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Introduction

Research aimed at modelling the marine ecosystem dynamics started in

the mid fifties (Riley et al., 1949). Since then the attempt to simulate the

temporal and spatial variability of the marine ecosystem has progressed

towards the development of progressively complex ecosystem models

(Hofmann and Lascara, 1998) applied to regional (Polimene et al., 2006,

2007) and global scales (Vichi et al., 2007a) and aimed to gain insight on

many different scientific issues: from the definition of the pathways of

matter and energy in the marine trophic web to the quantification of the

ocean biological processes in controlling levels of atmospheric CO2.

Essentially the modelling of the marine ecosystem necessarily implies

the accuratemodelling of the ocean physical dynamics, that plays a signif-

icant role in driving the temporal variability of the ecosystem (Sverdrup,

1953). Therefore, the first step toward sound ecological modelling is the

development of a coupled modelling system, simultaneously solving for

ecological/biogeochemical processes (photosynthesis, bacterial cycling of

carbon and nutrients, predation etc.) and for the advective diffusive phys-

ical transport processes affecting chemical components (nutrients, oxy-

gen etc.) and individuals/biomasses (from bacteria and phytoplankton

to fishes). This involves consideration by the model of a very wide range

of temporal and spatial scales as well as their translation into a numerical

framework providing an accurate coupling method of the (physical and

ecological) simulated rates of change and a correct numerical integration

technique.

Advances in modelling of the ocean physical dynamics are now giv-

ing an accurate description of dynamical structures of the meso to large

9



Introduction

scale general circulation. This, combined with the enhancement of the

ocean observation network trough remote (satellites) and in situ (tradi-

tional sampling, automatic buoys, autonomous moving or drifting plat-

forms) systems, has determined the decisive step towards the nowcast-

ing/forecasting of the physical state of the ocean and led to the successful

implementation of operational forecasting systems (Pinardi et al., 2005;

Johannessen et al., 2006), combining simulations and observations through

data assimilation techniques and designed on the general structure of the

routinely operating weather forecasting systems.

The definition and the establishment of a similar system devoted to

the forecasting of the biogeochemical/ecological structure of the ocean is

now a major subject of today research activities (Malone and Cole, 2000;

Haitvogel et al., 2000; Walstad and McGillicuddy, 2000). The assessment

and the forecasting of the marine ecosystem is in fact of fundamental in-

terest for the definition of a wide range of purely scientific to applicative

problems such as impact of pollutants, harmful algal blooms or long term

prognoses of the green house effect.

A strong focus in this attempt is on the coastal ocean, being at the same

time the oceanic region with the most active biogeochemical processes

(Wollast, 1999) and the region subject to the most intensive exploitation

processes (fisheries) and to the strong anthropogenic impact. These do-

mains represent challenging environments, as they are characterised by

complex biogeochemical (land based nutrient load of natural and/or an-

thropogenic origin) and physical (wind stress, heat flux, land based buoy-

ancy inputs) forcing functions. The resulting dynamics is characterised

by a strong time/space variability in the circulation patterns and in the

mixing/stratification characteristic of the water column, that govern an

equally (or more) variable biological dynamics.

In this thesis the physical/biological coupling and the application of

data assimilation techniques to biogeochemical state variables in a cou-

pled ecological model are explored in an idealised framework with the

support of a one dimensional ecological model implemented in the north-

10



ern Adriatic, a shallow coastal basin, subject to extremely variable phys-

ical and biogeochemical forcing functions that shape a physical and bio-

logical dynamics very challenging for the modeller. The general objective,

as described in detail in the pertinent sections of the work, is twofold.

First it has been attempted to gain insight on the “best” method of cou-

pling together biogeochemical and physical advection and diffusion rates

of change, separately computed by the biogeochemical and physical com-

ponents of the modelling system. This implied, not only the analysis of

the role of the classical numerical integration techniques in affecting the

model solution, but also (and more importantly) a careful consideration

of the interacting temporal scales governing the physical and biological

processes. Secondly, a data assimilation technique, originally developed

for application to physical state variables has been applied to the biogeo-

chemical. The implementation occurred in the idealised framework of

the so-called “twin experiments”, that allow to careful evaluate the role

of the data assimilation technique in keeping the model solution close to

a reference solution assumed as “real” state of the system.

The thesis is organised in two chapters, each of them structured as two

independent papers.

Chapter one deals with the model coupling issues. The description and

the discussion of the numerical experiments performed is preceded by

a general introduction defining the nature of the problem and giving an

overview of the numerical aspect of the problem.

Chapter two deals with the data assimilation twin experiments. The

methods used and the TWIN experiment philosophy is given in the intro-

ductory part, followed by the description discussion of the experiments

performed. The chapter closes with the description of a variant of the data

assimilation technique that has been originally developed in this thesis

and whose results appear quite promising.

Conclusions are offered at the end of the two chapters. Appendixes to

the chapters provide a wider and complementary look at the results.

11
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1 Coupling Methods

Introduction

Marine ecosystem dynamics is strongly constrained and, to some extent,

governed by the ocean physics. Biogeochemical processes (primary and

secondary production, nutrient cycling, etc.) are heavily dependent on

physical dynamics, that determines the availability of resources (e. g. nu-

trients and light for primary producers) and the spatially and temporally

variable distribution of individuals and biomass. Moreover, the variabil-

ity of the ocean temperature field directly affects the metabolic rates of

the organisms, as well as the chemical processes involved in biogeochem-

ical cycling. Thus, adequate understanding and modelling of the marine

ecosystem necessarily implies the full consideration of the coupled phys-

ical and biogeochemical dynamics.

Figure 1.1: Space and time scales involved in marine ecosystem dynam-
ics (from GLOBEC, 1993). Both physical and biogeochemical
scales and their overlap are shown.
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The involved interacting processes develop on a wide spectrum of tem-

poral and spatial scales (see fig. 1.1), ranging from molecular diffusion

and small scale turbulence processes to large scale circulation patterns,

and, on the biological side, from individual behaviour to seasonal/decadal

variability of biomass and population size.

However, due to the forcing of the system, energy is not uniformly

transferred over the spectrum, but rather accumulated in patches (Nihoul

and Djenidi, 1998). The energy transfer of the system is then determined

not only by the interaction of the various state variables, but also by the

exchanges between processes of different scales, so that the resulting an-

nual dynamics is characterised by similar accumulative patterns deter-

mined by the alternating dominant scales, that express, broadly speak-

ing, in a rather steady (small and slow changes) behaviour, over longer

periods of the year, interrupted by relatively short periods of intense bio-

logical activity.

A classical example for temperate waters is given by the so called sur-

face phytoplankton “spring bloom”, whose dynamics, unveiled by Sver-

drup (1953), is governed by the evolving physical environment (irradi-

ance, vertical stratification, diffusive nutrient flux into the euphotic zone)

that determines the conditions for a phytoplankton biomass accumula-

tion near the surface when the seasonal thermocline starts to develop

(Mann and Lazier, 1991; Miller, 2006).

These characteristics clearly illustrate the nonlinearity of the ecosys-

tem and pose severe problems to the modeller. Since it is impossible to

attempt to simulate the entire range of interacting scales, an adequate

spectral window, as described by Nihoul and Djenidi (1998), has to be

selected, where unresolved processes usually enter the model by a para-

metric background flux at the small scale interface and by the initial and

boundary conditions at the large scale interface. Moreover, the numerical

treatment of this complex dynamics adds further problems related to sta-

bility and stiffness that are complicated by the choice of an appropriate

space and time resolution.

15



1 Coupling Methods

A common approach to face these problems is to base a numerical model

of marine ecosystem dynamics on two separate sub-models each of them

applicable separately:

• a Eulerian ocean circulation model that treats the physical processes
and provides information on the surrounding environment to the

biogeochemical model.

• an ecological/biogeochemicalmodel that defines the ecological state
variable1 and describes dynamically the biota and its relations with

the environment in terms of biogeochemical fluxes.

To these two fundamental building blocks of the marine environment

modelling system, a third element, handling the advective-diffusive trans-

port of the ecosystem state variables has to be added, as schematically

depicted in fig. 1.6 on page 31.

The separate treatment of the physical and biogeochemical processes

decouples the spatial dimension of the physical sub-model from the state

variable dimension of the biogeochemical sub-model and hereby avoids

bulky matrices, allowing for separate numerical treatment and facilitates

the calibration of the two parts.

The artificial partitioning of the ecosystem into a physical and biogeo-

chemical component implies that the modelling system separately has

to provide for each ecosystem state variable the time dependent rate of

change due to physical processes and the rate of change due to biogeo-

chemical processes. The two rates are then merged to provide the total

rate of change.

The coupling procedure occurs at the level of time integration where

1While for circulation models a broad agreement exists on the determination of the
system state (by temperature, salinity, velocity, pressure and sea surface elevation),
in biogeochemical models the choice of the state variables, that is to say the structure
of the trophic web to be represented is a vivid field of discussion and research directly
connected to the choice of the spectral window. See Hofmann and Lascara (1998) for
a review on the models currently in use in the science community

16



the following equation has to be solved:

cn+1 = cn +

tn+1∫

tn

(
−u∗∇c +∇ ∗ (ν∇c) +

∂c

∂t

∣∣∣∣
bio

)
dt . (1.1)

where cn is any pelagic state variable c of the biogeochemical model at

time tn.

These equations show a striking similarity to the equations of atmo-

spheric geochemistry dynamics. In fact, the first pioneering works on

the numerical solution of these type of equations of advective-diffusive

transport for active tracers where attempted in the context of atmospheric

chemistry models, that faced the problem of simulating stiff chemical re-

actions, such as the photochemical ozone cycle in the troposphere. (see e.

g. Jacobson, 2005; Graedel and Crutzen, 1995).

The schemes used for the atmospheric transport proved to be inad-

equate for the stiff chemical reactions, that in eq. (1.1) correspond to

the biogeochemical rates ∂c

∂t

∣∣
bio
, and thus, the need of an adequate split-

ting mechanism emerged. One of the first systematic approaches to the

splitting of the advective-diffusive equations for active tracers can be at-

tributed toMcRae et al. (1982) and ever since then, research on this subject

has grown in particular in the context of atmospheric geochemistry dy-

namics (see Verwer et al., 2001 andCarmichael et al., 1996 for an overview).

In this chapter, the influence of the coupling scheme on the solution of

the physical-biogeochemical equations in the regime of coastal ecosystem

dynamics shall be investigated through a set of numerical simulations

run with different coupling, integration schemes and time steps carried

out with a complex 1D physical-biogeochemical model. It is divided in

four sections:

The first section gives a general description of coupling schemes tra-

ditionally applied in dynamic atmospheric and oceanographic models,

followed by the investigation of the behaviour of 4 different integration

schemes in the context of a simple 0D-ecological model. In the second sec-

17



1 Coupling Methods

tion an overview of the complex 1D-model applied in the following ex-

periments is provided and a general description of its three main building

blocks of the modelling system is given. The third section describes the

application of the coupling schemes to the model implemented in three

different sites of the northern Adriatic Sea along with the used forcing

functions and boundary conditions.

A validation of the different schemes is presented in section four, show-

ing the results of the simulations for various configurations. A compar-

ison to seasonal climatological data available for the 3 implementation

sites is also given in appendix A.

The aim is to evaluate the influence of the coupling and integration

scheme on the solution, therefore providing insight about the choice of the

most appropriate integration and coupling scheme for a marine ecosys-

tem model.

18



1.1 Model coupling

1.1 Model coupling

To propagate the model state in time, the processes represented by the

various sub-models have to be taken into account and thus, a coupling

strategy is needed to merge all involved processes into a global integra-

tion scheme.

As stated before, a system involving two sub-processes SI , SII can be

written in it’s simplest form as:

dc

dt
= SI(c) + SII(c)

cn+1 = cn +

tn+1∫

tn

(SI(c) + SII(c)) dt .

(1.2)

Eq. (1.2) applied to a marine ecosystem model indicates that the total

rate of change of the non conservative variable results from the sum of

two separate partial rates of change, one accounting for the conservative

part of the property and one for the non-conservative behaviour.

In the following a brief account of the coupling schemes used to solve

for time dependent non-conservative state variables is given along with a

critical review of the accuracy problems they pose.

1.1.1 Coupling schemes

Different coupling strategies have been attempted and twomain branches

can be identified: the Operator Splitting method and the Source Splitting

method.

Operator Splitting

In themethod ofOperator Splitting , widely used in atmospheric chemistry

(McRae et al., 1982; Blom and Verwer, 2000; Verwer et al., 2001), as well as

in general ocean circulation models (e. g. Blumberg and Mellor (1987)),

19



1 Coupling Methods

the original system (1.2) is divided into two separate subsystems that are

solved sequentially:

γ = cn +

tn+1∫

tn

SI(c)dt

cn+1 = γ +

tn+1∫

tn

SII(γ)dt .

(1.3)

Independently of the sub-integration method used, a conceptual error

is introduced to the system, as the integration is treated in two separate

processes, that are internally not influenced by each other. This so called

splitting error can be quantified in a certain sense by a Taylor expansion

of eq. (1.2) (shown for an ordinary differential equation (ODE) for sim-

plicity), that yields

cn+1 = cn + SI (cn) ∆t + SII (cn) ∆t + SI (cn) S
′

I (cn)
∆t2

2

+ SI (cn) S
′

II (cn)
∆t2

2
+ SII (cn) S

′

I (cn)
∆t2

2

+ SII (cn) S
′

II (cn)
∆t2

2

+ O
(
∆t3

)

(1.4)

where dSI,II

dt
=

∂SI,II

∂c
dc
dt

= S
′

I,II (SI + SII) , while the expansion of the split

system (1.3) yields

cn+1 = cn + SI (cn) ∆t + SII (cn) ∆t + SI (cn) S
′

I (cn)
∆t2

2

+ 3SI (cn) S
′

II (cn)
∆t2

2
+ SII (cn) S

′

I (cn)
∆t2

2

+ SII (cn) S
′

II (cn)
∆t2

2

+ O
(
∆t3

)
.

(1.5)
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1.1 Model coupling

It can easily be seen, that this mechanism involves a splitting error of

first order as the right hand side of eq. (1.5) does not match eq. (1.4) in

the 2nd order term for SI (cn) S
′

II (cn).

Nevertheless, the advantage of a process subdivision of this kind is

that the subprocesses can be treated independently with their appropriate

time step and the integration scheme of choice in implicit or explicit form.

Also the computational effort might be reduced significantly.

Much more than the low order, a major disadvantage of this mecha-

nism is the sequential treatment of the processes: an integration step of

one functional process is followed by an integration step of a process

with completely different functional relations. Thus, discontinuities are

introduced to the system resulting in stiff transients. In relation to this

problem, an investigation of several experiments presented by (Sportisse,

2000) implied, that it appears preferable to treat the stiffer process last.

Another disadvantage is the fact that this mechanism is relying on syn-

chronisedmethods, as the time interval covered by the two sub-integrations

steps should be identical in order to avoid further inconsistencies. This

implies, for instance, a leap-frog scheme should not be followed by an

Euler scheme.

Source Splitting

Amechanism that overcomes the problem of discontinuity is the so called

Source Splitting mechanism (also described in the atmospheric chemistry

context by Sun, 1996 and Blom and Verwer, 2000).

Here, instead of directly subdividing the integration operator the source

term is estimated. Usually the adoption of the global time step ∆tglob

is dictated by the faster evolving process, while the source term for the

slower evolving process is estimated on a equal or coarser time interval

∆tS̃ > ∆tglob and kept constant for the intermediate steps, as variations
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1 Coupling Methods

over this period are assumed to be small:

cn+1 = cn +

tn+1∫

tn

Sfast(c)dt + S̃slow (tn+1 − tn)︸ ︷︷ ︸
∆tglob

. (1.6)

The piecewise constant source term S̃slow is usually obtained from a sub-

integration that considers only the slower process:

S̃slow =
Φn+s − cn

∆tS̃
, (1.7)

where

Φn+s = cn +

tn+s∫

tn

Sslow (Φ) dτ (1.8)

and ∆tS̃ = tn+s − tn > ∆tglob is the time frame in which Sslow is consid-

ered constant. The conceptual error here lies in ignoring the effects of the

faster evolving process on the slower one. Due to the piecewise constant

treatment of the slower process this mechanism is clearly of first order, as

a Taylor expansion over the splitting interval ∆tS̃ shows (compare to eq.

(1.4)):

cn+1 = cn + Sfast (cn) ∆tS̃ + Sslow (cn) ∆tS̃ + Sfast (cn) S
′

fast (cn)
∆t2

S̃

2

+ Sslow (cn) S
′

fast (cn)
∆t2

S̃

2

+ O
(
∆t3

S̃

)
.

(1.9)

The splitting error is determined by the missing of the 2nd order terms

that involve the derivative of the slower evolving process S
′

slow (cn) and

thus, by the quality of the initial assumption of constant Source Sslow.

However, the problem of the stiff transients is removed and the scheme

promises a muchmore stable behaviour. In fact, in Verwer et al. (2001) the

case of a stiff linear system of ODE’s with analytical solution is presented
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1.1 Model coupling

for three schemes: a first and second orderOperator Splitting scheme and a

Source Splitting Scheme, with the result, that while the loss of precision of

the Source Splitting scheme with respect to the 2nd orderOperator Splitting

(Strang, 1968) scheme was small, the stiff part was resolved much more

accurately through the Source Splitting mechanism with respect to both

Operator Splitting versions.

Note further, that for a constant Source term Sslowthe Source Splitting

technique solves the equations correctly. (The terms for S
′

II vanish, so

that eq. (1.4) and (1.9) match.)

Consistency of the slow process estimation S̃slow

The estimation term in equation (1.7) works correctly for most integration

schemes like the various one-step methods and the schemes of Adams

type. However, there are some exceptions.

Consider for example a leap-frog scheme for the sub-integration of the

estimated process with ∆tS̃ = ∆tphys = ∆t:

Φn+1 = cn−1 + 2Sslow (cn) ∆t . (1.10)

Using the above estimation scheme (1.7), the estimation becomes

S̃slow = 2Sslow (cn)− cn − cn−1

∆t
. (1.11)

For an explicit Euler scheme in the overall integration this leads to

cn+1 = cn−1 + (2Sslow (cn) + Sfast (cn)) ∆t . (1.12)

A consequence of eq. (1.12) is that the slower process damps the effect of

the fast process significantly by taking out the previous integration step,

transforming eq. (1.12) from an Euler step into an incomplete leap-frog

step.

However, using an estimation term adapted to the sub-integration scheme,
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1 Coupling Methods

as in

S̃slow =
Φn+1 − cn−1

2∆t
= Sslow (cn) (1.13)

one obtains the much more reasonable result

cn+1 = cn + (Sslow (cn) + Sfast (cn)) ∆t . (1.14)

This simple example highlights the necessity to adapt the estimation of

the slower process source Sslowto the schemes used in the sub-integration

of the actual implementation.

Mass conservation

In the context of dynamic ecosystemmodels mass conservation is a major

concern for a reasonable integration mechanism.

The mechanisms described above are easily shown to conserve the to-

tal mass of the system as long as the sub-integration steps do. In case of

theOperator Splittingmethod, mass conservation follows directly from the

successive application of the two sub-integrations. For the Source Split-

ting mechanism mass conservation is ensured for
∑

S̃slow,i = 0 by the

linear treatment.

1.1.2 Integration schemes

The coupling methods described can in principle utilise any numerical in-

tegration scheme. In order to evaluate possible numerical interactions be-

tween the coupling and the integration schemes all the numerical experi-

ments described in the following have been carried out adopting the fol-

lowing four numerical schemes, that are representative of different fam-

ilies of integration schemes widely used in meteorological and oceano-

graphic modelling. They are:

• The explicit Euler scheme:

cn+1 = cn + S (cn) ∆t (1.15)
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1.1 Model coupling

the simplest of all three schemes, a one-step scheme of first order.

• The explicit Runge-Kutta scheme of second order:

cn+1 = cn +
S (cn) + S (cn + S (cn) ∆t)

2
∆t (1.16)

• The leap-frog scheme:

cn+1 = cn−1 + S (cn) ∆t (1.17)

an explicit two-step scheme of second order. Well known stabil-

ity issues due to uncoupling of odd and even integration steps im-

pose the application of a numerical filter, here the well-documented

Asselin-filter (Asselin, 1972) was implemented:

F (cn) = cn +
α

2
(cn+1 − 2cn + cn−1) (1.18)

• The Adams-Bashforth scheme of second order:

cn+1 = cn + (3S (cn)− S (cn−1))
∆t

2
(1.19)

an explicit, two-step scheme.

A simple test case

Before proceeding with the numerical experiments aimed to evaluate the

coupling scheme an evaluation of the integration schemes by means of an

application to a simple 0D ecological model has been carried out with the

aim of isolating potential numerical problems arising from the applica-

tion of a specific integration scheme to the biogeochemical state variable.

The model is a three constituent non-dimensional N-P-D (nutrient, phy-

toplankton and detritus) model, such as the one used by Burchard et al.

(2003).

25



1 Coupling Methods

0 5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

9

10

Phytoplankton Bloom, ∆ t = 0.5 − Euler

Time

B
io

m
a

s
s

Nutrients

Phytoplankton

Detritus

Total Biomass

HR Nutrients

HR Phytoplankton

HR Detritus

Figure 1.2: Euler scheme. Continuous lines refer to the simulations car-
ried out with a ∆t of 0.5.; dashed lines refer to simulations
with a ∆t of 6.25 ∗ 10−4.Blue: nutrients, green: phytoplankton,
red: detritus.

The governing equations for the three non-dimensional state variables

are:

dN

dt
= − PN

N + 1
dP

dt
=

PN

N + 1
− αP

dD

dt
=αP .

(1.20)

This system can be interpreted as a simplified model of the dynamics of

a phytoplankton bloom: the phytoplankton takes up nutrients following

a Michaelis-Menten law, mortality turns it into detritus at a fixed rate α.

No detritus cycling is considered.

