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List of Symbols

List of the most common symbols used in the thesis. Units are specified between square

brackets.

* A : analysis error covariance matrix

* B : background error covariance matrix

* bt_bcor : bias corrected brightness temperature [K]

* bt_fg : first guess brightness temperature [K]

* bt_obs : observed brightness temperature [K]

* bt_ret : retrieved brightness temperature [K]

* di,j : level to space optical depth from level j for channel i [–]

* H : foreward operator

* H : tangent linear of H

* HT : adjoint of H

* L(v, θ) : upwelling radiance at the top of the atmosphere [W/(m2 sr)]

* J : cost function [–]

* Jb : background cost function [–]

* Jo : observational cost function [–]

* K : gain matrix
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* Pi(TB) : modified Planck function for channel i at brightness temperature TB

[W/(m2 sr)]

* P (v, T ) : Planck function at frequency v and temperature T [W/(m2 sr)]

* q : vertical profile of specific humidity [g/kg]

* q2m : 2 meters specific humidity [g/kg]

* R : observational error covariance matrix [K2]

* SST : sea surface temperature [K]

* T : vertical profile of temperature [K]

* TB : brightness temperature [K]

* TBi : brightness temperature for channel i [K]

* T2m : 2 meters temperature [K]

* Ts : surface temperature [K]

* ~xa : analysis field

* ~xb : background field

* ~yo : observation vector [K]

* ε : emissivity [–]

* εs : surface emissivity [–]

* τ : transmittance [–]

* τs : surface transmittance [–]

* τi,j : level to space transmittance from level j for channel i [–]

* θ : angle from zenith at the surface [rad]

* v : frequency [s−1]
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Abstract

The quality of temperature and humidity retrievals from the infrared SEVIRI sensors on

the geostationary Meteosat Second Generation (MSG) satellites is assessed by means of a

one dimensional variational algorithm. The study is performed with the aim of improving

the spatial and temporal resolution of available observations to feed analysis systems de-

signed for high resolution regional scale numerical weather prediction (NWP) models. The

non-hydrostatic forecast model COSMO (COnsortium for Small scale MOdelling) in the

ARPA-SIM operational configuration is used to provide background fields. Only clear sky

observations over sea are processed.

An optimised 1D–VAR set-up comprising of the two water vapour and the three window

channels is selected. It maximises the reduction of errors in the model backgrounds while

ensuring ease of operational implementation through accurate bias correction procedures and

correct radiative transfer simulations.

The 1D–VAR retrieval quality is firstly quantified in relative terms employing statistics

to estimate the reduction in the background model errors. Additionally the absolute retrieval

accuracy is assessed comparing the analysis with independent radiosonde and satellite ob-

servations. The inclusion of satellite data brings a substantial reduction in the warm and dry

biases present in the forecast model. Moreover it is shown that the retrieval profiles gener-

ated by the 1D–VAR are well correlated with the radiosonde measurements.

Subsequently the 1D–VAR technique is applied to two three–dimensional case–studies:

a false alarm case–study occurred in Friuli–Venezia–Giulia on the 8th of July 2004 and a

heavy precipitation case occurred in Emilia–Romagna region between 9th and 12th of April
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2005. The impact of satellite data for these two events is evaluated in terms of increments

in the integrated water vapour and saturation water vapour over the column, in the 2 meters

temperature and specific humidity and in the surface temperature.

To improve the 1D–VAR technique a method to calculate flow–dependent model error

covariance matrices is also assessed. The approach employs members from an ensemble

forecast system generated by perturbing physical parameterisation schemes inside the model.

The improved set–up applied to the case of 8th of July 2004 shows a substantial neutral

impact.
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INTRODUCTION

0.1 The initial condition problem

At the beginning of the meteorological science the Newtonian philosophy was dominant:

assumed known the initial state and the physical laws describing the dynamical evolution

of the atmosphere, its final state at any future instant could be forecasted. The deterministic

approach is still used nowadays, but it is well known that the more carrying on in the forecast

time the more there is probability that the outcoming fields are affected by errors. In fact the

presence of non–linear terms in the dynamic equations is source of great differences for fore-

casts produced starting from very little different initial conditions, hence a little difference

between the used initial condition and the “truth” determines an erroneous prediction in the

atmospheric system evolution and the amplitude of these errors grow in time.

In mathematical terms the problem of doing a forecast is a problem at the initial condi-

tions, which can at least numerically be solved when these three tasks are fulfilled:

- the definition of a network observing system collecting all available meteorological

data;

- the definition of an analysis method to build the best approximation of the atmospheric

initial state from all available data; this analysis will be the input of the meteorological

model;

- the definition of a set of motion equations, i.e. a mathematical translation of the laws

of conservation of energy, momentum, and mass together with the state equation of

the gases.
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The knowledge of the best initial atmospheric state would improve the forecast outcom-

ing, hence the increment of data from the network observing system and the production of

more accurate analyses can be considered the new challenges of the future.

0.2 Concept of analysis

The analysis can be defined as the best accurate image of the true state of the atmosphere at

a given time, produced by means of assimilation techniques, and it can be used as the initial

state in a Numerical Weather Prediction (NWP) Model.

The basic information of the assimilation techniques consists in the collection of different

kinds of observations. Under the hypothesis that the model is overdetermined by the observa-

tions the analysis problem reduces to an interpolation model, nevertheless this never happens

in the reality since data are sparse and sometimes only indirectly related to the model vari-

ables. To avoid complications and to define a well-posed problem is necessary to introduce a

background field, as a priori estimate of the model state. The collection of different kinds of

observations together with the background field are taken as input to the assimilation tech-

niques providing as output analysis increments that added to the background field result in

the wanted analysis.

The different kinds of assimilation techniques can be divided in two main categories de-

pending on the fact that they use statistical methods or not.

The most important technique where the statistical approach is missing is the Newtonian

relaxation or nudging technique (Hoke and Anthes, 1976 [18]). This method involves adding

a term to the prognostic model equations that effectively nudges the solution towards obser-

vations. The nudging term is time dependent and should be large enough that it has an effect

on the solution, but small enough so that it does not dominate over other terms (Stauffer and

Seaman, 1990 [41]). In practice the nudging term is often no larger than the magnitude of the

least dominant term in the equation. This technique is widely used in Limited Area Model

(LAM) where the application of other methods would result problematic.
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The nudging technique can be applied only on the prognostic variables of LAMs and this

is a very big limitation of this method. Hence the assimilation of remote sensing data, like

radiances observed from satellite and reflectivity observed from radar, have to be performed

in other ways.

In the statistical approach methods there is a mathematical representation of the uncer-

tainty of the data, both of model data and of observational data. The error statistics are so

modelled using probabilistic concepts and the analysis algorithm is defined on the basis that

the analysis errors must be minimal in a root mean square sense. This is the core of the

main variational assimilation techniques (1D–VAR, 3D–VAR and 4D–VAR) and of the OI

(Optimum Interpolation) technique. Their capabilities are so general that they conceptually

permit the assimilation of any kind of observation; that is why of their importance.

In particular the 1D–VAR approach is the simplest variational method (with respect to

3D–VAR, where the assimilation is done also in the other two horizontal directions, and

to 4D–VAR, where beyond to the three spatial directions the time dimension is taken into

account) and is used to assimilate data along a column over a grid point of the model. A

very useful example is the satellite data retrieval problem, in which the 1D–VAR algorithm

performs a local analysis of one atmospheric column (the model state) at the location of each

satellite sounding.

0.3 Satellite data assimilation

The assimilation of satellite derived observations in NWP models makes it continuous progress

with the advances in data assimilation techniques and the ever increasing quality and avail-

ability of remote observations (Daniels et al., 2004 [7]) . While some limited geostationary

data are assimilated in the form of cloud track winds (Schmetz et al., 1993 [36]), up to now

their main use in operational NWP models has been the update of radiances and the outcom-

ing of derived products. The poor number of channels available, their broad spectral width

and the high signal–to–noise ratio which imposes low spatial resolution has prevented wider
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use. Nevertheless, with respect to radiance observations from polar–orbiting satellites, data

from geostationary platforms offer higher temporal resolution which is crucial for regional

NWP.

New generation geostationary satellites have improved capabilities. The MSG satellites,

whose MSG–1 launched in August 2002 is the first prototype, provide measurements with

double spatial resolution and temporal coverage compared with its predecessor Meteosat–7.

Its 15 minutes repetition cycle and 3 km nominal spatial sampling permits the monitoring

of localised phenomena and rapidly evolving weather systems making it a potentially good

quality observational system not only for global atmospheric NWP models but also for high

resolution LAM models.

Moreover the SEVIRI radiometer on board of MSG satellites measures radiation in 12

spectral channels, with respect to the only 3 channels of Meteosat–7, spanning the visible to

the infrared with a much narrower band size. It is clearly desirable to exploit the wealth of

radiance information from this new generation of geostationary satellites, particularly with

the prospect of even higher spectral–resolution sounders such as the Geostationary Imaging

Fourier Transform Spectrometer and the Advanced Baseline Sounder which are planned to

be placed in geostationary orbit on GOES–R (Gurka and Smith, 2004 [16])

A possible way to evaluate the usefulness of any new type of observations in global or re-

gional operational analysis system at a reasonable cost is to use a one dimensional variational

approach (1D–VAR). To convert model data in forecasted satellite radiances fast radiative

transfer models have been designed: they represent the crucial link between model prognos-

tic variables and satellite data. In this case the assimilation is performed in two steps. The

first step consists in the production of 1D–VAR retrieved profiles in which 1D–VAR seeks

optimal, in a least square sense, model variables (e.g. temperature, humidity, etc.) which

fit the observed variables within specified model and observational errors. The second step

incorporates the 1D–VAR retrieved products as “pseudo–observations” into the assimilation

system of the model itself.
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One weakness of this methodology is to introduce correlations between these pseudo–

observations and the model state since model variables are used as first guess in the min-

imisation performed during the 1D–VAR technique. However this technique has already

been proven robust for operational use even when employing highly non–linear observation

operators (Courtier et al., 1994 [6]) and the “1D–VAR + 4D–VAR” scheme implemented

at ECMWF to assimilate rainy–radiances from two microwave sensors SSM/I and TRMM

(Marécal and Mahfouf, 2002 [22]) is a demonstration of this fact. Moreover, since the fi-

nal products of the 1D–VAR algorithm are basic thermo–dynamic/dynamic model variables,

they can be introduced in less complex assimilation systems such as the nudging analysis,

which do not use variational techniques and thus do not permit direct radiance assimilation.

