;

Thus, the sequence I(φn) is Cauchy on L2(Ω, P). Given that L2(Ω, P) is a complete space, the sequence
of the integrals converges. �

For any f ∈ L2(E, m), we define the stochastic integral as the limit:

I( f ) =
∫

E
f M(dx) = lim

n→∞
I(φn). (4.39)

Such object is well defined and the properties of the stochastic integral of simple functions still hold.

Example 4.5 (Brownian motion). Let M be a real Gaussian random measure define on R, with control
measure the Lebesgue measure m. For any A ∈ E0:

M(A) ∼ N(0, m(A)).

Moreover, for any sequence { f1, f2, . . . , fn} ∈ L2(R), then the family of r.v.s {I( f1), I( f2), . . . , I( fn)} has
Gaussian distribution with zero mean and covariance matrix:

Σij = E(I( fi)I( f j)) =
∫

R
fi(x) f j(x)dx.

The process

B(t) =
∫ t

0
M(dx), t ≥ 0,

is a standard Brownian motion. In fact, it is Gaussian with autocovariance function given by E(B(t)B(s)) =
min(t, s).
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4.2 One dimensional Ito formula

Example (4.3) shows that the Ito integral basic definition is not very useful if one wants to evaluate a
given stochastic integral. This is very like to what happens in classical calculus. In fact, here, if we
want explicitly to evaluate some integral, we do not use the basic definition, but rather we use the
fundamental theorem of calculus and the chain rule. In stochastic calculus, however, we have not a
differentiation theory, but it is possible to define an Ito version of the chain rule called Ito formula. We
introduce the following class of processes:

Def. 4.8 (Ito processes). Let Xt be a stochastic process, defined on (Ω,F , P), such that for any t ≥ 0:

Xt = X(0) +
∫ t

0
usds +

∫ t

0
vsdBs, (4.40)

where u, v ∈ W . Then, Xt is called (one-dimensional) Ito process.

Notation 4.3. Let Xt be an Ito process, then (eq. 4.40) is usually formally written in the shorter differential
form:

dXt = utdt + vtdBt (4.41)

For instance, (eq. 4.24) can be written:

d
(

B2
t

2

)
=

1
2

dt + BtdBt. (4.42)

We have the following theorem:

Theorem 4.1 (Ito formula). Let g(t, x) ∈ C2(R+ ×R) and let Xt be an Ito process of the form:

dXt = utdt + vtdBt.

Then, the process
Yt = g(t, Xt), t ≥ 0,

is again an Ito process, and the following Ito formula holds:

dYt = dg(t, Xt) =
(

∂tg(t, Xt) + ut∂x f (t, Xt) +
1
2

v2
t ∂xx f (t, Xt)

)
dt + vt∂x f (t, Xt)dBt, (4.43)

or equivalently:

dg(t, Xt) = ∂tg(t, Xt)dt + ∂xg(t, Xt)dXt +
1
2

∂xxg(t, Xt)d〈X〉t, (4.44)

where 〈X〉t =
∫ t

0 v2
s ds is the quadratic variation of the Ito diffusion.

Example 4.6. Chosing g(t, x) = 1
2 x2, we immediately recover (eq. 4.42).

Example 4.7. Suppose g(t, x) = tx and Yt = tBt. Then one has:

dYt = Btdt + tdBt,

which means that: ∫ t

0
sdBs = tBt −

∫ t

0
Bsds. (4.45)
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The latter equation reminds to the integration by parts formula of the classical calculus, and in fact
we have:

Theorem 4.2 (Integration by parts). Suppose ft is continuous with bounded variation3, then:∫ t

0
fsdBs = ftBt −

∫ t

0
Bsd fs. (4.46)

4.2.1 Stochastic differential equations

The inclusion of random effects in differential equations lead to two distinct classes of equations, for
which the solution process have differentiable and non-differentiable paths, respectively.

The first, and simpler, class arises when an ordinary differential equation has random coefficients, a
random initial value or is “forced” by a fairly regular stochastic process, or when some combination
of these holds. These equations are called random differential equations and are solved sample path by
sample path as ordinary differential equations. The sample paths of the solution process are indeed
differentiable.

The second class occurs when the “forcing” process is an irregular stochastic process such as White
noises (see eq. 4.4). These equations are written symbolically as stochastic differential (see Notation 4.3),
but have to be interpreted as stochastic integrals. They are called stochastic differential equations (SDE).
In many applications such equations result for the incorporation of either endogenous or exogenous
random fluctuations in the dynamical description of a system.

Example 4.8 (Langevin equation). For example consider the continuous molecular bombardment of a
speck of dust on a water surface, which result to Brownian motion. The intensity of this bombardment
does not depend on the state variables, for instance position and velocity of the speck. In the one
dimensional case, Langevin wrote the equation so termed Langevin equation:

dXt

dt
= −aXt + σZt (4.47)

for the acceleration of the particle. This is just the sum of a retarding frictional force depending lin-
early on the velocity and the molecular force represented by a white noise process Zt, with intensity σ
independent of the velocity.

We now interpret the Langevin equation (eq. 4.47) symbolically as a stochastic differential equation:

dXt = −aXtdt + σdBt, (4.48)

namely, in terms of Ito integral:

Xt = X0 −
∫ t

0
aXsds +

∫ t

0
σdBs. (4.49)

Remark 4.12. Typically, the random forcing of equation (4.47) or (4.48) is called additive noise. Example
of multiplicative noise is given by the equation

dXt = aXtdt + σXtdBt. (4.50)

3) A process has bounded variation if it has zero quadratic variation.
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Both the cases of the above remark are included in the general form of a (non-autonomous4) stochastic
differential equation, that is:

dXt = a(t, Xt)dt + σ(t, Xt)dBt. (4.51)

Consider then (eq. 4.51) in the interval [t0, T]. This equation has to be interpreted as

Xt = Xt0 +
∫ t

t0

a(s, Xs)ds +
∫ t

t0

σ(s, Xs)dBs, t0 ≤ t ≤ T, (4.52)

where the first integral is a Lebesgue (or Riemann) integral for each sample path and the second is an
Ito integral.

As with deterministic ordinary and partial differential equations, it is important to know whether a
given SDE has a solution, and whether or not it is unique.

Remark 4.13. A solution {X(t), t ∈ [t0, T]} of the above equation must have properties which ensure
that these integrals are meaningful.

Def. 4.9 (Strong and weak solutions). If the version Bt of Brownian motion defined in the filtered prob-
ability space (Ω,F ,Ft, P) is given in advance and the solution Xt constructed from it is Ft-adapted, the
solution is called a strong solution. If we are only given the functions a(t, x) and σ(t, x) and ask for a pair
of processes (Xt, Bt) such that (eq. 4.52) holds, then the solution Xt (or more precisely (Xt, Bt)) is called
a weak solution.

A strong solution Xt can be roughly though of as a functional of the initial value Xt0 and the given
Bm Bs over the subinterval t0 ≤ s ≤ t. Given a specific initial value Xt0 , the uniqueness of solutions
of (eq. 4.51) refers to the almost surely equivalence of the processes that satisfy the stochastic integral
equation (eq. 4.52). If there is a solution, then there will be a separable version which has, almost surely,
continuous sample paths. We consider only these kind of solutions.

The hypothesis of an existence and uniqueness theorem are usually sufficient but not necessary, con-
ditions. Some are quite strong, but can be weakened in several ways. Most of the assumptions concern
the coefficients b, σ : [t0, T]×R → R.

Existence and uniqueness conditions

A1. Measurability: a(t, x) and σ(t, x) are L2-measurable in [t0, T]×R.

A2. Lipschitz condition: there exists a constant K > 0 such that for any ∈ [t0, T] and x, y ∈ R:

|a(t, x)− a(t, y)| ≤ K|x− y|, (4.53)

and
|σ(t, x)− σ(t, y)| ≤ K|x− y|. (4.54)

A3. Linear growth bound: there exists a constant K > 0 such that for any ∈ [t0, T] and x, y ∈ R:

|a(t, x)|2 ≤ K2(1 + |x|2), (4.55)

and
|σ(t, x)|2 ≤ K2(1 + |x|2). (4.56)

4) The coefficients a(t, Xt) and σ(t, Xt) depend on the time t.
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A4. Initial value: Xt0 is Ft0 -measurable with E(|Xt0 |2) < ∞.

Theorem 4.3. Under assumptions A1-A4 the stochastic differential equation (eq. 4.51) has a unique strong
solution Xt on [t0, T].

Variations of the above theorem are possible with weakened assumptions. The most obvious is to drop
the requirement that the initial value Xt0 satisfies condition A4.

4.2.2 Ito diffusions

Actually, the most important and attractive property of the solutions of stochastic differential equations
is that they are usually Markov processes. In fact, in many cases, they are stochastic diffusion processes
(Def. 3.12). Under assumptions A1-A4 the solution Xt of a stochastic differential equation is indeed a
Markov process in the interval [t0, T]. For an autonomous SDE, namely

dXt = a(Xt)dt + σ(Xt)dBt, (4.57)

the solutions Xt are homogeneous Markov processes.

In general, the solution of the stochastic differential equation (eq. 4.51) are diffusion processes, with
transition densities satisfying the conditions of (eq. 3.28–3.30) for the drift a(t, x) and the diffusion coef-
ficient σ(t, x). So that, we have the following

Theorem 4.4. Assume that a(t, x) and σ(t, x) are continuous functions which satisfy the conditions A2–A4 .
Then, for any fixed value Xt0 , the unique solution X(t), t0 ≤ t ≤ T, of the SDE (eq. 4.51) is a diffusion process
on [t0, T] with drift a(t, x) and diffusion coefficient σ(t, x).

Def. 4.10 (Ito diffusion). Such a solution Xt, or more precisely the family of solutions X0,x
t with initial

value X0,x
0 = x a.s. is often called Ito diffusion.

Therefore, the transition densities of an Ito diffusion satisfies the Fokker-Planck equation (eq. 3.33).

Remark 4.14. Observe that, if one let u(t, y) indicate the marginal density function of the Ito diffusion
Xt, starting almost surely in X0 = x, then:

∂tu + ∂y(au)− 1
2

∂yy(σ2u) = 0, (4.58)

with u(y, 0) := u0(y) = δ(y− x).

We have seen that an Ito diffusion is a stochastic diffusion. But, what about the converse problem.
That is, given a diffusion process Yt, with transition densities satisfying a certain Fokker-Planck equa-
tion, is Yt the solution of some stochastic differential equation? In general the answer is negative pro-
vided that the coefficients a(t, x) and σ(t, x) satisfy certain smoothness and boundedness conditions.
Heuristically, if Yt is a stochastic diffusion or even if only the coefficients a and σ are given, one can
always take the SDE

dXt = a(t, Xt)dt + σ(t, Xt)dBt. (4.59)

If the coefficients satisfy A1–A3 and if the initial value is chosen Xt0 = Yt0 , then there will be a solution Xt
for any Wiener process Bt equivalent to the given diffusion Yt in the sense of finite dimensional distribu-
tions. However, in general they will not be sample path equivalent. To guarantee this we must choose
the Brownian motion carefully and we must have additional regularity conditions on the coefficients
(see [5, 2] for more details).
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4.2.3 Examples of SDEs

Let B(t), t ≥ 0, be a one dimensional standard Brownian motion, defined on a certain probability space
(Ω,F , P).

Example 4.9 (Linear additive-noise inhomogeneous SDEs with constant coefficients). Let µ, σ, a ∈ R be
given. Consider the following stochastic differential equation:

dXt = (aXt + µ)dt + σdBt, t ≥ 0. (4.60)

The associated Fokker-Planck equation is:

∂tu(x, t) + (ax + µ)∂xu(x, t)− σ2

2
∂xxu(x, t) + au(x, t) = 0. (4.61)

The process:

Xt = eat
(

X0 +
µ

a
(1− e−at) + σ

∫ t

0
e−asdBs

)
. (4.62)

solves (eq. 4.60). In fact, let yt = e−atXt, then, using Ito formula, one has:

dyt = −aytdt + e−atdXt = µe−atdt + σe−atdBt,

which integrated gives the result. We have the following noteworthy cases:

1. When a = 0 and µ, σ ∈ R we find a Brownian motion with drift µ, namely,

Xt − X0 := B(µ,σ)(t) = µt + σBt, t ≥ 0. (4.63)

That is, Xt may describe a component of the position of a speck dust in a frictionless medium with
starting velocity µ.

2. When µ = 0 and a = −α with α > 0 and σ ∈ R we have:

Xt = e−αt
(

X0 + σ
∫ t

0
eαsdBs

)
, (4.64)

which is the solution of the Langevin equation (eq. 4.48) and may describe the velocity of a particle
in a medium with a friction force depending linearly on the velocity.

3. The case σ = 0 is moot in this context, because reduces to classical equations.

Example 4.10 (Linear multiplicative-noise homogeneous SDEs with constant coefficients). Let µ, σ ∈ R

be given. We consider the following stochastic differential equation:

dXt = µXtdt + σXtdBt, t ≥ 0. (4.65)

The solution of the above SDE is called Geometric Brownian motion and turns out to be:

X(t) := S(t) = S0 exp
[(

µ− σ2

2

)
t + σBt

]
, t ≥ 0. (4.66)

Its marginal density function satisfies the Fokker-Planck equation:

∂tu(x, t) = (σ2 − µ)u(x, t) + (2σ2 − µ)x∂xu(x, t) +
σ2

2
x2∂xxu(x, t), t ≥ 0. (4.67)
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It is easy to show (eq. 4.66). In fact, let yt = log Xt, then:

dyt =
1

Xt
dSt −

1
2X2

t
d〈X〉t =

(
µ− σ2

2

)
dt + σdBt,

which integrated gives (eq. 4.66).

Particular cases are:

1. When µ = σ2/2, with have the Ito exponential stochastic differential equation, which, by setting
σ = 1, reads:

dXt =
1
2

Xtdt + XtdBt, Xt = X0 exp(Bt), t ≥ 0. (4.68)

2. Setting µ = 0 and σ = 1, we have the drift-free SDE:

dXt = XtdBt, Xt = X0 exp
(

Bt −
1
2

t
)

, t ≥ 0. (4.69)

For further examples we refer the interested reader to [2].
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5 Integral representations of some non-Markovian processes

Using the theory of Ito integral introduced in the previous chapter, we want to study some fractional
Brownian motion integral representations based on it. As it turns out, a fBm may be seen as a sort of
“weighted sum” with respect to an ordinary Brownian motion. Finally, we will also study some useful
integral representations of FARIMA processes. Thanks to these representations, we will be able to prove
(eq. 3.63) and to evaluate the spectral density function of FARIMA processes.

5.1 Moving average representation of fBm

Let {B(t), t ∈ R} be a Brownian motion defined on the probability space (Ω,F ,Ft, P). We introduce the
following notation: x+ = max(x, 0). The proposition below provides a first representation of fractional
Brownian motion in terms of stochastic integrals of Brownian motion.

Prop. 5.1 (Moving average representation). Let {BH(t), t ≥ 0} be a standard one-sided fractional Brownian
motion with 0 < H < 1. Then, for any t ≥ 0

BH(t) =
∫

R
ft(x)dB(x) =

1
C1(H)

∫
R

(
(t− x)H− 1

2
+ − (−x)H− 1

2
+

)
dB(x), (5.1)

where:

C1(H) =
(∫ ∞

0

(
(1 + x)H− 1

2 − xH− 1
2

)2
dx +

1
2H

)1/2
(5.2)

=
Γ(H + 1/2)

(Γ(2H + 1) sin πH)1/2 . (5.3)

This representation is called moving average representation.

Remark 5.1. We observe that for H = 1/2 one obtains,

B(t) =
∫ t

0
dBx, t ≥ 0,

that is a standard Bm (see Exa. 4.2).

The function ft(x) is called representation kernel. Moreover, because the integration is carried up to
time t ≥ 0, representation (5.1) is called causal.

Proof: in order for (eq. 5.1) to be well defined is necessary that, for any t ≥ 0, ft(x) ∈ L2(R). Then,
consider H 6= 1/2, one has:

• ft(x) ∼ (H − 1/2)(−x)H−3/2, for x → −∞;

• ft(x) ∼ (t− x)H−1/2
+ , for x → t, and the same for x → 0.

Therefore, for any 0 < H < 1,
∫

R
f 2
t (x)dx < ∞. Namely, ft(x) ∈ L2(R).

We have now to show that a process {X(t), t ≥ 0}, defined by (5.1), is indeed a standard fBm. We
use (Prop. 3.7):
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i) Obviously, X0 = 0 a.s.

ii) Moreover, X(t), t ≥ 0, is a Gaussian process with zero mean and variance:

E(X(t)2) =
1

C2
1(H)

[∫ 0

−∞

(
(t− x)H−1/2 − (−x)H−1/2

)2
dx +

∫ t

0
(t− x)2H−1dx

]
(with the change of variables x = tx′)

=
t2H

C2
1(H)

[∫ 0

−∞

(
(1− x)H−1/2 − (−x)H−1/2

)2
dx +

∫ 1

0
(1− x)2H−1dx

]
= t2H .

iii) Finally, Xt is an si-process. In order to show this, we observe that for any t, s ≥ 0, one has

E(Xt − Xs)2 =
1

C2
1(H)

∫
R

(
(t− x)H−1/2

+ − (s− x)H−1/2
+

)2
dx

=
1

C2
1(H)

∫
R

(
(t− s− x)H−1/2

+ − (−x)H−1/2
+

)2
dx = E(X(t− s))2;

thus,

E(XtXs) =
1
2

[
t2H + s2H− | t− s |2H

]
. (5.4)

This implies that X(t) has stationary increments. In fact, we have to show that, for any real
vector{y1, . . . , yn} and h > 0

exp

[
i

n

∑
k=1

yk{X(tk + h)− X(h)}
]

= exp

[
i

n

∑
k=1

ykX(tk)

]
.

Because that X is a zero-mean Gaussian process we have (see eq. 3.3)

exp

[
∑
ij

yiyjE[X(ti + h)− X(h)][X(tj + h)− X(h)]

]
= exp

[
∑
ij

yiyjE(X(ti)X(tj))

]
,

which is verified because, using (eq. 5.4), one finds

E(Xti+hXtj+h)− E(Xti+hXh)− E(Xtj+hXh) + E(Xh)2 =
1
2

[
t2H
i + t2H

j − | ti − tj |2H
]

= E(Xti Xtj).

Then, X(t), t ≥ 0 is a standard fBm. �

Remark 5.2. Heuristically, we observe that the process {X(t), t ≥ 0} defined by (eq. 5.1), is indeed
self-similar with scaling exponent H. In fact,

X(at) =
1

C1(H)

∫
R

(
(at− x)H−1/2

+ − (−x)H−1/2
+

)
dB(x)

(with the change of variables x = ax′)

=
1

C1(H)

∫
R

(
(at− ax)H−1/2

+ − (−ax)H−1/2
+

)
dB(ax)

=
d aH−1/2a1/2

C1(H)

∫
R

(
(t− x)H−1/2

+ − (−x)H−1/2
+

)
dB(x) = aHXt.
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We can provide several fBm representations. In fact,

Prop. 5.2. For any couple of real numbers a, b, the stochastic integral:

∫
R

[
a
(

(t− x)H− 1
2

+ − (−x)H− 1
2

+

)
+ b

(
(t− x)H− 1

2
− − (−x)H− 1

2
−

)]
dB(x), (5.5)

where x− = −min(x, 0), defines (up to a multiplicative constant) a fractional Brownian motion representation.

Remark 5.3. Setting a =
1

C1(H)
and b = 0, we recover the moving average representation.

Wheno a = b = 1, (eq. 5.5) reduces to the so called well-balanced representation:

BH(t) =
∫

R

(
| t− x |H−1/2 − | x |H−1/2

)
)dB(x). (5.6)

5.2 Spectral representation of fBm

Let ft be the kernel of the moving average representation. Namely,

ft(x) =
1

C1(H)

(
(t− x)H− 1

2
+ − (−x)H− 1

2
+

)
, t ≥ 0.

Since ft ∈ L2(R), one can evaluate its Fourier transform:

f̃t(ν) =
1√
2π

∫
R

eixν ft(x)dx; ft(x) =
1√
2π

∫
R

e−ixν f̃t(ν)dν. (5.7)

Because f̃t ∈ L2(R), it is possible to define an integral representation of fBm based on f̃t(ν):

X̃t =
∫

f̃t(ν)M̃(dν), (5.8)

where M̃ is a suitable complex Gaussian random measure, which satisfies:

M̃(dν) = M̃(−dν), (5.9)

E |M̃(dν) |2= dν. (5.10)

Remark 5.4. The previous conditions, together with the hermitian property of the Fourier transform,

i.e. f̃t(ν) = f̃t(−ν), ensure that the process X̃t is a real valued process.

Remark 5.5. We observe that, if M̃ is a complex Gaussian measure as above, then for any h > 0,

M̃∗(dν) = eiνh M̃(dν),

is another Gaussian measure which still verifies (eq. 5.9) and (eq. 5.10).



102 5 Integral representations of some non-Markovian processes

In order to define the measure M̃, we introduce two independent Brownian motions B(1)
t e B(2)

t , and
we define:

M(i)(A) =
1√
2

∫
A

dB(i)(ν), A ⊂ R+;

while, for any A ⊂ R−:

M(1)(A) = M(1)(−A), M(2)(A) = −M(2)(−A).

Then, we define:
M̃ = M(1) + iM(2). (5.11)

The following proposition holds

Prop. 5.3 (Spectral representation of fBm). Let M̃ be defined as above and let f̃t be the Fourier transform of a
fBm representation kernel ft, for instance (eq. 5.1). Then, the process

X̃t =
∫

R
f̃t(ν)M̃(dν), (5.12)

is a fractional Brownian motion.

This proposition introduces the so called spectral representation of fBm.

Proof: X̃t is a real valued (Remark 5.4) zero mean Gaussian process. Furthermore, let Xt =
∫

ft(x)dB(x),
t ≥ 0, be a fBm of order H, then by using Parseval theorem:

E(Xt1 Xt2) =
∫

R
ft1(x) ft2(x)dx =

∫
R

f̃t1(ν) f̃t2(ν)dν = E(X̃t1 X̃t2).

Therefore, X̃ is a zero mean Gaussian process with the covariance of a fBm of order H. Then, by Corol-
lary 3.2, X̃t is a fBm. �

The following proposition provides an explicit example of f̃t which is obtained starting from the
moving average representation (see Remark 7.46 with κ = H − 1/2).

Prop. 5.4. Let 0 < H < 1 and let BH(t), t ≥ 0, be a standard fBm. Thus,

BH(t) =
∫

f̃t(ν)M̃(dν) =
1

C2(H)

∫
R

eiνt − 1
iν

|ν |−(H− 1
2 ) M̃(dν); (5.13)

where

C2
2(H) = 8

∫ ∞

0

sin2(ν/2)
ν2H+1 dν =

π

HΓ(2H) sin πH
. (5.14)

Proof: f̃t(ν) ∈ L2(R). In fact,

• f̃t(ν) ∼|ν |1/2−H , as ν → 0;

• f̃t(ν) ∼|ν |−1/2−H , as ν → ∞.

That is, for any 0 < H < 1,
∫

R
| f̃t(ν) |2 dν < ∞.
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Let X̃(t), t ≥ 0, be a process defined by (eq 5.13). Then, X̃(t) is real valued, Gaussian and has zero
mean. Moreover, it is easy to see that (eq. 5.14) makes the process standard. We want to show that X(t)
is self-similar of index H. That is, for any tj and tl greater than zero and a > 0,

E
(
X(atj)X(atl)

)
= a2HE

(
X(tj)X(tl)

)
.

Then, by definition

∫
R

(
eiνatj − 1

) (
e−iνatl − 1

)
|ν|2H+1 dν = a2H

∫
R

(
eiνtj − 1

) (
e−iνtl − 1

)
|ν|2H+1 dν,

which is verified after a simple change of variables. In the same way, in order to show the stationarity
of the increments, we just have to verify that, for any ti, tj ≥ 0 and h > 0:

E
[
(X(ti + h)− X(h))(X(tj + h)− X(h))

]
= E

[
X(ti)X(tj)

]
.

But, this is obviously true because

X(ti + h)− X(h) = eiνh 1
C2(H)

∫
R

eiνti − 1
iν

|ν|−(H− 1
2 )d̃M(ν).

Therefore, we have shown that X̃(t), t ≥ 0, is actually a standard fBm of order H. �.

The following proposition provides the relationship between C1(H) and C2(H):

Prop. 5.5. One has:
C1(H)
C2(H)

=
Γ(H + 1/2)√

2π
. (5.15)

Remark 5.6. We observe that, setting M̃(dν) = dB1(ν) + idB2(ν) with:

dB1(−ν) = dB1(ν), dB2(−ν) = −dB2(ν),

then, (eq. 5.13) is equal to:

2
C2(H)

[∫ ∞

0

sin νt
ν

|ν |−H+ 1
2 dB1(ν)−

∫ ∞

0

1− cos νt
ν

|ν |−H+ 1
2 dB2(ν)

]
. (5.16)

Remark 5.7 (Brownian motion spectral representation). The spectral representation of Bm is obtained
from (eq. 5.13) by setting H = 1/2:

Bt =
1√
2π

∫
R

eitν − 1
iν

dB̃(ν), (5.17)

where dB̃(ν) = dB1(ν) + idB2(ν).

5.2.1 Spectral density of fractional Brownian motion

The representation (5.13) is proper to Gaussian stationary increments processes. Indeed, suppose that
Y = {Yt}t≥0 is a Gaussian real valued stationary process. Moreover, let dB̃(ν) be a complex Gaussian
measure such as in (Remark 5.6). A possible spectral representation of Yt could be:

Yt =
∫

R
eitν g̃(ν)dB̃(ν), t ≥ 0, (5.18)
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where g̃(ν) = g̃(−ν). It is indeed easy to show that such a process is stationary. In fact, the covariance
matrix E(YtYs) depends only on the difference t− s.

Lemma 5.1. The process

Xt =
∫ t

0
Ysds, t ≥ 0,

has stationary increments.

Proof: X is Gaussian with zero mean starting almost surely in zero. Moreover,

X(t + h)− X(h) =
∫ t+h

h
Ysds =

∫ t

0
Ys+hds.

Therefore, for any t1, t2 ≥ 0, one has:

E [(X(t1 + h)− X(h))(X(t2 + h)− X(h))] = E
∫ t1

0
Ys1+hds1

∫ t2

0
Ys2+hds2

=
∫ t1

0

∫ t2

0
E(Ys1+hYs2+h)ds1ds2 =

∫ t1

0

∫ t2

0
E(Ys1Ys2)ds1ds2 = E(Xt1 Xt2). �

Using the representation (5.18) of Y, one finds:

Xt =
∫ t

0

[∫
R

eisν g̃(ν)dB̃(ν)
]

ds =
∫

R

[∫ t

0
eisνds

]
g̃(ν)dB̃(ν)

=
∫

R

eitν − 1
iν

g̃(ν)dB̃(ν). (5.19)

We introduce the following definition.

Def. 5.1. The function

S(ν) =
∣∣∣ g̃(ν)

iν

∣∣∣2 =
∣∣∣ g̃(ν)

ν

∣∣∣2,

which appears in (eq. 5.19), is called spectral density of the stationary increments process X.

Remark 5.8. Observe that the function defined above is not proper a spectral density function, which is
defined for stationary processes as the Fourier transform of the autocovariance function.

From the definition above and from (eq. 5.13), the spectral density of a standard fBm is:

SH(ν) =

(
|ν |−H+ 1

2

C2(H)ν

)2

=
HΓ(2H) sin πH

π
|ν |−2H−1 . (5.20)

By setting H = 1/2, one finds the spectral density of a standard Brownian motion:

S1/2(ν) =
1

2πν2 . (5.21)
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5.3 Integral representation of fractional Gaussian noise

Let {BH(t)}t≥0 be a fractional Brownian motion of order H. We consider the following stationary pro-
cess:

zt = BH(t + 1)− BH(t), t ≥ 0. (5.22)

Remark 5.9. Observe that the process zt, t ≥ 0, differs from the fGn of Definition 3.15 because the pa-
rameter t is taken continuous whereas the time step is fixed to one. We refer to zt as a sort of “continuous
time” fGn.

5.3.1 Time domain representation

Starting from the moving average representation of BH (eq. 5.1), we obtain the corrispondent represen-
tation of zt:

zt =
1

C1(H)

∫
R
(t + 1− x)H− 1

2
+ − (t− x)H− 1

2
+ dB(x), t ≥ 0. (5.23)

Remark 5.10. By setting H = 1/2, one has:

zt =
∫ t+1

t
dB(x) = B(t + 1)− B(t).

5.3.2 Spectral representation

Starting from the spectral representation of BH (eq. 5.13) with E(BH(1)2) = σ2, we obtain the corre-
sponding spectral representation of zt with variance σ2:

zt =
σ

C2(H)

∫
R

eiνt eiν − 1
iν

|ν |1/2−H dB̃(ν), t ≥ 0. (5.24)

Because zt is stationary, the autocovariance function E(zt1 zt2) depends only of |t2 − t1|. One has:

γ(t) = E(z0zt) =
σ2

C2(H)2

∫
R

eiνt

∣∣eiν − 1
∣∣2

|ν |2H+1 dν. (5.25)

Thus, the spectral density function of zt is:

fz(ν) =
σ2

C2(H)2

∣∣eiν − 1
∣∣2

|ν |2H+1 =
σ2

C2(H)2

(
4 sin2 ν

2

)
|ν |−2H−1 . (5.26)

Remark 5.11. The covariance function can then be rewritten as:

γ(t) =
8σ2

C2(H)2

∫ ∞

0
cos νt

(
sin2 ν

2

)
ν−2H−1dν (5.27)

Moreover, because
σ2 = γ(0) =

∫
fz(ν)dν,

then, one has

γ(t) = σ2 Ez0zt

σ2 = σ2
∫

eiνt fz(ν)dν∫
fz(ν)dν
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σ2

∫ ∞

0
cos νt

(
sin2 ν

2

)
ν−2H−1dν∫ ∞

0

(
sin2 ν

2

)
ν−2H−1dν

.

5.3.3 Spectral density of fGn

Let us consider now the fGn process {Zk, k = 0, 1, 2, . . . } as defined in (Def. 3.15). The covariance is
obtained from (eq. 5.25) just evaluating γ(t) on k ∈ Z+:

γ(k) =
∫

R
eiνk fz(ν)dν =

∫ π

−π
eiνk ∑

k∈Z

fz(ν + 2πk)dν.

Using (eq. 5.26) one finds:

fZ(ν) =
σ2

C2(H)2

{∣∣eiν − 1
∣∣2

|ν |2H+1 + ∑
k 6=0

∣∣eiν − 1
∣∣2

|ν + 2kπ |2H+1

}
(5.28)

= c f 2(1− cos ν) ∑
k∈Z

|ν + 2kπ |−2H−1, ν ∈ [−π, π], (5.29)

where:

c f =
σ2

C2(H)2 = σ2(2π)−1 sin (πH)Γ(2H + 1). (5.30)

Remark 5.12. We observe that
fZ(ν) ∼ c f |ν |1−2H , ν → 0. (5.31)

Then, fZ(ν) diverges as ν → 0 for any H > 1/2.

5.4 Integral representations of linear processes

We introduce now some useful integral representation of stationary linear processes. Let (Ω,F , P) be a
probability space. Moreover, let (E, E , m) be a measurable space and M = {M(A), A ∈ E0} a random
measure defined on it. We introduce the following common terminology:

i. The measurable space (E, E) is called frequency space ν ∈ E =]− π, π].

ii. The measure M is called spectral random measure and it is denoted with Z.

iii. The control measure m is indicated with F and it is termed spectral measure.

If F is absolutely continuous with respect to the Lebesgue measure of E, then we denote with f (ν) =
dF(ν)/dν the corresponding spectral density function.

5.4.1 White noise spectral representation

Let Z be a spectral random measure with spectral measure F(dν) = σ2

2π dν. We have the following,

Prop. 5.6. The random variables

εn =
∫ π

−π
einνdZ(ν), n ∈ Z, (5.32)

are independent with zero mean and variance σ2. Moreover, if Z = Z1 + iZ2 is such that Z1(dν) = Z1(−dν)
and Z2(dν) = −Z2(−dν), then {εn}n∈Z defines a discrete time real valued stochastic process.
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Proof: using the properties of the stochastic integral, one has:

E(εnεm) =
∫ π

−π
ei(n−m)ν σ2

2π
dν =

{
σ2, n = m,
0, n 6= m.

If Z = Z1 + iZ2 with Z1(dν) = Z1(−dν) and Z2(dν) = −Z2(−dν), then:

εn =
∫ π

−π
e−inνZ(dν) =

∫ π

−π
e−inνZ(−dν) =

∫ π

−π
einνZ(dν) = εn. �

Equation (5.32) defines the spectral representation of a discrete-time white noise with autocovariance:

γ(k) = E(εt+kεt) =
∫ π

−π
eikνF(dν) =

∫ π

−π
eikν σ2

2π
dν =

{
σ2, k = 0,
0, k 6= 0. (5.33)

Remark 5.13. Let B be the lag operator. Then,

Bεt = εt−1 =
∫ π

−π
ei(t−1)νZ(dν) =

∫ π

−π
eitν(e−iνZ(dν)).

Therefore, the action of the backward operator B corresponds to the modification of the spectral random
measure by a factor e−iν.

5.4.2 Spectral representation of a linear process

Let X = {Xt}t∈Z be a linear process. Namely,

Xt =
∞

∑
j=−∞

cjεt−j =
∞

∑
j=−∞

cjBjεt, j ∈ Z,

where
∞

∑
j=−∞

c2
j < ∞ and εt, t ∈ Z, is a zero-mean white noise process with variance σ2. By Remark 5.13

we have the following:

Prop. 5.7. The process Xt has the following spectral representation:

Xt =
∫ π

−π
eitν(∑

j
cje−ijν)Z(dν), t ∈ Z, (5.34)

where Z is the random spectral measure of the white noise process.

From the proposition above follows the corollary below:

Cor. 5.1. The spectral measure and the autocovariance function of a linear process X are:

FX(dν) = fX(ν)dν =
∣∣∣∑

j
cje−ijν

∣∣∣2 σ2

2π
dν, (5.35)

γX(k) = E(Xt+kXt) =
∫ π

−π
eikνFX(dν) =

∫ π

−π
eikν
∣∣∣∑

j
cje−ijν

∣∣∣2 σ2

2π
dν. (5.36)
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Example 5.1 (Spectral density of ARMA processes). From the results above, we can write down the
spectral density function of an ARMA(p, q) process

Φp(B)Xt = Θq(B)εt.

In fact, from (eq. 5.35) one has:

fX(ν) =

∣∣∣∣∣Θq(e−iν)
Φp(e−iν)

∣∣∣∣∣
2

σ2

2π
. (5.37)

5.4.3 Spectral representation of FARIMA processes

Let X = {Xt}t∈Z be a FARIMA(0, d, 0) with d < 1/2 process. Namely,

Xt = (1− B)−dεd =

(
∞

∑
j=0

bjBj

)
εt,

where bj, j ≥ 0, is given by (eq. 3.64) and {εt}t∈Z is a Gaussian white noise with zero mean and variance
σ2. From (eq. 5.34) one finds the spectral representation of X:

Xt =
∫ π

−π
eitν

(
∑

j
bje−ijν

)
Z(dν) =

∫ π

−π
eitν(1− e−iν)−dZ(dν). (5.38)

Then, the FARIMA(0, d, 0) autocovariance function is:

γ(k) =
∫ π

−π
eikν
∣∣1− e−iν∣∣−2d σ2

2π
dν. (5.39)

5.4.4 Spectral density function of a FARIMA process

Using the equations above, it is easy to write down the expression of the spectral density function of a
FARIMA(0, d, 0) process:

f (ν) =
σ2

2π

∣∣1− e−iν∣∣−2d =
σ2

2π
(2(1− cos ν))−d =

σ2

2π
(4 sin2 ν

2
)−d. (5.40)

Remark 5.14. We observe that, like the spectral density of the fGn (see eq. 5.31), the spectral density
function of the FARIMA process blows up at the origin if d > 0:

f (ν) ' σ2

2π
ν−2d, ν → 0. (5.41)

Moreover, the condition d < 1/2 corresponds actually to the integrability condition of the spectral
density function f (ν) at the origin.

In the general case, consider a FARIMA(p,d,q). The spectral representation is just:

Xt =
∫ π

−π
eitν(1− e−iν)−d Θq(e−iν)

Φp(e−iν)
Z(dν). (5.42)

Then, the spectral density function is:

f (ν) =
σ2

2π

(
4 sin2 ν

2
)−d
∣∣∣∣Θq(e−iν)
Φp(e−iν)

∣∣∣∣2. (5.43)
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Remark 5.15. The range 0 < d < 1/2 still corresponds to the blow up of the spectral density at the
origin.

Remark 5.16. We can finally evaluate the autocovariance function (eq. 3.63) of a FARIMA(0,d,0) process
by using (eq. 5.40):

γ(k) =
∫ π

−π
eikν f (ν)dν =

σ2

π

∫ π

0
cos kν

(
2 sin

ν

2

)−2d
dν

(by eq. 5.45)

= σ2 (−1)kγ(1− 2d)
Γ(k− d + 1)Γ(1− k− d)

, (5.44)

where we have used the relation (see [1]):∫ π/2

0
cos hx(sin x)ν−1dx =

π cos(hπ/2)Γ(ν)21−ν

Γ
(

ν + h + 1
2

)
Γ
(

ν− h + 1
2

) . (5.45)

Using the reflection formula for the Γ-function (eq. 3.65), one finds:

Γ(1− k− d) = (−1)k Γ(d)Γ(1− d)
Γ(k + d)

.

Thus, equation (5.44) becomes

γ(k) = σ2 Γ(k + d)Γ(1− 2d)
Γ(k− d + 1)Γ(d)Γ(1− d)

,

which is (eq. 3.63). Moreover, by setting k = 0 one finds (eq. 3.62).
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6 Long-range dependence

We want now to introduce the fundamental concept of long-range dependence (shortly LRD). We have
already observed that, typically, stationary Markovian processes have autocovariance function which
decrease exponentially to zero as the time lag becomes infinity. This is indeed obvious in the case of
Gaussian processes because of equation (3.15). For instance, the AR(1) process (see Example 3.16) and
the Ornstein-Ulhenbeck process (Example 3.3).

In contrast, non-Markovian processes, like fractional Gaussian noise and FARIMA processes, have
shown an asymptotic power-like behavior of their autocovariance function. In fact, let BH = {BH(t)}t≥0
be a fBm, defined on the probability space (Ω,F ,Ft, P), and let Z = {Zt}t∈Z be the corresponding fGn.
From (eq. 3.43) we observe that the Z autocovariance function γ(k) tends to zero, as k → ∞, like a power
function. Moreover, when 1/2 < H < 1, γ(k) tends to zero so slowly that it does not result integrable,
that is the sum ∑k γ(k) diverges.

We shall say that the fGn Z = {Zt}t∈Z with 1/2 < H < 1 exhibits long-range dependence. In view of
this first rough definition, from equation (3.67) it is clear that also a stationary FARIMA process with
d > 0 manifests long-range dependence.

More precisely, we give the following definition:

Def. 6.1 (Long-range dependence). Let X = {Xt}t∈Z be a stationary stochastic process defined on a
certain probability space. We shall say that X exhibits long-range dependence (or strong dependence or
long-memory) if:

1. the X autocovariance function tends to zero with a power-like behavior (power-law) at infinity:

γ(k) ∼ kα, k → ∞.

2.
∞

∑
k=−∞

γ(k) = ∞.

Example 6.1. Let us consider a fGn Z in the antipersistent domain. That is, 0 < H < 1/2. Then, because
∞

∑
k=1

k2H−2 < ∞, one has

∞

∑
j=−∞

|γ(j) |< ∞.

Moreover,
∞

∑
k=−∞

γ(k) = 0, because of the telescopic1 nature of γ(k).

Summarizing, we have that:

Prop. 6.1. Let Z = {Zt}t∈Z be a fractional Gaussian noise of order H. Then,

1. if 0 < H < 1/2 (antipersistent domain) the process Z does not exhibits long-range dependence.

2. if 1/2 < H < 1 (persistent domain) the process Z exhibits long-range dependence.

1) A sum where consecutive terms cancel each other.
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Prop. 6.2. Let X = {Xt}t∈Z be a stationary FARIMA(0, d, 0) process. Then, X exhibits long-range dependence

if and only if 0 < d < 1/2. In fact, by (eq. 3.67), ∑
k

γ(k) = ∞ if and only if
∞

∑
k=1

k2d−1 = ∞, that is d > 0. The

same result is still true for a general FARIMA process (see Remark 6.2).

Remark 6.1. General FARIMA(p, d, q) processes provide a powerful modeling instrument. In fact, they
make possible to model, not only the long-range correlation structure, but also the short-range correla-
tion structure. In other words, due to the ARMA(p, q) term, using FARIMA processes one can model the
whole frequency power spectrum (see below). Therefore, they are in general preferred to the simpler
but less flexible fGn.

6.1 Long-range dependence in the frequency domain

Suppose that the autocovariance function γ(k) of a stationary process behaves like | k |2H−2, up to a
multiplicative constant, for k → ∞. Moreover, let { f (ν)}ν∈[−π,π] be the spectral density function of
γ(k). Namely,

γ(k) =
∫ π

−π
eiνk f (ν)dν, k ∈ Z;

f (ν) =
1

2π

∞

∑
k=−∞

e−iνkγ(k), ν ∈ [−π, π].

Heuristically, one expects that the long-range dependence behavior in the time domain translates on a
behavior of the spectral density function around the origin. This is because low frequencies take actually
into account of large time lags. Indeed, the following result holds:

Prop. 6.3. Let γ(k) be the autocovariance function of a stationary process and let f (ν) be its spectral density
function. Therefore, from the so called Abelian and Tauberian theorems, under suitable conditions, follow that:

γ(k) ∼|k|2H−2, k → ∞

m

f (ν) ∼ cν1−2H , ν → 0,

(6.1)

for any 0 < H < 1 and where c is some positive constant.

The proposition above tells us that long-range dependence is expressed in the frequencies domain by
the blow-up of the spectral density function f (ν) as ν → 0. Moreover, if γ(k) behaves as a power-law
for large times, the same behavior is associated to the spectral density function for small frequencies.

Remark 6.2. Equations (6.1) are verified by the autocovariance function of the fGn (see eq. 5.31).
They also hold for a general FARIMA(p, d, q) process (eq. 5.43) provided that d = H − 1/2. Thus, a
FARIMA(p, d, q) process exhibits long-memory when d > 0 (Rem. 5.16).

6.2 Long-range dependence definitions

Other than Def. 6.1, there exist other different definitions of LRD. Let X = {Xt}t∈Z be a discrete time
stationary stochastic process. We introduce the concept of slowly varying function:
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Def. 6.2 (Slowly varying function). A real valued function L : R → R is called slowly varying function in
zero (infinity) if it is bounded on any finite interval I ⊆ R and if, for each a > 0, one has

L(ax)
L(x)

→ 1

as x tends to zero (infinity).

Such a functions vary slower than any power function. Logarithms and constants are typical examples
of slowly varying functions.

Def. 6.3 (Long-range dependence II). Let γ(k) be the autocovariance function of a stationary process X.
The following three definitions of long-range dependence are quite common in literature (see [2, 3, 11,
20]):

i) The process X has long-range dependence if there exists 0 < α < 1 such that:

n

∑
k=−n

γ(k) ∼ nαL1(n), n → ∞, (6.2)

where L1 is a slowly varying function at infinity.

ii) The process X has long-range dependence if there exists 0 < β < 1 such that:

γ(k) ∼ k−βL2(k), k → ∞, (6.3)

where L2 is a slowly varying function at infinity.

iii) The process X has long-range dependence if there exists 0 < γ < 1 such that:

f (ν) ∼|ν|−γ L3(|ν|), ν → 0, (6.4)

where L3 is a slowly varying function at zero.

The parameters α, β, γ measure the LRD intensity, in the sense that greater the long-range dependence
greater the values of α and γ and smaller the values of β.

The function | x |p L(x), which is the product of a power function with a slowly varying function, is
called: regular variation function. Such a functions, even if they are a modification of a power function,
preserve many of its characteristics, such as the rules of summation and integration. For instance, one
can show that for p > 1: ∫ y

0
| x |p L(x)dx ∼ 1

p
yp+1L(y), y → ∞.

or for p < −1 ∫ ∞

y
| x |p L(x)dx ∼ 1

| p |y
p+1L(y), y → ∞.

Similar rules hold for the passage from γ(k) to the spectral density f (ν) and are described by the
Abelian theorems. The Tauberian theorems, which typically require more stringent conditions, such
as monotony, describe the inverse passage from the frequencies domain to the time domain.
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Prop. 6.4. Let γ(k) be ultimately monotone2 as k → ∞. Then, the definitions (6.2), (6.3) and (6.4) are equivalent
with:

α = 1− β, L1(x) =
2

1− β
L2(x). (6.5)

Moreover, γ = 1− β and:

L3(x) =
1

2π
Γ(α + 1) sin

π(1− α)
2

L1(1/x) =
1
π

Γ(1− β) sin
πβ

2
L2(1/x). (6.6)

Example 6.2. Consider a fGn with 1/2 < H < 1. Then, the three definitions above are equivalent and
one has from (eq. 3.43), (eq. 6.5) and (eq. 6.6):

β = 2− 2H, L2(x) = σ2H(2H − 1);

α = 2H − 1, L1(x) = σ22H;

γ = 2H − 1, L2(ν) = σ2π−1HΓ(2H) sin(πH).