The initial conditions were set to N0 = 9.98 and P0 = D0 = 0.01 giving
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Figure 1.3: As in fig. 1.2, but for the Runge-Kutta scheme.

the system a total mass of 10. All computations used a loss rate of α = 0.3,

while the time step was set to ∆t = 0.5.

The same simulation has been repeated by using the four integration

schemes described above. For all integration schemes time-step cutting is

applied to guarantee positive results, i.e. the time step is halved when-

ever the computed new state would be negative. To accomplish this the

terms cn−1 and Sn−1 for the leap-frog scheme and the Adams Bashforth

scheme respectively are (quadratically and linearly) interpolated to the

intermediate values at the new ∆t without changing the order of the ap-

plied scheme.

Figures 1.2, 1.3, 1.4 and 1.5 show the results of the four investigated in-

tegration methods in comparison to a high resolution solution performed

at a time step of ∆t = 6.25 ∗ 10−4 where the four schemes do not show

significant differences anymore.

It can be seen from the results that all four schemes conserve the total

mass of the system, as the sum over the source terms of the three state
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Figure 1.4: As in fig. 1.2, but for the Leap-frog scheme.
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Figure 1.5: As in fig. 1.2, but for the Adams-Bashforth scheme.
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1.1 Model coupling

variables cancel out and the source terms in eq. (1.15), (1.16), (1.17) and

(1.19) are evaluated at the same time level for the various state variables,

so that the total sum Nn+1 + Pn+1 + Dn+1- Nn − Pn −Dn gives 0.

In terms of precision the three schemes of second order perform signif-

icantly better than the Euler scheme, which is delaying the bloom process

by about 2 units of time with respect to the reference solution and the

other schemes, that show similar results close to the reference solution.

In terms of stability the two multi-step methods (leap-frog and Adams-

Bashforth) show significant oscillations in phytoplankton and nutrients

when the bloom starts to decay, while the two one-step methods (Euler

and Runge-Kutta) still behave completely stable.

The computational cost is lowest for the Euler method, the difference

to the leap-frog and the Adams Bashforth method consists mainly in the

need to keep memory of a previous state or source vector and in the filter

operation for the leap-frog scheme in eq. (1.18). The Runge-Kutta method

has a considerable higher cost as the Source term has to be re-evaluated

after an Euler integration and the system has to be re-integrated. This

higher costmight prove to be expensive in the context of a three-dimensional

ecosystemmodel as the state vector will be ofmuch higher dimension and

the source-functions will be increasingly complex.
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1 Coupling Methods

1.2 The model and its sub-models

Amodel ofmarine ecosystemdynamics has to solve the advection-diffusion

equations for (non-conservative) active tracers (1.1). In one-dimensional

form these can be written as:

∂c

∂t
+ W

∂c

∂z
=

∂

∂z

(
νturb

∂c

∂z

)
+

∂c

∂t

∣∣∣∣
bio

, (1.21)

where c is the pelagic state vector (depending on temperature, salinity

and solar radiation), νturb is the turbulent viscosity,.The vector ∂c

∂t

∣∣
bio
contains

the changing rates of the state vector due to biogeochemical processes and

W is a sinking velocity introduced for specific state variables.

Applying the ecosystem partitioning described in the beginning of the

chapter, these equations can be formally divided as:

∂c

∂t
=

∂c

∂t

∣∣∣∣
phys

+
∂c

∂t

∣∣∣∣
bio

(1.22a)

∂c

∂t

∣∣∣∣
phys

= −W
∂c

∂z
+

∂

∂z

(
νturb

∂c

∂z

)
. (1.22b)

The complete model is constituted by the three fundamental building

blocks described in the introduction to this chapter, complemented by

a numerical coupler adopting an appropriate coupling method (section

1.1.1). A schematic of the sub-model interaction in the 1-dimensional

model is given in fig. 1.6. The physical model is forced by heat (Qs +

Qb + Qh + Qe), water (E − P − R; E: evaporation, P : precipitation, R:

riverine input ) and momentum (wind stress, τw) fluxes, and computes

vertical profiles of temperature (T ), salinity (S) and turbulent diffusivity

(ν). The temperature and salinity fields are passed to the biogeochemi-

cal model for the computation of the metabolic response of the biota (T )

and the oxygen saturation concentration (S). The turbulent diffusivity is

passed to the transport model (which handles also external nutrients and

particulate matter input) for the computation of ∂c

∂t

∣∣
phys
. The biogeochem-
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1.2 The model and its sub-models

Figure 1.6: Schematic representation of the coupled physical biogeochem-
ical model component and connections. Specific sub-models
components for hydrodynamics and biogeochemistry are re-
ferred with the name of the models used in this work.

ical model is forced by solar radiation (Qs), expressed as photosyntheti-

cally available radiation (PAR, about 50% of the incoming solar radiations

flux) and computes ∂c

∂t

∣∣
bio
. The coupling of the system occurs at the level

of the numerical coupler, which merges ∂c

∂t

∣∣
bio
and ∂c

∂t

∣∣
phys

according to the

characteristics of the coupling method used.

In the following, details of the specific sub-models used are presented,

while the description of the coupling techniques adopted is given when

describing the specific experiments.

1.2.1 The hydrodynamic model

The physical model applied in this implementation is the 1D-version of

the Princeton Ocean Model (Blumberg and Mellor, 1987). It is based on

the turbulent Navier-Stokes equations for geophysical flow in a rotating

31



1 Coupling Methods

coordinate system. The pressure is assumed to be in hydrostatic equilib-

rium and density differences are only considered in gravitational forces

(Boussinesq approximation).

Due to the reduction to the vertical dimension, the inner physical dy-

namics of the system is determined exclusively by vertical turbulent trans-

port, which is modelled by the two equation turbulence closuremodel de-

veloped byMellor and Yamada (1982), that models the turbulent fluxes of

the system by computing the turbulent diffusion coefficient through two

additional state variables: the turbulent kinetic energy q and the turbu-

lence length scale l.

Thus, the equations of motion to be solved are:

∂U

∂t
− fV =

∂

∂z

[
(νM)

∂U

∂z

]

∂V

∂t
+ fU =

∂

∂z

[
(νM)

∂V

∂z

]

∂P

∂z
= −ρg

(1.23)

In these equations U and V are the horizontal velocity components, f is

the Coriolis parameter and νM is the turbulent diffusivity for the velocity

components, defined as

νM = KM + χ1 , (1.24)

where χ1 is a constant background diffusivities to adjust for unresolved

effects, and the turbulent diffusion coefficientKM is defined as

KM = qlSM . (1.25)

where parameter SM is a stability function of the Richardson Number.

The turbulent kinetic energy q and the turbulent length scale l are de-
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1.2 The model and its sub-models

termined by the balance equations:

∂q2

∂t
=

∂

∂z

[
Kq

∂q2

∂z

]
+ Ps + Pb + ǫ

∂q2l

∂t
=

∂

∂z

[
Kq

∂q2l

∂z

]
+ E1l

(
Ps

2
+ E2

Pb

2

)
W̃ − ǫl

(1.26)

Again Kq is the turbulent diffusion coefficient for the turbulence state

variables analogous toKM .

PB = 2KM

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]

(1.27)

gives the production of turbulent energy due to velocity shear, while

PB =
2g

ρ0

KH

∂ρ

∂z
(1.28)

is the buoyancy production. W̃ is a wall proximity function depending

on l.

With this set of closed equations the turbulent diffusivity coefficient

for tracers KH can be determined analog to Kq and KM , again combined

with a background diffusivity parameter χH to allow the compensation

for unresolved small scale processes, such that the turbulent viscosity in

equation (1.21) becomes

νturb = KH + χH . (1.29)

Therefore, the dynamics of the temperature and salinity field is com-

pletely described by the equations

∂T

∂t
= νturb

∂

∂z

[
∂T

∂z

]
+

∂I

∂z

∂S

∂t
= νturb

∂

∂z

[
∂S

∂z

]
− ωS ,

(1.30)
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where

I =
Qs

ρW cp

Tr exp (λz) (1.31)

is the fraction Tr of solar radiationQs penetrating the water column expo-

nentially attenuated by the coefficient λ for infrared light. A compensa-

tion technique for the missing horizontal advection of salinity is realised

by ωS , that will be given in section 1.3 along with a description of the

boundary and initial conditions, as well as the forcing functions applied

to the model.

The original numerical scheme by POM (refer to Blumberg and Mellor,

1987; Mellor, 2004 for details), applied here to integrate in time the 1D

partial differential equation system composed of eq. (1.23), (1.26) and

(1.30), is a semi-implicit leap-frog scheme:

φn+1 = φn−1 + 2
∂

∂z

(
νturb

∂φn+1

∂z

)
∆t + 2Sφ (φn) ∆t (1.32)

where Sφ is a generic production term for the variable φ. Note, that the

only remainders of inertial terms are the Coriolis terms for the horizontal

velocity components in eq. (1.23).

1.2.2 The biogeochemical model

The ecosystem model used in this work is based on the pelagic part of

the Biogeochemical Flux Model (BFM - Vichi et al., 2006, 2007b; http:

//www.bo.ingv.it/bfm), an advancement of the European Sea Re-

gional Ecosystem Model (ERSEM - Baretta et al., 1995). In this model,

the ecosystem is represented by a selection of interacting chemical and bi-

ological processes that are supposed to reproduce the system behaviour

coherently.

The BFM State variables are considered in their basic biogeochemical

components: carbon (C), nitrogen (N ), phosphorus (P ), silicon (Si) etc.,

and can be divided into two broad functional classes (Vichi et al., 2007b):

the living functional groups (LFG) and the chemical functional families
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1.2 The model and its sub-models

Figure 1.7: Scheme of the three major constituents of the three major
components of the pelagic biogeochemical model: basic con-
stituents, chemical functional families and the standard organ-
ism, which is the prototype of any living functional group. Hy-
drogen is not considered as biogeochemical constituent, but
indicated for completeness of the chemical compound formu-
lations. (Vichi et al., 2007b)
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(CFF ), depicted in fig. 1.7. LFG dynamics is described by population

dynamics (growth, mortality, predation) and physiological processes (up-

take, ingestion, respiration, excretion, egestion). LFG represent the whole

biota and can be divided into three functional types: producers (phyto-

plankton), decomposers (bacteria) and consumers (zooplankton). Each

LFG is designed on the basis of the standard organism approach (Baretta

et al., 1995): all organisms merged in the same functional group (e. g.

diatoms, nanoflagellates, picophytoplankton etc.) share the same func-

tional properties and have the same trophic interactions, differing only

in the specific parametrisation of each functional group. This kind of ap-

proach has been confirmed to be very valid for the description of popu-

lation and community dynamics of unicellular organisms, while it shows

several problems when dealing with size structured populations such as

mesozooplankton. The dynamical interactions between LFG and CFF

in terms of basic chemical constituent flux is schematised in Fig. 1.8.

It should be stressed, that the BFM ecosystem structure explicitly re-

solves the two major pathways of the marine ecosystem: the so called

“herbivorous foodweb” (connection between primary and secondary pro-

ducers is directly established between phytoplankton andmesozooplank-

ton through grazing) and the so called “microbial food web” (mass and

energy flow between primary and secondary producers mediated by phy-

toplankton production of dissolved organic matter, bacteria utilisation

andmicrozooplankton predation of bacteria). Previous modelling studies

(Vichi et al., 2003) have shown that the shift between the two configura-

tions of the trophic web is naturally reproduced by the BFM in response to

the changing environmental conditions. Moreover, the BFM allows also

for the intermediate configuration of the trophic web (the “Multivorous”

foodweb proposed by Legendre and Rassoulzadegan (1995)). A complete

listing of the BFM’s state variables is given in table 1.1. With respect to the

ERSEM model the BFM differs mostly in the description of the primary

production processes. The BFM, in fact, explicitly considers chlorophyll

as a basic biogeochemical constituent and the chlorophyll synthesis has
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1.2 The model and its sub-models

Variable Constituent Description Type
O2 O Dissolved oxygen CFF

N1 P Phosphate CFF

N3 N Nitrate CFF

N4 N Ammonium CFF

N5 Si Silicate CFF

N6 R Reduction Equivalents CFF

P1 C, N, P, Si, L Diatoms LFG

P2 C, N, P, L Nanoflagellates LFG

P3 C, N, P, L Picophytoplankton LFG

Z3 C, N, P Carnivorous Mesozooplankton LFG

Z4 C, N, P Omnivorous Mesozooplankton LFG

Z5 C, N, P Microzooplankton LFG

Z6 C, N, P Heterotrophic Flagellates LFG

R1 C, N, P Dissolved Organic Detritus CFF

R2 C, N, P Carbohydrates CFF

R6 C, N, P, Si Particulate Organic Detritus CFF

Table 1.1: The ecosystem state vector. The units used for the various con-
stituents are

[
mg

m3

]
for carbon and chlorophyll and

[
mmol
m3

]
for all

others. (C: Carbon, N : Nitrogen, P : Phosphorus, S: Silicon, L:
Chlorophyll-a; CFF : chemical functional family, LFF : Living
Functional Group)

been parametrised according to Geider et al. (1997).

Phytoplankton uptake of macronutrients (nitrate, ammonia and phos-

phate) has been decoupled from the carbon assimilation processes by in-

cluding dynamic nutrient kinetics according to Droop (1973) and Nyholm

(1977), depending on both, the level of intra-cellular nutrient storage. The

only exception is the silicate uptake that is regulated by the external con-

centration.

The microbial food web includes bacteria, heterotrophic flagellates and

microzooplankton, each with dynamically varying C:N :P ratios (Baretta-

Bekker et al., 1995, 1998). Bacteria act to consume dissolved organic car-

bon and decompose detritus and, in addition to that, they can compete

for inorganic nutrients with phytoplankton under conditions of severe
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nutrient depletion in the organic substrate.

The biogeochemical changing rate of each state vector component (given

in table 1.1) is given by an equation of the type

∂c

∂t

∣∣∣∣
bio

=
∂c

∂t

∣∣∣∣
e1

v1

+
∂c

∂t

∣∣∣∣
e2

v2

− ∂c

∂t

∣∣∣∣
e3

v3

. . .
∂c

∂t

∣∣∣∣
en

vn

(1.33)

where the superscripts e indicate the process and the subscripts v refer to

the state variable playing the counterpart in the process. Mass conserva-

tion obviously dictates ∂c
∂t

∣∣e1
v1

= − ∂v
∂t

∣∣e1
c1
.

For the three living functional groups phytoplankton (P ), Zooplankton

(Z) and bacteria (B) the rates are composed of:

∂P

∂t

∣∣∣∣
bio

=
∂P

∂t

∣∣∣∣
upt

− ∂P

∂t

∣∣∣∣
exu

− ∂P

∂t

∣∣∣∣
lys

− ∂P

∂t

∣∣∣∣
resp

− ∂P

∂t

∣∣∣∣
graz

∂Z

∂t

∣∣∣∣
bio

=
∂Z

∂t

∣∣∣∣
ingest

− ∂Z

∂t

∣∣∣∣
egest

− ∂Z

∂t

∣∣∣∣
resp

− ∂Z

∂t

∣∣∣∣
pred

∂B

∂t

∣∣∣∣
bio

=
∂B

∂t

∣∣∣∣
upt

− ∂B

∂t

∣∣∣∣
remin

− ∂B

∂t

∣∣∣∣
resp

− ∂B

∂t

∣∣∣∣
pred

(1.34)

where the subscripts indicate the processes of uptake (upt), exudation

(exu), lysis (lys), respiration (resp), grazing(graz), ingestion (ingest), eges-

tion (egest), predation (pred) and remineralisation (remin).

Virtually all processes in the ecosystem depend on the water tempera-

ture T [◦C]. This is modelled by a regulating factor

f t = Q
T−10

10

10 (1.35)

with Q10 as a parameter specific to each LFG.

Moreover, primary production is heavily depending on ambient light,

or better photosynthetically available radiation PAR, given by the Lambert-
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1.2 The model and its sub-models

Figure 1.8: General overview of the pelagic food web of the BFM.
Squared bold boxes correspond to LFGs, squared thin boxes
to non-living organicCFFs and rounded boxes to non-organic
CFFs. Dashed black arrows represent nutrient fluxes, Con-
tinuous black arrows nutrient and carbon fluxes, dashed grey
arrows indicate biogeochemical reactions and continuous grey
arrows gas exchange. Boundary flows are given by double ar-
rows.
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Beer formulation

I =
Qs

ρW cp

εPAR exp




0∫

z

(λw (ζ) + λeco (ζ)) dζ


 , (1.36)

where εPAR gives the fraction of photosynthetically available radiation,

λw is the background extinction of water particles and λbio is the extinc-

tion due to phytoplankton, particulate detritus and suspended inorganic

matter.

A simple benthic return model has been used for the benthic closure.

In order to parameterise the benthic re-mineralisation, a fixed quota of

each detritus component (C,N ,P ,Si) reaching the bottom is returned to

the water column as nutrients.

1.2.3 The transport model

The transport equation of the ecosystem state variables is given by eq.

(1.22b). To solve this equation POM’s semi-implicit integration scheme

applied to the physical state variables, as in eq. (1.32), was used. The

transport of the biological state vector in discrete form is then given by

the equation:

c̃k = cn−1,k +
1

2∆σ
((cn,k−1 + cn,k) Wk − (cn,k + cn,k+1)) Wk+12∆t , (1.37)

cn+1 = c̃ + Diff (cn+1) 2∆t . (1.38)

where k refers to the vertical levels, n to time levels, ∆σ is the cell thick-

ness in the σ-coordinate, ∆t represents the time step and Diff is a short-

hand for the spatial discretisation of the implicit diffusion term, that is not

of interest here and therefore omitted

As for the physical state variables, the reader is referred to section 1.3

for the description of boundary conditions and forcing.
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1.2 The model and its sub-models

The whole model parametrisation specific to this implementation is de-

scribed in section 1.3.
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1 Coupling Methods

1.3 Implementation of the coupled model

Here a summary of the implementation characteristics is given. The im-

plementation is based on the previous one-dimensional modelling effort

(for the same locations) of Vichi et al. (2003) that carried out one dimen-

sional simulations of themarine ecosystemdynamics using the same phys-

ical model (POM), but the ecological model implemented was the ERSEM

model (Baretta et al., 1995), from which the BFM originated.

1.3.1 Implementation sites

The coupled model described in section 1.2 has been implemented at the

three different locations, (named S1, S3 and AA1) in the northern Adriatic

Sea depicted in fig. 1.9

The rationale for the choice of these sites lies in the fact that (although

belonging to the coastal domain) they show distinct hydrological and eco-

logical characteristics and, at the same time, they correspond to sampling

sites frequently visited in the framework on national research projects that

yielded observational data useful for model validation.

Site S1 is directly influenced by the Po river runoff providing large

amounts of nutrients and organic/inorganic, particulate/dissolved mat-

ter (Cozzi et al., 1999; Pettine et al., 1998; Giani et al., 2000, 2001). It is

located about 5 km offshore from the Po delta and has a bottom depth of

20 m.

Site S3 (37 km offshore of theWestern Adriatic coast) has characteristics

more typical of open sea areas, being less affected by land based inputs.

It is approximately located in the central part of the northern Adriatic

central gyre (Artegiani et al., 1997a). The bottom depth is 30 m.

The hydrological seasonal cycle at S1 and S3 is similar, but the density

stratification at S1 is present for most of the year due to the Po freshwater

input. On the contrary S3 is well mixed during autumn-winter and its

seasonal characteristics are more influenced by the variability of the local

cyclonic circulation.
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1.3 Implementation of the coupled model

Figure 1.9: Location of the implementation sites in the northern Adriatic
Sea.

Site AA1 (with a bottom depth of 20 m) is located in the centre of the

Gulf of Trieste, a relatively small semi-enclosed basin at the north-eastern

corner of the northern Adriatic basin. The fresh water input (Isonzo river)

is significant, particularly in view of the relatively small volume of the

basin (Malej et al., 1995). Its hydrology is characterised by a strong inter-

annual variability, mainly related to the strong easterly winds (Bora) af-

fecting the area. The lower trophic levels cycle is strongly influenced by

the variability of the abiotic factors (Fonda Umani et al., 1995; Cataletto

et al., 1995; Mozetic et al., 1998).

1.3.2 Vertical discretisation

The water column at the implementation sites has been vertically discre-

tised by applying a logarithmic distribution of layer depths at the surface

and at the bottom, and a uniform depth distribution in the water column
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interior. The S1 and AA1 vertical grid is defined by 30 levels with 6 levels

logarithmically distributed at both the surface and the bottom. The S3wa-

ter column has been resolved by 40 levels with an analogous logarithmic

distribution at surface and at the bottom. In this way at all implemen-

tation sites the interior of the water column has a vertical resolution of

about 1 m.

This discretisation was considered sufficiently for the scope of repre-

senting the annual cycle in the ecosystem dynamics at the given sites. As

mentioned in the introduction each model of fluid dynamics is restricted

to a certain resolution, that covers the representation of the processes un-

der investigation. The present model is designed to give a qualitatively

and quantitatively reasonable description of annual vertical cycle of the

water column.

1.3.3 Boundary conditions

For the momentum equation (1.23) the boundary fluxes are given by the

shear stresses at the interfaces, i. e.

νM

∂
√

U2 + V 2

∂z

∣∣∣∣∣
z=0,−H

=
τw,b

ρW

, (1.39)

where τw is the wind stress, τb is the bottom stress and ρW is a reference

water density. To compute the bottom stress a logarithmic drag law is

used with a bottom roughness length of 0.01m.

The surface boundary condition for temperature results from the heat

budget:

ν
∂T

∂z

∣∣∣∣ =
(1− Tr) Qs −Qb −Qh −Qe + Qcorr

ρW cp

(1.40)

where Qs is the solar radiation, Qb is the long wave radiative flux, Qh is

the sensible heat flux, Qe the latent heat flux and Qcorr a correction term

to compensate for advective heat fluxes into the water column (see Vichi

et al. (1998)). Only a fraction of solar radiation acts as boundary heat flux,
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1.3 Implementation of the coupled model

as the other part is considered to enter the water column and appears in

eq. (1.30),(1.31) as heat source. The bottom boundary layer is assumed to

be adiabatic.

