
Dottorato di Ricerca in Informatica
Università di Bologna, Padova

Secure Gossiping Techniques and
Components

Gian Paolo Jesi

March 2007

Coordinatore: Tutore:

Prof. Özalp Babaoğlu Prof. Özalp Babaoğlu





This thesis is dedicated to my beloved Mum





Abstract

Gossip protocols have proved to be a viable solution to set-up and manage large-

scale P2P services or applications in a fully decentralised scenario.

The gossip or epidemic communication scheme is heavily based on stochastic

behaviors and it is the fundamental idea behind many large-scale P2P protocols.

It provides many remarkable features, such as scalability, robustness to failures,

emergent load balancing capabilities, fast spreading, and redundancy of informa-

tion. In some sense, these services or protocols mimic natural system behaviors

in order to achieve their goals.

The key idea of this work is that the remarkable properties of gossip hold

when all the participants follow the rules dictated by the actual protocols. If one

or more malicious nodes join the network and start cheating according to some

strategy, the result can be catastrophic.

In order to study how serious the threat posed by malicious nodes can be

and what can be done to prevent attackers from cheating, we focused on a gen-

eral attack model aimed to defeat a key service in gossip overlay networks (the

Peer Sampling Service [JGKvS04]). We also focused on the problem of protecting

against forged information exchanged in gossip services.

We propose a solution technique for each problem; both techniques are gen-

eral enough to be applied to distinct service implementations. As gossip proto-

cols, our solutions are based on stochastic behavior and are fully decentralized.

v



In addition, each technique’s behaviour is abstracted by a general primitive func-

tion extending the basic gossip scheme; this approach allows the adoptions of our

solutions with minimal changes in different scenarios.

We provide an extensive experimental evaluation to support the effectiveness

of our techniques. Basically, these techniques aim to be building blocks or P2P

architecture guidelines in building more resilient and more secure P2P services.

vi



Acknowledgements

There are many people to thank for their support and throughout my Ph.D.

Firstly, I would like to thank my supervisor, Prof. Özalp Babaoğlu, who gave

me the chance to discover the world of research.

A special thanks to Alberto Montresor for his help and patience.

I owe a special debt of gratitude to Maarten van Steen (Vrije University of Am-

sterdam, The Netherlands) for his patience, encouragement, precious suggestions

and advices concerning my work. I also wish to thank all the nice people I met

during my internship at the Vrije and especially Daniela Gavidia and Chandana

Gamage.

Thanks also to David Hales for the fruitful discussions we had and to Lorenzo

Alvisi for his comments and suggestions.

Last, but by no means least, thanks to my Dad and my grandparents for their

constant presence and to my Ph.D colleagues with whom I have shared the dark

and unhealthy rooms of the underground lab!

vii



Contents

Abstract v

Acknowledgements vii

List of Figures xii

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Topology taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Basic requirements for topology management . . . . . . . . 6

1.3 Cheating and attack principles . . . . . . . . . . . . . . . . . . . . . 7

1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The Peer Sampling Service 12

2.1 Introduction to the PSS . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 PSS implementation: Newscast . . . . . . . . . . . . . . . . . 17

2.2.2 PSS implementation: basic-shuffling . . . . . . . . . . . . . . 18

viii



3 Attack model and analysis 20

3.1 Attack scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Attack model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Hub attack algorithm . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Attack evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Effects on protocols other than the PSS 33

4.1 Aggregation protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Aggregation under hub attack . . . . . . . . . . . . . . . . . 35

4.2 QuickPeer protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Latency-aware overlay topology management . . . . . . . . 39

4.2.2 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 QuickPeer discussion . . . . . . . . . . . . . . . . . . . . . . 48

4.2.4 QuickPeer under hub attack . . . . . . . . . . . . . . . . . . . 48

4.3 SuperPeer protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 The SG-2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.5 SG-2 discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.6 Superpeer topology under hub-attack . . . . . . . . . . . . . 65

5 Proposed approach: the Secure Peer Sampling Service 71

5.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 SPSS requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 SPSS approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 SPSS evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Decentralised SPSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.1 Multiple overlays . . . . . . . . . . . . . . . . . . . . . . . . . 81

ix



5.5.2 Quality rating . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.3 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5.4 Why it works . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.5 Evolutionary link . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Fully decentralised SPSS evaluation . . . . . . . . . . . . . . . . . . 87

5.6.1 Static environment . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6.2 Dynamic environment (churn) . . . . . . . . . . . . . . . . . 89

5.6.3 Message overhead . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6.4 Extreme conditions . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 PSS properties maintenance . . . . . . . . . . . . . . . . . . . . . . . 94

5.8 SPSS discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Securing higher-level services 97

6.1 The second problem introduction . . . . . . . . . . . . . . . . . . . . 97

6.1.1 The scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 The anti-forge technique . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Corruption attack model . . . . . . . . . . . . . . . . . . . . . 101

6.3 Anti-forge technique evaluation . . . . . . . . . . . . . . . . . . . . . 102

6.4 A case study: evaluating the SPSS and the anti-forge technique

together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Related work 111

7.1 Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1.1 Sybil attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1.2 Eclipse attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1.3 Poisoning attacks . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1.4 Other attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

x



8 Concluding remarks and future directions 117

8.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

References 120

xi



List of Figures

1.1 Overlay mesh status before and after a simple attack: the random

graph depicted in (a) becomes fully disconnected. The graph out-

degree (constant) is set to 20, but only 3 links per node are printed.

Less than 20 gossiping cycles are required to disrupt the graph.

Network size is 1000 nodes. . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 The epidemic or gossip paradigm. . . . . . . . . . . . . . . . . . . . 13

2.2 A NEWSCAST gossip-exchange between node A and B. Cache size

c = 5. An ID is represented by a capital letter along with its times-

tamp. The exchange time is cycle 6. . . . . . . . . . . . . . . . . . . 18

3.1 Overlay mesh status after a hub-attack: each node is fully discon-

nected. The PSS cache size is fixed to 20 IDs. Less than 20 gossiping

cycles are required to disrupt the PSS. Network size is 1000 nodes. 21

3.2 Overlay mesh status after a hub-attack (MN variant). The PSS

cache size is fixed to 20 IDs. When k = c (see 3.2(d)), each node

is fully disconnected. Less than 20 gossiping cycles are required to

disrupt the PSS. Network size is 1000 nodes. . . . . . . . . . . . . . 27

3.3 Cluster emergence after the exit of all malicious peers. The first

three graphs represent the NEWSCAST implementation behaviour,

while the others represents the basic-shuffling implementation. . . 31

xii



3.4 (a),(c) Convergence to the defeated network using 20 malicious

nodes adopting the MN attack variant; using a number of mali-

cious nodes lower than the cache size c, the nodes caches cannot

be completely polluted and thus, not even a single node is de-

feated. The results are shown for NEWSCAST and basic-shifling re-

spectively. (b), (d) The time required to defeat the network using

the FN attack variant; distinct network sizes are shown and each

line represents a specific number of malicious peers. The results

are shown for both PSS implementations. . . . . . . . . . . . . . . . 32

4.1 Impact of the hub attack on an aggregation protocol. Network size

is 10,000 nodes. Distinct scenarios are compared. . . . . . . . . . . 36

4.2 QuickPeer protocol pseudo code. It fits perfectly in the standard

gossip scheme, in fact it is almost identical (see Figure 2.1). . . . . . 40

4.3 Convergence rate expressed in percentage of nodes for each net-

work size. The second line of pictures show the final phase details. 44

4.4 QuickPeer convergence performance for each network size. The

CloseFar policy is used to trim the node caches. Two kinds of op-

timality are considered: close convergence (standard line) and far

convergence (dotted line). . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Massive crash scenario: 50% of nodes are randomly crashed (re-

moved) at cycle 5. The two sub-figures depict respectively the con-

vergence rate and average node cache pollution per node. . . . . . 46

4.6 Convergence rate for the massive nodes join: starting from 213

nodes network, 4096 new nodes are added at cycle 5. The arrow

(between cycle 5-6) indicates a transient slow down in convergence

rate due to the massive node join. . . . . . . . . . . . . . . . . . . . . 47

xiii



4.7 Impact of the hub attack over the QuickPeer protocol. Network

size is 8,192 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 The set of services composing the SG-2 architecture. . . . . . . . . . 55

4.9 A superpeer topology in a bi-dimensional virtual space, where Eu-

clidean distance corresponds to latency. . . . . . . . . . . . . . . . . 55

4.10 Convergence time. Three tol values are considered: 200 ms (a),

250 ms (b), 300 ms (c). The main figures show the number of ac-

tive superpeer at each cycle, while the small sub-figures show the

number of clients that are in tol range. Three different δ values are

shown in each figure. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 Experiments with churn. Network size is 1000; at each cycle, 10%

or 20% of the nodes are substituted with new ones. . . . . . . . . . 69

4.12 A 1,000 nodes superpeer topology generated by the SG-2 service

in normal conditions (a) and during a hub-attack (b); tol = 300ms,

the PSS cache size c=20 (in (b) 20 attackers are involved). The big

dots represent the SP nodes, the thick lines show the SP connec-

tions, while the thin lines show the connection relation between an

ordinary nodes and its SP. . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 The SPSS gossip scheme; essentially it is the PSS scheme extended

by the checkIDs() primitive. The strict relation with the gossip

scheme (see Figure 2.1) is evident; as the node’s state in the PSS is

the cache, the fundamental methods have a slightly different name,

but they still hold the same semantic. . . . . . . . . . . . . . . . . . . 73

5.2 Comparison among the PSS and the SPSS pollution ratio under a

Hub-Attack. The overlay size is 10, 000 nodes. Distinct checking

setups are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xiv



5.3 Dynamic scenario results: distinct level of churning rate (1%,5%

and 10% of the network population) are shown during a MN vari-

ant attack (20 m. nodes). (a) Depicts the average cache pollu-

tion, while (b) shows the difference among the average number of

queries sustained by 1 or more (2, 4 and 8) TRUSTED PROMPT using

two distinct PSS implementations. . . . . . . . . . . . . . . . . . . . 78

5.4 SPSS dealing with more than cachesize (c = 20) malicious nodes.

The results regarding 50, 100 and 200 attackers are shown. . . . . . 80

5.5 Schematic of the decentralised SPSS; it maintains multiple caches

to support multiple random overlays. Black and white-lists screen

incoming gossip requests and refresh malicious cache entries. The

highest quality cache is mapped to the API to support standard

peer sampling functions. . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Fully decentralised SPSS algorithm. The average pollution level in

the caches is shown over time; multiple distinct caches per node

are compared (e.g., 1, 2, 4 and 8 caches) for each network size (e.g.,

1,000, 5000 and 10,000 nodes). 20 malicious nodes are involved in

the attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Fully decentralised SPSS under churn conditions. The average pol-

lution level in the caches is shown over time according to three

churn set sizes (1%, 5% and 10% of the network population) and

for each network size (e.g., 1,000, 5000 and 10,000 nodes). 4 concur-

rent caches are adopted by each participant. 20 malicious nodes are

involved in the attack. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.8 Comparison among our previous TRUSTED PROMPT based SPSS and

the current decentralised one (4 extra caches). Two distinct churn

scenarios are shown for each one. Network size is 10,000. . . . . . 91

xv



5.9 Comparison of the graph topology properties in distinct scenarios.

The clustering coefficient is shown in the left picture, while the avg.

path length is shown in the right one. Network size is 10,000. . . . 92

5.10 Comparison of the graph topology properties in distinct scenarios.

The clustering coefficient is shown in the left picture, while the avg.

path length is shown in the right one. Network size is 10,000. . . . 94

6.1 The gossip scheme extended by the anti-forge checkItems() prim-

itive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Items discovery speed comparison among the overlay and wire-

less scenario. The speed is expressed in terms of cycles required to

discover the amount of distinct items on the x-axis by all the nodes.

The network size is 10,000 nodes. . . . . . . . . . . . . . . . . . . . 102

6.3 Average cache pollution (percentage of corrupted items in the items

cache) according to network size (1,000, 2,500 and 10,000 nodes)

and distinct values of Pcheck (%5, %10, %20, %30). . . . . . . . . . . 104

6.4 Time required to corrupt the node’s cache. The upper line shows

what happens without any checking attempt, while the other lines

show a distinct checking probability (e.g., Pcheck = 5, 10, 20 and

30%). The network size is 1,000 nodes. . . . . . . . . . . . . . . . . 105

6.5 Hops distance travelled by corrupted items in a 10,000 nodes net-

work. The picture on the left shows the distance travelled over

time according to distinct Pcheck values; the 5% of malicious nodes

have joined the network. The figure on the right instead, shows

the distance travelled with distinct Pcheck values, according to dif-

ferent malicious node concentrations (1, 5, 10, 20, 40%); the plots

overlap showing that the distance travelled is independent from the

number of malicious nodes. . . . . . . . . . . . . . . . . . . . . . . . 107

xvi



6.6 Average of corrupted items in node’s caches in a 10,000 nodes net-

work. Each node is running a PSS instance affected by a hub attack

and an item diffusion service in which malicious nodes corrupt the

items they forward. 20 m. nodes run the corresponding malicious

version of both services. Distinct Pcheck values are compared. . . . 108

6.7 Average of corrupted items in node caches in a 10,000 node net-

work. Each node is running a SPSS instance providing a defense

for the hub attack and an item diffusion service in which malicious

nodes corrupt the items they forward. 20 malicious nodes run the

corresponding malicious version of both services. Distinct Pcheck

values are compared. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xvii



Chapter 1

Introduction

This work aims to study the effect that malicious attacks can have on a gossip-

based networks. In particular, we first concentrate on a generic attack model

designed to defeat a very fundamental service, the Peer Sampling Service (PSS),

in gossip-based networks. In brief, the PSS is a topology manager that builds and

maintains by gossiping a random graph-like overlay. The overlay is continuously

rewired over time and therefore each node has a fresh, random sample of other

node references stored in its local cache. The PSS ensures strong connectivity and

a high resilience to benign failures (crashes).

The contribution of this thesis is then to show how the aforementioned service

can be easily damaged or defeated and how this threat can also affect other ser-

vices relying on the PSS. Then, we propose a general solution to counter-measure

the attack and to limit the damages to a negligible level. Secondly, we propose an

efficient technique targeting a certain class of protocols relying on the PSS. This

technique is aimed at preventing the diffusion of forged information by malicious

attackers on behalf of well-behaving peers.

The motivations of this work are summarised as follows.



2 Chapter 1. Introduction

1.1 Motivations

Recent years have witnessed a growing interest in the area of application-layer

overlay protocols and peer-to-peer (P2P) systems. Examples include popular

file-sharing applications [Gnu, kaz, The, bit], information dissemination [JGJ+00,

CRSZ01, EGKM04b, EGH+03], multimedia streaming applications [CDK+03, KRAV03]

as well as publish/subscribe systems [CRW01, CDKR02, PB02].

The interest towards the P2P paradigm is motivated by its intrinsic decen-

tralisation; informally, the P2P paradigm has introduced a sort of “democracy”

in distributed systems, in which each peer has equal importance. Essentially,

each peer can play both the consumer (client) and the producer (server) of infor-

mation. This idea brings many advantages compared to the classic client-server

paradigm, in which central servers play a substantial role. In fact, the load (mes-

sages) sustained by each peer is in general much lower than the one sustained

by a central server and the failure of any peer is not an issue; therefore, P2P sys-

tems leads to an uniform usage of resources and do not present a single point of

failure.

The interesting features we previously discussed comes at a cost; in general

P2P systems are much harder to design, to deploy and to maintain. P2P systems

are known to be very dynamic: peers join and leave the overlay continuously

(a so called churning process). This dynamism adds further complexity over the

usual client-server model, in which dynamism is restricted to the clients.

The inspiration given by other disciplines (e.g., biology or social science), can

help to achieve the properties needed by P2P systems. In fact, a new “breed”

of algorithms and protocols is growing rapidly. These new protocols are called

epidemic or gossip-based. To communicate in a scalable manner, they mimic how

epidemics spread in natural systems; their behavior is not strictly deterministic,

but relies heavily on stochastic processes.

The communication in P2P systems is performed over an overlay network, su-

perimposed over a routed network, such as the Internet. In order to achieve the



Chapter 1. Introduction 3

best possible results and according to the nature of the actual running applica-

tion, the peers are arranged according to a particular overlay-topology. The topol-

ogy provides the relation “who knows whom” and has a crucial impact on the

performance of an application. In addition, each peer can know about only a

small subset of the nodes in the system because of scalability reasons. Distinct

topologies have distinct properties suitable for specific task. We will see a brief

taxonomy in the following section.

The attractive properties of gossip-based protocols we stated previously, are

achieved under the assumption that each peer follows the rules dictated by the

protocol. In fact, it is crucial to note that the robustness to failures and the natu-

ral P2P friendliness to dynamic environment conditions, should not be confused

with resilience to malicious attacks.

Our fundamental question is how do gossip systems react to malicious actions or

attacks? This will be the central focus of our work.

Starting from this generic question, many others arise, such as: how easily

can a network be damaged? What are the consequences of such damage? Do

they lead to transient problems or to more severe problems? What amount of

damage is tolerable by a specific protocol? How long does it take to successfully

perform an attack?

Of course, these questions are indeed very generic, since they depend on the

actual protocol or application under attack and on how the attack is designed and

performed (e.g., the attacker’s goal).

We present a simple example to show that we are not dealing with just an aca-

demic issue, but with a practical problem. To illustrate the problem, consider a

gossiping network in which each node maintains a list of 20 neighbors, called its

partial view (e.g., it provides the relation “who knows whom”). Elements of these

views are continuously updated and exchanged between nodes. Essentially, the

peers are wired in a random graph (topology) fashion with out-degree 20 and

the graph is continuously rewired over time. 20 nodes in the system start behav-

ing maliciously exchanging forged partial views; then, after a short amount of



4 Chapter 1. Introduction

time, they leave the network. Figure 1.1(a) shows the overlay in normal condi-

tions; Figure 1.1(b) instead, shows the same graph after the malicious nodes exit:

within a very short time the original overlay is completely disrupted. This exam-

ple refers to a small, 1000 nodes network, but as we show in Chapter 3, no matter

what the size of the network, a successful attack can be carried out swiftly. We

will re-discuss this example with more detail in Chapter 3, when the particular

nature of the gossip protocols involved will be clearly defined.

1.2 Topology taxonomy

As we previously stated, P2P systems build an overlay topology on top of the

usual IP-level network. The overlay plays the important task of ensuring connec-

tivity (e.g., neighbors to contact over the overlay) to the system nodes; in general,

due to the massive size a P2P system can reach, each participant can know about

only a small subset of the overlay, which we refer to as its neighborhood. Usually,

the size of the neighborhood is fixed.

Informally, the topology tells us how the nodes are wired together. The ac-

tual wiring rule may vary depending on the goals to achieve (e.g., file sharing,

searching, multimedia streaming, etc.). The topology may thus be a fundamental

design choice to efficiently perform a certain function.

Essentially, the distributed systems literature distinguishes between two main

overlay network classes: structured and unstructured. In the former class, nodes

are organised in hierarchical structures that can grow or shrink according to strict

mathematical organisation rules; it is essentially composed by Distributed Hash

Tables (DHT) such as Chord [DBK+01], Pastry [RD01, fre], CAN [RFH+01] or other

derivatives. As conventional hash tables, DHTs provide an efficient distributed

solution for storing and retrieving items. They are suited to store items that can be

mapped to a unique key value (e.g, the hash value of a file name in a file sharing

scenario).

In the latter class, the rule used to build the actual overlay encourages the



Chapter 1. Introduction 5

emergence of a (pseudo) random graph. This kind of approach has scalability

problems [JAB01] for some kinds of tasks (e.g., locating resources)due to the ten-

dency to flood the overlay with queries, but it has minimal maintenance overhead

in comparison to the structured approach.

Our simple taxonomy also include superpeer topologies [Mon04, JMB06], but

as a sub category of structured overlays. This third kind of topology is motivated

by the fact that original P2P systems were based on a complete “democracy”

among nodes: “everyone is a peer”. But physical hosts running P2P software

are usually very heterogeneous in terms of computing, storage and communica-

tion resources, ranging from high-end servers to low-end desktop machines. The

superpeer topology addresses this fact and assigns to the most powerful nodes

(according to some rule or to their actual resources) some extra tasks or server

capabilities (e.g., indexing or query routing) for other (weaker) nodes. Recent

versions of the Gnutella [Gnu] file sharing software and Kazaa [kaz] have been

the first examples of such approaches available to the public. The Skype [Sky]

IP-telephony software is claimed to use the same kind of topology. However, this

topology flavour is usually considered as structured.

The topology management protocol is the application or protocol suite compo-

nent that maintains the topological properties of the overlay. These properties

must hold in a real-world P2P scenario, such as when nodes continuously join

and leave the system (churning) and when crashes occur. Other issues can com-

plicate further the situation, such as the coexistence of multiple versions of the

same software.

It is clear that the efficiency and the ratio of successful operations performed

by an application heavily relies on topology management. If the topology is

subverted, the topology manager should be able to recover its structure as, the

topology is only perception of the environment from a peer point of view. A wrong

perception of the environment may have severe consequences.



6 Chapter 1. Introduction

1.2.1 Basic requirements for topology management

In order to study the effect of malicious attacks we need to identify a basic core

functionality among gossip-based protocols. We need a simple and manageable,

but still realistic common denominator to work with.

We decided to dedicate our attention to the unstructured approach, because

much of the attention of the literature has been focused on structured security

approaches and because in [DKK+05] the authors suggest that unstructured sys-

tems are more vulnerable than DHTs.

The first action a peer must accomplish to enter in a P2P system is joining

the desired overlay. The first step needed by a peer is obtaining a neighborhood

list; for example, the first time a Skype [Sky, BS06] application runs, it asks for

a neighbor list to one randomly chosen server (a high availability Skype node)

among a fixed, pre-assigned set. This node will provide a fresh list of available

Skype nodes to the newcomer. When the newcomer leaves (voluntarily) the sys-

tem, he saves his last neighborhood list to reuse it next time.

The need to set up a reliable neighborhood for reliable connectivity is a primary

concern not only for Skype software, but for any P2P system.

Basically, the connectivity concept (e.g., the nodes’ capacity to interact together

in the overlay) is given by the combination of the network routing facility and the

overlay neighborhood. This functionality can be achieved with distinct strategies,

but it is always the first step to accomplish.

The connectivity properties are directly related to the actual graph structure

characteristics (degree, clustering coefficient, average path length, etc.).

We have identified a particular service, the Peer Sampling Service (PSS) [JGKvS04]

as a gossip-based facility that provides strong connectivity. This service provides

each node with a list of neighbors picked from the current network population;

the list changes at regular time intervals. The neighbors in its list appear as a

uniform random sample of the current network participants.

When designing gossip-based protocols, the PSS is a valuable component as

it provides any node with random neighbor selection facility and connectivity



Chapter 1. Introduction 7

(neighborhood list). In fact, many other gossip protocols are explicitly based on

its presence [JMB05, JB05, VGvS05, Mon04, JMB06, CJ05].

The PSS has a family of distinct fully decentralised implementations [JKvS03,

VGvS05]. All implementations share the fact that nodes are arranged in a random

graph-like fashion. In other words, the PSS graph shares the same important

properties of a random graph (e.g., strong network connectivity, low clustering

of nodes, uniform node degree distribution). This ensures robustness to benign

failures and a fast spreading of the information through the overlay.

As in the vast majority of P2P protocols, the PSS relies on the assumption that

all the participants follow the rules dictated by the protocol. No explicit trust or

security measures are adopted. We will show that poisoning the PSS functionality

can have a dramatic effect on the whole P2P system.

We adopt the PSS to test the effect of malicious behavior in P2P gossiping

environments. In fact, attacking the PSS would cause not only trouble to the PSS

itself, but also to the services that rely on it.

1.3 Cheating and attack principles

It is unfeasible to define secure solutions for a service without defining which are

the threats we intend to address.

As a first constraint, we consider that cheating techniques or attacks are based

on message exchange of malicious information aimed to trigger some unexpected

side effect in well-behaving peers. Essentially, any malicious action is performed

at the overlay level only.

The goal and the nature of an attack in a P2P gossip network can be similar

to the standard counterpart for traditional distributed systems. In a denial of

service (DOS) attack for example, an attacker may try to overload one or more

target nodes in order to defeat them. This scenario may happen in a malicious

DHT in which ordinary nodes, cheated by an attacker, can forward any message



8 Chapter 1. Introduction

to the victim(s). Essentially, a non negligible number of nodes start behaving

maliciously without the voluntary intention of being malicious (see Chapter 7).

We consider that an attacker can basically aspire to two distinct goals: (i)

achieving an advantage at the expense of the rest of the system or (ii) achieving a

massive DOS leading to the overlay destruction.

The former behavior is highly dependent on the nature of the actual running

application, as the concept of “advantage” can assume many distinct meanings.

In a resource-sharing application for example, it is the equivalent of free-riding1.

In other contexts, the attackers may be interested in obtaining a leader position

in the underlying topology; this position may help a higher-layer application to

spread their information messages faster, while dropping potential competitor

messages. It is important to note that, in a healthy gossip overlay, the message drop

performed by few attackers would have no effect because of the high degree of the

overlay graph. The high degree provides redundancy in the spreading of the

information. This fact emphasises the importance of securing the lower connec-

tivity layer.

In the context of the scenario we are modeling, both attacker’s goals can be

achieved by modifying the current PSS topology. By gossiping malicious infor-

mation, the attackers can silently modify the relation “who knows whom” in or-

der to acquire an advantage for their upper level services (or protocols) or to

destroy the network.

To complicate further the scenario, the attackers may run not only malicious

PSS instances, but also malicious upper-level services.

The attack model we are going to present is Chapter 3 can affect also the pro-

tocol layers relying on the PSS, but of course securing the PSS is insufficient to

secure the other layers. Essentially, securing the PSS means ensuring that the ba-

sic connectivity layer has the topology that a regular PSS is supposed to have (or

maintaining the PSS topological properties).

1When free-riding, a node tries to consume as much resources as he can, but without sharing

its own resources.



Chapter 1. Introduction 9

Other services distinct from topology managers, but relying on the PSS, may

use it to gossip maliciously forged information as well. The effect of the attack-

ers may vary, but for example, in an advertisement distribution application the

attackers may spread their advertisement, while forging the other peer adver-

tisements in order to make the latter much less interesting than the former. In

Chapter 5, we propose an efficient technique to detect and limit to a minimum

the spreading of this kind of forged information. Securing higher layers involves

a totally different approach than securing the PSS.

1.4 Roadmap

The central focus of this thesis is the design of fully decentralised techniques and

components for secure gossiping. In particular, our aim is to prevent a generic

attack that mutates and possibly destroys the overlay-level topology provided by

a PSS.

Along the way, we describe the attack model and we show its effectiveness

against P2P systems. Then we present our attack countermeasure and another

component aimed at preventing the spreading of forged information.

The remainder of this work is organised as follows:

• Chapter 2: we provide an overview of the PSS motivations and properties.

Two distinct PSS implementations are briefly described; these implementa-

tions have been adopted for our work on gossip security.

• Chapter 3: we introduce our generic attack model, the “hub attack”; we

motivate its novelty and real-world relevance in the P2P area. We present

experimental results, obtained by extensive simulations, supporting our

claim.

• Chapter 4: we present how the hub attack affects other gossip protocols

relying on the PSS. In particular, we present and describe three distinct

gossip protocols and we test the impact of having a poisoned PSS for such



10 Chapter 1. Introduction

protocols. Then, due to the generality of our attack model, we test directly

the effect of the attack over the protocols themselves instead of poisoning

the PSS layer.

• Chapter 5: we present our first secure gossiping component, the SPSS, to

prevent the hub attack and we perform an extensive analysis. The analysis

reveals the efficiency of the solution and its independence from the actual

PSS implementation. Our solution requires the presence of one or more

trusted nodes for maximum security (e.g., used between several organi-

sations) or can be configured in a fully distributed fashion for maximum

scalability.

• Chapter 6: since the SPSS focuses on securing the lower overlay manage-

ment layer, we introduce another technique that allows a node to detect any

forged information item and to ban the malicious sender. The information

items can be spread by a generic gossip spreading protocol. Again, we sup-

port our claims with extensive simulation results.