(6.7)

6.3 Interpretations of long-range dependence

We have seen that a stationary process exhibits long-range dependence if its autocovariance function
tends to zero with a power-law and in such a manner that it does not result integrable (Def. 6.1). Time se-
ries with long-memory properties are often observed in nature. After the pioneer works of Mandelbrot,
the study of long-range dependence have aroused a growing interest, followed by a rapid development.
Because of the large variety of the applications, the corresponding literature splits in a large number
of journals related to many different fields of study. For instance: agronomy; astronomy; chemistry;
economy; engineering; idrology; geology; telecommunication sciences; mathematics and physics.

Heuristically, a data series possesses long-range dependence if observations far away in the past
remain, in a certain sense, significantly correlated each other. Such a physical system is said to have
long memory properties. In fact, past events continue to affect future events for large time intervals.
Oppositely, we have seen that Markovian stationary time series have an autocorrelation function which
decrease exponentially to zero. Naively, this means that the memory of the past is lost exponentially
fast. Therefore, in these cases we spoke about short-memory processes.

Suppose we have observed a certain time series {x(t), t = 1, . . . , n}, for instance possessing long-
range dependence. The observations are generated by a certain stochastic process X, termed generator
process, a priori unknown. Assuming stationarity, one tries to model the behavior of the observed time
series through a certain class of parametric models {Yθ , θ ∈ Θ} which have in general no physical
meaning. More precisely, suppose that the parametric model depends on a certain parametric vec-
tor θ. One tries to obtain an “optimal” estimate of θ starting from the observed dada, with the goal
to forecast future observations or obtaining a confidence interval for the mean µ. For this purpose it
is not needed to establish a direct link between the estimated parameters θ̂ and the generating process X.

Although useful for statistic purposes, the above approach does not result satisfactory from a scientific
point of view. In fact, a theoretical process, developed in a pure statistic context and lacking any direct
connection with the observed phenomenon, does not hardly ever allow to give a physical explanation

2) A function f : R → R is ultimately monotone if there exists y ∈ R such that f (x) is mono-
tone for any x > y.



6.3 Interpretations of long-range dependence 117

Figure 6.1: Northern hemisphere average monthly temperatures (1854-1989). The plot shows the tem-
perature difference in Celsius degrees with respect to the average temperature of the period
1950-1979.

of the observed dynamical system behavior. On the other hand, one should ever try to understand, at
every turn, what is the physical meaning of an observed behavior.

6.3.1 Physical modeling

It is then natural to wonder in which way it is possible to understand LRD from a physical point of view.
The cases in which a satisfactory physical model is available are very rare. Thus, stochastic processes
can be used in order to model the behavior of a certain time series from a pure statistical point of view.
However, it is very important to understand the mechanisms that can explain the presence of long-range
correlation in a set of observations.

6.3.1.1 Aggregation of short-memory processes

Very often, observed time series can be interpreted as derived from the aggregation of an high number
of individual time series.

Example 6.3. The time series of the average monthly temperature in the northern hemisphere (Figure
6.1) is obtained through the (spatial) aggregation of the time series related to the single data stations.

Let {Xt(i)}i∈Z be a family of short-memory stationary processes, defined in the same probability
space. We define:

Xt =
∞

∑
i=1

Xt(i). (6.8)

The following result holds:
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Figure 6.2: Beta-distribution probability density function.

Prop. 6.5. The long-range dependence property can be “artificially” induced by an average over short-memory
stationary processes.

This implies that:

i. Sometimes can be convenient to develop a model which describes the single time series xt(i) rather
than trying to analyze directly the aggregated series.

ii. The aggregation mechanism provides a possible explanation of the long-range dependence gener-
ating process in a certain time series.

Proof: suppose that the processes {Xt(i)}i∈Z are Markovian AR(1) independent stationary processes
(see [9]). Then,

Xt(i) = αiXt−1(i) + εt(i) − 1 < α < 1,

where {εt(i)}i∈Z are independent Gaussian WN(0, σi). Consider the process

X(N)
t = Xt(1) + Xt(2) + · · ·+ Xt(N);

with spectral density (see eq. 5.37):

f (N)(ν) =
N

∑
i=1

fi(ν), fi(ν) =
σ2

i
2π

1
|1− αie−iν|2

.

We suppose that {αi}i∈Z and {σ2
i }i∈Z are realizations of independent random variables α and σ2, with

mean µα and µσ2 , defined on the same probability space (Ω,F , P). For large N, the spectral density
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Figure 6.3: Aggregated process X(N)
t (5.a). Variance of the sample mean as a function of the sample size

in logarithmic scale. For long-memory series the slope of the line is typically smaller than
one (5.b). Sample autocorrelation function (5.c).

function of X(N)
t can be approximated with the expected value:

f (N)(ν) ∼ N
2π

E(σ2|1− αe−iν|−2) =
N
2π

µσ2 E(|1− αe−iν|−2)

=
N
2π

µσ2

∫ 1
|1− xe−iν|2

dPα(x). (6.9)

With a suitable choice of the law of α, for instance a Beta(β, γ)-distribution with suitable chosen param-
eters, one can show that (eq. 6.9) has an integrable pole at the origin. Thus, the aggregated process X(N)

t
converges in distribution to a process Xt which manifests long-range dependence. �

Example 6.4. Consider N = 200 stationary AR(1) processes. We choose for the r.v. α a Beta(β, γ)
distribution with parameters β = 1, γ = 2 ad for σ2 a Beta(β, γ) distribution with β = 1, γ = 5
(Figure (6.2)). In (Figure 6.3) is presented a single realization of length n = 1000 of the aggregated
process processo X(N)

t . The plot of the variance of the sample mean suggests the presence of long-range
dependence in the simulated time series (see Section 6.4).

Then, if one observes the presence of long-memory in one aggregated time series (macroscopic level),
it is possible that the single time series (microscopic level) have not long-range correlations. In order to
find out the origin of the long-range dependence is necessary, if possible, studying the phenomenon at
a microscopic level. However, in many cases, the individual time series can not be observed.
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6.3.1.2 Critical phenomena

Long-range correlations arises naturally in the study of phase transition in thermodynamics. For exam-
ple, in the Ising model, the Hamiltonian is given by:

HΛ = − ∑
i,j∈Λ

JijSiSj − h ∑
i∈Λ

Si,

where Si is the spin in position i of the lattice Λ ⊂ Zd and Jij describes the interaction between the
spins. Moreover, the right hand term characterizes the interaction with an external field. At the ther-
modynamic limit, namely Λ → Zd, one finds that there exists a critical temperature below that (phase
transition) the correlation ρ(i− j) =corr(Si, Sj) decays to zero very slowly with the space distance (long-
range dependence).

Long-range dependence appears naturally also in: turbulence, quantum field theory, 1/ f noises. In
particular, was indeed the study of turbulence which made Kolmogorov define fractional Brownian
motion.

6.3.1.3 Partial differential equations

Let Yν be a stochastic process, defined in a certain probability space (Ω,F , P), such that, for any ω ∈ Ω,
Yν(ω) defines a real scalar field defined on (x, t) ∈ Rm ×R+, where t is a time variable.

Suppose that Yν is a solution of the stochastic partial differential equation (see eq. 4.4):

∂tYν + αYν =
1
2
∇2Yν + εν, (6.10)

where εν is a suitable stochastic noise. One can show that when m > 2 the solution of (eq. 6.10) is a
stationary stochastic process with spatial autocovariance function:

cov(Yx,t, Yx′ ,t) = γ(‖x− x′‖) ∼ ‖x− x′‖2−m, ‖x− x′‖ → ∞. (6.11)

Imposing different covariance structure for the process εν and different boundary conditions for Yν, one
can obtain many power-laws for the spatial autocorrelation [23].

Therefore, long-memory properties emerge naturally in the stationary solutions of certain stochas-
tic partial differential equations. The reader interested in a discussion concerning how to model LRD
through partial differential equation can see Gay et al. [8] .

6.4 Statistics of long-range dependence

Time series with LRD are recognizable thanks to certain quantitative features, for instance the self-
similarity parameter H of a fGn, and qualitative features, which are listed below.

The linear plot

Qualitatively, the linear plot of a long-memory time series exhibits the following characteristics:

i. For long time periods the observations tend to stay above or below the mean value.

ii. If one studies small time scale, the series seems to be non-stationary. In fact, one can observes
apparent cycles or trends, which disappear if one looks at the series in its completeness.

iii. The series is stationary.
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Figure 6.4: Persistent fGn (top figures) H = 0.9. Antipersistent fGn (bottom figures) H = 0.2.
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The variance of the sample mean

The variance of the sample mean seems to converge to zero, as the sample size n increase, slower than
the typical behavior n−1. In good approximation, the decay is proportional to n−α, with 0 < α < 1
(see [3]).

The autocorrelation function

The sample autocorrelation function ρ̂(k) = γ̂(k)/γ̂(0):

γ̂(k) =
1
n

n−|k|

∑
t=1

(xt − xn)(xt+|k| − xn), (6.12)

where xn is the sample mean, goes to zero quite slowly and in good approximation proportional to k−α,
with 0 < α < 1. The plot of the autocorrelation function is called correlogram.

The periodogram

The periodogram I(ν) is the sampling analogous of the spectral density function and it is defined as:

I(νj) =
1

2πn

∣∣∣ n

∑
t=1

(xt − xn)eitνj
∣∣∣2 =

1
2π

n−1

∑
k=−(n−1)

γ̂(k)eikνj , (6.13)

where νj = 2π j/n with j = 1, . . . , n∗ and n∗ =Int[(n− 1)/2] are the Fourier frequencies. In logarithmic
scale, near the origin, the periodogram is distributed approximately around a line with negative slope
(see eq. 6.1). In other words, the periodogram is dominated by low frequencies.

All these features are recognizable in Figure (6.4). Here in the top is shown a long-memory time
series. Whereas, in the bottom figure is shown a typical short-memory process. The first figure shows a
persistent behavior. In fact, the series is stationary but exhibits local trends and periodicities, while the
second series does not. The sample autocorrelation in the top figure decreases to zero quite slowly and,
anyhow, very slower than the sample autocorrelation in the bottom. Moreover, the first periodogram is
clearly dominated by the low frequencies, while the second periodogram is clearly dominated by high
frequencies. Finally, also the slope of the best fit line in the sample mean variance plot indicates the
presence of LRD in the data on the top.

The first time series is just a realization of a fractional Gaussian noise in the persistent domain. That
is, H = 0.9. Whereas, the second time series is a realization of a fGn with H = 0.2, that means no
long-range dependence (Prop. 6.1).

Remark 6.3. The same analysis of Figure 6.4 could have been obtained with synthetic FARIMA time
series with d = H − 1/2.

6.4.1 Time series examples

We now study qualitatively some typical example of real time series which manifest long-range depen-
dence.
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Figure 6.5: Nile river year minima (622-1284)

Figure 6.6: Nile river minima: sample autocorrelation function in linear and logarithmic scale; sample
mean variance in logarithmic scale; periodogram in logarithmic scale.
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Figure 6.7: Tree rings: “standardized” width rings of a Rocky Mountain Pine (Arizona, 548-1983).

6.4.1.1 Nile river minima

In Figure (6.5) is shown the time series which describes the year minimum levels of the Nile river be-
tween the years 622-1284. This data set has a great historical interests. In fact, its analysis contributed
to the discovery of the so called Hurst effect. Then, motivated from the empirical studies of Hurst,
Mandelbrot introduced the fractional Gaussian noise as a standard statistic model for the long-range
dependence.

The presence of long-memory in the data is suggested by Figure (6.6), which shows that the variance
of the sample mean tends to zero slower than n−1. The best feet line is:

r(n) = 9.00− 0.32 log n.

Further evidence of LRD are given by the plots of the autocorrelation function and by the plot of the
periodogram in logarithmic scale, which appears clearly dominated by the low frequencies.

Moreover, the plot of (Figure 6.5) presents all the qualitative characteristics of a typical long-range
dependence time series. In fact, it presents locally a non-stationary behavior even if the whole series
seems stationary. On the other hand, since from ancient times, the Nile river was known for its long-
term behavior. Long period of famine were followed by long period of abundance, both associated to
the floods of the river. Mandelbrot called this behavior Joseph effect, reminding to the Bible words
“seven years of great abundance in the land of Egypt, but seven years of famine will follow”.

6.4.1.2 Tree rings

Figure (6.7) shows the the plot of the “standardized” rings width of a Rocky Mountains pine in Arizona
located at an altitude of 3523 meters. The tree rings analysis provides information about the local cli-
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Figure 6.8: Tree rings: autocorrelation function in linear scale and logarithmic scale (top panels); sample
mean variance in logarithmic scale and periodogram in logarithmic scale (bottom panels).

mate variations occurred during the plant lifetime. In fact, many trees can live up to a hundreds of years
(some times even a thousands of years), for this reason the rings study can give information hardly
accessible in different ways. Each ring represents in good approximation one year. Thus, by counting
them, it is possible to obtain information about the tree age. Moreover, because the plant growth is
greater if the environmental conditions are good, their measurement can be used to obtain many infor-
mation about the setting, like forest fires, dry seasons, insect attacks or floods. The science which studies
climate changes from the analysis of tree rings is called dendroclimatology.

The data of the series presented in Figure (6.7) are standardized by a process acted to remove possible
non-stationarity components, for example the growing trend due to the normal physiological mutation
process suffered by the plant during the obsolescence. For instance, and index equal to 0.75 for a given
year indicates a growth below the normal (indicated with 1.00).

The plots in Figure 6.8 show strong evidence of long-range dependence in the data. In fact, the au-
tocorrelation function decreases to zero like a power function with α ∼ 0.59. The same behavior is
highlighted by the sample mean variance and from the graph of the periodogram.

6.4.1.3 Global temperatures

Figure (6.1) shows the monthly average temperature for the northern hemisphere in the years 1854-1989.
The data corresponds to the difference between the average monthly temperature and the monthly av-
erage on the period 1950-1979. The plot suggests the presence of a linear trend, which could be related
to a global worming in the last hundred years. After subtracting such a linear trend (Figura 6.9 ), except
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Figure 6.9: Monthly average temperatures in the northern hemisphere after a linear trend subtraction.

Figure 6.10: Global temperatures: autocorrelation (top panels); sample mean variance an periodogram
(bottom panels).
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Figure 6.11: Daily maximum temperatures in Melbourn (1981-1990) and deseasonalized data (bottom).

for a quite bigger variance in the beginning, perhaps due to a lack of precision in the measuring instru-
ments, the plot seems by and large to be stationary.

The plots in Figure (6.10) suggest the presence of LRD in the observations. The sample autocorre-
lation function shows a strong dependence even between observations very far away in time (6.10.a).
Moreover, the sample mean variance seems to tend to zero with a typical behavior of a long-memory
time series (α = −0.61). Finally, the periodogram is dominated by the low frequencies.

We observe that despite to the fact that the series has already been treated in order to remove seasonal
components, a sort of seasonality seems to persist in the data.

6.4.1.4 Local temperatures

We close this sequence of real data series providing a typical example of short-range dependence time
series.

Figure (6.11) contains the plot of the daily maximum temperatures (over 1000 days) registered in Mel-
bourne between the years 1981-1990 (source Australian Bureau of Meteorology). Moreover, the bottom
panel shows the deseasonalized time series.

Figure (6.12) highlights the short-range dependence between the observations. Temperatures above
the mean tend, with good probability, to be followed by temperatures above the mean just some day
after.

Remark 6.4. The Global temperature time series (Figure 6.9) is actually an aggregation of Local tem-
perature time series (Figure 6.11). Therefore, the long-range dependence in this kind of data could be
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Figure 6.12: Local temperatures: autocorrelation (top); sample mean variance, periodogram (bottom).

explained, from a statistical point of view, through the process of aggregation of many short-memory
series corresponding to the local temperatures data.

6.5 Estimation of long-range dependence

We have briefly discussed the qualitative features of long-range dependence time series. We focus now
in the problem of the quantitative measure of LRD for a given (possible) long-memory data. We have
seen that:

• Fractional Gaussian noise is characterized by the scaling exponent H ∈ (0, 1) of the corresponding
self-similar process. The autocovariance function behaves, for large k, like a power function γ(k) ∼
crk2H−2. Then, one has long-range dependence if 1/2 < H < 1;

• For FARIMA(p, d, q) processes, the long-range dependence is measured by the parameter d ∈
(−1/2, 1/2). In fact, the autocovariance function behaves like γ(k) ∼ csk2d−1 when k goes to
infinity and LRD occurs when 0 < d < 1/2.

As already observer (see Rem. 6.2), the two parameters can be formally related by setting d = H − 1/2.
Then, in both the cases, greater the parameter H greater the long-range dependence in the observations.
Therefore, in the conditions of (Prop. 9.1), it is useful to characterize the LRD, (eq. 6.3), (eq. 6.2) and
(eq. 6.4), with a unique real parameter H ∈]1/2, 1[ such that:

β = 2− 2H ⇒ α = 2H − 1, γ = 2H − 1.

Given an observed time series, one has the problem of how to estimate the parameter H, which by
definition provides a measure of the long-range dependence in the data.
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Figure 6.13: FARIMA autocorrelation function. The case H = 0.9 (top figures): linear plot (on the left)
with the theoretical curve (eq. 3.63) in dashed line; logarithmic scale (on the right) with
the best fit line (solid line) and the theoretical curve in dashed line. The same for the case
H = 0.6 (bottom figures).

6.5.1 Heuristic methods

Many heuristic methods have been purposed. From an historical point of view, it is noteworthy to
mention the so called R/S statistics, first introduced by Hurst [13], in an hidrological context(see also [3]).
Other methods, just introduced in the last section, are:

1. the study of the correlogram;

2. the study of the sample mean variance;

3. the study of the periodogram.

In fact, in all these cases a rough estimate of the H parameter can be obtained evaluating the slope of
the best-fit line in the logarithmic scale graphs.

These methods are very useful as a first diagnostic instrument. They give am approximative first idea
of the long-range dependence behavior in the observations. They are not efficient and not much flexible
and this makes the results interpretation very difficult.

Example 6.5 (The correlogram). Consider the correlogram of two synthetics FARIMA(0, H − 1/2, 0)
with H = 0.9 and H = 0.6 (Figure 6.13). We observe that:
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β H0 Ĥ Confidence
0.1 0.88 0.54 [0.51,0.55]
0.1 0.76 0.53 [0.51,0.55]
0.1 0.82 0.53 [0.51,0.55]
0.5 0.75 0.51 [0.49,0.54]
0.5 0.65 0.51 [0.49,0.53]
0.5 0.66 0.49 [0.47,0.51]
0.9 0.58 0.49 [0.47,0.51]
0.9 0.39 0.49 [0.47,0.51]
0.9 0.43 0.50 [0.48,0.52]
1 0.41 0.50 [0.48,0.52]

Table 6.1: Estimates of the LRD parameter H for a time series of length n = 10000, realization of a white
noise εt process plus a trend term at = 2t−β. H0 is the estimate obtained with the sample
mean variance method. Whereas, Ĥ is the estimate obtained with a maximum likelihood
method calibrating a FARIMA(0, H − 1/2, 0) process using the Whittle approximation. In the
last column is given the 95% confidence interval for Ĥ (eq. 6.30).

• In the case H = 0.9 (Fig. 6.13 top) the LRD behavior is much more evident than in the case H = 0.6
(Fig. 6.13 bottom). In this case it is indeed very difficult to say that the autocorrelation function
follows an asymptotic behavior k2H−2 with 1/2 < H < 1, rather than an exponential behavior ck

with 0 < c < 1.

• The absolute values of the correlation coefficients can be anyhow arbitrarily small and can stay
within the range ±2/

√
n, which represents the null value confident interval.

• The LRD is an asymptotic notion for the correlations. Therefore, one should study the autocorre-
lation function for large values of the time lag. However, as the lag k increases, the estimates ρ̂(k)
become soon less reliable.

The previous example, together with Figure (6.13), proves that the study of the sample autocorrelation
function is more useful in the case of a strong LRD or for very long time series. For relatively short time
series, or for a value of H close to 1/2, it is very difficult to estimate the asymptotic behavior of ρ(k) and
then to decide if there is or not a long-memory property in the observed data.

Example 6.6 (Series with trend). Consider a time series realization of the stochastic process:

Xt = at + εt, t ≥ 0,

where εt is a Gaussian WN(0, 1) and at = 2t−β, with 0 < β < 1, is a trend term which asymptoti-
cally disappears. Observing Figures (6.14) and (6.15), the method of the sample mean variance induces
wrongly to think that the first data set has long-range dependence, while the second does not.

One can show (see [3]) that the presence of a trend which decrease fairly slowly to zero in a series of
observations (for instance when β < 1/2 in the example before) can manifest itself in certain heuristic
methods, like the method of the sample mean variance (previous example), or the R/S analysis, with
the presence of long-range dependence. This is not the case of the maximum likelihood methods which
will be introduced in the next section (see Table 6.1).
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Figure 6.14: White-noise εt, plus a trend term at = 2t−β and sample mean variance plot in logarithmic
scale in the case β = 0.1 .

Figure 6.15: White-noise εt, plus a trend term at = 2t−β and sample mean variance plot in logarithmic
scale in the case β = 0.9.
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6.5.2 Maximum likelihood methods

The heuristic methods, briefly exposed in the previous section, are useful tools for a first survey of LRD
in a certain observed data. However, these methods cannot give information about the properties of
the short-range dependence structure. For this purpose it is necessary to use methods which consent
to model the whole correlaion structure, or equivalently the spectral density function at all the frequen-
cies. A possible approach is to use parametric models and the to estimate the parameters, for instance,
maximizing the likelihood function.

Parametric methods are preferable even if the objective is just the estimation of the LRD parameter
H. In fact, if one is able to build a reasonable parametric model, maximum likelihood methods ( MLE
methods) are more efficient and more indicated for the statistic inference. Howerver, a not so complicated
suitable model is often hard to find. Moreover, an elementary model can lead to distorted estimates of H.

For the seek of simplicity, we focus only on Gaussian MLE methods. This not mean that such a
methods can be applied only to Gaussian processes. However, if this is not the case, a certain prudence
is expected.

6.5.2.1 Characterization of the parametric model

We suppose we want to describe a series of observations {xi}i=1,...,n, which exhibits long-range depen-
dence, through a certain stochastic model. For this purpose, we introduce a process X = {Xt}t∈Z that
verifies the following properties:

Stationarity

Suppose that X = {Xt}t∈Z is a stationary stochastic process with mean µ and variance σ2, defined
on a certain probability space (Ω,F , P). We also suppose that X possesses LRD characterized by the
parameter H, with 1/2 < H < 1.

Remark 6.5. In the following we always suppose that µ is known and equal to zero: µ = 0.

Linearity

We suppose that X is a causal linear process. Namely:

Xt =
∞

∑
j=1

bjXt−j + εj ⇔ Xt =
∞

∑
j=0

ajεt−j, (6.14)

where εt is a WN(0, σ2
ε ). The coefficients aj and bj verify:

{bj}j=1,...,∞ ∈ l1, {aj}j=0,...,∞ ∈ l2. (6.15)

In fact, the following result holds:

Prop. 6.6. there exist two positive constants ca e cb, such that:

bk ∼ cbk−H− 1
2 , ak ∼ cakH− 3

2 , k → ∞. (6.16)
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Example 6.7 (FARIMA processes). FARIMA(0,H-1/2,0) processes (eq. 3.61) provide an example of causal
linear processes which can show long-range dependence. In this case one has:

Xt = (1− B)−(H−1/2)εt =
∞

∑
j=0

ajBjεt =
∞

∑
j=0

ajεt−j,

with (see eq. 3.64)

aj =
Γ(j + H − 1/2)

Γ(j + 1)Γ(H − 1/2)
, j ∈ N.

Using Stirling approximation:

ak ∼
kH−3/2

Γ(H − 1/2)
, k → ∞.

Thus, {ak} belong to l2 if H < 1. in the same way, if one expresses X in autoregressive from, the
coefficients bk are still given by (eq. 3.64) just by setting −d → d. Then, one has:

bk ∼
k−H−1/2

Γ(1/2− H)
, k → ∞,

which is on l1 if H > 1/2.

Spectral density function

We suppose that the spectral density function f (or equivalently the autocovariance function) of X is
characterized ny a finite number of parameters:

θ0 = (σ2
0 , H, θ0

3 , θ0
4 , . . . , θ0

M). (6.17)

This means that f belongs to a parametric class of spectral densities characterized by a parameter M-
dimesional vector:

f (ν) ∈ { f (ν; θ)}θ∈Θ, Θ ⊂ RM, ν ∈]− π, π]. (6.18)

Given a sequence of observations {x1, x2, . . . , xn} of X, the purpose is to estimate the unknown param-
eter vector θ0 ∈ Θ, and thus the spectral density f (ν; θ0).

The following rsulte will be useful:

Prop. 6.7. if f (ν; θ0) is the spectral density function of the process X defined in (eq. 6.14), then:

σ2
ε = 2π exp

(
1

2π

∫ π

−π
log f (ν; θ0)dν

)
. (6.19)

In particular, it follows that:

f (ν) =
σ2

ε

2π
f1(ν) ⇒

∫ π

−π
log f1(ν)dν = 0. (6.20)

Example 6.8. Suppose for instance that X is a FARIMA(0, H− 1/2, 0) process. Then, the spectral density
is given by (eq. 5.40), that is

f (ν) =
σ2

ε

2π

∣∣1− e−iν∣∣1−2H =
σ2

ε

2π
(2(1− cos ν))1/2−H =

σ2
ε

2π
(4 sin2 ν

2
)1/2−H .

Then, f = f (ν; θ1, θ2), with θ1 = σ2
ε

2π and θ2 = H. Furthermore, we are in the case of (eq. 6.20), then∫ π

−π
log(2− 2 cos ν)dν = 0. (6.21)
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Normality

Suppose that the process εt is a Gaussian white noise. This implies that X is a Gaussian process. Then,
the finite dimensional distribution are Gaussian with covariance matrix that depends on the vector pa-
rameter θ0. Then, if we consider the random vector {X1, . . . , Xn} and we indicate with Σ(θ0) the covari-
ance matrix, the joint probability density is:

h(x; θ0) =
1√

(2π)n|Σ(θ0)|
e
−

1
2

x′Σ−1(θ0)x
, x ∈ Rn. (6.22)

Def. 6.4 (Log-likelihood). We define the log-likelihood function as:

Ln(x; θ0) = log h(x; θ0).

Then,

Ln(x; θ0) = −n
2

log 2π − 1
2

log |Σ(θ0)| − 1
2

x′Σ−1(θ0)x. (6.23)

6.5.2.2 Exact MLE estimates

Consider the class {h(x; θ)}θ∈Θ of probability distributions in Rn. Suppose we have n observations
x = {xi}i=1,...,n, which correspond to a sigle relaization of the process X up to time t = n. The maxi-
mum likelihood estimation (MLE estimate) of the parameter vector θ0 corresponds to the choice of the
parameter vector θ̂ such that the probability (eq. 6.22) to observe {x1, . . . , xn} is maximum.

Maximizing h(x; θ) is equivalent to maximizing Ln(x; θ) with respect to the M-dimensional vector
parameter θ. Then, under suitable regularity conditions, the MLE estimate θ̂ is obtained solving the
following system of M equations:

L′n(x; θ) = 0, (6.24)

dove:
L′n(x; θ)j = ∂θj Ln(x; θ)

= −1
2

∂θj log |Σ(θ)| − 1
2

x′[∂θj Σ
−1(θ)]x, j = 1, . . . , M (6.25)

Consider now the estimator θ̂ define by (eq. 6.24). We wonder which is its asymptotic distribution. First
of all, we define the M× M matrix:

Dij(θ0) =
1

2π

∫ π

−π
∂θi log f (ν; θ)∂θj log f (ν; θ)dν

∣∣
θ0 , (6.26)

where f is the spectral density function of the process X(t) (eq. 6.18). Then, the following result holds:

Theorem 6.1. Let X be a stochastic process as defined before. Namely, it is: stationary; Gasussian; causal; linear
and with LRD. Consider θ̂ defined by (eq. 6.24). Then:

• θ̂ is asymptotically correct. That is,
θ̂ → θ0, almost surely. (6.27)
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• Moreover, √
nθ̂ →d ζ, (6.28)

where ζ is a Gaussian M-dimesional random vector with mean θ0 and covariance matrix

C = 2D−1,

with D defined by (eq. 6.26) and the convergence is meant in distributional sense.

Therefore, the maximum likelihood Gaussian estimator has a normal asymptotic distribution and a
rate of convergence equal to 1/

√
n. This is in contrast with certain estimators, such as the sample mean,

that, for long-range dependence processes, have a rate of convergence slower than the corresponding
estimators of short-memory processes.

Remark 6.6. The covariance matrix C is diagonal if the functions f j(ν) = ∂θj log f (ν) are orthogonal, i.e.

〈 fi, f j〉 =
1

2π

∫ π

−π
fi(ν) f j(ν)dν = 0, i 6= j.

In this case the MLE estimates of the single parameters are asymptotically independent. Moreover, if
f j(ν; θ) does not depend on θ, then the variance of θ̂j is the same for each θ.

Let us consider the following example:

Example 6.9. Suppose we have observed a certain time series {xi}i=1,...,n which exhibits LRD. Consider
a Gaussian FARIMA(0, H − 1/2, 0) process (eq. 3.61) X(t) as a stochastic model for the observed data.
The spectral density of X(t) is (see eq. 5.40):

f (ν) =
σ2

ε

2π

∣∣1− e−iν∣∣1−2H =
σ2

ε

2π
(2(1− cos ν))1/2−H =

σ2

2π
(4 sin2 ν

2
)1/2−H .

We have two parameters (θ1, θ2) to estimate. Indeed, f = f (ν; θ1, θ2), with θ1 = σ2
ε

2π and θ2 = H. Let us
study the asymptotic distribution of the maximum likelihood estimator. First, we evaluate the matrix
D. One has: {

f1 = ∂θ1 log(θ1(2− 2 cos ν)1/2−θ2) = 1/θ1,

f2 = ∂θ2 log(θ1(2− cos ν)1/2−θ2) = − log(2− 2 cos ν).

D =
(

| f1|2 〈 f1, f2〉
〈 f1, f2〉 | f2|2

)
=
(

2π/σ4
ε 0

0 π2/3

)
.

In fact, by (eq. 6.21): ∫ π

−π
log(2− 2 cos ν)dν = 0

and one can show ∫ π

−π
(log(2− 2 cos ν))2dν =

2
3

π3.

Then, by definition:

C =
(

σ4
ε /π 0
0 6/π2

)
.

Therefore, Ĥ and σ̂2
ε = 2πθ1 are asymptotically independent with:

var(Ĥ) =
6

π2 , var(σ̂2
ε ) = 2σ4

ε . (6.29)
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Starting from the n observations we have, the 95% confident interval for the MLE estimate of H is:[
Ĥ − 2

π

√
6
n

, Ĥ +
2
π

√
6
n

]
. (6.30)

6.5.2.3 Whittle approximation

Approximated methods are needed in order to reduce the calculation times in the likelihood estima-
tions. Computational problems may emerge especially for large size time series or for a large number
of parameters to estimate .

The two terms depending on θ in (eq. 6.23) are:

log |Σn(θ)|, x′Σ−1
n (θ)x.

The index n indicates the size of the covariance matrix. Let us study these two terms distinctly:

1. one can show that:

lim
n→∞

1
n

log |Σn(θ)| = 1
2π

∫ π

−π
log f (ν; θ)dν.

Then, we approximate log |Σn(θ)| with n
2π

∫ π
−π log f (ν; θ)dν.

2. The matrix Σ−1
n (θ) can be substituted with a matrix having elements easier to evaluate. Let

An(θ) = α(k− j) =
1

4π2

∫ π

−π

1
f (ν; θ)

ei(k−j)νdν, k, j = 1, . . . , n. (6.31)

Therefore, one can show that, asymptotically, An(θ) → Σ−1
n (θ).

Combining these two approximations we obtain one approximated version of the log-likelihood func-
tion:

L∗n(x; θ) = −n
2

log 2π − n
2

1
2π

∫ π

−π
log f (ν; θ)dν− 1

2
x′An(θ)x. (6.32)

Finally, an approximated MLE estimation of θ0 is obtained mimimazing the likelihood function

LW(θ) =
1

2π

∫ π

−π
log f (ν; θ)dν +

1
n

x′A(θ)x, (6.33)

called Whittle likelihood function.

Under suitable regularity conditions, minimizing (eq. 6.33) for a certain sample xt corresponds to
solve the system of M equations:

∂

∂θj
LW(x; θ) = 0, j = 1, . . . , M.

That is,
1

2π

∂

∂θj

∫ π

−π
log f (ν; θ)dν +

1
n

∂

∂θj
x′A(θ)x = 0. (6.34)
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Scaling choice of the parameters

A further simplification of equation (6.34) can be obtained with a special choice of the parameters. In
fact, let us indicate with

η = (θ2, θ3, . . . , θM), θ∗ = (1, η).

We then choose the scaling parameter θ1 such that:

f (ν; θ) = θ1 f (ν; θ∗),
∫ π

−π
log f (ν; θ∗)dν = 0. (6.35)

Then, due to (Prop. 6.7), θ1 coincides with 2πσ2
ε . with this choice equations (6.34) become:

1
2πθ1

− 1
nθ2

1
S(θ∗) = 0,

∂

∂θj
S(θ∗) = 0, j = 2, . . . , M

(6.36)

because, by definition (eq. 6.31), A(θ) =
1
θ1

A(θ∗) and we set: S(θ) = x′A(θ)x.

The estimation procedure

Let S∗(η) = S(θ∗), the estimation procedure is:

◦ one obtains η̂ solving:
∂θj S

∗(η) = 0, j = 2, . . . , M (6.37)

◦ the one finds σ̂2
ε by setting:

σ̂2
ε =

2π

n
S∗(η̂). (6.38)

What we can say about the asymptotic distribution of the estimator θ̂ defined by (eq. 6.34)? The follow-
ing result holds:

Theorem 6.2. Let θ̂ be the estimator defined by (eq. 6.34). Then, under the same conditions of Theorem 6.1, one
has:

◦ θ̂ is asymptotically correct:
θ̂ → θ0, quasi sicuramente

◦ moreover, √
nθ̂ →d ζ,

where ζ is defined in Theorem 6.1.

Therefore, the Whittle estimator has the same asymptotic distribution of the exact maximum likeli-
hood estimator. Furthermore, it is asymptotically efficient fot Gaussian processes3.

Remark 6.7. Observe that the choice (eq. 6.35), other than simplifying (eq. 6.34), implies by definition
(see eq. 6.26):

D1j = Dj1 = 0, j 6= 1.

Thus, cov(θ1, θj) = 0 for any j 6= 1. The scaling parameter σ2
ε is then asymptotically independent of the

other estimated parameters.

3) A discussion about the efficiency of the estimators for LRD processes can be found in [6].
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The Whittle MLE estimation requires the evaluation of the matrix elements (eq. 6.31) for any value of
the trial parameter θ. So that, when we deal with very long time series or one has to estimate a large
number of parameters, the calculation can be computationally prohibitive.

Given that 1/ f is regular at the origin, we can approximate (eq. 6.31) with the Riemann sums:

α̃(k− l) = 2
1

4π2

n∗

∑
j=1

1
f (νj; θ)

ei(k−l)νj
2π

n
, (6.39)

where νj = 2π
n j, with j = 1, . . . , n∗ and n∗ is the integer part of (n− 1)/2, are the Fourier frequencies.

A discrete version of the Whittle estimator

We have the following approximation of the Whittle estimator:

Prop. 6.8. The following discrete estimator provides an approximation of the Whittle MLE (eq. 6.33):

L̃W(θ) = 2
1

2π

[
n∗

∑
j=1

log f (νj; θ)
2π

n
+

n∗

∑
j=1

I(νj)
f (νj; θ)

2π

n

]
. (6.40)

Proof: remember that the periodogram, set xn = 0 for large n (zero mean hypothesis), is given that
(eq. 6.13):

I(νj) =
1

2πn ∑
k,l

xkei(k−l)νj xj.

The term
1
n

x′Ax can be rewritten by using (eq. 6.39) as:

1
n ∑

k,l
xk Ãkl xl =

2
n

1
4π2

n∗

∑
j=1

∑
k,l

xkei(k−l)νj xl
f (νj; θ)

2π

n

(using the periodogram formula)

=
2
n

n∗

∑
j=1

I(νj)
f (νj; θ)

. �

Because the periodogram can be evaluated by using FFT, L̃W can be calculated very quickly for any
θ. With the parameters choice θ = (θ1, η), minimizing (eq. 6.40) equals (see eq. 6.37 and eq. 6.38) to
minimize

S̃(η) = 2
n∗

∑
j=1

I(νj)
f (νj; θ∗)

, (6.41)

with respect to η and then setting:

σ2
ε =

2π

n
S̃(η̂). (6.42)

Remark 6.8. By the time the parametric model is chosen, the method described above is equivalent
substantially in calibrating the theoretical spectral density function f (ν; θ) to the periodogram estimated
through the available observations (estimation in the frequency domain).
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H Ĥ FARIMA Confidenza Ĥ fGn Confidenza
0.6 0.60 [0.55,0.65] 0.54 [0.50,0.60]
0.7 0.73 [0.68,0.78] 0.66 [0.61,0.71]
0.8 0.80 [0.75,0.85] 0.71 [0.67,0.77]
0.9 0.87 [0.82,0.92] 0.78 [0.73,0.83]

Table 6.2: Estimations of the LRD parameter H of n = 1000 length time series generated by
a FARIMA(0, H − 1/2, 0) process, performed calibrating the spectral density function of
FARIMA and fGn.

Estimation through FARIMA(0, H − 1/2, 0)

Let the stochastic model X(t) be a Gaussian FARIMA(0, H − 1/2, 0) process (eq. 3.61). The X spectral
density function is given by (eq. 5.40), namely:

f (ν; θ) =
σ2

ε

2π
(2(1− cos ν))1/2−H =

σ2

2π
(4 sin2 ν

2
)1/2−H .

The parameters to be estimated are θ1 = σ2
ε

2π and θ2 = H. Observe that (eq. 6.35) holds.

Estimation through fGn

Let the stochastic model X(t) be a fGn process (Def. 3.15). The spectral density function is given by
(eq. 5.28), that is:

fX(ν) =
σ2

π
Γ(2H + 1) sin(πH)(1− cos ν) ∑

k∈Z

|ν + 2kπ |−2H−1 .

We set σ2 = 1, and we make the usual choice of the parameters θ = (θ1, η). Then, we write:

f (ν; θ) = θ1 f1(ν; H) = θ1 [C(H) fX(ν; H)] ,

where C(H) is chosen such that
∫ π

−π
log f1(ν; H)dν = 0 holds. Then, one finds:

C(H) = exp
(
− 1

2π

∫ π

−π
log fX(ν)dν

)
. (6.43)

Example 6.10. Tables (Tab. 6.2) and (Tab. 6.3) provide the estimates of Ĥ performed calibrating
FARIMA(0, H − 1/2, 0) and fGn models to time series generated by a FARIMA(0, H − 1/2, 0) process
(Tab. 6.2) and generated by a fractional Gaussian noise (Tab. 6.3).

We apply now the Whittle MLE method in order to estimate the long-range dependence parameter H
for some real data introduced before.

Nile-data

Let us consider the times series which describes the Nile river minima (Fig. 6.5). After subtracting the
mean value, the H parameter estimates are:

Ĥ = 0.90± 0.05,
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H Ĥ FARIMA Confidence Ĥ fGn Confidence
0.6 0.63 [0.59,0.68] 0.58 [0.53,0.62]
0.7 0.71 [0.66,0.76] 0.65 [0.60,0.70]
0.8 0.87 [0.82,0.92] 0.78 [0.73,0.83]
0.9 1.0 [0.97,1.07] 0.91 [0.87,0.96]

Table 6.3: Estimations of the LRD parameter H of n = 1000 length time series generated by a fGn process,
performed calibrating the spectral density function of FARIMA and fGn.

Figure 6.16: Periodogram and calibrated spectral densities in logarithmic scale for the Nile river data.

obtained calibrating a FARIMA(0, H − 1/2, 0) model through the Whitte method. Differently, if one
used a fGn model, one would find:

Ĥ = 0.80± 0.05.

Figure (6.16) shows the periodogram and the corresponding spectral densities od the calibrated models.

Tree-rings

Consider the tree rings time series (Fig. 6.7). The H parameter estimates are:

Ĥ = 0.99± 0.03,

for a FARIMA(0, H − 1/2, 0) model and:

Ĥ = 0.89± 0.03,
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Figure 6.17: Periodogram and calibrated spectral densities in logarithmic scale for the tree rings data.

if a fGn is used. Figure (6.17) shows the behavior of the periodogram and the corresponding theoretical
spectral density functions of the calibrated models.

Global temperature-data

Finally, we evaluate H for the global temperature data of the northern hemisphere (Fig. 6.9). One finds:

Ĥ = 0.87± 0.03,

for a FARIMA(0, H − 1/2, 0) model and:

Ĥ = 0.78± 0.03,

for a fGn model (Fig. 6.18).

6.5.3 Robustness

Along this section we have seen that MLE methods are preferable with respect to certain heuristic meth-
ods because they provide results which are much more easier to be interpreted. Moreover, such methods
turn out to be more robust and efficient. We want to briefly analyze what concerning the robustness of
maximum likelihood methods with respect to certain deviation from the original hypothesis.
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Figure 6.18: Periodogram and calibrated spectral densities in logarithmic scale for the global tempera-
ture data.

Deviation from stationarity

In the case of a slight deviation from the stationary hypothesis, for instance introducing an asymptoti-
cally nullifying trend, we have seen that the MLE estimates result to be only slightly distorted, especially
if compared with the estimates obtained with heuristic methods (see Tab. 6.1).

Deviation from normality

Deviation from normality must be taken into account but do not disturb exceedingly the estimates of
H (Figure 6.19 and Table 6.4). Then, if one has a sequence of observations which show a significative
deviation from normality, Gaussian stochastic models cannot be of course a satisfactory model for the
observe data but can be anyway used for estimations.

Deviation from linearity

Deviation from linearity, that means a wrong model choice for the estimations, can drastically affect
the estimates. In this case, non linear models has to be used. As an example of a fairly used class of
non-linear models, we cite the so called fractional exponential models, shortly FEXP (for more detailed
examples and discussion we remind to [3]).
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Figure 6.19: Realization of length n = 1000 of a FARIMA(0, H − 1/2, 0) process, with H = 0.9, obtained
through fractional integration of a WN(0, 12) having Gamma(k, θ) distribution with k = 3
and θ = 2 (top figure). Normal probability plot (bottom figure) .

N Ĥ farima Confidence Ĥ fGn Confidence
1 0.93 [0.88,0.98] 0.83 [0.78,0.88]
2 0.89 [0.84,0.94] 0.79 [0.74,0.84]
3 0.85 [0.80,0.90] 0.76 [0.70,0.80]
4 0.91 [0.87,0.97] 0.82 [0.77,0.87]
5 0.93 [0.88,0.98] 0.83 [0.79,0.89]
6 0.86 [0.81,0.91] 0.77 [0.72,0.82]
7 0.89 [0.84,0.94] 0.80 [0.76,0.86]
8 0.88 [0.83,0.93] 0.78 [0.73,0.83]
9 0.85 [0.80,0.90] 0.76 [0.70,0.80]
10 0.88 [0.83,0.93] 0.78 [0.73,0.83]

mean H = 0.89 σ = 0.03 H = 0.79 σ = 0.03

Table 6.4: Gaussian MLE estimates for the parameter H of 10 time series realization of lengthn = 1000
of a non-Gaussian FARIMA(0, H − 1/2, 0) process (Fig. 6.19) with H = 0.9.
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N Ĥ Confidence
1 0.61 [0.55,0.68]
2 0.62 [0.56,0.69]
3 0.72 [0.66,0.79]
4 0.55 [0.49,0.61]
5 0.61 [0.55,0.68]
6 0.68 [0.62,0.75]
7 0.49 [0.43,0.56]
8 0.64 [0.58,0.71]
9 0.59 [0.53,0.65]

10 0.55 [0.49,0.62]
mean H = 0.61 σ = 0.07

Table 6.5: MLE estimations of the H parameter of a FARIMA(0, H − 1/2, 0) process with H = 0.9, con-
taminated by the presence of occasional outliers with probability p = 5% .

Figure 6.20: Gaussian FARIMA(0, H − 1/2, 0) process with H = 0.9, contaminated by the presence of
outliers with probability p = 5% and “amplitude” c = 5..

Deviations due to the presence of outliers

What happens to the MLE estimations of H if in the time series are present outlier observations? Suppose
that X(t) is a FARIMA(0, H − 1/2, 0) process. Then, let us consider the process:

Yt = (1− Zt)Xt + cZtVt, (6.44)

where:

◦ {Zt}t=1,...,n are independent Bernoulli variables with P(Zt = 1) = p.
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◦ {Vt}t=1,...,n is a sequence of i.i.d. outcomes extracted form a Student t distribution with two de-
grees of freedom.

The process Yt has to be interpreted as the process Xt “contaminated” by a sequence of occasional out-
liers, which verifies with probability p = P(Zt = 1). The parameter c governs the “amplitude” of the
outliers (Figure 6.20).