Surface salinity is relaxed to a climatological value Ŝ:

νH

∂S

∂z

∣∣∣∣
z=0

= −αS

(
S (t)|z=0 − Ŝ (t)

)
, (1.41)

where αS (see table 1.2) is the relaxation velocity. Again, at the bottom

boundary a no flux condition is imposed. The turbulent kinetic energy at

surface and bottom is assumed to be proportional to the friction velocity

by an empirical constant, while the turbulent length scale is set to 0 on the

boundaries.

For the biogeochemical state variables, the surface fluxes for the nutri-

ents are given by a relaxation to seasonally varying climatological data

N̂ (from ABCD, Zavatarelli et al., 1998), analogous to the salinity surface

flux in eq.(1.41)

νH

∂N

∂z

∣∣∣∣
z=0

= −αN

(
N (t)|z=0 − N̂ (t)

)
, (1.42)

while at the bottom the flux is given by the nutrient return ωN from the

benthic closure model, as described in section 1.2.2, multiplied by the cell

thickness of the last layer of the water column∆zbot:

νH

∂N

∂z

∣∣∣∣
z=−H

= −ωN∆zbot , (1.43)

For all other state variables no-flux conditions are applied at surface and

bottom.

1.3.4 Forcing functions

The wind stress forcing function τw used to evaluate boundary conditions

(eq. (1.39)) and the heat flux terms Qb, Qh, Qe for eq. (1.40), plus short-

wave incoming radiation fluxQs in eq. (1.31 and 1.40), were all calculated
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1 Coupling Methods

from the 6-hours ECMWF (European Center for Medium-range Weather

Forecast) surface reanalysis of atmospheric properties relative to the 1982-

93 period (Gibson et al., 1997). The surface fluxes are computed following

the procedures described in Maggiore et al. (1998) and Zavatarelli et al.

(2002). Surface salinity data S(t) in eq. (1.41) for the S1 and S3 site are

taken from the Adriatic BiogeoChemical Data set (ABCD, Zavatarelli et al.

1998) asmonthlymean climatological time series considering an adequate

area centred around the implementation sites (fig. 1.9). Climatological

values of salinity at the AA1 site were calculated from a time series col-

lected by theMarine Biology laboratory (Trieste University) between 1986

and 1997.

Another important external forcing function that has been shown to

largely affect the simulated biological properties is the Inorganic Sus-

pended Matter (ISM) in the water column (Vichi et al., 1998). The con-

centration of suspended sediments modifies the ambient light through

extinction processes and consequently constrains phytoplankton produc-

tivity. The ISM profiles are applied in the model as external forcing func-

tions affecting the light extinction coefficient for biology as in eq. (1.36);

the ISM concentrations at the three sites are computed as linear interpo-

lation of the seasonal profiles obtained by Vichi et al. (2003) from direct

measurements at the implementation sites. Unfortunately, there is scarce

climatological information concerning the seasonal mean concentrations

of ISM in the northern Adriatic. At the AA1 site observations collected

monthly over the period 1997-2000 are used, from which seasonal mean

concentration profiles have been calculated. For S1 and S3, the PRISMA-I

(Progetto di Ricerca per la salvaguardia del Mare Adriatico) project data

collected during only four seasonal surveys is applied. Therefore, those

data are not climatologically representative.

Perpetual time series of nutrients at surface (N̂ in eq. (1.42)) are cli-

matological mean seasonal values extracted from the ABCD data set in

the case of S1 and S3, and seasonal mean values from the Laboratorio

di Biologia marina monitoring program for the Gulf of Trieste. The sea-
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1.3 Implementation of the coupled model

sonal frequency was the only possible due to the systematic lack of ob-

servations in some months. The main differences in the three time series

(not shown) are that both S1 and AA1 show high nitrate and phosphate

surface concentrations, typical of river-affected coastal stations, while S3

presents lower surface values, indicating oligotrophic characteristics that

are proper of open-sea areas. Besides that, at S1, all nutrients show a

distinct, strong peak in autumn (concentrations are about 10 times more

than at the other sites), while S3 and AA1 do not show such a significant

autumn increase.

1.3.5 Physical parametrisation

The application of 1-D vertical models for the representation of hydrody-

namic processes usually requires the use of additional parameterisations

to account for the missing of horizontal dynamics. In the specific case of

the northern Adriatic Sea, vertical processes alone (which are determined

by the specification of surface heat, momentum and water fluxes) are not

completely sufficient for an appropriate description of the seasonal evo-

lution of the water column structure. Therefore, it is necessary to include

a closure of the annual heat and water budgets, in order to let the model

reproduce a perpetual climatological annual cycle in the hydrodynamics.

The annual heat flux budget is negative in the northern basin (Supic

and Orlic, 1999), and is likely to be compensated (on a climatological time

scale) by the advection of warm waters from the south (Artegiani et al.,

1997b). This has been specified in the model, as proposed in Vichi et al.

(1998), by calculating the annual surface heat loss in the forcing functions

and distributing this bulk value along the year in the form of an empirical

heat correction function added as a surface boundary condition (Qcorr in

eq. (1.40)). The most suitable shape of this empirical function at the three

sites was established by Vichi et al. (2003) by analysing the simulated sea-

sonal profiles of T with respect to the observed means and their range of

variability.
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Parameter description AA1 S1 S3

Background turbulent diffusivity T (and tracers)
[

m2

s

]
2.5 ∗ 10−5 1.3 ∗ 10−5 1.0 ∗ 10−5

Background turbulent diffusivity S
[

m2

s

]
0.9 ∗ 10−5 0.9 ∗ 10−5 0.9 ∗ 10−5

Apportioning coeff. for infrared light [%] 90.0 50.0 80.0
Attenuation coefficient for visible light

[
1
m

]
0.17 0.17 0.17

Attenuation coefficient for infrared light
[

1
m

]
5.0 5.0 5.0

Relaxation constant at surface for S
[
m
d

]
0.5 0.5 5.68

Relaxation constant at surface for nutrients
[
m
d

]
0.22 0.566 0.568

Relaxation constant to compensate for hor. adv.
[

1
d

] 1
60

1
60

1
10

Starting Depth of hor. adv. compensation [m] 1.0 1.0 1.0
Percentage of photosynth. available radiation [%] 50.0 50.0 50.0

R6 contribution coefficient to light shading
[

m2

mg C

]
1.0 ∗ 10−4 1.0 ∗ 10−4 1.0 ∗ 10−4

ISM contribution coefficient to light shading
[

m2

mg C

]
3.9 ∗ 10−4 1.3 ∗ 10−4 3.9 ∗ 10−4

Table 1.2: Parameter values for the three implementation sites.

Concerning the closure of the water flux, a crucial problem when deal-

ing with 1-D models is that the local buoyancy losses are not compen-

sated by long-term, basin-wide lateral advection of buoyancy, in order

to maintain a perpetual dynamic equilibrium in the water column. The

imposition of local net positive or negative heat and water fluxes at the

surface produces a model drift; in reality, the water column budget is

closed by the horizontal advection processes. In a purely one-dimensional

model the horizontal advection terms are neglected, and so it is necessary

to parameterise the lateral advective adjustment process. This has been

achieved by applying a closure of the water cycle based on the imposition

of a surface salt flux correction (Vichi et al., 1998), as done for the heat flux

in eq. (1.40).

In this work we use a parameterisation of local lateral advection repre-

senting the basin-scale contribution to the vertical water column stability.

The method consists of the introduction of a climatological time-varying

vertical profile of salinity, to which the dynamics of the water column has

to adjust within a given time scale. The source term added to the salinity
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1.3 Implementation of the coupled model

balance in eq. (1.30) is parameterised as

ωS = αadv(z)
(
S − Ŝ

)
(1.44)

where αadv is the depth-varying relaxation frequency, defined to be 0 from

surface down to a given depth.

The various physical parameters applied are given in table 1.2

1.3.6 Biogeochemical parametrisation

The ERSEM parametrisation defined by Vichi et al. (2003) for the numer-

ical implementation at the three northern Adriatic sites has been essen-

tially maintained for the BFM implementation. However, the explicit con-

sideration of chlorophyll-a involves for the three phytoplankton groups

(diatoms, nanoflagellates and picophytoplankton) the addition of two new

parameters: the maximal allowable chlorophyll-carbon ratio (ϑmax) and

the initial slope of the P-I (production-irradiance) curve (Pα). The values

adopted for each phytoplankton functional group are given in table 1.3

and have been identically applied at all the implementation sites.

Parameter description Diatoms Nanoflag. Picophytopl.

Max. carbon-chlorophyll ratio ϑmax [−] 0.03 0.02 0.02

Init. slope of P-I curve α
[

mgC
m2

µ
E

1
mgChl

]
1.38 ∗ 10−5 1.1 ∗ 10−5 1.1 ∗ 10−5

Table 1.3: Parameter values for the chlorophyll dynamics.

1.3.7 Initial conditions

The physical model is initialised fromwinter profiles of the climatological

data sets (Zavatarelli et al., 1998) for the three implementation sites, that

are described in section 1.3.4. Unfortunately, this kind of data is not avail-

able for the biogeochemical states. Some sensitivity studies to varying ini-

tial conditions have been performed by Vichi et al. (2003), indicating that
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for the given sites after an appropriate spin-up the ecosystem converges

to the same perpetual year cycle. In this implementation, corresponding

initial conditions were applied, and a spin-up interval of 4 years was al-

lowed.

1.3.8 Coupling

Of the two coupling schemes presented in section 1.1.1 after initial tests

the Source Splitting mechanism was preferred for this implementation.

In fact, the non-continuous, sequential character of the Operator Splitting

method caused severe stiff transients to the system and introduced seri-

ous instabilities to the system, a problem that is even complicated by the

fact, that the leap-frog integration used by POM requires the value of the

state variable on the level of the previous time step which enhances the

instability.

As stated above, the Source Splittingmechanism is based on the approx-

imation that the slower of the two involved processes is considered con-

stant on a certain coarse time interval and then their process rates are

kept constant, while the finer global integration time step is imposed by

the faster process.

While in atmospheric chemistry the chemical processes can be gener-

ally considered as the potentially faster evolving processes, this is not

clear for models of marine ecosystems. A glimpse on figure 1.1 illustrates,

that the scales involved are widely overlapping, and no clear a priori dis-

tinction can be done with respect to the hierarchy of the physical and

biogeochemical time scales, but will depend on the choice of the spectral

window and the discretisation and parametrisation of the processes, and

might even depend on the local characteristics of the ecosystem. Concern-

ing the resolution of the physical processes, the behaviour of the hydro-

dynamic sub-model has already been studied intensively not only in the

already mentioned paper of Vichi et al. (2003), but also in several other

works concerning the three-dimensional simulation of the Adriatic Sea
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1.3 Implementation of the coupled model

Figure 1.10: The temperature T in [◦C] at station AA1, 5th year of integra-
tion On top: the standard resolution of ∆t = 864s. In the mid-
dle: high resolution solution at a time step of ∆t = 3s. At the
bottom: Differences of standard resolution to high resolution.

general circulation (e. g. (Zavatarelli et al., 2002; Zavatarelli and Pinardi,

2003; Oddo et al., 2005)), so that it was applied here without considerable

modifications. In particular, the time step for the integration of the phys-

ical processes has been stabilised at the fixed step size of ∆tphys = 864s

(further on referred to as standard time step), which was confirmed in the

present configuration by running the model adopting also a ∆t = 3s and

comparing the solution for the identical run adopting ∆t = 864s (figures

1.10 and 1.11 for the station AA1). It can be seen, that the differences in

between the two runs are limited to some noise around the pycnocline.

Errors are at maximum 1% of the local state value for temperature and

less than 0.2% for salinity and can therefore be safely neglected. 2

Thus, in principle there are two possible scenarios for the implemen-

2A comparison of the seasonal profiles to climatological data is given in the Appendix.
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1 Coupling Methods

Figure 1.11: As fig. , but for the salinity S in [psu].

tation of the coupling scheme into the model, which will be investigated

below:

• The biogeochemical processes and their modelling require a time
step finer than the one adopted for the transport processes of∆tphys =

864s and thus, the global time step is imposed by the biogeochem-

ical processes. Numerical experiments carried out within this gen-

eral framework will in the following be referred to as BFMStep.

• The biogeochemical processes and their modelling can be computed
on a coarser time step than the∆tphys of 864s stabilised for the trans-

port processes. In this case the global integration scheme applies the

time step of the transport model. Numerical experiments carried

out within this general framework will in the following be referred

to as POMStep.
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1.3 Implementation of the coupled model

Figure 1.12: BFMStep and POMStepmethod. Full lines indicate the global
integration and dashed lines the process estimation.

Time step imposed by biogeochemistry (BFMStep)

In this case, the transport rates ∂c

∂t

∣∣
phys

are assumed to be the slower evolv-

ing process rates S̃slow and equation 1.1 takes the form:

cn+1 = cn +

∫

∆tglob

∂c

∂t

∣∣∣∣
bio

dt +
∂̃c

∂t

∣∣∣∣
phys

∆tglob . (1.45)

However, the transport model by construction updates the state vari-

able, rather than computing rates and thus, the transport rates have to be

estimated from a sub-integration considering the transport process only.

This generates a splitting error. As the respective sub-model is based on

the leap frog algorithm of POM (eq. (1.32)), the estimation term derived

in section 1.1.1 is used:

∂̃c

∂t

∣∣∣∣
phys

=
Φn+1 − cn−1

2∆t
. (1.46)

The integration scheme for the global integration step can be chosen

independently, so that the four integration schemes described in section
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1.1.2 were applied. As it was decided to keep the time step for the physical

processes fixed at ∆t = 864s, the BFMStep mode applies to global time

steps of ∆t 6 864s.

Time step imposed by physics (POMStep)

In the opposite case, where the time step is dictated by the physical pro-

cesses, biogeochemical processes are assumed to be the slower evolving

processes and the global integration step is expressed as:

cn+1 = cn +

∫

∆tglob

∂c

∂t

∣∣∣∣
phys

dt +
∂̃c

∂t

∣∣∣∣
bio

∆tglob . (1.47)

Here, the changing rates are computed directly by the biogeochemical

sub-model and the splitting error is reduced to the piecewise constant

treatment on the coarser estimation interval.3 To reduce this error further,

a modification to the original Source Splitting scheme is introduced by

estimating the biogeochemical rates on the intermediate steps by linear

interpolation of the two preceding rates:

˜∂c (tn+s)

∂t

∣∣∣∣
bio

=
∂c (tn)

∂t

∣∣∣∣
bio

+

∂c(tn)
∂t

∣∣∣
bio
− ∂c(tn−∆t)

∂t

∣∣∣
bio

∆test
(tn+s − tn) , (1.48)

where ∆test is the estimation interval of the biogeochemical processes.

The scheme for the global integration in this case is limited to the scheme

used in POM (eq. (1.32)), as a modification of the integration scheme

would interfere with the scheme of spatial discretisation.

With the time step imposed at the fixed step size of ∆tglob = 864s, the

estimation time step may vary as ∆test > 864s.

3Note, that when the two processes groups are evaluated with the same time resolution
(with a time step of ∆tglob = ∆test = 864s), this formulation (BFMStep) does not
involve any splitting error, as the leap-frog scheme of POM evaluates the Source
terms at the actual time level only. Thus, in this case the error is restricted to the error
of the integration scheme only.
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1.4 Results and validation

In table 1.4 an overview is given over the experiments presented below,

conducted to evaluate the coupling schemes implemented. All experi-

ments were carried out in all 3 locations to include the particularities of

the various local ecosystems. The discussions below focus on the results

for the two variables chlorophyll-a and phosphate as the key variables of

the involved ecosystem dynamics. A broader overview of the various el-

ements of the trophic web is given in appendix B. All solutions are given

for the 5th year of integration.

Experiment Integration schemes Applied time steps
BFMStep-Ref LF AB2 RK2 E ∆tbio,glob = ∆tphys

BFMStep-1 LF AB2 RK2 E ∆tbio,glob = ∆tphys

BFMStep-2 LF AB2 RK2 E ∆tbio,glob < ∆tphys

Experiment Rate estimation Applied time steps
POMStep-Ref (con=int) ∆tphys,glob = ∆tbio
POMStep-1 (con=int) ∆tphys,glob = ∆tbio
POMStep-2 con int ∆tphys,glob < ∆tbio

Table 1.4: Matrix of experiments conducted with the BFMStep and the
POMStep scheme. The used abbreviations are: LF - leap frog,
AB2 -Adams-Bashforth 2nd order, RK2 - Runge-Kutta 2nd order, E -
Euler; ∆tglob - global time step,∆tbio - time step for biogeochem-
ical processes, ∆tphys - time step for physical processes; con -
constant rate estimation, int - interpolated rate estimation.

Experiments BFMStep-Ref and POMStep-Ref are the reference experi-

ments described below. In experiments BFMStep the solution of the sys-

tem is achieved according to eq. (1.45), i. e. the biogeochemical rates

are assumed to be the fastest rates, therefore the time step applied to the

biogeochemical processes is (∆tbio) is assumed to be the global time step

∆tglob for the solution of the whole system and has been kept equal (ex-

periment BFMStep-1) or smaller (BFMStep-2) than the time step applied

to the computation of the physical processes (∆tphys). Each BFMStep ex-
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periment has been replicated four times by utilising the four integration

schemes described in section 1.1.2.

The experiments POMStep solve the system by applying eq. (1.47),

where the biogeochemical rates are assumed to be the slowest and ∆tphys

is assumed to coincidewith∆tglob, while∆tbio has been kept equal (POMStep-

1) or longer than ∆tglob (POMStep-2).

As stated in the previous section, in this case the numerical integra-

tion scheme for the global integration is limited to the use of the physi-

cal model scheme (which for POM is the semi-implicit leap-frog scheme).

However, POMStep-2 allows for two possible ways to estimate ∂c(tn)
∂t

∣∣∣
bio

by holding the rate constant or by linearly interpolating it using eq. (1.48).

1.4.1 Reference solution

For an objective comparison of the various experiments some reference

solution is needed. In principle, this could be provided solving ana-

lytically the system equations or by data. An analytical solution is not

known, given the nature of the equation forming the coupled system,

while reference from data has some other obstacles. The eventual errors

found in the simulation with respect to the data might have numerous

sources, from measurement errors to modelling errors, that risk to cover

the differences in the numerical schemes completely. In addition to that,

the climatological forcing does not necessarily lead to the climatological

mean as true solution, as the involved processes are non-linear. Moreover,

availability of data is rather scarce, so that reliable climatological means

are averaged over large periods in time and differences in the numeri-

cal schemes might be smoothed out before the actual comparison can be

done.

The reference solution was therefore obtained from the model itself

choosing ∆tglob = ∆tphys = ∆tbio appropriately small, such that physical

and biogeochemical processes are accurately resolved and the differences

among coupling methods, as well as among integration schemes can be
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Experiment Integration scheme ∆tglob

BFMStep-Ref-E Euler 3 s
BFMSTEP-Ref-LF Leap-frog 3 s
BFMSTEP-Ref-AB2 Adams-Bashforth 3 s
BFMSTEP-Ref-RK2 Runge-Kutta 3 s
POMStep-Ref POM 3 s

Table 1.5: The high resolution experiments.
∆tglob: time step of global integration, ∆t estimation interval.

considered negligible. The ∆t adopted was 3s and reference experiments

were run adopting the numerical schemes listed in table 1.5. In order to

provide an assessment of the model performance in replicating the ob-

served seasonal cycle of hydrological and biogeochemical characteristics

a comparison of the reference run model results with the observational

data extracted from the ABCD data set is offered in appendix A.

Figures 1.13 to 1.18 compare the experiments BFMStep-Ref-LF and POM-

Step-Ref performed at a time step of ∆t = 3s. The simulated state vari-

ables shown are chlorophyll-a (fig.1.13, 1.15, 1.17) and phosphate (fig.

1.14, 1.16, 1.18) concentrations. Differences are shown in percentage with

respect to the POMStep-Ref field. They are generally of the order of 10−4

in all sites, either for chlorophyll-a either for the phosphates, as well as

for the other state variables (not shown). In general the BFMStep mode

seems to give a higher chlorophyll-a level at the surface in winter, when

the column is well mixed and a higher level of phosphate in the bottom

layer during stratification periods from summer to autumn for S1). How-

ever, differences are sufficiently small to be considered negligible.
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Figure 1.13: Reference solutions of the two coupling schemes for
chlorophyll-a content

[
mg

m3

]
at site AA1. Top: BFMStep-Ref-LF,

middle: POMStep-Ref, bottom: Fractional differences between
BFMStep-Ref-LF and POMStep-Ref, using POMStep-Ref as
normalisation field.

Figure 1.14: As fig. 1.13, but for phosphate
[

mmol
m3

]
.
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Figure 1.15: Reference solutions of the two coupling schemes for
chlorophyll-a content

[
mg

m3

]
at site S1. Top: BFMStep-Ref-LF,

middle: POMStep-Ref, bottom: Fractional differences between
BFMStep-Ref-LF and POMStep-Ref, using POMStep-Ref as
normalisation field.

Figure 1.16: As fig. 1.15, but for phosphate
[

mmol
m3

]
.
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Figure 1.17: Reference solutions of the two coupling schemes for
chlorophyll-a content

[
mg

m3

]
at site S3. Top: BFMStep-Ref-LF,

middle: POMStep-Ref, bottom: Fractional differences between
BFMStep-Ref-LF and POMStep-Ref, using POMStep-Ref as
normalisation field.

Figure 1.18: As fig. 1.17, but for phosphate
[

mmol
m3

]
.
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For the BFMStep scheme a further analysis was carried out with respect

to the integration scheme used in the global integration. Results for the

same state variables shown before can be seen in fig. 1.19 to 1.24. It can be

seen that the differences in this case are even smaller and rather localised.