• Chapter 7: we discuss the current existing attacks and cheating techniques

and their respective solutions, if any.

• Chapter 8: we summarise our main contributions and we discuss future

research.



Chapter 1. Introduction 11

0 931

751

1

182

234

992

954

945

451

236

48

288

2

830

693

473

497

537

194

424

3 356

291

17

178

484
326

438

4 12

506

641

239
57

430

10

372

115

5

926

184

585

80

962

368

233

69
6

617

550

215

426

967

139

520

694

339

306

7

905
769

671

186529
458

8

130

169

787

689

479

993

781

651

154

217

508

9

374

163

321

280

738

710
718

947

684

880

525

572

678

91

449

11
561

170

860152

328

13

185

211

527

981
494

800

821
675

65

391

417

14

640

53

311

241

482

833

15

276509

633

741

827

545

268

763

16

920
299

636

616

68

34

116
663

204

695

936

128

868
409

118

18

869

864

667

854

859
909

19

534
687

237

932977

487

676

20

573

257

462

618

523

340

232

111

831

672

21

381

893

752

222

753

352

836

22

446

960

465

765

447

913

85 150

420

23
927

284

848
949

739

125 542

744

24

642

314

42

975

737 466

620

25

701

790

35

857

60

849
136

989

691

563

26

472

386

157

599

244

223

27

740

510

624

910359

310

28

137

133

541

774

594

110

260

747
29

828

30

798

367

784

31835

114

167
329

315

151
719

365

544

32

142

899

987

581

123

723

755

792

853

33

262

254 89

242

58

743

794

941

286

36

197

50

818

171

725

481
758

37

690

514

406

577

353

73

258

38

610

448

317

453

775

703

39

788

519

434

59

88

953

454

40

811

395

81

692 946

878

998

41

309

303

623

700

705

607

938

683

659

681

518

799

43

711

405

327

866 888

47

956

44
731

549

872

966

292
817

45

925

407

235

815

677

392

127

275

46

493

421

412

423

757

338

92

802

77

343

375

604

568

49

621

590

246

320

51

82697

428

917 608

141

282

571

52

903

208

803
879

213

415

209

916

485

444

54

363

706

994
829

536

875
373

565

55

283

122

346

971

475
307

728

56

376

345

596

273
90

97

277

587

511 661

906

206

61

816

686

840

507

801

62

564

856

86
555

78

881

480

63

584

269

105

468

727

95

660

324

261

358

231

64

822

805

486

162

982

839

502

66

332

797

951

464

898

264

228

918

67

195

810

715

614

538
471

889

168

722

942

709 622

746

657

70 93

107

313 785

71

724

654

212
598

991

72

978

576

895

450 597

754
274

670

74
658

433

713

153

646

160

669

75
400

226

245
410

437

76
188

108

512

567

191

175

181

504

298

776

79
383

425

535

852

714

593

843

138

180

771

844

83

612

551

570

476

862

84

902

652
357

924
342

441

720

177

914

907 146

495

589

87
113

996

192615

940

729

809

272

591

717

379

161

378

948

94

861

793

102

526

199

431

96

403

140

354

756

631

666

767 871

668

98699
548

201

900

325

528

411

99
588

478

341

461

240

696

100

278

445

546

101

773

265

396

419

103

385
229

281

874

104
768

557

887

106

335

674

812

490

595726

109

143

253

558

398

183

955

928

664

394

355

112

399

708

469

944

921

296

605

293

637

117 644824634

807

119

806

682 896

120

973

121
656

559144

516 124

348

890

251

159

759

745

845

371965

126566

156432

626

129

131

187
766

777

418

271

132976

457

189961

846

248

134

289

556

474

786
919

135

912

884

842

630

193

500

779
531

266

837

256

255

408

388

145

761

369
483

330147

885

780

974

216

532

148

704

295

149

838

574
460

190

575

547

155823

250

158

553

404

316

427

247

300

377

203

635

712

698

915
297

207

813

164

165873

749

513
505

166

179

969

939

796

389
172

688

173

366

522
489

174
707

470

625

611

515

176

224

552

804560

760
521

825

301

950

380
347

413

732

196

259

791

210

716

463

963

467

331

583

970

748

452

680

384

736

980

702

200

390

653

221

629

198

496

937

933

983

733

579

986

202

734

841

285

600

742

988

439

662
540

602

205

851

764

645 220

344267

886

847

870

934

586 362

957

650

214

582
305517

263

337

819

227

218

219

959

308

897

762

647

613

855

498

850

930

908

876

225

422

578

360
304

929

499

911

322

230

443
323

416

488

238

834

832

952

783

665

243

904

361

877

964

892

735554

643

459

501

789

249

867 569

397

252
649

279 543

442

393

387

985
648

351

270

638

894

580

891

491

382

364

721
958

883

999

778

673

685

287

820

414

290

294

302

436

312

319

456

679

601

318

333

334

627

336349

772

628

350

795

370

606

826

750

814

730

401

402
972

429

435

440

562

619

632

923

808

455

524

865

863

492

922

477

984

858

935

943

503

530
639

990

603

592

533

539

782

609

770

882
655

968

979
997

995

901

(a) A healthy random graph topology

(b) The previous random graph after an attack

Figure 1.1: Overlay mesh status before and after a simple attack: the random

graph depicted in (a) becomes fully disconnected. The graph out-degree (con-

stant) is set to 20, but only 3 links per node are printed. Less than 20 gossiping

cycles are required to disrupt the graph. Network size is 1000 nodes.



Chapter 2

The Peer Sampling Service

In this chapter we introduce the reader to the Peer Sampling Service (PSS). We

address its motivations, characteristics and we briefly review two specific imple-

mentations. We also describe the general system model in which we operate.

2.1 Introduction to the PSS

The gossip based communication model in large-scale distributed systems has

been successfully applied in many areas, such as: information dissemination

[EGKM04a], aggregation [JM04, JMB05], load balancing [JMB04] and synchro-

nisation [MJB04].

The common key point of these approaches is that, periodically, every node in

the system performs an information exchange with some of its peers. The under-

lying service that provides each need with a list of other peers is a fundamental

component for these kind of systems. In general, this service is usually referred

as the Peer Sampling Service (PSS) [JGKvS04] and it is assumed to be implemented

in such a way that any node can exchange information with uniformly random

selected peers; these peers are selected among all the currently available partici-

pants in the network.

To achieve this random selection assumption, some implementers proposed a

solution where every node knows all the other participants in the system [KMG03].



Chapter 2. The Peer Sampling Service 13

do forever

wait(∆t)

neighbour = SELECTPEER()

SENDSTATE(neighbour)

n state = RECEIVESTATE()

my state.UPDATE(n state)

do forever

n state = RECEIVESTATE()

SENDSTATE(n state.sender)

my state.UPDATE(n state)

(a) Active Thread (b) Passive Thread

Figure 2.1: The epidemic or gossip paradigm.

In other words, each node maintains a dynamic list of nodes, usually called view

or cache, which can grow with the size of the system. The maintenance cost of

this structure is non negligible, especially in a dynamic system where nodes can

join or leave at any time. For modern hardware, the memory footprint of this

approach is not the main concern, but the quality of the information stored in the

lists becomes problematic. It is interesting to note that while gossip systems are

known to be scalable, the PSS implementation on which they are based may not.

A better idea to build scalable PSS implementations is to use the gossip-based

paradigm, depicted in Figure 2.1, to diffuse the membership information, while

keeping constant in size each peer’s local list of nodes. The continuos gossip

of the membership information enables the emergence of dynamic, unstructured

overlay networks that express the dynamic nature of P2P systems. In addition,

the overlay dynamism ensures good connectivity when nodes crash or discon-

nect.

The very generic nature of the gossip paradigm allows the existence of many

variants of the membership dissemination strategy.

In [JGKvS04], the authors presents a taxonomy of possible PSS implemen-

tations according to three criterions: (i) peer selection (ps), (ii) cache selection

(cs) and (iii) cache propagation (cp). These criterions correspond to distinct im-

plementation behaviours of the SELECTPEER(), RECEIVESTATE() / SEND-



14 Chapter 2. The Peer Sampling Service

Peer selection (ps)

random Uniformly random selection of a node from the node’s local

cache

head Select the first node in the local cache

tail Select the last node in the local cache

Cache selection (cs)

random Uniformly random selection of c nodes without replacement

from the (local) cache

head Select the first c nodes from the (local) cache

tail Select the last c nodes from the (local) cache

Cache propagation (cp)

push The current node sends its cache to the selected peer

pull The current node asks for the selected peer cache

push-pull Both nodes exchange their caches

Table 2.1: Distinct behaviours for each considered feature. A short, semantic

explanation is given for each option. These options lead to 27 distinct PSS imple-

mentations.

STATE() 1 and UPDATE() methods. In Table 2.1 is shown the semantic of the

considered options for each method. These options lead to 27 distinct PSS im-

plementations; each one can be represented by the following tuple: (ps, cs, cp),

where each element represents one of the three possible options for the corre-

sponding policy.

The PSS API also requires the presence of an INIT() method (not shown in

Figure 2.1). This method is responsible for node’s cache initialisation; in other

words, it has to bootstrap the node by filling its cache with (valid) node references.

The bootstrapping problem can be solved by out-of-band techniques, for example

1The method signature refers to a generic “state” entity, but the actual information exchanged

is the node’s cache.



Chapter 2. The Peer Sampling Service 15

using a set of well-known nodes or a central service publishing node identifiers.

Essentially, these are the approaches adopted by some well known P2P applica-

tion, such as Skype [Sky] or many Gnutella [Gnu] clients.

The authors define an experimental methodology to evaluate these distinct

protocols. The methodology focuses on the emergent overlay induced by the

gossip interactions among peers. In particular, the convergence to the desirable

uniform random model has been evaluated; other graph-like properties (e.g., the

degree distribution, the average path length and the clustering coefficient) and

the system reliability, in terms of self-healing, have been checked.

The key aspect highlighted by the evaluation is that the examined protocols,

sharing the feature of building an unstructured overlay using partial views, can

lead to different emergent overlays, none of which resembles a random graph. In-

stead, the overlays seems to belong to the family of small-world graphs, in which a

small diameter and a large clustering are the typical characteristics.

However, whether from a system-wide point of view the overlay is far from

being a random graph, from a node’s point of view instead, the peer selection

from the local cache can still be considered (almost) random. This property is a

cornerstone for many gossip protocols and, in particular, for the protocols dis-

cussed in this work (see Chapters 4, 5 and 6).

We considered two distinct PSS implementations called NEWSCAST and basic-

shuffling. Both are heavily inspired by the prototypal gossip scheme depicted

in Figure 2.1, and, using the tuple notation, they correspond to ( random, head,

push-pull ) and ( random, random, push-pull ) respectively. We obtained similar

results with both implementations. Before introducing our attack model in the

next chapter, we provide our general system model and a background of these

implementations.



16 Chapter 2. The Peer Sampling Service

2.2 System model

The system model presented in this section holds in all the other sections of this

work; it will be incrementally extended when required by the introduction of a

specific protocol.

We consider a network consisting of a large collection of nodes that can join or

leave at any time. Leaving the network can be voluntary or due to a crash. We

assume the presence of a routed network (e.g., the Internet) in which any node

can, in principle, contact any other party.

Any node in the network must be addressable by a unique node identifier (ID),

such as an 〈IP-address, port〉 pair. Notice that we have chosen this simple form

of ID as a more sophisticated one would add unnecessary details to our general

model. However, an ID suitable for a real-world protocol must address many

issues. For example, a single host may run several instances of an application

under distinct user’s domains and hence the ID must distinguish among different

instances and users. A further complication is represented by the presence of

firewalls between peers and by NAT routing. These issues suggest that a real ID

is a complex structure and needs a careful design.

Because of scalability constraints, a node knows about only a small subset of

other nodes. This subset, which may change, is stored in a local cache, while the

node IDs it holds are called neighbors. This set provides the connectivity for a

node in the overlay; the absence of items in this set or the presence of incorrect

or bogus IDs leads to an unrecoverable situation. In this case, a new initialisation

or bootstrap is required. In general, P2P applications provide a set of well-known,

highly available nodes in order to be used as a bootstrap facility and hence as the

initial neighborhood set.

In the cache, a timestamp is associated with each distinct node ID in order to

eventually purge “old” ID references according to an ageing policy [JKvS03].

The notion of time in our model is not strict because our gossip protocols need

not be synchronised. We measure time in generic time units or cycles during which



Chapter 2. The Peer Sampling Service 17

each node has the possibility to initiate a gossip exchange with another randomly

selected node from its local cache.

We use the following terminology: the pollution is the presence of IDs of mali-

cious nodes in a peer’s cache. A node is defeated if all the entries in its cache refer to

malicious nodes (i.e., 100% polluted) and an overlay is defeated or destroyed if every

node in the overlay is defeated, or in other words, if it is completely partitioned

(e.g., each peer has no more neighbors).

2.2.1 PSS implementation: Newscast

Newscast [JKvS03] is a gossip-based protocol that builds and maintains a contin-

uously changing random graph (or overlay). The generated topology is very sta-

ble and provides robust connectivity. This protocol has been a successful building

block to implement several P2P protocols [JMB05, JB05, CJ05]. The NEWSCAST im-

plementation of the PSS corresponds to the ( random, head, push-pull ) tuple, using

the notation introduced in Section 2.1.

In NEWSCAST, each node maintains a cache containing c IDs extended with a

logical timestamp (ts) representing its creation time. The protocol behavior fol-

lows strictly the gossip scheme; periodically, a node A does the following: (i) it

selects a random peer B from its local cache; (ii) then updates its local timestamp;

and (iii) performs a cache exchange with B. The exchange involves sending A’s

cache along with its own ID and receiving B’s cache and ID.

After the exchange, each party merges the received cache with its current one

and keeps the c “freshest” IDs as measured by the timestamp associated with

each ID. No multiple copies of the same ID in a single cache are allowed. Each

peer always puts the other party’s ID in first position in its own cache after the

exchange. This sequence of actions is depicted in Figure 2.2.

This exchange mechanism has three effects:

1. caches are continuously shuffled, creating a topology with a low diameter

that is close to a random graph with out-degree c. Experimental results (see



18 Chapter 2. The Peer Sampling Service

F/5 D/5 O/5 I/5 J/4

C/5 E/5 B/5 W/4 H/4 A/6F/5 D/5 O/5 I/5 J/4 B/6

C/5 E/5 B/5 W/4 H/4

B/6 E/5 C/5 I/5 O/5 F/5 D/5 H/4 W/4 J/4 A/6 E/5 C/5 I/5 O/5 F/5 D/5 H/4 W/4 J/4

New view

Node BNode A

2. Update 2. Update

New view

1. Exchange

Current viewCurrent view

Figure 2.2: A NEWSCAST gossip-exchange between node A and B. Cache size

c = 5. An ID is represented by a capital letter along with its timestamp. The

exchange time is cycle 6.

[JKvS03]) proved that a small 20 elements local cache is already sufficient

for a very stable and robust connectivity.

2. the resulting topology is strongly connected.

3. the overlay is self-repairing, since crashed nodes cannot inject new descrip-

tors any more, so their information quickly disappears from the system be-

cause of the timestamp ageing policy.

Newscast is also cheap in terms of network communication. The traffic gen-

erated by the protocol is estimated in [JKvS03]. Summarising very briefly, the

number of exchanges per cycle can be modelled by the random variable 1+φ,

where φ has a Poisson distribution with parameter 1. Thus, on average, we ex-

pect two exchanges per cycle (one active and one passive, see Figure 2.1). This

involves the exchange of a few hundred bytes per cycle for each peer.

2.2.2 PSS implementation: basic-shuffling

The basic shuffling is the foundation algorithm of the more sophisticated Cy-

clon [VGvS05] protocol. The basic-shuffling implementation of the PSS corre-



Chapter 2. The Peer Sampling Service 19

sponds to the ( random, random, push-pull ) tuple, using the notation introduced in

Section 2.1.

We will be brief about the protocol and, for any further detail, refer to [VGvS05].

Each peer P periodically performs the following steps:

1. select a random, non-empty subset of l node IDs from its cache, where l is

a system wide parameter; then pick a random neighbor Q from this set

2. replace Q ID with P’s ID

3. send the updated subset to Q

4. receive from Q a subset (6= ∅) of no more than l ID entries regarding Q’s

neighbors

5. discard entries pointing to P and any entry already in P’s cache

6. update P’s cache to include all remaining entries, by firstly using empty

cache slots (if any), and secondly replacing entries among the ones origi-

nally sent to Q

When Q receives an exchange request, it randomly selects a subset of its own

neighbors, of size no more than l, sends it to the initiating node (P), and executes

steps 5 and 6 to update its own cache accordingly.

In contrast to NEWSCAST, the topology emerged by basic-shuffling exhibits

a lower clustering coefficient, resulting in a mesh closer to a real random graph.

However, a drawback is the longer time required to purge the IDs of nodes which

have left the network.



Chapter 3

Attack model and analysis

In this chapter we introduce our attack model. We show its effectiveness in de-

stroying or causing other severe damages to the Peer Sampling Service (PSS) over-

lay.

Before dealing with the details of the attack and introducing our attack model,

we first start with an example scenario we have already seen briefly in Section 1.1.

Then, we describe the actual strategy and algorithm played by the attackers and

we evaluate the effects of the attack over the PSS topology. In this chapter, we do

not adopt any countermeasure against the attack.

3.1 Attack scenario

Figure 3.1 shows the impact that our attack model can have on a network, in order

to give a quick understanding of its relevance. The attack leads to a completely

partitioned network. The time require to achieve this massive (DOS) destruction

is just less than 20 cycles. The network size is 1,000 nodes, but the same result

holds for larger networks (see Section 3.3).

In this scenario, the cache size is set to 20 IDs, as well as the number of ma-

licious nodes in the system. Malicious nodes know each other and execute the

standard PSS algorithm, NEWSCAST in this particular scenario. However, when

a malicious node initiates a gossip exchange, it fills its cache with the IDs of the



Chapter 3. Attack model and analysis 21

Figure 3.1: Overlay mesh status after a hub-attack: each node is fully discon-

nected. The PSS cache size is fixed to 20 IDs. Less than 20 gossiping cycles are

required to disrupt the PSS. Network size is 1000 nodes.

other malicious nodes. In addition, it forges each ID by giving it a fresh time-

stamp. A malicious node always provides this information to a non-malicious

node. As a consequence of using fresh timestamps, the latter will always replace

its entire cache with the one sent by the malicious node, effectively immediately



22 Chapter 3. Attack model and analysis

isolating it from other non-malicious nodes, at which point it is defeated.

Only a nondefeated, nonmalicious node B can help a defeated one, say A, pro-

vided B has A’s ID in its local cache. However, when B contacts A, we can expect

that after the exchange half of the local caches of A and B, respectively, will be

polluted with IDs of malicious nodes. As a consequence, there is a 50% chance

that each will contact such a node, in turn, being defeated. But even contacting

a nonmalicious node will generally also spread the pollution and increase the

chance that a nondefeated node contacts a malicious one. The pollution and de-

feat of nodes spreads very fast, completely in accordance to what can be expected

from a gossiping protocol.

There is no way for a nonmalicious node to identify a malicious one as they

seem to play fairly; however, as the attackers always pass on the same cache, it

is easy for any node to keep track of the last cache provided by a neighbor in

order to detect the malicious nodes. Sadly, when a non-malicious node detects

the bogus cache replayed by the same neighbor, it is too late to react since the

node cache is completely filled with malicious IDs.

In less than 20 cycles, all nonmalicious peers have their cache completely pol-

luted and become defeated. At that point, the malicious nodes may decide to

leave the network, leaving it in completely disrupted state without any hope of

recovery. It is interesting to note that many gossiping protocols may easily suffer

from such an attack. In fact, many distinct gossip protocols differ in just a few de-

tails. For example, QuickPeer [CJ05] (a T-Man [JB05] family protocol) may suffer

as well.

In this sense, it is somewhat surprising to see how little attention this topic

has yet received.

3.2 Attack model

In the following, we will define in detail a generic attack model that is independent

of specific PSS implementations. The attackers purposefully deviate from the



Chapter 3. Attack model and analysis 23

standard PSS protocol in order to disrupt the service. The reason for doing so

can range from obtaining a leader position in order to manipulate applications

relying on the PSS, to conducting a massive DOS attack as described in Section 3.1.

In both cases, the main objective of an attacker is to destroy the well-formed

peer network topology and cause the formation of a hub set of attackers over

which all peers are linked. For example, a successful single attacker can subvert

the peer network topology to a star topology with itself as the hub. We decided

to promote the formation of k > 0 hubs, because it allows the attackers to achieve

a strategic control position over the network. Essentially, on the one hand a star

topology still ensures connectivity of the overlay graph, while being robust to

random failures. On the other hand, it is completely dependent on (vulnerable

to) plans of the attackers; the hub topology fulfils the goals sketched in Section

1.3.

The principal method of attack in our generic attack model is injection of fab-

ricated data through the messages gossiped among the participants resulting in

the pollution of local caches, which induce the structure of the topology.

Our attack model expects the attackers to operate intelligently and not allow

themselves to be trivially exposed as the sources of cache pollution. Therefore,

the attackers will operate in such a manner so as to be indistinguishable from

well-behaved peers under standard operating conditions. While the goal and

principal method of attack are generic, actual attacks may use features specific to

a particular protocol implementation.

In this setting, the set of actions that an attacker may carry out are as follows:

• Dropping of identifiers: attackers may maliciously drop node references

from their caches. However, this attack does not pose a serious threat to the

peer network whether attackers select dropped references randomly or in

collusion with other attackers. The resilience of the peer network to this at-

tack is due to the gossiping scheme used for communication that provides

inherent redundancy to the system. As the neighborhood set for each node



24 Chapter 3. Attack model and analysis

continuously changes, an attacker cannot prevent its neighbors from receiv-

ing a node reference for more than one cycle.

• Replay of identifiers: an attacker can violate protocol-specific constraints

(e.g., timestamped-related rules for identifiers in NEWSCAST) in the mes-

sage exchanges of node references and attempt to diffuse invalid informa-

tion throughout the overlay. However, this attack also cannot cause serious

damage to the network due to reasons given earlier for dropped identifiers

attack.

• Corruption of identifiers: an attacker may corrupt node identifiers (IDs)

to influence maliciously the operation of the specific PSS implementation.

The attacker may corrupt selected elements of an ID to achieve a specific

anomalous behavior of the protocol. This is a serious attack as gossiping

protocols can diffuse these corrupt identifiers rapidly throughout the over-

lay thus potentially leading to a massive denial-of-service (DOS) attack.

• Forging of identifiers: an attacker forges one or more node references to in-

sert into its cache. The difference among the previous kind of action is that

the ID is created from scratch, while in the previous case the ID is modified

according to a malicious intent. These identifiers could be of actual nodes of

the PSS nodes that are other attackers, nodes that are present but not part

of the PSS or even fake nodes that do not exist in the overlay. Although

the semantics of a PSS require that exchanged caches must contain distinct

IDs, such rules are of no use in the absence of active checks on peers (such as

pinging to detect liveness). This is a serious attack as well, as gossiping pro-

tocols can diffuse these corrupt identifiers rapidly throughout the overlay

thus potentially leading to a massive denial-of-service (DOS) attack.

Because of the highly dynamic nature of a PSS the above actions will not cause

a serious disruption to the overlay if they are carried out occasionally by a few

attackers. While a large number of attackers can destroy the topology with any of



Chapter 3. Attack model and analysis 25

the above attacks, the presence of such a large number of attackers is an unlikely

attack scenario. Instead, we consider a practical attack scenario in which there

are k malicious peers attacking a PSS with a cache size of c where k ≤ c. We

consider very difficult for an attacker to acquire distinct fake identities, therefore

we exclude the threat of a Sybil [Dou02] attack in our model.

Our attack algorithm, which we call the hub attack, uses a combination of replay

and forgery attacks simultaneously.

We consider the attack scenario in which attackers can cause maximum dam-

age to the peer network utilising the minimum amount of resources for the attack.

For this, we assume that malicious peers collude and co-operate. However, this

assumption can be removed without any effect on the attack algorithm as it af-

fects only the time needed to complete the attack and not its outcome.

3.2.1 Hub attack algorithm

The basic idea to always replay a message holding the forged ID’s of the other

malicious peers in the network is perfectly valid from a PSS point of view, as the

only mandatory constraint is that cache entries must be distinct. This intrinsic

weak constraint complies to reality. For example, in real world P2P file sharing

[LNR06, NCW05, RD01], when a peer receives an advertisement for an item, the

peer does not check whether the item is available at the advertised location or

not; as noted earlier, this allows a malicious peer to appear exactly as any other

peer in the network and not arouse suspicions on its behavior.

In the hub attack, each malicious peer maintains a STEALTHCACHE structure in

which it collects the IDs of well-behaved peers only. This hidden cache structure

has no size limit and it is allowed, if necessary, to grow to the size of the net-

work. The STEALTHCACHE is initialised with the IDs in the public standard PSS

cache at the start of the attack. Then the attacker runs the standard PSS algorithm

but with maliciously created messages that contain the IDs of all the other mali-

cious peers. The neighbor nodes to exchange these messages are picked from the



26 Chapter 3. Attack model and analysis

STEALTHCACHE. The hub attack algorithm executed by a malicious peer Pm is as

follows:

1. Pm pollutes its cache with the IDs of other malicious peers and its own ID. If

k < c then Pm fills the remaining entries with nonmalicious IDs taken from

its STEALTHCACHE.

2. Pm next executes the standard PSS algorithm but randomly selects a non-

malicious neighbor (Pn) from the STEALTHCACHE.

3. Pm receives the cache of Pn and stores the records in its STEALTHCACHE.

While malicious peers execute the hub attack algorithm, the nonmalicious

peers execute the standard PSS algorithm in each cycle. In the above algorithm,

a Pmwill pollute its cache with other malicious peer IDs (MN variant). A variant

of the hub attack algorithm has Pm fill up its cache with randomly generated fake

IDs (FN variant) when k < c.

After executing the algorithm sufficiently for long (e.g., 20-30 gossip rounds

in practice), the malicious peers will have formed a hub topology, and effectively

now control the network. At that point, different scenarios are possible, including

the control of higher level applications, and complete disruption of the PSS by

exiting the network.

3.3 Attack evaluation

To validate the effectiveness of our hub attack algorithm described in Section 3.2,

we performed a large number of simulation experiments with two goals: (1) to

measure the speed of convergence of the network to a destroyed overlay topology

and (2) to measure the extent of the damage according to the number of emergent

clusters and the percentage of nodes residing outside the main cluster.