Table 6.5 shows that the presence of the independent outliers {Vt} pushes the MLE estimate of H
towards the value Ĥ = 0.5. Thus, instead of estimating the dependence structure of the majority of the
data (around 95% in Fig. 6.20), the estimate Ĥ reflects the independence of the occasional outliers.

For any of the typology of deviations from the original model that one can encounter, there exists
different methodologies. However, no one of the known methods are universally applicable and the
robustness with respect to a certain characteristic does in general not hold for another [3].
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7 Introduction to Fractional calculus

Let Xt, t ∈ Z, be a simple ARIMA(0, k, 0), with k ∈ Z+, process. Namely, Xt is defined by the following
differences equation

(1− B)kXt =
k

∑
j=0

(
k
j

)
(−1)jXt−j = εt, t ∈ Z,

where εt is WN(0, σ2) process. In the left hand side we have a discrete k-th order derivative, so that one
can actually say that the k-th discrete derivative of an ARIMA(0, k, 0) process is a white noise process.

Observe that the present value Xt depends on the past only up to time t− k. One can then heuristically
think that an ARIMA(0, k, 0) process is, in a certain sense, a “short-memory” process1. In order to make
long-memory to appear, we let the parameter k to be a real number α.

Let α > 0 be given, then the ARIMA process becomes a FARIMA(0, α, 0) process (see eq. 3.61).
Namely, Xt solves the following equation:

(1− B)αXt =
∞

∑
j=0

(
α

j

)
(−1)jXt−j = εj, (7.1)

where: (
α

j

)
=

Γ(1 + α)
Γ(j + 1)Γ(1− j + α)

.

The value at the present time t now depends on the whole past history and, according to (Def. 6.1), the
process is stationary and actually exhibits LRD for any 0 < α < 1/2.

The operator (1− B)α has to be interpreted as a certain type of discrete “time-fractional derivative”
of order α. In the same way (1− B)−α would represent a discrete “fractional integral” of order α.

Consider now a smooth real function f (t) defined on a closed interval I ⊂ R. We introduce a one
dimensional lattice GN

δt = {tn = min(I) + nδt, n ∈ ZN}, contained on I and such that δt = d(I)
(N−1) ,

where d(I) indicates the diameter of the interval. Furthermore, let f (tn) = fn indicate the restriction of
f to GN

δt evaluated on tn ∈ GN
δt .

The restriction of the k-th derivative Dk
t f (t) = f (k)(t) to GN

δt could be written as

Dk
t f (tn) =

(1− B)k

δtk fn+1, k ≥ 0, tn ∈ GN
δt , (7.2)

which actually represents an approximation of order O(δt) of f k(tn). Expanding the binomial in (eq. 7.2),
one has:

Dk
t f (tn) =

1
δtk

k∗

∑
j=0

(−1)j
(

k
j

)
fn+1−j, (7.3)

where k∗ = min(k, n + 1).

1) An ARIMA process is always not stationary, in fact the characteristic polynomial has at least
k roots equal to one. Then, we are just naive speaking and not according to the definitions of
Section 6 which require stationarity.
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Remark 7.1. Observe that in this formulation we must not consider the terms closest to the boundary.
The approximation is indeed valid only in the points tn, with n ≥ k− 1.

Consider 0 < α < 1, then, as in (eq. 7.1), one is naturally led to take

Dα
t f (tn) =

1
δtα

n+1

∑
j=0

(−1)j
(

α

j

)
fn+1−j, (7.4)

and call it (discrete) fractional derivative of order α. Then, taking the limit δt → 0, one has the following
definition:

Def. 7.1 (Grünwald-Letnikov derivative). Let f be a sufficiently well behaved function, for instance one
can take f absolutely continuous on I, then the Grünwald-Letnikov (GL) fractional derivative of order
0 < α < 1 is defined as:

Dα
t f (t) = lim

δt→0

1
δtα

[t/δt]

∑
j=0

(−1)j
(

α

j

)
f (t− jδt). (7.5)

Remark 7.2. Observe that the GL fractional derivative is non-local in the sense that as δt → 0 the sum
in (eq. 7.5) involves an infinite number of elements, namely the whole “history” of the function up to
“time” t.

It is possible to show [19] that the limit in (eq. 7.5) converges to the integral equation:

Dα
t f (t) =

1
Γ(1− α)

d
dt

∫ t

0
f (s)(t− s)−αds, (7.6)

for any t ∈ (0, b), b > 0, and 0 < α < 1. This is the so called Riemann-Liouville (RL) fractional derivative
of order α.

Remark 7.3. As a consequence, equation (7.4) defines indeed a discrete approximation of the RL frac-
tional derivative and can be used for numerical purposes.

As it turns out to be, the RL fractional derivative is the left inverse of the so called (left-side) Riemann-
Liouville fractional integral of order 0 < α < 1:

Iα
t f (t) =

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, t ∈ [a, b]. (7.7)

The above examples suggest that the so called fractional calculus, that is the theory of fractional integrals
and derivatives, seems naturally to be very appropriate for studying and modeling systems which ex-
hibit memory effects. For instance, FARIMA models can be seen as a discrete fractional integral of a
white noise. In the same way, as we will see, also fractional Brownian motion can be seen as a fractional
integral of a Gaussian white noise (giving reason of the name fractional Brownian motion).

Remark 7.4. We observe that (eq. 7.7) is a convolution type integral, that is

Iα
t f (t) =

∫ t

0
K(t− s) f (s)ds, (7.8)

where

K(t) =
tα−1

Γ(α)
(7.9)

is a memory kernel.
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Let us consider a time homogeneous stochastic diffusion Q(t), t ≥ 0, with drift a(x) and diffusion
term σ(x). Its marginal density function (see Remark 4.14) satisfies the Fokker-Planck equation (eq. 3.33),
which in integral form reads:

u(x, t) = u0(x) +
∫ t

0
Pxu(x, s)ds, (7.10)

where u(x, 0) = u0(x) is the initial density, and Px is the time homogeneous Fokker-Planck operator

Px = ∂xxσ(x)− ∂xa(x) + [∂xσ(x)− a(x)] ∂x +
1
2

σ2(x)∂xx. (7.11)

We say that (eq. 7.10) is a “Markovian equation” in the sense that it comes from a Markovian diffusion.
Clearly, it is also a local equation in the sense that can be written in differential form (see eq. 3.33). How-
ever, also non-Markovian processes can have marginal density function which satisfies local equations.
For instance, the standard fBm marginal density function satisfies the “stretched” diffusion equation:

∂tu(t, x) =
1
2

αtα−1∂xxu(x, t), 0 < 2α = H < 1. (7.12)

Let us now introduce a memory kernel in (eq. 7.10), namely

u(x, t) = u0(x) +
∫ t

0
K(t− s)Pxu(x, s)ds. (7.13)

These Volterra type equations, clearly no longer local in time, will be studied in Chapter 9. They are
often encountered when studying physical phenomena exhibiting memory effects and are usually re-
lated to relaxation and diffusion problems in complex systems (see Srokowsky [22] for examples). Such
equations are often argued by phenomenological considerations and, some times, can be more or less
rigorously derived starting from a microscopic description [2, 23, 5, 22].

If the memory kernel is taken in a suitable way, (eq. 7.13) has fundamental solution that can be in-
terpreted as a probability density function (see Section 9.2.1 of Chapter 9). If this is the case, one can
ever find a number of stochastic processes which have marginal density function that evolves in time
according to (eq. 7.13). These processes are obviously not Markovian. Therefore, there is actually a
whole equivalence class of such processes with the same marginal density function but which differ
in the sense of finite-dimensional distributions. We will back later on this topic. At this point we just
observe that a suitable choice of the memory kernel K(t) would be just the power kernel (eq. 7.9) with
0 < α < 1. This choice leads to the so called time-fractional Fokker-Plack equation of order α:

u(x, t) = u0(x) +
∫ t

0

1
Γ(α)

(t− s)α−1Pxu(x, s)ds = u0(x) + Iα
t Pxu(x, t). (7.14)

This case is noteworthy because, as we will see more in detail later, it corresponds to the only suitable
kernel choice which can provide self-similar processes (see Theorem 9.1).

In this chapter we will introduce the basic notions of fractional calculus, providing useful examples
and applications, both from a deterministic and from a stochastic point of view.

7.1 Fractional integrals and derivatives

One of the common way to motivate the definition of fractional integrals is to start with an n-tuple
iterated integral and show that it can be expressed as a single integral involving the parameter n. The
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fractional integral of order α > 0 is then defined just replacing the integer n by the positive real α.

Let a < b be two real numbers and φ a function defined on I = [a, b]. Then, we have the following
result:

Prop. 7.1. By induction it is easy to show that, for any integer n ≥ 1, a multiple integral of φ can be expressed
as: ∫ tn

a
· · ·
{∫ t2

a

{∫ t1

a
φ(s)ds

}
dt1

}
· · · dtn−1 =

1
(n− 1)!

∫ tn

a
(tn − s)n−1φ(s)ds. (7.15)

By replacing the integer n by a positive real number α, we obtain the following definition:

Def. 7.2 (Riemann-Liouville fractional integral). Let φ ∈ L1([a, b]) and α > 0. Then, for any t ∈ (a, b),
the integrals

Iα
a+φ(t) =

1
Γ(α)

∫ t

a
(t− s)α−1φ(s)ds =

1
Γ(α)

∫ b

a
(t− s)α−1

+ φ(s)ds, (7.16)

Iα
b−φ(t) =

1
Γ(α)

∫ b

t
(s− t)α−1φ(s)ds =

1
Γ(α)

∫ b

a
(s− t)α−1

+ φ(s)ds, (7.17)

are called left-side and right-side Riemann-Liouville fractional integrals of order α > 0.

Remark 7.5. The fractional integrals Iα
a+φ(t) and Iα

b−φ(t) are well defined for any φ ∈ Lp([a, b]), p ≥ 1.
In fact, suppose φ ∈ L1([a, b]), then, for any t ∈ (a, b),

Γ(α)
∫ b

a
|Iα

a+φ(t)|dt ≤ Γ(α)
∫ b

a
Iα

a+|φ(t)|dt =
∫ b

a

∫ b

a
|φ(s)|(t− s)α−1

+ dsdt

(by changing the integration order)

= α−1
∫ b

a
|φ(t)|(b− s)αds ≤ α−1(b− a)α

∫ b

a
|φ(s)|ds < ∞,

and the same for the right-side integral.

Example 7.1. Evaluate the α-th fractional integral of φ(t) = (t− a)−α, 0 < α < 1. One has,

1
Γ(α)

∫ t

a
(t− s)α−1(s− a)−αds

(after the change of variables s = a + (t− a)z)

=
1

Γ(α)

∫ 1

0
(1− z)α−1z−αdz =

1
Γ(α)

B(α, 1− α) = Γ(1− α),

where:

B(x, y) =
∫ 1

0
sx−1(1− s)y−1ds =

Γ(x)Γ(y)
Γ(x + y)

, x, y > 0.

is the Beta function. Thus,
Iα

a+(t− a)−α = Γ(1− α). (7.18)

Example 7.2. In the same way, one can easily show that, for any γ > −1 and α > 0:

Iα
a+(t− a)γ =

Γ(γ + 1)
Γ(α + γ + 1)

(t− a)γ+α, t ∈ (a, b). (7.19)

Remark 7.6. By convention is set: I0φ(t) = φ(t).
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Properties of fractional integrals

Let α > 0, then the fractional integrals, both the left-side and right-side, Iα have the following properties
(see [20]):

1. Reflection property: let Q be the reflection operator: Qφ(t) = φ(a− b− t), t ∈ [a, b]. Then,

QIα
a+ = Iα

b−Q. (7.20)

2. Semigroup property: for any φ ∈ L1([a, b])

IαIβφ(t) = Iα+βφ(t), α, β > 0. (7.21)

3. Iαφ = 0 implies that φ = 0 almost everywhere.

4. Fractional integration by parts formula: let φ ∈ Lp([a, b]) and ψ ∈ Lq([a, b]) either with α ≥ 1,
p = q = 1, or with 0 < α < 1, 1

p + 1
q ≤ 1 + α, p, q > 1. Then,

∫ b

a
φ(s)Iα

a+ψ(s)ds =
∫ b

a
Iα

b−φ(s)ψ(s)ds. (7.22)

Remark 7.7. Observe that the second property implies that if f = Iα
a+φ1 and f = Iα

a+φ2, then φ1 = φ2
a.e., that is, the inverse of the fractional integral is a.e. unique. This property is used in the definition of
fractional derivatives.

In fact, as in classical calculus, fractional derivatives are defined as the left inverse of fractional integrals.
In other words, because of (eq. 7.21), we have to extend in some way the Definition (7.2) to α < 0.

Remark 7.8. Observe that we can not simply substitute α < 0 in Definition (7.2) since the integrals
diverge. In fact, as in the case of ordinary calculus, the definition of derivative involves more restrictions
than integrals.

Def. 7.3 (Rimeann-Liouville fractional derivatives). Let 0 < α < 1. Then, for any t ∈ (a, b), the integrals

Dα
a+ f (t) =

1
Γ(1− α)

d
dt

∫ t

a
(t− s)−α f (s)ds, (7.23)

Dα
b− f (t) =

1
Γ(1− α)

d
dt

∫ b

t
(t− s)−α f (s)ds, (7.24)

are called left-side and right-side Riemann-Liouville fractional derivatives of order 0 < α < 1.

Fractional derivatives of order 0 < α < 1 are well defined if, for example, f is differentiable. In fact, if
this is the case, one has2:

Dα
a+ f (t) =

1
Γ(1− α)

d
dt

∫ t

a
(t− s)−α

(
f (a) +

∫ s

a
f ′(u)du

)
ds

=
1

(1− α)Γ(1− α)
d
dt

(
(t− a)1−α +

∫ u

a
(t− u)1−α f ′(u)du

)
=

1
Γ(1− α)

(
f (a)(t− a)−α +

∫ t

a
f ′(u)(t− u)−αdu

)
.

2) The case of te right-side derivative is the same.
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Figure 7.1: Graphical representation of the Riemann-Liouville fractional derivative of order α = 2.3.
First one integrates by order m− α = 0.7 (a), then one differentiates by order m = 3 (b).

This is not surprising because we expect that if a function is differentiable then it also should be frac-
tional differentiable of order 0 < α < 1.

In the following we just consider the left-side derivative. The corresponding properties of the right-
side derivative can be obtained using (eq. 7.20), which is still valid for −1 < α < 0.

Example 7.3. Let f (t) = (t− a)α−1, t ∈ (a, b) and 0 < α < 1. Then,

Dα
a+ f (t) =

1
Γ(1− α)

d
dt

∫ t

a
(t− s)−α(s− a)α−1ds = Γ(α)

d
du

1 = 0. (7.25)

Example 7.4. Let C ∈ R, then:

Dα
a+C =

1
Γ(1− α)

d
dt

∫ t

a
(t− s)−αCds =

C
Γ(1− α)

(t− a)−α. (7.26)

The Riemann-Liouville fractional derivative of a constant in not zero.

Properties of fractional derivatives

Let 0 < α < 1. The fractional derivative Dα
a+ has the following properties (see [20]):

1. For any φ ∈ L1([a, b]), we have that:
Dα

a+Iα
a+φ = φ. (7.27)

2. For any f = Iα
a+φ, we have that:

Iα
a+Dα

a+ f = f . (7.28)
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Figure 7.2: Graphical representation of the Caputo fractional derivative of order α = 2.3. In this case,
one first differentiates by order m = 3 (b), then one integrates by order m− α = 0.7 (a).

3. The latter can be generalized. In fact, if the function I1−α
a+ f is absolutely continuous on [a, b], then:

Iα
a+Dα

a+ f (t) = f (t)−
I1−α

a+ f (a)
Γ(α)

(t− a)α−1, t ∈ (a, b), (7.29)

where I1−α
a+ f (a) = lim

s→a+
(I1−α

a+ f )(s), which is in general non-zero.

7.1.1 Two forms of fractional derivatives

It is possible to define fractional derivative operators for α ≥ 1 as well. The idea is to use usual integer
order derivative operators. Consider an integer m such that m− 1 < α ≤ m. The first step is to integrate
f by order m− α and then differentiate by m to obtain a resultant differentiation of order α (left-hand
definition, see Figure 7.1). That is,

Dα
a+ f (t) =


1

Γ(m− α)
dm

dtm

∫ t

a
(t− s)m−α−1 f (s)ds, m− 1 < α < m,

dm

dtm f (t), α = m.

(7.30)

Remark 7.9. Heuristically, the fractional derivative of order α is well defined if f ∈ Cm([a, b]), where
m− 1 < α ≤ m.

There is another way to define fractional derivatives, which is schematized in Figure (7.2). One just
has to invert the integration and derivation operations of before (right-hand definition). Then, one can
define:
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Def. 7.4 (Caputo-Dzherbashyan derivative). Let α > 0, then for any t ∈ (a, b)

∗Dα
a+ f (t) =


1

Γ(m− α)

∫ t

a
(t− s)m−α−1 dm

dsm f (s)ds, m− 1 < α < m,

dm

dtm f (t), α = m.

(7.31)

is called (left-side) Caputo-Dzherbashyan (CD) derivative of order α > 0.

Remark 7.10. Let 0 < α < 1 and a = 0. In this case we shall write Iα
0+ = Iα

t . Consider a well defined
function f , for instance take f ∈ C1(R+). Then, one has:

Iα
t ∗Dα

t f (t) = Iα
t I1−α

t
d
dt

f (t) = It
d
dt

f (t) = f (t)− f (0+). (7.32)

Therefore, (by using eq. 7.26) we have the following relationships between the RL and CD derivatives
of order 0 < α < 1:

∗Dα
t f (t) = Dα

t ( f (t)− f (0+)) = Dα
t f (t)− f (0+)

Γ(1− α)
t−α. (7.33)

Remark 7.11. The above equation (eq. 7.33), allows us to write down immediately the Grünwald-
Letnikov approximation for the CD derivative (see eq. 7.5):

∗Dα
t f (tn) =

1
δtα

n+1

∑
j=0

(−1)j
(

α

j

)
( fn+1−j − f0), 0 < α < 1. (7.34)

Provided that the order is not integer, the two fractional derivatives differ because the derivative of
order m does not generally commute with the fractional integral. We point out that the Caputo fractional
derivative satisfies the relevant property of being zero when applied to a constant (see eq. 7.26 and eq.
7.33). More in general, it is zero when it is applied to any power function of non-negative integer degree
less than m, where m− 1 < α ≤ m.

A generalization of (eq. 7.33) can be found in [10]

∗Dα
t f (t) = Dα

t

(
f (t)−

m−1

∑
k=0

f (k)(0+)
tk

k!

)
= Dα

t f (t)−
m−1

∑
k=0

f (k)(0+)tk−α

Γ(k− α + 1)
, (7.35)

where α > 0 and m− 1 < α < m.

Remark 7.12. The CD fractional derivative represents a sort of regularization (in the origin) of the RL
fractional derivative. Moreover, in order for the CD derivative to exist, all the limiting values f (k)(0+)
are required to be finite for any k ≤ m− 1. Then, because the derivative of order m is required to exist
and is subjected to some regularity conditions, the Caputo fractional derivative is in this sense more
restrictive than the Riemann-Liouville derivative.

The RL fractional derivative Dα
t is continuous with respect to α, at any positive integer, whereas ∗Dα

t
is left-continuous. In fact, one can show that,

lim
α→m−1+

∗Dα
t f (t) = f (m−1)(t)− f (m−1)(0+),

lim
α→m−

∗Dα
t f (t) = f (m)(t).
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The Caputo fractional derivative turns out to be very useful in treating initial-value problems for phys-
ical and engineering applications. In fact, in this case the initial conditions can be expressed in terms of
integer-order derivatives. On the other hands, in the case of RL derivatives the required initial condi-
tions are themselves of non-integer orders. This can be easily seen using the Laplace transformation.

Remark 7.13. Let α > 0. We indicate with L{ f (t), s} = f̃ (s) the Laplace transform of the function f
with respect to t evaluated on s ≥ 0, namely:

f̃ (s) =
∫ ∞

0
e−ts f (t)dt, s ≥ 0. (7.36)

Then, using the Laplace convolution theorem, one easily finds:

L{Iα
t f (t), s} = s−α f̃ (s). (7.37)

Keeping the remark above in mind, for any α > 0 and m− 1 < α < m, one has:

L{Dα
t f (t), s} = L{Dm

t Im−α
t f (t), s}

(by setting g(t) = Im−α
t f (t))

= L{Dm
t g(t), s} = sm g̃(s)−

m−1

∑
k=0

sm−1−kg(k)(0+)

= smL{Im−α f (t), s} −
m−1

∑
k=0

skg(m−1−k)(0+)

and, by using (eq. 7.37), one finally finds:

L{Dα
t f (t), s} = sα f̃ (s)−

m−1

∑
k=0

skDα−1−k
t f (0+). (7.38)

Thus, the needed initial conditions are, for each integer k from zero to n− 1, fractional order derivatives
of f (t).

Let us consider the CD derivative. With an analogue calculation, one finds:

L{∗Dα
t f (t), s} = sα f̃ (s)−

m−1

∑
k=0

sα−k−1 f (k)(0+). (7.39)

In this case, the order α does not appear in the derivatives of f (t), but rather in the preceding multiplier
sα−k−1. So that, quite conveniently, integer order derivatives of f (t) are used as initial conditions.

7.1.2 Fractional integrals and derivatives on the real line

Fractional integral and derivatives can be defined also in the real line:

Def. 7.5 (Fractional integrals on the real line). Let α > 0. The integrals,

Iα
+φ(t) =

1
Γ(α)

∫ t

−∞
(t− s)α−1φ(s)ds =

1
Γ(α)

∫
R
(t− s)α−1

+ φ(s)ds, t ∈ R. (7.40)

Iα
−φ(t) =

1
Γ(α)

∫ ∞

t
(s− t)α−1φ(s)ds =

1
Γ(α)

∫
R
(s− t)α−1

+ φ(s)ds, t ∈ R, (7.41)

are called fractional integrals of order α > 0 on the real line.
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Remark 7.14. We observe that Iαφ is well defined for instance if 0 < α < 1 and φ ∈ Lp(R) with
1 ≤ p < 1/α (see [18]).

In the same way, one can generalize (left-hand) fractional derivatives to the the real line. We concen-
trate on the case 0 < α < 1.

Def. 7.6 (Fractional derivatives on the real line). Let 0 < α < 1. For any t ∈ R, the integrals,

Dα
+ f (t) =

1
Γ(1− α)

d
dt

∫ t

−∞
(t− s)−α f (s)ds, (7.42)

Dα
− f (t) =

1
Γ(1− α)

d
dt

∫ ∞

t
(t− s)−α f (s)ds, (7.43)

are called fractional derivatives of order 0 < α < 1 on the real line.

Example 7.5. Let a < b, it is easy to show that, for any α > 0 and t ∈ R,

Iα
±1[a,b)(t) =

1
Γ(1 + α)

[(b− t)α
∓ − (a− t)α

∓] , (7.44)

where we remember that x− = −min(x, 0) = max(−x, 0) = (−x)+. Moreover, for any 0 < α < 1, we
have that:

Dα
±1[a,b)(t) =

1
Γ(1− α)

[
(b− t)−α

∓ − (a− t)−α
∓
]

. (7.45)

The fractional integrals Iα
± have properties analogous to those of fractional integrals on an interval.

For instance if Q f (t) = f (−t) is the reflection operator on R, one has QIα
± f (t) = Iα

∓Q f . Also, the
semigroup property (eq. 7.21)and the integration by parts formula (eq. 7.22) still hold.

Remark 7.15. Equation (7.27) is valid for functions φ ∈ L1(R). This condition is not strong enough in
many context.

The above remark suggests that one could need another more flexible definition for fractional deriva-
tive on the real line. Let f be a “sufficiently good” function, and 0 < α < 1, one has:

Dα
+ f (t) =

1
Γ(1− α)

d
dt

∫
R
(t− s)−α

+ f (s)ds =
1

Γ(1− α)
d
dt

∫ ∞

0
u−α f (t− u)du

1
Γ(1− α)

∫ ∞

0
u−α d

dt
f (t− u)du =

α

Γ(1− α)

∫ ∞

0

d
dt

f (t− u)
∫ ∞

u

1
zα+1 dzdu

(changing the integration order)

=
α

Γ(1− α)

∫ ∞

0

1
zα+1

∫ z

0

d
dt

f (t− u)dudz,

that is:

Dα
+ f (t) =

α

Γ(1− α)

∫ ∞

0

f (t)− f (t− z)
zα+1 dz, 0 < α < 1. (7.46)

In the same way, one finds:

Dα
− f (t) =

α

Γ(1− α)

∫ ∞

0

f (t)− f (t + z)
zα+1 dz, 0 < α < 1. (7.47)
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Def. 7.7 (Marchaud fractional derivatives). Let 0 < α < 1. The operators:

Dα
± f (t) = lim

ε→0
Dα
±,ε f (t), (7.48)

where:

Dα
±,ε f (t) =

α

Γ(1− α)

∫ ∞

ε

f (t)− f (t∓ z)
zα+1 dz, (7.49)

are called Marchaud fractional derivatives of order 0 < α < 1 on the real line. The operators Dα
±,ε are called

truncated Marchaud fractional derivatives.

Remark 7.16. The functions Dα
± f (t) and Dα

± f (t) are identical for many good enough function (see
example 7.6). However, the operators Dα

± and Dα
± have different domains. For instance, we may take f

to be constant, or even growing slowly enough at infinity, that Dα
± f (t) exists, but Dα

± f (t) is not defined
since constants are not L1(R) functions.

We have the following result (see [20]).

Theorem 7.1. Let 0 < α < 1 and let φ ∈ Lp(R) with 1 ≤ p < 1/α. Then,

Dα
±Iα

±φ = φ. (7.50)

Example 7.6. Let a < b and let 0 < α < 1. Evaluate Dα
±1[a,b)(t). Inspired by (eq. 7.45), suppose that:

Dα
±1[a,b)(t) =

1
Γ(1− α)

[
(b− t)−α

∓ − (a− t)−α
∓
]

. (7.51)

Because of the theorem above, it is sufficient to show that:

Iα
±

[
1

Γ(1− α)
[
(b− s)−α

∓ − (a− s)−α
∓
]]

(t) = 1[a,b)(t).

Let us check out the case Iα
+. One has to evaluate:

I(t) =
1

Γ(1− α)Γ(α)

∫
R
(t− s)α−1

+
[
(s− b)−α

+ − (s− a)−α
+
]

ds,

which is clearly equal to zero if t < a. If a ≤ t ≤ b, one has:

I(t) =
1

Γ(1− α)Γ(α)

∫ a

t
(t− s)α−1(s− a)−αds,

=
1

Γ(1− α)Γ(α)

∫ 1

0
zα−1(1− z)−αdz = 1.

Finally if t > b, one has:

I(t) =
1

Γ(1− α)Γ(α)

[∫ t

b
(t− s)α−1(s− b)−αds−

∫ t

a
(t− s)α−1(s− a)−αds

]
= 0.

Remark 7.17. The definitions of fractional derivatives on the real line can be extended to the case α ≥ 1,
see [20] for details.

It is interesting to study the behavior of fractional integrals with respect to Fourier transformations.
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Remark 7.18. Let us indicate with F{φ(y), x} = φ̂(x) the Fourier transform of the function φ with
respect to y evaluated on x ∈ R. That is,

φ̂(x) =
∫

R
eixyφ(y)dy. (7.52)

Consider the fractional integral Iα
+, with 0 < α < 1/2. Then,

Iα
+φ(t) =

1
Γ(α)

∫
R
(t− s)α−1

+ φ(s)ds, (7.53)

is well defined (Remark 7.14) for any φ ∈ L2(R). Then, using the Fourier convolution theorem, one has:

Îα
+φ(x) = φ̂(x)ψ̂α(x),

where ψα(y) = yα−1
+ /Γ(α). Observe that, in distributional sense, one has:

ψ̂α(x) = |x|−αe sign(x) απi
2 = (−ix)−α.

In fact, heuristically:

ψ̂(x)α =
1

Γ(α)

∫
R

eixyyα−1
+ dy =

|x|−α

Γ(α)

[
1{x>0}

∫
R

eizzα−1
+ dz + 1{x<0}

∫
R

e−izzα−1
+ dz

]
.

One has similar results if using Iα
−. For these reasons, we will write:

Îα
±φ(x) = φ̂(x)/(∓ix)α. (7.54)

7.2 Applications

In this section we present several noteworthy applications of fractional calculus.

7.2.1 Fractional relaxation of single order

The classical phenomenon of relaxation in its simplest form is known to be governed by a first order
linear ordinary differential equation, possibly non-homogeneous, that hereafter we recall with the cor-
responding solution. We denote by t ≥ 0 the time variable. Moreover, let u = u(t) be the field variable
and let D1

t indicate the first-order time derivative. Then, the (homogeneous) relaxation differential equa-
tion reads:

D1
t u(t) = −λu(t), t ≥ 0, (7.55)

where λ is a positive constant denoting the inverse of some characteristic time. The solution of (eq. 7.55),
with initial condition u(0+) = 1, is called the fundamental solution and reads:

u(t) = e−λt, t ≥ 0. (7.56)

We want to generalize the standard relaxation problem in order to introduce some memory effect in the
system. From a fractional calculus point of view, two different formulations are possible. One uses RL
fractional derivatives and the other uses CD derivatives (defined in an interval). Then, let 0 < β ≤ 1,
for any t ≥ 0, one could write:

D1
t u(t) = −λD1−β

t u(t), 0 < β ≤ 1, (7.57)

and
∗Dβ

t u(t) = −λu(t), 0 < β ≤ 1, (7.58)
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Remark 7.19. In the case of the fractional relaxation, the relaxation parameter λ has dimension [t]−β.

These two formulation are equivalent. In fact, (eq. 7.58) reduces to (eq. 7.57) simply by multiplying
on the left by D1−β

t .

Remark 7.20. Observe that (eq. 7.55) can be written,

u(t) = u0 − λ
∫ t

0
u(s)ds, t ≥ 0. (7.59)

Then, the fractional relaxation is obtained just by inserting a power-like memory kernel, that is consid-
ering:

u(t) = u0 − λIβ
t u(t), 0 < β < 1. (7.60)

This formulation is equivalent to the previous two. In fact, the RL fractional relaxation is obtained just
differentiating both sides of (eq. 7.60). Whereas, (eq, 7.60) is obtained by (eq. 7.58) integrating both sides
by order β (see eq. 7.32).

In order to study the fundamental solution, we evaluate the Laplace transform of equation (7.58) with
the initial condition u(0+) = 1. One finds (see eq. 7.39):

ũ(s) =
sβ−1

sβ + λ
. (7.61)

7.2.2 The Mittag-Leffler function

As quite common in fractional calculus, the so called Mittag-Leffler function plays a fundamental role
[3, ?, 10, 19]. It is defined by the following series representation, which is valid in the whole complex
plane:

Eα(z) =
∞

∑
n=0

zn

Γ(αn + 1)
, α > 0, z ∈ C. (7.62)

Eα(z) is an entire function of order ρ = 1/α of the first type.

Remark 7.21. The Mittag-Leffler function provides a simple generalization of the exponential function,
which is indeed obtained when α = 1.

Example 7.7. Other than the elementary exponential case α = 1, one has the following noteworthy
cases: for any x ∈ R,

E2(x2) = cosh x,

E2(−x2) = cos x,

E(1/2)(±|x|1/2) = e|x|
[
1 + erf(±|x|1/2)

]
= e|x|erfc(∓|x|1/2),

(7.63)

where
erf(x) =

2√
π

∫ x

0
e−y2

dy, erfc(x) = 1− erf(x). (7.64)

A further generalization can be obtained by the introduction of a second complex valued parameter
β:

Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)
, α > 0, β ∈ C, z ∈ C. (7.65)
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Example 7.8. One can find that, for any x > 0:
E1,2(x) =

ex − 1
x

,

E2,2(x) =
sinh

√
x√

x
.

(7.66)

The following results hold:

Prop. 7.2. Let Eα,β(z) be the generalized Mittag-Leffler function (eq. 7.65). Then, one has the following useful
relations:

◦ Let z ∈ C then,

Eα,β(z) =
1

Γ(β)
+ zEα,α+β(z), (7.67)

◦ Moreover,

Eα,β(z) = βEα,β+1(z) + αz
d
dz

Eα,β+1(z). (7.68)

◦ For any x, q > 0 and 0 < α < 1,

qxα−1Eα,α(−qxα) = − d
dx

Eα(−qxα). (7.69)

◦ Finally, for any x > 0 and p ∈ N

dp

dxp

[
xβ−1Eα,β(xα)

]
= xβ−p−1Eα,β−p(xα). (7.70)

The Mittag-Leffler functions are connected with Laplace integrals by∫ ∞

0
e−uEα(uαz)du =

1
1− z

=
∫ ∞

0
e−uuβ−1Eα,β(uαz)du, α, β > 0, (7.71)

which can be found easily by inserting the series representation (eq. 7.62) and evaluating explicitly the
integral. Then, by using the above equation, one can evaluate Laplace transforms involving the Mittag-
Leffler function. For instance, we have:

L{Eα(−λtα), s} =
sα−1

sα + λ
, s, λ > 0. (7.72)

Moreover,

L{tβ−1Eα,β(−λtα), s} =
sα−β

sα + λ
, s, λ > 0. (7.73)

Remark 7.22. Using Tauberian theorems and (eq. 7.72), one can easily obtain the asymptotic behavior
of Eα(−λtα) for t � 1:

Eα(−λtα) ∼ t−α

λΓ(1− α)
, t → ∞. (7.74)

Prop. 7.3. Looking at (eq. 7.61) and (eq. 7.72), it is evident that the fundamental solution of equation (7.58) is:

u(t) = Eβ(−λtβ), t ≥ 0, 0 < β ≤ 1. (7.75)
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Remark 7.23. We remark that such u(t) is the fundamental solution of equation (7.57) and equation
(7.60) as well.

In Figure 7.3 is shown the behavior of the fundamental solution (eq. 7.75) for different values of the
parameter: β1 = [1/4, 1/2, 3/4, 1], where we set λ = 1. In the top figure, the time interval is [0, 10] (lin-
ear scales), whereas in the bottom plate , the time interval is [101, 107] (logarithmic scales). Moreover, in
the bottom figure, we presented the asymptotic values for large times (dotted lines) in order to visualize
the power-law decay expressed by t−β1 /Γ(1− β1) for the cases 0 < β1 < 1.

In both the plates we have shown (dashed line) the singular solution for the limiting case β1 = 0,
stretching the definition of the Mittag-Leffler function to E0(z) = 1/(1− z), the geometric series,

u(t) =

{
E0(0) = 1, t = 0,

E0(−t0) = E0(−1) = 1/2, t > 0.

Remark 7.24. The Mittag-Leffler function is actually a generalization of the exponential function. Now,
we see in which way this function is associated to fractional calculus, namely to generalizations of
standard differential equations to fractional differential equation.

7.2.3 Fractional relaxation of distributed order

The simple fractional relaxation equations (eq. 7.57), (eq. 7.58) and (eq. 7.60) can be generalized by using
the notion fractional derivative of distributed order. Then, we consider the so called fractional relaxation
equation of distributed order in the two alternative forms involving the RL and the CD derivatives. Namely,
we write:

D1
t u(t) = −λ

∫ 1

0
p(β)D1−β

t u(t)dβ (7.76)

and ∫ 1

0
p(β) ∗Dβ

t v(t) dβ = −λv(t), (7.77)

with the initial condition u(0+) = v(0+) = 1. We suppose that,

p(β) ≥ 0,
∫ 1

0
p(β)dβ = c > 0. (7.78)

We set c = 1 in order to have the integral normalized. Moreover, we conveniently require that:

• one has

lim
β→0

P(β) = lim
β→0

∫ β

0
p(β′)dβ′ = 0. (7.79)

• P(β) is right-continuous in the origin.

• P(β) has at most finitely many (upwards) jump points in the half-open interval 0 < β ≤ 1.

Remark 7.25. These jump points allow delta contributions in p(β), which are relevant for discrete order
distributions.
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Figure 7.3: Fundamental solutions of the fractional relaxation of order β1 = [1/4, 1/2, 3/4, 1]. Linear
scale (top figure) and in logarithmic scale (bottom figure).
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In the case of distributed order fractional derivatives, there is no reason such that the two formulations
provide the same solutions. In fact, the RL formulation (eq. 7.76) turns out to be equivalent to the
equation

u(t) = u0 − λ
∫ 1

0
Iβ

t u(t)dβ, (7.80)

which however cannot be anymore obtained from (eq. 7.77). For these reasons, from now on, we study
the two fractional equations (7.76) and (7.77) distinguishing between their fundamental solutions.

The present analysis is based on the application of Laplace transformation. We focus on some special
cases depending on the choice of the order density p(β), 0 < β < 1, providing many different plots
related to the corresponding fundamental solutions.

Let us introduce the auxiliary functions:

A(s) = s
∫ 1

0
p(β) s−β dβ,

and

B(s) =
∫ 1

0
p(β) sβ dβ.

Then, we apply Laplace transform to (eq. 7.76) and (eq. 7.77). By using the rules (7.38 and 7.39), one
easily finds the Laplace transform of the corresponding fundamental solutions:

ũ(s) =
1

s + λA(s)
, (7.81)

and

ṽ(s) =
B(s)s−1

λ + B(s)
. (7.82)

Remark 7.26. We note that in the case p(β) = δ(β− β1) we have: A(s) = s1−β1 , B(s) = sβ1 . Then, Eqs.
(7.76) and (7.77) provide the same result (eq. 7.61) of the single order fractional relaxation.

By inverting the Laplace transforms in (eq. 7.81) and (eq. 7.82), one obtains the fundamental solutions
of the RL and CD fractional relaxation of distributed order.

Let us start with the RL case. In virtue of Laplace inversion Titchmarsh’s theorem, we get:

u(t) = − 1
π

∫ ∞

0
e−rtIm

{
ũ
(

reiπ
)}

dr,

which requires the evaluation of −Im {1/[s + λA(s)]} along the ray s = r eiπ , r > 0, (the branch cut of
the function s−β). We write

A
(

r eiπ
)

= ρ cos(πγ) + iρ sin(πγ),

where 
ρ = ρ(r) = |A

(
reiπ) |,

γ = γ(r) =
1
π

arg
[

A
(

reiπ
)]

Then, after simple calculations, we get:

u(t) =
∫ ∞

0
e−rtH(r; λ)dr, (7.83)
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with

H(r; λ) =
1
π

λ ρ sin(πγ)
r2 − 2λ r ρ cos(πγ) + λ2ρ2 ≥ 0. (7.84)

In the same way, in the CD case, we obtain:

v(t) = − 1
π

∫ ∞

0
e−rtIm

{
ṽ
(

reiπ
)}

dr,

which requires the evaluation of −Im {B(s)/[s(λ + B(s))]} along the ray s = reiπ , r > 0 (the branch cut
of the function sβ). We write

B
(

reiπ
)

= ρ∗ cos(πγ∗) + iρ∗ sin(πγ∗),

where 
ρ∗ = ρ∗(r) = |B

(
reiπ) |

γ∗ = γ∗(r) =
1
π

arg
[

B
(

reiπ
)]

.

After simple calculations, we get

v(t) =
∫ ∞

0
e−rtK(r; λ)d, (7.85)

where now,

K(r; λ) =
1

πr
λρ∗ sin(πγ∗)

λ2 + 2λ ρ∗ cos(πγ∗) + ρ2∗
≥ 0. (7.86)

Remark 7.27. We note that, since H(r; λ) and K(r; λ) are non-negative functions of r for any λ ∈ R+,
then the fundamental solutions u(t) and v(t) are completely monotone3. Therefore, the fundamental
solutions of the fractional relaxation of distributed order, in both the cases, maintain the fundamental
property of being complete monotone, as in the case of the standard relaxation. However, the basic
solutions exhibit a quite different behavior with a slower decay to zero for large times.

The integral expressions (7.83) and (7.85) provide a sort of “spectral representation” of the fundamen-
tal solutions, which can be actually used in order to evaluate them numerically.

Furthermore, it is quite instructive to compute the asymptotic expressions of u(t) and v(t) as t → 0
and t → ∞. In fact, they provide the analytical (even if approximated) representations for sufficiently
short and long time respectively. Moreover, they are useful in order to check the numerical evaluation.
In order to derive these asymptotic representations, we shall apply Tauberian theory of Laplace trans-
forms. According to this, the asymptotic behavior of a function f (t) as t → ∞ and t → 0 is (formally)
obtained from the asymptotic behavior of its Laplace transform f̃ (s) for s → 0+ and for s → +∞,
respectively. For this purpose, we note the asymptotic representations, from (7.81):

ũ(s) ∼


1

λ A(s)
, s → 0+ being A(s)/s � λ

1
s

[
1− λ

A(s)
s

]
, s → +∞ being A(s)/s � 1/λ,

(7.87)

3) A non-negative function ϕ(t), possessing derivative of any order and such that
(−1)k ϕ(k)(t) ≥ 0, t > 0, for any k ∈ Z+ = {0, 1, 2, . . . }.
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and from (7.82):

ṽ(s) ∼


1
λ

B(s)
s

, s → 0+ being B(s) � λ

1
s

[
1− λ

B(s)

]
, s → +∞ being B(s) � λ.

(7.88)

Finding explicit solution formulas is not possible for the relaxation equations (7.76) and (7.77), then we
shall concentrate to some typical choices of p(β). For these choices we present the numerical evaluation
of the Titchmarsh integral formulas (eq. 7.83 and 7.85).

The numerical results have been checked by verifying the asymptotic matching with the asymptotic
expression of u(t) and v(t), obtained through Tauberian theorem.

Example 7.9 (Double-order fractional relaxation). Let us consider:

p(β) = p1δ(β− β1) + p2δ(β− β2) , 0 < β1 < β2 ≤ 1 , (7.89)

where the constants p1 and p2 are both positive, such that p1 + p2 = 1. Then, for the RL case we have:

A(s) = p1 s1−β1 + p2 s1−β2 . (7.90)

So that, (eq. 7.81) becomes:

ũ(s) =
1

s[1 + λ(p1 s−β1 + p2 s−β2)]
(7.91)

Similarly, for the CD case, we have
B(s) = p1 sβ1 + p2 sβ2 , (7.92)

and (eq. 7.81) turns out to be:

ṽ(s) =
p1 sβ1 + p2 sβ2

s[λ + p1 sβ1 + p2 sβ2 ]
. (7.93)

The asymptotic expressions can be easily evaluated. In the RL case, if β2 < 1,

ũ(s) ∼


1

λp2
sβ2−1, s → 0+,

1
s

(
1− λp1s−β1

)
, s → ∞.

(7.94)

Therefore,

u(t) ∼


1

λp2

t−β2

Γ(1− β2)
, t → ∞,

1− λp1
tβ1

Γ(1 + β1)
, t → 0+.

(7.95)

Observe that (eq. 7.94), and (eq. 7.94) as well, loses its meaning if β2 = 1. In this case, we need a different
approach. We consider the expression for s → 0 provided by (eq. 7.87) as it stands. Namely,

ũ(s) ∼ 1
λ [p1s1−β1 + p2]

=
1

λ p1

1
s1−β1 + p2/(λ p1)

(7.96)

In virtue of (eq. 7.73)

L{tν−1Eµ,ν (−qtµ) , s} =
sµ−ν

sµ + q
,
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Figure 7.4: Fundamental solutions of the RL-fractional relaxation of double order in some {β1, β2} com-
binations: {1/8, 1/4}; {1/4, 1/2}; {1/2, 3/4}; {3/4, 1}. Top: linear scales, Bottom: logarith-
mic scales.
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we get for large t, by setting q = p2/(λ p1) and µ = ν = 1− β1, and using (eq. 7.69):

u(t) ∼ 1
λp1

t−β1 E1−β1,1−β1

(
−qt1−β1

)
= − 1

λp1

d
dt

E1−β1

(
−qt1−β1

)
. (7.97)

Moreover, taking into account the asymptotic behavior of the Mittag-Leffler function, we finally get

u(t) ∼ λ
p1

p2

1− β1

Γ(β1)
t−(2−β1) (7.98)

Similarly, in the CD case, one gets:

ṽ(s) ∼


p1

λ
sβ1−1, s → 0+,

1
s

(
1− λ

p2
s−β2

)
, s → ∞.

(7.99)

So that,

v(t) ∼


p1

λ

t−β1

Γ(1− β1)
, t → ∞,

1− λ

p2

tβ2

Γ(1 + β2)
, t → 0+.

(7.100)

In the figures, we exhibit many fundamental solution plots for both the cases of fractional relaxation
and for different choices of the parameter orders {β1, β2}. We have chosen p1 = p2 = 1/2 and, as usual
λ = 1. From the plots, the reader is expected to verify the role of the different orders for small and large
times, according to the corresponding asymptotic expressions (eq. 7.94, 7.95, 7.99, 7.100).

Example 7.10 (Uniformly distributed fractional relaxation). Consider the uniformly distributed case.
Namely,

p(β) = 1, 0 < β < 1.

In the RL case, we have

A(s) = s
∫ 1

0
s−βdβ =

s− 1
log s

.

Hence,

ũ(s) =
log s

slog s + λ (s− 1)
. (7.101)

Also, in the CD case:

B(s) =
∫ 1

0
sβ dβ =

s− 1
log s

.