Their position is associated to the strong gradients connected to the fast

deepening and to the breaking up of the pycnocline by turbulent mixing.

It results, that the variations of the solutions with respect to both cou-

pling and integration schemes at this step size are of the order 10−4 or

smaller in all cases and thus, the fields can be considered close enough to

the true solution of the model equations to provide a reference solution.

Further on in this work experiment BFMStep-Ref-LF will be referred to as

reference case.

In appendix A a comparison of the results obtained from the reference

solution with seasonally averaged observations is given in order to eval-

uate the quality of the simulation.
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Figure 1.19: Reference solutions of the four integration schemes for
chlorophyll-a content

[
mg

m3

]
at site AA1. From bottom to top:

BFMStep-Ref-RK2, differences of BFMStep-Ref-E, BFMStep-
Ref-AB2, BFM-Step-Ref-LF with respect to BFM-Step-RK2
normalised by the BFM-Step-RK2.

Figure 1.20: As fig. 1.19, but for phosphate
[

mmol
m3

]
.
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Figure 1.21: Reference solutions of the two four integration chlorophyll-
a content

[
mg

m3

]
at site S1. From bottom to top: BFMStep-Ref-

RK2, differences of BFMStep-Ref-E, BFMStep-Ref-AB2, BFM-
Step-Ref-LF with respect to BFM-Step-RK2 normalised by the
BFM-Step-RK2.

Figure 1.22: As fig. 1.21, but for phosphate
[

mmol
m3

]
.
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Figure 1.23: Reference solutions of the two four integration for
chlorophyll-a content

[
mg

m3

]
at site S3. From bottom to top:

BFMStep-Ref-RK2, differences of BFMStep-Ref-E, BFMStep-
Ref-AB2, BFM-Step-Ref-LF with respect to BFM-Step-RK2
normalised by the BFM-Step-RK2.

Figure 1.24: As fig. 1.23, but for phosphate
[

mmol
m3

]
.

64



1.4 Results and validation

1.4.2 BFMStep method: sensitivity to ∆tglob and to

integration schemes

Before proceeding with the comparison of the coupling method, a BFM-

Step scheme to be compared with the POMStep scheme has to be estab-

lished. The test case presented in section 1.1.2 indicated a significant sen-

sitivity of biogeochemical processes to the integration scheme applied, so

that the sensitivity of the model with respect to the scheme used in the

global integration of the BFMStep scheme is investigated here.

To accomplish this, the four experiments BFMStep-1 of table 1.4 were

carried out using the four implemented integration schemes at the stan-

dard time step of 864s in global integration and physical rate estimation

(see table 1.6).

The respective errors of the four experiment runs are shown in figures

1.25 to 1.30 (for chlorophyll-a and phosphate) with respect to the reference

solution defined in section 1.4.1.

Experiment Integration scheme ∆tglob ∆test

BFMStep-1-E Euler 864 s 864 s
BFMStep-1-LF Leap-frog 864 s 864 s
BFMStep-1-AB2 Adams-Bashforth 864 s 864 s
BFMStep-1-RK2 Runge-Kutta 864 s 864 s

Table 1.6: BFMStep experiments using different integration schemes.

The four integration schemes yielded very similar simulated fields in-

dicating, that the range ∆tbio 6 ∆tphys can be considered irrelevant with

respect to order. Moreover, the experiments revealed notable errors for

all schemes. In particular during late autumn and winter the simulations

yield levels of phytoplankton biomass (fig. 1.25, 1.27 and 1.29 at the sur-

face that are significantly high for all schemes in all three sites. Also the

growth in phosphate concentration in the bottom layer in summer is con-

sistently overestimated (fig. 1.26, 1.28, 1.29).

65



1 Coupling Methods

Figure 1.25: Chlorophyll-a content
[

mg

m3

]
at site AA1 for different integra-

tion schemes. From bottom to top: Reference field, error in %
of BFM-Step-1-RK2, BFM-Step-1-E, BFM-Step-1-AB2, BFM-
Step-1-LF.

Figure 1.26: As fig. 1.25, but for phosphate
[

mmol
m3

]
.
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1.4 Results and validation

Figure 1.27: Chlorophyll-a content
[

mg

m3

]
at site S1 for different integra-

tion schemes. From bottom to top: Reference field, error in %
of BFM-Step-1-RK2, BFM-Step-1-E, BFM-Step-1-AB2, BFM-
Step-1-LF.

Figure 1.28: As fig. 1.27, but for phosphate
[

mmol
m3

]
.
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Figure 1.29: Chlorophyll-a content
[

mg

m3

]
at site S3 for different integra-

tion schemes. From bottom to top: Reference field, error in %
of BFM-Step-1-RK2, BFM-Step-1-E, BFM-Step-1-AB2, BFM-
Step-1-LF.

Figure 1.30: As fig. 1.29, but for phosphate
[

mmol
m3

]
.

68



1.4 Results and validation

At this point, a too low time resolution in the biogeochemical processes

might be suspected as a cause, so that a series of experiments (BFMStep-2)

was carried out to test the role of the time step applied to the biogeochem-

ical rates. The simulations in table 1.7 were carried out at a decreased time

step of ∆tbio = ∆tglob = 27s for the global integration applied to the bio-

geochemical rates, while the standard time step of ∆tphys = 864s for the

physical rate estimation was left unchanged. Their errors are compared

to the errors of the BFMStep-1 experiments.

Experiment Integration scheme ∆tglob ∆test

BFMStep-1 LF AB2 RK2 E 864 s 864s
BFMStep-2 LF AB2 RK2 E 27 s 864s

Table 1.7: BFMStep experiments on time step sensitivity.

The comparison for the leap-frog scheme and for the chlorophyll-a and

phosphate fields is shown in figures1.31 to 1.36. (The description of the

results obtained with the other integration schemes is omitted from this

point on, as the previous considerations revealed, that the model is not

sensitive to the integration scheme applied to the biogeochemical pro-

cesses in the range ∆tbio 6 ∆tphys. )

The plots show, that the reduction in time step did not give an improve-

ment of the solution. The structure of the errors already evident in the

standard resolution persists, their magnitude remains unchanged, so that

virtually no difference is visible between the BFMStep-1 and BFMStep-2

errors. Hence, it can be concluded, that the errors are not caused by an

insufficient resolution of the biogeochemical processes and therefore, the

time step applied to the biogeochemical processes can be kept at the same

level as the one for the physical processes, so that we can proceed to the

comparison of the actual coupling schemes.
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Figure 1.31: Chlorophyll-a content
[

mg

m3

]
at site AA1 - influence of time

step in BFMStep scheme. Top: BFMStep-2-LF (∆tbio = 27s)
- error in %; middle: BFMStep-1-LF (∆tbio = 864s) - error in %;
bottom: reference case.

Figure 1.32: As fig. 1.31, but for phosphate
[

mmol
m3

]
.
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1.4 Results and validation

Figure 1.33: Chlorophyll-a content
[

mg

m3

]
at site S1 - influence of time step

in BFMStep scheme. Top: BFMStep-2-LF (∆tbio = 27s) - error
in %;middle: BFMStep-1-LF (∆tbio = 864s) - error in %; bottom:
reference case.

Figure 1.34: As fig. 1.33, but for phosphate
[

mmol
m3

]
.
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Figure 1.35: Chlorophyll-a content
[

mg

m3

]
at site S3 - influence of time step

in BFMStep scheme. Top: BFMStep-2-LF (∆tbio = 27s) - error
in %;middle: BFMStep-1-LF (∆tbio = 864s) - error in %; bottom:
reference case.

Figure 1.36: As fig. 1.35, but for phosphate
[

mmol
m3

]
.
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1.4 Results and validation

1.4.3 Coupling method sensitivity: BFMStep vs.

POMStep.

To obtain a consistent comparison of the two coupling methods described

above, experiments were performed with global time step and estimation

interval set synchronously to the same time resolution for both schemes

(BFMStep and POMStep). In the previous section it was shown for the

BFMStep scheme, that the solution of the model does not show a de-

pendence on the resolution of the biogeochemical processes in the given

range of time steps, so that the standard time step of 864s was applied to

physical and biogeochemical processes. (see table 1.8).

Experiment Coupling Scheme ∆tglob ∆test

BFMStep-1 BFMStep 864 s 864 s
POMStep-1 POMStep 864 s 864 s

Table 1.8: Experiments considered in the coupling scheme comparison.

The results of these experiments are shown in figures 1.37 to 1.42. Rather

different solutions are obtained for the two coupling methods at all the

three implementation sites. Generally speaking BFMStep results show

(with respect to POMStep) an overestimation of the surface phytoplank-

ton biomass and of the phosphate concentration in the mid and lower

part of the water column. More precisely, these significant errors are per-

sisting in all three sites for several month in both variables, but appear

in different periods and locations of the water column. For chlorophyll-a

the error appears in autumn and is particularly high in the first five me-

ters of the water column, although it is mixed downwards in weaker form

through the not stratified water column and lasts until mid-winter. In all

three sites the highest errors are found at the surface at around 4%. These

errors are completely removed in the POMStep solution.
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Figure 1.37: Chlorophyll-a content
[

mg

m3

]
at site AA1 - comparison between

coupling methods. Top: BFMStep-1-LF error, in %; Middle:
POMStep-1 error in %; Bottom: Reference solution.

Figure 1.38: As fig. 1.37, but for phosphate
[

mmol
m3

]
.
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1.4 Results and validation

Figure 1.39: Chlorophyll-a content
[

mg

m3

]
at site S1 - comparison between

coupling methods. Top: BFMStep-1-LF error, in %; Middle:
POMStep-1 error in %; Bottom: Reference solution.

Figure 1.40: As fig. 1.39, but for phosphate
[

mmol
m3

]
.

75



1 Coupling Methods

Figure 1.41: Chlorophyll-a content
[

mg

m3

]
at site S3 - comparison between

coupling methods. Top: BFMStep-1-LF error, in %; Middle:
POMStep-1 error in %; Bottom: Reference solution.

Figure 1.42: As fig. 1.41, but for phosphate
[

mmol
m3

]
.
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1.4 Results and validation

Figure 1.43: Dissolved oxygen mmol
m3 at the site AA1 - comparison between

coupling methods.Top:BFMStep-1-LF error , in %; middle:
POMStep-1 error in %; bottom: reference solution.

This applies similarly to most of the other state variables with the ex-

ception of nitrate and dissolved oxygen for the BFMStep experiments:

during winter in all three sites, the oxygen content (fig. 1.43,1.44; S1 re-

sults not shown, as very similar to AA1) of the mixed water column is

significantly underestimated (by 5% for site S3 and by 10% for sites AA1

and S1). During summer, when the water column is stratified, the oxy-

gen content is overestimated and all three sites show a maximum error of

around 5% in late summer located in the surface layer in site S3, while in

the bottom layer for sites S1 and AA1. .

Nitrate concentration in sites AA1 and S1 ( shows errors reaching up to

50% in late autumn coincident with nitrate depletion, so that the solution

appears completely unreliable with respect to nitrate concentration with

the BFMStep method (again only site AA1 is shown here in fig. 1.45 as

the error field is very similar to site S1). This effect is absent in station S3

(fig. 1.46), where on the contrary nitrates are overestimated by up to 4-5%

in the surface layer in spring.
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Figure 1.44: As fig. 1.43, but for site S3.

Figure 1.45: Nitrate mmol
m3 at the site AA1 - comparison between coupling

methods.Top:BFMStep-1-LF error , in %; middle: POMStep-1
error in %; bottom: reference solution.
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1.4 Results and validation

Figure 1.46: As fig. 1.45, but for site S3.

The overall quality of the solution is clearly superior for the POM-

Step scheme and this applies to all state variables as demonstrated by

the POM-Step results for selected states variables shown in appendix B .

The absence of the significant error structures in this scheme (errors are <

1%), in contrast to their persistence over all the experiments BFMStep-1

and BFMStep-2 implies, that they are caused by the splitting of the phys-

ical transport processes from the global integration, so that it can be con-

cluded that the leading error term in the simulation is the splitting error

connected to the sub-integration of the physics.
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1.4.4 The POMStep-2 experiments

The consistency of the various experiments BFM-Step (section 1.4.2), with

respect to integration scheme and time resolution of the biogeochemical

processes, hint, that biogeochemical processes are sufficiently resolved at

the time step of 864s and that it is possible to perform experiments with

the POMStep scheme using an estimation interval for the biogeochemical

processes, that is higher, than the integration step imposed by the trans-

port rate.

Experiment Coupling Scheme Integration scheme ∆tglob ∆test

POMStep-2-con POMStep POM, constant 864 s 6912 s
POMStep-2-int POMStep POM, interpolated 864 s 6912 s

Table 1.9: Experiments on the POMStep estimation scheme.

In the experiments POMStep-2 (see table1.9) the estimation interval is

increased up to eight times the integration step of the global integration

and the two implemented estimation strategies described in section 1.3.8

are validated.

The results in fig. 1.47 to 1.52 show a much better behaviour for the

interpolated estimation (POMStep-2-int). Errors are mostly generated by

the dynamics of the pycnocline, that is slightly shifted with respect to

the reference case and spread by turbulence to the surface and bottom

layer being much higher in magnitude for the constant rate estimation

(POMStep-con). The latter also seems to generate smaller but persisting

errors in the bottom layer when stratification starts to build up.

However, in both cases the low resolution of biogeochemical processes

of 8 times the size of the standard step creates only limited errors of less

than 1% with the only exception of chlorophyll in site S3, that shows a

isolated error of 5% connected to the retardation of the breaking up of the

pycnocline, that should be seen rather as a small shift in the dynamics

than a high local error.
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1.4 Results and validation

Figure 1.47: Chlorophyll-a content
[

mg

m3

]
at site AA1 - Differences of the

two versions of rate estimation for the POMStep scheme. Top:
POMStep-2-int error in %; Middle: POMStep-2-con, relative
differences to POMStep-1; Bottom: POMStep-1.

Overall the solutions can be considered as reasonably accurate with re-

spect to the general precision of the model.
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Figure 1.48: As fig. 1.47, but for phosphate
[

mmol
m3

]
.

Figure 1.49: Chlorophyll-a content
[

mg

m3

]
at site S1 - Differences of the

versions of rate estimation for the POMStep scheme. Top:
POMStep-2-int error in %; Middle: POMStep-2-con error in
%; Bottom: POMStep-1.
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1.4 Results and validation

Figure 1.50: As fig. 1.49, but for phosphate
[

mmol
m3

]
.

Figure 1.51: Chlorophyll-a content
[

mg

m3

]
at site S3 - Differences of the two

versions of rate estimation for the POMStep scheme. Top:
POMStep-2-int error in %; Middle: POMStep-2-con error in
%; Bottom: POMStep-1.
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Figure 1.52: As fig. 1.51, but for phosphate
[

mmol
m3

]
.
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1.5 Conclusions

1.5 Conclusions

In this chapter the implementation of a coupling method for dynamic ma-

rine ecosystem models has been analysed and validated against a refer-

ence solution.

The applied Source Splittingmethod is based on the assumption of pro-

cesses evolving on different time scales, so that the slower evolving pro-

cess can be evaluated on larger intervals and is assumed constant on inter-

mediate steps. As in marine ecosystem dynamics the general relation of

the physical and biogeochemical processes with respect to their character-

istic time scale is not clear (see section 1.3.8), the Source Splitting method

was considered alternatively with the biogeochemical
(

∂c(tn)
∂t

∣∣∣
bio

)
or the

physical
(

∂c(tn)
∂t

∣∣∣
phys

)
rate of change as the slower evolving one.

In the range of time steps ∆tbio 6 ∆tphys the model (with BFMStep

scheme) did not show significant sensibility to the resolution of the bio-

geochemical processes. Also, with respect to the numerical scheme used

in the time integration step no differences in performance were detected

for this range, so that the biogeochemical processes can be considered suf-

ficiently resolved at ∆tbio = ∆tphys. However, as physical models usually

directly update the state variables, an artificial rate had to be calculated

a priori to provide the changing rate due to physical processes, yielding

a splitting error. This splitting error came out to be rather significant, in

particular in singular state variables (see section 1.4.3).

On the contrary, a convenience of the case, where the time scale is dic-

tated by the physics and thus, the biogeochemical rates are estimated

(POMStep), is given by the fact, that biogeochemical models usually di-

rectly compute rates, that can be inserted in the integration step of the

physical model without any estimation involved.

A comparison of the twomethods POMStep and BFMStep at synchronous

time steps showedmuch higher errors for the experiment BFMStep, where

the physical rates where estimated. As the integration scheme used in

POMStep for the global integration was the same as the one for the sub-
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1 Coupling Methods

Figure 1.53: The chlorophyll-a rates 1
Chl

∂Chl
∂t

∣∣
bio
in [1

d
] at site S1 calculated

by the BFM , normalised by its concentration. From experi-
ment POMStep-Ref.

integration in BFMStep, the error must be caused by the splitting. This

error dominates over all other errors intrinsic to the BFMStep version of

the model, so that the choice of the integration scheme used for the global

integration becomes irrelevant.

The independence of the BFMStep experiments at time steps ∆tglob 6

∆tphys with respect to time step size and integration schemes, the high

splitting error of the BFMStepmethod and on the other side the better per-

formance of the POMStep method suggests that it is actually the physical

processes, that evolve faster than the biogeochemical ones.

This suspect is quantitatively supported by a comparison of the rates

computed by the model. In figures 1.53 to 1.56 this comparison is shown

for the key variables of the investigated ecosystem phosphate and chloro-

phyll-a. The highest rates overall, that determine the maximum time step,

can be observed in the transport rates for chlorophyll-a connected to the

deepening of the pycnocline (fig. 1.54): the high surface concentration of

chlorophyll-a of the late summer (see e. g. fig. 1.15) is mixed downwards
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1.5 Conclusions

Figure 1.54: The chlorophyll-a rates 1
Chl

∂Chl
∂t

∣∣
phys
in [1

d
] at site S1 calculated

by the POM , normalised by its concentration. From experi-
ment POMStep-Ref.

Figure 1.55: The phosphate rates 1
PO4

∂PO4

∂t

∣∣
bio
in [1

d
] at site S1 calculated by

the BFM , normalised by its concentration. From experiment
POMStep-Ref.
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Figure 1.56: The phosphate rates 1
PO4

∂PO4(tn)
∂t

∣∣∣
phys
in [1

d
] at site S1 calculated

by the POM , normalised by its concentration. From experi-
ment POMStep-Ref.

into regions previously separated by the salinity gradient. The opposite

holds, to lesser degree for PO4, that was enclosed under the pycnocline

and is now mixed into the surface layer, where in addition consumption

decreases. The high values of superficial primary production during au-

tumn and winter (fig. 1.53) are clearly exceeded by strong mixing that

spreads the superficial chlorophyll overplus efficiently over the whole

water column. Also for phosphate the dynamics are dominated by verti-

cal mixing and the physical rate is significantly higher with respect to the

biogeochemical one.

The fact, that this relation was observed in all three sites under rather

different set-ups of physical and biogeochemical forcing leads to the con-

clusion, that it is in fact the physical scale, that imposes the time resolu-

tion of the numerical integration. Therefore an implementation, that in-

tegrates the transport equation directly under use of the biogeochemical

rates is preferable. However, the general validity of this statement will

have to be further investigated in different configurations, especially in
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the context of three-dimensionalmodels with advection and high-frequency

forcing.

Finally, the possibility of further reducing the time resolution was high-

lighted. In this context an interpolated estimation of the biogeochemical

rates based on the Adams-Bashforth approach was suggested (POMStep-

2-inp experiments). Results showed a clear improvement over the clas-

sical piecewise-constant approach (POMStep-2-con). However, the gain

in computational resources through the estimation of the biogeochemical

processes on coarse intervals is mostly limited, as the higher effort in the

computations is usually spent in the often implicit solvers of the physical

model and the sub-model for the transport of the biogeochemical state

variables.
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Appendix A

Model Implementation

In this appendix the model results (POMStep-Ref) are validated at the

seasonal scale (following the procedure proposed by Vichi et al., 2003)

against the seasonal profiles of selected variables obtained from the ob-

servations contained in the ABCD dataset (Zavatarelli et al., 1998), for

locations S1 and S3 and in the LBM (Laboratorio di Biologia Marina, Tri-

este) data set for the AA1 location. The choice of the seasonal time scale is

motivated by the large temporal and spatial inhomogeneities of the avail-

able data pertinent to the implementation sites. This prevented to carry

out the validation at a more resolved temporal scale. The data used for

the S1 and S3 validation were extracted from ABCD by considering an

area of about 0.4◦x0.4◦ centred around the implementation sites. All the

data of the LBM dataset pertinent to the Gulf of Trieste were considered

valid for the AA1 validation.

The seasonal means ofmodel state variables are in the following plotted

against the means and the range of variability of all the available obser-

vations. Here it is shown a selection of model results focusing on temper-

ature, (T ), salinity (S) phosphate (PO4) and chlorophyll-a (Chl). Figures

are organised in rows corresponding to the three implementation sites

(S1, S3 and AA1). Column represents the (calendar) season.
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Hydrological properties

Fig. 1.57 shows the temperature seasonal profiles at at all sites and is

characterised by well mixed conditions in winter and thermal stratifi-

cation from spring to autumn. The observed variability is satisfactorily

captured by the simulated profiles as the simulated profiles lies almost

entirely within the observed variability. Although deviations (under and

over estimations) from the observed mean can be noted, particularly in

the shallower locations S1 and AA1, while the deeper S3 location show

an overall better agreement.

Figure 1.57: Comparison of seasonal mean temperature T [◦C] of the
model with climatological data of the four seasons from left
to right. Red: model, blue: data with mean and standard de-
viation; Top: S1, middle: S3, bottom: AA1.
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Fig. 1.58 shows the salinity seasonal profiles that highlight the main

differences among the implementation sites. S1 shows the largest surface

salinity variability due to the strong influence of the Po river runoff vari-

ability. This signal, despite the fast relaxation constant (see table 1.2), is

only partially captured by the model as the simulated surface values do

not exactly match the seasonal mean. Apart from that, the salinity profile

show an overall good agreement with the observations. This applies even

more to the other two locations over all seasons.