The aim of this thesis is therefore to study the potential for a 1D–VAR retrieval using the

fast radiative transfer model RTTOV–7. The retrieved variables are temperature and humidity

profiles and surface variables derived from SEVIRI observations in clear sky conditions for

their assimilation into the nudging scheme of the LAM COSMO–LAMI, which ARPA–SIM

runs daily to provide weather forecasts for the Italian peninsula.

0.4 Scientific questions to be addressed

The work has the end to provide answers to these scientific questions:

- How to establish the best set of channels which maximise the “information content”

brought by satellite data into the analysis and the analysis error reduction?

- How much is the impact of the 1D–VAR technique applied to specific selected case

studies in terms of precipitation and surface variables?

- How the background error covariance matrix depends on the region and on the synoptic

situation? How an improved construction of this matrix can be performed?

The structure of the thesis is as follows. In the chapter 1 the assimilation methods based

on statistical approach are treated putting particular attention on the 1D–VAR technique.

Chapter 2 gives a general view of the observational data already used inside the assimila-

tion techniques in the main NWP models, showing the differences between conventional
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and non–conventional data; subsequently firstly the new geostationary satellite data, which

are used in this study, are presented and secondly information on LAM used in this thesis,

COSMO, and its internal assimilation scheme, the nudging, are given. Chapter 3 explains

the components of the 1D–VAR technique: the fast radiative transfer model used to simulate

the brightness temperatures (section 3.1), the cloud detection method (section 3.2) and the

background and observational error covariance matrices calculation (section 3.3); section

3.4 reports the 1D–VAR conceptual performance in terms of analysis error reduction, sec-

tion 3.5 describes the bias correction method and finally section 3.6 describes the retrieval

accuracy of the 1D–VAR technique comparing the analysis with independent radiosoundes

and satellite observations. In chapter 4 the use of the 1D–VAR method in the COSMO

model is assessed for two three–dimensional case–studies, a false alarm case–study and a

heavy precipitation case–study; in section 4.3 a possible improvement of the background

error covariance matrix used in the 1D–VAR method is discussed. Finally in chapter 5 the

conclusions obtained in this work are drawn.
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Chapter 1

1D–VAR FRAMEWORK

1.1 Basic concepts of data assimilation

The basic objective information that can be used to produce the analysis is a collection of ob-

served values provided by observations of the true state. If the model state is overdetermined

by the observations, then the analysis reduces to an interpolation problem. Anyway in most

cases the analysis problem is under–determined because data are sparse and some of them

only indirectly related to the model variables. In order to make it a well–posed problem it

is necessary to rely on some background information in the form of an a priori estimate of

the model state. The background information can consist in a climatology or a trivial state;

they can consist also in the output of a previous analysis, using some assumption of consis-

tency in time of the model state, like stationarity (hypothesis of persistence) or the evolution

predicted by a forecast model. In a well–behaved system one expects that this allows the

information to be accumulated in time into the model state, and to propagate to all variables

of the model: this is properly the basis concept of data assimilation. In other words the data

assimilation is an analysis technique in which the observed information is accumulated into

the model state by taking advantage of consistency constraints with laws of time evolution

and physical properties.

The first step in the mathematical formalisation of the analysis problem is the definition

of the work space. As in a forecast model, the collection of numbers needed to represent the

atmospheric state of the model is collected as a column matrix called the state vector ~x.
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How the vector components relate to the real state depends on the choice of discretisation,

which is mathematically equivalent to a choice of basis.

It is important to distinguish between reality itself, which is more complex than what can

be represented as a state vector itself, and the best possible representation of reality as a state

vector, which it usually denoted by ~xt, the true state at the time of the analysis. An other

important value of the state vector is ~xb, the a priori background estimate of the true state

before the analysis is carried out, valid at the same time. Finally the analysis is denoted by

~xa which is what is wanted.

1.2 Control space variables

In practice it is often convenient not to solve the analysis problem for all components of

the model state, or it is necessary to reduce the resolution or domain of analysis because of

insufficient computer power. In these cases the work space of the analysis is not the model

space, but the space allowed for the corrections to the background, called control variable

space. Then the analysis problem is to find a correction or analysis increment δ ~x such

that

~xa = ~xb + δ~x (1.1)

is as close as possible to ~xt. So for the resolution of the analysis problem instead to look

for ~xa one can look for ~xa − ~xb in a suitable subspace.

1.3 Observations

For a given analysis a number of observed values is used; they are gathered into an obser-

vation vector ~y. To use them in the analysis procedure it is necessary to be able to compare

them with the state vector. It would be nice if each degree of freedom were observed directly,

so ~y could be regarded as a particular value of the state vector. In practice there are fewer

observations than variables in the model and they are usually irregularly disposed, so that

the only correct way to compare observations with the state vector is through the use of a
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function from the model state space to the observation space called an observation opera-

tor that is denoted by H. This operator generates the values H(~x) that the observations would

take if both they and the state vector were perfect, in the absence of any modelling error. In

practice H is a collection of interpolation operators from the model grid to the observation

points, and then conversion from model variables to the observed parameters. The key point

in data analysis is the use of the discrepancies between observations and state vector; this is

given by the vector of departures at the observation points:

~y − H(~x) (1.2)

When calculated with the background ~xb these differences are called innovations, while

with the analysis ~xa analysis residuals. Their study provides important information about

the quality of the assimilation procedure.

1.4 The modelling of errors

To represent the fact that there is some uncertainty in the background, in the observations and

in the analysis some model of the errors are assumed between these vectors and their true

counterparts. The correct way to do this is to assume some probability density function

(pdf) for each kind of error.

Given a background field ~xb just before doing an analysis, there is one and only one

vector of errors that separates the background field from the true state:

~εb = ~xb − ~xt (1.3)

If it were possible to repeat each analysis experiment a large number of times, under

exactly the same conditions, but with different realisations of errors generated by unknown

causes,~εb would be different each time. Statistics such as averages, variances and histograms

of frequencies of ~εb can be calculated. In the limit of a very large number of realisations it is

expected that the statistics converge to values which depend only on the physical processes

responsible for the errors, not on any particular realisation of these errors. When another

analysis will be done under the same conditions, it is not expected to know the error ~εb but
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at least its statistics. The best information about the distribution of ~εb is given by the limit

of the histogram when the classes are infinitely small, which is a scalar function of integral

1 called the probability density function of ~εb.

The errors in the background and in the observations are modelled as follows:

• background errors: ~εb = ~xb − ~xt, of average~εb and covariances B = (~εb − ~εb)(~εb − ~εb)T.

They are the estimation errors of the background state, i.e. the difference between the

background state value and the “true” value. They do not include discretisation errors.

• observation errors: ~εo = ~y − H(~x) of average~εo and covariances R = (~εo − ~εo)(~εo − ~εo)T.

They contain errors in the observation process (instrumental errors, due to the instru-

mental noise and to the limited scale resolution of the instrument itself) errors in the

design of the operator H and representativeness errors i.e. discretisation errors which

prevent ~xt from being a perfect image of the true state.

• analysis errors: ~εa = ~xa − ~xt, of average ~εa. A measure ‖~εa − ~εa‖ of these errors is

given by the trace of the analysis error covariance matrix A,

Tr(A) = ‖~εa − ~εa‖2 (1.4)

They are the estimation errors of the analysis state which must be minimised. The

averages of errors are called biases and they are the sign of a systematic problem in

the assimilation system: a model drift, or a bias in the observations, or a systematic

error in the way they are used.

1.5 Statistical interpolation with least–squares estimation

The fundamental equation for linear analysis in a general algebraic form is the least squares

estimation, also called Best Linear Unbiased Estimator (BLUE). A brief explanation of

this tool used nowadays in meteorological and oceanographic sciences is reported here.
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1.5.1 Notation

The dimension of the model state is n and the dimension of the observation vector is p. Let

denote

~xt true model state of dimension n

~xb background model state of dimension n

~xa analysis model state of dimension n

~y vector of observations of dimension p

H observation operator from dimension n to p

B covariance matrix of the background errors ~xb − ~xt of dimension n x n

R covariance matrix of the observation errors ~y − H[ ~xt] of dimension p x p

A covariance matrix of the analysis errors ~xa − ~xt of dimension n x n

1.5.2 Hypotheses

The following hypotheses are assumed:

• Linearized observation operator: the variations of the observation operator in the

vicinity of the background state are linear, i.e. for any ~x close enough to ~xb, H(~x) -

H(~xb) = H(~x − ~xb), where H is a linear operator;

• Non-trivial errors: B and R are positive definite matrices;

• Unbiased errors: the expectation of the background and observation errors is zero i.e.

~xb − ~xt = ~y − H( ~xt) = 0

• Linear analysis: the aim is to find an analysis defined by corrections to the back-

ground which depends linearly on background observation departures.

• Optimal analysis: the analysis is considered that state closest to the “true” state in a

root mean square sense, i.e. it is a minimum variance estimate.
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1.5.3 BLUE theorem

Using the definitions and the hypotheses above explained the following theorem least–

squares analysis estimation can be derived (Daley, 1991 [8]):

a The optimal least–squares estimator or BLUE analysis, is defined by the following

interpolation equations:

{

~xa = ~xb + K(~y − H[ ~xb])

K = BHT(HBHT + R)−1

(1.5)

where the linear operator K is called the gain or weight matrix of the analysis.

b The analysis error covariance matrix is for any K:

A = (I − KH)B(I − KH)T + KRKT (1.6)

and if K is the optimal least–squares gain, the expression becomes

A = (I − KH)B (1.7)

c The BLUE analysis is equivalently obtained as a solution to the variational optimisa-

tion problem:

{

~xa = Arg minJ

J(~x) = (~x − ~xb)TB−1(~x − ~xb) + (~y − H[~x])TR−1(~y − H[~x])

(1.8)

where J is called the cost function of the analysis, the first term on the left is called

background term Jb and the second term on the left observation term Jo.

d The analysis ~xa is optimal, i.e. it is closest in an r.m.s. sense to the true state ~xt

e If the background and the observation error pdfs are Gaussian then ~xa is also the

maximum likelihood estimator of ~xt.
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1.6 The one–dimensional variational analysis

The advantage of the variational analysis methods (4D–VAR, 3D–VAR and 1D–VAR) is to

avoid the computation of the gain matrix K completely by looking for the analysis as an

appropriate solution to the equivalent minimisation problem defined by the cost function J

in the equation (1.8). The solution is sought iteratively by performing several evaluations

of the cost function J and of its gradient in order to approach the minimum using a suitable

descent algorithm; in particular for the 1D–VAR technique the gradient is :

Figure 1.1: Schematic representation of the variational cost-function minimisation (here for
simplicity in a two-variable model space) : the quadratic cost function has the shape of
a paraboloid with the minimum at the optimal analysis ~xa. The minimisation works by
performing several line-searches to move the control variables ~x to areas where the cost-
function is smaller, usually by looking at the local slope (the gradient) of the cost-function.