Thus,

ṽ(s) =
1
s

s− 1
λlog s + s− 1

=
1
s
− 1

s
λ log s

λ log s + s− 1
. (7.102)

Remark 7.28. We note that for this special order distribution, we have A(s) = B(s). However, the
corresponding fundamental solutions are quite different, as we see from their Laplace transforms.



170 7 Introduction to Fractional calculus

Figure 7.5: Fundamental solutions of the CD-fractional relaxation of double order in some {β1, β2} com-
binations: {1/8, 1/4}; {1/4, 1/2}; {1/2, 3/4}; {3/4, 1}. Top: linear scales. Bottom: logarith-
mic scales.
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Then, invoking the Tauberian theory for regular variation functions (see for instance Prop. 9.1), we have
the following asymptotic expressions for the RL and CD cases.

ũ(s) ∼


log s

λ(s− 1)
, s → 0+,

1
s

(
1− λ

s− 1
slog s

)
, s → ∞.

(7.103)

Then, we find:

u(t) ∼


1
λ

etE1(t) ∼ 1
λt

, t → ∞,

1− λ

log (1/t)
, t → 0+,

(7.104)

where

E1(t) =
∫ ∞

t

e−u

u
du (7.105)

denotes the exponential integral [1]. In the CD case, one finds:

ṽ(s) ∼


1

λslog (1/s)
, s → 0+,

1
s
− λlog s

s2 , s → ∞.
(7.106)

Hence, we find:

v(t) ∼


1

λlog t
, t → ∞,

1 + λtlog t, t → 0+.
(7.107)

In Figure (7.6) are shown the plots of the fundamental solutions for both the cases of uniformly dis-
tributed fractional relaxation, adopting as previously, in the top plate, linear scales (0 ≤ t ≤ 10), and in
the bottom plate, logarithmic scales (101 ≤ t ≤ 107).

For comparison, in the top plate the plots for single orders β1 = [0, 1/2, 1] are displayed. We note that,
for 1 < t < 10, the RL and CD plots are close to those corresponding to β1 = 1/2 from above and from
below, respectively. In the bottom plate (where the β1 plot is not visible because of its faster exponential
decay) we have added, in dotted lines, the asymptotic solutions for large times.

Remark 7.29. Observe that the CD plot is decaying much slower than any power law. Whereas, the RL
plot is decaying like t−1. This means that for large times these plots are the border lines for all the plots
corresponding to single order relaxation with β1 ∈ (0, 1).

7.2.4 Fractional drift equation

Consider the non-random process l(t) = t, t ≥ 0, which depicts a non-random linear time evolution
and let fl(τ, t) denote its density function at time t. Therefore one has fl(τ, t) = δ(τ − t). It is natural to
interpret fl(τ, t) as the fundamental solution4 of the standard forward drift equation:

∂tu(τ, t) = −∂τu(τ, t), τ, t ≥ 0, (7.108)

4) Here fundamental solution means a solution u(τ, t) with “deterministic” initial value, namely
u(τ, 0) = δ(τ).
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Figure 7.6: Fundamental solutions for the RL and CD uniformly distributed fractional relaxation com-
pared with a single order case. Top: linear scales. Bottom: logarithmic scales.
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which in integral form reads:

u(τ, t) = u0(τ)−
∫ t

0
∂τu(τ, s)ds, u0(τ) = u(τ, 0). (7.109)

The general solutions are waves of the form u(τ, t) = u0(τ − t) and thus, when u0(τ) = δ(τ), the
solution of (eq. 7.108) is indeed u(τ, t) = δ(τ − t). Observe that the variable τ ≥ 0 plays the role of a
space variable.

If we introduce a power-like memory kernel, we obtain the fractional Forward drift equation of order
0 < β ≤ 1, namely:

u(τ, t) = u0(τ)− 1
Γ(β)

∫ t

0
(t− s)β−1∂τu(τ, s)ds, τ, t ≥ 0, (7.110)

Remark 7.30. We observe that (eq. 7.110) can be written:

u(τ, t) = u0(τ)− Iβ
t ∂τu(τ, t), (7.111)

which differentiating both sides with respect to t gives:

∂

∂t
u(τ, t) = −D1−β

t
∂

∂τ
u(τ, t). (7.112)

Then, the latter provides an equivalent formulation of (eq. 7.110) provided that u(τ, 0) = u0(τ). Another
equivalent formulation is given by:

∗Dβ
t u(τ, t) = − ∂

∂τ
u(τ, t), (7.113)

which indeed reduces to (eq. 7.110) integrating both sides by order β.

We indicate with h(τ, t) its fundamental solution. It is easy to show that:

L{h(τ, t); t, s} = sβ−1exp
(
−τsβ

)
, τ, s ≥ 0, (7.114)

and zero for τ < 0. Indeed, taking the Laplace transform with respect to the variable t in (eq. 7.110) one
finds (see eq. 7.37):

∂τ ũ(τ, s) = u0(τ)sβ−1 − ũ(τ, s)sβ (7.115)

and (eq. 7.114) is a solution, in the distributional sense, when u0(τ) = δ(τ).

Remark 7.31. Actually the general solution of (eq. 9.27) with u(τ) = δ(τ) is:

ϕ(τ, s) = θ(τ)sβ−1exp
(
−τsβ

)
+ Cexp

(
−τsβ

)
, τ ∈ R,

where C is a real constant and where

θ(x) =
{

1, x ≥ 0,
0, x < 0 (7.116)

is the Heaviside’s step function. Since we require ϕ(τ, t) = 0 for τ < 0, we get C = 0 i.e. (eq. 7.114).
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We circumvent the direct inversion of the Laplace transform in (eq. 7.114) by passing through the
intermediate step of the Mellin transform. Then, we indicate with

M{ϕ(x); x, u} =
∫ ∞

0
ϕ(x)xu−1dx, (7.117)

the Mellin transform of a function ϕ(x), x ≥ 0, with respect to x evaluated in u ≥ 0. Therefore,

M{h(τ, t); t, u} =
1

Γ(1− u)

∫ ∞

0
dss−uL{h(τ, t); t, s}

=
1

Γ(1− u)

∫ ∞

0
sβ−1−ue−τsβ

ds

(with the change of variables τsβ = z)

=
τβ/u−1

βΓ(1− u)

∫ ∞

0
z−u/βe−zdz =

τβ/u−1

β

Γ(1− u/β)
Γ(1− u)

.

Inverting the Mellin transform we get:

h(τ, t) =
1

2πi

∫ γ+i∞

γ−i∞

τu/β−1

β

Γ(1− u/β)
Γ(1− u)

t−udu

where 0 < γ < 1. This is the same as:

1
2πi

∫ γ+i∞

γ−i∞
τz−1 Γ(1− z)

Γ(1− βz)
t−βzdz =

1
τ

∫ γ+i∞

γ−i∞

(
τt−β

)z Γ(1− z)
Γ(1− βz)

dz =
1
τ

H1,0
1,1

(
τt−β

∣∣∣ (1, β)
(1, 1)

)
.

Here, the Fox H-function

Hm,n
p,q (z) = Hm,n

p,q

(
z
∣∣∣ (ai, αi)i=1,...,p

(bj, β j)j=1,...,q

)
,

is characterized by its Mellin transform:

M{Hm,n
p,q (z); z, u} =

A(u)B(u)
C(u)D(u)

, (7.118)

with

A(u) =
m

∏
i=1

Γ(bj + β ju), B(u) =
n

∏
j=1

Γ(1− aj − αju),

C(u) =
q

∏
i=m+1

Γ(1− bj − β ju), D(u) =
p

∏
j=n+1

Γ(aj + αju),

where: 1 ≤ m ≤ q, 0 ≤ n ≤ p, αj, β j > 0 and aj, bj ∈ C (see [21,13] for more details). The Fox H-function
satisfies the property:

zσ Hm,n
p,q

(
z
∣∣∣ (ai, αi)i=1,...,p

(bj, β j)j=1,...,q

)
= Hm,n

p,q

(
z
∣∣∣ (ai + σαi, αi)i=1,...,p

(bj + σβ j, β j)j=1,...,q

)
. (7.119)

We have:

h(τ, t) =
1
τ

H1,0
1,1

(
τt−β

∣∣∣ (1, β)
(1, 1)

)
= t−β(τt−β)−1H1,0

1,1

(
τt−β

∣∣∣ (1, β)
(1, 1)

)
(7.120)



7.2 Applications 175

Using (eq. 7.119) we find

h(τ, t) = t−β H1,0
1,1

(
τt−β

∣∣∣ (1− β, β)
(0, 1)

)
:= t−β Mβ(τt−β) := Mβ(τ, t). (7.121)

It is possible to show that the function Mβ(r) is defined for 0 < β < 1 by the power series [11]:

Mβ(r) =
∞

∑
k=0

(−r)k

k!Γ [−βk + (1− β)]

=
1
π

∞

∑
k=0

(−r)k

k!
Γ [(β(k + 1))] sin [πβ(k + 1)], r ≥ 0.

(7.122)

The above series defines a transcendental function (entire of order 1/(1− β)) and satisfies the following
properties:

1. Mβ(τ, t), 0 < β ≤ 1, defines a probability density function in τ ≥ 0 for any t ≥ 0 (see Remark
9.4).

2. The Laplace transform of Mβ(τ, t) with respect to t is:

L{Mβ(τ, t); t, s} = sβ−1e−τsβ
, τ, s ≥ 0. (7.123)

3. While, the Laplace transform with respect to τ is:

L{Mβ(τ, t); τ, u} = Eβ(−utβ), t, u ≥ 0, (7.124)

where Eβ(x) is the Mittag-Leffler function defined in (eq. 7.62).

4. Equation (7.123) suggests that in the singular limit β → 1 one has:

M1(τ, t) = δ(τ − t), τ, t ≥ 0. (7.125)

5. If β = 1/2:

M1/2(τ, t) =
1√
πt

exp(−τ2/4t), τ, t ≥ 0. (7.126)

6. For any η, β ∈ (0, 1):

Mν(x, t) =
∫ ∞

0
Mη(x, τ)Mβ(τ, t)dτ, ν = ηβ x ≥ 0. (7.127)

The first one will be shown later. Properties 2-5 follow directly from the definition. In order to see
(eq. 7.124) one can just take the Laplace transform of (eq. 7.123) with respect to τ

L{sβ−1e−τsβ
; τ, u} =

sβ−1

sβ + u
,

and then inverting with respect to s by using (eq. 7.72). We are now interested in showing (eq. 7.127).
We have:

X(x, t) =
∫ ∞

0
Mη(x, τ)Mβ(τ, t)dτ =

∫ ∞

0
τ−η Mη(xτ−η)t−β Mβ(τt−β)dτ
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(with the change of variables y = τη)

=
∫ ∞

0

1
y

Mη

(
x
y

)
t−βy

1
η−1

η
Mβ(y

1
η t−β)dy.

Therefore:
X(x, t) = (Mη ? Yt)(x) =

∫ ∞

0

1
y

Mη(x/y)Yt(y)dy, (7.128)

where (a ? b)(x) indicates the Mellin convolution and

Yt(x) =
t−βx

1
η−1

η
Mβ(x

1
η t−β). (7.129)

Using the Mellin convolution theorem we get:

M{X(x, t), x, u} = M{Mη(x), x, u}M{Yt(x), x, u}.

Using:

Mη(x) = H1,0
1,1

(
τ
∣∣∣ (1− η, η)

(0, 1)

)
,

and (eq. 7.118), we get:

M{Mη(x), x, u} =
Γ(u)

Γ(1− η + ηu)
.

Moreover:

M{Yt(x), x, u} =
∫ ∞

0

t−βx
1
η−1

η
Mβ(x

1
η t−β)xu−1dx

(with the change of variables z = x
1
η t−β)

= tηβ(u−1)
∫ ∞

0
zη(u−1)Mβ(z)dz = tηβ(u−1)M{Mβ(x); x, 1− η + ηu}

= tηβ(u−1) Γ(1− η + ηu)
Γ(1− β + β(1− η + ηu))

= tηβ(u−1) Γ(1− η + ηu)
Γ(1− βη + βηu))

.

Finally:

M{X(x, t), x, u} = tηβ(u−1) Γ(u)
Γ(1− βη + βηu))

.

Inverting the Mellin transform and using (eq. 7.118) one finds:

X(x, t) = t−ηβ H1,0
1,1

(
xt−ηβ

∣∣∣ (1− ηβ, ηβ)
(0, 1)

)
,

that is:
X(x, t) = t−ηβ Mηβ(xt−ηβ) = Mηβ(x, t).

Remark 7.32. Because Mβ(x), x ≥ 0, is a probability density function, there are a number of non-
Markovian stochastic processes which have Mβ(τ, t) as marginal density function. We will meet many
of them later.
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Figure 7.7: Plot of the density function h(τ, t) = t−β M(τt−β) at time t = 1, for different values of the
parameter β = [1/4, 1/2, 3/4].

7.2.5 Time-fractional diffusion of single order

The main physical purpose for adopting and investigating diffusion equations of fractional order, is
to describe phenomena of anomalous diffusion, which are usually met in transport processes through
complex and/or disordered systems, including fractal media. The standard diffusion equation in re-scaled
non-dimensional variables is known to be

∂

∂t
u(x, t) =

∂2

∂x2 u(x, t) , x ∈ R , t ≥ 0 , (7.130)

where u(x, t) is the field variable. We assume that u(x, t) is subjected to the initial condition u(x, 0+) =
u0(x) where u0(x) denotes a given ordinary or generalized function defined on R, that we assume to be
Fourier transformable in ordinary or generalized sense, respectively.

Remark 7.33. We assume to work in a suitable space of generalized functions where it is possible to
deal freely with delta functions, integral transforms of Fourier, Laplace and Mellin type, and fractional
integrals and derivatives.

The fundamental solution of the standard diffusion equation (eq. 9.1) is the Gaussian density

G(x, t) =
1

2
√

π
t−1/2 e−x2/(4t), t ≥ 0, (7.131)

with time growing variance σ2(t) = 2t consistently with a law of normal diffusion5.

5) The asymptotic behavior of the variance as t → ∞ is relevant to distinguish between normal
diffusion, which occurs when σ2(t)/t → c, c > 0, and anomalous diffusion, usually divided
in sub-diffusion, σ2(t)/t → 0 and super-diffusion, σ2(t)/t → +∞.
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Remark 7.34. We note the scaling property of the fundamental solution,

G(x, t) = t−1/2 U(xt−1/2) , with U(x) := u(x, 1). (7.132)

The function U(x) depending on the single variable x turns out to be an even function U(x) = U(|x|)
and is called the reduced Green function. The variable X := x/t1/2 acts as the similarity variable.

As usual we rewrite Equation (9.1) in integral form:

u(x, t) = u0(x) +
∫ t

0

[
∂2

∂x2 u(x, s)
]

ds. (7.133)

The above Cauchy problem can be generalized in order to obtain the so-called time-fractional diffusion
equation. As in the case of fractional relaxation, two distinct (but mathematically equivalent) choices are
possible. They can both be obtained by inserting a power-like memory kernel in (eq. 7.133). If one let β
denote a real number such that 0 < β < 1, one gets the time-fractional diffusion equation of order β.

u(x, t) = u0(x) + Iβ
t

[
∂2

∂x2 u(x, t)
]

. (7.134)

Then, the Riemann-Liouville time-fractional diffusion equation is obtained differentiating with respect
to t both sides of (eq. 7.134) and taking account of the initial condition:

∂

∂t
u(x, t) = D1−β

t
∂2

∂x2 u(x, t) , x ∈ R , t ≥ 0, ; u(x, 0+) = u0(x). (7.135)

Furthermore, the Caputo-Dzherbashyan time-fractional diffusion can be formally obtained generalizing
the time-derivative in (eq. 9.1) with a CD derivative of order β, namely:

∗Dβ
t u(x, t) =

∂2

∂x2 u(x, t) , x ∈ R , t ≥ 0, ; u(x, 0+) = u0(x) , (7.136)

which reduces to (eq. 7.134) integrating both sides through a time-fractional integration of order β. In
all the cases, when β = 1 we recover the standard diffusion equation.

Remark 7.35. We observe that (eq. 7.135) can be put in a conservative form as a continuity equation.
Namely,

∂

∂t
u(x, t) +

∂

∂x
F [u(x, t)] = 0, (7.137)

where F is the flux given by

F [u(x, t)] = − ∂

∂x

[
D1−β

t u(x, t)
]

= − ∂

∂x

{
1

Γ(β)
∂

∂t

[∫ t

0
(t− s)β−1u(x, s)ds

]}
. (7.138)

For β = 1, we recover in the limit the standard Fick law

F [u(x, t)] = − ∂

∂x
u(x, t),

which leads to the standard diffusion equation by using the continuity equation (7.137). We also note
that (eq. 7.138) can be interpreted as a generalized Fick law6 where memory effects are taken into account
througha time-fractional derivative of order 1− β in the Riemann-Liouville sense.
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Figure 7.8: Plot of the fundamental solution u(x, t) given by (eq. 7.140) at time t = 1, for different values
of the parameter β = [1/4, 1/2, 3/4, 1]. For β = 1 one recovers the standard Gaussian density
G(x, t).

As we will see in Chapter 9 (Theorem 9.2 with g(t) = t and K = tβ−1/Γ(β)), the fundamental solution
of (eq. 7.134) turns out to be:

u(x, t) =
∫ ∞

0
G(x, τ)h(τ, t)dτ, (7.139)

where G(x, t) is the Gaussian density and h(τ, t) is the fundamental solution of the time-fractional for-
ward drift equation (eq. 7.110). Now, by using (eq. 7.121) and (eq. 7.126), one has:

u(x, t) =
1
2

∫ ∞

0
M1/2(|x|, τ)Mβ(τ, t)dτ,

which by (eq. 7.127) gives:

u(x, t) =
1
2
Mβ/2(|x|, t) =

t−β/2

2
Mβ/2(|x|t−β/2). (7.140)

Remark 7.36. Because h(τ, t) = Mβ(τ, t), 0 < β ≤ 1, is a probability density function in τ ≥ 0, for any
t ≥ 0, then from (eq. 7.139) follows that u(x, t), t ≥ 0, is a probability density in x ∈ R.

Of particular interest is the variance time evolution. In fact, by (eq. 7.139), one has:

σ2(t) = 2
∫ ∞

0
τMβ(τ, t)dτ. (7.141)

6) We recall that the Fick law is essentially a phenomenological law, which represents the sim-
plest relationship between the flux F and the gradient of the concentration u. If u is a tem-
perature, F is the heat-flux, so we speak of the Fourier law. In both cases the law can be re-
placed by a more suitable phenomenological relationship which may account for possible
non-local, non-linear and memory effects, without violating the conservation law expressed
by the continuity equation.
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Figure 7.9: Plot of the density function u(x, t) for fixed β = 1/2, at different times t = [0.1, 1, 10, 102].

We observe that: ∫ ∞

0
τsβ−1e−τsβ

dτ = s−β−1,

then, by using (eq. 7.123), and inverting the Laplace transform (see also eq. (9.60) with m = 1), one finds

σ2(t) = 2
tβ

Γ(β + 1)
, 0 < β ≤ 1. (7.142)

So that, we have a sub-linear growth in time, consistent with an anomalous process of slow diffusion.

In order to better visualize the decay of the tails of u(x, t), in Figure (7.10) we used a semi-logarithmic
scales. In this case the decay-plot of the queues is ranging from a straight line (β = 0) to a parabolic line
(β = 1).

Remark 7.37. From a stochastic point of view, the fundamental solution (eq. 7.140) can be seen as the
marginal density function of a self-similar stochastic process with H = β/2. Clearly, there exist many
different stochastic processes which serve as model for the time-fractional diffusion. Here, we just ob-
serve that, in view of the subordination equation (eq. 7.139), a natural choice is the process X = B(l(t)),
t ≥ 0, where l(t), t ≥ 0, is a non-Markovian random time, with marginal density function satisfying the
time-fractional forward drift equation (eq. 7.110), independent of the Brownian motion B(t). We will
back later on this topic.

7.2.6 Time-fractional diffusion of distributed order

As in th case of fractional relaxation, the time-fractional diffusion equations (eq. 7.135) and (eq. 7.136)
can be generalized by using the notion of time-fractional derivative of distributed order. Then, let us
introduce the normalized density function p(β), 0 < β ≤ 1, which, as in (eq. 7.78), represents the weight
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Figure 7.10: Plots (in linear-logarithmic scales) of 1
2 Mβ0/2(x)) versus x (in the interval 0 ≤ x ≤ 10), for

β0 = [0, 1/2, 3/4, 1].

distribution of the fractional derivatives orders. We suppose p(β) verifies the same regularity properties
of (eq. 7.78). Thus, we can write the two alternative forms of fractional diffusion of distributed order:

∂

∂t
u(x, t) =

∫ 1

0
p(β)D1−β

t

[
∂2

∂x2 u(x, t)
]

dβ , x ∈ R, t ≥ 0 , (7.143)

and ∫ 1

0
p(β)

[
∗Dβ

t v(x, t)
]

dβ =
∂2

∂x2 v(x, t) , x ∈ R, t ≥ 0 . (7.144)

Remark 7.38. As in the case of fractional relaxation of distributed order, the two forms above are no-
longer equivalent. We observe that only the RL time-fractional diffusion of distributed order with initial
condition u0(x) is equivalent to the integral equation:

u(x, t) = u0(x) +
∫ 1

0
p(β)Iβ

t ∂xxu(x, t)dβ. (7.145)

We are interested in finding out a general representation of the fundamental solution corresponding
to a generic choice of p(β).

Remark 7.39. Let us remark that the flux formula (7.138) can be generalized in the case of the RL frac-
tional diffusion equation of distributed order. In fact,

F [u(x, t)] = − ∂

∂x

{∫ 1

0
p(β)

[
tD1−β u(x, t)

]
dβ

}
. (7.146)

In order to find a suitable representation of the fundamental solutions, we apply the Laplace transform
with respect to t ≥ 0, and Fourier transform with respect to x ∈ R, to the equations (7.143) and (7.144).
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After introducing the auxiliary functions,

A(s) = s
∫ 1

0
p(β) s−β dβ (7.147)

B(s) =
∫ 1

0
p(β) sβ dβ , (7.148)

we get: ̂̃u(κ, s) =
1

s + κ2 A(s)
, (7.149)

and ̂̃v(κ, s) =
B(s)/s

κ2 + B(s)
. (7.150)

Remark 7.40. We note that in the particular case p(β) = δ(β− β0), one has A(s) = s1−β0 , and B(s) = sβ0 .
Then, one gets the same result of the time-fractional diffusion of a single order β = β0.

We are inverting first the Fourier transform. We observe that7

F
{

c
2
√

d
e−|x|

√
d, x, k

}
=

c
d + κ2 , d > 0. (7.151)

Then, by comparing the latter with (eq. 7.149) and (eq. 7.150), we recognize the same Fourier transform
couple with:

◦ In the RL case: {
c = c(s) := 1/A(s),

d = d(s) := s/A(s).

◦ In the CD case: {
c = c(s) := B(s)/s,

d = d(s) := B(s).

Then, one obtains:

ũ(x, s) =
1

2
√

sA(s)
exp

{
−|x|

√
s/A(s)

}
. (7.152)

ṽ(x, s) =
√

B(s)
2s

exp
{
−|x|

√
B(s)

}
. (7.153)

Following a standard procedure in complex analysis, the Laplace inversion requires the integration
along the borders of the negative real semi-axis in the s-complex cut plain. In fact, this semi-axis, defined
by s = re±iπ , r > 0, turns out to be the common branch-cut of the functions s1−β, which appears in A(s)
and sβ which appears in B(s). Then, in virtue of the Titchmarsh theorem on Laplace inversion, we get
the representations in terms of real integrals of Laplace type.

u(x, t) = − 1
π

∫ ∞

0
e−rt Im

{
ũ
(

x, reiπ
)}

dr , (7.154)

7) The result is just a straightforward exercise in complex analysis based on residue theorem
and Jordan’s lemma.
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which requires the evaluation of A(s) along the ray s = r eiπ with r > 0. At this purpose, we write

A
(

r e iπ
)

= ρ cos(πγ) + iρ sin(πγ) , (4.12a)

where  ρ = ρ(r) =
∣∣A (r eiπ)∣∣ ,

γ = γ(r) = 1
π arg

[
A
(
r eiπ)] .

(7.155)

In the same way, in the CD case, one gets:

v(x, t)=− 1
π

∫ ∞

0
e−rt Im

{
ũ∗
(

x, reiπ
)}

dr, (7.156)

which requires the evaluation of B(s) along the ray s = r eiπ with r > 0. Again, we write

B
(

r e iπ
)

= ρ∗ cos(πγ∗) + iρ∗ sin(πγ∗) , (7.157)

where  ρ∗ = ρ∗(r) =
∣∣B (r eiπ)∣∣ ,

γ∗ = γ∗(r) = 1
π arg

[
B
(
r eiπ)] .

(7.158)

Finally, we have found an integral representation of the fundamental solutions:

u(x, t) =
∫ ∞

0
e−rt P(x, r) dr , P(x, r) = − 1

π
Im
{

ũ
(

x, reiπ
)}

, (7.159)

and
v(x, t) =

∫ ∞

0
e−rt P∗(x, r) dr , P∗(x, r) = − 1

π
Im
{

ṽ
(

x, reiπ
)}

, (7.160)

where the functions P(x, r) and P∗(x, r) must be derived by using (eq. 7.152) and (eq. 7.153), respectively.

Remark 7.41. We recognize that the expressions of P and P∗ are related to each other by the transforma-
tion

ρ∗(r) ⇐⇒ r/ρ(r) , γ∗(r) ⇐⇒ 1− γ(r) . (7.161)

By the remark above, it is sufficient to provide the explicit expression in the CD case:

P∗(x, r) =
1

2πr
Im
{

ρ1/2
∗ e iπγ∗/2 exp

[
− e iπγ∗/2ρ1/2

∗ x
]}

=
1

2πr
ρ1/2
∗ e−ρ1/2

∗ x cos(πγ∗/2) sin
[
πγ∗/2− ρ1/2

∗ x sin(πγ∗/2)
]

.

(7.162)

Then, the corresponding expression of P(x; r) is obtained by applying the transformation (7.161).

Remark 7.42. The expressions (7.159) an (7.160) can be evaluated numerically in order to get plots of the
fundamental solutions.

Remark 7.43. It is possible to show (see Example 9.6) that the fundamental solutions are probability
densities. However, in contrast with the simple single order equation, the self-similarity is no-longer.
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We are now interested in the study of their variance. Indeed, the variance time behavior is fundamen-
tal in the classification of the type of diffusion. One has:

RL : σ2(t) = − ∂2

∂κ2 û(κ = 0, t) ; CD : σ2
∗(t) = − ∂2

∂κ2 v̂(κ = 0, t) . (7.163)

As a consequence, we just have to invert the Laplace transforms in (eq. 7.149) and (eq. 7.150). We have,
for κ → 0, ̂̃u(κ, s) =

1
s

(
1− κ2 A(s)

s
+ . . .

)
⇔ σ̃2(s) = − ∂2

∂κ2
̂̃u(κ = 0, s) =

2A(s)
s2 , (7.164)

and ̂̃u∗(κ, s) =
1
s

(
1− κ2 1

B(s)
+ . . .

)
⇔ σ̃2(s) = − ∂2

∂κ2
̂̃u(κ = 0, s) =

2
s B(s)

. (7.165)

We now study the examples of double order and uniformly distributed order fractional diffusion.

Example 7.11 (Double order fractional diffusion). Let p1 + p2 = 1 two positive numbers, and

p(β) = p1δ(β− β1) + p2δ(β− β2) , 0 < β1 < β2 ≤ 1. (7.166)

Therefore,

◦ in the RL case, one has:
A(s) = p1 s1−β1 + p2 s1−β2

which, inserted in (eq. 7.149), gives

̂̃u(κ, s) =
1

s[1 + κ2(p1 s−β1 + p2 s−β2)]
(7.167)

◦ In the CD case, one has:
B(s) = p1 sβ1 + p2 sβ2 ,

which, inserted in (eq. 7.150), gives:

̂̃u∗(κ, s) =
p1 sβ1 + p2 sβ2

s[κ2 + p1 sβ1 + p2 sβ2 ]
(7.168)

We leave as algebraic exercise the evaluation of the functions P(x, r) an P∗(x, r), which have to be used
in the numerical computation of the solutions. We focus now on the study of the variance. We start from
the corresponding Laplace transforms (eq. 7.164) and (eq. 7.165):

σ̃2(s) = 2 p1 s−(1+β1) + 2 p2 s−(1+β2),

σ̃2∗(s) =
2

p1 s(1+β1) + p2 s(1+β2)
.

In the RL case one easily finds:

σ2(t) = 2 p1
tβ1

Γ(β1 + 1)
+ 2 p2

tβ2

Γ(β2 + 1)
∼


2p1

tβ1

Γ(1 + β1)
, t → 0+,

2p2
tβ2

Γ(1 + β2)
, t → +∞.

(7.169)
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Whereas, in the CD case, by using (eq. 7.73), one finds:

σ2
∗(t) =

2
p2

tβ2 Eβ2−β1,β2+1

(
− p1

p2
tβ2−β1

)
∼


2
p2

tβ2

Γ(1 + β2)
, t → 0+

2
p1

tβ1

Γ(1 + β1)
, t → +∞ .

(7.170)

Therefore, we see that: in the RL case we have an explicit combination of two power-laws. The smallest
exponent (β1) dominates at small times, whereas the largest exponent (β2) dominates at large times.
In the CD case, we have a generalized Mittag-Leffler function which gives only asymptotically a com-
bination of power-laws. Precisely, we get an opposite behavior than before: the largest exponent (β2)
dominates at small times and the smallest exponent (β1) dominates at large times.

Remark 7.44. One could have obtained the same results directly from the Laplace transforms by apply-
ing the Tauberian theory.

In Figure (7.11), we chose {β1 = 1/4, β2 = 1} in order to better contrast the different evolution of the
fundamental solution for the RL and the CD forms. We exhibit the plots of the corresponding solution
versus x (in the interval |x| ≤ 5), at different times, selected as t = 0.1, t = 1 and t = 10. In this limited
spatial range we can note how the time evolution of the probability density functions depends on the
different time-asymptotic behavior of the variance.

Example 7.12 (Uniformly distributed fractional diffusion). Let p(β) = 1 for any 0 < β ≤ 1. With this
choice,

◦ in the RL case, one has:

A(s) = s
∫ 1

0
s−β dβ =

s− 1
log s

,

which, inserted in (eq. 7.149), gives

̂̃u(κ, s) =
log s

slog s + κ2 (s− 1)
. (7.171)

◦ In the CD case, one has:

B(s) =
∫ 1

0
sβ dβ =

s− 1
log s

,

which, inserted in (eq. 7.150), gives:

̂̃u∗(κ, s) =
1
s

s− 1
κ2log s + s− 1

=
1
s
− 1

s
κ2 log s

κ2 log s + s− 1
. (7.172)

Also here, we leave as algebraic exercise the evaluation of the functions P(x, r) an P∗(x, r), and focus
now on the study of the variance. In the RL case:

σ̃2(s) = 2
[

1
slog s

− 1
s2log s

]
. (7.173)

Then, by inversion (see [16, 17]),

σ2(t) = 2 [ν(t, 0)− ν(t, 1)] ∼
{

2/log (1/t), → 0,

2t/log t, t → ∞,
(7.174)
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Figure 7.11: Plots of the fundamental solution versus x (in the interval |x| ≤ 5), for the case {β1 =
1/4, β2 = 1} at times t = [0.1, 1, 10]. Top: RL case; bottom: CD case.)
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where

ν(t, a) =
∫ ∞

0

ta+τ

Γ(a + τ + 1)
dτ , a > −1.

In the CD case, we have:

σ̃2∗(s) =
2
s

log s
s− 1

. (7.175)

Which, by inversion (see [16, 17]), gives:

σ2
∗(t) = 2

[
log t + γ + e t E1(t)

]
∼
{

2t log (1/t), t → 0,

2 log (t), t → ∞,
(7.176)

where E1(t) denotes the exponential integral function (eq. 7.105) and γ = 0.57721... is the so-called
Euler-Mascheroni constant.

We find instructive to compare in Figure (7.6) the solutions corresponding to RL and CD cases with
the solutions of the fractional diffusion of a single order β0 = [1/4, 3/4, 1] at fixed times t = 1, 10.

Then, in Figures (7.13) and (7.14), we compare the variance at moderate times 0 ≤ t ≤ 10, using linear
scales, and at large times 101 ≤ t ≤ 107, using logarithmic scales, respectively. Here we have inserted
the plot for β0 = 1/2. In order to interpret these asymptotic behaviors, we observe that, due to the
logarithmic constituents in the RL case, the variance grows slightly slower than linearly for t → ∞, but
extremely slowly near t = 0. In the CD case the variance exhibits a slightly super-linear growth near
t = 0, but an extremely slow growth for t → ∞.

7.2.7 Fractional representation of fractional Brownian motion

The name fractional Brownian motion suggests that it can be in some way regarded as a fractional in-
tegral of Brownian motion. Here, we want to show that it is best viewed as a fractional integral of a
Gaussian white noise.

Let BH(t), t ∈ R, be a (two-sided) fractional Brownian motion of index 0 < H < 1 (see Section 3.7).
In the context of fractional integration, it is convenient to use another parameterization of fBm: we set
κ = H − 1/2, and we indicate with Bκ(t) a fBm of order κ. Clearly, the range 0 < H < 1 corresponds to
the range −1/2 < κ < 1/2.

Remark 7.45. In the statistics of long range dependence (see Chapter 6), the parameter κ has been in-
dicated with d = H − 1/2 and it represents just the order of the fractional derivative appearing in the
definition of a FARIMA process (eq. 3.61). However, d can be confusing in this context.

We start with the moving average representation of standard fractional Brownian motion (eq. 5.1),
namely:

Bκ(t) =
d 1

C1(κ)

∫
R

(
(t− s)κ

+ − (−s)k
+

)
dB0(s), t ∈ R, (7.177)

where

C1(κ)2 =
∫ ∞

0
((1 + s)κ − sκ)2 ds +

1
2κ + 1

. (7.178)

We have the following:
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Figure 7.12: Plots of the fundamental solution versus x (in the interval |x| ≤ 5), for the uniform order
distribution in RL and CD forms compared with the solutions of some cases of single order
at t = 1 (top) and t = 10 (bottom).
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Figure 7.13: Plots of the variance versus t in the interval 0 ≤ t ≤ 10 (linear scales), for the uniform order
distribution.

Figure 7.14: Plots of the variance versus t in the interval 101 ≤ t ≤ 107 (logarithmic scales) for the
uniform order distribution.
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Prop. 7.4. Let −1/2 < κ < 1/2 and suppose that Bk is a standard fBm. Then,

Bκ(t) =
d Γ(κ + 1)

C1(κ)

∫
R
Iκ
−1[0,t)(s)dB0(s), t ∈ R. (7.179)

In fact, by using (eq. 7.44) for 0 < κ < 1/2 and (eq. 7.51) for −1/2 < κ < 0, by meaning I−α
± := Dα

±,
α > 0, one has:

Γ(κ + 1)Iκ
−1[0,t)(s) = (t− s)κ

+ − (−s)κ
+,

for any t ∈ R and −1/2 < κ < 1/2.

Remark 7.46. One can observe that the spectral representation (eq. 5.13) can be directly obtained form
(eq. 7.179) by using (Prop. 5.3), namely:

Bκ(t) =
d Γ(κ + 1)√

2πC1(κ)

∫
R
Îκ
−1[0,t)(ν)dB̃(ν), (7.180)

where dB̃(ν) = dB1(ν) + idB2(ν) is a complex valued Gaussian measure such that dB1(−ν) = dB1(ν)
and dB2(−ν) = −dB2(ν).

In fact, the factor
√

π comes after comparing the definitions (eq. 5.7) and (eq. 7.52), and gives (eq. 5.5).
Moreover, by using (eq. 7.54), on finds

Îκ
−1[0,t)(ν) =

1̂[ 0,t)(ν)
(iν)κ

=
eiνt − 1

iν
|x|−κe−sign(x) iκπ

2 ,

which actually gives the expected result (see Remark 5.5).

Heuristically, the representation (7.179) says that the fractional Gaussian noise is the κ-fractional inte-
gral of the white noise Ḃ0. That is, formally speaking:

Ḃκ(t) = Iκ
+Ḃ0(t). (7.181)

In fact, we have naively that:

Bκ(t) =
∫

R
1[0,t)(s)Ḃκ(s)ds =

∫
R
Iκ
−1[0,t)(u)Ḃ0(u)du =

∫
R

1[0,t)(u)Iκ
+Ḃ0(u)du,

where we have used the integration by parts formula (eq. 7.22).

Remark 7.47. It is also possible to relate fractional Brownian motion to fractional integrals defined on
an interval (see [18]).
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8 Grey Brownian motion

The grey noise theory introduced by Schneider (see [17, 18]) leads naturally to a class of self-similar
stochastic processes {Bβ(t), 0 < β ≤ 1}. These processes, called grey Brownian motion (gBm), provide
stochastic models for the slow-anomalous diffusion described by the time fractional diffusion equation
(eq. 7.134). This means that the marginal density function of the grey Brownian motion is the funda-
mental solution (eq. 7.140) of the time fractional diffusion equation.

In this chapter we introduce an extended class of stochastic processes {Bα,β(t)}, with 0 < α < 2, 0 <
β ≤ 1, which is called “generalized” grey Brownian motion (ggBm) (see Mura [12, 13]). This class includes
non-Markovian stochastic models either for slow and fast-anomalous diffusion. After having presented
and motivated the mathematical construction, we will show that this class is made up of H-sssi processes
and contain either Gaussian and non-Gaussian processes (like fractional Brownian motion and grey
Brownian motion). The time evolution of the Bα,β(t) marginal density function is described by partial
integro-differential equations of fractional type, which means featuring a power-like memory kernel,
indeed including the time-fractional diffusion equations.

8.1 White noise

The ggBm is defined through the explicit construction of the underline probability space. The same
construction could be used in order to define Brownian motion, which is actually a particular case of
grey Brownian motion. So that, we start describing this construction in the case of Bm. At this purpose
it is crucial to better clarify the concept of white noie.

We have already encountered the notion of white noise several times. We stated that it could have be
seen as a sort of Bm time derivative (see Remark 3.24 and considerations here below), but, being Brown-
ian motion trajectory almost surely not differentiable, this intuition remained obscure. Then, we hinted
that a useful and actually rigorous definition must have be given in terms of generalized processes (see
the comments below eq. 4.4). We try to better clarify these concepts in the following.

We have seen that a Gaussian white noise {z(t)}t∈R is heuristically defined as a zero-mean stationary
process such that z(t)’s are independent with mean 0 and variance ∞, in the sense that:

E(ztzs) = γ(t− s) = δ(t− s), t, s ∈ R, (8.1)

where δ(x) is the Dirac delta function. The name white noise comes from the fact that, by (eq. 8.1), it has
a constant nonzero spectral density:

fz(ν) =
1

2π

∫ ∞

−∞
e−iνtγ(t)dt =

1
2π

,

so that its average power is uniformly distributed in frequency, which is a characteristic of white light.
The equation (8.1) suggests that Gaussian white noise is an unusual stochastic process.

In fact, let {Wt}t∈R be a standard Wiener process and for fixed h > 0 define a new process:

{zh(t)}t∈R =
{

W(t + h)−W(t)
h

}
t∈R

. (8.2)
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The standard Wiener process Wt has a spectral representation (eq. 5.17):

Wt =
1√
2π

∫
R

eitν − 1
iν

dW̃(ν), (8.3)

where, as usual, dW̃(ν) is a complex Gaussian measure such that:

dW̃(ν) = dW1(ν) + idW2(ν),

where W1 and W2 are independent standard Wiener processes with:

dW1(ν) = dW1(−ν), dW2(ν) = −dW2(−ν).

Starting from (eq. 8.3) and using the definition (eq. 8.2), we find the corresponding spectral representa-
tion for the process zh(t):

zh(t) =
1√
2π

∫
R

eiνt eihν − 1
iνh

dW̃(ν).

Because the {zh(t)}’s stationarity, we could write:

γ(t) = E (zh(t)zh(0)) =
1

2π

∫
R

eiνt |eihν − 1|2
ν2h2 dν,

therefore the spectral density is (compare with eq. 5.26 with H = 1/2 and σ = 1):

fzh(ν) =
1

2π

|eihν − 1|2
ν2h2 =

1
2π

4 sin2(hν/2)
ν2h2 ; (8.4)

this density converges to 1/2π for all ν 6= 0 as h converges to 0, which suggests that the process zh
converges in some sense to a Gaussian white noise that could than be seen as the derivative Ẇ of a
Wiener process. However the sample paths of a Wiener process are, almost surely, not differentiable
anywhere. Thus a Gaussian white noise process cannot be a stochastic process in the usual sense, but,
as suggested by (8.1), it must be interpreted in the sense of generalized functions like the Dirac delta
function.

Remark 8.1. White noise cannot be realized physically, but can be approximated to any desired degree
of accuracy by conventional stochastic processes with broad banded spectra such as (8.2).

8.1.1 White noise as a generalized stochastic process

As suggested by our previous considerations, the white noise should be thought as a sort of generalized
process. We know that a generalized function is a function f (ξ) depending linearly on test functions
ξ. In the same way a generalized stochastic process X(ξ) shall be a function depending linearly on test
functions ξ such that for each ξ, X(ξ) is a random variable.

Therefore, we define:

Def. 8.1 (White noise). a white noise is a generalized stochastic process X such that for each test function
ξ:

◦ X(ξ) is Gaussian;

◦ E(X(ξ)) = 0,
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◦ σ2(X(ξ)) =
∫

R
ξ(t)2dt.

We observe now that if it were possible to write:

X(ξ) =
∫

R
ξ(t)z(t)dt, (8.5)

we would have:
E(z(t)z(s)) = δ(t− s),

that is (eq. 8.1). Indeed, for each pair of test functions ξ and η:

E(X(ξ + η)2) =
∫

R

[
ξ2(t) + η2(t) + 2ξ(t)η(t)

]
dt

(by linearity)
= E(X(ξ)2) + E(X(η)2) + 2E(X(ξ)X(η)),

therefore, using (8.5), we get the result:∫
R

ξ(t)η(t)dt = E(X(ξ)X(η)) =
∫

R2
ξ(t)η(s)E(z(t)z(s))dtds.

Does white noise as such a generalized stochastic process X(ξ) exists? The answer is affirmative. In
fact, it could ever be defined by making use of stochastic integrals. Indeed, let {W(t)}t∈R be a standard
Brownian motion, then

X(ξ) =
∫

R
ξ(t)dW(t)

defines a white noise Ẇ as a generalized process. We write formally:

X(ξ) =
∫

R
ξ(t)Ẇ(t)dt =

∫
R

ξ(t)dW(t). (8.6)

The equation (8.6) suggests that the space of test function for X be the space of the integrands for the Ito
integral (for example L2(R)).

Example 8.1. Starting from the above definition, we could define objects like Ẅ, regarded as a general-
ized stochastic process defined by:

Y(ξ) =
∫

R
ξ(t)Ẅ(t)dt = −

∫
R

ξ ′(t)dW(t). (8.7)

Remark 8.2. It’s important to observe that when white noise is defined as a generalized stochastic pro-
cess, it is regarded as a whole Ẇ and, for each t ∈ R, the quantity Ẇ(t) has no meaning. In other words,
we cannot find the quantity Ẇ(t) alone, but always forming a stochastic differential in the combination

Ẇ(t)dt = dW(t).

Remark 8.3. However, it is possible to show that the quantity Ẇ(t) can become meaningful as a gener-
alized function defined on an infinite dimensional space (T. Hida’s theory). Such a theory, called white
noise distribution theory, is indeed a generalization of the Schwartz distribution theory to infinite dimen-
sional spaces. We remind the interested reader to the reach literature covering this interesting topic (see
for instance [5, 9]).
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8.1.2 Characteristic functional and Minlos theorem

We begin introducing some basic concepts and facts. Let X be a vector space over a K-field and let{
|| · ||p, p ∈ I

}
be a countable family of Hilbert seminorms defined on it. We remember that:

Def. 8.2 (Seminorms). A seminorm on X is a map || · ||p : X → R such that

1. || · ||p is positive or positive semidefinite: ||x||p ≥ 0, x ∈ X;

2. || · ||p is positive homogeneous or positive scalable: ||λx||p = |λ|||x||p, with λ ∈ K and x ∈ X;

3. || · ||p is subadditive: ||x + y||p ≤ ||x||p + ||y||p, x, y ∈ X

Notation 8.1. In the following, we are going to indicate with Xp the completion of X with respect to the
seminorm || · ||p.

Def. 8.3 (Hilbert seminorms). A seminorm || · ||p is an Hilbert seminorm if Xp is an Hilbert space, or
equivalently if || · ||p comes from a sesquilinear positive semidefinite form on X.

Remark 8.4. If || · ||p satisfies positive definiteness, which means that ||x||p = 0 if and only if x = 0,
then || · ||p is a norm.

Def. 8.4 (Topological vector space). The space X along with the family of seminorms
{
|| · ||p, p ∈ I

}
, is

said to be a locally convex space (or simple a topological vector space), if it carries, as natural topology, the
initial topology1 of the seminorms and the vector space operations (addition and scalar multiplication).

Let X be a topological vector space with the topology given by a family {|| · ||p, p ∈ I} of Hilbert
norms. For any u, v ∈ X, we define:

d(u, v) =
∞

∑
n=1

2−pn
||u− v||pn

1 + ||u− v||pn

.