The simulations were done on three different overlay sizes of 1,000, 5,000 and

10,000 nodes with the number of malicious peers k ranging from 10 to 20 for a



Chapter 3. Attack model and analysis 27

212

422

185

947

827

888

902

973

744

984

891

811

20

884

203

73
125 972763

244

341
541

237

866
951

953
167

963

61
699

214965

98

285

303

843
549

34
733

992

607
15

644487

334

400

132

619

704114
6

642

985

574413

748

929
739

559

871

869430

678

993

616

435

1776
301

783

540
493

797
975860

483

777

44165

652

849

932

774

246
918

808 72

779122

268

934

719

887

475

511

7

880

964

489
210

304361

403

2

852

740

134
470224

388
429

384

236

332

734533
576

188
711

287

218393

945

377
307

956
386
737

278

394

815

253

626

696

943

26

790

600
368

267

682

321 365

370

10

8

672

86
455595

667
518

893

978
461

561

630

919

568

803

603

534

465

116

825

45

156

397170

442

496

988

715

164

19

532

150

729

528
88

112

753281

402

474

597

786
875768

398

495

173

544

230

917

151

623 155490

589
858200

38

225

933

9463

241844250

22

775

501

910

794

120

432

208

826
204949

449

863

877

240

297

291201

700

336

323
922

172

684

451
590

219351

723

876

149

724

663

675 118

921

801

415
192

998

657

242

692
190

665

718347

269

31

814
758

371

804

859

793
621

248

113

708

9
872

705

687

378

754

319

0
271

90597
513

216
141 405567

647

447

721
901

390

119
546

232

512

688

177
879

999
787

959

928

980

228788

602550

163

484

96

799520
764

805

233

481

247

906

609

755

732
503

115

121

577

257

408

327
82

695

43

571 502

199
994

328

701

21

11372

313

168

154

750
914

194508

950

165

448 830

795

239
620159

845

886

331

110
51 895443

37

27

133

53437
392

942

258

142

848

64

18

505

556434

650

476
251

362
731

979

742
618

235

346
294

364

4
446

685

761 412

471

957

580
878 545
855

997
126
671

770
806

322

762
969

894

634

601

536
414

306

555

314

819

781
889

813 939
399

926

350

822

624

360

217
28

651
345

946

807

459

482

778
275

828

195

772

812

713

298

55

749
720

836

468
514

1

796

920

211

986

491

831

883

277

310

438
101

293

717

881
178

587

266
138

599

960
485

166

131

59

747

867

654

480

780

453

93

854

198

379

543

262

143 302

706

333

736

904 834

752

348

674

452

344

716
982

497
83

974
380

226

49 824

566
146 261

139

335 191

991 325

144

578

106

343

161

967

254299

628

407

272189
174

931

320

369

308

655

256

535
961

557 909

598
938

50413
305

636
270

90

300

517

890 145
381

738

410

613

539
509

658

249

554

829

673

924
605

458
835

552
460

646

551

538

686

197

553

680

395
290

570

697

99

220

847

712
157

583171

870
820

760648

966

264

423
148243

130

324
987

693

70

91
968

77

499

842

542

632

522

656
107

129

643

617
349

765

337

494

60

153

279

751111109

970

352

741

436

944

245

874 382

865

147

68

952
882

925

431
424 33

948

419183326

184 85

136

935
61435 340

444

735 227223
958
14

160

531
56

592

162

339

709

635175

661
767

930

981

529

629

683

202276
401

274

358 450
231

664
548

367

66612

363

911

506

784

205

417

25

40
816

193

57

47
756

80

207

311
342

467

318

573

213

209792
128

954

864

912

915730

519
366995

104

221

996789

140
427 356

39

103

727

802

659
873

62567

329

940
229

612

404
421

690

108
604238

137

689

809

47241

745

317

766

462

837
937

832
71

284

782

862

89

3

521

757
641

615

187
669

66

631
54

81
374

853575622990

676 282

633

135 989

841

357

581
662

558

530507

376

907

5

418123

562

588

593
79

897

498

62478

759

260420677 428263564

477

649

638

977
524

259

722

391

180776440
936

117

456

610

67048
962526 861

916

283

46710

87
537

703

222
596

24
773

479565645
560

492

176

50169

971

454

181

29
385

288679
78
572

309464

466691
606

594

525
152

69

728
383

640

900
186
42

286

523

868

330
32

439

903660
898702899

280375296

851373

637
698

312359
627

433885
58

846

941

105
927

406

215

913

791

416

639653923

833
182

16

800

707

798

823

608

445

273 486
681

547
510

457

584908
769255

821976124

30
488

563

896

515

955

252
355

316
196

463
810

265

12736

23

838

411

44

315

586

840
516

983

569

582
591

338

396

817

74

771
158

892389

527

856
839

785

743469

95

611 425426

353

850
84

818

473

52100

746

579

292

289
179

102

694
500

(a) 14 malicious nodes

164

998

722

547

308
99

970

464 907

491

436
583

768
108

657

950
582

403

97

776

339

151

408

770
587

267

216

598

709

827

560

281

433

986
60

705 177

369

817

897

623

19

157
480

942

71
400

622

627
540

669

647
134765

200

231

718
142

24

397

289
670

531

960

800

70

544

327

574

696
418

895

207

576

210

30

118 488 300273
275

461

318

678
990

889

396

823
45

861

75

756
341

994

483
105

381

442

245957

926

618

534

652

378

317
752

704

843
314

384

600
206

94
33

93788

451

186

653

409

545

334

181

755

745
259

767

41120
593

360

431

31

184

364

333

878

40
988

680

597

728
50

644

589

825

946

72

699

971

370
447423

230309

171

595553 162

398

440
288

351

554

237997

376

782

466

16

727
659

821

677750
536424
965

712

862857

885
307

342

789

701

612
959

608

34

222
539

9

366

444

358414

115

123

22

1

815

719

474

495 890

633
79374

377 917
165

356
456

462

67142

941
822

406

321

715

125

460

280
375 249

195

110

996

535

459

176

577

542

573

663

324

204

629
27
773297

140

720

686

966
780

537
898

549

82269754

947

155350
260877

984

132

938

690

956

679

198
87

126792
478

298
562

503

804
920

458494
415
380

601
700

95
943

256

359

197

716

128

848
949

170

802

399

51

732

11689
908

613

813672
840

805

743

382
934

858

847

174

154 604

905

355

891

127

832

420

388

590

634

723

213

26

326

675

58

655
883

985

682

758
28

427

323

215

262

363

238 220
757

572962
518

501
807

301 964

806 66

223

602
584

578

240

322

692

979
272

982

591
841 91

881

844
477

764
129

217

413

349

624

500

646
850

392

107167

5103
733 17

144

641 666

373

837
383

888

713

331

974

344
831

511
977

119

617

190

639

32

658

981

726

291

448

906651

953568

588

524

983

909

247

476

665

13121

156771

439
53377

425

995
194

14795

922 299
923

83

163

694

903 963

497

929

80

257

681955

945

801551457 56

803

786

654
631

621

729

662

707

931

730

808
685

904
225

438

969

426

264

548

371

285

470475389
374

446

146

172

310

328

203

441

642

290258

367

916

751
153

620

626

932 559191

405
852

902

180

454

211

6

772148

999

346

394

98

277

911

481

636

855

253
791

645 664
412

218

564

667

390

79
325

596

619
781

580703 828
183

753

499

935

138
187

731112

737188
472

52

214

871
295

839

430

527

643

175
343

455
615

509

199

43
227

130

809

668

930

854

493 628
149

849

205

879336
896

924

271

579

452

49

47

507

232

695

434228

875

417

541

788

246
15

502

925

202
379

683

812

54

914

992

252

876

738

515

284

958

113

169

571

53

39

185

489
18

63
419

886

348
783

846
834

708

609

449

137

152

100

993
338

212

520
989

37

484

68

21

948

826
490

76

742

141

779

556

385

122

887
640

575

717

674

954

158

794
892

864

874

85

404

870

46

201

150

939

842

136

437

517

487830

661

401
254

972
411

798

278

530

656

486

329

835698936

340 748

913111
747 746513

526

649
345

648

594

660

516

973

687

337
760

219
766

266978

637
508

229

863 279
209302

725
114

921
335

918

901

235

676
429

592

387

55
292

505
416

893
250 567
89

224

739

29
234

319

933

785

196

407

482 352
320

330
443

62

586

166

987

735

274

581

365

35

393

740
603

749
84

872

523

421
519

179
635

570

7

625

616614 684

927
135

263

714
468

552
168

23

557

453

968

293845101

744532

543

241

368 391
41036

361
521

251

313

282
362

525

873

496

189

117

93

182

479

585

242

402
57

797

139

81

353

928

538

506

814

450

69
312

558

810
305

0

514

710 784

706

838 192

10

67

724

919

463

4

721

445

546

610

386

432

697

287

650

833

286

255

561

485

236

769

276

131
294

44

25
2

116 702
796

824

882 569

777

48
606

761

607

976

61

951

161
422

711

944880967
20

522
894

239

884
304469

283

315

899

787

78

428

611

836

435 467

465

816565

866
5 630

143

736
912104

811

124

145133

64

859

528

867
762

799

691

233

529

65
774

159

952

638

178

688

868

775

504

306

498

865

38

90

550

226

316

106

261

357

693

819

818

673

473
910

332

991

354

980

820 248

103

915

59

270

243

221

8

492

147
109

940

763

73

372

160

96

741
311

566

599

193759

790

395

471

851

12

86

563

856

900

975

265

734

632
173

961

(b) 16 malicious nodes

10

740

685

795

778

609

340

930

307

414

914

636

103 98

319

869

584
733

661

233
992

848

225

339

79

412

469
771

874

384

858

810

400

539

181

541

509
917

969

851

112102

68

392

830 478

693

442
674

717

151

136

254

55
745

821

429

322

148

49

938

166
750

883

904
724

981

537

424

770
884

764

829
46

294

208

690242

900

101

675

946

346

931

754

338
937

193
248

519
517

862

312

579

980

631

65
773

488

814

598
473

963

536

122

86

251

605
209

304

954

901

290

243

310
556

317

0
3

743

443

758

150

575 652

586

145

562 725

33

82
894

720

401

784

749

440

776
578

573

466

525

415

651

723

703 542

986

88

124

886

16

306

73

950

973

160

161

831

487

468

600

100
67

576

845

130

736

239

596

90

29

714

801

345
203

727 184

581

813

781
85

855

362

591

53

183

21

199

146

129

351 42

214
189

641

593 742
299

656

118
14

739
314

47

947

289

303

379

991

698
263

175

666

490

687

919

60

902

13

841

982

601

41

252

305

847

328

256

615

623

235

657

431

365 908

504

741663

114

530 511

348

456
244

802

259

918

925

402
700

709

202

960

428

976
512

69

899

260

452

422

970

524
898

929

321

775

863

296

896

109

89

588

645

309
837

253
83

797

612

349
257

850

811
119 643

555

549
375

220

632

864

655

782

531 162

142

817

610
34

892

1
482

543

266

94

180

223

377

544

508

315

421

832

712
445

912

995

216735

2

31

780

174

711

355

381
495

95

928

804

983

171

316
805

890

695

51

404

786

599

438

230
376

169

561

789997

144

923

301

247

824

681

262
444

164

650 747

669

514

523
624

173

500
20

370

497

413

320

560

498

489
279

505

227 984

387989

273

147

998
188

99

198

603

870

999

818
897

545

245

458

951

54 237

268

857

839

116

52

405

692

231

608 464

446

529
135

852

769

867

958

344
558

751

378

934

140 386

885

177 167833

585

994

880 329

354

238

809
382

341

708
626

688

217

777

798

23

436

594

493

399

734

205

115

215

288

5

518

647

936 872

957 8
241

74

371

574

449

9

280

689

128

630

22

435

87

324

715

97

170

834

838

889

331

360

554

699

646

548

533

625

408

860

972

411

513

602

388

520

117

697
477

738

826

849
876

154

566

944

192

616

622

638
475

502

373 618

987

441
766

410

463

948

197
110 684

882

77

403

282

748

670

846 141

927

24

416

614

59

38

911

385

888 275

952

465

200
731

595

92
790

453

569

156

746

204 840

121
212

353

893

792

492

768

139

43

568

873
246

380

269

955

157
127

567

682
71 357

293

480

179

32

964

570

224

540

597

635

726

63
822

28

654

132

791

64

221

563

27

653

78

434

369

729

949
272

706

325

640

501

138

356

123

311 794

642

808

398

367

374

232
334

72

535

397

627

926

120

827
407

4

979

19515

779

418

628

557

677

975

76

459

337

168

107

352

66

111

803

668

499

211

56538

705

613

799

394

868

219

988

965

552

694

258

787

342

534

267

274

532

300

722
757

516

877

604785

510

313

249

359

592

678

201
12

704

828 36

617

326

716
996

58

137

323

425

291

783

665

521

515
660

228

713

816

496

905

887

270

932

526

39

910

583

953
895

143 271

335

506

481
909

395

409
419

84

662

396

206

985

943

842

287

454

430

580

451

788

347

906

710

924

30 11

620

796

281

389

907

159

343

285

990
6

470

933

819420

105

629

134

940

728

196

611

437

825

350

971 284

276

234

572
866

277

920
961

318

283

913

81

390

462
737

550

843

856

222

589

644

993

391

308

91479

361
673

679

634
298

194

229

93702

295

564

472

759

483

619

755

460

113

278

187

968

172

551

207

683

393

671

686

861

546

878

368

835

859

942

800

427

96

471

761

762

158

163

559

756

806

977

763

364

767286

218

547

265

106

155

50

744

522

176

447

528

37

332

108

820

330

503

719

853

7

607

891

854

61

633

939

125

178

426

967

363

658

921

621

945
772

491

844

648

126

922

45

812

152

696

978

639

879

186

131

57

484

577

423

450

406

956 494

875

226
417

637

582

153

26
730 815

836

75

793

149

701

752

486

962

297
718

182

959

64940

461

261

553

333

240

476

823

62

721

358

17

439

606

527

255

760

807

264

571

25

664

865

871

80

185

372

133

18

672 774

966

236

707

753

915

19

485

765

336

941

565

455

881

383

467

191

667

432

213

659

590

691

35

327

366

680

44 104

302

903

(c) 18 malicious nodes (d) 20 malicious nodes

Figure 3.2: Overlay mesh status after a hub-attack (MN variant). The PSS cache

size is fixed to 20 IDs. When k = c (see 3.2(d)), each node is fully disconnected.

Less than 20 gossiping cycles are required to disrupt the PSS. Network size is

1000 nodes.



28 Chapter 3. Attack model and analysis

PSS cache size c set at 20 entries. In the evaluation, we consider both NEWSCAST

and basic-shuffling implementations of the PSS. In order to achieve a fair com-

parison among them, we set l = c in the case of basic shuffling (see Section 2.2.2);

in this manner, the amount of information exchanged is equal at each cycle for

both implementations. All the individual results described are averaged over 10

separate experiments.

The effects of our hub attack on a 1,000 node overlay are shown in the se-

quence of images in Figure 3.2. The images from left to right show the increasing

damage to the overlay as a function of the number of malicious peers involved

(respectively 14, 16, 18 and 20). Each image has been taken just after the exit of

malicious peers from the network. As shown in the rightmost image, when k = c,

the network is completely partitioned. As already discussed in Section 3.1, now

for each remaining node, all its neighbors were the malicious peers that no longer

exist in the network.

Even for hub attack scenarios where the number of malicious peers are less

than the cache size (e.g., 70-75%), the overlay is still severely damaged as can be

seen in Figure 3.2(b) with the network partitioned into many distinct clusters. As

the PSS is incapable of merging clusters together, recovery of the network requires

a reboot process that will restore a random wiring among the clusters after a few

cycles.

The emergence of clusters when the caches are polluted to 70-65% of their ca-

pacity with malicious peers IDs is shown in Figure 3.3(a). A cache pollution per-

centage lower than these values leads to a single, very large and highly clustered

component. For this kind of damage, the standard PSS can restore the original

topology in a short amount of time. Thus, the hub attack in this case is not very

serious with only a transient damage and the result holds for any network size.

The simulation results also confirm that when k = c, the number of clusters is

equal to the actual network size. When the number of malicious peers k is closer

to the cache size c, say 18 − 20, then the number of nodes that are located out-

side the main cluster decreases almost exponentially. This behavior is shown in



Chapter 3. Attack model and analysis 29

Figure 3.3(b). Figure 3.3(c) shows the important result from our experiments on

network fragmentation due to a hub attack from a different perspective. Once

the small set of malicious peers exit the network, the average size of the biggest

cluster tends to be quite small. This behavior is completely opposite to the effect

of a massive node crash failure in a PSS overlay in which a giant component is

surrounded by few small satellite clusters (see [JGKvS04]).

These results also hold for the basic-shuffling PSS implementation depicted in

Figures 3.3(d), 3.3(e) and 3.3(f). Apart from a small variance in the actual values,

the results are almost coincident.

The graphs in Figure 3.4(a) shows the convergence of the overlay to a com-

pletely destroyed status in terms of the percentage of nodes that become defeated

over time. The smaller 1,000 node network converges rapidly as the cache size of

20 is comparatively large for such a small network. However, the larger overlays

also becomes completely destroyed in less than 45 cycles. Note that the y-axis

percentage of defeated nodes does not reach 100% as the node count includes the

malicious peers also.

However, the FN variant of the hub attack is much more destructive as it can

destroy the network with just 4 or 5 malicious peers regardless of the network

size or the cache size, as we discuss next. The performance of the FN variant of

the hub attack is summarised in Figure 3.4(b) with the y-axis showing the time

required to destroy the network and the x-axis indicating the network size. Each

line represents a specific number of malicious peers k involved in the attack with

remaining cache entries (c − k) filled with fake IDs. As shown, even with only

four malicious peers, the network can be defeated in 42 cycles for a 10,000 node

network. The differences in time required to defeat the overlay for various net-

work sizes is in general small. Therefore, it can be said that the attack speed is

independent of the network size. However, when we use less than 4 malicious

peers, the time required to defeat the network begins to increase noticeably. For

example, with 2 malicious peers, the time is almost linear to the network size.

The reason for this phenomenon is twofold: (1) the sources of infection become



30 Chapter 3. Attack model and analysis

limited and (2) the fake IDs polluting the caches have the effect of reducing the

node degree, limiting further chances of contacting a peer and thus slows down

the infected PSS. It is interesting to note that the FN variant of the hub attack is

able to destroy a network using just a single malicious peer; however, the time

needed to complete the attack is too long for it to have any practical impact.

Figure 3.4(c) and 3.4(d) show the same scenario, but using the basic shuffling

PSS implementation. Apart from a very small difference in the convergence speed

(e.g., a few cycles), the observations we made previously still hold. This speed

difference is probably due to the absence of a time-stamps bound to the node IDs

in the basic-shuffling algorithm; this makes the pollution to spread a bit slower,

as the mechanism with which a new ID is collected is random rather than deter-

ministic (e.g., time-stamp based). However, the difference is almost negligible.

It is important to realise that this rapidly spreading attack has a very high in-

fection rate, thus making it extremely difficult for peers to react in time. In other

words, by the time a peer discovers that it is infected, it is already too late to ob-

tain assistance from a neighbor peer, either because the node is already defeated

or its neighbors are too polluted to be of any help.



Chapter 3. Attack model and analysis 31

 0.1

 1

 10

 100

 1000

 10000

 0  5  10  15  20

N
um

be
r 

of
 c

lu
st

er
s

Number of malicious nodes

1000 nodes
5000 nodes

10000 nodes

(a) Emergent clusters, NEWSCAST imple-

mentation

 0.1

 1

 10

 100

 1000

 10000

 10  12  14  16  18  20  22

N
um

be
r 

of
 n

od
es

 o
ut

si
de

 th
e 

m
ai

n 
cl

us
te

r

Number of malicious nodes

1000 nodes
5000 nodes

10000 nodes

(b) Nodes outside the main cluster,

NEWSCAST implementation

 0.1

 1

 10

 100

 1000

 10000

 0  5  10  15  20

M
ai

n 
cl

us
te

r 
si

ze

Number of malicious nodes

1000 nodes
5000 nodes

10000 nodes

(c) Avg. biggest main cluster, NEWSCAST

implementation

 0.1

 1

 10

 100

 1000

 10000

 0  5  10  15  20

N
um

be
r 

of
 c

lu
st

er
s

Number of malicious nodes

1000 nodes
5000 nodes

10000 nodes

(d) Emergent clusters, basic-shuffling imple-

mentation

 0.1

 1

 10

 100

 1000

 10000

 10  12  14  16  18  20  22

N
um

be
r 

of
 n

od
es

 o
ut

si
de

 th
e 

m
ai

n 
cl

us
te

r

Number of malicious nodes

1000 nodes
5000 nodes

10000 nodes

(e) Nodes outside the main cluster, basic-

shuffling implementation

 0.1

 1

 10

 100

 1000

 10000

 0  5  10  15  20

M
ai

n 
cl

us
te

r 
si

ze

Number of malicious nodes

1000 nodes
5000 nodes

10000 nodes

(f) Avg. biggest main cluster, basic-shuffling

implementation

Figure 3.3: Cluster emergence after the exit of all malicious peers. The first three

graphs represent the NEWSCAST implementation behaviour, while the others rep-

resents the basic-shuffling implementation.



32 Chapter 3. Attack model and analysis

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50

%
 o

f d
ef

ea
te

d 
pe

er
s

Cycles

10000 nodes
5000 nodes
1000 nodes

(a) NEWSCAST PSS: MN attack, 20 mal.

nodes

 0

 50

 100

 150

 200

 250

 300

 350

 400

1000050001000

T
im

e 
to

 d
ef

ea
t t

he
 n

et
w

or
k 

(c
yc

le
s)

Network size

10 m.nodes
9 m.nodes
8 m.nodes

5 m.nodes
4 m.nodes
3 m.nodes

2 m.nodes

(b) NEWSCAST PSS: FN attack, mal. nodes

∈ [2 : 10]

 0

 20

 40

 60

 80

 100

50403020100

%
 o

f d
ef

ea
te

d 
pe

er
s

Cycles

10000 nodes
5000 nodes
1000 nodes

(c) Basic-shuffling PSS: MN attack, 20 mal.

nodes

55

 0

 50

 100

 150

 200

 250

 300

 350

 400

1000050001000

T
im

e 
to

 d
ef

ea
t t

he
 n

et
w

or
k 

(c
yc

le
s)

Network size

10 m.nodes
9 m.nodes
8 m.nodes

5 m.nodes
4 m.nodes
3 m.nodes

2 m.nodes

(d) Basic-shuffling PSS: FN attack, mal. nodes

∈ [2 : 10]

Figure 3.4: (a),(c) Convergence to the defeated network using 20 malicious nodes

adopting the MN attack variant; using a number of malicious nodes lower than

the cache size c, the nodes caches cannot be completely polluted and thus, not

even a single node is defeated. The results are shown for NEWSCAST and basic-

shifling respectively. (b), (d) The time required to defeat the network using the FN

attack variant; distinct network sizes are shown and each line represents a specific

number of malicious peers. The results are shown for both PSS implementations.



Chapter 4

Effects on protocols other than the PSS

From the previous chapter, it is clear that the hub attack has a devastating impact

on the PSS and on its crucial functionality.

When the PSS becomes completely partitioned, any protocol relying on the

PSS becomes completely isolated as well. Other protocols instead, using the PSS

as a bootstrap facility to build their own overlay, may have less trouble; however

the lack of the PSS functionality would produce problems in dynamic environ-

ments if, for example, the peers are periodically sampling the network - i.e. using

the PSS - looking for newly joined peers.

Because of these reasons, we still consider the hub attack described in Section

3.2, but the attackers do not leave the network. Essentially, the attackers are inter-

ested in obtaining a leader position to influence and bias the performance or the

behavior of a higher-layer protocol or application.

We consider the hub attack in light of three distinct gossip based protocols: (i)

an aggregation protocol (see Section 4.1), (ii) the QuickPeer protocol (see Section

4.2) and (iii) the SG-2 management protocol for superpeer networks(see Section

4.3).

The motivation for our choice is the following: the first protocol relies com-

pletely on the overlay, provided by the PSS, while the other two are overlay man-

agers protocols; they still rely on the PSS for bootstrapping, locating new nodes

identifiers or diffusing critical information, but they build their own overlay (i.e.,



34 Chapter 4. Effects on protocols other than the PSS

the relation “who knows whom”) according to their specific constraints.

In the following sections, we will first describe each protocol along with its

attack scenario.

4.1 Aggregation protocol

Aggregation [JM04] is a family of fast epidemic-style averaging protocols de-

signed to compute any mean function on a numeric value held at each network

node. Essentially, we suppose each node holds a value expressing any relevant

characteristic and all nodes are interested into the global mean of this particular

characteristic.

The mean function must be in the form:

m = f−1

(
f(a1) + . . . + f(an)

n

)
where f(x) can be:

f(x) = x average

f(x) = x2 quadratic

f(x) = 1
x

harmonic

f(x) = ln x geometric

The averaging protocol can compute any aggregate function expressed as a

function of some means. For example, the variance can be computed using the

average and the average of squares, the network size can be estimated using 1
average

and the sum can be obtained using the network size times the average.

Aggregation does not manage the overlay wiring, but every node relies on an

underlying PSS (see Sections 2.2.1 and 2.2.2) which provides access to a neigh-

bor list cache. Without imposing any particular requirements about the topology

management protocol.

To understand how the aggregation works, we discuss how to calculate the

averages.



Chapter 4. Effects on protocols other than the PSS 35

The basic aggregation behavior fits exactly in the epidemic scheme (see Fig-

ure 2.1). The generic method UPDATE() returns (a + b)/2, where a and b are the

values held by node A and B respectively. This computation step is performed by

each node at regular intervals (at each simulation cycle). The global value aver-

age is not affected, but the variance over all the estimates decreases very quickly

after a few interaction steps; the result is that each node reaches an almost exact

estimate of the average of all the node’s values in the system. The convergence

rate decreases exponentially and it proves also highly scalable, in fact it is almost

independent from the network size.

In addition, the aggregation protocol is also very robust in case of (massive)

node failures. Failures can at most lower the speed of the aggregation process.

As stated in the beginning, an interesting direct consequence of the averaging

function is the ability of estimating the network size. This feature can be useful,

for example, to fine-tune other protocols according to network size. This function

can be achieved using a particular setup at the start of the protocol: essentially,

we need the sum of all node values to be exactly 1. In particular, we can set just

one node to the value 1, while all the others are set to 0. The average is 1/N, thus

N can be extracted directly.

However, it is not easy to set up values in this fashion in a real P2P distributed

system. How to choose the node holding the value 1? Messages can be marked by

a unique leader ID; only this leader node can set its value to 1. Nodes could also

start multiple aggregation instances to increase the estimation accuracy and each

instance must have its own leader node. Unfortunately, this technique, without

a central service dedicated to the management of the leader nodes election, can

be hardly adopted, as the agreement problem for the leader election is too hard,

especially in a large-scale, dynamic environment.

4.1.1 Aggregation under hub attack

A comparison of the performance of the aggregation protocol under attack is

summarised in Figure 4.1. We used the averaging version of the aggregation



36 Chapter 4. Effects on protocols other than the PSS

 1e-15

 1e-10

 1e-05

 1

 100000

 1e+10

 0  5  10  15  20  25  30  35  40

A
ve

ra
ge

 v
ar

ia
nc

e

Cycles

Normal conditions
Hub attack

Hub attack @ 40% pollution ratio 
Hub Attack extended

Figure 4.1: Impact of the hub attack on an aggregation protocol. Network size is

10,000 nodes. Distinct scenarios are compared.

protocol family described in the previous section. We measured the average vari-

ance of the aggregated values over time. The values to be averaged are assigned

to each node by a peak distribution of parameter 10,000 in a bootstrap phase (e.g.,

before running the protocol). The network size is 10,000 nodes.The cache size c is

20.

Essentially, the goal of this aggregation experiment is to obtain a value of 1

(the average value considering the network size and the initialisation values) in

each peer.

The lower line shows the normal behaviour of the aggregation protocol; 20

cycles are sufficient to obtain a negligible difference among the estimates of each

peer. In less than 40 cycles instead, the estimates become all equal.



Chapter 4. Effects on protocols other than the PSS 37

The other lines in the plot shows the behavior of aggregation when the un-

derlying PSS is under a hub attack. The attack is started at the beginning of the

simulation, if not specified otherwise.

The next upper line (from the bottom) shows the convergence when the hub

attack is running. In all the attack scenarios of this section, 20 (c = k) malicious

nodes are involved. The effect of the cache pollution is evident. In this particular

case, the accuracy (e.g., the variance of the estimates) of the calculation is toler-

able, but the protocol takes longer and it never reaches the exact value. In other

words, the presence of a poisoned PSS is evident.

As aggregation is usually run at regular intervals (see Section 4.1) to produce

a continuous monitoring process, the aggregation protocol is unlikely to start at

the same time as the hub attack. In fact, the third line from the bottom shows a

slightly different set-up: the aggregation starts when the hub attack has already

polluted 40% of the PSS caches (on average). The effect of a biased topology is

evident and the protocol accuracy is almost stopped in 15 cycles. As soon as the

random graph has turned into a hub topology, the convergence makes no more

progress and the variance of the estimates is still high.

Finally, the upper line shows a scenario in which the malicious nodes run

also a simple, malicious version of the aggregation protocol; these nodes never

average their value and always replay their same value (10,000 in the example).