Figure 1.58: Comparison of seasonal mean salinity S[psu] of the model
with climatological data of the four seasons from left to right.
Red: model, blue: data with mean and standard deviation;
Top: S1, middle: S3, bottom: AA1.

92



1.5 Appendix A - Model Implementation

Biogeochemical properties

The simulated Phosphate seasonal profiles are shown in Fig. 1.59.

At location S1, themodel clearly overestimate the concentration all over

the water column, even if the general vertical trend appears correct. The

spring profile indicates a good agreement with data in the upper part of

the water column, while below 10m depth there is a clear model tendency

to accumulate phosphate. Much better is the situation in summer as the

simulated profile entirely lies within the observed variability, even if there

is a slight tendency (contrary to the preceding season) to underestimate

the concentration in the lower water column. Finally, the autumn profile

appears as the more problematic, being characterised by a tendency to

underestimate phosphate at surface and overestimate again in the lower

water column. Much better is the model behaviour at location AA1 and

S3, since the simulated profiles lies within the observed variability at all

seasons, with a remarkable similarity to the average profile in summer

and autumn.

The corresponding chlorophyll profiles are shown in Fig. 1.60: Also

in this case location S1 is the one that shows the larger departure from

the observations, particularly in winter, where the chlorophyll profile is

clearly underestimated. As in Vichi et al. (2003) the reason for that can

be traced to a not satisfactorily representation of the light distribution in

the water column, as a consequence of the scanty information on the sus-

pended sediment vertical distribution and variability. The underestima-

tion persists also in spring, while the model recovers a satisfactory profile

in summer and autumn. As for phosphate the model behaviour is much

more satisfactory at locations AA1 and S3, where the simulated profiles

always lies within the range of the observed variability, with the only ex-

ception of a slight underestimation at location AA1 in spring.
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Figure 1.59: Comparison of seasonal mean phosphate PO4

[
mmol
m3

]
of the

model with climatological data of the four seasons from left
to right. Red: model, blue: data with mean and standard de-
viation; Top: S1, middle: S3, bottom: AA1.
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\

Figure 1.60: Comparison of seasonal mean chlorophyll-a concentration
Chl

[
mg

m3

]
of the model with climatological data of the four

seasons from left to right. Red: model, blue: data with mean
and standard deviation; Top: S1, middle: S3, bottom: AA1.
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Appendix B

POMStep simulation: Results for selected

biogeochemical state variables

An overview over the results is given completing the fields of chlorophyll

and phosphate with the results over other state variables representing the

remaining elements of the foodweb: bacteria, microzooplankton and par-

ticulate organic matter (all given in terms of carbon biomass), completed

by oxygen.

The figures show, that the level of error for the POMStep scheme lies

generally well below 1%. Only in the case of particulate organic carbon

isolated peak values of 2% are reached caused by extremely steep gradi-

ents whose dynamics appears slightly shiftedwith respect to the reference

field, causing these very localised error structures.
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Figure 1.61: Bacteria carbon content
[

mg C

m3

]
in site AA1.

Top: POM-Step-1; middle: Reference Solution; bottom: Differences to refer-
ence solution in %

Figure 1.62: Bacteria carbon content
[

mg C

m3

]
in site S1.

Top: POM-Step-1; middle: Reference Solution; bottom: Differences to refer-
ence solution in %

97



1 Coupling Methods

Figure 1.63: Bacteria carbon content
[

mg C

m3

]
in site S3.

Top: POM-Step-1; middle: Reference Solution; bottom: Differences to refer-
ence solution in %

Figure 1.64: Microzooplankton carbon content
[

mg C

m3

]
in site AA1.

Top: POM-Step-1; middle: Reference Solution; bottom: Differences to refer-
ence solution in %
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Figure 1.65: Microzooplankton carbon content
[

mg C

m3

]
in site S1.

Top: POM-Step-1; middle: Reference Solution; bottom: Differences to refer-
ence solution in %

Figure 1.66: Microzooplankton carbon content
[

mg C

m3

]
in site S3.

Top: POM-Step-1; middle: Reference Solution; bottom: Differences to refer-
ence solution in %
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Figure 1.67: Particulate organic carbon
[

mg C

m3

]
in site AA1.

Top: POM-Step-1; middle: Reference Solution; bottom: Differences to refer-
ence solution in %

Figure 1.68: Particulate organic carbon
[

mg C

m3

]
in site S1.

Top: POM-Step-1; middle: Reference Solution; bottom: Differences to refer-
ence solution in %
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Figure 1.69: Particulate organic carbon
[

mg C

m3

]
in site S3.

Top: POM-Step-1; middle: Reference Solution; bottom: Differences to refer-
ence solution in %

Figure 1.70: Dissolved oxygen
[

mmol
m3

]
in site AA1.

Top: POM-Step-1; middle: Reference Solution; bottom: Differences to refer-
ence solution in %
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Figure 1.71: Dissolved oxygen
[

mmol
m3

]
in site S1.

Top: POM-Step-1; middle: Reference Solution; bottom: Differences to refer-
ence solution in %

Figure 1.72: Dissolved oxygen
[

mmol
m3

]
in site S3.

Top: POM-Step-1; middle: Reference Solution; bottom: Differences to refer-
ence solution in %
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2 Data Assimilation

Introduction - The concept of data assimilation

A major concern of geophysical research and, in particular, of meteorol-

ogy and oceanography is forecasting. The need for a detailed prediction

of future natural events is driven by a variety of motivations that go from

simple little problems of everyday’s life over economical interests (e. g.

harvest and fishery) to the severest concerns of life like natural hazards

and climate change.

Weather forecasting is the most known and successful example of “op-

erational science” applied to the prediction of the future state of a natural

system (Navarra, 1996). In fact numerical weather forecasting constitutes

now a mature field in the applied geophysical sciences. In particular the

knowledge and the advances gained in this field constitute an extremely

value asset for the development of an analogous prediction system ap-

plied to the ocean.

In extreme simplification a geophysical fluids forecasting system is con-

stituted by two fundamental components: a deterministic numerical model

and an observing system. Numerical models offer a description of the

physical and ecological dynamics of the system of interest at the required

time and space scales. In the case of physical models the limit of detail

is now mainly dictated by the computational resources only. However,

models are and will always be only a simplified representation of reality.

They include a number of approximations, assumptions and uncertainties

that cause the model to drift away from the real state of the system that it

is designed to predict. Moreover, and this is principally the case with eco-

logical models, with the increasing complexity of the models, also their

calibration becomes more and more difficult, due to the increasing num-

ber of system parameters. In addition to that, even if a model could yield

the correct solution of the system equations, it still relies on the accurate

description of the exact boundary and initial conditions. Finally, one of

the fundamental insights in physics of the last century was that nature is

not deterministic, i. e. even if the current state of a natural system would
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Figure 2.1: Altimetry data coverage from satellite tracks for the
Mediterranean Sea as used in the MFSTEP project
(http://www.bo.ingv.it/mfstep). Green: ENVISAT, Red:
JASON-1, Pink: TOPEX/POSEIDON, Blue: Geosat Follow On.

be fully known, its future state is not uniquely defined. Therefore ap-

proaches are needed, that take probabilistic considerations into account,

e. g. instead of determining a theoretical future state, give rather an esti-

mation of the most likely realisation of future events, along with its prob-

ability and an estimation of the eventual error (Evensen, 2006).

The other cornerstone in forecasting is the observational system. Thanks

to the achievements in research and technology, measurements have be-

come quite efficient and more and more accurate. Considerable effort has

been spent to extend and refine the networks of data acquisition and to

collect the data (e. g. the TOGA observing system, see McPhaden (1998)).

In particular the use of satellite missions (e. g. TOPEX/POSEIDON, EN-

VISAT, etc.) has largely increased the availability of essential observa-

tional data, such as sea-level anomaly, sea surface temperature or ocean

colour (an example for the Mediterranean Sea is given in fig. 2.1). How-

ever, “in situ” data collection occurs forcefully at discrete locations in time

and space, thus data availability remains restrictive, so that extrapola-

tion strategies are needed to obtain informations on uncovered areas. The

first systematic approaches of this kind go back to the middle of the 19th

century when the first synoptic charts of the meteorological conditions

of the atmosphere were accomplished. The method applied consists in
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2 Data Assimilation

interpolating available observational data manually to isolines and vec-

tor fields of the involved physical quantities by sophisticated graphical

techniques under the consideration of the connected physical laws. (This

kind of data processing is often referred to as subjective analysis, as it re-

quires direct human interaction and experience). The constructed charts

were then used to project the contained information in future and provide

short-time forecasts. (A classical description is given in Richardson, 1922)

The improvements in the observational capacity of the atmosphere yields

a large amount of data, making subjective analysis no longer operable

and called for (thanks also to computer developments) automatic data

processing through the use of an algorithm based on mathematical in-

terpolation techniques taking into account physical constraints. The first

steps into this direction were attempted by Panofsky (1949), but major

progress arose in the field with the concepts presented by Gilchrist and

Cressman (1954), who introduced the concept of the regions of influence

defining weight factors on the base of local distances to the observations

and suggested the use of prior estimates as background information to

merge with the observational data. These concepts were soon supple-

mented by statistical methods that considered the uncertainties of prior

estimate and observations to find a proper balance for the best estimate

of the analysis (Gandin, 1963), leading to the procedures now generally

referred to as objective analysis.

With the automatic processing of data to project information on regular

grids, the missing link between the two cornerstones (models and observ-

ing system) was provided. It is clear that the most accurate forecast pos-

sible, should take into account all the informations that are available and

merge them into a forecasting system. With the tools of objective anal-

ysis, the information contained in observations can be projected on the

discrete grid of a numerical model to provide a more realistic initial con-

dition. (See Daley, 1991 for an extensive discussion on the subject of data

analysis.) More than that, the observations can be merged dynamically in

a model to correct the simulated state of the system, whenever data be-
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comes available. Such a technique is called data assimilation system, that

can be formally defined as the solution to the inverse problem of finding

the best estimate of a system state given the dynamical equations and ini-

tial conditions of a system and a set of measurements (see also Bennett,

1992).

Models of marine ecosystem dynamics represent an attempt to predict

the biogeochemical state of the ocean under the influence of the phys-

ical dynamics. The marine ecosystem is characterised by complex and

strongly coupled interactions between a huge number of organisms and

chemical constituents. In the design of a model, the trophic webs have to

be idealised considerably by grouping the involved elements in generic

classes or functional groups (see section1.2.2) and the food chain has to be

cut off at adequate levels to close the system at the upper and lower ends

of model resolution. Thus, the level of approximation is high and even if

considerable effort has been spend in recent years on the design and cali-

bration of deterministic models (Hofmann and Lascara, 1998) and reason-

able success has been achieved in qualitative and quantitative modelling

of the involved dynamical biogeochemical cycles, this is a research field

still far from maturity. However, such dynamic descriptions of the (ap-

proximate) ecosystem are of valuable interest for a variety of reasons (e.

g. impact of climate change on the marine ecosystem and vice versa, pre-

diction of harmful algal blooms, mucilage events and anoxic crisis etc.),

so that a number of recent works (e. g. Evensen, 2003; Berline et al., 2007;

Raick et al., 2007) are concentrating on the application of data assimila-

tion filters to marine ecosystem models to compensate for the large inac-

curacies caused by the approximations and gain statistical information on

the involved interactions leading to a more precise picture of the marine

ecosystem dynamics.

In this chapter the implementation of different versions of the Singular

Evolutive Extended Kalman Filter (SEEK, an evolution of the Extended

Kalman Filter for sequential data assimilation) into the coupled physical

biogeochemical model described in the previous chapter is proposed. The
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2 Data Assimilation

first two sections give a broad overview of the formalism involved, in

section 3 the SEEK Filter, as introduced by Pham et al. (1998), is presented

along with two subversions that have been applied in marine ecosystem

modelling. The fourth section gives the details of the implementation of

the filter, including a description of the statistical background needed for

the TWIN experiments carried out for validation, while section 5 gives

the results of theses experiments. Section 6 gives the description of a new

version of the filter based on the general formulation of Pham et al. (1998)

and the results of the experiments performed with this new filter will be

given in section 7. Section 8 finally offers the conclusions of this study.
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2.1 Sequential data assimilation - the Kalman Filter

2.1 Sequential data assimilation - the Kalman

Filter

2.1.1 Optimal Interpolation

Objective analysis deals with the inverse problem to find the most prob-

able realisation xa of a system state given a measurement yo and a first

guess estimate, often also referred to as background field xb. Both, the

measurements and the background field are subject to errors (ǫ and pb re-

spectively), whose statistics are described by the error covariance P b =

pbpbT for the background field and R = ǫǫT for the measurements. Con-

sequently, also the analysis will give an error pa with the covariance Pa =

papaT . The errors are given by the equations:

xb = xt + pb (2.1a)

yo = Hxt + ǫ (2.1b)

where xt is the true state of the system andH the operator transforming

a vector from model space to observation space. Then, for a linear case

one can assume a solution of the form

xa = xt + pa = Axb + Ky . (2.2)

defining pa = 0.1

Inserting eq. 2.1a and 2.1b into 2.2 gives then

xt + pa = A
(
xt + pb

)
+ K

(
Hxt + ǫ

)
. (2.3)

Under the assumption, that the errors are unbiased (pb = 0 and ǫ = 0)

1Notation: italic letters refer to column vectors, bold italic letters refer to matrices or
matrix-operators, calligraphic letters to gradient matrices. Lower Indices refer to
time levels, upper indices to qualities such as b: background field, a: analysis, t: true
state, o: observation, f: forecast.
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and not correlated (pbǫ = 0), the expectation of this equation becomes

xt = Axt + KHxt (2.4)

and therefore

A = I −KH . (2.5)

where I is the identity matrix with

Thus, the analysis state is described by the equations

xa = xb + K
(
yo −Hxb

)
(2.6a)

pa = pb + K
(
ǫ−Hpb

)
(2.6b)

With the above assumptions on the errors, one obtains for the analysis

covariance

P a = P b −KHP b − P bHTKT + KRKT + KHP bHTKT . (2.7)

The optimal solution is then given by theminimum of the total variance

of P a, i. e.

dKTr (P a) = 0 = −2Tr
(
HP b + RKT + HP bHTKT

)
. (2.8)

Thus, the optimal analysis state is given for

K = P bHT
(
HP bH + R

)
−1

(2.9)

as

xa = xb + P bHT
(
HP bH + R

)
−1 (

yo −Hxb
)

(2.10)

with an error covariance of

P a = (I −KH) P b . (2.11)

This analysis is usually referred to as linear optimal interpolation and it
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2.1 Sequential data assimilation - the Kalman Filter

gives the estimate of the system state that minimises the root mean square

error (rms) with respect to the true state of the system for linear obser-

vation operators H under the assumption of unbiased and uncorrelated

errors pb and ǫ .

2.1.2 Sequential data assimilation

So far the problem has been posed not taking into account the time, as the

method presented in the previous section computes the best estimate of

a system state under certain assumptions, given the complete knowledge

of the background and observation error covariances. The application

of this method to assimilate measurements into a time dependent model

could then be achieved in the following sequence:

• Amodel forecast step is performed providing the background infor-
mation on system state and error covariances.

• Available measurements and the connected uncertainty are fed to
the system.

• The best estimate and its error covariances are calculated according
to equations (2.10) and (2.11).

• A new forecast step is launched starting from the obtained analysis
state.
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M MM M

y
o

y
o

y
o

x
f

x
f

x
f

x
a

x
a

x
a

Filter FilterFilter

time

observations

analysisforecast

model forecast

Figure 2.2: Sequential data assimilation cycles. M : model, xf : forecast
state, xa: analysis state, yo: observations.

This method is defined as sequential data assimilation and is charac-

terised by the propagation in time of the error covariances. While for the

measurement error some informationmight be available from calibration,

statistics or instrumental documentation, this is not the case for the error

connected to the background information, that is now better defined as

forecast error, being a consequence of the model dynamics and of the pre-

vious analysis errors and is evolving in time.

2.1.3 The Kalman Filter

Kalman (1960) introduced an equation for the time evolution of the fore-

cast error covariance in the case of linear model propagation:

The forecast state is given by the application of the model on the previ-

ous analysis step, propagating it from time tn−1 to time tn:

xf
n = Mn−1x

a
n−1 . (2.12)

whereMn−1 is the model operator on the time interval [tn−1; tn]. The pure
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model error is then given by the equation

xt
n = Mn−1x

t
n−1 + qn (2.13)

where qn is the model error or dynamic noise.

With the limitation to linear model forecast operators, the two equa-

tions can be combined as

xt
n − xa

n = Mn−1

(
xt

n−1 − xa
n−1

)
+ qn . (2.14)

The forecast error is then given by

P f
n = Mn−1

(
xt

n−1 − xa
n−1

) (
xt

n−1 − xa
n−1

)T
MT

n−1 + qnqn
T + Mn−1

(
xt

n−1 − xa
n−1

)
qn

T

+ qn

(
xt

n−1 − xa
n−1

)T
MT

n.1

= Mn−1p
a
n−1p

a
n−1

TMT
n−1 + qnqn

T + Mn−1p
a
n−1qn

T + +qnp
a
n−1TMT

n−1

= Mn−1P
a
n−1M

T
n−1 + Qn ,

so that finally

P f
n = Mn−1P

a
n−1M

T
n−1 + Qn , (2.15)

assuming no correlation between the analysis error at the previous time

step and the model error at the actual time step.

This, togetherwith the equations of the optimal interpolation (eq. (2.10),

(2.11)) provides a consistent set of dynamical equations for themodel evo-

lution and the connected error covariances, that define the Kalman Filter:

xf
n = Mn−1x

a
n−1 (2.16a)

P f
n = Mn−1P

a
n−1M

T
n−1 + Qn (2.16b)

P a
n = (I −KH) P b (2.16c)

xa
n = xf

n + P f
nH

T
(
HP f

nH + Rn

)
−1 (

yo
n −Hxf

n

)
(2.16d)

The model is started from an appropriate initial condition for the sys-

tem state and the analysis covariance. Whenever measurements are avail-
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able, they can be readily assimilated following the given sequence.

However, the analysis state provided by this algorithm is optimal only

under the following assumptions:

• unbiased errors pf , ǫ, q.

• no correlation between
(
pf ; ǫ

)
and

(
qn; pa

n−1

)
.

• linearity of the observation operatorH .

• linearity of the model operatorM .

• the covariancesQn,Rn and P a
0 are known and positive definite.

2.1.3.1 The Extended Kalman Filter

The assumption of linearity in the above filter is a strong limitation for its

application in particular in the context of atmospheric and oceanographic

models that are characterised by non-linear dynamics. An improvement,

that extends this limitation to the near linear case, is provided by the Ex-

tended Kalman Filter (Jazwinski, 1970; Gelb, 1974) applying the tangent

linear hypothesis. In this approach, the forecast error given in the lin-

ear case by equation (2.15) is calculated using a Taylor expansion for the

forecast step, neglecting all terms of second order or higher

Mn−1x
t
n−1 = Mn−1x

a
n−1 +Mn−1

(
xt

n−1 − xa
n−1

)
+O

(
x2

)
(2.17)

whereMn−1 is the Jacobian of the model operator

Mn−1 =
∂M (x)

∂x

∣∣∣∣
x=xa

n−1

, (2.18)

so that

xt
n− xa

n = Mn−1x
t
n−1−Mn−1x

a
n−1 + qn = Mn−1

(
xt

n−1 − xa
n−1

)
+ qn (2.19)
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which is analogous to eq. (2.14) with the model operator replaced by its

Jacobian.

A similar reasoning can be applied to the linearisation of the observa-

tion operator (Gelb, 1974), so that the Extended Kalman Filter is given

by the same equations as in (2.16a), (2.16b), (2.16c) where the model and

observation operators are replaced by their gradients when using the tan-

gent linear hypothesis. In summary, the Extended Kalman Filter is given

by the equations:

xa
n = Mn−1x

a
n−1 + Kn

(
yo

n −HMn−1x
a
n−1

)
(2.20a)

Kn = P f
nHT

(
HP f

nH + Rn

)
−1

(2.20b)

P f
n = Mn−1P

a
n−1MT

n−1 + Qn (2.20c)

P a
n = (I −KH) P f . (2.20d)

where

x : is the state variable,

M i : the model operator from time level i− 1 to level i

H : is the observational operator,

K : is the Kalman gain matrix,

Qi : the dynamic noise covariance matrix generated by model errors,

Ri : the observational noise covariance matrix generated by measure-

ment and sampling errors.
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2.2 The Singular Evolutive Extended Kalman

Filter - SEEK

However, two major obstacles remain, that hinder the full implemen-

tation of the Extended Kalman Filter in oceanographic or atmospheric

model. (two rare examples of successful attempts are given by Evensen,

1992; Miller, 1994).

First, the needed covariances Qn, Rn and P a
0 are not easily specified.

With regard to the measurement errors, correlations between the mea-

surements and the evolution of the error in time can often be neglected,

so that R might be given as a diagonal matrix. The initial forecast error,

i. e. the error statistics of the given initial condition x
f
0 , is difficult to es-

timate, but might be approximated from a properly prepared statistical

background. On the contrary, little can be said a priori on the evolution

of the dynamic noise matrixQn.

The second difficulty lies in the dimension of the system. In complex

models the state variable has often very large dimensions, so that the full

representation of the various covariance matrices becomes not realisable

in terms of computation time and computer memory.

Pham et al. (1998) have proposed the Singular Evolutive ExtendedKalman

Filter (SEEK). This filter avoids the above limitations by approximating

the analysis covariance in a low rank reduction, that shall be briefly de-

scribed here.