Then, d is a metric on X and it is Cauchy if and only if X is Cauchy in each norm || · ||p.

Def. 8.5 (Countably-Hilbert space). A topological vector space X, with the topology generated by a
family of Hilbert norms {|| · ||p}p, is called a countably-Hilbert space if it is complete with respect to its
topology or, equivalently, with respect to the corresponding metric.

For instance, if one assumes that the family {|| · ||p}p is increasing. Namely, for any x ∈ X:

||x||p1 ≤ ||x||p2 ≤ · · · ≤ ||x||pn , p1 < p2 < · · · < pn.

Then, the following inclusions are continuous:

X ⊂ · · · ⊂ Xpn+1 ⊂ Xpn ⊂ · · · ⊂ Xp1 ,

and the following result holds:

Prop. 8.1. X is complete if and only if X =
∞⋂

n=1

Xpn .

Conversely, suppose that {(Yp, || · ||p), p ∈ I} is a countable sequence of Hilbert spaces such that
Ypn+1 is continuously embedded in Ypn for each pn ∈ I. We set:

Y =
∞⋂

n=1

Ypn .

1) The coarsest topology on X which makes those functions continuous.
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Def. 8.6 (Projective limit topology). We define the projective limit topology on Y as the coarsest topology
such that for each n ≥ 1 the inclusion map from Y to Ypn is continuous. The topological vector space Y
is said the projective limit of {Ypn , n ≥ 1}.

Remark 8.5. Obviously, Y is a countably-Hilbert space with the norms {|| · ||p, p ∈ I}.

In the same way, let {(Wn, || · ||n), n ≥ 1} be a sequence of Hilbert spaces such that Wn is continuously
embedded in Wn+1 for each n. We set

W =
∞⋃

n=1

Wn.

We define:

Def. 8.7 (Inductive limit topology). We define the inductive limit topology on W as the finest locally convex
topology such that for each n ≥ 1 the inclusion map from Wn to W is continuous. The topological vector
space W is said the inductive limit of {Wn}n.

We consider now dual spaces. Let X be a countably-Hilbert space with an increasing sequence {|| ·
||p, p ∈ I} of norms. Then, the dual space X′ of X is given by:

X′ =
∞⋃

n=1

X′
pn ,

and we have the inclusions:

X′
p1
⊂ · · · ⊂ X′

pn ⊂ X′
pn+1

⊂ · · · ⊂ X′. (8.8)

Let 〈·, ·〉 denote the natural bilinear pairing between X and X′. There are several topologies on the dual
space X′.

A. Weak topology: the weak topology on X′ is defined to be the coarsest topology on X′ such that the
functional 〈·, x〉 is continuous for any x ∈ X. Equivalently this topology has a base of neighbor-
hoods of zero given by sets of form:

N(x1, . . . , xk; ε) = {ξ ∈ X′; |〈ξ, xj〉| < ε, 1 ≤ j ≤ k}, (8.9)

where x1, . . . , xk ∈ X and ε > 0. Obviously the inclusion map from X′
p into X′ is continuous and

X′
p is dense in X′ relative to the weak topology.

B. Strong topology: the strong topology of X′ is defined to be the topology with a base of neighbor-
hoods of zero given by:

N(D, ε) = {ξ ∈ X′; sup
x∈D

|〈ξ, x〉| < ε},

where D is any bounded2 subset of X and ε > 0. The strong topology is finer than the weak
topology. Moreover, the inclusion map between X′

p and X′ is continuous and X′
p is dense in X′.

C. Inductive topology: if X is a contably-Hilbert space, its dual space X′, in view of (8.8), can be re-
garded as the inductive limit of {X′

n, n ≥ 1}. Thus X′ has the inductive limit topology. It turns
out that this inductive topology is the same as the strong topology on X′.

2) D ⊂ X is bounded if for any neighborhood N ⊂ X of zero there is a positive number c > 0
such that D ⊂ cN.
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Remark 8.6. It is possible to show that the σ-fields on X′ generated by the three topologies (weak, strong
and inductive limit) are all the same if X is a so called Nuclear space.

Def. 8.8 (Nuclear space). A topological vector space X, with the topology defined by a family of Hilbert
norms, is said a nuclear space if for any Hilbert norm || · ||p there exists a larger norm || · ||q such that the
inclusion map Xq ↪→ Xp is an Hilbert-Schmidt operator3.

Nuclear spaces have many of the good properties of the finite dimensional Euclidean spaces Rd. For
example, a subset of a nuclear space is compact if and only if is bounded and closed. Moreover, spaces
whose elements are “smooth” is some sense tend to be nuclear spaces.

In the following example we see how nuclear spaces could be constructed naturally starting from an
Hilbert space and an operator (see Kuo [9]).

Example 8.2. Let H be an Hilbert space and A an operator defined on it. Suppose that there exists an
orthonormal bases {hn, n = 1, 2, . . . } satisfying the following properties:

1. They are eigenvectors of A; i.e. for any n > 0: Ahn = λnhn, λn ∈ R.

2. {λn}n>0 is a non-decreasing sequence such that: 1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn

3. There exists a positive integer a such that:
∞

∑
n=1

λ−a
n < ∞.

For any non-negative rational number p ∈ Q+, we define a sequence of norms {|| · ||p, p ∈ Q+} such
that: ||ξ||p = ||Apξ||, ξ ∈ H. That is:

||ξ||p =

(
∞

∑
n=1

λ
2p
n (ξ, hn)2

)1/2

, (8.10)

where (·, ·) indicates the H inner product.

Remark 8.7. For any p ∈ Q+, the norm || · ||p is an Hilbert-norm. Indeed, it comes from the scalar
product:

(ξ, η)p =
∞

∑
n=1

λ
2p
n (ξ, hn)(η, hn). (8.11)

For any p ∈ Q+ we define: Xp = {ξ ∈ H; ||ξ||p < ∞}. In view of the above remark, Xp is an Hilbert
space. Moreover, it is easy to see that for any p ≥ q ≥ 0:

Xp ⊂ Xq. (8.12)

We have the following proposition:

Prop. 8.2. For any p ∈ Q+, the inclusion map Xp+a/2 ↪→ Xp is an Hilbert-Schmidt operator.

Proof: we set hp
n =

1
λ

p
n

hn. The collection {hp
n, n = 1, 2, . . . } is an orthonormal bases of Xp. In fact, for

any positive integers n and m:

(hp
n, hp

m)p =
∞

∑
k=1

λ
p
k (hp

n, hk)(hp
m, hk) =

∞

∑
k=1

λ
2p
k

λ
p
nλ

p
m

δnkδmk = δnm.

3) An Hilbert-Schmidt operator is a bounded operator A, defined on an Hilbert space H, such
that there exists an orthonormal basis {ei}i∈I of H with the property ∑

i∈I
||Aei ||2 < ∞.
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For each ξ ∈ Xp+a/2, we indicate with i(ξ) = ξ ∈ Xp the inclusion map. Therefore, for any n > 0:

i(hp+a/2
n ) = hp+a/2

n =
1

λ
p+a/2
n

λ
p
nhp

n = λ−a/2hp
n,

and thus by hypothesis
∞

∑
n=1

||i(hp+a/2
n )||2p =

∞

∑
n=1

λ−a
n < ∞. �

Consider the vector space X =
⋂

p∈Q+

Xp. In view of the above proposition X along with the family of

Hilbert-norms {|| · ||p , p ∈ Q+} is a nuclear space.

Let X be a vector space.

Def. 8.9 (Characteristic functional). A continuous map Φ : X → C is called a characteristic functional
on X if it’s normalized:

Φ(0) = 1,

and positive defined:

m

∑
i,j=1

ciΦ(ξi − ξ j)cj ≥ 0, m ∈ Z, {ci}i=1,...,m ∈ C, {ξi}i=1,...,m ∈ X.

Example 8.3. For instance, consider the so called generating functional of a probability measure µ defined
on Rn, that is the Fourier transform:

χµ(ξ) =
∫

Rn
ei(x,ξ)dµ(x), ξ ∈ Rn, (8.13)

where (ξ, x) indicates the Euclidean scalar product. Then, χµ is a characteristic functional. In fact, it is
continuous and normalized. Moreover, if we define

f (x) =
m

∑
i=1

ciei(ξi ,x),

then we have:
m

∑
i,j=1

ciχ(ξi − ξ j)cj =
∫

Rn
| f (x)|2dµ(x) = || f ||2µ ≥ 0,

where || · ||µ is the L2(Rn, µ) norm.

The finite dimensional Bochner theorem states that the converse is also true.

Theorem 8.1 (Bochner’s theorem). For any characteristic functional χ on Rn there exists a unique probability
measure µ on Rn such that χ is its generating functional. Namely,

χ(ξ) =
∫

Rn
ei(x, ξ)dµ(x), ξ ∈ Rn.

Example 8.4 (Standard Gaussian measure). Consider the Euclidean Rn and define the function:

χ(ξ) = e−
1
2 ||ξ||

2
, ξ ∈ Rn.
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Obviously, χ : Rn → R+ defines a characteristic functional. In fact, it is normalized, continuous and
positive defined; to see the latter observe that:

exp
(
− 1

2
||y1 − y2||2

)
≥ exp

(
− ||y1||2 − ||y2||2

)
;

then, for any {ci}i ∈ C and any {ξi}i ∈ Rn:

∑
i,j

ciexp(−1
2
||ξi − ξ j||2)cj ≥ ∑

i
ciexp(−||ξi||2) ∑

j
cjexp(−||ξ j||2) ≥ 0.

By Bochner’s theorem there is a unique probability measure µn on (Rn,B) such that:∫
Rn

dµn(x)ei(x,ξ) = e−
1
2 ||ξ||

2
.

This measure is called Standard Gaussian measure.

It’s important to observe that such a measure does not exist in an infinite dimensional Hilbert space.
In order to see this, let H be a real separable topological (infinite dimensional) Hilbert space and suppose
that a Standard Gaussian measure µ exists. Let {hn; n = 1, 2, . . . } be an orthonormal basis for H. Then:∫

H
dµ(x)ei(x,hn) = e−

1
2 .

Note that for every x ∈ H we must have (x, hn) → 0 as n → ∞. Hence, using the Lebesgue dominated
convergence theorem, we get a contradiction 1 = e−1/2. However, if the space is nuclear, there is an
analogue result due to Minlos.

Let then X be a topological vector space. In the characterization of typical configurations of measures
on infinite dimensional spaces the so called Minlos theorem plays a very important role. This theorem
is an infinite dimensional generalization of the Bochner theorem and indeed requires the space X to be a
nuclear space.

Theorem 8.2 (Minlos theorem). Let X be a nuclear space. For any characteristic functional Φ defined on X
there exists a unique probability measure µ defined on the measurable space (X′,B), where B is regarded as the
Borel σ-algebra generated by the weak topology on X′, such that:∫

X′
ei〈ω,ξ〉dµ(ω) = Φ(ξ), ξ ∈ X. (8.14)

Remark 8.8. We have considered the dual space X′ equipped with the weak topology just for the seek
of simplicity. In fact, because X is nuclear, the Borel σ-algebra generated by the three topology weak,
strong and inductive, is the same (see Remark 8.6).

Characteristic functional on Hilbert spaces can be defined starting from completely monotonic func-
tions4. In fact we have the following proposition:

Prop. 8.3. Let F be a completely monotonic function defined on the positive real line. Therefore, there exists a
unique characteristic functional Φ, defined on a real separable Hilbert space H, such that:

Φ(ξ) = F(||ξ||2), ξ ∈ H.

This is obvious because completely monotonic functions are associated to non-negative measure defined
on the positive real line (see Feller [2]). The converse is also true (see Schneider [17, 18]).

4) We remember that a function F(t) is completely monotone if it is non-negative and possesses
derivatives of any order such that: (−1)k dk

dtk F(t) ≥ 0, t > 0, k ∈ Z+ = {0, 1, 2, . . . }.
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8.1.3 White noise space

Consider the Schwartz space S(R). We remember that a complex valued function ξ on Rn is called
rapidly decreasing if it is smooth and tends to 0 with all its derivatives faster than any power function.
More precisely:

Def. 8.10 (Schwartz space). The space S(Rn) is the space of all the functions ξ ∈ C∞(Rn), such that for
any multi-indices j = (j1, j2, . . . , jn) and k = (k1, k2, . . . , kn):

sup
x∈Rn

|xjDkξ(x)| < ∞. (8.15)

Remark 8.9. Clearly a C∞
0 class function is also rapidly decreasing; therefore:

C∞
0 (Rn) ⊂ S(Rn).

Moreover, one can prove that:
S(Rn) ⊂ L1(Rn).

In fact, if ξ ∈ S , for any N ∈ Z and multi-index k, exists a constant CN,k such that:

(1 + |x|2)N |Dkξ(x)| ≤ CN,k.

Therefore,

|Dkξ(x)| ≤ CN,k

(1 + |x|2)N ,

this implies that ξ ∈ L1, with all its derivatives, if we chose 2N > n. In the same way, we can see that
ξ ∈ Lp for any 1 ≤ p ≤ ∞. Because the C∞

0 functions are dense in Lp (with the Lp topology), we have
that S is also dense in Lp.

We can define a convergence notion in the space S :

Def. 8.11. A sequence of functions ξi ∈ S , i ∈ N, is said to be convergent to ξ ∈ S in S , if and only if
for any multi-indices j = (j1, j2, . . . , jn) and k = (k1, k2, . . . , kn):

sup
x∈Rn

|xjDkξi(x)− xjDkξ(x)| −→i→∞ 0, (8.16)

and we write:
ξi −→

S

i→∞
ξ, S−lim

i→∞
ξi = ξ.

The space of tempered distributions S ′ is defined as follows:

Def. 8.12. The set of linear and continuous functionals defined on S(Rn) is called tempered distribu-
tions space S ′(Rn).

Remark 8.10. Then, a linear functional
T : S → C

defines a tempered distribution if:

ξi −→
S

i→∞
0 =⇒ 〈T, ξi〉 −→i→∞ 0.
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On the space S of test functions, we have continuous operators such as differential operators, Lapla-
cian operators, translation operators, scaling operator, multiplication, convolution, Fourier transform.
These operators could be extended by continuity to continuous operators in S ′ using the translation
invariance of the Lebesgue measure. For example we could define elementary operations like the mul-
tiplication for a smooth function f and derivation:

• 〈 f T, ξ〉 = 〈T, f ξ〉, f ∈ C∞, ξ ∈ S

• 〈DkT, ξ〉 = (−1)|k|〈T, Dkξ〉, ξ ∈ S , k = (k1, k2, . . . , kn)

The Fourier transform of a tempered distribution is also defined by continuity:

〈FT, ξ〉 = 〈T,Fξ〉, ξ ∈ S .

Moreover, identifying L2 with L2′, we have the following triple for the Schwartz distribution theory in
Rn:

S(Rn) ⊂ L2(Rn) ⊂ S ′(Rn), (8.17)

and S is dense in L2. Such a triple is often called a Gel’fand triple.

Let us consider the Schwartz space S(R) equipped with the usual scalar product:

(ξ, η) =
∫

R
dtξ(t)η(t), ξ, η ∈ S(R). (8.18)

We indicate the completion of S(R) with respect to (eq. 8.18) with S0(R), which of course, because
denseness, is equal to L2(R). We consider the orthonormal system {hn}n≥0 of the Hermite functions:

hn(x) =
1√

(2nn!
√

π)
Hn(x)e−x2/2, (8.19)

where Hn(x) = (−1)nex2
(d/dx)ne−x2

are the Hermite polynomials of degree n. Let A be the “harmonic
oscillator” operator:

A = − d2

dx2 + x2 + 1; (8.20)

A is densely defined on S0(R) and the Hermite functions are eigenfunctions of A:

Ahn = λnhn = (2n + 2)hn, n = 0, 1, . . . .

We observe that 1 ≤ λ0 ≤ λ1 ≤ · · · ≤ λn and ∑n λ−2
n < ∞. We are in the condition of Example (8.2)

with a = 2. Therefore, for any non-negative integer p, we can define:

||ξ||p = ||Apξ|| =
(

∞

∑
n=0

(2n + 2)2p(ξ, hn)2

)1/2

,

where || · || indicates the L2-norm. The Schwartz space S(R) could be then “reconstructed” as the
projective limit of the Hilbert spaces Sp(R) = {ξ ∈ L2(R); ||ξ||p < ∞}. That is:

S(R) =
⋂
p≥0

Sp(R). (8.21)
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Therefore, the topological Schwartz space, with the topology defined by the || · ||p norms, is a nuclear
space. Since S(R) is a nuclear space, we can apply the Minlos theorem in order to define probability
measures on its dual space S ′(R).

Consider the positive function F(t) = e−t, t ≥ 0. It is obvious that F is a completely monotone
function. Therefore, by (Prop. 9.1), the functional Φ(ξ) = F(||ξ||2), ξ ∈ L2(R), defines a character-
istic functional on S(R). By Minlos theorem, there exists a unique probability measure µ, defined on
(S ′(R),B), such that: ∫

S ′(R)
ei〈ω,ξ〉dµ(ω) = e−||ξ||

2
, ξ ∈ S(R). (8.22)

The probability space (S ′(R),B, µ) is called white noise space and the measure µ is called white noise
measure, or standard Gaussian measure (compare with Example 8.4), on S ′(R).

To understand the reason why it is called white noise space, consider the generalized stochastic pro-
cess X, defined on the white noise space, such that for each test function ϕ ∈ S(R):

X(ϕ)(·) = 〈·, ϕ〉. (8.23)

Clearly, for any ϕ ∈ S(R), X(ϕ) is a Gaussian random variable with zero mean and variance
E(X(ϕ)2) = 2||ϕ||2. Moreover, by linearity, for any ϕ, φ ∈ S(R):

E(X(ϕ)X(φ)) = 2(ϕ, φ). (8.24)

We refer to the generalized process X as the canonical noise of (S ′(R),B, µ). In view of the above prop-
erties, the process X is a white noise (Def. 8.1), and this motivates the name “white noise space” for the
probability space (S ′(R),B, µ).

Remark 8.11. Observe the choice we made for the white noise variance parameterization. Namely, the
factor 2 in the right side of (eq. 8.22). This will be clear in the following.

We have the following:

Prop. 8.4. For any h ∈ L2(R), X(h) is defined almost everywhere on S ′(R). Moreover, it is Gaussian with zero
mean and variance 2||h||2.

Proof: we indicate with (L2) = L2(S ′(R), µ). Clearly, for any ξ ∈ S(R), we have that X(ξ) ∈ (L2) and:

||X(ξ)||2(L2) = E(X(ξ)2) = 2||ξ||2L2 . (8.25)

For each h ∈ L2(R), there exists a sequence {ξn}n∈N of S(R)-elements which converges to h in the
L2(R)-norm. Therefore, from (eq. 8.25), the sequence {X(ξn)}n∈N is Cauchy in (L2) and converges to a
limit function X(h), defined on S ′(R). �

The latter proposition states that for every sequence { ft}t∈R of L2(R)-functions, depending continu-
ously on a real parameter t ∈ R, there exists a Gaussian stochastic process

{Y(t)}t∈R = {X( ft)}t∈R, (8.26)

defined on the probability space (S ′(R),B, µ), which has zero mean, variance E(Yt)2 = 2|| ft||2 and
covariance E(Y(t1)Y(t2)) = 2( ft1 , ft2).
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Remark 8.12. We have already observed that, if W(x), x ∈ R, is a Wiener process defined on the proba-
bility space (Ω,F , P), then the functional

X(ϕ) =
∫

ϕ(x)dW(x), ϕ ∈ L2(R), (8.27)

is a white noise on the space (Ω,F , P). Therefore, if we indicate with 1[0,t)(x), t ≥ 0, the indicator
function of the interval [0, t), the process

X(1[0,t)) =
∫ t

0
dW(x) = W(t), t ≥ 0, (8.28)

is a one-sided Brownian motion.

Example 8.5 (Brownian motion). Let X be a white noise defined canonically on the white noise space
(S ′(R),B, µ). Looking at (eq. 8.28), it is natural to state that the stochastic process

{B(t)}t≥0 = {X(1[ 0, t))}t≥0 (8.29)

is “standard” Brownian motion5. Indeed, the process {X(1[ 0, t))}t≥0, is Gaussian with covariance:

E
[

X(1[ 0, t))X(1[ 0, s))
]

= 2(1[ 0, t), 1[ 0, s)) = 2 min(t, s), t, s ≥ 0.

Example 8.6 (Fractional Brownian motion). The stochastic process:

{Bα/2(t)}t≥0 = {X( fα, t)}t≥0, 0 < α < 2, (8.30)

where

fα,t(x) =
1

C1(α)

(
(t− x)

α−1
2

+ − (−x)
α−1

2
+

)
, x+ = max(x, 0), (8.31)

and

C1(α) =
Γ( α+1

2 )(
Γ(α + 1) sin πα

2
)1/2 , (8.32)

is a “standard” fractional Brownian motion of order H = α/2 (compare with eq. 5.1).

8.2 Grey noises

We have seen that white noise is a generalized stochastic process X defined canonically on the white
noise space (S ′(R),B, µ), with space of test functions L2(R). We have remarked that the white noise
could also be defined starting from stochastic integrals with respect to the Brownian motion. In this
case the space of test function turns out to be the space of integrands of the stochastic integral. Then,
the Brownian motion B(t) could be obtained from the white noise by setting B(t) = X(1[0,t)). We want
to generalize the previous construction in order to define a general class of H-sssi processes which in-
cludes, Brownian motion, fractional Brownian motion and more general processes.

5) With the word “standard” Brownian motion here we mean that E(B(1)2) = 2.
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Consider a one-sided fractional Brownian motion {Bα/2(t)}t≥0 with self-similarity parameter H =
α/2 and 0 < α < 2, defined on a certain probability space (Ω,F , P). The fractional Brownian motion
has a spectral representation (eq. 5.13):

Bα/2(t) =
√

C(α)
∫

R

1√
2π

eitx − 1
ix

|x|
1−α

2 dB̃(x), t ≥ 0, (8.33)

where as usual dB̃(x) is a complex Gaussian measure such that dB̃(x) = dB1(x) + idB2(x) with dB1(x) =
dB1(−x), dB2(x) = −dB2(−x) and where B1 and B2 are independent Brownian motions. Moreover, by
(eq. 5.14), one has:

C(α) = Γ(α + 1) sin
πα

2
. (8.34)

We observe that
1√
2π

eitx − 1
ix

= 1̃[0,t)(x), (8.35)

where we have indicated with f̃ (x) the Fourier transform of the function f evaluated on x ∈ R:

f̃ (x) = F { f (y), x} =
1√
2π

∫
R

eixy f (y)dy. (8.36)

In view of (eq. 8.35), we have:

Bα/2(t) =
√

C(α)
∫

R
1̃[0,t)(x)|x|

1−α
2 dB̃(x). (8.37)

Therefore, if one defines a generalized stochastic process X such that, for a suitable choice of a test
function ϕ,

Xα(ϕ) =
√

C(α)
∫

R
ϕ̃(x)|x|

1−α
2 dB̃(x), (8.38)

one can write:
Bα/2(t) = Xα(1[0,t)), t ≥ 0. (8.39)

Remark 8.13. The space of test function can be chosen as the space

Λ̃α = { f ∈ L2(R); || f ||2α = C(α)
∫

R
| f̃ (x)|2|x|1−αdx < ∞}, (8.40)

which coincides with a space of deterministic integrands for fractional Brownian motion (see Pipiras
and Taqqu [14, 15]).

Consider again the Schwartz space S(R) equipped now with the scalar product:

(ξ, η)α = C(α)
∫

R
ξ̃(x)η̃(x)|x|1−αdx, ξ, η ∈ S(R), 0 < α < 2, (8.41)

where C(α) is given by (eq. 8.34). This scalar product generate the α-norm in (eq. 8.40). We indicate with
S (α)

0 (R) the completion of S(R) with respect to (eq. 8.41).

Remark 8.14. If we set α = 1 in (eq. 8.41), we have C(1) = 1 and:

(ξ, η)1 =
∫

R
ξ̃(x)η̃(x)dx =

∫
R

ξ(y)η(y)dy, (8.42)

so that, we recover the L2(R)-inner product. Moreover, S (1)
0 (R) = S0(R) = L2(R).
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Starting from the Hilbert space (S (α)
0 (R), || · ||α), it is possible to reproduce the construction of Example

(8.2). Then, the space S(R) turns out to be a nuclear space with respect to the topology generated by
the α-norm || · ||α and an operator A(α).

We need to find an orthonormal bases for the space S (α)
0 (R). For this purpose, we introduce the

following definition:

Def. 8.13 (Generalized Laguerre polynomials). The generalized Laguerre polynomials are defined, for any
non-negative integer n, by:

Lγ
n(x) =

x−γex

Γ(n + 1)
dn

dxn

(
e−xxn+γ

)
, γ > −1, x ≥ 0. (8.43)

They are orthogonal respect to the weighting function xγe−x:∫ ∞

0
xγe−xLγ

n(x)Lγ
m(x)dx =

Γ(n + γ + 1)
Γ(n + 1)

δnm. (8.44)

We have the following important result:

Prop. 8.5. The generalized Laguerre polynomials satisfies the Laguerre equation:(
x

d2

dx2 + (γ + 1− x)
d

dx

)
Lγ

n(x) = −nLγ(x). (8.45)

Define now a set of S (α)
0 (R) functions {hα

n}n∈Z+ in terms of their Fourier transform by: h̃α
2n(x) = an,αe−x2/2L−α/2

n (x2), n ∈ Z+;

h̃α
2n+1(x) = bn,αe−x2/2xL1−α/2

n (x2), n ∈ Z+.
(8.46)

Then, one has:

Prop. 8.6. The set of functions {hα
n}n∈Z+ is an orthonormal basis for S (α)

0 (R) with the choice:

aα,n =
(

Γ(n + 1)
CαΓ(n + 1− α/2)

)1/2

,

bα,n =
(

Γ(n + 1)
CαΓ(n + 2− α/2)

)1/2

.

(8.47)

Proof: clearly, by symmetry, for any m, n ∈ Z+:

(hα
2n, hα

2m+1)α = 0.

Now, by definition:

(hα
2n, hα

2m)α = 2aα,naα,mCα

∫ ∞

0
dxx1−αe−x2

L−α/2
n (x2)L−α/2

m (x2)

(with the variable change x2 = y, and using (8.44))

= aα,naα,mCα

∫ ∞

0
dyy−α/2e−yL−α/2

n (y)L−α/2
m (y) = a2

α,nCα
Γ(n + 1− α/2)

Γ(n + 1)
δnm

and the same for bα,n. �
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Remark 8.15. Observe that as α → 1 we are able to recover the white noise space frame. In fact,
Sα

0 (R) becomes S0(R) (Remark 8.14) and the orthonormal base {hα
n}n∈Z+ turns into the Hermite bases6

(eq. 8.19) of S0(R). In fact, we recall the well known relationships between Laguerre and Hermite poly-
nomials:  H2n(x) = (−1)n22nn!L−1/2

n (x2)

H2n+1(x) = (−1)n22n+1n!xL1/2
n (x2).

(8.48)

At this point, we need to find the analogue of the harmonic oscillator operator A (eq. 8.20). Starting
from (eq. 8.45), we obtain that L−α/2

n (x2) satisfies the following equation:[
d2

dx2 +
(

1− α− 2x2

x

)
d

dx

]
L−α/2

n (x2) = −4nL−α/2
n (x2). (8.49)

Moreover, if we indicate with L1−α/2
n (x2) = xL1−α/2

n (x2), we also have:[
d2

dx2 +
(

1− α− 2x2

x

)
d

dx
+
(

α− 1
x2

)]
L1−α/2

n (x2) = −(4n + 2)L1−α/2
n (x2). (8.50)

Remark 8.16. Again, we observe that as α = 1 the equations (eq. 8.49) and (eq. 8.50), in view of (eq. 8.48),
give the Hermite’s equation [

d2

dx2 − 2x
d

dx

]
Hn(x) = −2nHn(x) (8.51)

for the correspondents Hermite’s polynomials. In the first case, we obtain the equation for H2n(x),
whereas in the second case, we obtain the equation for H2n+1(x).

Using the above equations (eq. 8.49) and (eq. 8.50), we can show the following

Prop. 8.7. The functions {h̃α
n}n∈Z+ satisfies:

[
− d2

dx2 +
α− 1

x
d

dx
+ x2

]
h̃α

2n(x) := Aα
even h̃α

2n = (4n + 2− α)h̃α
2n(x);[

− d2

dx2 +
α− 1

x
d

dx
+ x2 − α− 1

x2

]
h̃α

2n+1(x) := Aα
odd

h̃α
2n+1 = (4n + 4− α)h̃α

2n+1(x).

(8.52)

Proof: we multiply equation (eq. 8.49) from the left by an,αe−x2/2, then we find:

e−x2/2
[

d2

dx2 +
(

1− α− 2x2

x

)
d

dx

]
ex2/2h̃α

2n(x) = −4nh̃α
2n(x);

therefore calculating the derivatives we find the first of (eq. 8.52). The same for the second one, starting
from (eq. 8.50). �

At this point we have the two non hermitian operators:
Aα

even =
[
− d2

dx2 +
α− 1

x
d

dx
+ x2

]
,

Aα
odd

=
[
− d2

dx2 +
α− 1

x
d

dx
+ x2 − α− 1

x2

]
,

(8.53)

6) Observe that the Hermite functions are invariants under Fourier transform.
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defined on S (α)
0 (R) and two orthogonal sets of eigenfunctions {hα

2n}n∈Z+ and {hα
2n+1}n∈Z+ such that: F−1 Aα

evenFhα
2n := Ãα

even hα
2n = (4n + 2− α)hα

2n , n ∈ Z+

F−1 Aα
odd

Fhα
2n+1 := Ãα

odd
hα

2n = (4n + 4− α)hα
2n+1 , n ∈ Z+ .

(8.54)

where F : S (α)
0 → S (α)

0 is the Fourier transform. We write:

S (α)
0 (R) = L⊕ L⊥, (8.55)

where L is the subspace generated by {hα
2n}n∈Z+ and L⊥ is its orthogonal subspace, i.e. the space

generated by {hα
2n+1}n∈Z+ . Therefore, we can define the operator

A(α) = Aα

even ⊕ Aα

odd
+ I, (8.56)

where Aα

even is the restriction of Ãα
even to L, Aα

odd
is the restriction of Ãα

odd
to L⊥ and I is the identity

operator. Then, we have found an operator A(α), defined on S (α)
0 (R), which has the orthonormal bases

{hα
n}n∈Z+ as eigenfunctions, with eigenvalues {2n + 2− α + 1}n∈Z+ . Namely,

A(α)hα
n = (2n + 2− α + 1)hα

n, n = 0, 1, . . . , 0 < α < 2. (8.57)

Remark 8.17. It’s clear that when α = 1 the operator A(1) results to be defined over S0(R) and it is equal
to the Harmonic oscillator operator (eq. 8.20).

8.2.1 Generalized grey noise space

By Proposition (9.1), starting from a completely monotonic function F, we can define characteristic func-
tionals on S(R) by setting Φ(ξ) = F(||ξ||2α). Then, we can use Minlos theorem in order to define prob-
ability measures on S ′(R). Because we are looking for stochastic processes in some way related to
fractional calculus, we consider the Mittag-Leffler function of order β > 0:

Eβ(x) =
∞

∑
n=0

xn

Γ(βn + 1)
, x ∈ R. (8.58)

In fact, we have seen that such a function plays a fundamental role in fractional calculus. For our
convenience we introduce:

Fβ(x) = Eβ(−x), x ∈ R. (8.59)

We have the following result:

Prop. 8.8. The function Fβ(t) is completely monotonic on R+ for 0 < β ≤ 1.

For β = 1 this is obvious as:
F1(t) = e−t. (8.60)

We do not prove this statement for 0 < β < 1 (see Miller et al. [11] for details), but we just say that this
implies by Bernstein theorem [2] that Fβ is the Laplace transform of a probability measure on R+ (see
Lemma 9.1). In fact, one finds

Fβ(t) =
1
β

∫ ∞

0
dxe−txx−(1+β−1) fβ(x−β−1

),
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where fβ denotes the one-sided stable Lévy probability density.

Therefore, the functional Φα,β(ξ) = Fβ(||ξ||2α), ξ ∈ S (α)
0 (R), defines a characteristic functional on

S(R). By Minlos theorem, there exists a unique probability measure µα,β, defined on (S ′(R),B), such
that: ∫

S ′(R)
ei〈ω,ξ〉dµα,β(ω) = Fβ(||ξ||2α), ξ ∈ S(R). (8.61)

When α = β and 0 < β ≤ 1, the probability space (S ′(R),B, µβ,β) is called grey noise space and the
measure µβ,β is called grey noise measure (see Schneider [17, 18]). We focus on the more general case
0 < α < 2 and we call the space (S ′(R),B, µα,β) “generalized” grey noise space and µα,β “generalized”
grey noise measure7.

Def. 8.14. The generalized stochastic process Xα,β, defined canonically on the “generalized” grey noise
space (S ′(R),B, µα,β), is called “generalized” grey noise. Therefore, for each test function ϕ ∈ S(R):

Xα,β(ϕ)(·) = 〈·, ϕ〉. (8.62)

Remark 8.18. By the definition of “generalized” grey noise measure (eq. 8.61), for any ϕ ∈ S(R), we
have:

E(eiyXα,β(ϕ)) = Eβ(−y2||ϕ||2α), y ∈ R. (8.63)

Using (eq. 8.63) and (eq. 8.58) it easy to show that the “generalized” grey noise has moments of any
order: 

E(Xα,β(ξ)2n+1) = 0,

E(Xα,β(ξ)2n) =
2n!

Γ(βn + 1)
||ξ||2n

α ,
(8.64)

for any integer n ≥ 0 and ξ ∈ S(R). In fact, for any y ∈ R

E(eiyXα,β(ξ)) =
∞

∑
n=0

inynE(Xα,β(ξ)n)
n!

=
∞

∑
n=0

(−1)ny2n||ξ||2n
α

Γ(βn + 1)
.

Remark 8.19. As in the white noise case, it is possible to extend the space of test functions to the whole
S (α)

0 (R). In fact, for any ξ ∈ S(R) we have Xα,β(ξ) ∈ (L2) = L2(S ′(R), µα,β). Thus, for any h ∈ S (α)
0 (R),

the function Xα,β(h) is defined as a limit of a sequence Xα,β(ξn), where {ξn} belong to S(R).

Therefore, we have the following:

Prop. 8.9. For any h ∈ S (α)
0 (R), Xα,β(h) is defined almost everywhere on S ′(R) and belongs to (L2).

Summarizing: the “generalized” grey noise is defined canonically on the grey noise space (S ′(R),B, µα,β)
with the following properties:

1. For any h ∈ S (α)
0 (R), Xα,β(h) is well defined and belong to (L2).

2. E(eiyXα,β(h)) = Eβ(−y2||h||2α) for any y ∈ R.

3. E(Xα,β(h)) = 0 and E(Xα,β(h)2) =
2

Γ(β + 1)
||h||2α.

7) The word “generalized” is written in double quotes because it could be confused with the
word generalized stochastic processes. Its meaning here is not mathematical, but just a gener-
alization of a previous concept.
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4. For any h and g which belong to S (α)
0 (R), by linearity, it is easy to show that:

E
(
Xα,β(h)Xα,β(g)

)
=

1
Γ(β + 1)

[
(h, g)α + (h, g)α

]
. (8.65)

8.2.2 Generalized grey Brownian motion

If we put β = 1 in (eq. 8.63), the measure µα,1 := µα is a Gaussian measure and Xα,1 := Xα is a Gaussian

noise. In fact, for any h ∈ S (α)
0 (R), the random variable Xα(h) is Gaussian with zero mean and variance

E(Xα(h)2) = 2||h||2α (see eq. 8.63). Moreover, for any sequence { ft}t∈R of S (α)
0 (R)-functions, depending

continuously on a real parameter t ∈ R, the stochastic process Y(t) = Xα( ft) is Gaussian with auto-
covariance given by (eq. 8.65) with β = 1,

E(Y(t)Y(s)) = E(Xα)( ft)Xα( fs) = ( ft, fs)α + ( ft, fs)α. (8.66)

Finally, when α = 1, Xα reduces to a “standard” white noise.

Example 8.7 (Fractional Brownian motion). For any t ≥ 0 the function 1[0,t) belongs to S (α)
0 (R). In fact,

one can show that ||1[0,t)||2α < ∞ when 0 < α < 2 and

||1[0,t)||2α =
C(α)
2π

∫
R

dx
2

|x|1+α
(1− cos tx) = tα. (8.67)

In fact, because

1̃[0,t)(x) =
1√
2π

eixt − 1
ix

, (8.68)

by the definition of the || · ||α-norm (eq. 8.41), one indeed finds

C(α)
1

2π

∫ +∞

−∞

2
|x|1+α

(1− cos tx)dx = C(α)
tα

2π

∫ +∞

−∞

2
|x|1+α

(1− cos x)dx, (8.69)

which is equal, in distributional sense, to:

C(α)
tα

π

∫ +∞

−∞
F
(

1
|x|α+1

)
(ω)F (1− cos x) (ω)dω.

We have:

F (1− cos x) (ω) =
√

2π

(
δ(ω)− 1

2
(δ(ω− 1) + δ(ω + 1))

)
.

Moreover (see Gel’fand [3]):

F
(

1
|x|α+1

)
(ω) = −

√
π

2
|ω|α

Γ(α + 1) sin πα
2

.

Thus, by looking (eq. 8.34), one finds (eq. 8.67).

Therefore, for any 0 < α < 2, we can define the process:

Bα/2(t) = Xα(1[0,t)), t ≥ 0. (8.70)
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The process Bα/2(t) is a “standard” fractional Brownian motion with parameter H = α/2. Indeed, it is
Gaussian with variance E(Bα/2(t)2) = 2||1[0,t)||2α = 2tα and auto-covariance:

E(Bα/2(t)Bα/2(s)) = (1[0,t), 1[0,s))α + (1[0,t), 1[0,s))α

=
C(α)
2π

∫
R

dx
2

|x|α+1 (1− cos tx + 1− cos sx− 1 + cos(t− s)x)

= tα + sα − |t− s|α = γα(t, s), t, s ≥ 0,

which is the fractional Brownian motion auto-covariance (eq. 3.36 with σ2 = 2 and H = α/2).

In view of the above example, Xα could be regarded as a fractional Gaussian noise defined on the space
(S ′(R),B, µα).

Example 8.8 (Deconvolution of Brownian motion). The stochastic process

{B(t)}t≥0 = {Xα(gα,t)}t≥0, (8.71)

where, for each t ≥ 0, the function gα,t is defined by:

g̃α,t(x) =
1√

C(α)
1̃[0,t)(x)(ix)

α−1
2 , (8.72)

is a “standard” Brownian motion. Indeed, it is Gaussian, with zero mean, variance

E(B(t)2) = 2
∫

R
|x|1−α|1̃[ 0,t)(x)|2|x|α−1dx = 2

∫
R
|1̃[ 0,t)(x)|2dx = 2t, (8.73)

and autocovariance:

E(B(t)B(s)) =
∫

R

(
1̃[0,t)(x)1̃[0,s)(x) + 1̃[0,s)(x)1̃[0,t)(x)

)
dx = 2 min(t, s). (8.74)

Remark 8.20. The representation of Brownian motion in terms of the fractional Gaussian noise (eq. 8.71)
corresponds to a particular case of the so called deconvolution formula, which expresses the Brownian
motion as a stochastic integral with respect to a fractional Brownian motion of order H = α/2 (see [16]).
More generally, we can represent a fractional Brownian motion Bγ/2(t) of order H = γ/2, 0 < γ < 2 in
terms of a fractional Gaussian noise of order α, which corresponds to a representation of Bγ/2 in terms
of a stochastic integral of a fractional Brownian motion Bα/2 of order H = α/2, 0 < α < 2 (see example
below).

Example 8.9 (Deconvolution of fractional Brownian motion). The stochastic process,

{Bγ/2(t)}t≥0 = {Xα(gα,γ,t)}t≥0, (8.75)

where:

g̃α,γ,t(x) =

√
C(γ)
C(α)

1̃[0,t)(x)(ix)
α−γ

2 , 0 < γ < 2, (8.76)

is a “standard” fractional Brownian motion of order H = γ/2.

We consider now the general case 0 < α < 2, 0 < β ≤ 1.
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Def. 8.15. The stochastic process

{Bα,β(t)}t≥0 = {Xα,β(1[0,t))}t≥0, (8.77)

is called “generalized” (standard) grey Brownian motion.

The “generalized” grey Brownian motion Bα,β has the following properties which come directly from
the grey noise properties and (eq. 8.67):

1. Bα,β(0) = 0 almost surely. Moreover, for each t ≥ 0, E(Bα,β(t)) = 0 and

E(Bα,β(t)2) =
2

Γ(β + 1)
tα. (8.78)

2. The auto-covariance function is:

E(Bα,β(t)Bα,β(s)) = γα,β(t, s) =
1

Γ(β + 1)
(tα + sα − |t− s|α) . (8.79)

3. For any t, s ≥ 0, the characteristic function of the increments is:

E
(

eiy(Bα,β(t)−Bα,β(s))
)

= Eβ(−y2|t− s|α), y ∈ R. (8.80)

The third property follows from the linearity of the grey noise definition. In fact, suppose 0 ≤ s < t,
we have y(Bα,β(t)− Bα,β(s)) = yXα,β(1[0,t) − 1[0,s)) = Xα,β(y1[s,t)), and ||y1[s,t)||2α = y2(t− s)α. All these
properties are enclosed in the following:

Prop. 8.10. For any 0 < α < 2 and 0 < β ≤ 1, the process Bα,β(t), t ≥ 0, is a self-similar with stationary
increments process (H-sssi), with H = α/2.

Proof: This result is actually a consequence of the linearity of the noise definition. Given a sequence of
real numbers {θj}j=1,...,n, we have to show that for any 0 < t1 < t2 < · · · < tn and a > 0:

E

(
exp(i ∑

j
θjBα,β(atj))

)
= E

(
exp(i ∑

j
θja

α
2 Bα,β(tj))

)
.

The linearity of the grey noise definition allows to write the above equality as:

E

[
exp

(
iXα,β

(
∑

j
θj1[0,atj)

))]
= E

[
exp

(
iXα,β

(
a

α
2 ∑

j
θj1[0,tj)

))]
.

Using (eq. 8.63) we have

Fβ

(
||∑

j
θj1[0,atj)||

2
α

)
= Fβ

(
||a

α
2 ∑

j
θj1[0,tj)||

2
α

)

which, because the complete monotonicity, reduces to

||∑
j

θj1[0,atj)||
2
α = aα||∑

j
θj1[0,tj)||

2
α.
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Figure 8.1: Parametric class of generalized grey Brownian motion. The upper diagonal line indicates the
“conjugated” process of grey Brownian motion.

In view of the definition (eq. 8.41) and (eq. 8.35), the above equality is checked after a simple change of
variable in the integration. In the same way we can prove the stationarity of the increments. We have to
show that for any h ∈ R:

E

[
exp

(
i ∑

j
θj(Bα,β(tj + h)− Bα,β(h))

)]
= E

[
exp

(
i ∑

j
θj(Bα,β(tj)

)]
.

We use the linearity property to write:

E

[
exp

(
iXα,β

(
∑

j
θj1[h,tj+h)

))]
= E

[
exp

(
iXα,β

(
∑

j
θj1[0,tj)

))]
.

By using the definition and the complete monotonicity, we have:

||∑
j

θj1[h,tj+h)||2α = ||∑
j

θj1[0,tj)||
2
α

which is true because:

1̃[h,tj+h)(x) =
1√
2π

eixh

ix

(
eixtj − 1

)
. �

Remark 8.21. In view of Proposition 8.10, {Bα,β(t)} forms a class of H-sssi stochastic processes indexed
by two parameters 0 < α < 2 and 0 < β ≤ 1. This class includes fractional Brownian motion (β = 1),
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grey Brownian motion (α = β) and Brownian motion (α = β = 1). In Figure 8.1 we present a diagram
which allows us to identify the elements of the class. The long-range dependence domain corresponds
to the region 1 < α < 2. The horizontal line represents the processes with purely random increments,
that is, processes which possess uncorrelated increments. The fractional Brownian motion is identified
by the vertical line (β = 1). The lower diagonal line represents the grey Brownian motion.

8.2.3 The ggBm master equation

The following proposition characterizes the marginal density function of the process {Bα,β(t), t ≥ 0}:

Prop. 8.11. The marginal probability density function fα,β(x, t) of the process {Bα,β(t), t ≥ 0} is the fundamen-
tal solution of the “stretched” time-fractional diffusion equation:

u(x, t) = u0(x) +
1

Γ(β)

∫ t

0

α

β
sα/β−1

(
t

α
β − s

α
β

)β−1 ∂2

∂x2 u(x, s)ds, t ≥ 0. (8.81)

Proof: (eq. 8.80) (with s = 0) states that f̃α,β(y, t) = Eβ(−y2tα). Using (eq. 8.58), we can show that the
Mittag-Leffler function satisfies

Eβ(−y2(t
α
β )β) = 1− y2

Γ(β)

∫ t
α
β

0
ds′(t

α
β − s′)β−1Eβ(−y2s′β)

= 1− y2

Γ(β)

∫ t

0

α

β
sα/β−1(t

α
β − s

α
β )β−1Eβ(−y2sα)ds,

where we have used the change of variables s′ = sα/β. Thus, fα,β(x, t) solves (eq. 8.81) with initial
condition u0(x) = fα,β(x, 0) = δ(x). �

Remark 8.22. Observe that, if f (x, t) solves the time fractional diffusion equation of order β (eq. 7.134),
namely:

f (x, t) = f0(x) +
1

Γ(β)

∫ t

0
(t− s)β−1∂xx f (x, s)ds,

then, the function u(x, t) = f (x, tα/β), solves (eq. 8.81), with the same initial condition. Therefore, the
fundamental solution of (eq. 8.81) is just (see eq. 7.140):

u(x, t) = Mβ(x, tα/β) =
t−α/2

2
Mβ/2(|x|t−α/2). (8.82)

We refer to (eq. 8.81) as the master equation of the marginal density function of the “generalized” grey
Brownian motion. Therefore, the diagram in Figure (8.1) can be also read in terms of partial integro-
differential equation of fractional type. When α = β and 0 < β ≤ 1, we recover the time-fractional
diffusion equation (eq. 7.134) of order β (lower diagonal line). When β = 1 and 0 < α < 2, we have the
equation of the fractional Brownian motion marginal density (eq. 7.12), that is the equation of a stretched
Gaussian density (vertical line). Finally, when α = β = 1 we find the standard diffusion equation.