Essentially, this behavior is an adaptation of the hub attack general model to the

aggregation specific case. The malicious behavior at the attackers is started at

the beginning of the simulation. The convergence diverges in a first phase, then

tends to converge (very) slowly towards 5,000. In fact, when the hub topology

is emerged, every node is connected to a malicious peer and continuously gets

10000 and divides by 2.

The final example gives an idea of what can be done when the attackers ac-

quire first a leader position (e.g., with the hub topology) and simultaneously in-

ject malicious information in the higher level protocol or service. It is interesting

to note that the malicious aggregation behavior would have very little effect with-



38 Chapter 4. Effects on protocols other than the PSS

out the presence of the biased topology. The combination of the two approaches

has a devastating impact. In this case, the hub attack opens the road to much

more dangerous attacks and can be seen as a “Trojan horse”.

4.2 QuickPeer protocol

QuickPeer [CJ05] is a latency-aware topology manager targeted to un-structured

networks. Quick-Peer can effectively build and maintain large scale latency-aware

overlay topologies. These topologies reflect the underlying IP-level network topol-

ogy, and provide each peer with the knowledge of the closest (or furthest) neigh-

bor available in the overlay network at a given time, according to network dis-

tance (latency).

There are several works that are similar or at least related with QuickPeer.

T-Man [JB05], for example, is a generic, gossip-based framework for manag-

ing and building large-scale overlay topologies that inspired our work on Quick-

Peer. However, in [JB05], T-Man performance is evaluated only on “geometric”

topologies (e.g., torus, ring or binary tree). In contrast, we evaluate QuickPeer

using more realistic topology models and in dynamic environments to illustrate

QuickPeer’s self-healing and adaptive behavior. Essentially, Quick-Peer can be

considered as an instance protocol in the T-Man framework optimized for prox-

imity topologies using virtual coordinates.

In [RHKS02], the authors propose a scheme to partition overlay nodes into

“bins” according to network proximity information. This information is gathered

from DNS and delay measures against a set of landmark nodes. Our approach, in

contrast, does not need any infrastructure services and exploits a synthetic virtual

coordinates system (VIVALDI [DCKM04]) to obtain distance measurements.

In [DGH+87], the authors propose an epidemic protocol, the Localiser, to opti-

mize an unstructured overlay network built using SCAMP [GKM01]. Such pro-

tocol prove to be scalable and tolerates failures. However, no massive node join

scenarios are evaluated.



Chapter 4. Effects on protocols other than the PSS 39

Several architectures for global distance estimation services that exploit syn-

thetic coordinates have been proposed recently. IDMaps [FJJ+99] and GNP [NZ02]

rely on deployment of infrastructure nodes. In contrast, VIVALDI [DCKM04], PIC

[CMAP04] and PCoord [LL04] provide latency estimates using distance measure-

ments gathered only between end hosts in the overlay network. We opted for

VIVALDI because of its fully distributed nature and simple implementation. How-

ever, QuickPeer is not tied to a specific coordinate system and can be used with

any of the systems cited above.

In the followings, we introduce the problem of building the latency-aware

overlay and the QuickPeer protocol. Section 4.2.2 defines the experimental setup

and presents simulation results proving QuickPeer scalability and adaptiveness

to dynamic environmental conditions. Finally, we briefly discuss the protocol

features and in Section 4.2.4 we test the reaction of QuickPeer under the hub

attack.

4.2.1 Latency-aware overlay topology management

System Model In our model, peers communicate via message exchanges, ex-

ploiting the connectivity provided by an underlying routed network (i.e., the In-

ternet). Each peer knows a set of other peers (its neighbors) that define its local

cache. As we consider networks of large size, partial membership information at

each peer is required for scalability and manageability purposes.

Network distance between peers is modeled using the VIVALDI network coor-

dinate system (see [DCKM04]). Each peer in the overlay has an associated node

identifier (ID), e.g. a touple 〈IP address, port, coordinate〉. Due to this simple ID

representation, we assume that peers run on distinct physical hosts (see Section

2.2).

We consider a dynamic overlay network, where peers may join or leave the

network at any time (churning).



40 Chapter 4. Effects on protocols other than the PSS

do forever

wait(∆t)

neighbor = SELECTPEER()

SENDSTATE(neighbor)

peer cache = RECEIVESTATE()

my cache.UPDATE(peer cache, trimPolicy)

do forever

peer cache = RECEIVESTATE()

SENDSTATE(peer cache.sender)

my cache.UPDATE(peer cache, trimPolicy)

(a) Active Thread (b) Passive Thread

Figure 4.2: QuickPeer protocol pseudo code. It fits perfectly in the standard gos-

sip scheme, in fact it is almost identical (see Figure 2.1).

The VIVALDI protocol VIVALDI [DCKM04] is a decentralized, scalable, and effi-

cient protocol developed at MIT. Using VIVALDI, nodes may obtain good coordi-

nates with few RTT probes directed to a small subset of nodes. More importantly,

VIVALDI can exploit normal traffic produced by applications using it, without re-

quiring further communication.

The estimate of the latency distance between vi and vj is denoted est(vi, vj).

Being estimates, these values may differ from the actual latency. The pairwise

error between the estimate and the actual latency can be computed as:

| lat(vi, vj) − est(vi, vj)|

min{est(vi, vj), lat(vi, vj)}

where lat(v,w) expresses the latency distance between a pair of nodes (v, w)

and represents the average round-trip time (RTT) experienced by communica-

tions between them.

In our experiments, the number of dimensions of the virtual space is 5; mea-

suring the error between all pairs of nodes, we found a median error of only 0.14,

and a maximum error of 3.5.

The QuickPeer protocol QuickPeer (QP) is an epidemic protocol that, within

few gossip exchanges among the participants, provides each peer with the closest

(or furthest) peer identifiers (IDs) available in the overlay. The basic idea under-

lying the protocol, inspired by the work presented in [JB05], is as follows. Each

peer maintains a fixed-size cache holding k IDs. The cache is sorted according to



Chapter 4. Effects on protocols other than the PSS 41

the network distance estimates provided by VIVALDI coordinates. So, at any time,

the first position in the cache holds the closest peer known so far.

At the beginning, QuickPeer caches needs to be initialized with a random

sample of nodes taken from the whole overlay. For this purpose, QuickPeer relies

on a PSS instance [JGKvS04]. We adopted the Newscast protocol [JKvS03] as

a sampling service implementation. Starting from a first random snapshot, QP

basically evolves the initial random overlay towards the desired latency-aware

topology.

In order to evolve the topology, peers exchange caches in an epidemic fashion.

Periodically, each peer actively selects a neighbor and starts a cache exchange

process (see pseudo-code in Figure 4.2). Once the remote peer’s cache has been

received, it is merged with the local one. Note that this merge operation preserves

the ordering of the local cache, i.e., newly received IDs are sorted according to the

distance from the local peer coordinates.

After the caches have been merged, a trimming policy selects the k IDs (out

of the possible 2k) that are kept in the local cache. Currently, QP supports two

distinct trimming policies:

1. ClosePolicy(k): selects the first k IDs in the cache (i.e., the closest neighbors

seen so far);

2. CloseFarPolicy(k): selects the first and the last k/2 IDs in the cache (i.e., the

closest and furthest neighbors seen so far).

Merging and trimming operations described above are performed in the UPDATE()

method shown in Figure 4.2.

In contrast to standard epidemic approaches [JKvS03, EGH+03], QuickPeer

randomly picks the neighbor for an exchange only in the first half of the cache

(i.e., among the first k/2 IDs). Experimental results [JB05] show that this strat-

egy leads to faster convergence to a latency-aware optimal overlay. In addition,

QuickPeer lets each node exchange at most once for each gossip round (actively



42 Chapter 4. Effects on protocols other than the PSS

or passively). This ensures that, on the average, all peers exchange caches the

same number of times during a QuickPeer session.

Failure detection QuickPeer detects failed nodes at picking time. If a neighbor

selected for the cache exchange does not answer a probe message in a limited

amount of time, it is considered failed and its ID is removed from the cache. In

case of massive node failures, however, the second half of the cache will still be

populated with references to failed peers, since the picking “cleans” only the first

half of the cache. To overcome this limitation, QuickPeer periodically triggers

a cleanCache procedure that probe peers that appear in the second half of the

cache. The frequency at which this procedure is activated may be adaptively

tuned to limit the network traffic generated by the probes.

4.2.2 Experimental evaluation

We validate QuickPeer effectiveness in building latency-aware overlay topologies

using simulation. Experiments have been performed on Peersim, a Java-based

cycle-driven simulator developed in the Bison project [bis]. We consider three

different network sizes: 212, 213 and 214 nodes. Network topologies are generated

with the Brite Internet topology generator [bri], using the Waxman algorithm on

a flat router model. The output of this phase is a weighted graph, where weights

represents latencies between routers in the generated topology. We then run all-

pairs shortest paths on the generated graph to obtain a matrix of RTT distance

between all pairs of routers in the network. Creating RTT matrix offline speeds

up simulations and allows us to simulate larger networks. A VIVALDI simula-

tion is then ran on this data to build the five-dimensional coordinates1 used in

QuickPeer experiments.

The QuickPeer cache size k is set to 40 in all the experiments discussed in this

section. An instance of the Newscast protocol boostraps the QuickPeer caches at

1According to the version of the VIVALDI protocol we have adopted, five dimensions are

sufficient to achieve a very good estimate of the RTT; see [DCKM04]



Chapter 4. Effects on protocols other than the PSS 43

beginning of the simulations2.

Our experiments focus on the evaluation of the following QuickPeer aspects:

1. protocol scalability and convergence rate: how well the protocol scales as

the network size increase. We measure the convergence rate as the percent-

age of nodes which hold its closest node reference (ID) in cache.

2. robustness: how QuickPeer reacts to fluctuations in the peer population.

All the results presented here have been averaged over 10 simulation runs.

Static scenario We present experiments that evaluates QuickPeer scalability and

convergence rate in static overlays (i.e., no nodes joining or leaving the networks).

We presents results obtained using two distinct cache trimming policies: close-

Policy and closeFarPolicy. These results show that QuickPeer scales well and is

fast in constructing optimal, large-scale latency-aware topologies.

ClosePolicy Figure 4.3 presents the QuickPeer convergence performance us-

ing the ClosePolicy trimming policy with parameter k = 40. The first thing to

note is that QuickPeer convergence rate does not depend on the network size. For

all the three scenarios, more than 99.5% of the peers have their closest neighbor

in cache at cycle 20. However, QuickPeer reaches 100% optimality only around

cycle 60. In fact, as the protocol clusters close neighbors together, it becomes

harder and harder for those peers that did not reach optimality to find their clos-

est neighbor.

To improve the convergence speed in the final phase, we implement the fol-

lowing optimization. At each cache exchange, the randomized cache maintained

by the underlying PSS is added to the merging process. This optimization yields

100% convergence at about cycle 30, as can be seen in figure 4.3. Note that this

2Newscast cache size is also set to 40



44 Chapter 4. Effects on protocols other than the PSS

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1  10  100

%
 o

f O
pt

im
al

 N
od

es

QuickPeer Convergence, 4096 Nodes

NCmerge off
NCmerge on

 97

 97.5

 98

 98.5

 99

 99.5

 100

 10  100

%
 o

f O
pt

im
al

 N
od

es

Cycles

Zoomed Convergence, 4096 Nodes

NCmerge off
NCmerge on

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1  10  100

QuickPeer Convergence, 8192 Nodes

NCmerge off
NCmerge on

 97

 97.5

 98

 98.5

 99

 99.5

 100

 10  100

Cycles

Zoomed Convergence, 8192 Nodes

NCmerge off
NCmerge on

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1  10  100

QuickPeer Convergence, 16384 Nodes

NCmerge off
NCmerge on

 97

 97.5

 98

 98.5

 99

 99.5

 100

 10  100

Cycles

Zoomed Convergence, 16384 Nodes

NCmerge off
NCmerge on

Figure 4.3: Convergence rate expressed in percentage of nodes for each network

size. The second line of pictures show the final phase details.

feature comes at no added cost in terms of network usage since the merge pro-

cess is local at each node. For these reasons, we have decided to keep this feature

always on during all the other tests.

CloseFarPolicy Figure 4.4 shows the convergence performance obtained with

the CloseFar trim policy. With this policy, QuickPeer provides each peer with the

closest and the furthest neighbors present in the overlay. As can be seen in Fig-

ure 4.4, close and far convergence rate are pretty similar. However, in all our

experiments, we experienced that QuickPeer locates more easily furthest nodes

in the initial convergence phase.

This policy merges both the effects we would obtain by two distinct instances

of the protocol having a Close and “Far” policy, without their overhead.

Dynamic scenarios We present experiments that evaluate QuickPeer scalability

and convergence rate in dynamic overlays. We consider a massive node crash sce-

nario in which half of the nodes are killed during QuickPeer convergence phase



Chapter 4. Effects on protocols other than the PSS 45

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1  10  100

%
 o

f o
pt

im
al

 n
od

es

Cycles

4096 Nodes

close
far

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1  10  100

%
 o

f o
pt

im
al

 n
od

es

Cycles

8192 Nodes

close
far

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1  10  100

%
 o

f o
pt

im
al

 n
od

es

Cycles

16384 Nodes

close
far

Figure 4.4: QuickPeer convergence performance for each network size. The Close-

Far policy is used to trim the node caches. Two kinds of optimality are considered:

close convergence (standard line) and far convergence (dotted line).

and show that the protocol handles the failures gracefully. In addition, we eval-

uate QuickPeer behavior in a scenario where a large number of nodes join the

overlay during the convergence phase. Even in this case, QuickPeer adapts to the

dynamic conditions of the environment.

Nodes crash To evaluate the protocol robustness in case of a massive node

crash, we ran the following experiment. The experiment starts with a network of

214 nodes. At cycle 5, right in the middle of the Quickpeer convergence process,

50% of the active nodes fail.

In this catastrophic scenario, QuickPeer is still performing well, as depicted

in Figure 4.5. Note that QuickPeer convergence is still increasing even one cycle



46 Chapter 4. Effects on protocols other than the PSS

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5  10  15  20  25  30  35  40  45  50

%
 o

f O
pt

.N
od

es

QuickPeer Massive Node Crash Test

50% @ cycle 5
50% @ cycle 5, Cleanview

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 5  10  15  20  25  30  35  40  45  50

A
vg

 D
O

W
N

 n
od

es
 in

 v
ie

w

Cycles

QuickPeer Massive Node Crash Test

w.o. Cleanview
w. Cleanview

Figure 4.5: Massive crash scenario: 50% of nodes are randomly crashed (re-

moved) at cycle 5. The two sub-figures depict respectively the convergence rate

and average node cache pollution per node.

after the massive node crash and optimality is reached in about the 30 cycles. This

behavior is expected, since now QuickPeer has an easier job to accomplish given

the smaller size of the overlay.

After the node crash, each node holds in its cache, with high probability, ref-

erences to failed nodes. In this experiment, the cleanCache procedure is triggered

every 3 simulation cycles.

The bottom sub-figure in Figure 4.5 shows that, after the crash, the node

caches are getting populated with failed IDs. Without the clean cache procedure,

the number of failed IDs initially tend to decrease due to the cleaning process as-

sociated with the picking in the first half of the cache. However, after a few cycles,



Chapter 4. Effects on protocols other than the PSS 47

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  10

%
 o

f O
pt

.N
od

es

QuickPeer Massive Node Join Test

50% at cycle 5

Figure 4.6: Convergence rate for the massive nodes join: starting from 213 nodes

network, 4096 new nodes are added at cycle 5. The arrow (between cycle 5-6)

indicates a transient slow down in convergence rate due to the massive node

join.

the average pollution stabilizes around 45% of the cache size (i.e., it fills nearly

half of the cache). The cleancache procedure stops this pathological behavior at

cycle 10.

Nodes join QuickPeer reaction to a massive node join scenario is depicted

in Figure 4.6. The experiment starts with an overlay network of 8192 nodes. At

cycle 5, 4096 new nodes join the overlay.

The convergence rate slows down at cycle 5, just after the massive join. Af-

ter this step, the rate grows exponentially as in previous experiments until full



48 Chapter 4. Effects on protocols other than the PSS

convergence is achieved at cycle 30.

4.2.3 QuickPeer discussion

The QuickPeer topology may be useful for several distributed applications, like

distributed online gaming, context-aware P2P applications and QoS-aware pub-

lish/subscribe systems. The distinctive feature of QuickPeer is that it can manage

large scale overlay topologies providing each host in the overlay with its closest

or furthest neighbor, according to network distance (RTT), in few gossip rounds.

Experimental results proves Quickpeer scalability, robustness to failures and

adaptiveness to scenarios in which large numbers of nodes join the overlay con-

currently.

4.2.4 QuickPeer under hub attack

We have compared the performance of the QuickPeer (QP) topology manager

protocol running over a corrupted PSS layer. We adopted a network of 8,192

nodes whose latency model has been generated by the Brite Internet topology

generator according to the procedure described in Section 4.2.2.

Figure 4.7 shows the QuickPeer’s performance (e.g., in terms of the percent-

age of the nodes successfully arranged in a latency-aware fashion) according to

increasing levels of the PSS cache pollution.

With a pollution in the range [0 : 80[, QP is almost not affected. We can expect

this result as QP starts from a copy of the current PSS cache and evolves by gos-

siping its own cache. If the starting cache is sufficiently random, then the protocol

can wire its own latency-oriented topology.

In our example network, the QP latency-aware topology starts degrading

from an 80% PSS pollution level, however the performance gap is negligible in

this case. The performance drop is much more evident with the 85% and 90%

levels of pollution in which the starting network is severely clustered and nodes



Chapter 4. Effects on protocols other than the PSS 49

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10095908580

Q
P

 la
te

nc
y-

aw
ar

e 
no

de
s 

%

Avg. PSS cache pollution %

Figure 4.7: Impact of the hub attack over the QuickPeer protocol. Network size

is 8,192 nodes.

are trapped in their local neighborhood. Higher levels of pollution lead to an

obvious almost null result (e.g., no nodes hold the closest neighbor in cache).

The hub attack affects the QP protocol only when the PSS topology is close to

the hub topology; however, this is still a serious threat. Essentially, it means that

any QP instance started 25 or more cycles later than a hub attack (over the PSS

used by the QP instance), will have troubles or will not be able to generate the

desired topology at all.

In addition, the hub topology generated by the attack will prevent QP from

perceiving new node arrivals in a dynamic environment, as all newcomers will

join directly the malicious nodes.



50 Chapter 4. Effects on protocols other than the PSS

The hub attack model is general enough to be applied directly to other topol-

ogy manager algorithms such as QP. In other words, now we consider to apply

the hub attack and its malicious behavior to the nodes playing the QP protocol

instead of the PSS. In fact, both QP and the PSS are very close to the basic gossip

scheme and just a small protocol-specific adaptation is required. The following

example shows how flexible our attack model actually is.

While the ordinary attack for the PSS involves forging the timestamps of the

IDs in the message (see Section), here we also forge the coordinates of the mali-

cious nodes when they exchange the cache with a neighbor. The coordinate must

be close as possible to the coordinate of the neighbor in order to be accepted by

the neighbor in its next cache update as the closest node so far. Each attacker

coordinate (with n dimensions) can be forged in the following manner:

xa1 = xn1 ± rnd(ε)

xa2 = xn2 ± rnd(ε)
...

...
...

xan = xnn ± rnd(ε)

where xai and xni are respectively the ith element of the attacker and neighbor

coordinate; rnd(ε) is a function that returns a random number in the range ∈ [0 :

ε]. The value of ε can be selected according to the actual coordinate distribution

of the network (latency-distribution).

This simple adaptation leads to the emergence of a hub topology instead of

the QP latency-aware overlay. The same approach can be applied to the T-Man

[JB05] protocol family.

The hub attack can be successfully applied to the QP protocol independently

of the presence of a healthy or poisoned PSS. In fact, although the PSS is healthy

and QP takes cache snapshots from it finding new potential neighbors, the neigh-

bors coordinate will hardly be closer to the current node than the attacker’s co-

ordinate (if ε has been carefully selected). Thus, the attacker IDs will continue to

persist in the node’s cache.



Chapter 4. Effects on protocols other than the PSS 51

4.3 SuperPeer protocol

Modern P2P networks present several unique aspects that distinguish them from

traditional distributed systems. Networks comprising hundreds of thousand of

peers are not uncommon. A consequence of such scale is extreme dynamism,

with a continuous flow of nodes joining or leaving. Such characteristics present

several challenges to the developer. Neither a central authority nor a fixed com-

munication topology can be employed to control the various components. In-

stead, a dynamically changing overlay topology is maintained and control is

completely decentralized. The topology is defined by ”cooperation” links among

nodes, that are created and deleted based on the requirements of the particular

application.

As we stated in Chapter 1, the choice of a particular topology is a crucial aspect

of P2P design.

A distinct, but related problem regards roles that nodes may assume: original

P2P systems were based on a complete “democracy” among nodes: “everyone is

a peer”. But physical hosts running P2P software are usually very heterogeneous

in terms of computing, storage and communication resources, ranging from high-

end servers to low-end desktop machines.

The superpeer paradigm is an answer to both issues [Gnu, fas]. It is based

on a two-level hierarchy: superpeers are nodes faster and/or more reliable than

“normal” nodes and take on server-like responsibilities and provide services to

a set of clients. For example, in the case of file sharing, a superpeer builds an

index of the files shared by its clients and participates in the search protocol on

their behalf. Superpeers allow decentralized networks to run more efficiently by

exploiting heterogeneity and distributing load to machines that can handle the

burden. On the other hand, this architecture does not inherit the flaws of the

client-server model, as it allows multiple, separate points of failure, increasing

the health of the P2P network.

The superpeer paradigm is not limited to file sharing: it can be seen as a



52 Chapter 4. Effects on protocols other than the PSS

general approach for P2P networking. Yet, the structural details are strongly

application-dependent, so we cannot identify a “standard” superpeer topology.

In this paper, we focus our investigation on a specific aspect of the problem:

proximity. Our goal is to build a topology where clients and superpeers are re-

lated based on their distance (in terms of communication latency). The idea is

to select superpeers among the most powerful nodes, and to associate them with

clients whose round-trip time is bounded by a specified constant. This is a generic

problem, whose solution can be beneficial to several P2P applications. Examples

include online games such as Age of Empires [BT01], P2P telephony networks

such as Skype [Sky] and streaming applications such as PeerCast [peea]. In all

these cases, communication latency is one of the main concerns.

Our solution, called SG-2, is a self-organizing, decentralized protocol capable

of building and maintaining superpeer-based, proximity-aware overlay topolo-

gies. SG-2 uses an epidemic protocol to spread messages to nearby nodes, and

implements a task allocation protocol that mimics the behavior of social insects.

These biology-inspired mechanisms are combined to promote the “best” nodes

to the superpeer status, and to associate them to nearby clients.

To validate the results of our protocol, we considered a specific test case: on-

line games. In these applications, a large number of players interact together (or

against each other) in virtual worlds. Most online games follow a classic client-

server model, but we believe that the superpeer paradigm could represent an

interesting alternative. We envision a system where a small number of power-

ful nodes act as state servers when needed, with the remaining ones acting as

clients. All nodes run the same code and can switch from the first role to the sec-

ond when needed. Thus, superpeers dynamically change over time, depending

on the environment conditions.

4.3.1 System Model

The system model for our superpeer scenario is quite similar to the one described

in Section 4.2.1; however, the following extensions are required.



Chapter 4. Effects on protocols other than the PSS 53

Nodes are heterogenous: they differ in their computational and storage capa-

bilities, and also (and more importantly) with respect to the bandwidth of their

network connection. To discriminate between nodes that may act as superpeers

and nodes that must be relegated to the role of clients, each node v is associated

with a capacity value cap(v), that represents the number of clients that can be han-

dled by v. To simplify our simulations, we assume that each node knows its ca-

pacity. In reality, this parameter is strongly dependent on the specific application,

and can be easily computed on-the-fly through on-line measurements.

Besides capacity associated to each single node (“how many”), another pa-

rameter to be considered is the end-to-end latency between nodes (“how well”).

In our model, each pair of nodes (v,w) is associated with a latency distance lat(v,w),

representing the average round-trip time (RTT) experienced by communications

between them. The latency distance between a specific pair of nodes may be mea-

sured directly and precisely through ping messages, or approximately estimated

through a virtual coordinate service [DCKM04]; given the dynamic nature of our

system and the large number of nodes to be evaluated as potential neighbors, we

will adopt the latter approach.

4.3.2 The Problem

Generally speaking, our goal is to create a topology where the most powerful

nodes (in terms of capacity) are promoted to the role of superpeers, and the asso-

ciation clients/superpeers is such that each client obtains a configurable quality of

service (in terms of latency distance) from its superpeer.

More formally, we define the problem of building a proximity-aware, superpeer-

based topology as follows. At any given time, the problem input is given by the

current set of nodes V , and the functions cap() and lat() defined over it. Further-

more, a global parameter tol expresses the maximum latency distance that can be

tolerated between clients and superpeers. The constraints describing our target

topology are the following:



54 Chapter 4. Effects on protocols other than the PSS

• each node is either a superpeer or a client;

• each client c is associated to exactly one superpeer s (we write super(c) = s);

• the number of clients associated to a superpeer s does not exceed cap(s);

• given a superpeer s and one of its clients c, we require that lat(s, c) ≤ tol.

To avoid ending up with a set of disconnected, star-shaped components rooted

at each superpeer, we require that superpeers form another proximity-based over-

lay: two superpeers are connected if their latency distance is smaller than tol +δ,

where δ is another configuration parameter.

We aim at selecting as few superpeers as possible (otherwise, the problem

could be trivially solved by each node acting as a superpeer, with no client/superpeer

connections). This choice is motivated, once again, by the particular scenario we

are considering: in online games, superpeers manage the distributed simulation

state, so centralizing as many decisions as possible is important from the perfor-

mance point of view. Note that given the dynamism of our environment, obtain-

ing the minimum number of superpeers may be difficult, or even impossible. But

even in a steady state, the resulting optimization problem is NP-complete.

4.3.3 The SG-2 Protocol

The architecture of SG-2 is shown in Figure 4.8; here, we briefly describe the ra-

tionale behind it, leaving implementation details to the following subsections.

Our solution to the problem described above is based on a fundamental ob-

servation: measuring precisely the RTT between all pairs of nodes (e.g., through

pings) is extremely slow and costly, or even impossible due to topology dy-

namism. To circumvent this problem, and allow nodes to estimate their latency

without direct communication, the concept of virtual coordinate service has been

developed [DCKM04]. The aim of this service is to associate every node with

a synthetic coordinate in a virtual, n-dimensional space. The Euclidean distance

between the coordinates of two nodes can be used to predict, with good accuracy,



Chapter 4. Effects on protocols other than the PSS 55

���������	
������
��

�
����	������
��������
��

����	���	�
��������
��

������������������������
��

Figure 4.8: The set of services com-

posing the SG-2 architecture.

Figure 4.9: A superpeer topology in

a bi-dimensional virtual space, where

Euclidean distance corresponds to la-

tency.

the RTT between them; in other words, it is sufficient for two nodes to learn about

their coordinates to estimate their latency, without direct measurements.

Our problem may be redefined based on the concept of virtual coordinates.

Nodes are represented by points in the virtual space; each of them is associated

with an influence zone, described as a n-dimensional sphere of radius tol centered

at the node. Our goal is to cover the virtual space with a small number of super-

peers, in such a way that all nodes are either superpeers or are included in the

influence zone of a superpeer. Figure 4.9 shows the topology resulting from the

execution of SG-2 in a bi-dimensional virtual space.

Nodes communicate with each other using a local broadcast service, whose task

is to efficiently disseminate messages to nodes included in the influence zone of

the sender. This service is used by powerful nodes to advertise their availability

to serve as superpeers, and by ordinary nodes to seek superpeers whose capacity

has not been saturated yet.

The main component of SG-2 is the superpeer management service, which selects

the superpeers and associates clients to them. The protocol is heavily inspired by

the behavior of social insects [BDT99], such as ants or bees, that have developed



56 Chapter 4. Effects on protocols other than the PSS

very sophisticated mechanisms for labor division. In summary, such mechanisms

work as follows. In a totally decentralized fashion, specialized groups of individ-

uals emerge, with each group aimed at performing some particular task. The

task allocation process is dynamic and follows the community needs according

to changes in the environment. The stimulus to perform some kind of task or to

switch to another one can be given by many factors, but it is normally given by

high concentrations of chemical signals, such as pheromones, that are released

by other individuals and are spread in the environment. Each individual has its

own response threshold to the stimulus and reacts accordingly.