In the derivation of this filter an alternative, equivalent formulation

of the Kalman Filter equations are applied: from equations (2.20b) and

(2.20d) follows, that if the observation error covariance R is invertible,

the gain matrix can be expressed as

Ki = P a
nHT

nR−1
n , (2.21)

so that the equations of the Extended Kalman Filter can be rewritten:
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P a = Mn−1P
a
n−1Mn−1 + Qn −

(
Mn−1P

a
n−1MT

n−1 + Qn

)
HT

n (2.22a)

∗
[
Hn

(
Mn−1P

a
n−1MT

n−1 + Qn

)
HT

n + Rn

]
−1Hn (Mn−1P n−1Mn−1 + Qn)

xa
n = Mn−1x

a
n−1 + Kn

[
yo

n −HnMn−1x
a
n−1

]
. (2.22b)

The basic idea of the SEEK-Filter is the reduction of the rank of the

analysis covariance matrix P a by expressing it in terms of a few main

directions of error propagation L. The reduced rank analysis covariance

matrix U i is then given by

P a = LULT . (2.23)

This is motivated by the fact that in dynamic systems, that are described

by an attractor (and the ocean and the atmosphere can be seen as such a

system with their dynamics, dominated by external forcing and dissipa-

tion), only a small part of the phase space is passed by the state trajecto-

ries. Consequently, as correction directions chosen are those directions,

where errors are less attenuated by the attractor itself. These directions

lie in the linear sub space tangent to the attractor and thus are given by

the eigenvectors of the tangent linear modelM. A limited number of the

first eigenvectors will then be sufficient to reduce the error of the system

significantly.

Moreover, it is shown in Pham et al. (1998), that if the error propagation

directions Ln evolve according to

Ln = Mn−1Ln−1 (2.24)

and the analysis error covariance matrix projected into the corresponding

subspace evolves according to

U−1
i =

[
U i−1 +

(
LT

i Li

)
−1

LT
i QiLi

(
LT

i Li

)
−1

]
−1

+LT
i HT

i R−1
i HiLi , (2.25)
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then the rank of the approximated analysis covariance matrix is main-

tained, and the subspace spun by the basis L converges to the subspace,

that is associated to the first eigenvalues ofMn−1„ and the filter is gen-

erally stable. (This holds under the given assumptions, i. e. most of all

the linearity of M . Note, however, that the stability is independent of

the specification of the error covariances R and Q and the chosen initial

conditions. The speed of convergence will largely depend on it though.)

An assimilation cycle is then given by the steps:

• Forecast: xf
n = Mn−1x

a
n−1

• Propagation of the correction directions L

• Update of the reduced analysis error covariance U

• Correction: = xf
n + Kn

[
yo

n −Hnx
f
n

]

2.2.1 Versions of the SEEK Filter

The SEEK Filter still requires the specification of the dynamic noise co-

variance on each assimilation step. Pham et al. (1998) already proposed an

alternative and more viable version of the filter that avoids the unknown

dynamic noise covariance. From this simplified formulation another ver-

sion evolved, that skips the propagation of the error correction directions.

These two sub-version are described here, as they have been used for the

numerical experiments.

2.2.1.1 Version with forgetting factor (SEEK-FF)

In this version the dynamic noise covariance in eq. (2.25) is specified as

αU i−1 =
(
LT

i Li

)
−1

LT
i QiLi

(
LT

i Li

)
−1

(2.26)

with α > 0. This was proposed mainly for simplicity in the resulting

formula to update U . However, it was motivated as an amplification to
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take into account the increasing error due to the linearisation (Pham et al.,

1998).

The error propagation directions are, as before, updated at each assim-

ilation step according to:

Li = Mi−1Li−1 . (2.27)

The covariance matrix in the reduced space is then updated according

to

U−1
i = ρU−1

i−1 + LT
i HT

i R−1
i HiLi , (2.28)

where ρ = 1
1+α

ǫ (0; 1] is called forgetting factor, as it can be interpreted as

a down-weighting of previous errors in the iterative process.

2.2.1.2 Semi-static version (SEEK-0.5)

Here, the error propagation directions are kept constant in time assuming

persistence of the error sub-space:

Li = L0 (2.29)

and the covariance matrix is updated according to eq. 2.28:

U−1
i = ρU−1

i−1 + LTHT
i R−1

i HiL . (2.30)

This version was introduced by Brasseur et al. (1999) in the context of

a circulation model merely as a test case for comparison with the more

sophisticated filters. However, since then, it has widely used in dynamic

ecosystem models thanks to its simplicity and the low computational ef-

fort (e. g. Hoteit et al., 2003, 2004; Magri et al., 2005; Raick et al., 2007).
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2.3 Implementation

2.3.1 Model

The data assimilation filters were applied to the same 1D dynamic ecosys-

tem model of section 1.2.

As coupling method the POMStep technique described in section 1.3.8

was applied. Computations were performed at a synchronous time step

of 864s.

The forcing functions for the perpetual year simulations used are de-

scribed in 1.3.4.

The experiments were performed at sites AA1 and S3 of fig. 1.9, de-

scribed in section 1.3.1 with the same model parametrisation given in ta-

bles 1.2 and 1.3.

2.3.2 Implemented filters

To validate the quality of the results obtained for the two described filters

SEEK-FF and SEEK-0.5 with evolving statistics also a filter without any

propagation was implemented. This scheme corresponds to an Optimal

Interpolation as described in section 2.1.1, but is expressed in terms of the

analysis covariance instead of the background covariance. This should

be seen as a pure test aimed to estimate the benefit of the propagation

techniques used. For better comparison the error covariance matrix was

also reduced to the low rank representation:

Ln = L0 (2.31)

Un = U 0 (2.32)

P a
n = L0U 0L

T
0 . (2.33)

Hence, the filter was implemented in the following versions:

• SEEK-FF (section 2.2.1.1)
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• SEEK-0.5 (see section 2.2.1.2)

• OI-SEEK: Optimal Interpolation scheme in SEEK formulation.

In addition, a new subversion of the SEEK Filter (named SEEK-Q) was

developed, implemented and tested in the frame of this work. Details of

the filter characteristics and the results obtained are given in sections 2.6

and 2.7

2.3.3 TWIN experiment preparation

In this work the strategy of TWIN experiments (Daley, 1991) was cho-

sen to validate the analysis results, that where applied. This approach

is often used in data assimilation to calibrate an implementation before

applications with real data, where the true state is not known. In these

experiments a reference run is performed to provide both “pseudo mea-

surements”, and the “true state” of the system, that is then compared to

a free model run (without assimilation) and to an assimilation run, both

started from initial conditions adequately perturbed with respect to those

used for the reference run.

In this study the model was initialised for winter conditions and spun

up for 10 years. The reference run was then initialised from the final state

of the spin-up run, while the free run was carried out in the same time

frame and forcing, but with initial profiles from summer conditions in the

biogeochemical state variables. The same initial conditions were applied

then to the assimilation run.

2.3.4 Initialisation of the filter

While the SEEK Filter generally corrects for bad initialisation due to the

convergence of the error propagation directionsL (Pham et al., 1998), this

is not valid for the version SEEK-0.5 as it is not propagating these direc-

tions. Also the speed of convergence is increased by a proper statistical

preparation, so special care was taken in the preprocessing step.
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It was chosen to obtain the initial analysis error covariance matrix from

an EOF (empirical orthogonal functions) analysis of a series of ensemble

runs of the model. A series of 50 Ensemble Runs was carried out with

perturbed initial conditions cpert(z, 0), that where obtained by applying

vertically smooth random oscillations r(z) (as in Evensen, 2003 for hor-

izontal fields) with zero mean and unit variance to a 5% fraction of the

unperturbed initial condition:

cpert(z, 0) = c(z, 0) + 0.05r(z)c(z, 0) . (2.34)

Each ensemble member was run over a full season of 90d and the pro-

cess was repeated for all four seasons storing the states in two day inter-

vals, resulting in a data set of 9000 column vectors for each biogeochemi-

cal state variable. From the data the solution of the perpetual climatologi-

cal annual cycle was subtracted and remaining biases removed. The data

was then normalised as

δφn,k =
∆z

h

δcn,k(t)

σn

(2.35)

with k indicating the vertical level, σn as the mean column variance of

state n and ∆z
h
being a geometric factor (Dobricic et al., 2005) applied, to

avoid an over-stress of information contained in the surface and bottom

layer (where vertical levels are very thin due to the logarithmic distribu-

tion of grid points, see 1.3.2) in the computations of the error correction

directions. The data δφn,k is then fed into a singular value decomposition

algorithm to obtain an appropriate sub-set of eigenvalues λl and the con-

nected eigenvectors Vl of the data covariance matrix, used as the initial

conditions for L0 and U 0.

In fact, the maximum variability contained in an approximation of rank

r of the covariance matrix P a
0, originally of rank m, is obtained by a pro-

jection of the matrix into the sub space spanned by its first r eigenvectors

and the percentage of variability explained by this approximation is given
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by
r∑

l=1

λl

Tr (P a
0)

=

r∑
l=1

λl

m∑
l=1

λl

. (2.36)

Figures 2.3 and 2.4 give a graphical representation of the percentages

of variability contained in the first 30 EOFs for the covariances resulting

form the Ensemble Runs in site AA1 and Site S3. It can be seen, that in

both cases more than 80% of the variability is explained by the first 15

EOFs. This was considered to give a sufficiently good approximation for

the simulations and therefore used in all experiments (see also Brasseur

and Verron, 2006).

Figure 2.3: Variability [%] contained in EOFs (accumulative). Site AA1.
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Figure 2.4: Variability [%] contained in EOFs (accumulative). Site S3.
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2.3 Implementation

OI-SEEK Observations Location - ∆tass

O2-AA1 O2 AA1 - 2d
O2-S3 O2 S3 - 2d

SEEK-0.5 Observations Location Forgetting Factor ρ ∆tass

O1-AA1 O1 AA1 0.9 1d
O2-AA1 O2 AA1 0.85 2d
O2-S3 O2 S3 0.9 2d

SEEK-FF Observations Location Forgetting Factor ρ ∆tass

O2-AA1 O2 AA1 0.6 2d
O2-S3 O2 S3 0.6 2d

SEEK-Q Observations Location NRCoefficient β ∆tass

O2-AA1 O2 AA1 0.5 2d
O2-S3 O2 S3 0.5 2d

Table 2.1: Overview of experiments carried out with various filters.
O1 and O2 refer to the observation vector as given in table 2.2; ρ is the
forgetting factor as in eq. (2.28), β is the noise reduction coefficient as in
eq. (2.37) and ∆tass is the assimilation interval.

2.3.5 Experiment overview

In all the experiments performed the full BFM state vector was used, the

observation covariance was assumed to be not time dependent and diag-

onal (assuming no correlation between the measurements) and the vari-

ance vector of the observations was taken proportional to the vector ob-

tained by the application of the observation operator H on the diagonal

elements of the ensemble error covariance. Two different sets of data (con-

stituting the observational vector) were extracted from the reference run

(see table 2.2):

• Observational vector 1 (O1): constituted by 1 nitrate and 2 oxygen
observations relative to the depth given in table 2.2.

• Observational vector 2 (O2): constituted by oxygen and the full nu-
trient pool (Phosphate - N1; nitrate - N3, ammonium - N4, silicate
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observation vector 1 (O1)

yo 1 2 3

state N3 O O

d[m] at AA1 2 5 18

observation vector 2 (O2)

yo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

state O N1 N3 N4 N5 Chl

d[m] at AA1 0 9.5 13.4 0 9.5 13.4 0 9.5 13.4 0 9.5 13.4 0 9.5 13.4 0

d[m] at S3 0 14.5 29.3 0 14.5 29.3 0 14.5 29.3 0 14.5 29.3 0 14.5 29.3 0

Table 2.2: The two different observation vectors yo applied in the
experiments. O=oxygen, N1=Phosphate, N3=Nitrate,
N4=Ammonium, N5=Silicate, Chl=Chlorophyll. d: depth
level of observation

- N5) at the depth given in table 2.2. In addition also the surface

chlorophyll concentration value was considered.

It follows, that the observational operatorH is linear in both cases, as all

observations directly correspond to elements of the model state vector or

a simple sum of them (chlorophyll total concentration arises from the sum

of the chlorophyll content of the three phytoplankton functional groups

resolved by the model (see section 1.2.2 and table 1.1). The rationale be-

hind these choices is given in the sections pertinent to each experiment.

A listing of the experiments performed is given in table 2.1. In defining

the experiments it was attempted to reach three objectives

1. Test the implementation (section 2.4).

2. Compare the various versions of the filter to evaluate the role of the

propagation schemes (section 2.5).

3. Elaborate, implement and validate a new subversion of SEEK (sec-

tion 2.7).

The assimilation interval was 2 days in all experiments, with the only ex-

ception of experiment OI-AA1-SEEK0.5, where the assimilation interval
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was chosen to be 1 day in order to allow comparison with the previous

works based on SEEK.

Experiment results will be presented in two formats

• Hovmoeller diagrams (e. g. fig. 2.8), showing the time evolution
of the water column to give an overview of the state variable as a

whole. The field of the reference solution will be given at the bot-

tom of each figure, the differences of the free run with respect to the

reference solution, i. e. xfree − xt, will be given on top, and in be-

tween the differences of the respective analysis states of the various

filters pa = xa − xt are given. These plots are adequate to get a gen-

eral overview of the filter fields, but are not accurate enough for a

proper analysis.

• Time series (e.g. fig. 2.6), that give the evolution in time of the re-
spective state variable at three distinct levels of the water column.

The three levels are chosen in order to represent the different layers

of the dynamical structures and are placed off the “measurement”

points. In these plots the reference solution can be found in the left

column, while in the right column errors of the free run and the var-

ious filters with respect to the true state are superimposed in one

plot. The lines of the assimilation error plots are constructed con-

necting the analysis error pa
n−1 = xa

n−1 − xt
n−1 to the forecast error

pf
n = xf

n − xt
n which is then connected to the new analysis error pa

n

yielding a representation of the assimilation cycle, that allows the

separate identification of the dynamics of the error induced by the

model forecast and induced by the correction step of the filter, as

illustrated in figure 2.5.
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Figure 2.5: Forecast step and analysis step of an assimilation cycle in time
series plots.
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2.4 Implementation test

2.4 Implementation test

As first implementation test an experiment was carried out that adopts

the set-up previously applied by Hoteit et al. (2003) for the implementa-

tion of the SEEK Filter in a 1D marine ecosystem dynamics model of the

Cretan Sea. The observation vector O1 chosen (2.2) has the same char-

acteristics of the observation vector used in that implementation and the

filter used was SEEK-0.5. The experiment was set up in site AA1. (The

parametrisation of the assimilation is given in table 2.1.)

Figure 2.6: Dissolved oxygen
[

mmol
m3

]
at −3.2m, O1-AA1-SEEK-0.5 experi-

ment. Top: reference run; Bottom: free model run and analysis
errors x− xt. Red: free model run; Green: SEEK-0.5

In figures 2.6 and 2.7 the time series of the two observed variables (oxy-
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Figure 2.7: Nitrate
[

mmol
m3

]
at −3.2m, O1-AA1-SEEK-0.5 experiment. Top:

reference run; Bottom: freemodel run and analysis errors x−xt.
Red: free model run; Green: SEEK-0.5

gen and nitrate) are shown at a depth of 3.2m, a level that is strongly

influenced by the spring bloom dynamics in this site. The information of

the observation is well passed to the system, oxygen reaches the level of

the reference solution within roughly 100d, while nitrate is even quicker

(50d). The free run on the contrary approaches in both cases the reference

run just by the end of the simulation (1y).

Figures 2.8 and 2.9 show the water column annual cycle for 2 non ob-

served, and key states of the ecosystem: chlorophyll and phosphate. A

general better performance of the assimilation run (analysis) with respect

to the free model run can be noted, though differences are rather small
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2.4 Implementation test

Figure 2.8: Chlorophyll-a content
[

mg

m3

]
for the O1-AA1-SEEK-0.5 experi-

ment. Bottom: Reference Solution; Middle: Analysis error pa;
Top: free model run error xfree − xt.

Figure 2.9: Phosphate
[

mmol
m3

]
field for the O1-AA1-SEEK-0.5 experiment.

Bottom: Reference Solution;Middle: Analysis error pa; Top: free
model run error xfree − xt.
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Figure 2.10: Chlorophyll-a content
[

mg

m3

]
at −3.2m, O1-AA1-SEEK-0.5 ex-

periment. Top: reference run; Bottom: free model run and
analysis errors x− xt. Red: free model run; Green: SEEK-0.5

and in the first few assimilation steps, the analysis is even slightly worse

than the free run. The time series for chlorophyll and phosphate at 3.2m

depth (2.10 and 2.11 respectively) allow for a more detailed evaluation of

the SEEK-0.5 performance.

The filter solution for chlorophyll (given in figure 2.10) is still closer to

the reference, than the free run solution, but advantages are small and

mainly a consequence of the model dynamics adapting to the corrected

nitrate and oxygen levels, than a direct correction of chlorophyll by the fil-

ter. The reference solution is reached simultaneously by free run and filter

solution by the end of the year. This situation repeats for the Phosphate
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Figure 2.11: Phosphate
[

mmol
m3

]
at −3.2m, O1-AA1-SEEK-0.5 experiment.

Top: reference run; Bottom: free model run and analysis er-
rors x− xt. Red: free model run; Green: SEEK-0.5

state variable (fig. 2.11), that even in the end of the simulation shows a

small difference to the “true state”.

Overall, the analysis quality is comparable to that obtained by (Hoteit

et al., 2003). The correction of the non observed variables is probably

working a little better in their case, the adaptation of the nitrate solution

on the contrary is much more efficient in this case, as in the case of the

Cretan Sea it did not reach the reference run even by the end of the year.

Therefore, it might be concluded that the filter is implemented correctly

and working properly though not performing efficiently.

As for the deficiencies in the non observed variables, a reason for the
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Figure 2.12: Section of the correlation matrix δφ∗δφT

N−1
. State variables shown

are: O2o - Dissolved oxygen, N3n - Nitrate, P1i - Diatom
chlorophyll-a content, P2i - Nanoflagellates, P3i- Picophyto-
plankton, N1p- Phosphate. The matrix is organised by state
variable blocks with the surface data for each state couple
starting in the bottom left corner and depth increases to right
and top. The data are normalised in a way that the mean
of the main diagonal section taken for each state (the auto-
correlations) is one, to guarantee comparable magnitudes be-
tween the various states, and maintaining variability distri-
bution along the water column (see 2.3.4).

slow adaption rate might be, that few information of the observed states

can be transferred on to the other states. A view on the error statistics per-

formed to initialise the filter confirms few correlation especially of oxygen

to the other state variables considered here. Figure 2.12 shows a section

of the correlation matrix of the ensemble data (section 2.3.4) in site AA1.

The variables shown in the section are those included in the observa-

tional vector (oxygen and nitrate) and the other two variables discussed

in this section (chlorophyll in the three functional phytoplankton groups

and phosphate). It can be seen, that oxygen is very weakly correlated to
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the other state variables, so that few of its information can be used by the

filter. The situation is merely better for the nitrate observations, in partic-

ular phosphate shows no correlation with the observed states at all, while

on the contrary chlorophyll and phosphate, the two not observed states

illustrated in this example, show reasonable correlations at the surface.

Thus, it can be concluded that the system is not well represented by the

observational vector and this explains the weak performance of the filter.

Therefore, it was decided to enlarge the range of pseudo-measurements

on other state variables, i. e. increase the dimension of the observation

vector.
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2.5 Filter comparison

A closer look on the covariance maps of the ensemble statistics (Appendix

A gives an overview of the covariance fields for themain functional groups)

identifies phosphate as the key element in the model error dynamics in

both sites as expected, given the overall character of phosphorus limi-

tation of the northern Adriatic Sea ecosystem (Zavatarelli et al., 1998).

Correlations to the surface values of all phytoplankton groups, micro-

zooplankton and bacteria can be detected in both implementation sites

over the whole water column. Also other nutrients show some correla-

tion and anti-correlation patterns in the functional groups. Particularly

strong is the surface correlation of the three phytoplankton groups to Mi-

crozooplankton. This is a direct consequence of the BFM trophic web

since all the three phytoplankton functional groups are predated by mi-

crozooplankton.

Based on these considerations and the possible availability of “real”

measurements it was decided to consider an observation vector (O2) that

contains measurements of the four nutrient classes (Phosphate, Nitrate,

Ammonium, Silicate) at three levels (surface,−9.5m,−13.4m for site AA1;

surface, −14.5m, −29.3m for site S3).

Figures 2.13 and 2.14 show a comparison of the chlorophyll and phos-

phate field for the three filters OI-SEEK, SEEK-0.5 and SEEK-FF in the ex-

periment session O2-AA1. The solution improves with the sophistication

of the filter, especially the gap between the Optimal Interpolation scheme

and the two SEEK Filters is significant. A detailed look on the time evo-

lution at three distinct depth levels (fig. 2.15 and 2.16) shows, that in the

lower level all the filters have some inertia before starting to work prop-

erly, in particular in the case of chlorophyll. During the initial 20 days

they seem to merely follow the model dynamics. Beyond day 20 the fully

propagating filter (SEEK-FF) separates from the free run and approaches

the reference, while the other two filters don’t show a significant improve-

ment with respect to the free run at this level. For Phosphate the first days
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2.5 Filter comparison

Figure 2.13: Chlorophyll-a content
[

mg

m3

]
for the O2-AA1 experiment. From

bottom to top: Reference Solution, Analysis error pa of SEEK-
FF, SEEK-0.5 and OI-SEEK, free model run error xfree − xt.

Figure 2.14: Phosphate
[

mmol
m3

]
field for the O2-AA1 experiment. From bot-

tom to top: Reference Solution, Analysis error pa of SEEK-FF,
SEEK-0.5 and OI-SEEK, free model run error xfree − xt.
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of simulation are dominated by a strong oscillation in the model dynam-

ics that is somewhat anticipated by the two SEEK Filters, after which they

start to converge quickly towards the reference solution within 100 days,

again with some advantage for the SEEK-FF version. The OI-SEEK on

the contrary reaches the reference solution after 180 days. The three other

nutrients (Nitrate, Ammonium and Silicate, fig. 2.17 , 2.18 and 2.19 re-

spectively) and oxygen (fig. 2.20) show a quite similar behaviour, as they

approach the “true state” of the reference run within hundred days, while

the OI-SEEK solution essentially replicates the structure of the dynamics

of the free run error in a strongly damped form.