∇J = 2B−1(~x − ~xt) − 2HTR−1(~y − H[~x]) (1.9)
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The approximation lies in the fact that only a small number of iterations are performed.

The minimisation can be stopped by limiting artificially the number of iterations, or by re-

quiring that the norm of the gradient ‖∇J(~x)‖ decreases by a predefined amount during

the minimisation, which is an intrinsic measure of how much the analysis is closer to the

optimum than the initial point of the minimisation. The geometry of the minimisation is

suggested in Fig. 1.1 (F. Bouttier and P. Courtier, 1999 [1]).

Usually the initial point of the minimisation, or first guess, is taken equal to the back-

ground ~xb . This is not compulsory, however, so it is important to distinguish clearly between

the terms background, which is used in the definition of the cost function, and first guess,

which is used to initiate the minimisation procedure. If the minimisation is satisfactory,

the analysis will not depend significantly on the choice of first guess, but it will always be

sensitive to the background.
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Chapter 2

OBSERVATIONAL DATA AND

MODEL DATA

Considering the types of available observations we can distinguish them in two main cate-

gories:

• conventional observations, i.e. in situ observations;

• non–conventional observations, i.e. remote sensing observations;

2.1 Conventional data

There are a lot of different types of conventional data used in meteorological assimilation

systems. Here the most important are recalled:

• SYNOP data, i.e. conventional surface weather station reports, comprehending pres-

sure, humidity, and 10 meter wind observations. They have usually a temporal resolu-

tion of 3 hours and a spatial resolution of some ten of kilometers;

• SHIP data, i.e. conventional weather reports from sounding ships, and DRIBU data,

i.e. conventional weather reports from drifting buoys, comprehending pressure and

wind observations;

• TEMP data, i.e. upper air data from radiosondes, comprehending temperature, wind

and humidity data. The radiosondes are usually launched twice a day, at 00 UTC and

at 12 UTC, and their horizontal resolution is some hundred of kilometers;
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• PILOT data, i.e. wind measurements in the free atmosphere from station launching

balloons;

• PROFILERS, measuring wind with remote sensing procedures, provide wind speed

and wind direction observations at very high temporal resolution.

• AIREP data (manual aircraft reports), AMDAR (Aircraft Meteorological Data Relay)

and ACARS (automatic aircraft reports) provide temperature and wind observations.

The AMDAR and ACARS systems usually provide more information than AIREP;

furthermore during landing and take–off the ACARS provide data in quantity, quality

and location comparable to radiosondes.

2.2 Non–conventional data

Basically there are two types of non–conventional data : satellite data and radar data.

During the last twenty years there has been a significant increase in the quantity, quality

and different types of satellite observations. Radiances observed by satellite instruments give

indirect information on temperature and humidity in the atmosphere.

TIROS1 (Television InfraRed Observation Satellites), launched by United States the 1st

April 1960, has been the first meteorological satellite used for meteorological applications.

Even if this date can be considered the beginning of the use of satellite data in the meteoro-

logical science, only in the 70’s and more in the 80’s the meteorologists begun to realize the

great potentiality of satellite data.

In fact satellite observations can cover areas which are inaccessible to conventional types

of observations; furthermore satellite observations usually have a higher resolution both tem-

porally and spatially than the conventional observations. Hence these more detailed obser-

vations, if opportunely used, can have a great positive impact on the definition of the initial

condition, which is the mandatory step from which the forecast begins.
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Radar data, with respect to satellite data, are used for meteorological applications from

longer time. The radars, observing the interactions between electromagnetic radiations and

the cloud microphysics, can give information about meteorological events for a circle area

centered in the radar location for a radius ranging around to some hundred of kilometers.

Their temporal resolution is comparable to satellite data, but their coverage is very much

smaller.

In this thesis the main aim is to understand how much the use of satellite data can improve

the forecasts in Numerical Weather Prediction (NWP) models, so in the next sections general

information on the satellites is recalled.

2.3 Polar and geostationary satellites

Basically two types of meteorological satellites exist: geostationary satellites and polar satel-

lites.

• A polar orbiting satellite circles the earth at a near polar inclination, meaning that it

always passes almost exactly above the poles. The satellite passes the Equator and

each latitude at the same local solar time each day, meaning that the satellite passes

overhead at essentially the same solar time throughout all seasons of the year. The

polar satellite orbit is much closer to the earth than a geostationary satellite orbit. Its

altitude usually ranges from 700 to 800 km with orbital periods of 98 to 102 minutes,

and thus can see a smaller part of the earth below than a geostationary satellite, but in

a finer detail;

• The geostationary satellites circle the earth in a geosynchronous orbit which means

they orbit the equatorial plane of the earth at a speed matching the earth’s rotation. This

allows to them to hover continuously over one position on the surface. The geosyn-

chronous plane orbit is about 35800 km in altitude so they are high enough to take a

full disk view of the earth.

The two types of weather satellite, polar and geostationary, can be seen as complementary.

Each type has advantages and disadvantages, and an ideal observing system should combine
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Figure 2.1: Illustration of the daily coverage of a polar satellite in sun-synchronous orbit.

both these elements.

Figure 2.2: Geographical area covered by geostationary satellites positioned at 0◦ longitude.

The polar satellites permit a global coverage of the earth in a given window of time, i.e.

they register information from every point of the earth but not continuously in time. Each

point on the earth’s surface is observed at best every orbit for polar regions and at worst twice

a day for equatorial regions. One of the positive advantages of the polar satellites is the good

ground resolution because of their low orbit (see Fig. 2.1). The geostationary satellites give

information of the crossed area of the earth, the disk, but in this case the observation of
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each point in the disk is continuous in time with a capability of sampling which can reach

few minutes. Furthermore only one ground station is necessary for satellite monitoring. The

disadvantage of the geostationary satellites consists in the lacking of observations in the polar

regions and in a lower spatial resolution, due to the height of the orbit, with respect to the

polar satellites (see Fig. 2.2).

2.4 The global system of operational meteorological satel-

lites

The global system of operational meteorological satellites was organized at the beginning of

90’s and includes selected geostationary and polar orbit satellites:

• GEOSTATIONARY SATELLITES

– Two NOAA’s (National Oceanic and Atmospheric Administration’s) geostation-

ary satellites, called GOES (Geostationary Operational Environmental Satellites)

are used together over America. One of these, GOES–East, is positioned at 75◦W

and monitors North and South America and most of the Atlantic Ocean, while

the latter, GOES–West, is positioned at 135◦W and monitors North America and

the Pacific Ocean basin;

– the Japanese geostationary satellite GMS (Geostationary Meteorological Satel-

lite) positioned at 140◦E;

– the Russian geostationary satellite GOMS (Geostationary Operational Meteoro-

logical Satellite)/Elecktro positioned at 76◦E;

– the EUMETSAT (EUropean organisation for the exploitation of METeorological

SATellites)’s geostationary satellite, METEOSAT, positioned at 0◦ that monitors

Europe, the Mediterranean basin and Africa.
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Figure 2.3: The global system of meteorological satellites.

Furthermore also Indian series of communication/meteorological geostationary satel-

lites, INSAT, positioned at 74◦E has operated for many years but unfortunately the

data/products have not generally been made available to the global meteorological

community.

• POLAR SATELLITES

– Two NOAA’s polar satellites, called simply NOAA, and one Russian polar satel-

lite, called METEOR.

Fig. 2.3 shows the global operational satellites.

2.5 The Meteosat series

Meteosat series refers to whichever geostationary satellites has been or is currently opera-

tional over Europe, Mediterranean basin and Africa at an altitude of about 35800 km. EU-

METSAT operates the Meteosat series of geostationary satellites which have served the me-

teorological community since 1977. The table 2.1 shows the Meteosat missions and their

duration from Meteosat–1 to nowadays.
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Meteosat satellite series

Satellite Launch date Mission duration (years)

Meteosat–1 23/11/1977 8
Meteosat–2 19/06/1981 10
Meteosat–3 15/06/1988 7
Meteosat–4 06/03/1989 7
Meteosat–5 02/03/1991 ongoing
Meteosat–6 20/11/1993 ongoing
Meteosat–7 02/09/1997 ongoing

MSG–1 —> Meteosat–8 28/08/2002 ongoing
MSG–2 — Meteosat–9 22/12/2005 ongoing

Table 2.1: Meteosat satellites missions since 1977, year of the launch of Meteosat–1, until
today. The symbol —> means that MSG–1 has been renamed Meteosat–8 when it became
operational on February 2004. MSG–2 is now in the second part of the commissioning pe-
riod, that is why of the symbol — , and will be renamed Meteosat–9 after the commissioning
period itself. Furthermore the launches of MSG–3 and MSG–4 are planned for 2008 and
2012 respectively.

2.6 Radiometric instrument specifications

MVIRI (Meteosat Visible and Infrared Resolution Imager), a high resolution radiometer

with three spectral bands, was the main payload of Meteosat–7 and its predecessors and it

provided information on only three channels with a temporal resolution of 30 minutes. The

new generation of Metosat geostationary, Meteosat Second Generation (MSG), satellites

have two different instruments on board:

• the meteorological instrument, that is the main payload, SEVIRI (Spinning Enhanced

Visible and Infrared Resolution Imager)

• the climate research instrument, GERB (Geostationary Earth Radiation Budget)

2.6.1 SEVIRI

SEVIRI is the optical imaging radiometer on board the MSG satellites. Its twelve different

spectral channels provide twenty times more information than the precedent METEOSAT
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Figure 2.4: Comparison between MVIRI and SEVIRI performances

satellite (Meteosat–7), offering new capabilities in cloud imaging and tracking, fog detec-

tion, measurements of earth surfaces and cloud top temperatures, tracking ozone patterns,

as well as many other improved performances. A new image is provided every 15 minutes

instead of every 30 minutes (see Fig. 2.4). This, together with the enhanced imagery, results

in an important increase in capabilities for monitoring weather patterns over Atlantic Ocean,

Europe and Africa and for the prediction of severe storms and other potentially hazardous

phenomena like hurricanes.