The superpeer protocol mimics this general picture. Un-associated nodes dif-

fuse a “request for superpeers” signal through local broadcasts; the signal concen-

tration in the network may stochastically trigger a switch to the superpeer role in

some nodes according to their response threshold, which is proportional to their

capacity. On the other hand, powerful nodes covering the same area of the virtual

space compete with each other to gain new clients, by signaling their availability

through local broadcasts. Clients associate themselves to the most powerful su-

perpeers, and superpeers with an empty client set switch back to the client role.

The combination of these two trends (the creation of new superpeers to satisfy

client requests and the removal of unnecessary superpeers) finds its equilibrium

in a topology that approximates out target topology.

The last component to be addressed is the peer sampling service. As we already

know the features of this service from the previous chapters, we just remind that

the task of this protocol-layer is to provide each node with a view containing a

random sample of nodes [JGKvS04].

Virtual Coordinate Service

In SG-2, the virtual coordinate service is provided by VIVALDI [DCKM04], which

has been already described in Section 4.2.1.



Chapter 4. Effects on protocols other than the PSS 57

Local Broadcast Service

Unlike previous layers, based on existing protocols, the local broadcast service

has adapted an existing protocol for the specific needs of SG-2 [EGH+03]. Each

message m is associated with the sender identifier sm and a radius parameter rm.

Message m is delivered to all those nodes that are within latency distance rm from

sm, as estimated by VIVALDI. Hence, the name SPHERECAST.

The protocol may be described as follows. When a node either receives a

message or wants to multicast a new one, it forwards it to its local fan-out. The

fan-out of node v for message m is given by the subset of neighbors known to v

that are potentially interested in the message, i.e. whose distance from sm is not

larger than rm. SPHERECAST does not maintain its own topology; instead, it relies

on the underlying overlay network provided by the peer sampling service.

When a message is originated locally, or it is received for the first time, it is

forwarded immediately to all nodes in the fan-out. If a message has been already

received, a node may stochastically decide to drop it (i.e., not forwarding it). This

is a standard approach used to avoid flooding the network. A strict determinis-

tic approach such as dropping any multiple copy would not work correctly due

to the nature of the underlying overlay. The actual clustering coefficient of the

underlying topology and the continuous rewiring process may stop the message

spreading. The stochastic approach solves this issue in a straightforward manner.

The probability of dropping a message is given by the following formula: p =

1 − e−s/ϑ, where s is the number of times the node has seen this message and ϑ is

a response threshold parameter. In this way, when a packet is received multiple

times by a peer, it has less and less probability to be forwarded again. From an

implementation point of view, digests of received messages are stored in a per-

node table, together with the number of times that specific message has been

received. This table is managed with a LRU policy, to avoid unbounded growth.



58 Chapter 4. Effects on protocols other than the PSS

Superpeer Management Service

This layer is the core component of SG-2. Nodes participate in this protocol either

as superpeers or as clients; a client c may be either associated to a superpeer

(super(c) = s), or actively seeking a superpeer in its tol range (super(c) = ⊥). At

the beginning, all nodes start as clients; to converge to the target topology defined

in Section 4.3.2, nodes may switch role at will, or change their client-superpeer

relationship. The decision process is completely decentralized.

Each node v maintains the following local variables. role specifies the role cur-

rently adopted by v; role = SP if v is a superpeer, role = CL otherwise. clv and spv

are two views, respectively containing the clients and the superpeers known to v.

They are composed of node descriptors combining an identifier w and a logical

time-stamp tsw; the latter is used to purge obsolete identifiers, as in NEWSCAST.

When v acts as a superpeer, clv is populated with the clients currently associ-

ated to v; it is empty otherwise. The size of clv is limited by cap(v). spv contains

descriptors for the superpeers that are in tol +δ range; its size is not explicitly

limited, but rather is bounded by the limited number of superpeers that can be

found within tol +δ distance. When v acts as a client, one of the descriptors in spv

may be the associated superpeer of v.

Two distinct kinds of messages are broadcasted using SPHERECAST: CL-BCAST

and SP-BCAST. The former are sent while in client state and are characterized

by a radius parameter rm equal to tol, i.e. the maximum tolerated latency. The

latter are used in superpeer state and their radius parameter is equal to tol +δ;

superpeers need a wider radius to get a chance to contact other superpeers; fur-

thermore, nodes with overlapping influence zones can exchange clients if they

find a better client allocation that reduces their latency.

At each node, two threads are executed, one active and one passive. The ex-

ecution of active threads may be subdivided in periodic cycles: in each cycle,

superpeers emit a SP-BCAST signal which is broadcast in the surrounding area, to

notify nodes about their presence and its residual capacity. Clients, on the other

hand, periodically emit CL-BCAST messages if and only if they are not associated



Chapter 4. Effects on protocols other than the PSS 59

to any superpeer. The shorter the cycle duration, the faster the system converge

to the target topology; but clearly, the overhead grows proportionally. The pas-

sive threads react to incoming messages according to the message type and the

current role. Four distinct cases are possible:

Superpeer v gets 〈SP-BCAST, s, tss, cap(s)〉 : the pair (s, tss) is inserted in spv. If s

was already present, its time-stamp is updated. After that, the capacity of the two

supernodes is compared: if cap(v) > cap(s), then a migration process is started.

Clients associated with s that are inside the influence zone of v migrate to v, until

the capacity is exhausted. Each affected client is notified about the new superpeer

(v) by the current superpeer s. Node s, if left with no clients, switches back to the

client role; it associates itself to v, if est(v, s) ≤ tol and v has still residual capacity;

otherwise, it starts emitting CL-BCAST messages.

Superpeer v gets 〈CL-BCAST, c, tsc〉 : if | clv(v)| < cap(v) (the capacity of v has not

been exhausted), the client node is associated to v (unless, given the asynchrony

of messages, it has been already associated with another superpeer).

Client v gets 〈SP-BCAST, s, tss, cap(s)〉 : the pair (s, tss) is inserted in spv. If s was

already present, its time-stamp is updated. If v is not client of any superpeer, it

sends a request to s asking to be associated with it. The response may be negative,

if s has exhausted its capacity in the period between the sending of the message

and its receipt by v. On the other hand, if v is already client of another superpeer

s ′ and cap(s) > cap(s ′), then it tries to migrate to the more powerful superpeer.

This strategy promotes the emergence of a small set of high-capacity superpeers.

Client c gets 〈CL-BCAST, c, tsc〉 : This kind of messages can trigger a role change

from client to superpeer; it is the cornerstone of our approach. The willingness of

becoming a superpeer is a function of a node threshold parameter and the signal



60 Chapter 4. Effects on protocols other than the PSS

concentration perceived by a node in its influence area. The switching probability

can be modeled by the following function:

P(role(v) = CL → role(v) = SP) =
s2

s2 + θ2
v

where s is the signal magnitude and θv is the response threshold of node v. This

function is such that the probability of performing a switch is close to 1, if s � θ,

and it is close to 0 if s � θ. If cmax is the maximum capacity, θv is initialized with

a value which is cmax − cap(v); in this way, nodes with higher capacity have a

larger probability of becoming superpeers. The maximum capacity may be either

known, or it can be easily computed by an aggregation protocol in a robust and

decentralized fashion [JMB05].

After the initialization, in order to make the topology more stable and avoid

fluctuations, the response threshold is modified in such a way that time reinforces

the peer role: the more time spent as a client, the less probable it is to change role.

Once again, the inspiration for this approach comes from biology: it has been ob-

served, for example, that the time spent by an individual insect on a particular

task produces important changes in some brain areas. Due to these changes, the

probability of a task change (e.g., from foraging to nursing) is a decreasing func-

tion of the time spent on the current task [BDT99]. For this reason, θv is reinforced

as follows:

θv(t) = θv(t − 1) + (α · (t − t ′
v))

Where t is the current cycle and t ′
v is the last cycle in which v became a superpeer;

α is a parameter to limit or increase the time influence. The peer normal respon-

siveness is re-initialized based on its local capacity if its superpeer crashes or if it

becomes a superpeer node.

The reaction to CL-BCAST messages is the only mechanism to allow a client to

become a superpeer. A superpeer can switch back to the client role only when

other higher capacity superpeers have drained its client set. The θ adaptation

process is only active when a node is in the client state.



Chapter 4. Effects on protocols other than the PSS 61

4.3.4 Experimental results

We performed a large number of experiments based on simulation to validate the

effectiveness of our approach. The goal of our experiments was twofold: first

of all, we measured the speed of convergence in a stable overlay, in the absence

of failures; second, we measured the robustness of our approach in a dynamic

environment, where a fixed percentage of nodes are substituted with fresh ones

periodically. Any node in the network can be affected by substitution, regard-

less of its role. Unlike the real world, where a superpeer is supposed to be more

reliable, our choice is stricter and more “catastrophic”. Finally, communication

overhead has been measured. The experiments have been performed using Peer-

sim [peeb].

In our experiments, network size is fixed at 1000 and 2000 nodes. Several

kinds of networks have been considered, but here, due to space restrictions, the

focus is on gaming-oriented scenario [ZS04, SGB+03]. Other scenarios present sim-

ilar results. For each pair of nodes v,w, the latency distance lat(v,w) among them

has been generated using a normal distribution with average value µ = 250 ms

and variance σ = 0.1 [ZS04]. Then, we have run VIVALDI on this network, ob-

taining the corresponding function est(v,w). In the corresponding virtual space,

we have considered tol values of 200 ms, 250 ms and 300 ms, which are typical of

strategy and role-playing games. We have experimented with δ values of 200 ms,

300 ms and 400 ms, corresponding to typical round-trip time that can be accepted

for superpeer communication. The capacity function cap(), i.e. the maximum

number of clients that can be served, is generated through an uniform distribu-

tion in the range [1 : 500]. The simulation is organized in synchronous cycles,

during which each node has the possibility to initiate a gossip exchange; note,

however, that in reality node do not need to be synchronized. All the results are

averaged over 10 experiments.

Figure 4.10 illustrates the behavior of the protocol over time. All the figures

in the left column are obtained in networks whose size is 1000 nodes, while the

figures in the right column are relative to networks with size equal to 2000 nodes.



62 Chapter 4. Effects on protocols other than the PSS

The content of each sub-figure is divided in two parts; in the main plot, the num-

ber of superpeer active at each cycle is shown; in the small frame inside the main

plot, the percentage of clients that are already associated is shown. In these ex-

periments, the network is static; no nodes are removed or added.

Figure 4.10(a) depicts a rather bad situation: in both network sizes, the con-

vergence is extremely slow, and the number of nodes that are satisfied is low.

This bad performance is motivated by the characteristics of the latency distri-

butions [ZS04, SGB+03] and the tolerance value selected; most of the node pairs

have a higher latency than 200 ms, and thus SG-2 cannot help much. Figure 4.10(b)

shows a much better situation: a large percentage of clients (between 94% and

100% depending on size and parameter δ) have been associated after only few

cycles (10-20). The number of superpeers is also very small, after an initial peak

due to a large number of clients reacting to the signal. Almost every client can

reach the required latency because 250 ms is the average pairwise latency in our

game-like coordinates distribution. However, some nodes lies outside the 250 ms

border and it is challenging for SG-2 to accommodate those nodes. The node

density plays an important role for SG-2. In fact, the bigger network can be fully

organized in a latency-aware fashion using the wider superpeer communication

range (δ = 400 ms). Figure 4.10(c) shows the performance for tol = 300 ms: a re-

sponse time that is perfectly acceptable in a strategic/role playing game scenario.

The latency-aware topology in the figure is very good with any δ value. We ob-

tain 100% of in range clients with about 50 superpeers in the small network and

about 63 in the bigger network, in less than 10 cycles.

Figure 4.11 is aimed at illustrating the robustness of our protocol. The size of

the network is fixed at 1000 nodes. Its composition, however, is dynamic: at each

cycle, 10% or 20% of the nodes crashes and are substituted with new ones. The

figure shows that the number of superpeers oscillates over time, as expected, and

that up to 80% and 70% of the clients are associated to superpeers. The nodes that

are not associated are those that have been recently created and are trying to find

a position in the topology.



Chapter 4. Effects on protocols other than the PSS 63

Finally, we discuss message overhead; due to space limitations, we provide

summary data instead of plots. We have measured the number of broadcast mes-

sages, including both CL-BCAST and SP-BCAST. Since the former type of message

is broadcast only in case of lack of satisfaction, only a small number of them are

generated: on average, less than 2 messages every thousand nodes. Superpeers,

on the other hand, continuously send one message per cycle.

4.3.5 SG-2 discussion

The superpeer approach to organize a P2P overlay is a trade-off solution that

merges the client-server model relative simplicity and the P2P autonomy and

resilience to crashes. The need for a superpeer network is mainly motivated by

the fact to overcome the heterogeneity of peers deployed on the Internet.

Yang and Garcia Molina [YGM03] proposed some design guidelines. A mech-

anism to split node clusters is proposed and evaluated analytically, but no exper-

imental results are presented.

Superpeer solutions proved to be effective solutions in the real world: Kazaa

/ Fasttrack [fas] and Skype [Sky] are two outstanding examples. However, their

actual protocols are not publicly available and they cannot be compared with any

other solution or idea. At the time of writing, only a few works [LRW03, Sky]

describe some low-level networking details.

The SG-2 protocol can be considered as a natural evolution of the SG-1[Mon04]

protocol; the two solutions, however, cannot be directly compared from a perfor-

mance point of view because of their different goals. SG-1 focuses on optimizing

the available bandwidth in the system, while SG-2 introduces the notion of la-

tency between peer pairs and poses a QoS limit on it. The definition of the target

topology is straightforward in SG-1 (e.g., the minimum number of superpeers to

accommodate all the peers according to the superpeer capacities), while it is a

NP-problem in the SG-2 case. From the architectural point of view, they both rely

on the existence of an underlying random overlay. The superpeer overlay is gen-



64 Chapter 4. Effects on protocols other than the PSS

erated on top of it. The superpeer election process in SG-2 is strongly bio-inspired

and much more randomized than approach used in SG-1.

In [SH06], the authors propose a socio-economic inspiration based on Shelling’s

model to create a variation of the super-peer topology. Such variation allows the

ordinary peers to be connects with each other and to be connected to more than

one super peer at the same time. This topology focuses on efficient search. As in

our case, the superpeers are connected to each other to form a network of hubs

and both solutions are suited for unstructured networks. However, they do not

address the problem of the superpeer election.

The basic problem of finding the best peer, having the required characteris-

tics, to accomplish some task (e.i., the superpeer task) is addressed in a more

general form in [AKR+05]. The problem is referred as “optimal peer selection”

in P2P downloading and streaming scenarios. The authors use an economics in-

spired method to solve the optimization problem; the developed methodologies

are general and applicable to a variety of P2P resource economy problems. The

proposed solution is analytically strong, but no experimental results are shown

especially regarding a large and dynamic scenario as the one the authors are ad-

dressing.

Our implementation is based on VIVALDI (see section 4.3.3), but it is not tied

to any particular virtual coordinate service. Other architectures can be adopted,

such as IDMaps [FJJ+99] and GNP [NZ02] or PIC [CMAP04] and PCoord [LL04].

The first two rely on deployment of infrastructures nodes, while the other provide

latency estimates gathered only between end-hosts, as VIVALDI does. We opted

for VIVALDI because of its fully distributed nature and simple implementation.

In less strict latency context, the hop-count is usually preferred in contrast to

the millisecond latency to provide distance estimation. Pastry [RD01, CDHR02],

for example, uses a hop distance metric to optimize its response time.

Finally, SG-2 is a fully decentralized, self-organizing protocol for the construc-

tion of proximity-aware, superpeer-based overlay topologies. The protocol pro-

duces an overlay in which almost all nodes (99.5%) are in range with a tol la-



Chapter 4. Effects on protocols other than the PSS 65

tency of 300 ms. The number of generated superpeers is small with respect to

the network size (only 3-5%). The protocol shows also an acceptable robustness

to churn. We believe that these results can be profitably adopted to implement

several classes of applications, including strategy and role-playing games. Other

classes of games, such as first-person shooter, are probably not suitable given

their extremely strict latency requirements (inferior to 100 ms). These results are

an improvement over existing decentralized games [BT01], that are based on

strong replication [unr] or low-level facilities such as IP-multicast [GD98]).

We conclude noting that the results presented in this paper are only a first step

toward the implementation of real superpeer applications; for example, in the

case of P2P games, several other problems have to be solved, including security,

state replication, state distribution, etc.

4.3.6 Superpeer topology under hub-attack

As we stated previously in Sections 4.1 and 4.2, the hub attack can affect not only

the PSS itself, but also any higher level service relying on the PSS. This fact makes

the attack a more serious threat for P2P systems.

We present an example showing the effect of the hub attack over a particular

superpeer topology emerged by SG-2. The service 3 is highly dependent on the

PSS and all its details are discussed in [JMB06].

From an algorithmic point of view, the key point is that the pheromone diffu-

sion is made through a simple message-spreading protocol that uses the neigh-

borhood managed by the PSS cache (see Section 4.3.3); a message has a maximum

distance range to spread, therefore it is spread only to those neighbors that are at

a tol distance range from the message source. Essentially, the SG-2 local broadcast

service limits by itself the effective out degree of a node’s PSS cache.

This fact implies that a full (100%) PSS cache pollution is not required to stop

the spreading of a message, as a certain amount of the neighbors is excluded by

3The word “SG-2” can be used to refer to the SG-2 core protocol described in Section 4.3.3 or

to the SG-2 service architecture depicted is Figure 4.8.



66 Chapter 4. Effects on protocols other than the PSS

default due to the distance constraint. The broadcast service involuntary helps

the attacker’s job. Figure 4.12 shows two snapshots of the SP topology; the picture

on the left shows the normal SG-2 behavior in standards conditions, while the

picture on the right shows the effect of the hub attack over SG-2. Both snapshots

have been taken when the topology is supposed to be completed (e.g., at cycle

30).

The network size is limited to 1,000 nodes and the distribution of the laten-

cies follows a typical distributed game scenario (see Section 4.3.4 for details),

tol = 300ms allowed is 300ms. The big black dots depicts the emerged SP nodes;

the thick lines show the SP connections, while the thin dotted lines show the con-

nection relation between an ordinary nodes and its SP.

Figure 4.12(a) shows the normal SG-2 behavior in this context. The areas with

a higher concentration of nodes are populated with more than one superpeer

node; in this context, all ordinary peers are connected to an SP satisfying the

desired QoS. Compared to the network size, the number of superpeer nodes is

quite low ( 5%). Figure 4.12(b) depicts a dramatic situation. Without an effective

pheromone communication, the system tends to be paralyzed. Each message

takes a few cycles to cover the required area, but at the same time the attack

pollutes the PSS caches. The result is that a message is either lost (e.g., finds

no more neighbors to spread to) or it reaches an attacker node. This triggers

the most capable attacker nodes to the SP status: the 14 superpeers available in

Figure 4.12(b) are malicious nodes and they have acquired just a few clients in

the early stages of the protocol. Many other nodes nodes cannot find any (good

or malicious) SP because the SP messages can not be routed; in addition any

capable ordinary node cannot switch to the SP status because it cannot perceive

any message, as all traffic is sent to the attackers by default.

The effect of the hub attack may vary according to the actual SG-2 parameters;

for example, with a different scenario, we had an enormous amount of SP ( 30% of

the network population), but at the same time a low percentage of clients having

the desired QoS (e.g., being connected to a tol range SP). In any case, the pres-



Chapter 4. Effects on protocols other than the PSS 67

ence of the hub attack prevents the formation and the management of a healthy

superpeer topology.



68 Chapter 4. Effects on protocols other than the PSS

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

# 
of

 s
up

er
pe

er
s

Cycles

SP Convergence (1000 nodes network, gaming scenario)

DELTA 200
DELTA 300
DELTA 400

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

%
 a

ss
oc

ia
te

d 
cl

ie
nt

s DELTA 200
DELTA 300
DELTA 400

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

# 
of

 s
up

er
pe

er
s

Cycles

SP Convergence (2000 nodes network, 200ms tol, gaming scenario)

DELTA 200
DELTA 300ms
DELTA 400ms

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

%
 o

f s
at

is
fie

d 
cl

ie
nt

s DELTA 200ms
DELTA 300ms
DELTA 400ms

(a) tol = 200 ms

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

# 
of

 s
up

er
pe

er
s

Cycles

SP Convergence (1000 nodes network, gaming scenario)

DELTA 200
DELTA 300
DELTA 400

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

%
 a

ss
oc

ia
te

d 
cl

ie
nt

s

DELTA 200
DELTA 300
DELTA 400

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

# 
of

 s
up

er
pe

er
s

Cycles

SP Convergence (2000 nodes network, 250ms tol, gaming scenario)

DELTA 200ms
DELTA 300ms
DELTA 400ms

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

%
 o

f s
af

is
fie

d 
cl

ie
nt

s

DELTA 200ms
DELTA 300ms
DELTA 400ms

(b) tol = 250 ms

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

# 
of

 s
up

er
pe

er
s

Cycles

SP Convergence (1000 nodes network, gaming scenario)

DELTA 200
DELTA 300
DELTA 400

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

%
 a

ss
oc

ia
te

d 
cl

ie
nt

s

DELTA 200
DELTA 300
DELTA 400

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

# 
of

 s
up

er
pe

er
s

Cycles

SP Convergence (2000 nodes network, 300ms tol, gaming scenario)

DELTA 200ms
DELTA 300ms
DELTA 400ms

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

%
 o

f s
at

is
fie

d 
cl

ie
nt

s

DELTA 200ms
DELTA 300ms
DELTA 400ms

(c) tol = 300 ms

Figure 4.10: Convergence time. Three tol values are considered: 200 ms (a), 250 ms

(b), 300 ms (c). The main figures show the number of active superpeer at each

cycle, while the small sub-figures show the number of clients that are in tol range.

Three different δ values are shown in each figure.



Chapter 4. Effects on protocols other than the PSS 69

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  20  40  60  80  100

# 
of

 s
up

er
pe

er
s

Cycles

2000 nodes network, tol=300ms, gaming scenario

DELTA 400ms, 10%
DELTA 400ms, 20%

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

%
 o

f s
at

is
fie

d 
cl

ie
nt

s

DELTA 400ms, 10%
DELTA 400ms, 20%

Figure 4.11: Experiments with churn. Network size is 1000; at each cycle, 10% or

20% of the nodes are substituted with new ones.



70 Chapter 4. Effects on protocols other than the PSS

(a) Normal conditions SG-2 service

(b) SG-2 under hub-attack, 20 mal. nodes

Figure 4.12: A 1,000 nodes superpeer topology generated by the SG-2 service in

normal conditions (a) and during a hub-attack (b); tol = 300ms, the PSS cache

size c=20 (in (b) 20 attackers are involved). The big dots represent the SP nodes,

the thick lines show the SP connections, while the thin lines show the connection

relation between an ordinary nodes and its SP.



Chapter 5

Proposed approach: the Secure Peer

Sampling Service

In this chapter we present our solution, the Secure Peer Sampling Service (SPSS),

aimed to preserve the integrity of the PSS topology from a hub attack. Like

the hub attack, our solution is independent of the actual PSS implementation

adopted.

We present the SPSS as an incremental two-step solution: the first step in-

volves the presence of one (or more) trusted node(s), while the second step fo-

cuses on a fully decentralised approach. For each solution step we present its

own performance evaluation.

5.1 The problem

Generally speaking, our goal is to avoid the formation of hubs. The SPSS result-

ing topology must be as close as possible to the standard PSS topology (according

to the actual implementation adopted). This goal must be achieved using only a

node’s local information [SP03], as sharing any extra information would repre-

sent another chance for the attackers to subvert the network (e.g., by diffusing

fake suspicions).

As the only information available about the network is the local cache from a

node’s point of view, a good indication of the hub topology formation is the local



72 Chapter 5. Proposed approach: the Secure Peer Sampling Service

node clustering coefficient (CC).

However, the CC is computed as the proportion between the vertexes within

the current node neighborhood (cache) divided by the number of links that could

possibly exists between them. From the definition above, it is easy to argue that

the node’s local state represented by the cache is not sufficient to calculate the CC;

in other words, the local cache and all the neighborhood caches are required. The

“many-to-many” cache exchange would generate an excessive communication

overhead and therefore we do not consider it as a viable approach.

As our goal is to limit the chance to generate hubs, we can let each node to

evaluate if it is going towards a hub at each gossip exchange; the evaluation is

based according to the local knowledge - i.e. the local cache - and to the neigh-

bor state (cache) that each node receives at each gossip exchange. Notice that the

essence of the PSS interaction scheme is not changed and the amount of informa-

tion exchanged is the same.

Essentially, the idea is to let each node to rate the quality of the exchange in

progress by comparing the caches of the involved parties. The quality rate is given

by the number of items (IDs) lying in the intersection of the exchanged caches

among node A and B: r = |{cacheA ∩ cacheB}|.

This process of rating the quality of the exchange does not imply to accom-

plish the gossip round just because both parties have already exchanged their

states, but instead it allows to accept or deny the exchange according to the per-

ceived quality rate. The quality rate influences the probability to conclude the gos-

sip exchange. Essentially, when two caches are similar (or identical) it is likely

that the current neighbor is a malicious node and with high probability it should

not be accepted.

Our aim is to verify the above property (i.e., the quality rate) in the least in-

vasive manner. In other words, we aim to gently integrate this approach in the

gossip scheme. We believe that designing our solution as a general scheme is a

primary concern in order to protect any PSS implementation from the hub attack.

Due to this reason, we are interested in the design of a new simple primitive



Chapter 5. Proposed approach: the Secure Peer Sampling Service 73

do forever

wait(∆t)

neighbor = SELECTPEER()

SENDCACHE(neighbour)

neigborcache = RECEIVECACHE()

checkIDs(myCache, neighborcache)

myCache.UPDATE(neighborcache)

do forever

n state = RECEIVECACHE()

SENDCACHE(n state.sender)

checkIDs(myCache, neighborcache)

myCache.UPDATE(neighborcache)

(a) Active Thread (b) Passive Thread

Figure 5.1: The SPSS gossip scheme; essentially it is the PSS scheme extended

by the checkIDs() primitive. The strict relation with the gossip scheme (see Fig-

ure 2.1) is evident; as the node’s state in the PSS is the cache, the fundamental

methods have a slightly different name, but they still hold the same semantic.

that incapsulates the details of the quality verification process. This primitive can

be added in the standard gossip scheme depicted in Figure 2.1. We call this prim-

itive function CHECKIDS(). Figure 5.1 shows how the CHECKIDS() function fits

in the PSS scheme. The discussion of the actual action triggered by the function

is an algorithmic detail and we are going to discuss it in the next sections.

5.2 SPSS requirements

The general system model described in Section 2.2 still holds; in addition, in our

proposed SPSS solution, we require that in the bootstrap phase of the network,

each node joining the overlay obtains a certificate for its public key from a central

Certification Authority (CA). The CA is a centralised entity, but it is not involved in

the protocol itself; it is just needed to join the overlay. After that, a joining node

may obtain a starting neighbor list from a pre-assigned trusted node.

When a node leaves the network, voluntarily or due to a crash, its peer refer-

ence is quickly discarded by the underlying service, due to the properties of the

PSS implementation. If a peer uses a special exit message to leave the network,

then that peer must sign the message to prevent a DOS attack.



74 Chapter 5. Proposed approach: the Secure Peer Sampling Service

We cryptographically secure each ID structure using the following message

format:

[IDA, tscreation, tsexpiration, PKA, σ]

where IDA is A’s node identifier (see Section 2.2), the ts are timestamps, PKA

is A’s public key and σ is the digital signature on the message. As noted earlier

in Section 3.2, we assume the set of attackers to be relatively small and that they

collude to forge each other’s signed ID structures to create valid MN variant mes-

sages. For the FN variant, the attacker can forge signed ID structures for fake IDs

on its own.