For the other non observed variables, represented here by bacteria, par-

ticulate organic carbon and microzooplankton (2.21, 2.22 and 2.23 respec-

tively), the three filters show rather different behaviours. While the OI-

SEEK solution basically follows the free run with some improvement of

the solution in the upper part of the water column, the SEEK-FF Filter

starts very quickly to correct the field showing some overshooting (this

is particularly visible in the bacteria solution in fig. 2.21), that is quickly

recovered, generating an oscillating behaviour. The SEEK-0.5 Filter on

the contrary converges slower but with a smoother fashion. The solution

of Microzooplankton exhibits a particular difficulty of the filters with re-

spect to the initial dynamics, as all three filter errors exceed the error of

the free run. Again, the SEEK-FF Filter shows a clear advantage over the

other two, recovering quickly from this strong initial oscillation towards

the reference run, also here in an oscillating manner.
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Figure 2.15: Chlorophyll-a content
[

mg

m3

]
, O2-AA1 experiment at the

depths of 1.4m, 6.8m and 15m (from top to bottom). Left: ref-
erence run; Right: free model run and analysis errors x − xt.
Black dashed line: free model run; Green line: OI-SEEK; Red line:
SEEK-0.5; Blue line: SEEK-FF.
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Figure 2.16: Phosphate
[

mmol
m3

]
, O2-AA1 experiment at the depths of 1.4m,

6.8m and 15m (from top to bottom). Left: reference run; Right:
free model run and analysis errors x − xt. Black dashed line:
free model run; Green line: OI-SEEK; Red line: SEEK-0.5; Blue
line: SEEK-FF.
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Figure 2.17: Nitrate
[

mmol
m3

]
, O2-AA1 experiment at the depths of 1.4m,

6.8m and 15m (from top to bottom). Left: reference run; Right:
free model run and analysis errors x − xt. Black dashed line:
free model run; Green line: OI-SEEK; Red line: SEEK-0.5; Blue
line: SEEK-FF.
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Figure 2.18: Ammonium
[

mmol
m3

]
, O2-AA1 experiment at the depths of

1.4m, 6.8m and 15m (from top to bottom). Left: reference run;
Right: free model run and analysis errors x − xt. Black dashed
line: free model run; Green line: OI-SEEK; Red line: SEEK-0.5;
Blue line: SEEK-FF.
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Figure 2.19: Silicate
[

mmol
m3

]
, O2-AA1 experiment at the depths of 1.4m,

6.8m and 15m (from top to bottom). Left: reference run; Right:
free model run and analysis errors x − xt. Black dashed line:
free model run; Green line: OI-SEEK; Red line: SEEK-0.5; Blue
line: SEEK-FF.
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Figure 2.20: Dissolved oxygen
[

mmol
m3

]
, O2-AA1 experiment at the depths

of 1.4m, 6.8m and 15m (from top to bottom). Left: reference
run; Right: free model run and analysis errors x − xt. Black
dashed line: free model run; Green line: OI-SEEK; Red line:
SEEK-0.5; Blue line: SEEK-FF.
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Figure 2.21: Bacteria carbon content
[

mg C

m3

]
, O2-AA1 experiment at the

depths of 1.4m, 6.8m and 15m (from top to bottom). Left: ref-
erence run; Right: free model run and analysis errors x − xt.
Black dashed line: free model run; Green line: OI-SEEK; Red line:
SEEK-0.5; Blue line: SEEK-FF.
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Figure 2.22: Particulate organic carbon
[

mg C

m3

]
, O2-AA1 experiment at the

depths of 1.4m, 6.8m and 15m (from top to bottom). Left: ref-
erence run; Right: free model run and analysis errors x − xt.
Black dashed line: free model run; Green line: OI-SEEK; Red line:
SEEK-0.5; Blue line: SEEK-FF.
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Figure 2.23: Microzooplankton carbon content
[

mg C

m3

]
, O2-AA1 experi-

ment at the depths of 1.4m, 6.8m and 15m (from top to bot-
tom). Left: reference run; Right: free model run and analysis
errors x − xt. Black dashed line: free model run; Green line:
OI-SEEK; Red line: SEEK-0.5; Blue line: SEEK-FF.
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Figure 2.24: Chlorophyll-a content
[

mg

m3

]
for the O2-S3 experiment. From

bottom to top: Reference Solution, Analysis error pa of SEEK-
FF, SEEK-0.5 and OI-SEEK, free model run error xfree − xt.

For session O2-S3 for chlorophyll and phosphate respectively (see fig.

2.24 and 2.25), the quality of the analysis is gradually improving from the

Optimal Interpolation filter over the semi-static SEEK to the fully prop-

agating SEEK Filter. The time series for distinct depths reveal, that in

this site SEEK-0.5 and SEEK-FF correct immediately the chlorophyll, all

the nutrients and oxygen errors (fig. 2.26 to 2.31). The SEEK-FF Filter is

able to reach the correct level of the reference run in this site in less then 50

days, while the SEEK-0.5 Filter is significantly slower (~100 days). The OI-

SEEK Filter even needs 180-360 days to adapt to the reference run (with

the only exception of chlorophyll (fig. 2.26), where even the free run re-

covers from the initial perturbation within 120-150 days). However, in

the case of silicate the strong initial corrections result in an amplification

of the initial model oscillation, an effect, that SEEK-FF and SEEK-0.5 re-

cover fast, while the OI-SEEK needs some time, in particular in the lower

part of the water column. The bacteria solution (fig. 2.32) is similarly

well controlled by the two SEEK Filters, while the Optimal Interpolation

148



2.5 Filter comparison

Figure 2.25: Phosphate
[

mmol
m3

]
field for the O2-AA1 experiment. From bot-

tom to top: Reference Solution, Analysis error pa of SEEK-FF,
SEEK-0.5 and OI-SEEK, free model run error xfree − xt.

scheme is not able to improve the free run.

For particulate organic matter (fig. 2.33) the behaviour is again quite

different for the three assimilation schemes. SEEK-FF follows the free

model run for the first 30 days, then suddenly corrections grow and the

analysis state is deflected quickly towards the reference state. Then at

around day 80, the concentration peaks in the middle and upper level

of the plots of the reference solution, create strongly amplified errors in

the analysis states. The SEEK-0.5 Filter on the contrary shows corrections

with a rather linear trend from the beginning of the simulation, that how-

ever overpass the reference state and the filter is not able to recover until

the mentioned peaks in the reference field vanish. The Optimal Inter-

polation scheme is also for this state variable essentially following the

free model run without any significant improvement of the solution. For

Microzooplankton all three filters show, similar to site AA1, some ampli-

fication of the initial oscillation in the model dynamics, that is faster or

slower corrected with the same general tendencies, that were observed
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Figure 2.26: Chlorophyll content
[

mg

m3

]
, O2-S3 experiment at the depths of

4.2m, 9.8m and 25m (from top to bottom). Left: reference run;
Right: free model run and analysis errors x − xt. Black dashed
line: free model run; Green line: OI-SEEK; Red line: SEEK-0.5;
Blue line: SEEK-FF.

for the other states.
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Figure 2.27: Phosphate
[

mmol
m3

]
, O2-S3 experiment at the depths of 4.2m,

9.8m and 25m (from top to bottom). Left: reference run; Right:
free model run and analysis errors x − xt. Black dashed line:
free model run; Green line: OI-SEEK; Red line: SEEK-0.5; Blue
line: SEEK-FF.
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Figure 2.28: Ammonium
[

mmol
m3

]
, O2-S3 experiment at the depths of 4.2m,

9.8m and 25m (from top to bottom). Left: reference run; Right:
free model run and analysis errors x − xt. Black dashed line:
free model run; Green line: OI-SEEK; Red line: SEEK-0.5; Blue
line: SEEK-FF.
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Figure 2.29: Nitrate
[

mmol
m3

]
, O2-S3 experiment at the depths of 4.2m, 9.8m

and 25m (from top to bottom). Left: reference run; Right: free
model run and analysis errors x − xt. Black dashed line: free
model run; Green line: OI-SEEK; Red line: SEEK-0.5; Blue line:
SEEK-FF.
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Figure 2.30: Silicate
[

mmol
m3

]
, O2-S3 experiment at the depths of 4.2m, 9.8m

and 25m (from top to bottom). Left: reference run; Right: free
model run and analysis errors x − xt. Black dashed line: free
model run; Green line: OI-SEEK; Red line: SEEK-0.5; Blue line:
SEEK-FF.
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Figure 2.31: Dissolved oxygen
[

mmol
m3

]
, O2-S3 experiment at the depths of

4.2m, 9.8m and 25m (from top to bottom). Left: reference run;
Right: free model run and analysis errors x − xt. Black dashed
line: free model run; Green line: OI-SEEK; Red line: SEEK-0.5;
Blue line: SEEK-FF.
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Figure 2.32: Bacteria carbon content
[

mg C

m3

]
, O2-S3 experiment at the

depths of 4.2m, 9.8m and 25m (from top to bottom). Left: ref-
erence run; Right: free model run and analysis errors x − xt.
Black dashed line: free model run; Green line: OI-SEEK; Red line:
SEEK-0.5; Blue line: SEEK-FF.
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Figure 2.33: Particulate organic carbon
[

mg C

m3

]
, O2-S3 experiment at the

depths of 4.2m, 9.8m and 25m (from top to bottom). Left: ref-
erence run; Right: free model run and analysis errors x − xt.
Black dashed line: free model run; Green line: OI-SEEK; Red line:
SEEK-0.5; Blue line: SEEK-FF.
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Figure 2.34: Microzooplankton carbon content
[

mg C

m3

]
, O2-S3 experiment

at the depths of 4.2m, 9.8m and 25m (from top to bottom).
Left: reference run; Right: free model run and analysis errors
x − xt. Black dashed line: free model run; Green line: OI-SEEK;
Red line: SEEK-0.5; Blue line: SEEK-FF.
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In summary both implemented SEEK filters showed clear and consis-

tent improvements with respect to the free model run and with respect

to the OI technique. A distinct gap in analysis quality is evident for both

SEEK-FF and SEEK-0.5 with respect to the simple non evolving OI-SEEK

scheme, that often simply damps the free run error maintaining its struc-

ture. SEEK-FF showed in general the best results, but demonstrated a

tendency to a oscillatory behaviour due to overcorrection.

However, the main difference between the two schemes became evi-

dent in the calibration of the experiments. While SEEK-FF showed gener-

ally better results when adopting lower forgetting factors with respect to

the forgetting factor used in SEEK-0.5, the latter exhibited serious stability

problems with lower forgetting factor values. In these cases the analysis

error tended to grow after initially well performing corrections, that elim-

inated the errors with respect to the reference run. An example is given

in fig. 2.35, that shows the chlorophyll analysis obtained with SEEK-0.5

using a forgetting factor of 0.8, just below the 0.85 used in the simula-

tion described. A small error that originates below the pycnocline after

the onset of stratification, is amplified and spreads over the whole water

column.

In fact, the stability of the SEEK Filter is guaranteed by the propaga-

tion of the error correction directions through the tangent linear model,

that converges (if the linear approximation holds) towards the directions

for which errors are most amplified, while the iteration of the low rank

representation of the analysis errorUn is a mere algebraic consequence to

adapt to this propagation given by the formulation of the Kalman Filter

(see the derivation of the general version of the filter in Pham et al., 1998).

It is clear, that this stability characteristic is lost, if the correction directions

are kept fixed and the behaviour of the filter is exclusively governed by

the combination LT
0 HTR−1HL0, that is determined from the beginning

and not propagated, but most of all reflects the observation error only. As

a consequence the error covariance, given by equation 2.30, will approach
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Figure 2.35: Instability of SEEK-0.5 solution in O2-AA1 experiment for
forgetting factor ρ = 0.8. Chlorophyll-a content

[
mg

m3

]
. Bottom:

Reference Solution;Middle: Analysis error pa; Top: Free model
run error xfree − xt.

an asymptotic limit

lim
n→∞

U−1
n = lim

n→∞

[
ρnU−1

0 +
(
ρn−1 + ρn−2 + . . . + ρ0

)
LT

0 HTR−1HL0

]

=
1

1− ρ
LT

0 HTR−1HL0

(as 0 < ρ 6 1). If, however the initial corrections are badly specified or

the propagation of the model turns away from this directions, the am-

plitude of the error will not be properly controlled. The initially good

performance of SEEK-0.5 also in the unstable cases indicates, that the ex-

perienced instabilities are not due to badly specified initial conditions,

but rather due to isolated stiffnesses, that the filter was able to recover for

higher forgetting factors, i. e. when it preserved enough memory of the

background error structure from the initial condition.

As far as the vanishing effect of the initial condition is concerned, the

problem of the exclusive dependency on the combination LTHTR−1HL
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holds in principle also for SEEK-FF Filter, but, different from SEEK-0.5,

with the propagation of L by the model, information on the model error

is projected onto these directions.

However, in conditions of significant non-linearity, this propagation

can not work properly and error amplifications might occur. As the fil-

ter is stable, the amplifications are reduced when the system returns to

quasi-linear conditions and the filter recovers (this might be the case of

the oscillations affecting the non-observed states). However, as the fil-

ter has down-weighted the older informations, it is relying mostly on the

most recent and now inaccurate information. Therefore, it might be de-

sirable, to reconsider the specification of the dynamic noise in eq. (2.25)

to maintain some level of background information, that helps the filter to

retain valuable information, that could go lost in the case of strongly non

linear dynamics.
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2.6 The SEEK-Q Variant

In order to achieve a more effective specification of the dynamic noise an

alternative formulation of the Pham et al. (1998) filter is proposed. This

new version can be considered intermediate between the general and the

forgetting factor version.

Instead of expressing the dynamic noise covariance Q in terms of the

previous analysis error covariance, it is specified explicitly by a formula-

tion, that represents the generic structure of the model error in a statistical

sense. With the preparation of the initial condition described in section 2.3

at hand, it seems natural to obtain this generic structure from the statis-

tics of the 50 ensemble runs of the model, that defined the initial analysis

covariance P a
0. Hence, one might assume, that

Qref = βP a
0 (2.37)

with 0 < β 6 1 as noise reduction coefficient (NRC). This approach

is similar to a formulation applied by Mitchell and Houtekamer (2000)

and Houtekamer et al. (2005), who proposed in the context of an Ensem-

ble Kalman Filter for the model error covariance Q to suppose a func-

tional form similar to the forecast error covariance defined in a connected

3DVAR experiment, so they argued that in cases of low dynamic noise, it

may be approximated as proportional.

The dynamic noise is then, coherently with the SEEK philosophy, for-

mulated in low rank representation S:

S = LT
0 QrefL0 (2.38)

Qref = βL0U 0L
T
0 . (2.39)

The idea behind this approach is to let the model maintain some back-

ground information on the essential error correlation structure in the anal-

ysis covariance to support the filter in cases, where the propagation in the

SEEK formulation with forgetting factor, that relies entirely on the correct
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functioning of the filter’s propagation equations performs poorly, e. g.

over short periods characterised by strong non-linearities.

In order to properly insert this modification into the propagation of

the error correction directions and into the low rank representation of the

analysis error covariance (eq. (2.24) and (2.25)), another modificationwith

respect to eq. 2.27 and 2.28 is applied, i.e. the error propagation directions

are renormalised each assimilation step in order to maintain their normal-

ityLT L = δ. This can be easily obtained, e. g. by taking the normalisation

factorN i as the inverse Cholesky factor of LT
i−1MT

i−1Mi−1Li−1, so that

Li = Mi−1Li−1N i . (2.40)

Then the covariance matrix has to be updated following the equation

U−1
i =

[
N−1

i U i−1N
−T
i + LT

i L0SLT
0 Li

]
−1

+ LT
i HT

i R−1HiLi .

and the new version of the SEEK Filter hereafter called SEEK-Q is given

by:

S = LT
0 QrefL0 = βLT

0 P f,refL0 (2.41a)

Li = Mi−1Li−1N i (2.41b)

U−1
i =

[
N−1

i U i−1N
−T
i + LT

i L0SLT
0 Li

]
−1

+ LT
i HT

i R−1HiLi . (2.41c)

The derivation of these equations is given in Appendix B.
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Figure 2.36: Chlorophyll-a content
[

mg

m3

]
for the O2-AA1 experiment. From

bottom to top: Reference Solution, Analysis error pa of SEEK-Q
and SEEK-FF, free model run error xfree − xt.

2.7 Comparing SEEK-Q with SEEK-FF

Experiments making use of observation vector O2 for locations AA1 and

S3 were repeated using SEEK-Q and the results obtained were compared

against the corresponding SEEK-FF experiments (O2-AA1-SEEK-Q and

O2-S3-SEEK-Q), that is the more sophisticated of the implemented filters

and performed the best analysis. This comparison showed a high effi-

ciency of both analysis schemes over all state variables with differences

often limited to the first 50 days of simulation, i. e. to the first 25 assimi-

lation steps.

For chlorophyll and phosphate the analysis solutions relative to site

AA1 are given in figures 2.36 and 2.37 respectively and demonstrate the

efficiency of SEEK-Q, that corrects the analysis error virtually immedi-

ately. A closer look on the interaction between model dynamics and filter

correction for the same state variables is given in figures 2.38 and 2.39

that reveals, how the forecast solution drifts away from the true state,
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Figure 2.37: Phosphate
[

mmol
m3

]
field for the O2-AA1 experiment. From bot-

tom to top: Reference Solution, Analysis error pa of SEEK-Q
and SEEK-FF, free model run error xfree − xt.

but is continuously corrected by the analysis step. The SEEK-FF shows

a slower convergence to the reference state. In the chlorophyll case the

filter is rather late in adapting the solution to the measurements, as al-

ready observed in section 2.5. The solutions for the other nutrients and

oxygen (fig. 2.40 to 2.43) repeat the behaviour observed for phosphate,

with an immediate adaptation of the analysis for the SEEK-Q Filter, while

the SEEK-FF Filter is more gradually adapting to the reference state, even

if rather quickly. An extreme case can be observed for nitrate (fig. 2.40),

where the reference state is reached with the first correction and never

deflected anymore due to the quasi-equilibrium in the reference solution

over winter.

More interesting is the comparison of the errors for bacteria (fig. 2.44).

The sharp peak in the model dynamics caused by the strong perturbation

of the initial condition is followed essentially by both, the SEEK-Q and

the SEEK-FF solutions without improvement. Just after the peak, how-

ever, the SEEK-Q analysis manages to descend gradually towards the true
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state, while the SEEK-FF Filter is for a short period unable to project the

information of the observed states to the bacteria field and then, rather

abruptly starts the oscillating correction dynamics already described (sec-

tion 2.5). This behaviour is not observed in the SEEK-Q simulation. The

errors for particulate organic matter show a similar structure with clearly

better results achieved by SEEK-Q, even if at least in the middle section a

smaller oscillation can be observed also in this case.

For microzooplankton (fig. 2.46) the situation in the first 30-40 days

is rather critical. The initial oscillation of the free model run is ampli-

fied by both filters, in particular the new one. This strong effect might

be induced by the initial chlorophyll concentrations, that are significantly

lower for the free run and the assimilation runs. The lower phytoplankton

concentration is corrected by the filters causing a corresponding positive

correction of the microzooplankton due to the positive correlation of the

two variables (predation), that amplifies the already growing error. How-

ever, both filters can recover rather quickly from this strong impact, again

with an oscillatory behaviour in the SEEK-FF solution.
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Figure 2.38: Chlorophyll-a content
[

mg

m3

]
, O2-AA1 experiment at the

depths of 1.4m, 6.8m and 15m (from top to bottom). Left: ref-
erence run; Right: free model run and analysis errors x − xt.
Black dashed line: free model run; Green line: SEEK-Q; Blue line:
SEEK-FF.
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Figure 2.39: Phosphate
[

mmol
m3

]
, O2-AA1 experiment at the depths of 1.4m,

6.8m and 15m (from top to bottom). Left: reference run; Right:
free model run and analysis errors x − xt. Black dashed line:
free model run; Green line: SEEK-Q; Blue line: SEEK-FF.
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Figure 2.40: Nitrate
[

mmol
m3

]
, O2-AA1 experiment at the depths of 1.4m,

6.8m and 15m (from top to bottom). Left: reference run; Right:
free model run and analysis errors x − xt. Black dashed line:
free model run; Green line: SEEK-Q; Blue line: SEEK-FF.
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Figure 2.41: Ammonium
[

mmol
m3

]
, O2-AA1 experiment at the depths of

1.4m, 6.8m and 15m (from top to bottom). Left: reference run;
Right: free model run and analysis errors x − xt. Black dashed
line: free model run; Green line: SEEK-Q; Blue line: SEEK-FF.
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Figure 2.42: Silicate
[

mmol
m3

]
, O2-AA1 experiment at the depths of 1.4m,

6.8m and 15m (from top to bottom). Left: reference run; Right:
free model run and analysis errors x − xt. Black dashed line:
free model run; Green line: SEEK-Q; Blue line: SEEK-FF.
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Figure 2.43: Dissolved oxygen
[

mmol
m3

]
, O2-AA1 experiment at the depths

of 1.4m, 6.8m and 15m (from top to bottom). Left: reference
run; Right: free model run and analysis errors x − xt. Black
dashed line: free model run; Green line: SEEK-Q; Blue line:
SEEK-FF.
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Figure 2.44: Bacteria carbon content
[

mg C

m3

]
, O2-AA1 experiment at the

depths of 1.4m, 6.8m and 15m (from top to bottom). Left: ref-
erence run; Right: free model run and analysis errors x − xt.
Black dashed line: free model run; Green line: SEEK-Q; Blue line:
SEEK-FF.
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Figure 2.45: Particulate organic carbon
[

mg C

m3

]
, O2-AA1 experiment at the

depths of 1.4m, 6.8m and 15m (from top to bottom). Left: ref-
erence run; Right: free model run and analysis errors x − xt.
Black dashed line: free model run; Green line: SEEK-Q; Blue line:
SEEK-FF.
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Figure 2.46: Microzooplankton carbon content
[

mg C

m3

]
, O2-AA1 experi-

ment at the depths of 1.4m, 6.8m and 15m (from top to bot-
tom). Left: reference run; Right: free model run and analysis
errors x − xt. Black dashed line: free model run; Green line:
SEEK-Q; Blue line: SEEK-FF.
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Figure 2.47: Chlorophyll-a content
[

mg

m3

]
for the O2-S3 experiment. From

bottom to top: Reference Solution, Analysis error pa of SEEK-Q
and SEEK-FF, free model run error xfree − xt.