SEVIRI comprehends twelve imaging channels and for each of these it provides the

observed radiance or the equivalent brightness temperature (bt_obs). There are two visi-

ble channels, respectively at 0.6 and 0.8 µm, which are essential for cloud detection, cloud

tracking, scene identification and the monitoring of land surfaces and aerosol. The only near
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Figure 2.5: Absorption bands of water vapour, carbone dioxid and ozone in the spectrum
covered by SEVIRI instrument

infrared channel is the one at 1.6 µm, useful to discriminate between ice and water clouds and

between snow and cloud. The water vapour in the atmosphere is monitored by two channels,

at 6.2 and 7.3 µm respectively, which support height assignment for semi–transparent clouds.

Apart from the High Resolution Visible (HRV) channel, obtained integrating the infor-

mation coming from the precedent two visible channels, the remaining channels fall in the

infrared spectrum. Three of these infrared channels, at 8.7, 10.8 and 12.0 µm, are in the

infrared window and give information on land and sea surface temperature, another one is at

3.9 µm and is primarily used for detection of low cloud and fog at night and furthermore is

quite important for the detection of forest fires. Finally the other two infrared channels, at

9.7 and 13.4 µm, are localised in the middle of the main O3 absorption band and inside the

main C02 absorption band respectively (see Fig. 2.5).

The operating principle of SEVIRI instrument is as follows: a series of mirrors within

the radiometer direct the radiation originating from the earth surface, its atmosphere and
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Figure 2.6: Spectral bands of SEVIRI channels

Figure 2.7: Image acquisition by the SEVIRI radiometer.

cloud systems, received via an opening in the side of the satellite, onto an array detectors.

Readings are taken from the detectors approximately every 24 microseconds as the satellite

spins, so that the spin is used to scan the earth in the East-West direction. After every scan

line a mirror is stepped in the South-North direction in order to acquire subsequent scan lines.
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One complete revolution of the satellite lasts 0.6 seconds, of which only about 30 mil-

liseconds are available over the earth disk to acquire one scan. For each scan step several

image lines are acquired (3 lines for nominal channels and 9 lines for the HRV channel).

The remaining 570 milliseconds are used mainly for scan mirror stepping, data transmission

and measurements directed at deep space, used for removal of noise from the data (see Fig.

2.7). The nominal repeat cycle for a complete scan of the full earth disk is 15 minutes, this

includes measurement of on–board calibration sources and scan mirror retrace.

The nominal image size for all channels (Level 1.5 image) except for the High Resolution

Visible (HRV) is 3712 by 3712 pixels (N-S by E-W), the sampling distance is defined to be

exactly 3km by 3km at the sub–satellite point. For the HRV channel the image size is 11136

by 5568 pixels (N-S by E-W), the sampling distance defined to be exactly 1km by 1km at

the sub–satellite point.

The scans of data are taken at constant angular steps, and this together with the natural

curvature of the earth means that as the satellite scans away from the sub–satellite point the

area covered by the pixels is greater than at the sub–satellite point. For example at mid

latitudes the distance between two consecutive points for the nominal channels is about 5 km

(more details can be found in the EUMETSAT web site www.eumetsat.de).

2.6.2 GERB

The GERB instrument is a broadband scanning radiometer used to derive the thermal radia-

tion emitted by the earth. The Earth Radiation Budget is the balance between the radiation

coming from the Sun and the reflected and scattered solar radiation, plus thermal infrared

emissions, from earth to space. GERB measures the short wave and total radiation from the

earth about every 6 minutes. Long-wave (thermal) radiation is also obtained, by subtraction

of the two measurements.

At the core of the GERB instrument is a broadband, three–mirror telescope housed in the

Instrument Optical Unit. The instrument’s overall mass is 25 kg and its power consumption

37



is nominally less than 32 W (end of life) during operations.

2.7 The Limited Area Model COSMO

The regional forecast model used in this thesis is COSMO, a fully–compressible (non–

hydrostatic) primitive equation model without any scale approximation, developed by the

COSMO Consortium (COnsortium for Small-scale MOdelling), which coordinates the co-

operation of Germany, Italy, Switzerland, Greece and Poland (details can be found in the

COSMO web site www.cosmo-model.org). Due to the unfiltered set of equations, the verti-

cal momentum equation is not approximate, allowing a better description of non–hydrostatic

phenomena such as moist convection, breezes circulations and some kinds of mountain–

induced waves. Furthermore it includes an explicit Eulerian horizontal advection scheme

and a full set of physical parameterisations for large scale condensation (Steppeler et al.,

2003 [42]), convection (Tiedtke, 1989 [44]), radiation (Ritter and Geleyn, 1992 [30]) In this

sense COSMO has been essentially designed for meso–β and meso–γ scales where non–

hydrostatic effects begin to play an essential role in the evolution of atmospheric flows.

The Italian implementation of COSMO, called COSMO–LAMI (COSMO – Limited

Area Model Italy) and managed by ARPA–SIM in the framework of an agreement among

UGM (Ufficio Generale di Meteorologia), ARPA–SIM and ARPA–Piemonte, consists of two

runs a day (at 00 and 12 UTC) for 72 hours with a spatial horizontal resolution of 7 km and

40 levels in the vertical between the surface and the top of the troposphere at around 30 hPa;

the horizontal model domain is set to cover Italy, the major part of the Mediterranean sea and

the Alpine region (see Fig. 2.8 for the operational domain specification). Hourly boundary

conditions are provided by the DWD global model GME of the German Weather Service

(Deutscher WetterDienst DWD) (Majewski et al, 2002 [20]) COSMO assimilation system is

based on a nudging scheme (Schraff and Hess, 2003 [37]) in which Newtonian relaxation of

prognostic variables is performed towards observed values with weighting functions which

are function both of space and time coordinates.
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All the NWP models use assimilation techniques to feed the available observations; any-

way only the use of high resolution models can permit to assimilate high resolution satellite

data, such as MSG radiances, with a remarkable improvement of the forecasts. Hence, de-

tailed high–resolution analyses have to be able to produce frequently and quickly and this

should be done thorough use of asynoptic and high–frequency observations such as aircraft

and remote sensing data. Up to now the observations used in the COSMO assimilation tech-

nique, called nudging, were only conventional data:

- radiosonde observations including wind, temperature and humidity;

- surface level data from SYNOP, SHIP and BUOY stations providing pressure, wind

and humidity observations;

2.7.1 Assimilation of observations in COSMO: the nudging technique

The nudging ( or Newtonian relaxation ) technique consists of relaxing the model’s prognos-

tic variables towards prescribed values within a predetermined time window. In the scheme

used inside COSMO nudging is performed towards direct observations, which seems to be

better than nudging towards three dimensional analyses (Schraff and Hess, 2003 [37]).

The basic equation of nudging consists of introducing a relaxation term into the prognos-

tic variable ψ(~x, t) and is given by:

∂ψ(~x, t)

∂t
= F (ψ, ~x, t) +Gψ

∑

k(obs)

Wk(~x, t)[ψkobs
− ψ( ~xk, t)] (2.1)

where F denotes the model dynamics and physical parameterisations, ψobsk the value of

the kth observation influencing the grid point ~x at time t, ~xk the observation location, Gψ a

constant called nudging coefficient and Wk is an observation–dependent weight whose value

is always between 0 and 1 (except for surface pressure). The difference in the square bracket

between observed and model value is called observation increment, and the complete ad-

ditional so–called nudging term determines the analysis increment which is defined as the

change explicitly imposed on the model value by the nudging. Setting Wk equal to 1 and

neglecting dynamics and physics contributions, the model value at the observation location
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Figure 2.8: COSMO–LAMI operational domain and its correspondent orography in meters

relaxes exponentially towards the observed value with an e–folding decay rate of 1/Gψ, cor-

responding to about half an hour.

Supposing that the model fields have to be relaxed towards the observed values without

significantly perturbing the dynamic balance of the model, the nudging term should remain

smaller than the largest term of the dynamics (see Fig. 2.9) (Doms and Schattler, 1999 [9]).

The factors Wk take into account the weights wk given to the different observations in-

fluencing the nudging term for a specific grid point. These weights wk in their turn take into

account the quality and representativeness of the observation εk, and the temporal distance

wt, the horizontal distances wxy and the vertical distance wz between the observation and the

target grid point. In mathematical equation terms this is translated in this way:

40



Figure 2.9: Conceptual illustration of the concept of nudging

Wk =
wk

∑

j wj
wk (2.2)

wk = wtwxywzεk (2.3)

2.7.2 Advantages and disadvantages of nudging technique in compari-

son to other three–dimensional assimilation methods

It is worth noting that the nudging approach only takes into account the data density at the

target grid points and neglects the relative positions between the observation themselves in

contrary to optimum interpolation (OI).

Furthermore in contrast to OI and multi–dimensional variational methods (3D–VAR, 4D–

VAR) there is no mathematic formalism to determine a theoretically optimal solution to the

analysis problem. Hence there are several free parameters and theoretical considerations can

only provide rough estimations for their optimal specification. The appropriate values can

only be determined by means of physical reasoning and tuning experiments.
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Another problem in comparison to 3D–VAR and 4D–VAR is related to the fact that,

similarly to OI, observation increments have to be expressed in model space rather than ob-

servation space. This means that for an observational information of any kind, observation

increments have to be derived always in terms of the prognostic model variables in order to

be used in the nudging. That limitation is not present in the variational schemes.

For example in order to assimilate radar reflectivity observations in a variational scheme,

reflectivity values should be obtained from the model fields in order to compute observa-

tion increments of reflectivity which would be used for the analysis; instead in the nudging

method increments of temperature, humidity, wind , etc. have to be deduced from the ob-

served reflectivity. Nevertheless this operation comprises more degrees of freedom, requires

more assumptions with less confidence and is therefore more prone to errors.