5.3 SPSS approach

Our approach to solve the hub attack is twofold: (1) we aim to detect malicious

peers in the overlay with high accuracy and (2) we aim to reduce (nearly to zero)

the effects of malicious peer actions on the topology structure. Our solution is

designed to achieve these two goals with the least amount of effort.

The SPSS approach requires the presence of a trusted peer, the TRUSTED PROMPT

node. This node has functionality similar to a proxy of the CA and provides peer

credential management and access control. The important service provided for

SPSS by the TRUSTED PROMPT node is credential revocation of peers that manifest

malicious behavior.

To improve the resilience of our distributed system, we can also use multi-

ple TRUSTED PROMPT nodes without introducing any modification to our basic algo-

rithm. However, the trade-off between the robustness and the extra effort spent

in deploying, configuring and maintaining many TRUSTED PROMPT nodes must

be evaluated by the overlay designers. We stress that the TRUSTED PROMPT is not

a potential bottleneck, as will become clear below.



Chapter 5. Proposed approach: the Secure Peer Sampling Service 75

The basic idea behind SPSS is the following: each peer executes the standard

PSS algorithm, but, after each message exchange round, it performs an addi-

tional checking step on the received cache list. When the check fails, ordinary

peers are potentially exchanging with a malicious peer; therefore, they contact the

TRUSTED PROMPT reporting the ID-structure provided by the suspect peer. The

TRUSTED PROMPT performs cryptographic checks to validate the raised suspicion

and if correct then supplies the notifying peer with a new complete cache entry.

This checking step has two distinct issues to deal with (1) malicious node IDs

and (2) fake IDs.

• Malicious nodes check: the peer compares its current cache C with the

newly received one, C∗ . This test has a stochastic nature and it is based

on the fact that, in the MN variant, it is likely to receive from the malicious

nodes a message holding a similar set (or subset) of malicious IDs. The

probability to raise a suspicion is proportional to r/c, where r is the quality

rate and c is the usual cache size.

When the stochastic process raise a suspicion, then the peer terminates the

exchange and contacts the TRUSTED PROMPT. This is a local check that does

not require extra messages or communication.

• Fake ID check: the peer checks a certain percentage α (global parameter) of

the IDs in the received cache by network communication (e.g., by sending

ping messages). If a subset of fake IDs larger then α is found, the peer aborts

the exchange.

In order to support its suspicion of peer P, the peer provides the TRUSTED PROMPT

with both its own and the received caches as evidence. The TRUSTED PROMPT first

verifies if P’s ID signature is correct and that the ID matches the actual IP address

it is transmitting from. If verification fails, then P is confirmed as a malicious or

faulty peer and it is black-listed. Otherwise, it logs (or updates) an entry #(P) in

a frequency table indicating how many times P has been reported as suspect.



76 Chapter 5. Proposed approach: the Secure Peer Sampling Service

Finally, the TRUSTED PROMPT builds a new cache for the querying peer. To

build the new cache, the TRUSTED PROMPT picks nodes randomly from the net-

work. A node Q is selected proportionally to 1− #(Q)
NetSize for inclusion in a cache. A

lower value in the frequency table corresponds to a higher chance to be present

in the cache (and to be a non-malicious node). The size of the network required

by the formula can be computed in a distributed fashion using, for example, an

aggregation protocol [JMB05]. The process continues until c suitable peers are

found and then the cache is sent back to the peer. Clearly, the TRUSTED PROMPT is

not fail proof as the attacker identification is based on reported suspicions, which

cannot be 100% accurate. However, as shown in Section 5.4, the SPSS achieves

very good results in preventing the hub attack.

5.4 SPSS evaluation

To evaluate the SPSS, we adopted the same approach and the same set-up as

discussed in Section 3.3; in addition, we set α=5%. This percentage corresponds

to the amount of IDs actually checked at each cycle by each (non malicious) peer.

We restrict our discussion to the larger 10, 000 nodes overlay.

The SPSS performance is summarised in Figure 5.2. Figure 5.2(a) shows the

average level of pollution lying in a peer’s cache during a 20 malicious nodes

(MN variant) attack. In this set-up, there is almost no difference between the

distinct percentages of checking. This behavior could be explained due to the

full ID pollution in this particular set-up: it is easy to detect a common subset of

replayed IDs, regardless the actual amount of checks. The difference between the

distinct checking efforts is still very low, this proves that our defence can prevent

the attack even with a low checking effort.

In less than 10 cycles the pollution level stabilises in a very low oscillation

range. The oscillations are due to the stochastic nature of the TRUSTED PROMPT

that may inject malicious nodes when it provides the new cache to a querying

peer. However, this has no long term negative consequences. The initial pollution



Chapter 5. Proposed approach: the Secure Peer Sampling Service 77

 0.001

 0.01

 0.1

 1

 0  10  20  30  40  50

A
ve

ra
ge

 c
ac

he
 p

ol
lu

tio
n 

ra
tio

Cycles

10000 nodes, NO checks
10000 nodes

(a) MN attack, 20 m. nodes

 0.0001

 0.001

 0.01

 0.1

 1

 0  10  20  30  40  50

A
ve

ra
ge

 c
ac

he
 p

ol
lu

tio
n 

ra
tio

Cycles

10000 nodes, 10 M.nodes, NO checks
10000 nodes, 10 M.Nodes

10000 nodes, 4 M.nodes, NO checks
10000 nodes, 4 M.Nodes

(b) FN attack, 10 and 4 m.nodes, α=5%

Figure 5.2: Comparison among the PSS and the SPSS pollution ratio under a

Hub-Attack. The overlay size is 10, 000 nodes. Distinct checking setups are

shown.

peak is absorbed as soon as the TRUSTED PROMPT has received sufficient feedback

by the well behaving nodes.

Figure 5.2(b) shows how the SPSS deals with a FN variant attack. Two distinct

set-ups are considered: using 10 and 4 malicious nodes, while the rest of the IDs

in the cache are fake IDs. The check level adopted is α=5%, in order to detect fake

IDs. The two distinct checks almost doubles the chance to immediately identify a

malicious attack. Again, in less than 10 cycles, the pollution level drops to a near-

zero level. With such a low amount of pollution in the cache, the SPSS preserves

the original PSS topology properties and there is no danger of partitioning of the

overlay due to the malicious peers leaving.

Due to the dynamic nature of any P2P system, we decided to consider churn

and how the SPSS deals in this more realistic setting. Our churning results are

shown in Figure 5.3. Periodically, a fraction of the peer population leaves and is

substituted with new peers. The attacker nodes however, are not affected by the

churning process and they are allowed to pollute for the whole duration of the

experiment. We consider three churn set sizes: 1%, 5% and 10% of the network

size. These three values are quite high churning rates (see [MCR03]), but they are



78 Chapter 5. Proposed approach: the Secure Peer Sampling Service

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 c
ac

he
 p

ol
lu

tio
n 

ra
tio

Cycles

churn 1%
churn 5%

churn 10%

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

8421

A
ve

ra
ge

 n
um

be
r 

of
 q

ue
rie

s

TrustedPrompt replicas

Newscast PSS
Basic-shuffling PSS

(a) Average cache pollution ratio (b) Query message traffic, 1% churn

Figure 5.3: Dynamic scenario results: distinct level of churning rate (1%,5%

and 10% of the network population) are shown during a MN variant attack (20

m. nodes). (a) Depicts the average cache pollution, while (b) shows the differ-

ence among the average number of queries sustained by 1 or more (2, 4 and 8)

TRUSTED PROMPT using two distinct PSS implementations.

fine in order to stress our solution. The attackers involved are 20, playing the MN

variant of the hub attack.

Figure 5.3(a) shows the average cache pollution during the attack. With a

churn rate of 1%, the cache pollution has a peak of 7.5% at about cycle 20 and

then it tends to decrease. Strong oscillations are clearly visible in the picture due

to the dynamism itself; however, the pollution level is always in a very low range.

It is interesting to note that for higher churn rates, the pollution level is even

lower. This fact may seem counter intuitive, but the churning process triggers

the FN defense policy and aborts any exchange with any neighbor reporting an

unusual number of non existent node IDs in the cache. This side effect helps

keeping the cache cleaner.

We tried to let the attackers leave the network as in Section 3.1, but we never

had any partitioning report with such a low pollution levels.

Figure 5.3(b) shows the average number of queries per cycle. Multiple TRUSTED

PROMPTS and two distinct PSS implementations (e.g., NEWSCAST versus basic-



Chapter 5. Proposed approach: the Secure Peer Sampling Service 79

shuffling, see Section 2.2.1) are considered. We restricted the TRUSTED PROMPT

number to a maximum of 8 replicas to keep the management and configuration

costs to a tolerable level.

The number of queries is about 10% of the network size in the NEWSCAST case,

while the basic-shuffling has about a 30% advantage. In this test, the implemen-

tation of the PSS makes the difference. The worse results achieved by NEWSCAST

are due to the higher CC that tends to produce a much higher number of false

positive suspicions. The CC distribution is far from being uniform, thus many

well-behaving nodes suspect non-malicious neighbors.

Clearly, the adoption of multiple TRUSTED PROMPTs allows a uniform distri-

bution of the queries among the trusted nodes. This load balancing can be eas-

ily obtained by selecting randomly a TRUSTED PROMPT, as the current available

TRUSTED PROMPTs are advertised by any of their reply messages.

When considering the scalability of our approach, one may come to think that

the TRUSTED PROMPT is going to be a source of problems. However, we have

found that on average, the TRUSTED PROMPT receives a manageable number of

queries per cycle. Because of the periodicity independence of our approach, we

conclude that having a single TRUSTED PROMPT is not a concern for a large net-

work, as we can choose the cycle time scale according to the actual network

requirements. Of course, the service should be highly available, which can be

established through traditional (lazy) replication techniques.

Finally, in Figure 5.4 we consider an extreme case in which a set of colluding

attackers larger than the cache size (c = 20) is involved. This scenario is very

unlikely because the attackers must be colluding by definition of the hub attack.

Notice that we have excluded from our model the possibility of a Sybil [Dou02]

attack and due to other simple ID scheme we have supposed that every PSS in-

stance is running on a distinct host (see Section 2.2 and 3.2).

We considered 50, 100 and 200 malicious nodes corresponding respectively to

2.5, 5 and 10 times the actual cache size of the underlying PSS. With 50 attackers

the SPSS still provides a good defence as the cache pollution level is about 15%, a



80 Chapter 5. Proposed approach: the Secure Peer Sampling Service

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400  450  500

A
ve

ra
ge

 c
ac

he
 p

ol
lu

tio
n 

ra
tio

Cycles

50 m.nodes
100 m.nodes

200 m.nodes

Figure 5.4: SPSS dealing with more than cachesize (c = 20) malicious nodes.

The results regarding 50, 100 and 200 attackers are shown.

quite safe value and far from the risk of partitioning if the attackers leave.

Switching to 100 attackers, the situation changes dramatically. The pollution

level is exponentially higher; the SPSS takes 500 rounds to achieve a pollution

level of about 88%. Of course, the system is exposed to the risk of (massive)

partitioning at any time. However, the SPSS curve is decreasing showing that

the SPSS is reacting to the threat; although, the reaction is too slow to have any

practical impact.

The upper line corresponds to the 200 attackers set. In this case, the SPSS is

quickly defeated and seems incapable of any reaction.

In this unlikely scenario however, the SPSS shows to able to manage safely a

set of colluding attackers larger than 2.5 times the size of the its current cache.



Chapter 5. Proposed approach: the Secure Peer Sampling Service 81

5.5 Decentralised SPSS

We believe that the main shortcoming of our centralised SPSS solution is that

the deployment of trusted nodes over the Internet, in order to sustain our secure

gossip system, is a viable approach only for organisations or companies with

trusted administrative control.

In other words, the TRUSTED PROMPT approach requires some extra trusted

infrastructure that complicates the system deployment and maintenance. Using

the simplest set-up, i.e., using a single TRUSTED PROMPT, we minimise the deploy-

ment issue, but produce a single point of failure. If the single TRUSTED PROMPT is

hacked or crashes then the whole network is vulnerable to attack.

A fully decentralised solution would be preferred as it would lower the bur-

den to design and to deploy secure gossip systems and would not require trust

external to the system (other than the CA which is external to the protocol), but

is this possible to achieve? And what kind of trade-offs do we need to consider?

Our aim is to refactor our previous approach in order to obtain a fully decen-

tralised solution, in which each node has the chance to detect the malicious nodes

using its own resources.

5.5.1 Multiple overlays

As we have seen the main obstacle to prevent and detect the hub attack is repre-

sented by its high spreading speed. Such a high speed leaves no time to the peers to

make any successful guess about the identity of the attackers. This is why in our

previous SPSS solution we rely on the TRUSTED PROMPT assistance.

The basic idea for the fully distributed SPSS is based on using multiple, con-

current instances of the PSS. Therefore, each node participates in multiple over-

lay graphs, and the neighborhood at every instance will be distinct with very high

probability because the overlays have independently random-like topologies. Es-

sentially, the multiple caches over the same node population, which every node



82 Chapter 5. Proposed approach: the Secure Peer Sampling Service

adopts, give each peer a snapshot of what is going on in distinct (random) neigh-

borhood of the overlay. We call extra caches the set of caches belonging to each

peer; every cache in the set is a random snapshot of a distinct PSS overlay

We assume the same attack model as before: a set of k colluding attackers, but

running multiple PSS instances as well, will pollute all the available instances.

This hypothesis makes our scenario more challenging.

Each node can monitor the pollution ratio by looking at its extra caches. Since

the network population of all the PSS instances is the same, all the extra caches

will become polluted by the same k malicious node IDs, if no checking action is

performed. However, an attacker can pollute at most only a single node’s cache

at a time per overlay. In addition, due to the random nature of the available

overlays, it is very unlikely that an attacker could defeat all caches of the same

victim peer in a short time window. Essentially, the multiple caches are useful in

order to perceive how malicious node are spreading the infection from distinct

directions over distinct overlays. Due to the spreading infection, we expect that

common node ID patterns will emerge in all (or in the majority) of the caches.

5.5.2 Quality rating

Each peer can build a set of statistics in order to guess or detect who are the

malicious nodes from the emerging patterns. This knowledge base is stored as

private, local black- and white-lists that it is never exchanged among neighbors

(see [NCW05]). This obviates the second-order issue of malicious nodes spread-

ing incorrect reputation information.

During a gossip exchange, both parties rate the quality of the exchange. The qual-

ity rate is given by the number of items lying in the intersection of the exchanged

caches among node A and B: r = |{cacheA ∩ cacheB}|, as described in Section 5.1.

This quality rate influences the probability to conclude the gossip exchange with

this current neighbor. Essentially, when two caches are similar (or identical) it is

likely that the current neighbor is a malicious node and with high probability it

should not be accepted. The probability to abort the exchange is proportional to



Chapter 5. Proposed approach: the Secure Peer Sampling Service 83

API

Cache 3 Cache 4Cache 2Cache 1 Cache 5

Black List White List

selectRndPeer()

return best ranked cache

return random

peer from cache

replace

blacklisted

IDs in caches

abort gossip if

partner ID

blacklisted

update black- and

white-list based on

gossip quality

Figure 5.5: Schematic of the decentralised SPSS; it maintains multiple caches to

support multiple random overlays. Black and white-lists screen incoming gossip

requests and refresh malicious cache entries. The highest quality cache is mapped

to the API to support standard peer sampling functions.

the fraction of the common IDs found among the two caches: r/c, where c is the

usual cache size.

The rank results are collected in the node’s knowledge base. The information

collected in this structure is refreshed according to an ageing policy to avoid that

any wrong guess would have unbounded consequences over time.

Any attempt to exchange with a neighbor (black-) listed as a high frequency

and low quality rated node is declined. In addition, when a node suspects one of

its caches is polluted, it tries to refresh the cache randomness by substituting the



84 Chapter 5. Proposed approach: the Secure Peer Sampling Service

currently blacklisted node IDs with high quality rated node IDs collected during

the previous exchanges (if any).

During the protocols execution, one or more cache can be defeated by the

attackers. However, this is not critical, as the cache will be restored as soon as the

node has collected a suitable knowledge base. It is very unlikely that all node’s

caches become polluted in a short amount of time; in this unlucky condition and

if the knowledge base is not ready or not correct, the only chance for a node is to

be contacted by a well behaving node in order to partially restore at least one of

its caches. This is the exact situation we have in the previous SPSS version. Figure

5.5 shows a schematic of the main components maintained by the protocol within

each node. A 5 caches scenario is depicted.

5.5.3 The algorithm

Our decentralised approach is focused on the knowledge base each node has

to build. Essentially, the knowledge base is represented by two list structures:

BLACKLIST and WHITELIST; the former holds high frequency and low quality rated

node IDs, while the latter holds high quality rated node IDs. We do not set any

explicit size limit for these structures and, as a consequence, their size may grow

to the actual network size. However, due to presence of an ageing policy, their ac-

tual size is much less than the theoretical maximum. The SPSS algorithm pseudo-

code executed by a node A is the following:

1. Select a random neighbor B /∈ BLACKLIST, if any

2. Compute the quality rate r with B; proportionally to r/c decline and black-

list B, otherwise accept the gossip exchange, and:

(a) whitelist B

(b) perform the standard PSS exchange with B

These steps are performed in each cycle for every available cache. Two addi-

tional actions are performed concurrently by two threads at the end of each cycle.



Chapter 5. Proposed approach: the Secure Peer Sampling Service 85

The first action is to purge the BLACKLIST and WHITELIST according to an ageing

policy; the second action instead, is to repopulate the caches suspected of being

polluted (if any): each node ID in the cache listed in the BLACKLIST is substituted

by a random node ID picked from the WHITELIST.

Another issue is to clarify how node IDs can be inserted and swapped from the

BLACKLIST to the WHITELIST and vice-versa. When a node ID has to be inserted

in the BLACKLIST for the first time, a standard TTL value (2 cycles) is bound to

the stored ID; if the ID is already present instead, its TTL value is reinforced (i.e.,

doubling the current TTL value). This reinforcement process is needed in order

to keep in the BLACKLIST the most frequent node IDs (with a poor rate).

About swapping the IDs among the two structures, suppose node B’s ID

is already in node A’s WHITELIST, but now node A had to insert B’s ID into

its BLACKLIST. B’s ID is removed from A’s WHITELIST and it is inserted in the

BLACKLIST. In other words, the BLACKLIST has more authority than the WHITELIST.

Likewise, if node A has to whitelist node B’s ID, but it is already in A’s

BLACKLIST, the swap between the two list is not allowed until B’s ID is purged

from the BLACKLIST. This rule is designed to avoid that a node’s PSS instance ex-

changing with a malicious node for the first time, would not overwrite a possible

correct suspicion made by a more experienced instance.

5.5.4 Why it works

It is important to note that having multiple caches belonging to distinct PSS in-

stances is very different from having a single PSS with a possibly huge cache.

Multiple caches add extra randomness to the node’s state and avoid to be de-

feated in just one exchange; in addition, in extreme conditions (i.e., when the set

of attackers is larger than the cache size, see section 5.6.4) they still give the chance

to identify the attackers.

The value added by multiple PSS overlays is that the infection proceeds from

distinct multiple paths. These dynamics gives each peer more time to detect the

most frequent node IDs that appear in their caches.



86 Chapter 5. Proposed approach: the Secure Peer Sampling Service

A higher-level protocol working on top of this fully distributed SPSS can see

just a single cache, in order to maintain a seamlessly integration with the standard

PSS API. A smart implementation of the fully distributed SPSS can dynamically

export the current best cache according to concentration of suspected malicious

nodes currently listed in the knowledge base (see Figure 5.5).

5.5.5 Evolutionary link

The multiple caching concept originates from previous socially inspired evolu-

tionary models of “group selection” [HE05, HA06]. In these models anti-social

behavior between nodes was avoided by allowing nodes to form and move be-

tween different clusters or groups in the population based on utility value com-

parisons. Essentially, nodes evaluated the quality of their neighbors by measur-

ing the effectiveness of interaction with them over time – involving some appli-

cation level task – and represented this as a utility value. By comparing utili-

ties with other randomly selected nodes and copying the neighborhoods (caches)

of those with higher utility, nodes could avoid interaction with anti-social free-

riding nodes. In this approach nodes maintained a single overlay and made

intra-overlay movements to find better (higher utility) neighborhoods.

For the distributed SPSS we implemented a similar scheme by allowing each

node to store multiple caches and only selecting the best cache based on a mea-

sure of utility expressed as cache quality. From the point of view of what is passed

to the API, nodes are constantly shifting between different views of the network

since each cache represents a different set of neighbors. Furthermore, when the

quality for a particular cache becomes low due to possible identification of ma-

licious information, it is wiped and reinitialised from the white-list, hence low

quality caches are dropped.

Hence in SPSS nodes do not move between distinct groups or clusters in a

single overlay but maintain and effectively move between distinct overlays (inter-

overlay movement) comprising the same population of nodes but in different

topological configurations. Hence what is being selected here by each node is the



Chapter 5. Proposed approach: the Secure Peer Sampling Service 87

overlay which produces the best cache quality at each given point in time. Since

all nodes actually stay in all overlays at all times (by maintaining a fixed number

of multiple caches) this approach is less a form of evolution and more a form of

redundancy with dynamic selection.

5.6 Fully decentralised SPSS evaluation

In order to evaluate our new approach, we investigate the following main issues:

(a) how much time is required to achieve a tolerable1 amount of pollution in the

node’s caches, (b) how many extra caches are required to prevent the attack, (c)

how the performance scales according to the number of the extra caches adopted,

(d) the performance of our approach in terms of communication cost; finally, we

are also interested in (e) the performance when the hub attack is played by a

number of malicious nodes larger than k or, in other words, when k > c.

If not stated explicitly, in the following evaluation, we consider the usual sce-

nario for a hub attack: when the number of malicious nodes k is equal to the

(single) cache size (k = c = 20).

5.6.1 Static environment

Figure 5.6 shows the average pollution level in the node’s caches for each consid-

ered network size (1,000, 5,000 and 10,000 nodes respectively). In this scenario,

we consider a static network in which both malicious and well-behaving nodes

are not subject to crashes; also network links are considered perfect and without

message loss.

Each plot shows a SPSS set-up using a distinct number of concurrent caches

per node; we have shown the results for 1, 2, 4 and 8 caches set-ups. As a refer-

ence, we also plotted what happens when no attack countermeasures are taken

1We consider the pollution in a tolerable range if the graph does not split into clusters when

the malicious nodes leave.



88 Chapter 5. Proposed approach: the Secure Peer Sampling Service

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 c
ac

he
 p

ol
lu

tio
n 

(%
)

Cycles

no defence
1 cache

2 caches
4 caches
8 caches

(a) 1000 nodes

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90  100

Cycles

no defence
1 cache

2 caches
4 caches
8 caches

(b) 5,000 ndoes

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90  100

Cycles

no defence
1 cache

2 caches
4 caches
8 caches

(c) 10,000 nodes

Figure 5.6: Fully decentralised SPSS algorithm. The average pollution level in the

caches is shown over time; multiple distinct caches per node are compared (e.g.,

1, 2, 4 and 8 caches) for each network size (e.g., 1,000, 5000 and 10,000 nodes). 20

malicious nodes are involved in the attack.

(see the solid topmost line in each chart). Of course, when nothing prevents the

malicious node’s activities, the cache pollution level quickly reaches 100%. When

the distributed SPSS is run with just one cache, the pollution level monotonically

increases; the smaller network becomes defeated in about 50 cycles because a de-

gree of 20 is quite high compared to its size. However, this set-up cannot be con-

sidered a full countermeasure since we still use only a single cache. Essentially,

the blacklist mechanism is not sufficient per se in order to recover the network.



Chapter 5. Proposed approach: the Secure Peer Sampling Service 89

By using two or more concurrent caches per node, the situation changes dra-

matically. Two caches are already sufficient to recover the network, regardless

the network size. In all cases, the pollution level is never dangerous. Here, by

dangerous, we refer to a level over which the network would suffer from parti-

tioning if the malicious nodes leave the network; in general, this happens when

the cache pollution is≥ 75% (see [JGGvS06]). By increasing the number of caches,

we further lower the pollution, however, especially in the bigger network, the ad-

vantage in the adoption of 8 instead of 4 concurrent caches is almost negligible.

In addition, a pollution level below 20% does not pose any threat of partitioning

the network. For this reason, according to our experiments, we consider the 4

extra caches set-up a good trade-off between complexity and effectiveness.

5.6.2 Dynamic environment (churn)

Figure 5.7 shows the performance of the SPSS under churn. We measured the

average pollution level in the node’s caches for each distinct network size (1,000,

5,000 and 10,000 nodes). We allowed three distinct churn set sizes: 1%, 5% and

10%, respectively; this amount of nodes leaves the network at every cycle and

it is substituted by an equal number of new participants. The malicious nodes,

however, stay in place and attempt to pollute caches for the whole duration of the

experiment. Note that these values are actually quite high [MCR03], but will al-

low to demonstrate the feasibility of our solution. Each node has a 4 extra caches

set-up.

It is surprising to see that the dynamism of the network helps the SPSS to keep

the pollution level low. In fact, the level is lower than in the static scenario, for

all the considered network sizes. In addition, a higher level of dynamism cor-

responds to a lower level of pollution. The reason lies in the fact that there is a

higher proportion of fresh nodes injected in the system with a very low proba-

bility of having a malicious ID in cache; the well-behaving nodes that work in

system for a longer time, will hardly diffuse the malicious IDs as they have al-

ready blacklisted them with high probability. Therefore, it becomes harder and



90 Chapter 5. Proposed approach: the Secure Peer Sampling Service

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 c
ac

he
 p

ol
lu

tio
n 

(%
)

Cycles

1%
5%

10%

(a) 1000 nodes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

Cycles

1%
5%

10%

(b) 5,000 ndoes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

Cycles

1%
5%

10%

(c) 10,000 nodes

Figure 5.7: Fully decentralised SPSS under churn conditions. The average pollu-

tion level in the caches is shown over time according to three churn set sizes (1%,

5% and 10% of the network population) and for each network size (e.g., 1,000,

5000 and 10,000 nodes). 4 concurrent caches are adopted by each participant. 20

malicious nodes are involved in the attack.

harder for the malicious nodes to diffuse their bogus caches.

Essentially, on average no well-behaving node will play in the system enough

time to detect successfully all malicious nodes, but this total knowledge is not

required at all. The knowledge of who are the malicious nodes is distributed

over the system as a whole; in other words, it is sufficient that every attacker is

known by some healthy node.



Chapter 5. Proposed approach: the Secure Peer Sampling Service 91

 0.1

 1

 10

 100

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 c
ac

he
 p

ol
lu

tio
n 

(%
)

Cycles

TP-SPSS ch. 1%
TP-SPSS ch. 10%

SPSS ch. 1%
SPSS ch. 10%

Figure 5.8: Comparison among our previous TRUSTED PROMPT based SPSS and

the current decentralised one (4 extra caches). Two distinct churn scenarios are

shown for each one. Network size is 10,000.

In Figure 5.8, we show a comparison between our previous TRUSTED PROMPT

based SPSS and the new decentralised one in the dynamic environment. The set-

up of the decentralised SPSS consist of 4 extra caches. We adopted two churn set

sizes: 1% and 10% of the network population. The lines marked with the sym-

bols +,× and ∗ depicts the decentralised SPSS, while the standard lines depict the

TRUSTED PROMPT version. The cache pollution levels achieved are quite similar.

The new version has a small disadvantage when the churn rate is low (e.g., 1%).

However, in the worst case the pollution reaches a stable 10% and it is far from a

critical range. In other words, we do not run the risk to have the network parti-

tioned if the malicious nodes leave. In general, the decentralised SPSS achieves a



92 Chapter 5. Proposed approach: the Secure Peer Sampling Service

more stable pollution level than the centralised version.

5.6.3 Message overhead

The main advantage of the decentralised version over the TRUSTED PROMPT based

one, is the minimal message traffic cost. Essentially, the extra cost to sustain is due

to the collection of extra PSS instances involved in the new approach. In fact, we

avoid the traffic generated by the queries sent to the TRUSTED PROMPT (e.g., about

1,000 of queries per cycle in a 10,000 nodes network).