The SEEK-Q effectiveness is confirmed by the results relative to site S3,

as illustrated in figures 2.47 and 2.48 for the variables of chlorophyll and

phosphate.

Again SEEK-Q is correcting most of the error of the initial perturbation

in the first 2-3 assimilation steps, even if in this case a small error in the

chlorophyll field persists for around 50 days. In this case also the SEEK-FF

Filter starts correcting from the beginning. The correction is slower, but

for chlorophyll it approaches the reference more precisely. Both schemes

show little errors in the Phosphate field with the onset of stratification,

that are quickly corrected though. Figure 2.49 shows, that the corrections

in chlorophyll for the SEEK-Q scheme are not strong enough to counteract

the drifting model dynamics immediately causing the small error seen

also in figure 2.47.

The situation for the nutrients phosphate , nitrate and ammonium time

series (fig. 2.50,2.51 and 2.52respectively) essentially confirms the AA1 re-

sults. A major difference is evident in the silicate errors (fig. 2.53), where
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Figure 2.48: Phosphate
[

mmol
m3

]
field for the O2-S3 experiment. From bottom

to top: Reference Solution, Analysis error pa of SEEK-Q and
SEEK-FF, free model run error xfree − xt.

the SEEK-Q Filter again is able to correct against the strong model drift,

while the SEEK-FF Filter is initially even amplifying the model signal cor-

recting in the wrong direction. This causes an error that clearly exceeds

even the initial error of the free model run. The oxygen error (fig. 2.54)

is similar to the nutrients errors. It is very well controlled for the SEEK-Q

solution, while the SEEK-FF Filter needs about 20 days to establish proper

corrections. The time series of the bacteria error (fig. 2.55) show the be-

haviour already observed in the AA1 site with the new filter approaching

the reference solution faster and avoiding the oscillatory behaviour of the

SEEK-FF field.

However, both filters don’t behave satisfactorily on particulate organic

matter (fig. 2.56). While the SEEK-Q Filter starts rather correctly, it quickly

develops overshooting, that brings the solution away from the true state

and the correct level is only recovered by the model dynamics, when the

innovations of the observations approach zero. The SEEK-FF Filter on the

contrary starts correcting with a significant delay after around 30 days,
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then approaches the reference solution well, when a too strong correction

turns the solution away again until the filter manages to recover proper

error propagation. For both filters the error is not correctly correlated to

the observations and both filter reach the level of the reference run only

after the errors in the other fields have disappeared.

For Microzooplankton (fig. 2.57), again, the contrasting strong initial

perturbations causes problems in the initial assimilation in particular for

the SEEK-Q Filter in the middle layer, as was observed for site AA1.

In summary, the new version of the SEEK Filter introduced in section

2.6 performed well in the present twin experiments. In most cases it con-

siderably improved the SEEK-FF analysis, avoiding the oscillatory struc-

tures appearing occasionally when the true solution is approached. Prob-

lems were met in the initial correction of microzooplankton in both sides,

that however, seem to be enforced by the heavy impact of strong con-

trasting initial perturbation due to the imposition of the initial summer

profiles in winter conditions (see section 2.3.4 on the initialisation). More

concerning is the relatively poor performance of both filters for particu-

late organic matter, where both filters don’t seem to establish well corre-

lated corrections. This will deserve a closer inspection of the information

propagation along the trophic web.
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Figure 2.49: Chlorophyll-a content
[

mg

m3

]
, O2-S3 experiment at the depths

of 4.2m, 9.8m and 25m (from top to bottom). Left: reference
run; Right: free model run and analysis errors x − xt. Black
dashed line: free model run; Green line: SEEK-Q; Blue line:
SEEK-FF.

179



2 Data Assimilation

Figure 2.50: Phosphate
[

mmol
m3

]
, O2-S3 experiment at the depths of 4.2m,

9.8m and 25m (from top to bottom). Left: reference run; Right:
free model run and analysis errors x − xt. Black dashed line:
free model run; Green line: SEEK-Q; Blue line: SEEK-FF.
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Figure 2.51: Nitrate
[

mmol
m3

]
, O2-S3 experiment at the depths of 4.2m, 9.8m

and 25m (from top to bottom). Left: reference run; Right: free
model run and analysis errors x − xt. Black dashed line: free
model run; Green line: SEEK-Q; Blue line: SEEK-FF.
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Figure 2.52: Ammonium
[

mmol
m3

]
, O2-S3 experiment at the depths of 4.2m,

9.8m and 25m (from top to bottom). Left: reference run; Right:
free model run and analysis errors x − xt. Black dashed line:
free model run; Green line: SEEK-Q; Blue line: SEEK-FF.
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Figure 2.53: Silicate
[

mmol
m3

]
, O2-S3 experiment at the depths of 4.2m, 9.8m

and 25m (from top to bottom). Left: reference run; Right: free
model run and analysis errors x − xt. Black dashed line: free
model run; Green line: SEEK-Q; Blue line: SEEK-FF.
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Figure 2.54: Dissolved oxygen
[

mmol
m3

]
, O2-S3 experiment at the depths of

4.2m, 9.8m and 25m (from top to bottom). Left: reference run;
Right: free model run and analysis errors x − xt. Black dashed
line: free model run; Green line: SEEK-Q; Blue line: SEEK-FF.
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Figure 2.55: Bacteria carbon content
[

mg C

m3

]
, O2-S3 experiment at the

depths of 4.2m, 9.8m and 25m (from top to bottom). Left: ref-
erence run; Right: free model run and analysis errors x − xt.
Black dashed line: free model run; Green line: SEEK-Q; Blue line:
SEEK-FF.
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Figure 2.56: Particulate organic carbon
[

mg C

m3

]
, O2-S3 experiment at the

depths of 4.2m, 9.8m and 25m (from top to bottom). Left: ref-
erence run; Right: free model run and analysis errors x − xt.
Black dashed line: free model run; Green line: SEEK-Q; Blue line:
SEEK-FF.
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Figure 2.57: Microzooplankton carbon content
[

mg C

m3

]
, O2-S3 experiment

at the depths of 4.2m, 9.8m and 25m (from top to bottom).
Left: reference run; Right: free model run and analysis errors
x − xt. Black dashed line: free model run; Green line: SEEK-Q;
Blue line: SEEK-FF.
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2.8 Summary and conclusions

This chapter presented a comparison of two sub-versions of the Singu-

lar Evolutive Extended Kalman Filter supplemented with the proposal of

a new formulation. The SEEK-FF version was proposed by Pham et al.

(1998). It was designed for practical implementations due to its simple

representation of the model error covariance Q, that is expressed as pro-

portional to the analysis error covariance (see section 2.2.1.1). The SEEK-

0.5, that is frequently used in marine ecosystem dynamics, applies a fur-

ther simplification with respect to the SEEK-FF proposed by Brasseur

et al. (1999), that assumes the persistence of the error-sub-space keeping

the error propagation directions constant throughout the simulation, up-

dating only the reduced rank covariance matrix (see section 2.2.1.2).

The new filter version, proposed here, uses a more explicit, but still

rather simple formulation for the dynamic noise covariance Q providing

a generic structure of the model error to support the filter propagation

(see section 2.6). This was motivated by the not entirely satisfactory per-

formance of SEEK-0.5 and SEEK-FF at calibration and simulation. Prob-

lems turned out to be connected to the propagation of the error covari-

ance, that relies completely on the correct representation of the error cor-

rection directions by the filter. This however holds only in the near-linear

limit. The new version, on the contrary, specifies the dynamic noise co-

variance in a way, that a level of background information is maintained

in the propagation of the error covariance and therefore is less sensitive

to local effects of non-linearity.

The performance of these filters was validated in a series of TWIN ex-

periments comparing the errors of the filters against the free model run

without assimilation and against a simple optimal interpolation scheme,

that did not consider the evolution in time of the error statistics.

All filters showed for all state variables in both sites much better per-

formance, than the free model run and the interpolation filter underlining

the benefit of taking into account the evolution of the error statistics. The
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low rank approximation was confirmed as a reasonable reduction in sys-

tem dimension, as even the optimal interpolation filter performed con-

siderably better than the free model run on all state variables. The more

sophisticated, but also more costly filter SEEK-FF generally showed ad-

vantages over the semistatic SEEK-0.5 in the quality of the analysis, how-

ever, the major drawback of the SEEK-0.5 was identified in its tendency

to instabilities when the forgetting factor was lowered towards the value

that was used for the SEEK-FF implementation.

The absence of these stability problems in SEEK-FF (that only exhibited

limited oscillatory behaviour for few state variables) confirms the state-

ment of Pham et al. (1998) of the general stability of the filter, that holds

in the limit of the linear approximation in which case the error correction

directions are propagated properly.

The comparison of the newly proposed version SEEK-Q against the

SEEK-FF showed a further improvement of the performance of the SEEK

filter. Errors with respect to the SEEK-FF are significantly reduced in

most of the state variables and the oscillatory behaviour of the SEEK-FF

is greatly removed, making it a promising alternative to the already es-

tablished versions. (An overview over the rms errors of the O2-AA1 and

O2-S£ experiments is given in Appendix C.)

Overall, the results for the performed TWIN experiments were very

promising. The errors appear strongly reduced with respect to the errors

of the free model run in particular in the state variables essential to the

primary production (nutrients and phytoplankton). Some problems were

observed in the initial error fields of microzooplankton and particulate

organic matter, that can be attributed to the rather strong impact of the

initial perturbation and were controlled rather quickly by the filter (mi-

crozooplankton).

However, the general validity of these results will have to be confirmed

in other configurations, to begin with the assimilation of real observa-

tional data rather than the pseudo-observations in a TWIN framework.

A drawback in the implementation of the two filters SEEK-FF and SEEK-
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Q is given by the connected computational effort and the demand in com-

putational resources. While the cost for the SEEK-FF is roughly deter-

mined by the cost of a model run times the number of EOFs used plus the

model forecast itself, the SEEK-Q requires even more time due to the ad-

ditional matrix inversions and normalisations. These operations are per-

formed in low rank reduction though, so that the additional cost is limited

with respect to the model propagation of the complete set of EOFS. Also

the demand in memory is highly increased for these filters as each EOF

is of the size of the model state and the SEEK-Q variant even requires

two sets. These issues might become significant, especially in the case

of a three-dimensional implementation with the connected preprocess-

ing statistics, so that an alternative way to access to additional computer

power such as GRID computing might be favourable.
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Appendix A

Ensemble error correlations

In this appendix a selection of sections of the correlation matrix is shown,

obtained from the analysis performed on the ensemble runs described in

section 2.3.4.

An overview over the major biogeochemical components of the model

is given to illustrate the (initial) flow of information in the filter. The sec-

tions include the state variables of the observation vector O2 (see table 2.2)

and an additional state representing the various elements of the trophic

web.
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Figure 2.58: Correlation of the variables used in the observations O2 and
bacteria carbon content. Section of the correlation matrix
δφ∗δφT

N−1
in site AA1. State variables shown are: O2o - Dis-

solved Oxygen,N1p- Phosphate,N3n - Nitrate, Ammonium -
N4n, Silicate - N5s, P1i - Diatom chlorophyll-a content, P2i -
Nanoflagellates, P3i - Picophytoplankton, B1c - Bacteria car-
bon content. The matrix is organised by state variable blocks
with the surface data for each state couple starting in the bot-
tom left corner and depth increases to right and top. The
data are normalised in a way that the mean of the main di-
agonal section taken for each state (the auto-correlations) is
one, to guarantee comparable magnitudes between the vari-
ous states, and maintaining variability distribution along the
water column (see 2.3.4).
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Figure 2.59: Correlation of the variables used in the observations O2 and
particulate organic carbon. As fig. 2.59, state variables shown
are: O2o - Dissolved oxygen, N1p- Phosphate, N3n - Nitrate,
Ammonium -N4n, Silicate -N5s, P1i - Diatom chlorophyll-a
content, P2i - Nanoflagellates, P3i - Picophytoplankton, R6c
- Particulate organic carbon. Site AA1.
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Figure 2.60: Correlation of the variables used in the observations O2 and
microzooplankton carbon content. As fig. 2.59, state vari-
ables shown are: O2o - Dissolved oxygen, N1p- Phosphate,
N3n - Nitrate, Ammonium -N4n, Silicate -N5s, P1i - Diatom
chlorophyll-a content, P2i - Nanoflagellates, P3i- Picophyto-
plankton, Z5c - Microzooplankton carbon content. Site AA1.
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Figure 2.61: Correlation of the variables used in the observations O2 and
bacteria carbon content. As in fig. 2.58 for site S3, state Vari-
ables shown are: O2o - Dissolved oxygen, N1p- Phosphate,
N3n - Nitrate, Ammonium -N4n, Silicate -N5s, P1i - Diatom
chlorophyll-a content, P2i - Nanoflagellates, P3i - Picophyto-
plankton, B1c - Bacteria carbon content.
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Figure 2.62: Correlation of the variables used in the observations O2 and
particulate organic carbon. As in fig. 2.58 for site S3, state
Variables shown are: O2o - Dissolved oxygen, N1p- Phos-
phate, N3n - Nitrate, Ammonium - N4n, Silicate - N5s, P1i
- Diatom chlorophyll-a content, P2i - Nanoflagellates, P3i -
Picophytoplankton, R6c - Particulate organic carbon.
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Figure 2.63: Correlation of the variables used in the observations O2 and
microzooplankton carbon content. As in fig. 2.58 for site
S3, state Variables shown are: O2o - Dissolved oxygen, N1p-
Phosphate, N3n - Nitrate, Ammonium - N4n, Silicate - N5s,
P1i - Diatom chlorophyll-a content, P2i - Nanoflagellates,
P3i - Picophytoplankton, Z5c - Microzooplankton carbon
content.

197



2 Data Assimilation

Appendix B

Derivation of the propagation equations for the SEEK-Q

version

Following Pham et al. (1998) in the description of the general version of

the SEEK Filter, the full analysis error covariance can be approximated

expressing it in terms of a subset of eigenvectors V i belonging to the first

highest eigenvalues ofMi:

P a
i = V iΠiV

T
i . (2.42)

He further stated that, for a slowly evolving model gradientM the itera-

tive sequence

V i = MV Π
−1
i , Λi = W i−1MV i−1, W i−1 =

(
V T

i−1V i−1

)
−1

V T
i−1 (2.43)

converges starting from some V 0 with appropriate rank towards the first

eigenvectors ofM and Λ against a matrix with the corresponding eigen-

values, such thatMV = V Λ. Thus, for a slowly evolvingMi this se-

quence can be used to propagate V . 2 Supposing this, the covariance ma-

trix expressed in terms of the eigenvectors evolves then according to

Π
−1
i =

(
ΛiΠi−1Λi + W iQi−1W

T
i

)
−1

+ V T
i HT

i R−1
i HiV i . (2.44)

Now, one can introduce the substitutions:

Li = V iΛi · · ·Λ1N 1 · · ·N i L0 = V 0 (2.45)

U−1
i = NT

i · · ·NT
1 Λ

T
1 · · ·ΛT

i Π
−1
i Λi · · ·Λ1N 1 · · ·N i U 0 = Π0 . (2.46)

whereN are the invertible normalisation factors, as in section 2.6.

2Note, that this does not represent a further restriction to the system, as the extended
Kalman Filter already involves the tangent linear approximation of the model oper-
atorM.
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AsMiV i−1 = V iΛi(from eq. (2.43)), Li propagates as

Li = Mi−1Li−1N i . (2.47)

Substituting eq.(2.44) into eq. (2.46), one obtains then

U−1
i =

[
N−1

i U i−1N
−T
i + LT

i L0SLT
0 Li

]
−1

+ LT
i HT

i R−1HiLi .

as propagation of U i.

Here it was used, that by multiplication withNT
i · · ·NT

1 Λ
T
1 · · ·ΛT

i from

the left andΛi · · ·Λ1N 1 · · ·N i from the right the terms of eq. (2.44) change

as:

Λ
T
i Πi−1Λi → N−1

i N−1
i−1 · · ·N−1

1 Λ
−1
1 · · ·Λ−1

i−1Πi−1Λ
−T
i−1 · · ·Λ−T

1 N−T
1 · · ·N−T

i−1N
−T
i ,

(
V T

i V i

)
−1

V T
i → N−1

i · · ·N−1
1 Λ

−1
1 · · ·Λ−1

i

(
V T

i V i

)
−1

V T
i

=
(
V T

i V iΛi · · ·Λ1N 1 · · ·N i

)
V T

i =
(
V T

i Li

)
−1

V T
i

=
(
Λ
−T
i−1 · · ·Λ−T

1 N−T
1 · · ·N−T

i−1L
T
i Li

)
V T

i

=
(
LT

i Li

)
−1

LT
i = LT

i

W iQW T
i → LT

i QLi = LT
i LrefSLT

refLi

In summary, the new version of the SEEK Filter is given by the eq.:

S = LT
0 QrefL0 = βLT

0 P f,refL0

Li = Mi−1Li−1N i

U−1
i =

[
N−1

i U i−1N
−T
i + LT

i L0SLT
0 Li

]
−1

+ LT
i HT

i R−1HiLi .
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Appendix C

Root mean square errors (rms) of the various filters

An overview over the time series of the mean analysis errors of the main

variables of the BFM trophic web is given. The errors η for the three SEEK

filters SEEK-Q, SEEK-FF and SEEK-0.5 are given as root mean square er-

rors (rms), normalised by the reference state xt

η =

√(
xa − xt

xt

)2

and averaged over the water column

η =
1

H

−H∫

0

ηdz ,

where H is the depth of the water column and xa the computed analysis

state.
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Figure 2.64: Column mean rms-error η for chlorophyll-a content in site
AA1. Black dashed line: free model run; Green line: SEEK-Q;
Blue line: SEEK-FF; Red line: SEEK-0.5.
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Figure 2.65: Column mean rms-error η for phosphate in site AA1. Black
dashed line: free model run; Green line: SEEK-Q; Blue line:
SEEK-FF; Red line: SEEK-0.5.
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Figure 2.66: Columnmean rms-error η for nitrate in site AA1. Black dashed
line: free model run; Green line: SEEK-Q; Blue line: SEEK-FF;
Red line: SEEK-0.5.
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Figure 2.67: Column mean rms-error η for ammonium in site AA1. Black
dashed line: free model run; Green line: SEEK-Q; Blue line:
SEEK-FF; Red line: SEEK-0.5.

204



2.8 Appendix C - rms errors

Figure 2.68: Columnmean rms-error η for silicate in site AA1. Black dashed
line: free model run; Green line: SEEK-Q; Blue line: SEEK-FF;
Red line: SEEK-0.5.
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Figure 2.69: Column mean rms-error η for dissolved oxygen in site AA1.
Black dashed line: free model run; Green line: SEEK-Q; Blue line:
SEEK-FF; Red line: SEEK-0.5.
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Figure 2.70: Column mean rms-error η for bacteria carbon content in site
AA1. Black dashed line: free model run; Green line: SEEK-Q;
Blue line: SEEK-FF; Red line: SEEK-0.5.
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Figure 2.71: Column mean rms-error η for particulate organic carbon in
site AA1. Black dashed line: free model run; Green line: SEEK-
Q; Blue line: SEEK-FF; Red line: SEEK-0.5.
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Figure 2.72: Columnmean rms-error η for microzooplankton carbon con-
tent in site AA1. Black dashed line: free model run; Green line:
SEEK-Q; Blue line: SEEK-FF; Red line: SEEK-0.5.
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Figure 2.73: Columnmean rms-error η for chlorophyll-a content in site S3.
Black dashed line: free model run; Green line: SEEK-Q; Blue line:
SEEK-FF; Red line: SEEK-0.5.
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Figure 2.74: Column mean rms-error η for phosphate in site S3. Black
dashed line: free model run; Green line: SEEK-Q; Blue line:
SEEK-FF; Red line: SEEK-0.5.
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Figure 2.75: Column mean rms-error η for nitrate in site S3. Black dashed
line: free model run; Green line: SEEK-Q; Blue line: SEEK-FF;
Red line: SEEK-0.5.
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Figure 2.76: Column mean rms-error η for ammonium in site S3. Black
dashed line: free model run; Green line: SEEK-Q; Blue line:
SEEK-FF; Red line: SEEK-0.5.
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Figure 2.77: Column mean rms-error η for silicate in site S3. Black dashed
line: free model run; Green line: SEEK-Q; Blue line: SEEK-FF;
Red line: SEEK-0.5.
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Figure 2.78: Column mean rms-error η for dissolved oxygen in site S3.
Black dashed line: free model run; Green line: SEEK-Q; Blue
line: SEEK-FF; Red line: SEEK-0.5.
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Figure 2.79: Column mean rms-error η for bacteria carbon content in site
S3. Black dashed line: free model run; Green line: SEEK-Q; Blue
line: SEEK-FF; Red line: SEEK-0.5.
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Figure 2.80: Column mean rms-error η for particulate organic carbon in
site S3. Black dashed line: free model run; Green line: SEEK-Q;
Blue line: SEEK-FF; Red line: SEEK-0.5.

217



2 Data Assimilation

Figure 2.81: Columnmean rms-error η for microzooplankton carbon con-
tent in site S3. Black dashed line: free model run; Green line:
SEEK-Q; Blue line: SEEK-FF; Red line: SEEK-0.5.
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