Nevertheless these disadvantages in the nudging technique with respect to OI, 3D–VAR

and 4D–VAR, it allows to use the observations in the best way in COSMO. In fact OI and

3D–VAR do not allow to take into account the exact observation time of asynoptic data

and they make it necessary to neglect most of the high–frequency data unless the analysis

scheme is applied very frequently; even if OI or 3D–VAR were applied with a high temporal

frequency this would increase the computational cost and could result in problem at asynop-

tic analysis times when data density may become very low and inhomogeneous. Moreover

the geostrophic approximation, usually a key ingredient of such schemes, is of limited valid-

ity in the meso–scale.

Four–dimensional methods offer potential advantages since they include the model dy-

namics in the assimilation process directly. As variational methods allow to compare ob-

servations with the model state in observation space, they appear in principle best suited

for the use of many types of remote sensing data. This would be right, but the 4D–VAR is

too expensive for operational application in COSMO considering the small amount of time

available to produce the analyses; in fact the calculations of tangent linear and of the adjoint

of the COSMO model would require very big human resources, furthermore up to now these

two products, the tangent linear and the adjoint of the model, are not available and this avoids
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this approach at the basis.

These are the reasons why the nudging technique is operationally used as assimilation

approach inside COSMO.
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Chapter 3

1D–VAR SET–UP

In our approach to assimilate satellite data two steps are necessary: as first step the 1D–VAR

algorithm is used to convert satellite data in vertical profiles of temperature and humidity

and in other surface variables which together represent the control vector, while in the sec-

ond step these profiles are included in the data to be nudged in the the COSMO model.

In this study the control vector ~x contains vertical profiles of temperature and specific

humidity, 2m temperature, 2m specific humidity and sea surface temperature ( i.e. ~xb =

(T, q, q2m, T2m, SST )) derived from the regional non-hydrostatic forecast model COSMO.

H is the radiative transfer model RTTOV–7 (Radiative Transfer model for Television infrared

orbiting satellite Operational Vertocal Sounder) (Saunders et al., 2002 [33]) for which also

the tangent linear and adjoint versions are available and which is explained in more detail in

the section 3.1. The observation vector ~y contains a selection of the eight available infrared

SEVIRI channels.

The 1D–VAR minimisation uses an adapted version of a 1D–VAR scheme that was first

developed at ECMWF (European Center for Medium range Weather Forecast) for the assimi-

lation of rain affected microwave radiances (Marécal and Mahfouf, 2000 [21]) and employed

for cloud analysis (Chevallier et al., 2004 [5]). It finds the solution ~xa through the minimi-

sation of J(~x). Successful convergence is achieved employing a minimiser based on the

routines M1QN3 (by Gilbert and Lemaréchal, 1989 [15]) which is designed to minimise

functions depending on a very large number of variables. It implements a limited memory
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Figure 3.1: Sketch of the whole 1D–VAR scheme used in this thesis

quasi-Newtonian technique with a dynamically updated scalar or diagonal preconditioner. A

simplified sketch of the whole 1D–VAR algorithm is given in the Fig. 3.1.

At a given model time–step and grid–point, the nudging procedure uses both past and

future observations within 1 ∆t with each observation weighted by its relative proximity in

time and space. In contrast to other conventional observations, 1D–VAR retrievals are gener-

ated during the assimilation cycle and their values, even if required by the nudging scheme,

are not known before the nominal observation time. To avoid doubling the analysis run or a

time–consuming analysis backward integration a different approach has been followed to si-

multaneously produce and ingest 1D–VAR non–conventional observations into the nudging

scheme.

The procedure implemented is schematised in Fig. 3.2. For each satellite observation

two minimisations are performed using background profiles at Tn=Tobs and Tn−1 = Tn − α

with α = 15min. These two retrievals are then combined to provide the necessary conti-

nuity in time. More specifically, referring to Fig. 3.2, at Tn−1 two 1D–VAR retrievals are

created using background profiles ~xb(Tn−1); one with observation ~y(Tn−1) and another with

observation ~y(Tn). At each instant between Tn−1 and Tn the two ’pseudo–observations’ are
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combined using a triangular function.

The spread over space of the resulting 1D–VAR increments uses Gaussian weighting

functions. The choice of the time interval α and of the spatial weight is somehow arbitrary

and will be tuned for the operational implementation. In this chapter only retrievals which

are synchronous with the satellite observations are considered.

Figure 3.2: Sketch of the assimilation system designed for COSMO to include 1D–VAR
retrieved profiles into the nudging scheme. Two successive minimisations are performed by
using profiles generated at Tn and Tn−1 = Tn − 15min (see text for more details).

Before entering the 1D–VAR package the model temperature and humidity profiles are

preprocessed by (i) adding stratospheric values up to 1hPa on top of COSMO standard levels

using a climatological database extracted from the ERA–40 (Ecmwf Re–Analysis) reanalysis

(Uppala et al., 2005 [46]), (ii) attributing a given profile to the observation location using a

bilinear interpolation between the four closest grid points; (iii) performing quality checks to

ensure the profiles are in the range of applicability of the radiation code RTTOV–7. The SST

value is prescribed from a SST external analysis which is performed daily at 00 UTC. It uses

Cressman–type weighting to blend NCEP (National Centers for Environmental Prediction)

analysis (Reynolds et al., 2002 [29]) with buoy and ship observations. The 2m temperature

and humidity are diagnostic variables. They are functions of the SST and the temperature
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and humidity values of the first model level taking into account boundary layer stability.

3.1 The fast radiative transfer model RTTOV–7

To exploit satellite sounding data in a NWP model the use of a fast radiative transfer model

is mandatory. In particular the radiative transfer model must satisfy these requirements:

- it must be fast enough so that it can be used in near real–time with meteorological data;

- it must be however highly accurate in its calculations;

- it must be able to perform the computations both in presence of clouds and in presence

of clear sky.

The original basis for the fast radiative transfer model RTTOV–7 is based on Eyre and

Woolf, 1988 [11]. This was successively modified by Eyre, 1991 [12], Rayer, 1995 [28],

Rizzi and Matricardi ,1998 [31] and Saunders and Matricardi ,1999 [34] and [35].

The simulation of transmittances in RTTOV–7 is based on a regression scheme with a

variety of predictors from the profile variables. The regression is performed in terms of

departures from a reference profile, for mixed gases, water vapour or ozone. The formulation

to predict the layer optical depth is:

di,j = di,j−1 +

K
∑

k=1

ai,j,kXk,j (3.1)

where di,j is the level to space optical depth from level j and channel i, K is the number

of predictors, and ai,j,k are predefined coefficients. For the mixed gases there are now 10

predictors, for water vapour 15 and for ozone 11.

The optical depth so obtained are firstly corrected multiplying the optical depth by a

factor γi (correction factor) for each channel i and then converted to transmittances:

dci,j = γidi,j (3.2)
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τi,j = exp(−dci,j) (3.3)

The transmittances are calculated on 43 fixed pressure (in hPa) listed below:

.1, .29, .69, 1.42, 2.611, 4.407, 6.95, 10.37, 14.81, 20.4, 27.26, 35.51, 45.29, 56.73,

69.97, 85.18, 102.05, 122.04, 143.84, 167.95, 194.36, 222.94, 253.71, 286.6, 321.5, 358.28,

396.81, 436.95, 478.54, 521.46, 565.54, 610.6, 656.43, 702.73, 749.12, 795.09, 839.95,

882.8, 922.46, 957.44, 985.88, 1005.43, 1013.25

The radiances are theoretically calculated both in clear–sky and in cloudy–sky conditions.

In clear–sky conditions the top of the atmosphere upwelling radiance, L(v, θ), at a frequency

v and viewing angle θ from zenith at the surface, neglecting scattering effects, is written as:

LClr(v, θ) = τs(v, θ)εs(v, θ)P (v, Ts)+

∫ l

τs

P (v, T )dτ+(1− εs(v, θ))τ
2

s (v, θ)

∫ l

τs

P (v, T )

τ 2
dτ

(3.4)

where τs is the surface transmittance, εs is the surface emissivity and P (v, T ) represents

the output of the Planck function at frequency v and temperature T .

The output of RTTOV–7 is used to simulate multilevel infrared and microwave cloudy

radiance and the RTTOVCLD routines now supplied with RTTOV–7 provide this capability

(see Fig. 3.3). Clouds are assumed to be grey bodies with their contribution to the radiances

computed from their horizontal coverage ni, and their emissivity εiv in each vertical layer

i of the user’s model. εiv is derived from the cloud liquid and/or ice water path li by the

relationship:

εiv = 1 − exp−liki
v (3.5)

where kiv is the extinction coefficient at frequency v. Its value varies according to the

phase of the cloud water, the particle sizes and the temperature. This allows the radiances for

semi–transparent cloud to be expressed as a linear combination of LClr(v, θ) and single layer

black body clouds. The coefficients of the linear combination are functions of the ni and εiv

and depend on the way the cloudy layers overlap. Cloud absorption is taken into account in
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Figure 3.3: Simplified scheme of RTTOVCLD used to simulate cloudy radiances

the infrared spectrum following Ebert and Curry, 1992 [14] for ice water and Smith and Shi

,1992 [40] for liquid water (more details can be found in the RTTOV–7 user–guide present

in Met–Office web site http://www.metoffice.gov.uk/).

The conversion of radiances in forecasted brightness temperatures is done using the con-

cept of modified Planck function. If the Planck function does not vary too much over the

channel response function, it can be evaluated at the central frequency of the channels. This

can be accurate for narrow channels, but for the broad channels, like the SEVIRI channels,

the concept of modified Planck function must be introduced and it takes account of the av-

eraging of the true Planck function over the spectral response of channel i for the brightness

temperature TB (Matricardi et al., 2001 [23]). The modified Planck function for channel i is

given by:

Pi(TB) =
c1,i

exp[
c2,i

ai+biTB
] − 1

(3.6)

where c1,i, c2,i, ai and bi are pre–computed coefficients for each channel; c1,i is equal to

c1v
3
i and c2,i is equal to c2vi where c1 and c2 are the normal Planck function coefficients, vi is

the central frequency of the channel, and finally ai and bi are the so called band correction

coefficients (Weinreb et al., 1981 [48]).

The correspondent inversion of equation 3.6 converting radiances in forecasted bright-

ness temperatures is:

TBi = [
c2,i

ln(1 +
c1,i

Pi
) − ai

]/bi (3.7)
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It is worth noting that up to now the RTTOV–7 scheme is applied for the 1D–VAR algo-

rithm only in clear–sky conditions over the sea points. This limitation is due to the difficulty

to accurately estimate the surface emissivity over the land, where the presence of asphalt,

human buildings, roads and plants complicates this task. On the other hand the sea sur-

face emissivity is well known for the different twelve SEVIRI channels. In section 3.2 the

algorithm used to detect clear–sky points from SEVIRI data is described.