Using NEWSCAST as implementation, the cost is n times the cost of each PSS

instance; as the average number of exchanges per node can be modelled by the

random variable 1+φ (see [JKvS03]), where φ has a Poisson distribution with

parameter 1; the overall node cost per cycle is:(
n∑

i=1

PSSi

)
=

(
n∑

i=1

1 + φi

)
= 2 · n

5.6.4 Extreme conditions

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 c
ac

he
 p

ol
lu

tio
n 

(%
)

Cycles

2 caches 4 caches 8 caches

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 c
ac

he
 p

ol
lu

tio
n 

(%
)

Cycles

40 m. nodes
35 m. nodes

30 m.nodes
25 m.nodes

(a) k = c · n m. nodes (b) 2 caches, k > c m. nodes

Figure 5.9: Comparison of the graph topology properties in distinct scenarios.

The clustering coefficient is shown in the left picture, while the avg. path length

is shown in the right one. Network size is 10,000.



Chapter 5. Proposed approach: the Secure Peer Sampling Service 93

We are interested in verifying the tolerance limit of our approach in terms of

number of colluding attackers and to make a comparison with the centralised

approach. In the previous section we have seen that the decentralised SPSS can

recover the overlay when k = c malicious nodes and n ≥ 2 caches are involved.

This performance is given by the redundancy of the node’s state. The experi-

ments shown in Figure 5.9 depict the performance of the (decentralised) SPSS

when k > c malicious nodes are involved in a 10,000 nodes network.

Figure 5.9(a) shows what happens in the extreme case in which k = c · n

attackers are injected in the network. Essentially, we consider to pollute all the

extended state of the node. As before, we consider c = 20 the size of a single

cache and n the number of caches adopted; we considered 2, 4 and 8 caches,

corresponding to 40, 80 and 160 malicious nodes respectively. The effect of the

presence of c·n attackers grows much faster than the benefit given by the multiple

caches.

We may come to think that having k = c · n attackers is the same as the single

cache case (k = c · 1, see Figure 5.6), but, instead, the multiple cache presence

allows the decentralised SPSS to slowly recover the network. However, the re-

covering process can be very slow and, more important, the pollution level grows

over the dangerous level, depicted by the thick horizontal line, with any number

of caches; if the attackers leave, the network will be severely partitioned. Basi-

cally, when the whole state can be polluted by a sufficiently large set of malicious

nodes, the performance is bad (i.e., the network can be partitioned), but the de-

centralised SPSS is not paralysed as it is still capable of detecting the attackers.

In Figure 5.9(b), we check how many malicious nodes can be tolerated by a

SPSS using 2 caches. We are interested to know the maximum number of attacker

we can successfully tolerate, according to the actual redundancy (caches), with-

out exceeding the threshold represented by the horizontal line. With this set-up,

the system can tolerate k = c · 1.5 = 30 malicious nodes. However, as can be

argued by the situation depicted in Figure 5.9(a), an increment of the state redun-

dancy (the number of the caches) has a less than linear increment in the number



94 Chapter 5. Proposed approach: the Secure Peer Sampling Service

of tolerable attackers. When considering k = c · n attackers, the centralised ver-

sion is successful as the TRUSTED PROMPT handles the node states; therefore, the

node states can always benefit from an extra state help.

5.7 PSS properties maintenance

The aim of this section is to show if and how the SPSS preserves the standard PSS

topology properties. In other words, we are interested in checking if the topology

generated and maintained by the SPSS can still be considered similar to a random

graph from node’s point of view.

 0.001

 0.01

 0.1

 1

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 c
lu

st
er

in
g 

co
ef

fic
ie

nt

Cycles

PSS and hub attack
PSS

SPSS
random graph

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 p
at

h 
le

ng
th

Cycles

PSS and hub attack
PSS

SPSS
random graph

(a) Clustering coefficient (b) Avg. path length

Figure 5.10: Comparison of the graph topology properties in distinct scenarios.

The clustering coefficient is shown in the left picture, while the avg. path length

is shown in the right one. Network size is 10,000.

Figure 5.10 compares the following scenarios: (a) the PSS during a hub attack,

(b) the PSS in normal conditions, (c) the SPSS (during a hub attack) and (d) an

ideal random graph generated by an oracle 2. All the graph topologies involved

2The plot of the ideal random graph depicts oscillations while it should be perfectly flat, as

it is produced by a static graph. The oscillations are produced by the measurement process;

this process considers a random subset of the graph at every cycle to speed-up the computation,

therefore producing a bit of variance in the values.



Chapter 5. Proposed approach: the Secure Peer Sampling Service 95

have a degree of 20 (e.g., the (S)PSS cache size is 20).

Figure 5.10 (a) shows the avg. clustering coefficient among the four scenar-

ios. Scenario (a) quickly reaches a CC value close to 1 as a consequence of the

hub topology formation, while in normal conditions (scenario (b)) the CC value is

around 0.30 (e.g., the typical value of the NEWSCAST implementation). The value

achieved by the (c) SPSS scenario instead is lower and closer to a real random

graph set-up (d). The enhanced randomness is due to the TRUSTED PROMPT’s pro-

vided caches.

Figure 5.10 (b) shows the avg. path length among the four scenarios. Scenario

(a) initially depicts a behavior similar to the standard PSS until the attacker’s

action becomes dominant; then it drops to a value of 2 in 30-35 rounds. This value

is expected as it is characteristic of the hub topology. Contrary to our selected PSS

reference implementation, the SPSS achieves an avg. path length value very close

to that of an ideal random graph (e.g., scenario (c) versus (d)).

These features show that the SPSS resulting topology can still be considered a

random graph-like topology as it achieves better (lower) clustering characteristics

than our reference PSS implementation (NEWSCAST).

5.8 SPSS discussion

In this chapter we have provided a general solution scheme suitable for any PSS

implementation. The SPSS is based on a stochastic approach and achieves the

goal of maintaining the underlying topology despite the presence of a set of ma-

licious nodes playing the hub attack algorithm.

The SPSS scheme is designed to maintain the PSS properties when the number

of (colluding) malicious nodes k is less or equal of the PSS cache size c, but it

proves also to be effective when the set of attackers is 2,5 times larger than the

cache size.

It is important to understand that the SPSS task is to maintain the underlying

topology only in presence of attackers. In other words, it cannot prevent any



96 Chapter 5. Proposed approach: the Secure Peer Sampling Service

other malicious behavior running, for example, as a higher level protocol; this

protocol may eventually rely on the PSS. However, the fact of having a “secured”

PSS can slow down the malicious intent, but cannot prevent it for sure.



Chapter 6

Securing higher-level services

In this chapter, we focus on securing gossip services relying on the PSS facilities.

Our securing effort targets a specific problem: the corruption of the gossiped

information. Our aim is to limit the spreading of the corrupted information with

the minimum possible effort.

We identify a class of generic gossip algorithms to which we apply a gen-

eral, but effective technique, based on probabilistic checking, in order to limit the

spread of corrupted information. The adopted technique has been already used

with success in a different (wireless) context [GJGvS07].

6.1 The second problem introduction

From the conclusions of the previous chapter, we know that the SPSS preserves

the random graph topology from the malicious action of a set of colluding attack-

ers playing a generic attack model (e.g., the hub attack, 3). However, the SPSS can

not prevent any other malicious action carried out by the attackers at an higher-

level service, relying (or not) on the PSS facilities. For example, the attackers can

forge or corrupt messages in various ways and, although without having the un-

derlying topology control, can profit by their malicious actions in order to obtain

a better utility or other kind of advantages. Of course, these actions cannot be

prevented by the SPSS itself.



98 Chapter 6. Securing higher-level services

Essentially, we focus on services relying on the PSS for connectivity. The issue

we want to address is to prevent the spreading of forged information in these

services. A new gossip primitive to extend the standard gossip scheme is the

solution scheme we would like to achieve. Extending the gossip scheme would

make easier to adapt many standard gossip protocols in order to provide more

secure services.

In order to define clearly our second problem, we have to deal with some

issues. Basically, we must define exactly the following: (1) what kind of security

or guarantee we would like to have, (2) in which exact context we would like to

operate or, in other words, which kind of gossip service class can we target?

6.1.1 The scenario

We focus our attention on a specific class of gossip services. Our target class

is made by generic information dissemination services that follow this simple

schema: each node A and B exchange respectively a set of items sA et sB and

both sets must be non-empty. We do not pose any restriction on the actual action

performed to produce the new node state (see 2.1). The actual neighbor selection

is performed in a random fashion. The neighbor is picked from an underlying

topology that is provided by the presence of a PSS instance. Therefore, we assume

each node also runs a PSS instance.

We consider an item as a generic representation for any protocol specific data

unit (e.g., event, advertisement, description, sensor datum, etc.). As items are

exchanged among peers, several copies of a single item may exist in the network.

An item can be uniquely identified by the node ID of its source node and by a

sequence number.

In this context, we consider that the attackers forge or corrupt the set of received

items in their cache; the set held in cache is then forwarded to a neighbor. The

reason for the malicious behavior may vary and is application dependent, but we

consider that the malicious behavior provides some specific advantage over the

other (non malicious) peers.



Chapter 6. Securing higher-level services 99

In gossip overlays, the fast diffusion of the information is a remarkable prop-

erty, but it may become a side effect if malicious information is diffused instead.

In fact, a few attackers may be able to subvert the application behavior by pol-

luting the system with bogus information. Our goal is to limit the spread of the

corrupted items by the malicious nodes on behalf of other nodes.

As can be argued, the actual item corruption process is highly application

dependent.

In the absence of any mechanism to detect and remove corrupted items the

system is likely to be flooded by the action of the attackers. In order to secure the

system, the following issues must be addressed:

• Access control: the entry point to the system must be regulated. A Certifi-

cation Authority (CA) in order to certify a public key for each peer can be a

viable strategy. The CA intervention is required as a bootstrap step and has

no other impacts.

• Sender authentication: as in large-scale gossip networks the messages are

likely to “random-walk” across many other peers in order to reach a des-

tination; therefore, the receiving node cannot make assumptions about the

sender of the message or item. To uniquely identify the sender’s item, we

require each message to be signed by its original sender.

• Message integrity: as any message is likely to be forwarded among many

peers, it is easy for an attacker to corrupt any item. However, if the previous

requirement holds, any peer can check for the integrity of the received items

by verifying the digital signature of the item’s sender at any time.

The use of cryptography can trivially solve our aim to prevent any attempt

of forging the items. In fact, by checking all the items at every gossip exchange

would solve the problem. However, gossiping large amounts of items at a time

and having multiple services relying on this technique could have a severe impact

on the processing resources.



100 Chapter 6. Securing higher-level services

do forever

wait(∆t)

neighbor = SELECTPEER()

SENDCACHE(neighbour)

neigborcache = RECEIVECACHE()

checkItems(neighborcache)

myCache.UPDATE(neighborcache)

do forever

n state = RECEIVECACHE()

SENDCACHE(n state.sender)

checkItems(neighborcache)

myCache.UPDATE(neighborcache)

(a) Active Thread (b) Passive Thread

Figure 6.1: The gossip scheme extended by the anti-forge checkItems() prim-

itive.

We have to stress that a typical PSS implementation seems to fit in the general

class we have identified. Of course, we can ask: why not to use the technique we are

introducing to prevent the hub attack as an option to the SPSS? The reason is due to

one of the assumptions of the hub attack: the attackers are colluding as they need

to share their secret keys to sign correctly the IDs in each message. For this reason,

the technique we are introducing (see Section 6.2), based on cryptography, would

never detect any malicious action during a hub-attack.

6.2 The anti-forge technique

The technique we are going to use, has been already successfully adopted in order

to limit the spam of corrupted items in mesh of wireless routers [GJGvS07].

In our scenario we have a dynamic overlay topology (PSS) instead of a static

set of routers. This fact makes the diffusion of corrupted items faster than in the

wireless scenario.

Essentially, the anti forge technique aims to provide a new gossip primitive:

checkItems(). The primitive is designed to run before the merge phase of

the node’s state as shown in Figure 6.1. Both the checkItems() and the SPSS

checkIDs() (see Section 5.1) primitives follow the same design scheme, but

their actual algorithm is completely different.



Chapter 6. Securing higher-level services 101

The key idea is that each peer performs a probabilistic integrity check over the

received item set according to a system-wide Pcheck checking parameter. This

features ensures the lightweight nature of this solution as it provides a very good

ratio among effectiveness and resource consumption (see [GJGvS07] and Section

6.3).

The integrity check involves the verification of the selected item’s digital sig-

nature. Only successfully verified items and not checked items are allowed to

be merged in the new peer’s state. Any invalid item, of course, is discarded. In

addition, valid items are marked with a checked flag.

The actual algorithm run by the anti-forge primitive is the following.

1. ∀ itemi with prob. Pcheck, verify digital signature of itemi

2. if itemi is valid, itemi ← checked

6.2.1 Corruption attack model

The design of the anti-forge technique has severe implications for how an attacker

can behave. Marking the items as checked can be considered as an incentive to

cooperate among nodes.

First, all peers are supposed to verify a certain amount of items according

to the Pcheck parameter; if an attacker refuses conform to this rule, it would raise

suspicion as it is easy to calculate how many checked items a node should receive

in a cache exchange (e.g., related to Pcheck and the cache size).

Second, the application of the checked flag is under the responsibility of the

last forwarder. If a forwarder sends a checked item, he tells explicitly that he has

previously checked this item instance and the item is valid. Therefore, if by lying

we run the risk to raise suspicion if the receiving neighbor executes an integrity

check on that item. In this case the attacker would be trivially discovered and

banned from the system.

For these reasons, an attacker can corrupt all items with the exception of the

items marked as checked. Malicious nodes are supposed to be careful and



102 Chapter 6. Securing higher-level services

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  100  200  300  400  500  600  700  800  900

C
yc

le
s

Distinct items

Discovery time 10000 nodes network (all items per node)

wireless grid mesh
rnd PSS mesh

Figure 6.2: Items discovery speed comparison among the overlay and wire-

less scenario. The speed is expressed in terms of cycles required to discover the

amount of distinct items on the x-axis by all the nodes. The network size is 10,000

nodes.

do not run the risk to be trivially discovered, thus they are forced to perform

integrity checks with Pcheck probability and to only corrupt items that are not

marked as checked.

Of course, the attacker’s power is much more limited.

6.3 Anti-forge technique evaluation

We tested the effectiveness of the anti-forge technique in our particular overlay

environment. Our goal is to check the effectiveness of the probabilistic check in



Chapter 6. Securing higher-level services 103

limiting the spread of the corrupted items in our overlay setup.

We perform our experiments over three distinct network sizes: 1000, 2500 and

10000 nodes. The underlying topology is managed by a PSS instance, therefore it

looks like a random graph from each peer’s point of view. Different concentra-

tions of malicious node are considered: 1, 2, 5, 10, 20 and 30%; here, the malicious

nodes act on the dissemination service only.

The actual gossip algorithm used as a dissemination service to diffuse the

items is basic-shuffling (see Section 2.2.2) tuned by a special setup; essentially,

the differences are in the following: (a) generic items are exchanged instead of

node IDs, (b) the set size of the exchanged items is equal to the item’s cache size

(the cache’s whole content is exchanged) and (c) the random peer selection is

performed by a PSS instance running on each node as well as the dissemination

service.

The cache size used by the item diffusion mechanism (basic-shuffling) is 50 or

100, while the PSS cache size c is set to 20. In the following, when we refer to the

generic term “cache”, we refer to the diffusion mechanism cache.

Figure 6.2 shows a brief summary of the difference in speed among our sce-

nario and the wireless scenario described in [GJGvS07], in which wireless routers

are arranged in a grid-like fashion (4 neighbors set-up). The speed is expressed in

terms of time (cycles) required to discover all the distinct items by all the nodes

in the system. The x-axis reports the actual number of distinct items injected

in the system. In addition, the dissemination service uses an item cache of size

50. In this experiment there are no attackers and hence no corrupted items; the

experiment is just to show the speed dominance of our set-up. The use of the

basic-shuffling as a diffusion algorithm is explained in [DvS06].

The wireless set-up is much slower than the PSS overlay; this fact is expected,

as the PSS provides a dynamic communication layer that spreads the information

faster. Not only does dynamism play an important role, but also the higher node

degree of the PSS topology is a great boost for performance.

Figure 6.3 shows the effect of the malicious nodes when they start corrupting



104 Chapter 6. Securing higher-level services

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1000025001000

%
 o

f c
or

ru
pt

ed
 it

em
s 

in
 c

ac
he

Network size

 P=5%
 P=10%
 P=20%
 P=30%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1000025001000

%
 o

f c
or

ru
pt

ed
 it

em
s 

in
 c

ac
he

Network size

 P=5%
 P=10%
 P=20%
 P=30%

(a) 1% malicious nodes (b) 5% malicious nodes

Figure 6.3: Average cache pollution (percentage of corrupted items in the items

cache) according to network size (1,000, 2,500 and 10,000 nodes) and distinct val-

ues of Pcheck (%5, %10, %20, %30).

the entries. The attackers corrupt all the items they are exchanging with a neigh-

bor, except for the items marked as checked. The figures are generated after

500 cycles. Each figure shows the average percentage of corrupted items in each

node’s cache according to the network size and the checking probability value

(Pcheck = {5,10,20,30%}). In Figure 6.3(a) the size of the set of the attackers is 1%

of the network size, while in Figure 6.3(b) it is 5%. The levels of corrupted items

in the cache are very similar with both concentration of attackers (1 and 5%). Us-

ing the same proportion of attackers and the same checking probability Pcheck,

the smaller networks tends to be more polluted. This fact can be explained by the

degree of the underlying PSS topology; a degree of 20 in fact, is quite large for

a 1,000 nodes network and the corrupted items can be spread faster than in the

other network sizes and a higher Pcheck value is needed to limit the pollution. In

the bigger network instead, a 5% Pcheck value is fine to limit the corrupted items

to a negligible level (e.g., an average of 2% of the node’s item cache size).

The time required for the system to reach a stable pollution state in the item

cache is about 50 cycles in the worst case, corresponding to the smallest Pcheck

value as shown in Figure 6.4. The upper line in the figure shows how the number



Chapter 6. Securing higher-level services 105

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300  350  400  450  500

A
vg

. %
 o

f c
or

ru
pt

ed
 it

em
s 

in
 c

ac
he

Cycles

 P=0%
 P=5%

 P=10%
 P=20%

 P=30%

Figure 6.4: Time required to corrupt the node’s cache. The upper line shows

what happens without any checking attempt, while the other lines show a distinct

checking probability (e.g., Pcheck = 5, 10, 20 and 30%). The network size is 1,000

nodes.

of corrupted items in the cache increases until all node’s cache entries are cor-

rupted. Figure 6.4 depicts the situation regarding a 1,000 nodes network, but for

the other network sizes, the time-scale values are similar.

The main difference between our scenario and the wireless one described in

[GJGvS07], is how the corrupted items are distributed in the network. In our

set-up, the corrupted items tends to be uniformly distributed among the node’s

caches, while in the wireless one the items have a short range of influence (mea-

sured in hops). This is one of the reasons why the corrupted items spread for

a longer distance. We measure this distance in hops, each time a corrupted in-



106 Chapter 6. Securing higher-level services

stance is exchanged, its hop counter is incremented. This process stops when the

corrupted item is discovered and discarded by the check mechanism.

Figure 6.5 shows our hops measurements in the bigger (10,000 nodes) net-

work. The picture on the left (Figure 6.5(a)) shows the hop distance travelled

over time according to distinct Pcheck values, while the picture on the right (Fig-

ure 6.5(b)) shows the hop distance travelled with distinct Pcheck values, according

to different malicious nodes concentrations (1 and 5%).

In Figure 6.5(a), the average hop distance travelled reaches a stable state in a

few cycles (e.g., 20). As the dissemination is faster and almost uniform among

all the peers in the network, the corrupted items travel more distance than in

the wireless context (see [GJGvS07]). Of course, without any check a corrupted

item will travel forever among peers as shown by the topmost line. The distance

travelled grows almost linearly.

Figure 6.5(b) depicts two distinct properties: (1) the average number of hops

(distance) traveled by corrupted items is inverse proportional to the actual Pcheck

probability value; (2) the distance results are independent from the number of

malicious nodes (1, 5, 10, 20 and 40% of the network size) in the system, as all

lines in the plot are almost identical.

6.4 A case study: evaluating the SPSS and the anti-

forge technique together

After having analysed the anti-forge technique in our overlay set-up, securing a

generic information dissemination service, we allow the presence of a malicious

PSS layer, in which malicious nodes play the hub attack.

Essentially, we are interested to see if and how the hub attack can increase the

malicious item diffusion rate spread by the dissemination service. In addition,

we show how the presence of both techniques can limit to a negligible level the

effect of the malicious nodes over both services.



Chapter 6. Securing higher-level services 107

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

A
vg

. n
um

be
r 

of
 h

op
s

Cycles

 P=0%
 P=5%

 P=10%
 P=20%
 P=30%

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25  30  35

A
vg

. n
um

be
r 

of
 h

op
s

Check probability P

 1% of m. nodes
 5% of m. nodes

 10% of m. nodes
 20% of m. nodes
 30% of m. nodes

(a) Distance over time (b) Distance over Pcheck values

Figure 6.5: Hops distance travelled by corrupted items in a 10,000 nodes net-

work. The picture on the left shows the distance travelled over time according

to distinct Pcheck values; the 5% of malicious nodes have joined the network. The

figure on the right instead, shows the distance travelled with distinct Pcheck val-

ues, according to different malicious node concentrations (1, 5, 10, 20, 40%); the

plots overlap showing that the distance travelled is independent from the number

of malicious nodes.

6.4.1 Scenario

We evaluate our techniques in the following scenario.

All nodes in the network (10,000) run both the (S)PSS and the item dissemi-

nation service. We allow the presence of a set of malicious colluding attackers.

These malicious nodes run both the corresponding malicious versions of the ser-

vices. The fact of colluding does not add any strength to our specific item cor-

ruption mechanism, but it is a fundamental requirement for the hub attack (see

Section 3.2). The attacker set size k is very small: only 20 malicious nodes are

present in the system (k = c = 20). The reason why we believe a small set of

attackers is a realistic scenario, has been previously stated in Section 3.2.

Figure 6.6 shows the proliferation of forged items in the diffusion service

while a hub attack is mutating the PSS underlying topology into the hub topology.

Distinct Pcheck values (e.g., 0, 1, 5, 10%) are compared. The tremendous impact



108 Chapter 6. Securing higher-level services

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

A
vg

. %
 o

f c
or

ru
pt

ed
 it

em
s 

in
 c

ac
he

Cycles

 P=0%
 P=5%

 P=10%
 P=20%
 P=30%

Figure 6.6: Average of corrupted items in node’s caches in a 10,000 nodes net-

work. Each node is running a PSS instance affected by a hub attack and an item

diffusion service in which malicious nodes corrupt the items they forward. 20 m.

nodes run the corresponding malicious version of both services. Distinct Pcheck

values are compared.

of the hub topology on the forged items diffusion is shown by all the plots in

the figure; less than 50 cycles are sufficient to fill the entire network with forged

items, regardless of whatever effort spent in the checking process. 50 cycles is the

amount of time required on average to build the hub topology.

Increasing the probability value has almost no effect, as just a few cycles of

delay are introduced before the total corruption of the items in the system. We

limit the maximum value of Pcheck to 30% as our aim is to keep the computational

burden low.



Chapter 6. Securing higher-level services 109

The most surprising aspect is that this terrible situation can be introduced by

just 20 attackers (e.g., 0.2% of the network size); as soon as the hub topology

is completed, the power of malicious nodes increases exponentially. Therefore,

ensuring the underlying topology health is a primary concern in this scenario.

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300  350  400  450  500

A
vg

. %
 o

f c
or

ru
pt

ed
 it

em
s 

in
 c

ac
he

Cycles

 P=0%
 P=5%

 P=10%
 P=20%
 P=30%

Figure 6.7: Average of corrupted items in node caches in a 10,000 node network.

Each node is running a SPSS instance providing a defense for the hub attack and

an item diffusion service in which malicious nodes corrupt the items they for-

ward. 20 malicious nodes run the corresponding malicious version of both ser-

vices. Distinct Pcheck values are compared.

In Figure 6.7, the PSS is replaced by an SPSS run by every node. In this set-

up, when the diffusion layer performs no checks, the diffusion rate of the forged

items still pollute the entire network, but it proceeds much slower and in is simi-

lar to the results presented in Figure 6.4. Switching on the checking process leads



110 Chapter 6. Securing higher-level services

to a stable state of the node’s cache pollution which is proportional to the actual

Pcheck value adopted. Also the time required to achieve the stable state is propor-

tional to Pcheck value; in the worst case (e.g., Pcheck = 5), 150 cycles are required.

It is easy to understand why the hub attack can speed up the diffusion of

forged items. The hub topology forces each well-behaving node to exchange its

cache with a malicious node at least once at every round. This process will flood

any ordinary node with forged items and the probabilistic check is not enough to

purge the information, unless using very high values of the Pcheck probability that

would have a computational impact close to a full checking strategy. Essentially,

the forged item’s diffusion during a hub attack can be avoided at the expense

of a higher CPU consumption in order to check all the item’s digital signatures.

However, this is exactly what we want to avoid, as we we are interested in a

lightweight approach.

The hypothesis of using a full item check strategy when the hub topology is

complete can be useful in this particular scenario only. For example, as the at-

tackers are few in number and they are colluding, they can change the item’s

corruption strategy and can produce forged items on behalf of the other mali-

cious nodes. Each forged item will be regularly signed with the corresponding

malicious node key leading to no suspicions by other nodes.

The key idea to protect the diffusion service is to first ensure the regular struc-

ture of the underlying overlay. In fact, the chance to travel along random paths

is a crucial aspect to ensure the effectiveness of the probabilistic item’s check ap-

proach. The SPSS is an ideal candidate to provide (a) the standard PSS features

(see Section 5.7) when a set of attackers strike a hub attack and (b) a secure sub-

strate on which other services can trust for their own activities.



Chapter 7

Related work

Some real-world applications have developed techniques to tolerate malicious

node behavior. In this context, the attackers exhibit selfish behavior and are usu-

ally referred as free-riders. Essentially, they tend to use the other peer resources

without returning any favour.

BitTorrent [bit] and Scrivener [NNS+05] adopt a reputation scheme which pro-

motes the peers who have reciprocated in the past. The difference between the

two systems is that, in the former, the scheme is purely local, while the latter

uses a distributed reputation scheme. A reputation scheme is a critical compo-

nent and it has been show to be possibly subject to subversion, especially in its

distributed flavour. A recent work [HP05], suggests that the success of BitTor-

rent file sharing and its relative low amount of cheaters is mainly due to user’s

sociological aspects rather than to technological features. In fact, its reputation

algorithm seems easy to subvert. Stronger attempts to build a trusted distributed

reputation scheme have also been made (e.g., EigenTrust [KSGM03] ).

Splitstream [CDK+03] is a tree-based multicast protocol. It achieves load bal-

ancing by dividing the content in stripes and by using a distinct tree per stripe.

To circumvent free riders, Splitstream periodically rebuilds trees and nodes keep

a local reputation list regarding potentially malicious nodes.

BAR Gossip [LCW+06] is an interesting alternative gossip scheme. Using BAR

Gossip, the authors propose a multimedia streaming application that guaran-



112 Chapter 7. Related work

tees predictable throughput, low latency and deals with Byzantine, Altruistic and

Rational peers. BAR Gossip relies on two main primitives: (i) verifiable pseudo-

random neighbor selection and (ii) fair enough exchange. The first feature en-

sures that a gossip partner can verify that its selection is really (pseudo) random,

while the second feature promotes co-operation among selfish nodes.

In our context, we cannot let neighbors verify the random selection as each

node’s neighborhood is changing every round and the neighborhood size is lim-

ited. BAR gossip achieves this feature sacrificing dynamic membership: each

participant must register first at the broadcaster node before the streaming starts.

After the multimedia event is started, no nodes can join or leave. Essentially this

means that the BAR topology is a clique in which “everyone knows everyone”.

Again, as each node’s neighborhood is changing every round, it is very hard,

if not impossible, to build a reliable reputation scheme in our environment. In

fact, by the time reputation have settled, attackers would already have subverted

the network.