From Proposition (8.11), it follows that the parametric class {Bα,β(t)} provides stochastic models for
anomalous diffusions described by (eq. 8.81). Looking at (eq. 8.78) and (eq. 8.79), which describe the
variance and the covariance function respectively, it follows that:

When 0 < α < 1, the diffusion is slow. The increments of the process Bα,β(t) turn out to be negatively
correlated. This implies that the trajectories are very “zigzaging” (antipersistent). The increments form
a stationary process which does not exhibit long-range dependence.
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When α = 1, the diffusion is normal. The increments of the process are uncorrelated. The trajectories
are said to be “chaotic”.

When 1 < α < 2, the diffusion is fast. The increments of the process Bα,β(t) are positively correlated.
So that, the trajectories are more regular (persistent). In this case the increments exhibits long-range
dependence (see Prop. 6.1).

The stochastic processes considered so far, governed by the master equation (8.81), are of course Non-
Markovian. We have already observed (see Remark 7.37) that non-Markovian equations like (eq. 8.81)
are often associated to subordinated stochastic processes D(t) = B(l(t)), where the parent Markov
process B(t) is a “standard” Brownian motion and the random time process l(t) is a self-similar of order
H = β non-negative non-decreasing non-Markovian process. For example, in Kolsrud [8] the random
time l(t) is taken to be related to the local time of a d = 2(1− β)-dimesional fractional Bessel process,
while in Meerschaert et al. [10] (see also Gorenflo et al. [4] and Stanislavsky [20]), in the context of
Continuous Time Random Walk, it is taken as the inverse process of the totally skewed strictly β-stable
process (see Chapter 1, Rem. 1.13).

Remark 8.23. Heuristically, our stochastic process {Bα,β(t), t ≥ 0} cannot be a subordinated process
(for example if β = 1 it reduces to a fractional Brownian motion). Therefore, here we provided an
example of a class of stochastic models associated to time-fractional diffusion equations like (eq. 8.81),
which are not subordinated processes.

It is important to remark that, starting from a master equation which describes the dynamic evolution
of a probability density function f (x, t), it is always possible to define an equivalence class of stochastic
processes with the same marginal density function f (x, t). All these processes provide suitable stochastic
models for the starting equation. In this paper we focused on a subclass {Bα,β(t), t ≥ 0} associated to
the non-Markovian equation (eq. 8.81). This subclass is made up of processes with stationary increments.
In this case, the memory effects are enclosed in the typical dependence structure of a H-sssi process
(eq. 8.79), while, for instance in the case of a subordinated process, these are due to the subordination
process and to the non-Markovian property of the random time process itself.

Remark 8.24. It is also interesting to observe that the “generalized” grey Brownian motion turns out to
be a direct generalization of a Gaussian process. Indeed, it includes the fractional Brownian motion as
particular case when β = 1. Moreover, for any sequence of real numbers {θi}i=1,...,n, if one considers the
collection {Bα,β(t1), . . . , Bα,β(tn)} with 0 < t1 < t2 < · · · < tn, it is easy to show that:

E

(
exp

(
i

n

∑
j=1

θjBα,β(tj)
))

= E

(
exp

(
iXα,β

( n

∑
j=1

θj1[0,tj)

)))

= Eβ

(
−
∣∣∣∣∣∣∑

j
θj1[0,tj)

∣∣∣∣∣∣2
α

)
= Eβ

(
−Γ(β + 1)

1
2 ∑

i,j
θiθjγα,β(ti, tj)

)
, (8.83)

where γα,β is the the autocovariance matrix (eq. 8.79). It is clear that, fixed β, the “generalized” grey
Brownian motion is defined only by its covariance structure. In other words, Bα,β(t) provides an exam-
ple of a stochastic process characterized only by the first and second moments, which is a property of
Gaussian processes. We will use this remark in the next section.

8.3 Characterization of the ggBm

We have seen that the generalized grey Brownian motion (ggBm), is made up off self-similar with sta-
tionary increments processes (Prop. 8.10) and depends on two real parameters α ∈ (0, 2) and β ∈ (0, 1].
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It includes fractional Brownian motion when α ∈ (0, 2) and β = 1, and time-fractional diffusion
stochastic processes when α = β ∈ (0, 1). The latters have marginal probability density function gov-
erned by time-fractional diffusion equations of order β (see equations 7.134, 7.135 and 7.136).

The ggBm is defined through the explicit construction of the underline probability space. However,
we are now going to show that it is possible to define it in an unspecified probability space. For this
purpose, we write down explicitly all the finite dimensional probability density functions. Moreover,
we shall provide different ggBm characterizations.

The role of the M-Wright function (eq. 7.122), which is related to the fundamental solution of the time-
fractional diffusion equation (eq. 7.140), emerges as a natural generalization of the Gaussian distribution
(eq. 3.3).

Furthermore, we will show that ggBm can be represented in terms of the product of a random variable
and an independent fractional Brownian motion. This representation highlights the H-sssi nature of the
ggBm and provides a way to study and simulate the trajectories.

For this purpose, we developed a random walk model based on the Grunwald-Letnikov finite differ-
ence approximation (eq. 7.4) of the time fractional drift equation (eq. 7.110).

Then, we want to characterize the ggBm through its finite dimensional structure. From (eq. 8.83), we
know that all the ggBm finite dimensional probability density functions are characterized only by its
autocovriance matrix γα,β (eq. 8.79). The following proposition holds:

Prop. 8.12. Let Bα,β be a ggBm, then for any collection {Bα,β(t1), . . . , Bα,β(tn)}, the joint probability density
function is given by:

fα,β(x1, x2, . . . , xn; γα,β) =
(2π)−

n−1
2√

2Γ(1 + β)n det γα,β

∫ ∞

0

1
τn/2 M1/2

(
ξ

τ1/2

)
Mβ(τ)dτ, (8.84)

with:

ξ =

(
2Γ(1 + β)−1

n

∑
i,j=1

xiγα,β
−1(ti, tj)xj

)1/2

, γα,β(ti, tj) =
1

Γ(1 + β)
(tα

i + tα
j − |ti − tj|α), i, j = 1, . . . , n.

Proof: in order to show (eq. 8.84), we calculate its n-dimensional Fourier transform and we find that it
is equal to (eq. 8.83). We have∫

Rn
exp

(
i

n

∑
j=1

θjxj

)
fα,β(x1, . . . , xn; γα,β)dnx

=
(2π)−

n−1
2√

2Γ(1 + β)n det γα,β

∫ ∞

0

1
τn/2 Mβ(τ)

∫
Rn

exp

(
i

n

∑
j=1

θjxj

)
M1/2

(
ξ

τ1/2

)
dnxdτ.

We remember that M1/2(r) = 1√
π

e−r2/4, thus we get:

∫ ∞

0

1
τn/2 Mβ(τ)

∫
Rn

exp

(
i

n

∑
j=1

θjxj

)
(2π)−

n
2√

Γ(1 + β)n det γα,β

exp

(
−Γ(1 + β)−1

n

∑
i,j=1

xiγ
−1
α,β(ti, tj)xj/2τ

)
dnxdτ.

(8.85)
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We make the change of variables x = Γ(1 + β)1/2τ1/2y, with x, y ∈ Rn, and we get∫ ∞

0
Mβ(τ)

∫
Rn

exp

(
iΓ(1 + β)1/2τ1/2

n

∑
j=1

θjyj

)
(2π)−

n
2√

det γα,β

exp

(
−

n

∑
i,j=1

yiγ
−1
α,β(ti, tj)yj/2

)
dnydτ

=
∫ ∞

0
Mβ(τ)exp

(
−Γ(1 + β)τ

n

∑
i,j=1

θiθjγα(ti, tj)/2

)
dτ =

∫ ∞

0
e−τs Mβ(τ)dτ = Eβ(−s),

where s = Γ(1 + β) ∑n
i,j=1 θiθjγα,β(ti, tj)/2 and where we have used (eq. 7.124). �

Using the Kolmogorov extension theorem (see Theorem 3.1), the above proposition allows us to define
the ggBm in an unspecified probability space. In fact, given a probability space (Ω,F , P), the following
proposition characterizes the ggBm:

Prop. 8.13. Let X(t), t ≥ 0, be a stochastic process, defined in a certain probability space (Ω,F , P), such that

i) X(t) has covariance matrix indicated by γα,β and finite-dimensional distributions defined by (eq. 8.84).

ii) EX2(t) = 2
Γ(1+β) tα for 0 < β ≤ 1 and 0 < α < 2.

iii) X(t) has stationary increments,

then X(t), t ≥ 0, is a generalized grey Brownian motion.

In fact condition ii) together with condition iii) imply that γα,β must be the ggBm autocovariance
matrix (eq. 8.79).

Remark 8.25. Using (eq. 7.127), for n = 1, (eq. 8.84) reduces to:

fα,β(x, t) =
1√
4tα

∫ ∞

0
M1/2

(
|x|t−α/2, τ

)
Mβ(τ, 1)dτ =

1
2

t−α/2Mβ/2(|x|t−α/2). (8.86)

This means that the ggBm marginal density function is indeed the fundamental solution (eq. 8.82) of
(eq. 8.81).

Remark 8.26. Moreover, because:
M1(τ) = δ(τ − 1),

for β = 1, putting γα,1 ≡ γα, we have that (eq. 8.84) reduces to the Gaussian distribution of the fractional
Brownian motion. That is,

fα,1(x1, x2, . . . , xn; γα,1) =
(2π)−

n−1
2√

2 det γα

M1/2

(2
n

∑
i,j=1

xiγ
−1
α (ti, tj)xj

)1/2
 .

We have the following corollary.

Cor. 8.1. Let X(t), t ≥ 0, be a stochastic process defined in a certain probability space (Ω,F , P). Let H = α/2
with 0 < α < 2 and suppose that EX(1)2 = 2/Γ(1 + β). The following statements are equivalent:

i) X is H-sssi with finite-dimensional distribution defined by (eq. 8.84);

ii) X is a generalized grey Brownian motion with scaling exponent α/2 and “fractional order” parameter β;

iii) X has zero mean, covariance function γα,β(t, s), t, s ≥ 0, defined by (eq. 8.79) and finite dimensional
distribution defined by (eq. 8.84).
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8.3.1 Representation of ggBm

Up to now, we have seen that the ggBm Bα,β(t), t ≥ 0, is an H-sssi process, which generalizes Gaussian
processes (it is indeed Gaussian when β = 1) and is defined only by its autocovariance structure. These
properties make us think that Bα,β(t) may be equivalent to a process ΛβXα(t), t ≥ 0, where Xα(t) is
a Gaussian process and Λβ is a suitable chosen independent random variable. Indeed, the following
proposition holds:

Prop. 8.14. Let Bα,β(t), t ≥ 0, be a ggBm, then:

Bα,β(t) =
d
√

LβXα(t), t ≥ 0, 0 < β ≤ 1, 0 < α < 2, (8.87)

where =
d

denotes as usual the equality of the finite dimensional distribution, Xα(t) is a standard fBm and Lβ is an
independent non-negative random variable with probability density function Mβ(τ), τ ≥ 0.

In fact, after some manipulation, (eq. 8.85) can be written:∫
Rn

∫ ∞

0
exp

(
i

n

∑
j=1

θjyxj

)
2yMβ(y2)

(2π)−
n
2√

det γα

exp

(
−

n

∑
i,j=1

xiγ
−1
α (ti, tj)xj/2

)
dydnx.

= E

(
exp(i

n

∑
j=1

θj

√
LβXα(tj))

)
.

Remark 8.27. Proposition (8.14) highlights the H-sssi nature of the ggBm. Moreover, for β = 1 from
(eq. 7.125) follows that L1 = 1 a.s., thus we recover the fractional Brownian motion of order H = α/2.

The representation (8.87) is particularly interesting. In fact, a number of question, in particularly those
related to the distribution properties of Bα,β(t), can be reduced to question concerning the fBm Xα(t),
which are easier since Xα(t) is a Gaussian process. For instance, the Hölder continuity of the Bα,β(t)
trajectories follows immediately from those of Xα(t):

E(|Xα(t)− Xα(s)|p) = cp|t− s|pα/2.

Moreover, this factorization is indeed suitable for path-simulation (see next section).

Remark 8.28. From (eq. 8.87), it is clear that Brownian motion, that is B1,1(t), t ≥ 0, is the only one
process of the ggBm class which has independent increments.

8.4 ggBm path simulation

In the previous section we have shown that the ggBm could be represented by a process:

Bα,β(t) =
√

LβXα(t), t ≥ 0,

where Lβ is suitable chosen random variable independent of Xα(t). Clearly, in order to simulate ggBm
trajectories, we first need a method to generate the random variable Lβ.

For this purpose, we consider the time-fractional forward drift equation (eq. 7.110), which we rewrite
here for the seek of clearness:

u(x, t) = u0(x)− 1
Γ(β)

∫ t

0
(t− s)β−1 ∂

∂x
u(x, s)ds, x ∈ R, t ≥ 0, 0 < β ≤ 1. (8.88)
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Remark 8.29. We remember that the term drift equation refers to the fact that when β = 1 (eq. 8.88)
turns out to be the simple one dimensional (forward) drift equation ∂tu(x, t) = −∂xu(x, t) (eq. 9.4),
whose fundamental solution is δ(x− t).

We observe that we could have taken x ≥ 0 in (eq. 8.88) as in (eq. 7.110). In fact, the fundamental
solution of (eq. 8.88), is just (eq. 7.121):

u(x, t) = Mβ(x, t), x, t ≥ 0, (8.89)

and always zero for x < 0. This function can be interpreted as the marginal density function of a non-
negative self-similar stochastic process with scaling parameter H = β.

Remark 8.30. When β = 1 we recover M1(x, t) = δ(x− t) (see (eq. 7.125)).

We write (eq. 8.88) in terms of the Caputo-Dzherbashyan fractional derivative of order β (see eq.
7.113). Then, equation (8.88) is equivalent to:{

∗Dβ
t u(x, t) = −∂xu(x, t),

u(x, 0) = u0(x) = δ(x),
(8.90)

with x ∈ R, t ≥ 0 and 0 < β ≤ 1. Using a random walk model, one can simulate a discrete time
random process X(t), t ≥ 0, governed by the time-fractional forward drift equation (eq. 8.90) (see [6,7]).
In this way, for each running up to time t = 1, the random variable X(1) has the required distribution
u(x, 1) = Mβ(x). The random walk construction follows two steps:

◦ using the Grünwald-Letnikov discretization of Caputo-Dzherbashyan derivative (eq. 7.34),

◦ interpretation of the corresponding finite difference scheme as a random walk scheme.

8.4.1 Finite difference schemes

We begin defining the finite difference model. First, the Cauchy problem (eq. 8.90) has to be written in a
finite domain: 

∗Dβ
t u(x, t) = − ∂

∂x
u(x, t), (x, t) ∈ Ω = [−a, a]× [0, 1], a > 0,

u(x, 0) = u0(x) = δ(x),

u(−a, t) = Φ1(t), u(a, t) = Φ2(t), t > 0.

(8.91)

Let N, M be positive integers. Then, we introduce a bi-dimensional lattice

G2M,N
δx,δt = {(jδx, nδt), (j, n) ∈ Z2M ×ZN},

contained on Ω, with δx = 2a
2M−1 and δt = 1

N−1 . The lattice elements are indicated with

(xj, tn) = (jδx, nδt), j = 0, 1, . . . , 2M− 1 , n = 0, 1, . . . N − 1.

Let u : Ω → R be a function defined on Ω. We indicate with un
j = u(xj, tn) the restriction of u to G2M,N

δx,δt
evaluated in (xj, tn).
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The time-fractional forward drift equation is then replaced by the finite difference equation:

∗Dβ
t un

j = −
un

j − un
j−1

δx
, (8.92)

where

∗Dβ
t un

j =
n+1

∑
k=0

(−1)k
(

β
k

) un+1−k
j − u0

j

δtβ
, (8.93)

with u0
j = u0(jδx), is the (forward) Grünwald-Letnikov scheme for the Caputo-Dzherbashyan deriva-

tive (eq. 7.34). Using the “empty sum” convention:

q

∑
k=p

· = 0, if q < p,

for any n ≥ 0, we obtain the explicit equation:

un+1
j = u0

j

n

∑
k=0

(−1)k
(

β

k

)
+

n

∑
k=1

(−1)k+1
(

β

k

)
un+1−k

j + µ(un
j−1 − un

j ), (8.94)

where µ = δtβ/δx. Equation (8.94) can be written in the following noteworthy form:

un+1
j = bnu0

j +
n

∑
k=1

ckun+1−k
j + µ(un

j−1 − un
j ), (8.95)

where we have defined: 
ck = (−1)k+1

(
β

k

)
, k ≥ 1,

bn =
n

∑
k=0

(−1)k
(

β

k

)
, n ≥ 0.

(8.96)

More precisely, the explicit scheme reads
un

0 = Φ1(tn), un
2M−1 = Φ2(tn), n > 0,

u1
j = (1− µ + µL)u0

j , 0 < j < 2M− 1

un+1
j = (c1 − µ + µL)un

j + c2un−1
j + · · ·+ cnu1

j + bnu0
j , n > 1, 0 < j < 2M− 1,

(8.97)

where L is the “lowering” operator: L f j = f j−1.

Remark 8.31 (Stability). We observe that the explicit scheme is stable if µ ≤ β, i.e.

δx ≥ δtβ/β. (8.98)

Indeed, this assures that the scheme preserves non-negativity.

Remark 8.32. When β = 1 all the coefficients ck and bn vanish except b0 = c1 = 1. So that, we recover
the finite difference approximation of the simple (forward) drift equation.
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It is not difficult to write an implicit scheme. In fact, we just have to use backward approximations for
the time-fractional derivative. Therefore, for any n ≥ 0, we obtain:

un+1
j + µ(un+1

j − un+1
j−1 ) = bnu0

j +
n

∑
k=1

ckun+1−k
j . (8.99)

Namely,
un

0 = Φ1(tn), un
2M−1 = Φ2(tn), n > 0

(1 + µ− µL)u1
j = u0

j , 0 < j < 2M− 1,

(1 + µ− µL)un+1
j = c1un

j + c2un−1
j + · · ·+ cnu1

j + bnu0
j , n > 0, 0 < j < 2M− 1.

(8.100)

The above equation can be rewritten in matrix notation:
Λiju1

j = u0
i + ψ1

i ,

Λijun+1
j = c1un

i + c2un−1
i + · · ·+ cnu1

i + bnu0
i + ψn+1

i , n ≥ 1.
(8.101)

Λ is the following 2M× 2M matrix, divided in four M× M blocks:

Λ =
(

Λ1 0
Λ2 A

)
=



1 0 0 · · · 0 0 0 · · · · · · 0
−µ 1 + µ 0 · · · 0 0 0 · · · · · · 0
0 −µ 1 + µ · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 · · · −µ 1 + µ 0 0 · · · 0 0
0 0 0 · · · −µ 1 + µ 0 0 · · · 0
0 0 0 · · · 0 −µ 1 + µ 0 · · · 0
0 0 0 · · · 0 0 −µ 1 + µ · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 0 0 0 · · · −µ 1


(8.102)

Moreover, for any n ≥ 0, ψn is a suitable vector which takes into account of the boundary terms.

Remark 8.33. Because Λ is lower diagonal, it is easy to show that

Λ−1 =
(

Λ−1
1 0

−A−1Λ2Λ−1
1 A−1

)
. (8.103)

8.4.2 Random walk models

We observe that, for 0 < β < 1:

∞

∑
k=1

ck = 1, 1 > β = c1 > c2 > · · · → 0. (8.104)

In fact,
∞

∑
k=1

ck = 1−
∞

∑
k=0

(−1)k
(

β

k

)
= 1− lim

x→1−

∞

∑
k=0

(−1)k
(

β

k

)
xk = 1− lim

x→1−
(1− x)β = 1.
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Moreover,  b0 = 1 =
∞

∑
k=1

ck, bm = 1−
m

∑
k=1

ck =
∞

∑
k=m+1

ck,

1 = b0 > b1 > b2 > · · · → 0.
(8.105)

Thus, the coefficients ck and bn form a sequence of positive numbers, which do not exceed unity and
decrease strictly monotonically to zero.

8.4.2.1 Explicit random walk

In order to build a random walk model, we consider for first the explicit scheme. Omitting the boundary
terms, we have: 

u1
j = (1− µ)u0

j + µu0
j−1,

un+1
j = (c1 − µ)un

j + µun
j−1 + c2un−1

j + · · ·+ cnu1
j + bnu0

j , n ≥ 1.

We consider a walker which starts in zero at time zero, namely x(t = 0) = 0. We interpret the un
j as

the probability of sojourn in xj = jδx at time tn = nδt. Then, we indicate with x(tn) the position of the
particle at time tn.

At time t1 = δt the walker could be at the position x(1) = x1 with probability µ (that is the probability
to come from one space-step behind) or in x(1) = x0 = 0 with probability 1− µ (that is the probability
to stay in the starting position).

The position at time tn+1 is determined as follows: from (eq. 8.104) and (eq. 8.105), it is clear that
the parameters c1, c2, . . . cn, bn can be interpreted as probabilities. Then, we define a partition of events
{Ec1 , Ec2 , . . . , Ecn , Ebn}, with P(Eck ) = ck and P(Ebn) = bn with n ≥ 1 and such that:

• Ec1 =
{

the particle starts in the previous position x(tn) and jumps in x(tn) + δx with probability µ or stays

in x(tn) with probability 1− µ
}

.

• Eck =
{

the particle backs to the position x(tn+1−k)
}

.

• Ebn =
{

the particle backs to the initial position x(t0)
}

.

8.4.2.2 Implicit random walk

Consider the implicit case:
u1 = Λ−1u0,

un+1 = Λ−1 [c1un + c2un−1 + · · ·+ cnu1 + bnu0] ,

where Λ is given by eq. (8.103). The probability interpretation of the parameters ck and bn is still valid.
In this case, however, we must use the transpose matrix P of A−1 to define the transition probabilities.
Indeed, the M× M matrix A−1 propagates in the positive semi-axis. Moreover, from (eq. 9.6), it can be
shown that P defines a transition matrix (all the elements are positive numbers less than one and all the
rows sum to one, see example below).
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Example 8.10. For instance, in the four dimensional case the matrix P would be:

P =


1/(1 + µ) µ/(1 + µ)2 µ2/(1 + µ)3 µ3/(1 + µ)3

0 1/(1 + µ) µ/(1 + µ)2 µ2/(1 + µ)2

0 0 1/(1 + µ) µ/(1 + µ)
0 0 0 1


In the implicit case the random walk is defined as follows: let the particle start in zero. At the first

step it could jump up to M− 1 steps ahead with probabilities defined by the first P row. Then, we have
the following partition of events:

• Ec1 =
{

the particle starts in the previous position x(tn) for instance xj. Then, it could jump up to M− j− 1

steps ahead with probabilities defined by the j + 1-th P row
}

;

• Eck =
{

the particle backs to the position x(tn+1−k) for instance xj. Then, it could jump up to M− j− 1

steps ahead with probabilities defined by the j + 1-th P row
}

;

• Ebn =
{

the particle backs to the initial position x(t0). Then, it could jump up to M− 1 steps ahead with

probabilities defined by the first P row
}

.

Remark 8.34. The implicit method is slower than the explicit one. However, we observe that, because of
the stability constraint (eq. 8.98), the implicit scheme is advisable for small β. Indeed, we have δx ∼ δtβ,
0 < β < 1 and we are forced to raise the time steps a lot, in order to improve “spatial” resolution.

8.4.3 ggBm trajectories

Along this section, we have provided a method to generate the random variable Lβ and the simulation
results are shown in Figures 7.2-7.4. In particular

◦ Figure 8.2 shows a random-walk simulation with β = 0.4. In this case we used an implicit random-
walk scheme. Moreover, we compared the histogram evaluated over N = 10000 simulations and
the density function Mβ(x), x ≥ 0.

◦ Figure 8.3 shows a random walk when β = 0.5. Because M1/2(x) = 1√
π

e−x2/4, x ≥ 0, in this case

Lβ =
d |Z| where Z is a Gaussian random variable.

◦ Figure 8.4 shows a random walk with β = 0.8. We used an explicit random-walk scheme. Then,
we compared the histogram with the corresponding probability density function Mβ(x), x ≥ 0.

In all the studied cases, we have found a good agreement between the histograms and the theoretical
density functions.

At this point, in order to obtain examples of the Bα,β(t) =
√

LβXα(t) trajectories, we just have to sim-
ulate the fractional Brownian motion Xα(t). For this purpose we have used an exact Cholesky method
(see [1]).

Path simulations of Bβ,β(t) (shortly Bβ) and B2−β,β(t), with β = 1/2 are shown in Figures 7.5-7.10. The
first process provides an example of stochastic model for slow-diffusion (short-memory), the second
provides a stochastic model for fast-diffusion (long-memory).
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Figure 8.2: In the top panel, the histogram of Lβ, which is calculated from a sample of N = 10000
outcomes, is obtained with an implicit random-walk scheme and it is compared with the
exact PDF Mβ(x), x ≥ 0, with β = 0.4. In the bottom panels, the random variable Lβ (left)
and two trajectory examples (right) are shown.

◦ Figure 8.5 shows some typical paths. In the bottom panel, we present the corresponding increment
process. Namely,

Zβ(tk) = Bβ(tk)− Bβ(tk−1), tk = kδt, k = 1, 2, . . . , M− 1.

◦ Figure 8.6 shows the agreement between simulations and the theoretical densities at times t = 1
and t = 2.

◦ Figure 8.7 presents the plot of the sample variance in logarithmic scale. Moreover, we evaluated a
linear fitting, which shows a good agreement with the theoretical result.

◦ Figure 8.8 shows some typical paths for the long-memory process B2−β,β(t).

◦ Figure 8.9 collects the histograms in the case α = 2− β at time t = 1 and time t = 2. The super-
diffusive behavior (that is the rapid increasing of the variance in time) is highlighted.

◦ Figure 8.10 presents the plot of the sample variance in logarithmic scale. Even in this case, we
evaluated a linear fitting.

8.5 Concluding remarks

The marginal probability density function (eq. 8.86) of the generalized grey Brownian motion Bα,β(t),
t ≥ 0, evolves in time according to a “stretched” time-fractional diffusion equation of order β (see
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Figure 8.3: In the case β = 0.5, the histogram (top panel) is calculated from a sample of N = 15000
outcomes, which are obtained simulating independent Gaussian random variables. The cor-
responding Lβ is shown in the bottom.

eq. 8.81). Therefore, the ggBm serves as stochastic model for the anomalous diffusion described by
these class of fractional equations.

The ggBm is defined canonically (see eq. 8.77) in the so called grey noise space (S ′(R),B, µα,β), where
the grey noise measure satisfies (eq. 8.61). However, the ggBm is an H-sssi process of order H = α
and Proposition (8.13) provides a characterization of Bα,β(t) notwithstanding the underline probability
space.

There are many other processes which serve as stochastic models for a given master equation. In fact,
given a master equation for a PDF f (x, t), it is always possible to define an equivalence class of stochastic
processes with the same marginal density function f (x, t). The ggBm defines a subclass {Bα,β(t), t ≥ 0}
associated to the non-Markovian equation (8.81). In this case, the memory effects are enclosed in the
typical dependence structure of a H-sssi process. While, for instance in the case of a subordinated pro-
cess, these are due to the memory properties of the random time process. The latter are preferable because
provide a ready-made physical interpretation (see Remark 9.3). However, Bα,β(t) is interesting because
of the stationarity of its increments.

Proposition (8.14) provides an enlighten representation of ggBm. Thus, the generalized grey Brownian
motion turns out to be merely a fractional Brownian motion with stochastic variance. That is,

Bα,β(t) = ΛβXα(t), t ≥ 0,
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Figure 8.4: In the top panel, the histogram of Lβ, which is calculated from a sample of N = 15000
outcomes, it is obtained with an explicit random-walk scheme and it is compared with the
exact PDF Mβ(x), x ≥ 0, with β = 0.8. In the bottom panels, the random variable Lβ (left)
and many trajectory examples (right) are shown.

where Λβ is a suitable independent random variable (see eq. 8.87).

As a final remark, we observe that such a process is not ergodic. In fact, heuristically, the ergodicity
of the system is broken by the multiplication with the random variable Λβ. This appears also from the
simulated trajectories. Indeed, it is impossible with a single realization of the system Bα,β(t, ω), ω ∈ Ω,
to distinguish a ggBm from a fBm with variance 2Λ2

β(ω)tα, where Λβ(ω) indicates a single realization
of the random variable Λβ.

Remark 8.35. It is interesting to wonder if the generalized grey Brownian motion is the only one sta-
tionary increment process which serves as model for time-fractional diffusion equations like (eq. 8.81).
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Figure 8.5: Bβ(t) trajectories in the case β = 0.5 (to panel) for 0 ≤ t ≤ 2. The time series of the corre-
sponding stationary noise Zβ(t) is presented in the bottom panel.

Figure 8.6: Histograms of N = 15000 simulations with β = 0.5 and exact marginal density at t = 1 and
t = 2.
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Figure 8.7: Sample variance in logarithmic scale and linear fitting (N = 104).

Figure 8.8: B2−β,β(t) trajectories in the case β = 0.5 (top panel) for 0 ≤ t ≤ 2. The corresponding
stationary noise time series is presented in the bottom panel.
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Figure 8.9: Histograms of two 15000 running simulations of B2−β,β(t) with β = 0.5 and exact distribu-
tions at different times t = 2 and t = 1.

Figure 8.10: Sample variance in logarithmic scale and linear fitting (N = 104).
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9 Non-Markovian diffusion equations and processes

Brownian motion B(t), t ≥ 0, is a stochastic process with many properties (Def. 3.4). It is at the same
time Gaussian, Markovian, has stationary increments and is self-similar .

We remember that, a process X(t), t ≥ 0, is said to be self-similar with self-similarity exponent H if,
for all a ≥ 0, the processes X(at), t ≥ 0, and aHX(t), t ≥ 0, have the same finite-dimensional distribu-
tions (Def. 3.8).

Brownian motion is self-similar with exponent H = 1/2. In contrast, fractional Brownian motion
BH(t), t ≥ 0, is Gaussian, has stationary increments, is self-similar with self-similarity exponent
0 < H < 1, but is not Markovian, unless H = 1/2, in which case the fractional Brownian motion
becomes Brownian motion (Remark 3.22). When 1/2 < H < 1, the increments of fractional Brownian
motion have long-range dependence (Prop. 6.1).

Because Brownian motion is Markovian with stationary increments, its finite-dimensional distribu-
tions can be obtained from the marginal density function

fB(x, t) =
1√
4πt

e−x2/4t, x ∈ R (9.1)

at time t ≥ 0 by using (eq. 3.22). This density function is the fundamental solution of the “standard”
diffusion equation:

∂tu(x, t) = ∂xxu(x, t), (9.2)

which in integral form reads:

u(x, t) = u0(x) +
∫ t

0
∂xxu(x, s)ds, u0(x) = u(x, 0). (9.3)

Thus, fB(x, t) is a solution of (eq. 9.3) with u0(x) = δ(x), where δ(x) is the Dirac delta distribution.

Remark 9.1. Observe that, here we are following the physics convention of not including the factor 1/2
in (eq. 9.2). Therefore, in the following, “standard” Brownian motion B(t), t ≥ 0, is such that, for each
time t ≥ 0, B(t) ∼ N(0, 2t).

In this chapter, we consider non-local, fractional and stretched modifications of the diffusion equa-
tion as we have anticipated in (eq. 7.13). These modified equations are indeed a generalization of time
fractional equations, and will be called Non-Markovian diffusion equations, because, while they originate
from a diffusion equation, the corresponding process, whose probability density function is a solution
of these modified equations, will be typically non-Markovian.

To motivate the modifications, consider first the non-random process l(t) = t, t ≥ 0, which depicts
a non-random linear time evolution and let fl(τ, t) denote its density function at time t. Therefore,
one has fl(τ, t) = δ(τ − t) where δ(x) is the Dirac distribution. It is natural to interpret fl(τ, t) as the
fundamental solution of the standard forward drift equation (eq. 9.4), namely,

∂tu(τ, t) = −∂τu(τ, t), τ, t ≥ 0, (9.4)
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which have been written in integral form (eq. 9.5)

u(τ, t) = u0(τ)−
∫ t

0
∂τu(τ, s)ds, u0(τ) = u(τ, 0). (9.5)

We then consider the following generalization of the forward drift equation (eq. 9.5)

u(τ, t) = u0(τ)−
∫ t

0
K(t− s)∂τu(τ, s)ds, τ, t ≥ 0, (9.6)

where K(t), with t ≥ 0, is a suitable kernel, chosen such that the fundamental solution of (eq. 9.6) is a
probability density function at each t ≥ 0. We refer to (eq. 9.6) as the non-Markovian forward drift equation.

The presence of the memory kernel K in (eq. 9.6) suggests a corresponding modification of the diffu-
sion equation (eq. 9.3). Namely, we will consider the equation:

u(x, t) = u0(x) +
∫ t

0
K(t− s)∂xxu(x, s)ds, x ∈ R, t ≥ 0. (9.7)

We show that its fundamental solution turns out to be:

f (x, t) =
∫ ∞

0
G(x, τ)h(τ, t)dτ, (9.8)

where

G(x, t) =
1√
4πt

exp(−x2/4t), (9.9)

and h(τ, t) is the fundamental solution of (eq. 9.6).

The solution (eq. 9.8) is a marginal (one-point) probability density function. We will consider differ-
ent random processes whose marginal probability density function coincides with it. As illustration,
consider the following examples.

Example 9.1. If we choose:

K(t) =
t−1/2
√

π
, t ≥ 0, (9.10)

we are in the fractional case of (eq. 9.24) with β = 1/2. Then, we have (see eq. 7.121 and eq. 7.126):

h(τ, t) =
1√
πt

exp
(
−τ2

4t

)
, τ ≥ 0, t ≥ 0, (9.11)

as fundamental solution of (eq. 9.6). Now consider the process

D(t) = B(l(t)), t ≥ 0, (9.12)

where B is a “standard” Brownian motion and l(t) ≥ 0 is a random time change (not necessarily in-
creasing), independent of B, whose marginal density function is given by h(τ, t). One possible choice
for the random time process is simply:

l(t) = |b(t)|, t ≥ 0,
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where b(t), t ≥ 0, is a “standard” Brownian motion. Such a random time process l(t), t ≥ 0, is self-
similar of order H = 1/2.1 Let now B(t), t ≥ 0, be another “standard” Brownian motion independent
of b(t). Thus, the process

D(t) = B(|b(t)|), t ≥ 0, (9.13)

has marginal density defined by (eq. 9.8) with h(τ, t) given by (eq. 9.11).

But, D(t) is not the only process with density function f (x, t), given by (eq. 9.8). For example, the
process

Y(t) =
√
|b(1)|B1/4(t), t ≥ 0 , (9.14)

where B1/4 is an independent fractional Brownian motion with self-similarity exponent H = 1/4, has
the same one-dimensional probability density functions as the previous process D(t), t ≥ 0 (see eq. 9.40
with β = 1/2).

Example 9.2. The fractional Brownian motion in (eq. 9.14) has a self-similarity exponent H < 1/2. We
know that the increments of such a process negatively correlated (Prop. 3.10). To allow for the presence
of fractional Brownian motion BH(t) with 0 < H < 1, we introduce a second (non-random) time change
t → g(t), where g(0) = 0 and g(t) is smooth and increasing, that is we consider the non-Markovian
diffusion equation

u(x, t) = u0(x) +
∫ t

0
g′(s)K (g(t)− g(s)) ∂xxu(x, s)ds. (9.15)

whose fundamental solution is now:

f (x, t) =
∫ ∞

0
G(x, τ)h(τ, g(t))dτ, (9.16)

where h is the fundamental solution of (eq. 9.6).

Remark 9.2. Observe that (eq. 8.81) is of this type with K(t) = tβ−1/Γ(β) and g(t) = tα/β.

If K(t) is as in (eq. 9.10) and g(t) = t2α, with 0 < α < 2, then the processes:

D(t) = B(|b(t2α)|), t ≥ 0,

Y(t) =
√
|b(1)|Bα/2(t), t ≥ 0,

have a marginal density function defined by (eq. 9.16) with h(τ, t) as in (eq. 9.11), which is the funda-
mental solution of (eq. 9.15). In this case Y(t) is defined through an independent fractional Brownian
motion Bα/2 with Hurst’s parameter H = α/2 and thus 0 < H < 1. This is a special case of (eq. 9.65).

The preceding examples illustrate the themes pursued in this chapter. We will focus, however, not
only on power-like kernels such as defined in (eq. 9.10), but also on exponential-like kernels such as:

K(t) = e−at, a ≥ 0. (9.17)

We also consider what happens when the Brownian motion B(t), t ≥ 0, is replaced by a more general
linear (time-homogeneous) diffusion Q(t), t ≥ 0, governed by the Fokker-Planck equation,

∂tu(x, t) = Pxu(x, t), (9.18)

1) Another possible choice for a random time process with marginal density given by (eq. 9.11)
is the local-time in zero of a “standard” Brownian motion [3]. In this case the time change
process l(t) is increasing.
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where Px is a linear operator independent of t acting on the variable x ∈ R (see eq. 7.11). In other words
we consider the non-Markovian diffusion equation:

u(x, t) = u0(x) +
∫ t

0
g′(s)K(g(t)− g(s))Pxu(x, s)ds. (9.19)

We show that its fundamental solution is:

f (x, t) =
∫ ∞

0
G(x, τ)h(τ, g(t))dτ, (9.20)

where G(x, t) is the fundamental solution of (eq. 9.19), while h(τ, t) is the fundamental solution of
(eq. 9.6). We also provide explicit solutions when Px is the differential operator associated with Brown-
ian motion with drift, when it is associated with Geometric Brownian motion and when the kernel K(t)
is the power kernel and the exponential kernel.

In order not to dwell on technicalities, we suppose implicitly, throughout the chapter, that we have
sufficient regularity conditions, to justify the algebraic manipulations that are performed.

9.1 Historical notes

We begin with some historical remarks. Non-Markovian equations like (eq. 9.7), or more generally
(eq. 9.19), are often encountered when studying physical phenomena related to relaxation and diffusion
problems in complex systems (see Srokowsky [32] for examples).

Equations of the type (eq. 9.7) have been studied for example by Kolsrud [?]7. He obtained (eq. 9.8),
but without providing specific examples. A similar study was done by Wyss [36] who, however, focused
only on power-like kernels K(t) = Ctβ−1.

Sokolov [30] (see also Srokowsky [32]), studied the non-Markovian equation

∂tP(x, t) =
∫ t

0
k(t− s)LxP(x, s)ds, (9.21)

where Lx is a linear operator acting on the variable x. He provided a formal solution in the form of
(eq. 9.20). Observe, however, that our equation (eq. 9.19) differs from (eq. 9.21), not only by the presence
of the scaling function g(t), but also by the choice of the memory kernel. Our kernel K(t) and Sokolov’s
kernel k(t) are related by the equation:

K(t) =
∫ t

0
k(s)ds ⇒ K̃(s) = k̃(s)/s, s > 0, (9.22)

where the tilde indicates the Laplace transform. The suitability conditions for these memory kernels
are thus not the same (these conditions are developed in Section 9.2). For example, consider the simple
exponential-decay kernel e−at, a ≥ 0. This choice of the kernel is “safe” in the context of (eq. 9.19), i.e.
for the choice K(t) = e−at, but is “dangerous” if one considers (eq. 9.21) with the kernel k(t) = e−at. In
the case of (eq. 9.19), the exponential-decay kernel corresponds to a system for which non-local memory
effects are initially negligible. In fact, K(t) = e−at → 1 as t → 0 and thus the system appears Markovian
at small times. On the other hand, the choice k(t) = e−at corresponds to the kernel K(t) = a−1(1− e−at)
which for small times behaves like t. In this case Sokolov [30] noticed that the corresponding equations
are only reasonable in a restricted domain of the model parameters and for certain initial and boundary
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conditions.

Our starting point is different from that of the previous authors. Instead of starting directly from the
Fokker-Planck equations (eq. 9.18), we start from the forward drift equation (eq. 9.5) which is then gen-
eralized by introducing a memory kernel K(t) (eq. 9.6). One is then naturally led to the non-Markovian
diffusion equations (eq. 9.15 and eq. 9.19) after the introduction of the scaling function g(t). In fact, in
specific cases, it is sometimes simpler to solve first the non-Markovian forward drift equation (eq. 9.6)
and then use the solution to solve the non-Markovian diffusion equation (eq. 9.15 or eq. 9.19) by using
(eq. 9.16 or eq. 9.20). For instance, we have used (eq. 9.8) in order to solve the time-fractional diffusion
equation (see Section 7.2.5).

The form of the solution (eq. 9.16 or eq. 9.20) has now a ready-made interpretation. For example, in
(eq. 9.20) the function G(x, t) is the fundamental solution of the Markovian equation (eq. 9.18) and the
function h(τ, t) is the fundamental solution of the non-Markovian equation (eq. 9.6) and it is these two
solutions that contribute to (eq. 9.20) which is the fundamental solution of the non-Markovian diffusion
equation (eq. 9.19).

The form (eq. 9.16 or eq. 9.20) of the solution has a natural interpretation in terms of subordinated
processes (see eq. 9.12). According to Whitmore and Lee [16], the term “subordination” was introduced
by Bochner [4, 5]. It refers to processes of the form Y(t) = X(l(t)), t ≥ 0, where X(t), t ≥ 0, is a Markov
process and l(t), t ≥ 0, is a (non-negative) random time process independent of X. The marginal
distribution of the subordinated process is clearly:

fY(x, t) =
∫ ∞

0
fX(x, τ) fl(τ, t)dτ, t ≥ 0, x ∈ R, (9.23)

where fX(x, t) and fl(τ, t) represent the marginal density functions of the processes X and l. Therefore,
(eq. 9.16 or eq. 9.20) can be interpreted in terms of subordinated processes, with (eq. 9.6) characterizing
the random time process l(t) and (eq. 9.18) characterizing the Markov parent process X(t) (see Remark
7.37).

Remark 9.3. The stochastic interpretation through subordinated processes is very natural because
Y(t) = X(l(t)) has a direct physical interpretation. For example, in equipment usage, X(t) can be
the state of a machine at time t and l(t) the effective usage up to time t. In an econometric study, X(t)
may be a model for the price of a stock at time t. If l(t) measures the total economic activity up to
time t, the price of the stock at time t should not be described by X(t) but by the subordinated process
Y(t) = X(l(t)). The resulting subordinated process Y(t) is in general non-Markovian. In this way, the
non-local memory effects are attributable to the random time process l(t) and to its dynamics which is
in general non-local in time (eq. 9.6).

However, the solution of (eq. 9.19) represents only the marginal (one-point) density function of the
process and therefore cannot characterize the full stochastic structure of the process. In fact, there are
also processes that are not subordinated processes that serve as stochastic models for non-Markovian
diffusion equations like (eq. 9.19) or (eq. 9.21). For instance, the grey Brownian motion of the previous
chapter provides an example in the case of fractional type equations.

9.2 The non-Markovian forward drift equation

We start with the following generalization of (eq. 9.5), namely:

u(τ, t) = u0(τ)−
∫ t

0
K(t− s)∂τu(τ, s)ds, τ, t ≥ 0, (9.24)
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where K(t), with t ≥ 0, is a suitable chosen kernel. We then choose a random time process l(t) such
that, for each t ≥ 0, its marginal density fl(τ, t) is the fundamental solution of (eq. 9.24). Observe that
(eq. 9.24) is “non-local” because u(τ, t) involves u(τ, s) at all 0 ≤ s ≤ t. We have called equation (9.24
non-Markovian forward drift equation.
It is convenient to work with Laplace transforms. We indicate by L{ϕ(x, t); t, s} the Laplace transform
of the function ϕ with respect to t evaluated in s ≥ 0, namely:

L{ϕ(x, t); t, s} =
∫ ∞

0
e−ts ϕ(x, t)dt, s ≥ 0. (9.25)

If the function ϕ depends only on the variable t we write simply ϕ̃(s), because in this case there is no
ambiguity concerning the integration variable. In particular we let K̃(s) denote the Laplace transform
of the kernel K.