3.2 CMa and CT products and the flag processing

Since the retrieval of cloud contaminated pixels is very complicated, both for problems in

the simulation of radiances in the radiative transfer model RTTOV–7 and for problems to

detect which types of clouds are present in the pixels, the 1D–VAR algorithm at the moment

is performed only for clear–sky points over sea.

Two special algorithms, the CMa (Cloud Mask) algorithm and the CT (Cloud Table) al-

gorithm, are so used to detect if the pixel is cloud contaminated and to discriminate which

type of cloud is present in the pixel respectively. They are developed within the SAFNWC

(Satellite Application Facilities for NoWCasting) context and aim to support nowcasting ap-

plications, and additionally the remote–sensing of continental and oceanic surfaces. Both

these algorithms are based on multispectral thresholds techniques applied to each pixel of

the image.

The set of thresholds applied in the CT and CMa algorithms depends mainly on the

illumination conditions whereas the values of the thresholds themselves may depend on the

illumination, the viewing geometry, the geopotential location and NWP model data (more

details can be found in SAFNWC web–site http://nwcsaf.inm.es/). While the output of the

CMa product consists only in the detection if a pixel of a satellite image is contaminated by

clouds, the output of the CT product consists in the following twenty categories:

0) : non processed due to the presence of corrupted data or to the absence of the data;

1) : cloud free land with no contamination by snow/ice covered surface;
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Figure 3.4: Example of SEVIRI CT (top panel) and the correspondent flg_prc (bottom panel)
over the COSMO–LAMI domain at 04:15 UTC of 14th February 2007.

2) : cloud free sea with no contamination by snow/ice covered surface;

3) : land contaminated by snow;
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4) : sea contaminated by snow/ice;

5) : very low and cumuliform clouds;

6) : very low and stratiform clouds;

7) : low and cumuliform clouds;

8) : low and stratiform clouds;

9) : medium and cumuliform clouds;

10) : medium and stratiform clouds;

11) : high opaque and cumuliform clouds;

12) : high opaque and stratiform clouds;

13) : very high opaque and cumuliform clouds;

14) : very high opaque and stratiform clouds;

15) : high semitransparent thin clouds;

16) : high semitransparent meanly thick clouds;

17) : high semitransparent thick clouds;

18) : high semitransparent above low or medium clouds;

19) : fractional clouds (sub–pixel water clouds);

At this moment the 1D–VAR algorithm is applied only for clear–sky points over sea but

anyway the convergence required by the minimisation of the cost function could be unsuc-

cessful. Hence there are four possibilities for the flag processing value (flg_prc) (see Fig.

3.4):

0) it means that the convergence is reached;

2) it means that the convergence is not reached;

4) it means that the pixel is over land;
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8) it means that the pixel is cloud–contaminated;

By definition the convergence is reached if the minimisation by the M1QN3 algorithm

determines a reduction of an order of magnitude of the cost function.

3.3 The background error covariance matrix B and the ob-

servation error covariance matrix R

The background error covariance matrix B define the relative weight given to each forecast

variable in the definition of the analysed field and for this reason it is of vital importance to

the 1D–VAR procedure. The B matrix can be obtained in different ways:

• one of these ways is to compare the vertical profiles of temperature and water vapor

observed by radio–soundings with respect to the ones forecasted by COSMO and ex-

tracted at the same observation/forecast time. The main disadvantage of this method

result in the fact that the observed values do not completely cover the vertical range

of COSMO profiles; in fact while the forecast profiles start close to the surface and

reach about 30 hPa at the top of atmosphere (TOA), usually the observed values are

missing over 300 hPa. This determines the impossibility to correctly estimate the B

matrix in the levels from 300 hPa to TOA. Furthermore another crucial disadvantage

of the radio-soundings is their poor spatial resolution covering;

• the second way is to compare the vertical profiles forecasted by COSMO, for example

the vertical profiles extracted from a COSMO forecast at +24h with the analysis at the

same forecast time, but usually the analyses and the first forecast hours in the model

are moderately affected by the spin–up problem;

• the third approach is to compare vertical profiles extracted from two different forecasts,

for example at +36 hours extracted from the first forecast with the +12 hours extracted

from the latter, but correspondent to the same forecast time.

The B matrix is estimated in this thesis using the third approach, comparing different

forecasts of temperature and humidity profiles, also called the Parrish–Derber method (Par-

rish and Derber, 1992 [25]). 12h and 36h forecasts are compared at the same nominal time,
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Figure 3.5: Structure of the background error covariance matrix: B is a square and symmetric
matrix with the number of rows and columns equal to the (number of the stratospheric levels
plus model vertical levels) multiplied by two [the number of profiles variables in the control
vector, T and q] plus three [the number of the surface variables used in the control vector,
q2m, T2m and SST ]

the atmospheric fields at 12h forecasts are considered the best estimate of the real state of

the atmosphere and the difference with the 36h forecast provides an estimate of the model

uncertainties. T2m and q2m error estimates are 0.9K and 0.5gKg−1, respectively. Since these

are diagnostic variables no cross-correlation is allowed with the other variables. The SST

error is instead prescribed to 0.75K accordingly to the estimated error of the NCEP analysis

(Reynolds et al., 2002 [29]). The structure of the B matrix is sketched in the Fig. 3.5.

Fig. 3.6 shows the auto–correlation errors in temperature and humidity profiles for four

months worth of data. For the temperature the covariances present a negative lobe between

200–300 hPa, where the stratospheric inversion is placed, and the lower levels, while on the

diagonal the maximum positive value of 1.8 K2 is reached. For the water vapour the signif-

icant values are below 300 hPa and the maximum value is reached on the diagonal around

800 hPa.

The R matrix is instead prescribed to be a diagonal matrix (see Fig. 3.7), whose errors

in the observed and simulated brightness temperatures are assumed to be 1 K and the errors

of the observations for the different channels are supposed to be uncorrelated each other.

Finally the rank of R is equal to the number of channels used in the minimisation algorithm.
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Figure 3.6: Background error covariance matrices for vertical profiles of COSMO–LAMI
temperature and humidity background fields. The B matrix has been calculated using fore-
cast comparisons at +12h and +36h averaged over four months worth of data.

Figure 3.7: Structure of the observation error covariance matrix: assumed the uncorrelation
of the errors between the different channels and that for every channel the observational and
simulated error is of 1 K, R is a diagonal matrix with values 1 on the diagonal.

3.4 1D–VAR conceptual performance

Conceptually it is possible to calculate A and thus establish the expected performance of the

retrieval scheme without explicitly performing simulated retrievals once it is assumed that

a successful minimisation technique exists for finding a solution. For the case of a control

vector ~xb, constituted of temperature and humidity variables and for clear–sky radiances it

has already been proven that the linear approximation of the observation operator H is ver-
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ified to guarantee convergence of the minimisation process (Eyre et al., 1993 [13]). The

expected quality of the analysis can therefore be used as an a priori metric to define the best

channel combination to use in an operation context. To this end it is also useful to introduce

the concept of Data Resolution Matrix (DRM) and Model Resolution Matrix (MRM) which,

if the assumption is made that ~ytrue = H(~xtrue) i.e. that errors deriving from the obser-

vation operator are null, links the analysis to the true value either in physical (~xtrue) or in

observational (~ytrue) space ( Rodgers, 2000 [32]) :

~xa − ~xb = KH(~xtrue − ~xb) = MRM(~xtrue − ~xb) (3.8)

~ya − ~yb = HK(~ytrue − ~yb) = DRM(~ytrue − ~yb) (3.9)

Therefore, for those channels for which the radiative transfer simulation is accurate, the

DRM quantifies the contribution of each wavelength to the global quality of the analysis. The

diagonal elements of this matrix indicate how much weight a datum has in its own analysis

and they can be regarded as a measure of the importance of that data. Another useful metric

of the gain in information deriving from each channel is the “degrees of freedom for the

signal” (DFS) [32] which can be calculated by normalising the Jacobian using R−1/2,H′ =

R−1/2H and considering separately each vector ~h which corresponds to the line of H′ linked

to a given channel:

DFS =
~hTB~h

1 + ~hTB~h
(3.10)

Fig. 3.8 shows the diagonal elements of the DRM and the DFS calculated for a sam-

ple of COSMO–LAMI background profiles randomly extracted from the 20 days (the first

twenty days of September 2006) dataset available. The DFS and DRM estimate the impor-

tance of a channel from a different point of view. The DRM which can also be calculated as

HAHTR−1 uses A to estimate which is the most useful channel in the analysis between all

the ones used. Instead the DFS measures how much a channel in isolation is able to reduce

the model error defined by B in the observational space.

The two water vapour channels at 6.2 µm and 7.3 µm have the largest impact in the
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Figure 3.8: On the left panel averaged data resolution matrix (DRM) diagonal values for
input background profiles randomly extracted from the 20 days dataset available, while on
the right panel averaged degree of freedom for signals (DFS) calculated for each of the eight
infrared SEVIRI channels and for the same dataset as for the DRM calculations.

accuracy of the analysis and in reducing the background errors and should be included in

the 1D–VAR retrieval. Also the window channels at 10.8 µm, 8.7 µm and 12.0 µm show

non–negligible DFS values. Since the use of these additional wavelengths could be very

efficient in reducing errors near the ground it is worth investigating their impact in changing

the 1D–VAR retrievals.

Four set of wavelengths are selected by progressively adding to the two water vapour

channels the window channels possessing the highest DRM and DFS values. These groups

are then tested to define the best set to be used in the 1D–VAR retrieval scheme. Table 3.1

summarise the four groups. Set “ch8” in which all channels are included into the analysis is

used as a benchmark to asses the quality of the other sets.

Figg. 3.9 and 3.10 report an estimation of the vertical resolution of the analysed profiles

and the standard deviation of the analysis errors (i.e. square root of diagonal elements of

matrix A) respectively for the channel combinations under examination. Following Purser

et al., 1993 [26] the vertical resolution at each height is calculated as the ratio between the
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Table 3.1: Sets of channels under test to define the best channel combination to be used in
the 1D–VAR retrieval.