7.1 Attacks

In the following we present the most interesting attack approaches along with

their proposed solution (if any). Much of the emphasis is focused on structured

overlays, but very little attention has been paid to unstructured networks that are

probably even more sensitive [DKK+05].

7.1.1 Sybil attack

One of the first P2P-oriented attacks is the “Sybil” attack [Dou02]. In the Sybil

attack, any malicious peer can adopt many distinct identities and can therefore

control a substantial fraction of the system. The redundancy often adopted by

P2P systems to mitigate the presence of malicious peers does not help as it re-

quires the ability to distinguish whether two identities are actually different or



Chapter 7. Related work 113

not. The author shows that without a central authority, this malicious behavior

is always possible. The Sybil attack is still a cornerstone attack model in over-

lays, as there is no way to solve it in a distributed manner suitable for large-scale

overlays; in fact, a few extreme and unrealistic assumptions are required.

An obvious consequence of this attack model is the requirement to adopt a

Central Authority (CA) in order to provide a minimal level of trust to the system.

This level is minimal and not sufficient, as malicious peers can easily obtain dis-

tinct “legal” identities from the authority. Many solutions have been proposed to

solve or mitigate this issue. They are based on the idea of considering identities

as ”precious” resources and to force peers (or users) to pay (see [CDG+02]) or

to limit the number of identities issued over time. However, these mechanisms

tend to be very complicated and they have a non-negligible risk to be exploited

as well. What is worst, is that these approaches tend to discourage well-behaving

peers (or their users) from joining these overlays.

Two recent works [Bor06, YKGF06] however, seem promising; the first one

is based on computational puzzles; the second one, is based on the “social net-

work” among user identities. This novel scheme is based on the fact that an edge

between two nodes reflects a human-established trust relationship between the

users themselves. Malicious nodes instead, can hardly establish trust relation-

ships.

7.1.2 Eclipse attack

The Eclipse attack is focused on DHT overlays and proposed in [SCRD04]. It

is a generalisation of the Sybil attack. An attacker can use first a Sybil attack to

trigger an Eclipse attack by generating fake distinct peer identities to populate the

neighborhood of well-behaving nodes. Correct nodes are thus “eclipsed” from

the overlay. Any solution for the Sybil attack may be useless in this case, as the

Eclipse attack works at the overlay management layer. Essentially, it modifies

the topology by polluting the correct nodes neighborhood links; we adopted a



114 Chapter 7. Related work

similar approach in our attack model (see Section 3.2), but we have a different

underlying system model.

The authors also present a defence scheme based on degree auditing and they

claim their solution is general enough for unstructured overlays, but their evalu-

ation is focused only on structured overlays. However, in [NCW05] the authors

discourage using auditing because it is hardly manageable in a distributed fash-

ion and because the attackers can elude the sanctions generated by the auditing

process (e.g., using the Sybil [Dou02] attack). The approach we will propose (see

Chapter 5) to resist to our attack model instead, it is not based on distributed

auditing mechanisms.

A distributed auditing process is in general weak because it is based on artifi-

cial incentives (versus genuine incentives), a particular kind of incentives in which a

node has only to appear to co-operate. However, the design of genuine incentives

it is not always a viable solution and the algorithm designers are forced to adopt

the weaker kind of incentive. These categories are just an example of Distributed

Algorithmic Mechanism Design (DAMD) (see [SP03, NCW05]).

7.1.3 Poisoning attacks

The index poisoning attack [LNR06] focuses on lowering the information quality

of the indexes responsible to map hash keys to the current file locations. The poi-

soned indexes, for example, may bind the hash keys to random hosts addresses,

but also other strategies can be adopted. This simple approach works because

these P2P systems do not check the file advertisement locations. The approach

is suitable for both DHT (e.g., Overnet) and non DHT overlays (e.g., FastTrack).

The index poisoning affects the provided QOS by poisoning the application in-

formation (e.g., the indexes) rather than damaging the topology structure. Essen-

tially, the system is polluted by bogus high-rated entries, but the system struc-

ture (topology) is not affected. The author’s countermeasure based on rating the

sources works because it is assumed that the routing layer is still working fine.



Chapter 7. Related work 115

It is interesting to note that just one malicious node may poison a sufficient

number of high-rated entries to cause trouble. For example, this kind of attack

is used in real file-sharing systems by companies that are worried about the vio-

lation of their intellectual properties; downloading a famous artist mp3 or mpeg

file and listening or watching to an anti-piracy spot is not uncommon.

In [NR06] the authors combine the previous index poisoning attack with the

routing table poisoning in DHT file-sharing systems. This combination leads to

an effective DOS attack. The latter attack focuses on making the victim host an

overlay neighbor of many of the overlay participants. When a poisoned peer

forwards a message, it may select the victim host as the next neighbor. Due to

the millions of active peers in many P2P system, a significant fraction of peers

(“zombies”) tend to flood the victim host with messages. The victim may not be

part of the P2P system. As in our attack, the routing poisoning attack disrupts the

topology infrastructure, but, while in the latter the attackers are injected in ad-hoc

overlay positions 1 by the hacker, in our scenario the attackers have to climb up to

the leader position. The authors discuss some viable countermeasures based on

checking the source by contacting it, but we have seen in our case this approach

is not sufficient at all since the topology mutation is too fast.

7.1.4 Other attacks

In [BKS04], the authors propose a methodology to eliminate the vulnerabilities of

gossip-based multicasts to DOS attacks. The solution is based on low-level socket

techniques; it focuses on limiting and eliminating bogus message fragments, but

the system relies on a fixed neighborhood overlay. Essentially, it protects the in-

formation quality, but not the overlay infrastructure that allows the application

to work. In [WLC03] instead, the impact of overlay topology is analysed in order

to tolerate DOS attacks by hiding an application’s location. Different topologies

have distinct levels of effectiveness in a location hiding purpose. This paper en-

1Corresponding to the most preferred keys.



116 Chapter 7. Related work

forces our claim about the relevance of preserving the actual overlay topology.

In [JMB03] the authors propose a “frequency” attack in unstructured gossip-

ing networks in which attackers communicate more frequently than others and

diffuse illegal information very fast. Their defense is based on having an offline

Certification Authority (CA) and using an auditing scheme based on message his-

tory.

In [CDG+02], Castro et al. studied attacks aimed at preventing fair message

routing in DHT overlay (Pastry [RD01]). As we also did with our SPSS, they

identified their secure routing as a key building block that can be combined with

higher level services.



Chapter 8

Concluding remarks and future directions

Secure gossiping techniques are becoming increasingly necessary in P2P appli-

cations. The research presented in this thesis addresses the problem of devel-

oping gossip-based solutions for large-scale distributed systems, in the presence

of malicious nodes. This problem is difficult as it needs to be carried out in a

collaborative fashion.

In these kind of systems, in which no strict control on users and software

versions can be ensured, the presence of malicious nodes should be considered

the norm rather than the exception. Therefore, the design of P2P services and

protocols must deal with this new concept.

The attack model is based on the fact that each participant holds a small list of

references of other nodes, called cache. This cache structure is regularly updated

among nodes through message exchange (gossiping). In this manner, each node

is offered a fresh list of nodes participating in the network. In the attack model,

a small group of colluding attackers forge special messages such that entities al-

ways refer to a malicious node. The effect of this malicious behaviour is that the

attacker’s group isolates well-behaving nodes from the rest of the network. In the

second model, a smaller set of colluding nodes

In particular, we focused on securing a specific and well known gossip service,

the Peer Sampling Service (PSS) from our generic attack model. We have shown

the severe consequences our simple attack model can lead to.



118 Chapter 8. Concluding remarks and future directions

In addition, the consequences of the attack are not limited to the PSS, but we

applied our work to other cases such as aggregation, (latency-aware) topology

management and optimal superpeer selection. These higher-level (gossip) ser-

vices, relying on the PSS, suffer tremendously from the attacker’s presence.

Our proposed solution, the Secure Peer Sampling Service (SPSS), is aimed to

be “elegant” in the sense of integrating nicely in the standard gossip scheme. It is

also robust and requires minimal effort to be carried out by well-behaving nodes.

Essentially, a trusted entity (TRUSTED PROMPT) is used to identify malicious nodes

using statistical analysis on reports sent by well-behaving nodes. The trusted

entity can also restore the state of attacked nodes.

A fully decentralised evolution - i.e., without the trusted entity - of this solu-

tion is also presented. By using multiple random overlays and extra data struc-

tures, each node is able to build its own suspicion statistics in order to detect the

malicious nodes with high probability.

It has been shown that our solution, the SPSS, is: (a) successful in reducing the

malicious node’s effect to a negligible level, (b) is abstracted by a basic primitive

function that fits in the standard gossip scheme and, (c), it can be fully decen-

tralised if required. In addition, the attack model we adopted can be considered

a threat not only for the PSS itself, but also for other services relying on it.

Finally, we have presented a second generic technique aimed to prevent the

diffusion of forged information in gossip diffusion services. We provided an ex-

ample scenario in which both the SPSS and this diffusion prevention technique

are combined to protect the system. This technique has been already applied in

an ad-hoc (wireless) context [GJGvS07], while in this work, it has been applied to

our overlay network scenario.

8.1 Future directions

The SPSS technique in particular is based essentially on a heuristic that has been

validated through simulation; however, future work is needed to achieve a better



Chapter 8. Concluding remarks and future directions 119

and more formal understanding of its working.

Future work may also involve the adoption of a real world implementation

prototype to verify the results achieved by simulation. A suitable environment

for the deployment can be the PlanetLab [NPB03] testbed.



References

[AKR+05] Micah Adler, Rakesh Kumar, Keith W. Ross, Dan Rubenstein,

Torsten Suel, and David. D. Yao. Optimal peer selection for p2p

downloading and streaming. In Proc. of IEEE Infocom, Miami, FL,

March 2005.

[BDT99] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelli-

gence: from natural to artificial systems. Oxford University Press, Inc.,

New York, NY, USA, 1999.

[bis] The bison project. http://www.cs.unibo.it/bison/.

[bit] Bittorrent. http://bitconjurer.org/BitTorrent/protocol.html.

[BKS04] Gal Badishi, Idit Keidar, and Amir Sasson. Exposing and eliminat-

ing vulnerabilities to denial of service attacks in secure gossip-based

multicast. TR CCIT 477, Department of Electrical Engineering, Tech-

nion, March 2004.

[Bor06] Nikita Borisov. Computational puzzles as sybil defenses. In Proc.

6th IEEE International Conference on Peer-to-Peer Computing (P2P ’06),

pages 171–176, Washington, DC, USA, 2006. IEEE Computer Society.

[bri] Brite internet topology generator. www.cs.bu.edu/brite/.

[BS06] Salman A. Baset and Henning Schulzrinne. An analysis of the skype

peer-to-peer internet telephony protocol. In Proc. of INFOCOM’06,

Barcelona, Spain, April 2006.



References 121

[BT01] Paul Bettner and Mark Terrano. 1500 archers on a 28.8: Network

programming in age of empires. In Proc. 14th Game Developer Con-

ference (GDC), mar 2001.

[CDG+02] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron,

and Dan S. Wallach. Secure routing for structured peer-to-peer over-

lay networks. SIGOPS Oper. Syst. Rev., 36:299–314, 2002.

[CDHR02] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Row-

stron. Exploiting network proximity in distributed hash tables. In

Ozalp Babaoglu, Ken Birman, and Keith Marzullo, editors, Inter-

national Workshop on Future Directions in Distributed Computing (Fu-

DiCo), pages 52–55, June 2002.

[CDK+03] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh

Nandi, Antony Rowstron, and Atul Singh. Splitstream: High-

bandwidth multicast in a cooperative environment. In Proc. 19th

ACM Symposium on Operating Systems Principles (SOSP’03), October

2003.

[CDKR02] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE:

A large-scale and decentralized application-level multicast infras-

tructure. IEEE Journal on Selected Areas in communications (JSAC),

20(8):1489–1499, 2002.

[CJ05] Andrea Ceccanti and Gian Paolo Jesi. Building latency-aware over-

lay topologies with QuickPeer. In Proc. of the Joint International Con-

ference on Autonomic and Autonomous Systems and International Con-

ference on Networking and Services (ICAS/ICNS), pages 24–29, October

2005.

[CMAP04] M. Costa, M.Castro, A.Rowstron, and P.Key. Pic: Practical internet

coordinates for distance estimation. In Proc. of ICDCS’04, 2004.



122 References

[CRSZ01] Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling conferencing

applications on the internet using an overlay multicast architecture.

In Proc. ACM SIGCOMM, pages 55–68, San Diego, CA, USA, August

2001.

[CRW01] A. Carzaniga, D. S. Rosemblum, and A. L. Wolf. Design and evalu-

ation of a Wide-Area event notification service. ACM Trans. on Com-

puter Systems, 19(3):332–383, August 2001.

[DBK+01] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger,

Robert Morris, Ion Stoica, and Hari Balakrishnan. Building Peer-to-

Peer Systems With Chord, a Distributed Lookup Service. In Proc. of

8th Workshop on Hot Topics in Operating Systems (HOTOSVII), Schloss

Elmau, Germany, May 2001. IEEE Computer Society.

[DCKM04] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vi-

valdi: A decentralized network coordinate system. In Proceedings of

the ACM SIGCOMM ’04 Conference, Portland, Oregon, August 2004.

[DGH+87] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,

H. Sturgis, D. Swinehart, and D. Terry. Epidemic algorithms for

replicated database management. In Proc. of the 6th Annual ACM

Symposium on Principles of Distributed Computing (PODC87), pages

1–12, 1987.

[DKK+05] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, and

W. Zwaenepoel. Denial-of-service resilience in peer-to-peer file shar-

ing systems. In Proc of ACM Sigmetrics Conference, 2005.

[Dou02] John R. Douceur. The sybil attack. In Peter Druschel, M. Frans

Kaashoek, and Antony I. T. Rowstron, editors, IPTPS, volume 2429

of Lecture Notes in Computer Science, pages 251–260. Springer, 2002.



References 123

[DvS06] Spyros Voulgaris Daniela Gavidia and Maarten van Steen. A gossip-

based distributed news service for wireless mesh networks. In Proc.

3rd IEEE Conference on Wireless On demand Network Systems and Ser-

vices (WONS). IEEE Computer Society, January 2006.

[EGH+03] P.T. Eugster, R. Guerraoui, S. B. Handurukande, A.-M. Kermarrec,

and L. Massoulié. Lightweight probabilistic broadcast. ACM Trans-

actions on Computer Systems, 21(4):341–374, 2003.

[EGKM04a] Patrick Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and

Laurent Massoulié. From epidemics to distributed computing. IEEE

Computer, 37(5):60–67, May 2004.

[EGKM04b] Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and

Laurent Massoulié. Epidemic information dissemination in dis-

tributed systems. IEEE Computer, 37(5):60–67, May 2004.

[fas] Fasttrack Home Page. http://www.fasttrack.nu.

[FJJ+99] P. Francis, S. Jamin, C. Jin, Y. Jin, V. Paxson, D. Raz, Y. Shavitt, and

L. Zhang. IDMaps: a global internet host distance estimation ser-

vice. In Proc. IEEE Infocom ’99, 1999.

[fre] The freepastry/simpastry simulators.

http://research.microsoft.com/ antr/Pastry/.

[GD98] Laurent Gautier and Christophe Diot. Design and evaluation of mi-

maze, a multi-player game on the internet. In Proc. International Con-

ference on Multimedia Computing and Systems, pages 233–236, June

1998.

[GJGvS07] Daniela Gavidia, Gian Paolo Jesi, Chandana Gamage, and Maarten

van Steen. Canning spam in gossip wireless networks. In Proc. 4th

IEEE Conference on Wireless On demand Network Systems and Services

(WONS), Obergurgl, Austria, January 2007.



124 References

[GKM01] Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié.

Scamp: Peer-to-peer lightweight membership service for large-scale

group communication. In Jon Crowcroft and Marcus Hofmann, ed-

itors, Proceedings of the Third International COST264 Workshop (NGC

2001), number LNCS 2233 in Lecture Notes in Computer Science,

pages 44–55, London, UK, November 2001. Springer-Verlag.

[Gnu] Gnutella web site. http://gnutella.wego.com.

[HA06] David Hales and Stefano Arteconi. Slacer: A self-organizing pro-

tocol for coordination in p2p networks. IEEE Intelligent Systems,

21(2):29–35, March / April 2006.

[HE05] David Hales and Bruce Edmonds. Applying a socially-inspired

technique (tags) to improve cooperation in p2p networks. IEEE

Transactions in Systems, Man and Cybernetics - Part A: Systems and Hu-

mans, 35(3):385–395, 2005.

[HP05] David Hales and Simon Patarin. Feature: Computational sociology

for systems “in the wild”: The case of bittorrent. In IEEE Distributed

Systems Online, volume 6, 2005.

[JAB01] M. Jovanovic, F. Annexstein, and K. Berman. Scalability issues in

large peer-to-peer networks - a case study of gnutella. Technical

report, University of Cincinnati, Department of Computer Science,

2001.

[JB05] Márk Jelasity and Ozalp Babaoglu. T-Man: Gossip-based overlay

topology management. In Proceedings of Engineering Self-Organising

Applications (ESOA’05), July 2005.

[JGGvS06] Gian Paolo Jesi, Daniela Gavidia, Chandana Gamage, and Maarten

van Steen. A secure peer sampling service. UBLCS 2006-17, Univer-

sity of Bologna, Dept. of Computer Science, May 2006.



References 125

[JGJ+00] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and

J. O’Toole. Overcast: Reliable multicasting with an overlay network.

In Proc. 4th Symposium on Operating System Design and Implementation

(OSDI), pages 197–212, Oct 2000.

[JGKvS04] Mark Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and

Maarten van Steen. The peer sampling service: Experimental eval-

uation of unstructured gossip-based implementations. In Proc. of

the 5th International Middleware Conference, Toronto, Canada, Octo-

ber 2004.

[JKvS03] Márk Jelasity, Wojtek Kowalczyk, and Maarten van Steen. Newscast

computing. Technical Report IR-CS-006, Vrije Universiteit Amster-

dam, Department of Computer Science, Amsterdam, The Nether-

lands, November 2003.

[JM04] Márk Jelasity and Alberto Montresor. Epidemic-Style Proactive Ag-

gregation in Large Overlay Networks. In Proceedings of the 24th In-

ternational Conference on Distributed Computing Systems (ICDCS’04),

pages 102–109, Tokyo, Japan, March 2004. IEEE Computer Society.

[JMB03] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Towards

secure epidemics: Detection and removal of malicious peers in

epidemic-style protocols. Technical Report UBLCS-2003-14, Univer-

sity of Bologna, Department of Computer Science, Bologna, Italy,

November 2003. presented at FuDiCo II: S.O.S, Bertinoro, Italy, June,

2004.

[JMB04] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. A modu-

lar paradigm for building self-organizing peer-to-peer applications.

In Giovanna Di Marzo Serugendo, Anthony Karageorgos, Omer F.

Rana, and Franco Zambonelli, editors, Engineering Self-Organising



126 References

Systems: Nature-Inspired Approaches to Software Engineering, num-

ber 2977 in Lecture Notes in Artificial Intelligence, pages 265–282.

Springer-Verlag, April 2004.

[JMB05] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-

based aggregation in large dynamic networks. ACM Trans. Comput.

Syst., 23(1):219–252, 2005.

[JMB06] Gian Paolo Jesi, Alberto Montresor, and Ozalp Babaoglu. Proximity-

aware superpeer overlay topologies. In Jean-Philippe Martin-Flatin

Alexander Keller, editor, Self-Managed Networks, Systems and Ser-

vices, number 3996 in LNCS, pages 43–57, Dublin, Ireland, June 2006.

Springer. Best Paper Award.

[kaz] Kazaa Home Page. http://www.kazaa.com.

[KMG03] Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh.

Probabilistic reliable dissemination in large-scale systems. IEEE

Transactions on Parallel and Distributed Systems, 14(3), March 2003.

[KRAV03] Dejan Kostic, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vah-

dat. Bullet: high bandwidth data dissemination using an overlay

mesh. In Proceedings of the 19th ACM symposium on Operating systems

principles, pages 282–297. ACM Press, 2003.

[KSGM03] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina.

The eigentrust algorithm for reputation management in p2p net-

works. In Proc. 12th International Conference on World Wide Web

(WWW ’03), pages 640–651, New York, NY, USA, 2003. ACM Press.

[LCW+06] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and

M. Dahlin. BAR gossip. In Proceedidings of the 2006 USENIX Op-

erating Systems Design and Implementation (OSDI), November 2006.



References 127

[LL04] Li-wei Lehman and Steven Lerman. Pcoord: Network position es-

timation using peer-to-peer measurements. In Proc. 3rd International

Conference on Network Computing and Applications (NCA ’04), vol-

ume 00, pages 15–24, Washington, DC, USA, 2004. IEEE Computer

Society.

[LNR06] Jian Liang, Naoum Naoumov, and Keith Ross. The index poisoning

attack in p2p file sharing systems. In Proc. of INFOCOM, Barcelona,

Spain, April 2006. IEEE.

[LRW03] Nathaniel Leibowitz, Matei Ripeanu, and Adam Wierzbicki. De-

constructing the kazaa network. In Proc. 3rd IEEE Workshop on Inter-

net Applications (WIAPP ’03), page 112, Washington, DC, USA, 2003.

IEEE Computer Society.

[MCR03] Ratul Mahajan, Miguel Castro, and Antony I. T. Rowstron. Con-

trolling the cost of reliability in peer-to-peer overlays. In M. Frans

Kaashoek and Ion Stoica, editors, Proc. of IPTPS, volume 2735 of Lec-

ture Notes in Computer Science, pages 21–32. Springer, 2003.

[MJB04] Alberto Montresor, Márk Jelasity, and Ozalp Babaoglu. Robust ag-

gregation protocols for large-scale overlay networks. In Proceedings

of the 2004 International Conference on Dependable Systems and Net-

works (DSN’04), pages 19–28, Florence, Italy, June 2004. IEEE Com-

puter Society.

[Mon04] Alberto Montresor. A robust protocol for building superpeer over-

lay topologies. In Proceedings of the 4th International Conference on

Peer-to-Peer Computing, pages 202–209, Zurich, Switzerland, August

2004. IEEE Computer Society.

[NCW05] S. Nielson, S. Crosby, and D. Wallach. A taxonomy of rational at-

tacks. In Proc. of IPTPS, Ithaca, NY, february 2005.



128 References

[NNS+05] Animesh Nandi, Tsuen-Wan “Johnny” Ngan, Atul Singh, Peter

Druschel, and Dan S. Wallach. Scrivener: Providing incentives

in cooperative content distribution systems. In Proceedings of the

ACM/IFIP/USENIX 6th International Middleware Conference (Middle-

ware 2005), Grenoble, France, November 2005.

[NPB03] Akihiro Nakao, Larry Peterson, and Andy Bavier. A Routing Under-

lay for Overlay Networks. Technical Report PDN–03–012, PlanetLab

Consortium, April 2003.

[NR06] Naoum Naoumov and Keith Ross. Exploiting p2p systems for ddos

attacks. In InfoScale 2006: Proceedings of the 1st international conference

on Scalable information systems, page 47, New York, NY, USA, 2006.

ACM Press.

[NZ02] T. Ng and H. Zhang. Predicting internet network distance with

coordinates-based approaches. In Proc. 21th IEEE Infocom. IEEE, June

2002.

[PB02] Peter R. Pietzuch and Jean Bacon. Hermes: A distributed event-

based middleware architecture. In Proc. of the 22nd International Con-

ference on Distributed Computing Systems (ICDCSW ’02), pages 611–

618, Washington, DC, USA, 2002. IEEE Computer Society.

[peea] Peercast P2P Radio. http://www.peercast.org.

[peeb] Peersim Peer-to-Peer Simulator. http://peersim.sf.net.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentral-

ized object location and routing for large-scale peer-to-peer systems.

In Proc. 18th IFIP/ACM International Conference on Distributed Systems

Platforms (Middleware), pages 329–350, November 2001.



References 129

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.

A scalable content-addressable network. In Proc. of ACM SIG-

COMM’01, pages 161–172, 2001.

[RHKS02] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-

aware overlay construction and server selection. In Proc. 21th IEEE

Infocom. IEEE Computer Society, June 2002.

[SCRD04] Atul Singh, Miguel Castro, Antony Rowstron, and Peter Druschel.

Defending against eclipse attacks on overlay networks. In Proc. of the

11th ACM SIGOPS European Workshop, Leuven, Belgium, September

2004.

[SGB+03] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and Em-

manuel Agu. The effect of latency on user performance in Warcraft

3. In Proc. of the 2nd Workshop on Network and System Support for

Games, pages 3–14, New York, NY, USA, 2003. ACM Press.

[SH06] Atul Singh and Mads Haahr. Creating an adaptive network of hubs

using schelling’s model. Commun. ACM, 49(3):69–73, 2006.

[Sky] Skype home page. http://www.skype.com/.

[SP03] Jeffrey Shneidman and David C. Parkes. Rationality and self-interest

in peer to peer networks. In 2nd Int. Workshop on Peer-to-Peer Systems

(IPTPS’03), 2003.

[The] Freenet. http://freenet.sourceforge.net.

[unr] Unreal networking protocol notes by tim sweeney.

http://unreal.epicgames.com/Network.htm.

[VGvS05] Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. Cyclon:

Inexpensive membership management for unstructured p2p over-

lays. Journal of Network and Systems Management, 13(2), 2005.



130 References

[WLC03] J. Wang, L. Lu, and A. Chien. Tolerating denial-of-service attacks

using overlay networks – impact of overlay network topology. In

Proc. ACM Workshop on Survivable and Self-Regenerative Systems, Oct

2003.

[YGM03] Beverly Yang and Hector Garcia-Molina. Designing a super-peer

network. In Proc. 19th IEEE International Conference on Data Engineer-

ing (ICDE’03), volume 00, page 49, 2003.

[YKGF06] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham

Flaxman. Sybilguard: defending against sybil attacks via social net-

works. In SIGCOMM ’06: Proceedings of the 2006 conference on Appli-

cations, technologies, architectures, and protocols for computer communi-

cations, pages 267–278, New York, NY, USA, 2006. ACM Press.

[ZS04] Serafeim Zanikolas and Rizos Sakellariou. Towards a monitor-

ing framework for worldwide grid information services. In Marco

Danelutto, Marco Vanneschi, and Domenico Laforenza, editors,

Proc. of the 10th International Euro-Par Conference, volume 3149 of Lec-

ture Notes in Computer Science, pages 417–422. Spinger, 2004.


	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Motivations
	Topology taxonomy
	Basic requirements for topology management

	Cheating and attack principles
	Roadmap

	The Peer Sampling Service
	Introduction to the PSS
	System model
	PSS implementation: Newscast
	PSS implementation: basic-shuffling


	Attack model and analysis
	Attack scenario
	Attack model
	Hub attack algorithm

	Attack evaluation

	Effects on protocols other than the PSS
	Aggregation protocol
	Aggregation under hub attack

	QuickPeer protocol
	Latency-aware overlay topology management
	Experimental evaluation
	QuickPeer discussion
	QuickPeer under hub attack

	SuperPeer protocol
	System Model
	The Problem
	The SG-2 Protocol
	Experimental results
	SG-2 discussion
	Superpeer topology under hub-attack


	Proposed approach: the Secure Peer Sampling Service
	The problem
	SPSS requirements
	SPSS approach
	SPSS evaluation
	Decentralised SPSS
	Multiple overlays
	Quality rating
	The algorithm
	Why it works
	Evolutionary link

	Fully decentralised SPSS evaluation
	Static environment
	Dynamic environment (churn)
	Message overhead
	Extreme conditions

	PSS properties maintenance
	SPSS discussion

	Securing higher-level services
	The second problem introduction
	The scenario

	The anti-forge technique
	Corruption attack model

	Anti-forge technique evaluation
	A case study: evaluating the SPSS and the anti-forge technique together
	Scenario


	Related work
	Attacks
	Sybil attack
	Eclipse attack
	Poisoning attacks
	Other attacks


	Concluding remarks and future directions
	Future directions

	References