Prop. 9.1. Let fl(τ, t) denote the fundamental solution of (eq. 9.24). Then,

L{ fl(τ, t); t, s} =
1

sK̃(s)
exp

(
− τ

K̃(s)

)
, τ, s ≥ 0, (9.26)

and zero for τ < 0.

Proof: we take the Laplace transform with respect to the variable t in (eq. 9.24):

∂τ ũ(τ, s) =
u0(τ)
sK̃(s)

− ũ(τ, s)
K̃(s)

, (9.27)

thus (eq. 9.26) is a solution, in the distributional sense, when u0(τ) = δ(τ). Indeed the general solution
of (eq. 9.27) with u0(τ) = δ(τ) is:

ϕ(τ, s) =
θ(τ)
sK̃(s)

exp

(
− τ

K̃(s)

)
+ Cexp

(
− τ

K̃(s)

)
, τ ∈ R,

where C is a real constant. Since we require ϕ(τ, t) = 0 for τ < 0, we get C = 0, i.e. (eq. 9.26). �

9.2.1 Suitability conditions on the kernel K

We must choose the kernel K such that the fundamental solution of (eq. 9.24) is a probability density in
τ ≥ 0. We observe that if fl(τ, t) satisfies (eq. 9.24) and (eq. 9.26), then it is automatically normalized for
each t ≥ 0. In fact, for a function ϕ(x, t) for which it is always possible to change the order of integration,
one has: ∫

R
ϕ(x, t)dx = 1 ⇐⇒

∫
R

ϕ̃(x, s)dx = s−1. (9.28)

Since (eq. 9.26) satisfies the right-hand side of (eq. 9.28), we get
∫

R+
fl(τ, t)dτ = 1. One still needs,

however, to choose the kernel K such that fl(τ, t) ≥ 0 for all τ, t ≥ 0.

In order to get a suitable condition on the kernel K, we make use of the notion of completely monotone
function. Recall that a function ϕ(t) is completely monotone if it is non-negative and possesses derivatives
of any order and:

(−1)k dk

dtk ϕ(t) ≥ 0, t > 0, k ∈ Z+ = {0, 1, 2, . . . }. (9.29)
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We observe that as t → 0, the limit of dk ϕ(t)/dtk may be finite or infinite. Typical non-trivial examples
are ϕ(t) = exp(−at), with a > 0, ψ(t) = 1/t and φ(t) = 1/(1 + t). A less trivial example is provided by
the Mittag-Leffler function Eβ(−t), t ≥ 0, for 0 < β ≤ 1 (see Prop. 8.8) .

It is easy to show that if ϕ and ψ are completely monotone then their product ϕψ is as well. More-
over, if ϕ is completely monotone and ψ is positive with first derivative completely monotone then the
function ϕ(ψ) is completely monotone.

We have the following characterization of completely monotone functions [9]:

Lemma 9.1. A function ϕ(s), defined on the positive real line, is completely monotone if and only if is on the
form:

ϕ(s) =
∫ ∞

0
e−tsF(dt), s ≥ 0,

where F is a finite or infinite non-negative measure on the positive real semiaxis.

Hence, to ensure that fl(τ, t) ≥ 0 for all τ, t ≥ 0, it is enough to require that the function defined in
(eq. 9.26) must be completely monotone, as a function of s, for any τ ≥ 0, and thus that the kernel K
satisfies the following:

Suitability conditions

◦ sK̃(s) is positive with first derivative completely monotone,

◦ 1/K̃(s) is positive with first derivative completely monotone.

Indeed, we can view (eq. 9.26) as the product of the two completely monotone functions 1/u and
exp(−τu), the first evaluated at u = sK̃(s) and the second evaluated at u = 1/K̃(s).

9.2.2 Examples

Example 9.3 (β-power kernel). If we choose:

K(t) =
tβ−1

Γ(β)
,

we get K̃(s) = s−β. In this case sK̃(s) = s1−β is positive and has first derivative (1− β)s−β completely
monotone if and only if 0 < β ≤ 1. Moreover, 1/K̃(s) = sβ is positive with first derivative βsβ−1

completely monotone if and only if 0 < β ≤ 1. Therefore, a good choice for the kernel K is:

K(t) =
tβ−1

Γ(β)
, 0 < β ≤ 1. (9.30)

Remark 9.4. In this way, we have incidentally proved thatMβ(τ, t), 0 < β ≤ 1, which is the fundamen-
tal solution of (eq. 9.24) with the power kernel choice, namely the time-fractional forward drift equation
(eq. 7.110), defines indeed a probability density function in τ ≥ 0 for any t ≥ 0 (see property 1. below
eq. 7.122).

Example 9.4 (Exponential decay kernel). Choosing:

K(t) = exp(−at), a ≥ 0, (9.31)

we get sK̃(s) = s/(s + a) which is positive with first derivative a(s + a)−2 completely monotone for any
a ≥ 0. Moreover, 1/K̃(s) = (s + a) is positive if a ≥ 0 with first derivative completely monotone.
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Example 9.5 (β-power with exponential decay kernel). Choosing:

K(t) =
tβ−1

Γ(β)
exp(−at), 0 < β ≤ 1, a ≥ 0, (9.32)

we have K̃(s) = (s + a)−β. Therefore, sK̃(s) = s(s + a)−β which is positive if a ≥ 0 with first derivative
(s + a)−β(1− βs(s + a)−1) completely monotone if 0 < β ≤ 1. Moreover, 1/K̃(s) = (s + a)β is positive
if a ≥ 0 with first derivative β(s + a)β−1 completely monotone if 0 < β ≤ 1.

Example 9.6 (Distributed order power-kernel). The choice

K(t) =
∫ 1

0
p(β)

tβ−1

Γ(β)
dβ, (9.33)

leads to Rieaman-Liouville distributed order fractional equations (see eq. 7.143). In this case, one has
K̃(s) =

∫ 1
0 p(β)s−βdβ. Then, one finds sK̃(s) =

∫ 1
0 p(β)s1−βdβ, which is positive with first derivative∫ 1

0 p(β)(1− β)s−βdβ. The latter can be seen as a linear superposition of completely monotone functions
and it is then completely monotone as well. Moreover, it is also possible to show that 1/K̃(s) is always
positive with first derivative completely monotone.

The following theorem states that a self-similar random time process l(t), t ≥ 0, is associated with the
power kernel K(t) (Example 9.3):

Theorem 9.1. If the time change process l(t), t ≥ 0, is self-similar (for instance of order H = β), with marginal
probability density fl(τ, t) satisfying (eq. 9.26), then we must have:

K(t) = C
tβ−1

Γ(β)
, 0 < β ≤ 1, (9.34)

for some positive constant C.

Proof: The self-similarity condition entails that for any τ, t ≥ 0 and for any a > 0:

a−β fl(a−βτ, t) = fl(τ, at).

If we take the Laplace transform and set f̃ (τ, s) = L{ fl(τ, t); t, s}, we have:

a−β f̃l(a−βτ, s) =
1
a

f̃l

(
τ,

s
a

)
.

Using (eq. 9.26) we get that for any τ, s ≥ 0 and a > 0:

a−β

K̃(s)
exp

(
− a−βτ

K̃(s)

)
=

1
K̃( s

a )
exp

(
− τ

K̃( s
a )

)
.

Since this relation is valid for any choice of τ ≥ 0 and s ≥ 0, putting τ = 0 and s = a, we get:

a−β

K̃(a)
=

1
K̃(1)

.

Thus, for any a > 0:
K̃(a) = K̃(1)a−β,

which is the Laplace transform of (eq. 9.34). If we add moreover the condition of complete monotonicity
we find: 0 < β ≤ 1 as indicated in Example 9.3. �
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9.3 Non-Markovian diffusion equation

We focus here on the non-Markovian diffusion equation introduced in (eq. 9.15). There are two ingredi-
ents:

1. The fundamental solution of (eq. 9.24), denoted here by h(τ, t) and defined by (eq. 9.26).

2. The fundamental solution G(x, t), defined by (eq. 9.9), of the standard diffusion equation which is
the one-dimensional density of the “standard” Brownian motion.

The following theorem combines these two ingredients and provides the fundamental solution of a
corresponding non-Markovian diffusion equation.

Theorem 9.2. Let h(τ, t) denote the fundamental solution of (eq. 9.24), so that by Proposition 9.1, one has:

L{h(τ, t); t, s} =
1

sK̃(s)
exp

(
− τ

K̃(s)

)
, τ, s ≥ 0, (9.35)

for a suitable choice of K. Let g be a strictly increasing function with g(0) = 0 and let G(x, t) be defined by
(eq. 9.9). Then,

f (x, t) =
∫ ∞

0
G(x, τ)h(τ, g(t))dτ, (9.36)

is the fundamental solution of the non-Markovian diffusion equation:

u(x, t) = u0(t) +
∫ t

0
g′(s)K (g(t)− g(s)) ∂xxu(x, s)ds. (9.37)

Proof: see Section 9.4. �

We have immediately the following:

Cor. 9.1. If H(x, t) is a solution of the standard diffusion equation with initial condition H(x, 0) = u0(x), then
the function:

u(x, t) =
∫ ∞

0
H(x, τ)h(τ, g(t))dτ (9.38)

is a solution of (eq. 9.37).

Proof: If, for any t ≥ 0, the function f (x, t) defined in (eq. 9.36) is the fundamental solution of (eq. 9.37)
then a general solution is given by:

u(x, t) =
∫

R
f (x− y, t)u0(y)dy =

∫
R

∫ ∞

0
G(x− y, τ)u0(y)h(τ, g(t))dτdy

=
∫ ∞

0

(∫
R

G(x− y, τ)u0(y)dy
)

h(τ, g(t))dτ =
∫ ∞

0
H(x, τ)h(τ, g(t))dτ. �

We observe that:

A. The equation (9.35) states that h(τ, t) is the fundamental solution of (eq. 9.24).

B. While G(x, t) is the fundamental solution of the standard diffusion equation obtained when
u0(x) = δ(x), the general solution, denoted H(x, t) in the above theorem, results from a general
initial condition u0(x).

Many physical phenomena, especially related to relaxation processes in complex systems, are described
by non-Markovian “master equations” like (eq. 9.37). K(t) is a memory kernel and g(t) is just a “time
scaling“ function. Such equations are often argued by phenomenological considerations and some times
can be more or less rigorously derived starting from a microscopic description [6, 38, 14, 32].
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9.3.1 The stochastic representation is not unique

The solution of the non-Markovian diffusion equation can be viewed as the marginal density function
of the subordinated process (see eq. 9.12)

D(t) = B(l(g(t))), t ≥ 0,

since its marginal density is:

fD(x, t) =
∫ ∞

0
G(x, τ) fl(τ, g(t))dτ.

Here, for each t ≥ 0, D(t) ∼ fD(x, t), B(t) ∼ G(x, t) and l(t) ∼ fl(τ, t). In the notation of Theorem 9.2,
we have fD(x, t) = f (x, t) and fl(τ, t) = h(τ, t). The Laplace transform of fl(τ, t) with respect to t is
given by (eq. 9.35).

This stochastic representation is not unique (see Example 9.1, Example 9.2 and examples below). In-
deed, the non-Markovian diffusion equation characterizes only the marginal, that is one-point, prob-
ability density function. However, processes with a different dependence structure can have the same
marginal density f (x, t). Additional requirements could be imposed so as to specify the stochastic model
more precisely.

Example 9.7. If we require the random time process lβ(t), t ≥ 0, to be self-similar of order β, then in
view of Theorem 9.1, the kernel must be chosen as in (eq. 9.34) with 0 < β ≤ 1. Then, we obtain the
stretched time-fractional diffusion equation (eq. 8.81). We will study this case more in details in Section
9.5. Here we just observe that if we consider a “standard” fractional Brownian motion Bβ/2 of order
β/2, then f (x, t) is also the marginal distribution of the grey Brownian motion (eq. 8.87 with α = β),

Y(t) =
√

lβ(1)Bβ/2(t), (9.39)

where Bβ/2(t) is assumed to be independent of lβ(1).

In fact, because lβ(t), t ≥ 0, is self-similar of order H = β, one has:

D(t) = B(lβ(t)) =
d
√

lβ(t)B(1) =
d
√

lβ(1)tβ/2B(1) =
d
√

lβ(1)tβ/2Bβ/2(1) =
d
√

lβ(1)Bβ/2(t) = Y(t),
(9.40)

where =
d

denotes here the equality of the marginal distributions.

Both D(t), t ≥ 0, and Y(t), t ≥ 0, are self-similar processes with Hurst’s exponent H = β/2. However,
while Y(t), t ≥ 0, has always stationary increments, this is not in general true in the case of the process
D(t), t ≥ 0.

9.4 Non-Markovian Fokker-Planck equation

We considered up to now processes of the type B(l(g(t))), where B is a “standard” Brownian motion.
What happens if we replace B by a more general diffusion? Namely, what happens if instead of starting
with the standard diffusion equation (eq. 9.2) we start with a more general Markovian Fokker-Planck
equation:

∂tu(x, t) = Pxu(x, t), x ∈ R, t ≥ 0, (9.41)

where Px is a linear operator, independent of t, acting on the variable x? We have the following gener-
alization of Theorem 9.2:



9.4 Non-Markovian Fokker-Planck equation 243

Theorem 9.3. Suppose that h(τ, t) is a probability density function satisfying (eq. 9.26)

L{h(τ, t); t, s} =
1

sK̃(s)
exp

(
− τ

K̃(s)

)
, τ, s ≥ 0, (9.42)

for a suitable choice of K. Let g be a strictly increasing function with g(0) = 0 and G(x, t) be the fundamental
solution of (eq. 9.41). Then the fundamental solution of the integral equation:

u(x, t) = u0(t) +
∫ t

0
g′(s)K (g(t)− g(s))Pxu(x, s)ds (9.43)

is
f (x, t) =

∫ ∞

0
G(x, τ)h(τ, g(t))dτ. (9.44)

We provide two versions of the proof. The first starts with the solution f (x, t) in (eq. 9.44) and veri-
fies that it satisfies (eq. 9.43) (existence). The second starts from the partial integro-differential equation
(eq. 9.43) and derives the solution f (x, t) under certain assumptions stated below (eq. 9.49) (uniqueness).

Proof 1: For first we observe that

L{ f (x, t); g(t), s} =
1

sK̃(s)
L{G(x, t); t, K̃(s)−1}. (9.45)

With the change of variables g(s) = z, we write:

u(x, g−1(w)) = u0(x) +
∫ w

0
K (w− z)Pxu(x, g−1(z))dz, w = g(t). (9.46)

We want to show that (eq. 9.44) with the choice (eq. 9.42) solves (eq. 9.43). If we take the Laplace
transform of (eq. 9.43) using (eq. 9.46), we get:

L{u(x, t); g(t), s} =
u0(x)

s
+ K̃(s)PxL{u(x, t); g(t), s}

that is:
sL{u(x, t); g(t), s} − u0(x) = sK̃(s)PxL{u(x, t); g(t), s}. (9.47)

Now if we substitute on (eq. 9.47) a solution on the form of (eq. 9.44)

u(x, t) =
∫ ∞

0
H(x, τ)h(τ, g(t))dτ, (9.48)

we have:
K̃(s)−1L{H(x, t); t, K̃(s)−1} = u0(x) + PxL{H(x, t); t, K̃(s)−1}

i.e. we have, with obvious notations:

τH̃(x, τ) = u0(x) + PxH̃(x, τ),

in which one readily recognizes the Laplace transform of the Markovian Fokker-Planck equation with
the same initial condition u0(x). Therefore:

∂tH(x, t) = PxH(x, t), H(x, 0) = u0(x).
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This argument shows not only that (eq. 9.44) is the fundamental solution of (eq. 9.43), but also that a
general solution is given by (eq. 9.48) (see Corollary 9.1). This result is summarized in Corollary 9.2 (see
below).

Proof 2: We now start from (eq. 9.43) and we use integral transforms in order to get the fundamen-
tal solution. Let F denote the Fourier transform operator and let:

(F ϕ)(k, t) = ϕ̂(k, t) =
∫

R
eikx ϕ(x, t)dx.

Since û0(k) = 1, and since (FPxu)(k, t) = (FPxF−1Fu)(k, t) = P̂kû(k, t), where P̂k = (FPxF−1)k
denotes the Fourier transform of the operator Px, we have:

û(k, g−1(w)) = 1 +
∫ w

0
K(w− z)P̂kû(k, g−1(z))dz.

Taking the Laplace transform we have:

L{û(k, g−1(w)); w, s} = s−1 + P̂kK̃(s)L{û(k, g−1(w)); w, s},

which is the same as:
L{û(k, t); g(t), s} = s−1 + P̂kK̃(s)L{û(k, t); g(t), s}.

Therefore: (
K̃(s)−1 − P̂k

)
L{û(k, t); g(t), s} = s−1K̃(s)−1.

Denoting 1(k) = 1, we have:

L{û(k, t); g(t), s} =
1

sK̃(s)

(
K̃(s)−1 − P̂k

)−1
1(k), (9.49)

where we suppose that the operator
(

K̃(s)−1 − P̂k

)−1
is well defined and acts on the constant function

1(k) = 1.

Observe that the Fokker-Planck equation (eq. 9.41) is obtained from (eq. 9.43) by setting K(t) = 1,
for each t ≥ 0, that is K̃(s) = s−1, and g(t) = t, for each t ≥ 0. In this case (eq. 9.49) becomes:

L{Ĝ(k, t); t, s} = (s− P̂k)−11(k). (9.50)

where G(x, t) is the fundamental solution. Taking the inverse Fourier transform, we get:

L{G(x, t); t, s} = F−1
{
(s− P̂k)−11(k) ; k, x

}
, (9.51)

where:
F−1 {ϕ(k, s) ; k, x} =

1
2π

∫
R

e−ikx ϕ(k, s)dk. (9.52)

Replacing s by K̃(s)−1 in (eq. 9.51), one has:

L{G(x, t); t, K̃(s)−1} = F−1
{
(K̃(s)−1 − P̂k)−11(k) ; k, x

}
. (9.53)

Going back to (eq. 9.49) and inverting the Fourier transform we obtain in view of (eq. 9.53):

L{u(x, t); g(t), s} =
1

sK̃(s)
F−1

{(
K̃(s)−1 − P̂k

)−1
1(k) ; k, x

}
=

1
sK̃(s)

L{G(x, t); t, K̃(s)−1}.

that is (eq. 9.45). �



9.5 Examples involving standard Brownian motion 245

Remark 9.5. If the Markovian process is a Brownian motion one has Px =
∂2

∂x2 . The Fourier transform

of Px is P̂k = −k2 and (eq. 9.49) becomes:

L{û(k, t); g(t), s} =
1

sK̃(s)

(
K̃(s)−1 + k2

)−1
1(k),

where (
K̃(s)−1 + k2

)−1
1(k) =

1(
K̃(s)−1 + k2

) ,

which is well defined because K̃(s)−1 is positive.

Cor. 9.2. IfH(x, t) is a general solution of the Markovian Fokker-Planck equation (eq. 9.41) with initial condition
H(x, 0) = u0(x), then the function:

u(x, t) =
∫ ∞

0
H(x, τ)h(τ, g(t))dτ (9.54)

is a general solution of (eq. 9.43).

From a stochastic point of view, f (x, t) could be seen as the marginal distribution at time t of the
subordinated process:

D(t) = Q(l(g(t))) (9.55)

where Q is the diffusion governed by the Fokker-Planck equation (9.41) and l(t) is the random time
process, independent of Q(t), with marginal distributions defined by h(τ, t).

9.5 Examples involving standard Brownian motion

In the following examples, we consider stochastic models where the operator Px in (eq. 9.41) is ∂xx,
namely the operator corresponding to standard Brownian motion. We will study more general operators
in the next section. We shall choose various kernels K(t) and various stretching functions g(t). We let
h(τ, t) denote the fundamental solution of the non-Markovian forward drift equation (eq. 9.24). Since
the corresponding stochastic models are not unique, we will mainly focus on the subordinated process
B(l(t)), t ≥ 0. However, we also give examples of other appropriate stochastic models.

9.5.1 Time fractional diffusion equation

Let g(t) = t and consider the β-power kernel:

K(t) =
tβ−1

Γ(β)
, 0 < β ≤ 1. (9.56)

Let h(τ, t) denote the fundamental solution of the non-Markovian forward drift equation (eq. 9.24) with
kernel (9.56). Namely, one recovers the time-fractional forward drift equation (eq. 7.110). One has
(eq. 7.121):

h(τ, t) = t−β Mβ(τt−β) := Mβ(τ, t), τ, t ≥ 0. (9.57)

Remark 9.6. In view of Theorem 9.1, such a kernel arises if one requires h(τ, t) to be the marginal density
function of a self-similar random time process l(t) of order β.
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Then, inserting (eq. 9.56) in (eq. 9.37), we obtain the time-fractional diffusion equation of order β,

u(x, t) = u0(t) +
1

Γ(β)

∫ t

0
(t− s)β−1 ∂xxu(x, s)ds. (9.58)

which has been studied in Section (7.2.5). Using Theorem 9.2 and (eq. 7.127) together with (eq. 7.126)
and (eq 9.57) we recover the fundamental solution of the time fractional diffusion equation (eq. 7.140):

f (x, t) =
∫ ∞

0
G(x, τ)h(τ, t)dτ =

1
2

∫ ∞

0
M1/2(|x|, τ)Mβ(τ, t)dτ

=
1
2
Mβ/2(|x|, t) =

1
2

t−β/2Mβ/2(|x|t−β/2). (9.59)

Several plots of the M-function are presented in Chapter 7. In Figure (7.7) the function h(τ, t) =
Mβ(τ, t) is drawn at a fixed time t = 1 and for different values of the parameter β. Figure (7.8) presents
the plot of f (x, t) = 1

2Mβ/2(|x|, t) at a fixed time t = 1 and for different values of β. Moreover, in
Figure (7.9) is shown the time evolution of f (x, t) for fixed β = 1/2. Finally, Figure (7.10) highlights and
compares the queue behaviors for different choices of the time-derivative order β.

9.5.1.1 Stochastic interpretations of the solution

From a stochastic point of view, the function h(τ, t) in (eq. 9.57) can be regarded as the marginal distri-
bution of

lβ(t), t ≥ 0,

where lβ(t), t ≥ 0, is a H-ss random time with H = β. We have that for each integer m ≥ 0:

E(lβ(t)m) =
m!

Γ(βm + 1)
tβm. (9.60)

In fact, from (eq. 7.114), for each integer m ≥ 0, we have :∫ ∞

0
τmsβ−1e−τsβ

dτ = m!s−mβ−1,

which, inverting the Laplace transform, gives (eq. 9.60).

For instance, with the suitable conventions [7], lβ(t), t ≥ 0, can be viewed as the local time in zero at
time t of a d = 2(1− β) dimensional Bessel process [23]. Alternatively, in the context of Continuous time
random walks, it can be taken as the inverse of the totally skewed β-stable Lèvy process (see Chapter 1,
Rem. 1.13). The function f (x, t) in (eq. 9.59) is then the marginal density function of

D(t) = B
(
lβ(t)

)
,

which is self-similar with H = β/2. In this case, because lβ(t) is self-similar of order β, we immediately
have an example of a different process with the same marginal distribution of D(t) (see Example 9.7).
In fact, if we consider a “standard” fractional Brownian motion Bβ/2 of order β/2, then f (x, t) can also
be seen as the marginal distribution of the grey Brownian motion

Y(t) =
√

lβ(1)Bβ/2(t), (9.61)
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Figure 9.1: Trajectory of the process B(lβ(t)) (top panel), with 0 < t < 1 and β = 1/2. The random
time process is chosen to be l1/2(t) = |b(t)| where b(t) is a “standard” Brownian motion
(see Example 9.1). The corresponding trajectory of the random time process is presented in
the middle panel. The estimated variance, computed on a sample of dimension N = 5000,
is presented in logarithmic scale in the bottom panel and fits perfectly the theoretical curve
2t1/2/Γ(3/2).

where Bβ/2(t) is assumed to be independent of lβ(1) (see Example 9.7 and eq. 8.87). From (eq. 9.60) one
can derive immediately all the moments for the processes D(t) and Y(t) (see also eq. 7.142). For any
integer m ≥ 0


E(D(t)2m+1) = E(Y(t)2m+1) = 0;

E(D(t)2m) = E(Y(t)2m) =
2m!

Γ(βm + 1)
tβm.

(9.62)

Because 0 < β < 1, the variance grows slower than linearly with respect to time. That is, we have slow-
anomalous diffusion for any β (eq. 7.142). Moreover, the increments of the fractional Brownian motion
Bβ/2(t) do not have long-range dependence. In contrast, the next example allows for the presence
of long-range dependence (which means fast diffusion) through the introduction of a scaling function
g(t) = tα/β (see also Example 9.2).
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Figure 9.2: Marginal density function f (x, t) = 1
2M1/4(|x|, t) of the process B(l1/2(t)) at time t = 1 and

x ∈ [−5, 5]. The histogram is evaluated over N = 104 simulated trajectories of the process
B(|b(t)|) (Figure 9.1).

9.5.2 “Stretched” time fractional diffusion equation

If in the setup of Section 9.5.1, where the kernel K(t) is given by (eq. 9.56), we introduce a scaling time

g(t) = tα/β

with α > 0, then the integral equation (eq. 9.58) is replaced by (eq. 9.37), namely

u(x, t) = u0(t) +
1

Γ(β)
α

β

∫ t

0
s

α
β−1

(
t

α
β − s

α
β

)β−1
∂xxu(x, s)ds. (9.63)

Remark 9.7. We remember that the above “stretched” time-fractional diffusion equation is the master
equation of the generalized grey Brownian motion marginal density (eq. 8.81) provided that 0 < α < 2.

Using (eq. 9.57) we find:

h(τ, g(t)) = g(t)−β Mβ(τg(t)−β) = t−α Mβ(τt−α).

Then, by using (eq. 9.59), we recover (eq. 8.82). We indicate with fα.β(x, t) the fundamental solution of
(eq. 9.63), namely:

fα,β(x, t) = f (x, g(t)) =
1
2

t−α/2Mβ/2(|x|t−α/2), t ≥ 0. (9.64)

In this case, we are able to study a “full-ranged” anomalous diffusion. In fact, the function fα,β(x, t),
t ≥ 0, is the marginal distribution of processes like

D(t) = B
(

lβ(tα/β))
)

, t ≥ 0.
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The time change process lβ(tα/β) is self-similar of order H = α and the process D(t) is then self-similar
with H = α/2. In the case 0 < α < 2, the function fα,β(x, t) is also the marginal density of the ggBm

Y(t) =
√

lβ(1)Bα/2(t), t ≥ 0, 0 < α < 2, (9.65)

where Bα/2(t) is a “standard” fBm of order H = α/2 independent of lβ(1).

In any case, suppose 0 < α < 2, then, for any integer m ≥ 0,
E(D(t)2m+1) = E(Y(t)2m+1) = 0;

E(D(t)2m) = E(Y(t)2m) =
2m!

Γ(βm + 1)
tαm.

(9.66)

Therefore, one has slow-dffusion when 0 < α < 1 (the variance grows slower than linearly in time) and
fast-diffusion when 1 < α < 2 (the variance grows faster than linearly in time) and the increments of
the process Y(t) exhibit long-range dependence.

Graphical representations

It is interesting to study fα,β(x, t) from a graphical point of view:

◦ In Figure 9.3 we have shown the plots of fβ,β(x, t) (slow diffusion) and f2−β,β(x, t) (fast diffusion)
for fixed time t = 2 and for different values of the β parameter. Here, we recognize the common
Gaussian limit (β = 1).

◦ In Figure 9.4 are presented the plots of fβ,β(x, t) and f2−β,β(x, t) for β = 1/2 and for different times
t ∈ [1, 2]. It is possible to observe the slow (left plot) and the fast (right plot) diffusion.

◦ In Figure 9.5 is shown how the model approaches the normal diffusion.

◦ In Figure 9.6 we present a model for an “ultra” slow-diffusion α = 0.1, and a model for an “ultra”
fast-diffusion α = 0.9, with fixed β = 0.8.

◦ In Figure 9.7 we have shown the diffusion in the chaotic domain, that is for α = 1. We have chosen
β = 0.4 and β = 0.8. Here, the diffusion is “normal”, in the sense that the variance grows linearly
with the time, but it is not Gaussian.

◦ In Figure 9.8 we have displayed two examples of Gaussian but not “normal” diffusions. That is,
β = 1, 0 < α < 2. Slow diffusion is on the left and fast diffusion is on the right.

◦ In Figure 9.9 and Figure 9.10 is presented the variance plot against time, for different βs.
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Figure 9.3: PDFs at fixed time t = 2 for slow (left plot) and fast (right plot) diffusions for different values
of the β parameter.

Figure 9.4: PDFs for slow (left plot) and fast (right plot) β = 1/2-diffusion for t ∈ [1, 2].
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Figure 9.5: PDFs for slow (left plot) and fast (right plot) β = 0.9-diffusion for t ∈ [1, 2].

Figure 9.6: PDFs for “ultra” slow-diffusion (α = 0.1, β = 0.8) on the left, and “ultra” fast diffusion
(α = 0.9, β = 0.8) on the right, for t ∈ [1, 2].
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Figure 9.7: PDFs in the chaotic region: β = 0.4 on the left, and β = 0.8 on the right, for t ∈ [1, 2].

Figure 9.8: PDFs in the Gaussian region (β = 1) with α = 0.5 on the left, and α = 1.5 on the right, for
t ∈ [1, 2].
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Figure 9.9: σ2(t) = 2
Γ(1+β) tβ (slow diffusion) and σ2(t) = 2

Γ(1+β) |t|
2−β (fast diffusion) for β =

[1/4, 1/2, 3/4, 1] and t ∈ [0, 2]. Linear scale.

Figure 9.10: σ2(t) = 2
Γ(1+β) tβ (slow diffusion) and σ2(t) = 2

Γ(1+β) |t|
2−β (fast diffusion) for β =

[1/4, 1/2, 3/4, 1] and t ∈ [0, 2]. Logarithmic scale.
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Figure 9.11: Plots of the marginal density of the random time fl(τ, t) (eq. 9.69) as a function of τ at
times t = [0.5, 1, 1.5], and with a = 1. The vertical line corresponds to a point mass (delta
function).

9.5.3 Exponential decay kernel

Let g(t) = t and choose the exponential decay kernel (Example 9.4):

K(t) = exp(−at), a ≥ 0, t ≥ 0. (9.67)

Then, we obtain the following equation:

u(x, t) = u0(x) +
∫ t

0
e−a(t−s)∂xxu(x, s)ds. (9.68)

In this case, K̃(s) = (s + a)−1 and the marginal distribution of the random time process l(t), t ≥ 0, is
defined by (eq. 9.26):

L{ fl(τ, t); t, s} =
s + a

s
e−τ(s+a), τ ≥ 0.

Therefore,
fl(τ, t) = e−τa (δ(τ − t) + aθ(t− τ)) = e−taδ(τ − t) + ae−τaθ(t− τ), (9.69)

where θ(x) is the step function (eq. 7.116). A graphical representation of the time-evolution of fl(τ, t) is
presented in Figure 9.11.

Remark 9.8. The function fl(τ, t) defined in (eq. 9.69) is the fundamental solution, in the sense of distri-
butions, of the “exponential” forward drift equation:

u(τ, t) = u0(τ)−
∫ t

0
e−a(t−s)∂τu(τ, s)ds.
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This follows from Proposition 9.1. To check it directly, we note that fl(τ, 0) = δ(τ) and for any t > 0:

−
∫ t

0
e−a(t−s)∂τ fl(τ, s)ds = −

∫ t

0
e−a(t−s)∂τ

(
e−asδ(τ − s) + ae−aτθ(s− τ)

)
ds

= −
∫ t

0
e−a(t−s)

(
−e−asδ′(τ − s) + ae−aτδ(s− τ)− a2e−aτθ(s− τ)

)
ds

= e−atδ(τ − t) + ae−atθ(t− τ) + ae−a(t+τ)θ(t− τ)(eat − eaτ)

= e−atδ(τ − t) + ae−aτθ(t− τ) = fl(τ, t),

where we have used the fact that: ∫ t

0
δ′(τ − s)ds = δ(t− τ).

We observe that when a → 0 we recover the forward drift equation (eq. 9.5) and indeed fl(τ, t) =
δ(τ − t).

As noted in Example 9.4, (eq. 9.69) actually defines a probability density for any t ≥ 0. The following
proposition provides its moments.

Prop. 9.2. For each integer m ≥ 0 one has:

E(l(t)m) =
m!
am

(
1− e−at)+ e−at

(
tm −

m

∑
k=1

m!
k!

tkak−m

)
. (9.70)

Proof: for any t ≥ 0, we must evaluate:∫ ∞

0
τm fl(τ, t)dτ = e−attm + a

∫ t

0
τme−aτdτ,

where we have used (eq. 9.69). In order to evaluate the exponential integral in the above equation we
write:

a
∫ t

0
τme−aτdτ = (−1)ma∂m

a

[
(1− e−at)(a−1)

]
= (−1)ma

m

∑
k=0

(
m
k

)
∂k

a(1− e−at)∂m−k
a (a−1)

=
m

∑
k=0

(−1)k m!
k!

ak−m∂k
a(1− e−at) =

m!
am (1− e−at)−

m

∑
k=1

m!
k!

tkak−me−at

thus one has (eq. 9.70). �

The function fl(τ, t) can be written:

fl(τ, t) = e−atδ(τ − t) + (1− e−at)ϕ(τ, t), τ, t ≥ 0, a ≥ 0, (9.71)

where:

ϕ(τ, t) = a
e−aτθ(t− τ)

1− e−at , τ, t ≥ 0, a ≥ 0. (9.72)

Because fl(τ, t) is a probability density, then so is ϕ(τ, t). The corresponding random time process l(t),
t ≥ 0, can then be chosen to be:

l(t) = btt + (1− bt)j(t), t ≥ 0, (9.73)

where bt, t ≥ 0, is a stochastic process such that, for any fixed t ≥ 0, bt is a Bernoulli random variable
with Pr(bt = 1) = e−at and Pr(bt = 0) = 1− e−at, and j(t), t ≥ 0, is a stochastic process, independent
of bt, with marginal distribution given by ϕ(τ, t).
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Remark 9.9. The random time l(t) defined by (eq. 9.73) cannot be increasing everywhere. This is due to
the fact that bt and j(t) are independent and Pr(j(t) < t) = 1 for any t ≥ 0. Indeed, suppose that l(t) is
increasing. This implies that for any t ≥ 0 and ε > 0:

1 = Pr(l(t + ε) ≥ l(t)
∣∣ bt = 1) = Pr(l(t + ε) ≥ t)

= Pr(l(t + ε) ≥ t
∣∣ bt+ε = 1)Pr(bt+ε = 1) + Pr(l(t + ε) ≥ t

∣∣ bt+ε = 0)Pr(bt+ε = 0)

= e−a(t+ε) +
(

1− e−a(t+ε)
)

Pr(j(t + ε) ≥ t)

= 1−
(

1− e−a(t+ε)
)

Pr(j(t + ε) < t)

therefore taking ε → 0 we get 1 = e−at with a, t ≥ 0, which is a contradiction as soon as a 6= 0 and t > 0.

On the other hand, a trivial example of an increasing process with marginal distribution given by
(eq. 9.69) is:

l(t) = min(X, t), t ≥ 0, (9.74)

where X is an exponentially distributed random variable: X ∼ ae−aτ , τ ≥ 0.

We now turn to (eq. 9.68). We have the following result:

Prop. 9.3. The fundamental solution of (eq. 9.68) is:

f (x, t) = e−atG(x, t) + (1− e−at)φ(x, t), (9.75)

with:

φ(x, t) =
√

a
4(1− e−at)

{
ex
√

aErf
(

x
2
√

t
+
√

at
)
− e−x

√
aErf

(
x

2
√

t
−
√

at
)
− 2 sinh(|x|

√
a)
}

, (9.76)

where Erf(x) = 2√
π

∫ x
0 e−y2

dy and where Erf(−x) = −Erf(x).

Proof: by Theorem 9.2 and (eq. 9.72), the fundamental solution of (eq. 9.68) is:

f (x, t) =
∫ ∞

0
G(x, τ) fl(τ, t)dτ = e−atG(x, t) + (1− e−at)φ(x, t), (9.77)

where
φ(x, t) =

∫ ∞

0
G(x, t)ϕ(τ, t)dτ.

We have that:
φ(x, t) =

a
1− e−at

∫ ∞

0
G(x, τ)e−aτθ(t− τ)dτ.

One has to evaluate:

χ(x, t) =
∫ t

0

e−x2/4τe−aτ

√
4πτ

dτ, x ∈ R, t ≥ 0. (9.78)

First we observe that:

χ(0, t) =
∫ t

0

e−aτ

√
4πτ

dτ =
1

2
√

a
2√
π

∫ √
at

0
e−y2

dy =
1

2
√

a
Erf(

√
at).
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Figure 9.12: Plot of the fundamental solution f (x, t) (eq. 9.75) at time t = 1, for different values of the
parameter a = [0, 0.1, 1, 2]. When a = 0 we have the standard Gaussian density.

after the change of variables y =
√

aτ. Because Erf(−u) = −Erf(u) we can write:

χ(0, t) =
1

4
√

a

{
Erf(

√
at)− Erf(−

√
at)
}

. (9.79)

Now, for any x ∈ R:

χ(x, t) =
1

4
√

a

{
ex
√

a Erf
(

x
2
√

t
+
√

at
)
− e−x

√
a Erf

(
x

2
√

t
−
√

at
)}

− 1
2
√

a
sinh(|x|

√
a), (9.80)

because:
d

dτ

[
1

4
√

a

{
ex
√

a Erf
(

x
2
√

τ
+
√

aτ

)
− e−x

√
a Erf

(
x

2
√

τ
−
√

aτ

)}]

=
1

4
√

a

{
2√
π

ex
√

aexp

(
−
[

x
2
√

τ
+
√

aτ

]2
)(

− x
4

τ−3/2 +
√

a
2
√

τ

)}

− 1
4
√

a

{
2√
π

e−x
√

aexp

(
−
[

x
2
√

τ
−
√

aτ

]2
)(

− x
4

τ−3/2 −
√

a
2
√

τ

)}

=
1√
4πτ

exp
(
− x2

4τ
− aτ

)
.
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Moreover, because Erf(±∞) = ±1, we have (eq. 9.80), which actually reduces to (eq. 9.79) when x = 0.
Therefore, the fundamental solution of (eq. 9.68) is:

f (x, t) = e−atG(x, t) +
√

a
4

{
ex
√

a Erf
(

x
2
√

t
+
√

at
)
− e−x

√
a Erf

(
x

2
√

t
−
√

at
)}

−
√

a
2

sinh(|x|
√

a),

(9.81)
which can be rewritten as (eq. 9.75). �

Remark 9.10. With the choice (eq. 9.73) the process:

B(l(t)) = B(btt + (1− bt)j(t)), t ≥ 0,

has marginal density (9.75). Observe that, for any t ≥ 0:

B(btt + (1− bt)j(t)) =
d

btB(t) + (1− bt)B(j(t)),

which naturally corresponds to (eq. 9.75).

Remark 9.11. We observe that (eq. 9.75) reduces to G(x, t) when a = 0 (see Figure 9.12), which is as
expected because the memory kernel disappears. For small times, the non-local memory effects are
negligible and the process appears Markovian.

For large times we have:
lim
t→∞

f (x, t) = lim
t→∞

φ(x, t) = φ(x),

where:

φ(x) =
√

a
2

(cosh(x
√

a)− sinh(|x|
√

a)) =
√

a
2

e−|x|
√

a, x ∈ R. (9.82)

Remark 9.12. In view of (eq. 9.69), it is always possible to choose the random time process l(t), t ≥ 0,
such that it becomes stationary at large times, in the sense of finite-dimensional densities. With this
choice, the subordinated process B(l(t)) tends to a stationary process with asymptotic marginal distri-
bution given by (eq. 9.82). For instance, if we look at (eq. 9.74), as t → ∞ we have l(t) = X ∼ ae−aτ ,
τ ≥ 0. A less trivial example can be constructed by replacing the random variable X with a stationary
process X(t), t ≥ 0, such that for each t ≥ 0 the random variable X(t) has an exponential distribution
with mean E(X(t)) = a−1. The resulting process l(t) = min(X(t), t) is not increasing, has marginal
distribution defined by (eq. 9.69) and tends to X(t) for large t.

Remark 9.13. To obtain an idea on how fast the stationary regime is reached, one can look at the variance
of the subordinated process. Using (eq. 9.70) with m = 1, we find:

E(B(l(t))2) =
2
a
(1− e−at), (9.83)

which, for large times, tends exponentially to 2/a (i.e. the variance of eq. 9.82).

9.5.4 Exponential decay kernel with logarithmic scaling time

What happen if we choose an exponential kernel K(t) = e−at and a logarithmic scaling time? That is:

g(t) = log (t + 1), t ≥ 0. (9.84)
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Figure 9.13: Plot of the fundamental solution f (x, t) (eq. 9.75) at time t = [0.5, 1, 1.5], and a = 1. The
dashed line represents the asymptotic distribution φ(x) (eq. 9.82)

Since g′(t)K(g(t)− g(s)) = (t + 1)−a(s + 1)a−1, we get:

u(x, t) = u0(x) +
1

(t + 1)a

∫ t

0
(s + 1)a−1∂xxu(x, s)ds. (9.85)

Its fundamental solution is:

f (x, t) =
1

(t + 1)a G(x, log (t + 1))−
√

a
2

sinh(|x|
√

a)

+
√

a
4

{
ex
√

a Erf

(
x

2
√

log (t + 1)
+
√

alog (t + 1)

)
− e−x

√
a Erf

(
x

2
√

log (t + 1)
−
√

alog (t + 1)

)}
(9.86)

Remark 9.14. As in Remark 9.12, consider a random time process l(t), t ≥ 0, with marginal distribution
defined by (eq. 9.69), that becomes stationary for large times. The subordinated process B(l(log (t + 1))),
t ≥ 0, has marginal density function defined by f (x, t) of (eq. 9.86). Observe that in this case the random
time process l(log (t + 1)) is no longer asymptotically stationary. This is because the translational time-
invariance is broken by the logarithmic transformation. However, we can always consider a random
time process l

∗
(t), t ≥ 0, with the same marginal distribution of l (log (t + 1)), which becomes stationary

for large times. Thus, the process B(l
∗
(t)) has still marginal density function defined by f (x, t) but

becomes stationary as t → ∞, in the sense of finite dimensional distribution, with asymptotic marginal
distribution given by (eq. 9.82).
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Figure 9.14: Trajectory of the process B(l(t)) (top panel), with 0 < t < 10, E(B(1)) = 1, l(t) =
min(t, X(t)) where X(t) is an exponential White Noise with mean one. The corresponding
trajectory of the random time l(t) process is presented in the middle panel. The estimated
variance is computed on a sample of dimension N = 500. The smooth black line in the bot-
tom panel corresponds to σ2(t) given by (eq. 9.83) and the stationary value is lim

t→∞
σ2(t) = 1.

Remark 9.15. While B(l(t)), t ≥ 0, satisfies (eq. 9.83) and thus has a variance which tends exponentially
fast to the limit value 2/a, here the stationary regime is reached more slowly. Indeed, the variance of the
subordinated process is:

E(B(l
∗
(t))2) =

2
a

(
1− 1

(t + 1)a

)
, (9.87)

which, for large times, converges to the stationary value 2/a with a power-like behavior.

9.6 Examples involving other diffusions

We shall now consider examples of fractional and stretched Fokker-Planck equations involving other
diffusion operators than Px = ∂xx which corresponds to standard Brownian motion. We will choose
K(t) = tβ−1/Γ(β) and g(t) = tα/β as in Section 9.5.1 and consider the partial integro-differential equa-
tion:

u(x, t) = u0(x) +
1

Γ(β)
α

β

∫ t

0
s

α
β−1

(
t

α
β − s

α
β

)β−1
Pxu(x, s)ds, 0 < β ≤ 1, α > 0. (9.88)
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Figure 9.15: Trajectory of the process B(l(log (t + 1))) (top panel), with 0 < t < 10, E(B(1)) = 1, l(t) =
min(t, X(t)) where X(t) is an exponential White Noise with mean one. The corresponding
trajectory of the random time process l(log (t + 1)) is presented in the middle panel. The
estimated variance is computed on a sample of dimension N = 500. The smooth black line
in the bottom panel corresponds to (eq. 9.83). The stationary value is lim

t→∞
σ2(log (t + 1)) = 1.

The stationary regime is achieved more slowly than in the case of Figure 9.14.

Its fundamental solution is the marginal density of the process:

D(t) = Q(lβ(tα/β)), (9.89)

where Q(t), t ≥ 0, is the stochastic diffusion associated to Px and lβ(t), t ≥ 0, is a suitable self-similar
random time process. One has the following particular cases:

◦ When α = β and 0 < β ≤ 1, (eq. 9.88) becomes the “time-fractional” Fokker-Planck equation:

u(x, t) = u0(x) +
1

Γ(β)

∫ t

0
(t− s)β−1 Pxu(x, s)ds, 0 < β ≤ 1, (9.90)

whose fundamental solutions are the marginal distributions of the process:

D(t) = Q(lβ(t)),

and are given by:

fD(x, t) =
∫ ∞

0
fQ(x, τ) flβ

(τ, t)dτ, (9.91)
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where
flβ

(τ, t) = t−β Mβ(τt−β), τ, t ≥ 0, 0 < β ≤ 1 (9.92)

and fQ(x, t) is the probability density of Q(t).