Set Id Channel Frequency (µm)
ch2 6.2 7.3
ch3 6.2 7.3 10.8
ch4 6.2 7.3 10.8 12.0
ch5 6.2 7.3 8.7 10.8 12.0
ch8 3.9 6.2 7.3 8.7 9.7 10.8 12.0 13.4

model vertical thickness and the corresponding diagonal element of the MRM. If the analy-

sis is equal to the true atmospheric state, MRM reduces to the identity matrix and the model

layer thickness equals the vertical resolution at each height. Otherwise the vertical resolu-

tion provides information on the vertical smoothing of the analysis compared to the original

background fields.
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Figure 3.9: Vertical resolution of the analysed profiles calculated as ratio between the fore-
cast model vertical thickness and the corresponding diagonal element of the Model Resolu-
tion Matrix (MRM).

The use of all 8 infrared channels leads to maximum temperature error reduction of 11%

in the troposphere and a remarkable improvement in the humidity estimation. This is an

upper theoretical limit of error reduction which can be achieved only if the radiative transfer

simulation in each channel is correct. The inclusion of the window channel at 12.0 µm in

set ch3 already produces a substantial decrease of the analysis errors both in temperature

and humidity and an increase in the vertical resolution below 600 hPa. The additional use

of channels 10.8 µm and 8.7 µm has the effect of increasing the accuracy of the humidity

58



analysis in the lower levels. For this added information it is therefore decided that set ch5 is

selected as a standard for the 1D–VAR retrieval scheme.

The two gas monitoring channels at 9.7 µm and 13.4 µm do not hold a large information

content (Fig. 3.8). Moreover, the radiances in these two channels are strongly influenced

by the columnar total amount of ozone and carbon dioxide respectively. Since CO2 and

O3 concentrations are neither diagnostically nor prognostically predicted by COSMO, large

inaccuracies in the radiative transfer simulation are expected at these wavelengths. The as-

sumptions of equations 3.9 and 3.10 could not be verified. The two channels are therefore

discarded. Analogously the 3.9 µm channel which has been shown to detect a non-negligible

portion of solar shortwave radiation during daytime is blacklisted (Schumann et al., 2002

[38]). It is worth noting that the overall small number of channels on SEVIRI and their

quite broad band sizes make the expected 1D–VAR increment vertical resolution quite large.

Sharp features, such as temperature inversions, won’t be present in the analysis increments.

Figure 3.10: Expected error reduction in the standard deviation (SDV) of the background
temperature and humidity profiles for the selected combinations of channels described in
table 3.1. The analysis SDV is calculated as square root of the diagonal elements of A.

3.5 The bias correction method

All the radiative transfer models involved to assimilate satellite sounding radiances (beyond

to the NWP models themselves) are subject to errors. These errors, which arise mainly

from errors in the spectroscopic data on which the radiative transfer models are based, can

be comparable to or greater than the instrument noise, and so they must be taken into account.
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The importance of the radiance bias problem has been recognised for many years and em-

pirical correction schemes have been developed (Smith et al., 1984 [39], Chedin and Scott,

1984 [2] and Susskind et al., 1983 [43]). Some works have demonstrated that a successful

bias correction scheme must take into account the spatially varying and air–mass dependent

nature of the radiance biases (Kelly and Flobert, 1988 [19], McMillin et al., 1989 [24] and

Uddstrom, 1991 [45]). In practice this imposes the application of an algorithm that reduces

statistically the differences between the simulated brightness temperatures obtained by the

first guess model fields (bt_fg) and the brightness temperature observed by the satellite ra-

diometer (bt_obs). So before being used the satellite data (the brightness temperatures) are

bias corrected (bt_bcor) using a scheme which is based on four air–mass dependent predic-

tors (following the guidelines of Harris and Kelly, 2001 [17]):

• the vertical thickness between 900 and 300 hPa;

• the vertical thickness between 200 and 70 hPa;

• the 2 meters temperature;

• the water vapour content in the column of atmosphere.

In Fig. 3.11 the performance of the bias correction method applied to two weeks of avail-

able data is shown. It is evident for all the five channels a reduction of the bias.

Assuming that the model is unbiased, this guarantees that the 1D–VAR analysis works

in an optimal way and that inaccuracy in the radiative transfer model and/or changes to the

instrument characteristics over time do not spoil the information contained in the radiances

when converted into temperature and humidity. In the following we will refer always to bias–

corrected brightness temperatures when observed brightness temperatures are mentioned.

3.6 1D–VAR actual performance

The 1D–VAR retrieval performances have been assessed firstly in relative terms of error

reduction in the background forecast fields, then in absolute terms comparing the analysis

against radiosondes and SST independent observations.
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Figure 3.11: Statistics performance of the bias correction scheme applied to two weeks of
available data for the 5 channels selected for the 1D–VAR.

3.6.1 Statistics of model departures from observations

The relative quality of the retrieval procedure is quantified by the reduction in the background

departures (bt_bcor minus bt_fg) compared to the analysis departures (bt_bcor minus bt_ret).

This expected reduction is a metric of the improved fit of the analysis TBs to the observa-

tions compared to the background. The two dimensional probability density functions (PDF)

of the model TBs (calculated applying the operator H to ~xb) versus the observed ones for

all channels indicate that the residual biases still present in the background after the bias cor-

rection procedure are reduced in the analysed TBs and the variances are greatly decreased

by the 1D–VAR procedure (fig.3.12). The magnitude of the PDF’s standard deviation can

be regarded as a measure of the model variability. Large background TBs departures are

present in the two water vapour channels, mostly due to inaccuracies in the forecast of high

troposphere humidity. However the largest SDV reduction is obtained at 6.2 and 7.3 µm

showing the significant information content provided by these two channels in the analysis.
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Figure 3.12: Two dimensional Probability Density Function (PDF) of background departures
(upper panels) and analysis departures (lower panels) for an example data set taken on the
18 of September 2006 and for the 5 channels selected for the 1D–VAR.

Fig. 3.13 shows the mean 1D–VAR analysis increments in the temperature and humid-

ity profiles. Higher values of standard deviation indicate a greater sensitivity of the model

background to a particular satellite observation. As a confirmation of the expected impact

on the temperature profiles (Fig. 3.10) most of the information content is spread over the

whole troposphere with a maximum at around 600 hPa. Humidity profiles undergo most of

the changes in the lower and upper troposphere at 800 hPa and 200 hPa. 1D–VAR has weak

effect on the 2 meters temperature and humidity, while a non-negligible impact is recorded

for the SST analysis increments with a SDV of 0.45 K (not shown).

It is worth noting that in variational assimilation system one should expect the whole

domain averaged mean analysis increments to be null for each variable since observations

are supposed to be unbiased. The fact that the temperature and humidity vertical mean in-

crements are close to zero indicates that the bias correction procedure works well and that

the final analysis will be in balance with the model minimising spin–up problems.

Nevertheless, the two dimensional mean increment distributions in Fig. 3.14 show how

heat and water are redistributed by the 1D–VAR inside the domain. The increments have

been averaged for the whole period under examination over boxes of 0.05 degrees and plotted
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Figure 3.13: 1D–VAR analysis mean increments (analysis minus background) in the temper-
ature (left panel) and specific humidity (right panel) profiles.

in terms of column integrated water vapour and saturation mixing ratio. Positive (Negative)

differences between observed and background TBs are transformed in increases (decreases)

of temperature profiles and decreases (increases) of water vapour. Since 1D–VAR incre-

ments lie in the column space of the kalman gain matrix (HB), the relative contribution of

temperature and humidity to the TB’s increments is defined by the minimisation process. qv

and qsat are of the same order of magnitude showing that the most efficient convergence is

obtained by changing both temperature and humidity in the column. It should be noted that

in some circumstances the 1D–VAR increments can lead to supersaturated states. These may

occur as a consequence of the presence of clouds that the cloud clearing algorithm has failed

to detect, or a poor estimate of the SST with an error exceeding the estimated background

error, for example. While these supersaturated states can be used to spot weaknesses in the

cloud clearing algorithm, these profiles should however be discarded.

3.6.2 Comparisons with independent observations

As an independent validation of the 1D–VAR products, radiosonde measurements and inde-

pendent SST datasets are employed. Radiosondes measurements are taken at three stations

included in the ARPA-SIM operational domain of COSMO–LAMI close to the sea which
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Figure 3.14: 1D–VAR analysis mean increments (analysis minus background) in the inte-
grated column water vapour(left panel) and saturation water vapour (right panel).

Table 3.2: Radiosondes locations selected for validation of the 1D–VAR retrieved profiles.

ID NAME HEIGHT (m) LAT (deg) LON (deg)
16320 BRINDISI 15 40.6 17.9
16560 P CAGLIARI/ECOSMOAS 4 39.2 9.1
16429 TRAPANI/BIRGI 7 37.9 12.5

are blacklisted from the analysis so to represent a real independent source of validation. The

radiosondes employed are standard VAISALA RS-92.

There is a significant reduction in mean-bias and root mean square (RMS) errors in the

temperature profiles throughout the troposphere, both at 00 UTC (fig. 3.15) and 12 UTC (fig.

3.16). The improvement in the humidity estimation is less evident. Despite the questionable

significance of around 100 soundings, it appears that the 1D–VAR introduces a moist bias

in the humidity profiles especially during daytime (12 UTC) while still reducing the RMS

error. However, it should be recalled that, while the RS-92 sounds have been shown to pro-

vide accurate humidity measurements at night, they suffer from a significant day-time bias

of around 10 % in relative humidity due to sensor heating (Vömel et al., 2006, [47]). This

could be the origin of the apparent day-time moist bias in the 1D–VAR analyses.

The effect of the 1D–VAR analysis to reduce the observed model bias can also be quan-
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Figure 3.15: Model background and analysis biases (mean and RMS) when com-
pared with radiosonde observations. The F factor is defined as (RMSRDS−B −
RMSRDS−A)/RMSRDS−B and quantifies the fraction of observed bias variability corrected
by the analysis. See text for details.

tified in terms of the fraction of observed bias variability corrected by the analysis defined

as:

F =
RMS(XRDS −XB) −RMS(XRDS −XA)

RMS(XRDS −XB)
(3.11)

where RMS(XRDS −XB) and RMS(XRDS −XA) are the root mean square errors of the

background and analysis departures, respectively. If F = 1 then the 1D–VAR analysis pro-

duces profiles which correlate perfectly with the radiosondes observations, if F = 0 then the

effect of 1D–VAR is null, if it is negative then the 1D–VAR analysis procedure deteriorates

the background.