◦ When β = 1 and α > 0 we get a “time-stretched” Fokker-Planck equation:

u(x, t) = u0(x) +
∫ t

0
αsα−1Pxu(x, s)ds, 0 < β ≤ 1. (9.93)

In this case fl(τ, t) = δ(τ − tα) and we get:

fD(x, t) = fQ(x, tα),

which corresponds to the “stretched” diffusion:

D(t) = Q(tα), α > 0.

◦ The case α = β = 1 is trivial and corresponds merely to the Markovian case where the equation is:

u(x, t) = u0(x) +
∫ t

0
Pxu(x, s)ds

whose fundamental solution is the density function of D(t) = Q(t), namely the Markovian process.

In the following subsections we study the above equations under particular choices of the Fokker-
Planck operator Px. In all the cases considered, we also give the results involving the exponential decay
kernel.

9.6.1 Brownian motion with drift

Let µ ∈ R and σ2 > 0 be given. Consider a linear diffusion B(µ,σ) := B(µ) on R satisfying the stochastic
differential equation (eq. 4.60 with a=0):

dB(µ)(t) = µdt + σdB(t), t ≥ 0, (9.94)

where B(t), t ≥ 0, is a “standard” Brownian motion. Then, B(µ)(t), t ≥ 0, is a Brownian motion with
drift µ (eq. 4.63), namely

B(µ)(t) = µt + σB(t), t ≥ 0. (9.95)

The marginal density function of B(µ)(t), t ≥ 0, is:

fB(µ)(x, t) =
1

|σ|
√

4πt
exp

(
− (x− µt)2

σ24t

)
, t ≥ 0, x ∈ R, (9.96)

which is the fundamental solution of the Fokker-Planck equation (eq. 4.61), with a=0 and with a “stan-
dard” Wiener process Bt, namely:

∂tu(x, t) = −µ∂xu(x, t) + σ2∂xxu(x, t), t ≥ 0. (9.97)
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9.6.1.1 The β-power kernel.

We consider the “fractional” Fokker-Planck equation (see eq. 9.90):

u(x, t) = u0(x) +
1

Γ(β)

∫ t

0
(t− s)β−1 (−µ∂xu(x, s) + σ2∂xxu(x, s))ds, 0 < β ≤ 1. (9.98)

Its fundamental solution can be regarded as the marginal density function of the process:

D(t) = B(µ)(lβ(t)), t ≥ 0, 0 < β ≤ 1, (9.99)

where the process lβ(t), t ≥ 0, is a self-similar random time process with parameter H = β/2, indepen-
dent of B(µ), such that its marginal distribution is given by (eq. 9.92).

Prop. 9.4. The fundamental solution of (eq. 9.98) is:

fD(x, t) =
∫ ∞

0
fB(µ)(x, τ) flβ

(τ, t)dτ, t ≥ 0, x ∈ R,

i.e.

fD(x, t) =
∫ ∞

0

1
|σ|
√

4πτ
exp

(
− (x− µτ)2

4σ2τ

)
Mβ(τ, t)dτ, t ≥ 0, x ∈ R, (9.100)

which is equal to:

fD(x, t) = eµx/2σ2 1
2|σ|

∞

∑
k=0

(−µ2tβ/4σ2)k

k!
t−β/2H2,0

2,2

(
|xσ−1|t−β/2

∣∣∣ (1/2, 1/2), (1− β/2 + βk, β/2)
(0, 1), (k + 1/2, 1/2)

)
,

(9.101)
where the Fox H-function is defined by (eq. 7.118).

Proof: In order to evaluate fD(x, t) we write:

fD(x, t) = |σ|−1eµx′/2σ
∫ ∞

0
e−µ2τ/4σ2

G(x′, τ)Mβ(τ, t)dτ,

where G(x, t) is the standard Gaussian density (eq. 9.9) and x′ = x/σ. Then, we have to evaluate an
integral of the form (see eq. 7.126):

Φ(x, t) =
1
2

∫ ∞

0
e−aτM1/2(|x|, τ)Mβ(τ, t)dτ, x ∈ R, t ≥ 0, a ≥ 0. (9.102)

One has:
Φ(x, t) =

1
2

∫ ∞

0
e−aττ−1/2M1/2(|x|τ−1/2)t−β Mβ(τt−β)dτ

=
1
2

∫ ∞

0

1
y

M1/2

(
|x|
y

)
2ye−ay2

t−β Mβ(y2t−β)dy.

after th the change of variables y =
√

τ. Because of the symmetry, it is enough to consider only the case
x ≥ 0. We get:

Φ(x, t) =
1
2
(M1/2 ? Yt)(x), x ≥ 0,

where

(ϕ ? φ)(x) =
∫ ∞

0

1
y

ϕ

(
x
y

)
φ(y)dy
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Figure 9.16: Plot of the fundamental solution f (x, t) (eq. 9.101) with β = 1/2, at time t = 1, for different
values of the parameters µ = [1, 1.5, 2] and σ = [1, 1.5, 2].

indicates the Mellin convolution and where:

Yt(x) = 2xe−ax2
t−β Mβ(x2t−β), x ≥ 0, t ≥ 0. (9.103)

Using the Mellin convolution theorem we get:

M{2Φ(x, t); x, u} = M{M1/2(x); x, u}M{Yt(x); x, u}. (9.104)

Because of M1/2(x) = H1,0
1,1

(
x
∣∣∣ (1, 1/2)

(1, 1)

)
(see eq. 7.121), and by using (eq. 7.118), this can be written

as:

M{2Φ(x, t); x, u} =
Γ(u)

Γ(1/2 + u/2)
M{Yt(x); x, u}. (9.105)

We now evaluate:
M{Yt(x); x, u} =

∫ ∞

0
e−ax2

2xt−β Mβ(x2t−β)xu−1dx.

After the change of variables x2t−β = z, we get

M{Yt(x); x, u} =
∫ ∞

0
(ztβ)

1
2 (u−1)e−aztβ

Mβ(z)dz

= t
β
2 (u−1)

∞

∑
k=0

(−atβ)k

k!

∫ ∞

0
zk− 1

2 + u
2 Mβ(z)dz
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Figure 9.17: Plot of the fundamental solution f (x, t) (eq. 9.101) with β = 1/2, µ = 1, σ = 1, at times
t = [0.1, 1, 2].

= t
β
2 (u−1)

∞

∑
k=0

(−atβ)k

k!
M{Mβ(x); x, k + 1/2 + u/2}

= t
β
2 (u−1)

∞

∑
k=0

(−atβ)k

k!
Γ(1/2 + k + u/2)

Γ(1 + βk− β/2 + βu/2)
,

where we have used again (eq. 7.121) and (eq. 7.118). Thus:

M{2Φ(x, t); x, u} =
∞

∑
k=0

(−atβ)k

k!
t

β
2 (u−1) Γ(u)Γ(1/2 + k + u/2)

Γ(1/2 + u/2)Γ(1 + βk− β/2 + βu/2)
.

Inverting the Mellin transform, (eq. 7.118) gives:

Φ(x, t) =
1
2

∞

∑
k=0

(−atβ)k

k!
t−β/2H2,0

2,2

(
|x|t−β/2

∣∣∣ (1/2, 1/2), (1− β/2 + βk, β/2)
(0, 1), (k + 1/2, 1/2)

)
, (9.106)

with x ∈ R and t ≥ 0. Therefore, the fundamental solution of (eq. 9.90) can be expressed as:

fD(x, t) = eµx/2σ2 1
2|σ|

∞

∑
k=0

(−µ2tβ/4σ2)k

k!
t−β/2H2,0

2,2

(
|xσ−1|t−β/2

∣∣∣ (1/2, 1/2), (1− β/2 + βk, β/2)
(0, 1), (k + 1/2, 1/2)

)
,

that is (eq. 9.101). �
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Figure 9.18: Trajectory of the process D(t) = B(µ)(l1/2(t)) defined in (eq. 9.99) with β = 1/2 (top panel).
The random time process is l1/2(t) = |b(t)|, where b(t) is a “standard” Brownian motion
(middle panel). The variance and the mean are evaluated over a sample of size N = 5 · 104

and fit the theoretical values (bottom panel).

When µ = 0 and σ = 1, (eq. 9.101) reduces to:

fD(x, t) =
1
2

t−β/2H2,0
2,2

(
|x|t−β/2

∣∣∣ (1/2, 1/2), (1− β/2, β/2)
(0, 1), (1/2, 1/2)

)
,

that is, using the reduction formula for the Fox H-function [18],

fD(x, t) =
1
2

t−β/2H1,0
1,1

(
|x|t−β/2

∣∣∣ (1− β/2, β/2)
(0, 1)

)
=

1
2
Mβ/2(|x|, t).

As expected, we recover in this case the fundamental solution of the time fractional diffusion equation
(eq. 9.59).

Moreover, if we set β = 1 in (eq. 9.101) we have:

fD(x, t) = eµx/2σ2 1
2|σ|

∞

∑
k=0

(−µ2t/4σ2)k

k!
t−1/2H2,0

2,2

(
|xσ−1|t−1/2

∣∣∣ (1/2, 1/2), (1/2 + k, 1/2)
(0, 1), (1/2 + k, 1/2)

)
,

= eµx/2σ2
∞

∑
k=0

(−µ2t/4σ2)k

k!
1

2|σ| t
−1/2H1,0

1,1

(
|xσ−1|t−1/2

∣∣∣ (1/2, 1/2)
(0, 1)

)
=

1
|σ|
√

4πt
exp

(
− (x− µt)2

4σ2t

)
,
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Figure 9.19: Marginal density function f (x, t) of the process B(µ)(l1/2(t)) at time t = 1 (eq. 9.101). The
histogram is evaluated over N = 105 simulated trajectories (see Figure 9.18).

and we recover fB(µ)(x, t).

In Figure 9.16 and Figure 9.17 we have used (eq. 9.100) to plot the fundamental solution (eq. 9.101)
with β = 1/2 for different values of the parameters µ and σ at fixed time and, for fixed parameters, at
different times t. As expected, the fundamental solution is not symmetric in space with a time-growing
skewness. Moreover, due to the presence of the positive taken drift term (µ = 1), the probability to find
the particle in the positive semi-axis increases with time (fig. 9.17).

In Figure 9.18 is presented a trajectory of the process D(t) = B(µ)(lβ(t)) with β = 1/2. Using (eq. 9.60)
it is easy to write all the moments of the process:

E(D(t)m) =
[m/2]

∑
k=0

(
m
2k

)
2k!(m− k)!

k!
σ2kµm−2k tβ(m−k)

Γ(β(m− k) + 1)
, 0 < β ≤ 1, (9.107)

where m is an integer greater than zero and [a] indicates the integer part of a. Therefore, we have:

m(t) = E(D(t)) = µ
tβ

Γ(β + 1)
, (9.108)

and

σ2(t) = E(D(t)2)−m(t)2 = 2µ2 t2β

Γ(2β + 1)
− µ2 t2β

Γ(β + 1)2 + 2σ2 tβ

Γ(β + 1)
. (9.109)

In the bottom panel of Figure 9.18 the mean and the variance have been estimated from a sample of
trajectories of the process B(µ)(l1/2)(t). Then, they have been compared with the theoretical values
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given above. In Figure 9.19 we compare the theoretical density function f (x, t) given by (eq. 9.101) at
time t = 1 with an histogram evaluated over a sample of N = 105 trajectories.

9.6.1.2 Exponential-decay kernel

The exponential decay kernel case is straightforward. The non-Markovian Fokker-Planck equation is:

u(x, t) = u0(x) +
∫ t

0
e−a(t−s)(−µ∂xu(x, s) + σ2∂xxu(x, s))ds, a ≥ 0. (9.110)

If we indicate by G(x, t) the fundamental solution of the Markovian equation; i.e. (eq. 9.96)

G(x, t) =
1

|σ|
√

4πt
exp

(
− (x− µt)2

4σ2t

)
, t ≥ 0, x ∈ R, (9.111)

then, using (eq. 9.69), the fundamental solution of (eq. 9.110) is:

f (x, t) = e−atG(x, t) + (1− e−at)Φ(x, t), (9.112)

where:

Φ(x, t) =
a

1− e−at eµx/2σ2
∫ t

0

e−x2/4σ2τe−(a+µ2/4σ2)τ

|σ|
√

4πτ
dτ.

Using (eq. 9.78) and (eq. 9.80) we have:

Prop. 9.5. The fundamental solution of (eq. 9.110) is:

f (x, t) = e−atG(x, t)− ae
µ

2σ2 x

2|σ|
√

a + µ2

4σ2

sinh

(
|xσ−1|

√
a +

µ2

4σ2

)
+

+
ae

µ

2σ2 x

4|σ|
√

a + µ2

4σ2

{
exp

(
x
|σ|

√
a +

µ2

4σ2

)
Erf

(
x

2|σ|
√

t
+

√(
a +

µ2

4σ2

)
t

)

−exp

(
− x
|σ|

√
a +

µ2

4σ2

)
Erf

(
x

2|σ|
√

t
−
√(

a +
µ2

4σ2

)
t

)}
. (9.113)

When t → ∞ we obtain the stationary distribution:

φ(x) =
ae

µ

2σ2 x

2|σ|
√

a + µ2

4σ2

(
cosh

(
x|σ−1|

√
a +

µ2

4σ2

)
− sinh

(
|xσ−1|

√
a +

µ2

4σ2

))

that is:

φ(x) =
a

2|σ|
√

a + µ2

4σ2

exp

(
µx/2σ2 − |xσ−1|

√
a +

µ2

4σ2

)
. (9.114)
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9.6.2 Geometric Brownian motion

Let µ ∈ R and σ2 > 0 be given. Consider a linear diffusion S on R defined by the stochastic differential
equation (eq. 4.65):

dS(t) = µS(t)dt + σS(t)dB(t), t ≥ 0, (9.115)

where B(t), t ≥ 0, is a “standard” Brownian motion. The process S(t), t ≥ 0, is a Geometric Brownian
motion. If S starts in x0 at time t = 0 (i.e. P(S(0) = x0) = 1), then a solution of (eq. 9.115) is (eq. 4.66),
namely

S(t) = x0exp
[
(µ− σ2/2)t + σB(t)

]
, t ≥ 0, x0 > 0. (9.116)

The marginal density function of S(t) is the log-normal distribution:

fS(x, t) =
1

x|σ|
√

4πt
exp

−
(

log (x/x0)− (µ− σ2/2)t
)2

σ24t

 , t ≥ 0, x ≥ 0. (9.117)

The function fS(x, t) is a solution of the Fokker-Planck equation (eq. 4.67):

∂tu(x, t) =
[
(2σ2 − µ) + (4σ2 − µ)x∂x + σ2x2∂xx

]
u(x, t), x ≥ 0, (9.118)

with deterministic initial condition

u0(x) = δ(x− x0), x ≥ 0, x0 > 0. (9.119)

9.6.2.1 β-power kernel

If we introduce the β-power kernel K(t) = Γ(β)−1tβ−1, 0 < β ≤ 1, in this setting we obtain the following
“fractional” Fokker-Planck equation:

u(x, t) = u0(x) +
1

Γ(β)

∫ t

0
(t− s)β−1

[
(2σ2 − µ) + (4σ2 − µ)x∂x + σ2x2∂xx

]
u(x, s)ds, x ≥ 0. (9.120)

A solution of the above equation with initial condition given by (eq. 9.119) is given by (see Corollary
9.2):

fD(x, t) =
∫ ∞

0
fS(x, τ)Mβ(τ, t)dτ (9.121)

which is the marginal distribution of the process

D(t) = S(lβ(t)), t ≥ 0, 0 < β ≤ 1, (9.122)

starting almost surely in x0 > 0, where lβ(t), t ≥ 0, is a self-similar random time process with H =
β/2, independent of the geometric Brownian motion S(t) and with marginal density function given by
(eq. 9.92). It is easy to see that:

fD(x, t) =
1

x|σ|exp
(

log (x/x0)(µ− σ2/2)
4σ2

)
1
2

∫ ∞

0
e−aτM1/2(|x′|, τ)Mβ(τ, t)dτ,

where:
a = (µ− σ2/2)2/4σ2, x′ = log (x/x0)/σ.

We have the same integral as in (eq. 9.102). Therefore:



270 9 Non-Markovian diffusion equations and processes

Figure 9.20: Plot of the fundamental solution f (x, t) (eq. 9.123) at time t = 1, when µ = σ2/2 = 1
(eq. 9.124), x0 = 1, for different values of the parameter β = [1/4, 1/2, 3/4, 1]. For β = 1
f (x, t) reduces to the log-normal density (eq. 9.117). The angular point corresponds to the
initial value x0 = 1 and is due to the presence of |log (x/x0)| in the solution.

Prop. 9.6. for each t ≥ 0:

fD(x, t) =
1

x|σ|exp
(

log (x/x0)(µ− σ2/2)
4σ2

)
×

×
∞

∑
k=0

1
k!

(
− (µ− σ2/2)2tβ

4σ2

)k

t−
β
2 H2,0

2,2

(
|x′|t−

β
2

∣∣∣ (1/2, 1/2), (1− β/2 + βk, β/2)
(0, 1), (k + 1/2, 1/2)

)
. (9.123)

This result can be obtained directly from (eq. 9.101) because:

D(t) = x0exp(B(µ′)(lβ(t))),

where B(µ′) is a Brownian motion with drift µ′ = (µ − σ2/2). When β = 1 we recover (eq. 9.117).
Moreover, if µ = σ2/2 (i.e. µ′ = 0) we have (see Figure 9.20):

fD(x, t) =
1

x|σ| t
−β/2Mβ/2

(∣∣∣∣ log (x/x0)
σ

∣∣∣∣t−β/2
)

, x ≥ 0, t ≥ 0, (9.124)

which is the marginal probability density of:

D(t) = x0eσB(lβ(t)), t ≥ 0.
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Figure 9.21: Plot of the fundamental solution f (x, t) (eq. 9.123) with β = 1/2, σ = 1, x0 = 1, at time t = 1,
for different values of the parameter µ = [0.1, 1/2, 1, 2]. For µ = 1/2 we have (eq. 9.124),
see also Figure 9.20.

◦ In Figure 9.20 we show the plot of the fundamental solution f (x, t) in the particular case given by
(eq. 9.124). Here we can see the behavior of the solution varying the parameter β. For β = 1 we
recover the log-normal density (eq. 9.117) with µ = σ2/2.

◦ The behavior of the solution varying the drift parameter µ for fixed β = 1/2, t = 1, σ = 1 and
x0 = 1 is shown in Figure 9.21.

◦ In Figure 9.22 can be observed the time evolution of the fundamental solution for fixed parameters
β = 1/2 and β = 1/4.

◦ Finally, in Figure 9.23 we can see a trajectory of the process D(t) = S(lβ(t)) with β = 1/2 (see
eq. 9.122).

We shall now compute the mean and the variance of the process D(t). We have that:

E(S(t)) = E
(

x0exp
[
(µ− σ2/2)t + σB(t))

])
= x0exp

[
(µ− σ2/2)t

]
E
(

eσB(t)
)

.

Therefore, because:

E(eσB(t)) =
∫

R
eσxG(x, t)dx = eσ2t 1√

4πt

∫
R

e−
(x−2σt)2

4t dx,

we have:
E(S(t)) = x0exp

[
(µ + σ2/2)t

]
. (9.125)
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Figure 9.22: Plot of the fundamental solution f (x, t) (eq. 9.123) with β = 1/4 (left panel) and β = 1/2
(right panel), at different times t = [0.5, 1, 2, 10].

In the same way one has:
E(S(t)2) = x2

0exp
[
(2µ + 3σ2)t

]
. (9.126)

Using the above equations we have:

E(S(lβ(t))) = x0E
(

exp
[
(µ + σ2/2)lβ(t)

])
= x0

∞

∑
k=0

(µ + σ2/2)k

k!
E(lβ(t)k),

which, using (eq. 9.60), becomes:

E(S(lβ(t))) = x0

∞

∑
k=0

(
(µ + σ2/2)tβ

)k

Γ(βk + 1)
= x0Eβ((µ + σ2/2)tβ),

where Eβ(z) =
∞

∑
k=0

zk/Γ(βk + 1) is the Mittag-Leffler function of order β (see Section 7.2.2). Similarly:

E(S(lβ(t))2) = x2
0E
(

exp
[
(2µ + 3σ2)lβ(t)

])
= x2

0Eβ((2µ + 3σ2)tβ).

Finally one has:
m(t) = E(D(t)) = x0Eβ((µ + σ2/2)tβ)

σ2(t) = E(D(t)2)−m(t)2 = x2
0
[
Eβ((2µ + 3σ2)tβ)− Eβ((µ + σ2/2)tβ)2] .

(9.127)
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Figure 9.23: Trajectory of the process D(t) = S(l1/2(t)) defined in (eq. 9.122) with β = 1/2 (top panel).
The random time process is l1/2(t) = |b(t)| (middle panel). The variance and the mean are
evaluated over a sample of size N = 5 · 104 and are presented together with the theoretical
functions (eq. 9.127) in the bottom panels.

9.6.2.2 Exponential-decay kernel

We now consider the exponential decay kernel K(t) = e−at, a ≥ 0. The non-Markovian Fokker-Planck
equation is:

u(x, t) = u0(x) +
∫ t

0
e−a(t−s)

[
(2σ2 − µ) + (4σ2 − µ)x∂x + σ2x2∂xx

]
u(x, s)ds, a ≥ 0. (9.128)

We denote by G(x, t) the fundamental solution of the Markovian equation; namely (eq. 9.117)

G(x, t) =
1

x|σ|
√

4πt
exp

−
(

log (x/x0)− (µ− σ2/2)t
)2

σ24t

 , x, t ≥ 0. (9.129)

Then, using (eq. 9.69), the fundamental solution of (eq. 9.110) is:

f (x, t) = e−atG(x, t) + (1− e−at)Φ(x, t), (9.130)

where:

Φ(x, t) =
1

1− e−at

[
a
|σ|x elog ( x

x0
)( 2µ−σ2

4σ2 )
∫ t

0
G(x′, τ)e−a′τdτ

]
, x ≥ 0
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and:  a′ = (µ−σ2/2)2

4σ2 + 4a, a, µ ≥ 0, σ > 0,

x′ = log (x/x0)/σ, x ≥ 0.
(9.131)

Thus, as in (eq. 9.81), we have:

Prop. 9.7.
f (x, t) = e−atG(x, t)

+
a
|σ|x elog ( x

x0
)( 2µ−σ2

4σ2 )
{

1

4
√

a′
exp(x′

√
a′)Erf

(
x′

2
√

t
+
√

a′t
)
− exp(−x′

√
a′)Erf

(
x′

2
√

t
−
√

a′t
)}

− a
4|σ|x

√
a′

elog ( x
x0

)( 2µ−σ2

4σ2 ) sinh(|x′|
√

a′). (9.132)

The stationary distribution, obtained as t → ∞, is:

Φ(x) =
a

4|σ|x
√

a′
exp

(
log
( x

x0

)(2µ− σ2

4σ2

))
(cosh(x′

√
a′)− sinh(|x′|

√
a′). (9.133)



Bibliography 275

Bibliography

[1] E. Barkai, CTRW pathways to the fractional diffusion equation, Chem. Phys. 284 (2002) 13–27.

[2] E. Barkai, R. Metzler and J. Klafter, From continuous time random walk to fractional Fokker-
Planck equation, Phys. Rev. E 61 (2000) 132-138.

[3] L. Beghin and E. Orsingher, The distribution of the local time for “pseudoprocesses” and its con-
nection with fractional diffusion equations, Stochastic Process. Appl. 115 (2005) 1017–1040.

[4] S. Bochner, Harmonic Analysis and the Theory of Probability, University of California Press, Berkeley,
1955.

[5] S. Bochner, Subordination of non-Gaussian stochastic processes, Proc. Nat. Acad. Sciences, USA 48
(1962) 19–22.

[6] M. Dentz et al. Time behavior of solute transport in heterogeneous media: transition from anoma-
lous to normal transport, Adv. Water Resources 27 (2004), 155–173.

[7] C. Donati-Martin, B. Roynette, P. Vallois and M. Yor, On constants related to the choice of
the local time at 0, and the corresponding Itô measure for Bessel processes with dimension
d = 2(1− α); 0 < α < 1, Studia Scientiarum Mathematicarum Hungarica, to appear (2007). [E-print
http://hal.archives-ouvertes.fr/hal-00141513/en/]

[8] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3-rd edn., Wiley, New
York, 1968. [1-st edn. 1957]

[9] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, 2-nd edn., Wiley, New
York, 1971. [1-st edn. 1966]

[10] R. Gorenflo, Yu. Luchko and F. Mainardi, Analytical properties and applications of
the Wright function, Fractional Calculus and Applied Analysis 2 (1999) 383-414. [E-print
http://arxiv.org/abs/math-ph/0701069]

[11] R. Gorenflo and F. Mainardi, Fractional diffusion processes: Probability distributions and con-
tinuous time random walk, in: G. Rangarajan and M. Ding (Editors), Processes with Long Range
Correlations, Springer Verlag, Berlin, 2003, pp. 148-161. [Lecture Notes in Physics, No 621]

[12] P. Grigolini, A. Rocco and B.J. West, Fractional calculus as a macroscopic manifestation of ran-
domness, Phys. Rev. E 59 (1999) 2603-2613.

[13] R. Hilfer and L. Anton, Fractional master equations and fractal time random walks. Phys. Rev. E
51 (1995) R848–R851.

[14] V. M. Kenkre, R. S. Knox, Generalized-master-equation theory of excitation transfer, Physical Re-
view B 9 (1974) 5279-5290.

[15] T. Kolsrud, On a class of probabilistic integrodifferential equations, in: S. Albeverio, J.E. Fenstad,
H. Holden, T. Lindstrøm (Editors), Ideas and Methods in Mathematical Analysis, Stochastics and Ap-
plications, Vol I, Cambridge University Press, Cambridge, 1990, pp. 168-172.



276 Bibliography

[16] M.L. T. Lee; G. A. Whitmore, Stochastic Processes Directed by Randomized Time, Journal of Applied
Probability 30 (1993) 302-314

[17] F. Mainardi, Yu. Luchko and G. Pagnini, The fundamental solution of the space - time frac-
tional diffusion equation, Fractional Calculus and Applied Analysis 4 (2001) 153-192. [E-print
http://arxiv.org/abs/cond-mat/0702419]

[18] F. Mainardi, G. Pagnini and R. K. Saxena, Fox H functions in fractional diffusion, J. Comput. Appl.
Math.178 (2005) 321-331.

[19] A.M. Mathai and R.K. Saxena, The H-function with Applications in Statistics and Other Disciplines,
Wiley Eastern Ltd, New Delhi, 1978.

[20] M. Meerschaert, D. Benson, H. Scheffler, B. Baeumer, Stochastic solution of space-time fractional
diffusion equations, Physical Review E 65 (2002) 041103/1-4.

[21] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics
approach, Phys. Reports 339 (2000) 1-77.

[22] R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in
the description of anomalous transport by fractional dynamics, J. Phys. A. Math. Gen. 37 (2004)
R161-R208.

[23] S.A. Molchanov and E. Ostrovskii, Symmetric stable processes as traces of degenerate diffusion
processes, Theory of Probability and its Applications 14 (1969) 128-131.

[24] A. Mura, M.S. Taqqu and F. Mainardi, Non-Markovian diffusion equations and processes: analysis
and simulations. submitted: in revision. [E-print http://arxiv.org/abs/0712.0240]

[25] A. Mura and F. Mainardi, A class of self-similar stochastic processes with sta-
tionary increments to model anomalous diffusion in physics, submitted. [E-print
http://arxiv.org/abs/0711.0665]

[26] A. Mura and G. Pagnini, Characterization and simulation of a class of stochastic processes related
to anomalous diffusion, [E-print http://arxiv.org/abs/0801.4879].

[27] A. Piryatinska, A.I. Saichev and W.A. Woyczynski, Models of anomalous diffusion: the subdiffu-
sive case, Physica A 349 (2005) 375-420.

[28] W.R. Schneider, Grey noise, in: S. Albeverio, J.E. Fenstad, H. Holden, T. Lindstrøm (Editors), Ideas
and Methods in Mathematical Analysis, Stochastics and Applications, Vol 1, Cambridge Univ. Press,
Cambridge (1990), pp. 261-282.

[29] W.R. Schneider, Fractional diffusion, in: R. Lima, L. Streit and D. Vilela Mendes (Editors), Dynam-
ics and Stochastic Processes, Theory and Applications, Springer Verlag, Heidelberg, 1990, pp. 276-286.
[Lecture Notes in Physics No 355]

[30] I.M. Sokolov, Solutions of a class of non-Markovian Fokker-Planck equations, Phys. Rev. E 66 (2002)
041101/1-5.

[31] H.M. Srivastava, K.C. Gupta and S.P. Goyal, The H-Functions of One and Two Variables with Applica-
tions, South Asian Publishers, New Delhi, 1982.

[32] T. Srokowski, Non-Markovian Lévy diffusion in non homogeneous media, Physical Review E 75
(2007) 051105/1-8. [E-print http://arxiv.org/abs/cond-mat/0611056]



Bibliography 277

[33] A. A. Stanislavsky, Subordinated Brownian Motion and its Fractional Fokker-Planck Equation,
Physica Scripta 67 (2003) 265-268.

[34] M.S. Taqqu, Fractional Brownian motion and long-range dependence, in: P. Doukhan, G. Oppen-
heim and M.S. Taqqu (Editors), Theory and Applications of Long-range Dependence, Birkäuser, Boston
- Basel - Berlin, 2003, pp. 5-38.

[35] G.H. Weiss, Aspects and Applications of Random Walks, North-Holland, Amsterdam, 1994.

[36] M.M. Wyss and W. Wyss, Evolution, its fractional extension and generalization, Fractional Calculus
and Applied Analysis 4 (2001) 273-284.

[37] G.M. Zaslavsky, Chaos, fractional kinetics and anomalous transport, Phys. Reports 371 (2002) 461-
580.

[38] R. Zwanzig, Memory effects in irreversible thermodynamics, Physical Review 124 (1961) 983-992.



278 Bibliography



279

10 Concluding remarks

From Chapter 2 to Chapter 4, we brought the reader through the fundamental notions of probability and
stochastic processes, stochastic integration and stochastic differential equations as well.

In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm)
and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of
non-Markovian Gaussian processes.

Fractional Gaussian noise, together with stationary FARIMA processes, is widely used in the model-
ing and estimation of long-range dependence (LRD). In fact, long-range dependence is, roughly speak-
ing, characterized by the asymptotic power-like behavior of the autocovariance function. However,
typically, stationary Markovian processes have autocovariance function which decreases exponentially
to zero as the time lag becomes infinity, for instance AR(1) processes or Ornstein-Ulhenbeck processes.
In contrast, many non-Markovian processes, just like fractional Gaussian noise and FARIMA processes,
show an asymptotic power-like behavior of their autocovariance function.

Time series manifesting long-range dependence are often observed in nature especially in physics,
meteorology, climatology, but also in hydrology, geophysics, economy and many others. Then, after
having used in Chapter 5 the theory of stochastic integration to provide integral representations useful
to obtain many fundamental results about fGn and FARIMA (such as the autocorrelation and spectral
density functions structure), in Chapter 6 we went into more depth to the study of LRD, giving many
real data examples, providing statistical analysis and introducing parametric methods of estimation.
We have tried to give, even if briefly, the more exhaustive as possible treatment of this very interesting
and fascinating topic, which has become fundamental within non-Markovian time series analysis.

In Chapter 7, we introduced the theory of fractional integrals and derivatives, which turns out to be
very appropriate for studying and modeling systems which exhibit long-memory properties. In fact, for
instance, FARIMA models can be seen as a discrete fractional integral of a white noise and, in the same
way, fractional Brownian motion can be represented as a fractional integral of a Gaussian white noise.

After we introduced the basics concepts, we provided many examples and applications. For instance,
in Section 7.2.1 and Section 7.2.3, we have investigated the relaxation equation with distributed order
time-fractional derivatives, both in the Riemann-Liouville and in the Caputo-Dzherbashyan sense. Such
equations can be seen as simple models of a more general distributed order fractional evolution in Ba-
nach spaces, where the relaxation parameter λ is replaced by an operator A. Models described by such
equations are characterized by a strong memory component and can be used to describe relaxation in
complex systems, which deviates from the classical exponential Debye pattern.

Our interest has been focused on structural properties of the solutions, in particular on the asymptotic
behavior at small and large times.

The two approaches give, in a certain sense, opposite behavior. For instance, we considered the case
of double-order fractional relaxation. In the RL case, we found that the smallest order of occurring
fractional differentiation determines the behavior near infinity, whereas the largest order governs the
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behavior near zero. In the CD case, we found just the opposite behavior.

The topic deserves further studies in several directions in terms of integral transforms and special
functions like those of Mittag-Leffler type.

From Section 7.2.4 to Section 7.2.6 we focused in the study of generalizations of the standard dif-
fusion equation, by passing through the preliminary study of the fractional forward drift equation.
Such generalizations have been obtained by using fractional integrals and derivatives of distributed
orders. Therefore, after having outlined the basic theory of the Cauchy problem for the spatially one-
dimensional and symmetric time-fractional diffusion equation (with its main equivalent formulations),
we gave special attention on integral transform methods, which have been used in order to find the fun-
damental solutions. We have stressed the importance of Fourier, Laplace and Mellin transformations, of
Mittag-Leffler and Wright type functions and of Fox-H functions as well.

Indeed, a natural first step in the construction of the fundamental solution has consisted in applying,
in some order, the Fourier transform in space and the Laplace transform in time to the corresponding
equation. This has yielded to the explicit form of the solution in the Fourier-Laplace domain. Then, we
have had to invert the two transforms in sequence, in order to obtain the solution. In this way, we have
led to a power series representation in the spatial variable with time-dependent coefficients. Finally,
we have worked out to express the fundamental solution in terms of Laplace integrals, which are more
suitable for numerical evaluations.

We have studied and illustrated in details the time-fractional diffusion of single order (where self-
similarity holds true) and moreover we carried out the study of two simple but noteworthy cases of
distributed order. Namely, the case of a superposition of two different orders β1 and β2 and the case of
uniform order distribution.

In the first case, one of the orders dominates the time-asymptotics near zero, the other near infinity,
but β1 and β2 change their roles when switching from the RL to the CD formulation. The case of uni-
form distributed order was remarkably different. The extreme orders now being (roughly speaking)
0 and 1. We met super-slow and super-fast variance time behaviors near zero and near infinity, again
interchanging the behaviors between the RL and CD models. Clearly, one could actually observe these
properties in all the figures we provided. For instance, one can easily notice the extremely slow growth
of the variance, as t → ∞, in the CD case.

In order to find a connection between the anomalous diffusion described by fractional type equa-
tions and the long-range dependence related fo self-similar stationary increments stochastic processes,
in Chapter 7 we introduced and studied the generalized grey Brownian motion Bα,β(t) (ggBm). We
showed that the parametric class {Bα,β(t), 0 < α < 2, 0 < β ≤ 1} indeed provides stochastic models
for the anomalous diffusions described by the following stretched time-fractional diffusion equation

u(x, t) = u0(x) +
1

Γ(β)

∫ t

0

α

β
sα/β−1

(
t

α
β − s

α
β

)β−1 ∂2

∂x2 u(x, s)ds, t ≥ 0, (10.1)

which for α = β actually reduces to the usual time-factional diffusion equation of order β. We have
shown that:

When 0 < α < 1, the diffusion is slow. The increments of the process Bα,β(t) turn out to be negatively
correlated and this implies that the trajectories are very “zigzaging” (antipersistent). The increments
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form a stationary process which does not exhibit long-range dependence.

When α = 1, the diffusion is normal. The increments of the process are uncorrelated, but not indepen-
dent unless β = 1.

When 1 < α < 2, the diffusion is fast. The increments of the process Bα,β(t) are positively correlated,
so that the trajectories are more regular (persistent). In this case the increments exhibits long-range
dependence.

The ggBm is of course Non-Markovian. We have observed that non-Markovian equations like
(eq. 10.1) are usually associated to subordinated stochastic processes D(t) = B(lβ(t)), where the parent
Markov process B(t) is a standard Brownian motion and the random time process lβ(t) is a self-similar
of order H = β non-negative non-decreasing non-Markovian process. For example, the random time
lβ(t) can be taken to be related to the local time of a d = 2(1− β)-dimesional fractional Bessel process.
Or alternatively, it can be the inverse of the totally skewed strictly β-stable process. However, we have
seen that {Bα,β(t), t ≥ 0} cannot be a subordinated process, in fact, for example, if β = 1 it reduces to a
fractional Brownian motion. Therefore, we actually provided an example of a class of stochastic models
associated to time-fractional diffusion equations, which are not subordinated processes.

We have remarked many times that, starting from a master equation which describes the dynamic
evolution of a probability density function f (x, t), it is always possible to define an equivalence class
of stochastic processes with the same marginal density function f (x, t). All these processes provide
suitable stochastic models for the starting equation. Here, we focused on a subclass {Bα,β(t), t ≥ 0}
associated to the non-Markovian equation (eq. 10.1). This subclass is made up of processes with sta-
tionary increments. In this case, the memory effects are enclosed in the typical dependence structure of a
H-sssi process (eq. 8.79), while, for instance in the case of a subordinated process, these are due to the
non-Markovian property of the random time process.

The ggBm has been defined canonically in the so called grey noise space (S ′(R),B, µα,β), where the
grey noise measure satisfies (eq. 8.61). However, the ggBm is an H-sssi process of order H = α/2 and
we have been able to provide a characterization of Bα,β(t) notwithstanding the underline probability
space.

We also pointed out that that the generalized grey Brownian motion is a direct generalization of a
Gaussian process. Indeed, it is Gaussian when β = 1 (indeed a fractional Brownian motion of order
α/2) and, fixed β, it is defined only by its covariance structure, which is a property of Gaussian pro-
cesses. Inspired by this consideration, we have obtained an enlighten representation of ggBm. In fact,
we found that it turns out to be merely a fractional Brownian motion with stochastic variance, that is
Bα,β(t) = ΛβXα(t), t ≥ 0, where Λβ is a suitable random variable independent of the fractional Brow-

nian motion Xα = Bα/2(t) (see eq. 8.87). For instance, one could take Λβ =
√

lβ(1), where lβ(t) is the
random time process associated to a suitable subordinated model. This representation has been useful
when we focused on path simulations.

Clearly, in order to simulate ggBm trajectories, we have needed of method to generate the random
variable Lβ. For this purposes, in order to build a suitable random walk scheme, we have made use of
finite difference approximation of non-local partial integro differential equation of fractional type. The
construction has followed two steps: using the Grünwald-Letnikov discretization of Caputo-Dzherbashyan
derivative, and then interpreting the corresponding finite difference scheme as a random walk scheme.
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Following this idea, we have been able to simulate generalized grey Brownian motion trajectories both
in the short and long-range dependence domain.

Moreover, we have observed that the process ΛβXα(t), is not ergodic1, as, heuristically, follows by the
multiplication with the random variable Λβ. This was evident also looking at the simulated trajectories.
Indeed, it is impossible with a single realization of the system Bα,β(t, ω), ω ∈ Ω, to distinguish a ggBm
from a fBm with variance 2Λ2

β(ω)tα, where Λβ(ω) indicates a single realization of the random variable
Λβ.

In Chapter 9 we studied a certain type of Volterra equations, which actually represent a further
generalization of fractional type equations. We found that the fundamental solution f (x, t) of a non-
Markovian diffusion equation of the form (eq. 9.43)

u(x, t) = u0(t) +
∫ t

0
g′(s)K (g(t)− g(s))Pxu(x, s)ds, x ∈ R, t ≥ 0, (10.2)

is
f (x, t) =

∫ ∞

0
G(x, τ)h(τ, g(t))dτ, (10.3)

where G(x, t) is the fundamental solution of the Markovian equation (eq. 9.41) and h(τ, t) is the funda-
mental solution of the non-Markovian forward drift equation

u(τ, t) = u0(τ)−
∫ t

0
K(t− s)∂τu(τ, s)ds, τ, t ≥ 0. (10.4)

If the memory kernel K(t) were chosen in a suitable way (see Section 9.2), the solution f (·, t) would
preserve non-negativity and normalization for all t ≥ 0. Thus, it could be interpreted as the marginal
density function of a non-Markovian stochastic process. In view of (eq. 10.3), this stochastic process has
been naturally interpreted as a subordinated process (eq. 9.55).

We focused on two kind of memory kernels: the power kernel K(t) = tβ−1/Γ(β), 0 < β ≤ 1, and the
exponential decay kernel K(t) = e−at, a ≥ 0.

The first provides what we called time-fractional Fokker-Planck equations (eq. 9.88). Such equation
directly generalizes the fractional diffusion equation, which in fact arises by setting Px = ∂xx, and actu-
ally corresponds to the choice of a standard Brownian motion as the parent Markov model.

We have also considered more complicated cases, namely Brownian motion with drift µ (see Section
9.6.1) and Geometric Brownian motion (see Section 9.6.2). In these cases, the fundamental solutions can
be written in terms of a superposition of Fox H-functions (eq. 9.101 and eq. 9.123).

The exponential-decay kernel corresponds heuristically to a system in which the non-local memory
effects are negligible for small times. In fact, the fundamental solution can always be written in the form
of (eq. 9.75),

f (x, t) = e−atG(x, t) + (1− e−at)φ(x, t), t ≥ 0,

where G(x, t) is the fundamental solution of the Markovian equation, and where the function φ(x, t)
is a probability density which becomes stationary for large times. Therefore, it is always possible to

1) Here we mean that the increment process, which is indeed stationary, is not ergodic.
Namely, time averages do not necessary coincide with population averages.
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find stochastic models that become stationary for large times and whose marginal density is given by
(eq. 10.3).

However we pointed out again (see Subsection 9.3.1) that the stochastic representation cannot be
unique, as we have seen in the case where Px = ∂xx and g(t) = t. In this case, f (x, t) is the marginal
density of B(l(t)), t ≥ 0, where B(t) is a standard Brownian motion and where l(t) is a random time
process satisfying (eq. 10.4). If the random time l(t) is required to be self-similar of order β, then we
have shown (Theorem 9.1) that the memory kernel must be a power function K(t) = tβ−1/Γ(β) with
0 < β ≤ 1. We know that, in this case, the corresponding random time process l(t) = lβ(t), can be
the local time of a d = 2(1− β)-dimensional fractional Bessel process or, alternatively, the inverse of
the totally skewed strictly β-stable process. However, f (x, t) is also the marginal density of the grey

Brownian motion Bβ,β(t) =
√

lβ(1)Bβ/2(t), where Bβ/2 is a fractional Brownian motion independent of

the random time lβ(t).

The solution of the “non-Markovian” equation (eq. 10.2) has been stated explicitly in all the cases
considered. We computed it analytically and graphed it in particular cases. This solution is a marginal
(one-point) density function. We have then presented various random processes whose marginal den-
sity function coincides with that solution.

I do believe that my peace of work is indeed providing a forward step in the study and comprehen-
sion of the relationships between stochastic processes and a certain class of integral-partial differential
equation, which can be used in order to model anomalous diffusion and transport in statistical physics.
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AANNAALLYYSSIISS..  
 
This work provides a forward step in the study and comprehension of the relationships between 
stochastic processes and a certain class of integral-partial differential equation, which can be used in 
order to model anomalous diffusion and transport in statistical physics. In the first part, we brought 
the reader through the fundamental notions of probability and stochastic processes, stochastic 
integration and stochastic differential equations as well. In particular, within the study of H-sssi 
processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, 
the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes.  
The fGn, together with stationary FARIMA processes, is widely used in the modeling and 
estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range 
dependence, are often observed in nature especially in physics, meteorology, climatology, but also 
in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real 
data examples, providing statistical analysis and introducing parametric methods of estimation. 
Then, we introduced the theory of fractional integrals and derivatives,  which indeed turns out to be 
very appropriate for studying and modeling systems with long-memory properties. After having 
introduced the basics concepts, we provided many examples and applications. For instance, we 
investigated the relaxation equation with  distributed order time-fractional derivatives, which 
describes models characterized by a strong memory component and can be used to model relaxation 
in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused 
in the study of generalizations of the standard diffusion equation, by passing through the 
preliminary study of the fractional forward drift equation. Such generalizations have been obtained 
by using fractional integrals and derivatives of distributed orders. In order to find a connection 
between the anomalous diffusion described by these equations and the long-range dependence, we 
introduced and studied the generalized grey Brownian motion (ggBm), which is actually a 
parametric class of  H-sssi processes, which have indeed marginal probability density function 
evolving in time according to a partial integro-differential equation of fractional type. The  ggBm is 
of course Non-Markovian. All around the work, we have remarked many times that, starting from a 
master equation of a probability density function f(x,t), it is always possible to define an 
equivalence class of stochastic processes with the same marginal density function f(x,t). All these 
processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just 
focused on a subclass made up of processes with stationary increments.  The ggBm has been 
defined canonically in the so called grey noise space. However, we have been able to provide a 
characterization notwithstanding the underline probability space. We also pointed out that that the 
generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular 
it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and 
analyzed a more general class of diffusion type equations related to certain non-Markovian 
stochastic processes. We started from the forward drift equation, which have been made non-local 
in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian 
equation has been be interpreted in a natural way as the evolution equation of the marginal density 
function of a random time process l(t). We then consider the subordinated process  Y(t)=X(l(t)) 
where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density 
function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the 
memory kernel K(t).  We developed several applications and derived the exact solutions. Moreover, 
we considered different stochastic models for the given equations, providing path simulations. 
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