This fraction F is overall positive with peaks of 0.8 for temperature and 0.4 for humidity.

The negative values of F in the specific humidity profiles shows deficiencies in the 1D–VAR

retrieval especially at high vertical levels but this may also be partially explained by sound-

ing inaccuracies which are known to be non-negligible at these levels. For levels above 600

hPa the analysed 1D–VAR produces a substantial improvement to the humidity profiles.

As an independent source of validation of the analysed SST two different datasets for

the Mediterranean and the Adriatic (ADR) seas are used: the optimally interpolated (OI) mi-

crowave (MW) SST products produced by Remote Sensing Systems (hereafter called MED)

and the ADRICOSM produced by the ISAC-CNR institute in Rome, IT (hereafter called
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Figure 3.16: As for Fig. 3.16 but for 12 UTC observations

ADR). To guarantee their independence from the background analysed SST the two datasets

employ microwave sensors and independent algorithms compared to the prescribed SST

given to COSMO as a boundary condition which uses satellite infrared channels (Reynolds

et al., 2002 [29]).

The MED dataset is available daily and MW SST s are ’normalised’ to a daily minimum

SST , defined to occur at approximately 8 AM, local time. It uses two microwave sensors

(TMI and AMSR-E) sensors on board of TRM and AQUA (Chelton et al., 2000 [3], Donlon

et al., 2002 [10]) and possesses a final resolution of a quarter degree ( 25km). Although

these MW products are at a lower spatial resolution than standard infrared SST s, they have

a much larger spatial and temporal coverage since retrieval is also possible for cloud con-

taminated spots. Other satellite observations deriving from microwave sensors used in the

1D–VAR can therefore improve the SST analysis. This is the main reason why SST has

been included in the control vector.

Figg. 3.17 and 3.18 show two dimensional PDFs of the model SST versus the measured

MED and ADR datasets, respectively. The background SST s are derived from an analysis

which is performed at 00 UTC and is employed during all COSMO–LAMI integrations. The

non-zero bias and RMS error between the model background SST s and the new datasets

are not only due to differences in the data used but also to the fact that they effectively refer to

two different analysis times. COSMO SST s do not evolve over time. The 1D–VAR analysis

is able to reduce the bias only in the ADR dataset, while the RMS is reduced both in ADR
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Figure 3.17: Two-dimensional probability density function of model (background and anal-
ysis) versus observed SST for the MED dataset. The right-endmost map shows the data
localisation. The data cover the whole period of 20 days starting from the 1st September
2006.

and in MED dataset. Since in the ADR dataset the daily differences of the sea temperature

can be more relevant, this result means that the infrared product is improved.
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Figure 3.18: Same as for Fig. 3.17 but for the ADR dataset.
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Chapter 4

THREE–DIMENSIONAL

CASE–STUDIES

This chapter discusses the application of the 1D–VAR assimilation of satellite radiances for

two selected case studies: a false alarm case occurred in Friuli–Venezia–Giulia region in July

2004 and a heavy precipitation case occurred in the Emilia–Romagna region in April 2005.

For each of them a brief description of the synoptic situation is given and COSMO analysis

and forecast fields produced with and without the contribution of the 1D–VAR retrieved pro-

files are compared.

The analysis of these differences have been divided in two phases. The fields are firstly

analysed during the twelve hours assimilation cycle and then during the thirtysix hours model

forecast. The initial conditions for the assimilation period are provided by the GME analysis.

The hourly boundary conditions are provided by the GME forecasts both for the assimilation

and for the forecast. It is worth noting that in both the case–studies the horizontal integration

domain corresponds to the COSMO–LAMI operational one, but a different number of ver-

tical levels is used: 35 levels for the Friuli–Venezia–Giulia case and 40 levels for the latter

one. The use of only 35 vertical levels in the false alarm case–study is imposed for doing a

coupling with ensemble members previously run with only 35 vertical levels (more details

of this coupling is done in section 4.3).

Since the main aim of these case–studies is to evaluate the impact of the use of MSG–1
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satellite data in the assimilation cycle, two different assimilations have been performed:

• the first one where only the conventional observations are assimilated;

• the second one where also MSG–1 satellite data are assimilated using the 1D–VAR

approach as discussed in chapter 3.

As next step two different forecasts have been performed using the two different analyses

one at a time. Hence both the assimilation, as well as the forecasts, are in the same tempo-

ral window and the only difference between each other is the presence/lacking of MSG–1

satellite data in input. To better evaluate the impact of MSG satellite data the differences of

some output variables are plotted both for the assimilation and for the forecast period; the

considered variables are:

• the integrated water vapour over the column;

• the integrated saturation water vapour over the column;

• the 2 meters temperature T2m;

• the 2 meters specific humidity q2m;

• the surface temperature Ts;

• the precipitation field.

The inclusion in the considered variables of the integrated saturation water vapour over

the column allows to translate humidity information into temperature increments and to per-

form in this way a direct comparison between these two variables. Furthermore the forecast

wind fields at the end of the assimilation periods are plotted.

4.1 A false alarm case study : 8th of July 2004

The meteorological situation for this event can be explained as follows: a frontal system,

linked to a large low depression localised on the Western Europe, in the night between the

7th and the 8th of July 2004 was moving towards to lower latitudes. The meteorological sys-

tem reached firstly the North–Western regions of Italy and subsequently the other Northern
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Figure 4.1: Synoptic situation at 00 UTC of the 8th July 2004

regions.

This synoptic situation occurs very frequently and usually determines major effects in

terms of precipitation over the Western Alps and, after the front passage, over Friuli–Venezia–

Giulia, Veneto and Trentino regions. Looking at several NWP model variables and in partic-

ular to the forecasted precipitation, a risk scenario was announced.

For this case study the temporal window of the two assimilations starts at 00 UTC of

the 8th of July 2004 and lasts 12 hours. The forecasts are performed for the next 36 hours

starting at 12 UTC of the 8th of July (see Fig. 4.2).

Figure 4.2: Scheme of the temporal windows for assimilations, in green colour, and forecasts,
in yellow, for the false alarm case–study

To distinguish between the two assimilations and the two forecasts, with and without the

use of the MSG–1 satellite data, the experiments are labelled as follows:

- ASS_MSG1_20040708 and FOR_MSG1_20040708 for the assimilation and the fore-

cast where MSG–1 satellite data are assimilated using the 1D–VAR approach in COSMO;
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- ASS_NUDG_20040708 and FOR_NUDG_20040708 for the assimilation and the fore-

cast where MSG–1 satellite data are not assimilated, so only the conventional data are

assimilated by the nudging technique.

4.1.1 Assimilation

Figure 4.3: CT product for the temporal window of the assimilation with a temporal fre-
quency of 1 hour.

Even if both CT product and the flg_prc are available every 15 minutes they are plotted
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for all the case–studies selected in this thesis with a temporal frequency of 1 hour.

The CT product (see Fig. 4.3), with the same colour palette defined in section 3.2, allows

the view of the front passage over the north of Italy during the first hours of the 8th of July

2004.

Figure 4.4: flg_prc during the assimilation temporal window with a temporal frequency of 1
hour.
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The flg_prc, with the same colour palette defined in section 3.2, obtained for the assimi-

lation temporal window (see Fig. 4.4) shows that the data assimilated during the first hours

are mostly localised over the north of the Adriatic sea, while at the middle and at the end of

the period the available data points are concentrated on the Tyrrhenian sea and on the West-

ern Mediterranean sea close to the African coasts.

This data localisation has an impact on the initial position of the differences for the con-

sidered variables. In fact, except for Ts, the model variable increments are localised on the

north of the Adriatic sea during the first hours of assimilation.

During the assimilation integration these increments are spread in space and time by the

nudging scheme.

In particular the integrated water vapour increments (see Fig. 4.5) for the first assimila-

tion hours remain localised where observed radiances reach convergency in the 1D–VAR and

are thus assimilated. This produces significant positive increments of about 0.5–1.0 kg/m2

on the north of the Adriatic sea and in the Veneto region.

The magnitude of these differences reaches the maximum at the end of the assimilation

period itself when the differences are appreciable almost over the integration domain; the

most positive increments are present on the Liguria region and on the Ligurian sea, and in

the Mediterranean sea norh of Tunisia, while remarkable negative increments are present

over the sea between Corsica and Sardinia islands and west of the Tuscany region.

For the integrated saturation water vapour over the column (see Fig. 4.6) the differences

are significant at the beginning of the assimilation period only over the Veneto region, while

in the middle of the period the largest differences are localised over the sea between Sicily,

Sardinia and the African coasts. The spreading of these structures and their amplitude results

smaller than for the integrated water vapour one.

The T2m and q2m differences over the assimilation cycle period (shown in Figg. 4.7 and
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Figure 4.5: Differences in kg/m2 between ASS_MSG1_20040708 and
ASS_NUDG_20040708 of the integrated water vapour in the column during the as-
similation temporal window with a temporal frequency of 1 hour.

4.8 respectively) show a progressive spreading of model differences in time. For the T2m (see

Fig. 4.7) differences between the two runs at the end of the assimilation period are generally

negative over the Tyrrhenian sea while they are positive in the north of the Adriatic sea, but

both these differences have generally an amplitude of 0.5 K. The most positive differences

are present in the south–east of Sardinia, west of Corsica and over the Western Alps; the
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Figure 4.6: Differences in kg/m2 between ASS_MSG1_20040708 and
ASS_NUDG_20040708 of the integrated saturation water vapour in the column dur-
ing the assimilation temporal window with a temporal frequency of 1 hour.

most negative values are instead present in the south–west of Sardinia, in Liguria, Tuscany,

in the Central Alps and in Friuli–Venezia–Giulia region.

For the q2m (see Fig. 4.8) the differences at the end of the assimilation period have the

most positive values on the Tyrrhenian sea, south–west and east of Sardinia, while the most
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Figure 4.7: Differences in K between ASS_MSG1_20040708 and ASS_NUDG_20040708
of the forecasted T2m during the assimilation temporal window with a temporal frequency of
1 hour.

negative values are in Sardinia, Corsica and in Friuli–Venezia–Giulia.

In the forecast model the assumption is made that the SST vary slowly during the fore-

cast integration while this assumption cannot be considered valid for the temperature over

land. Hence the SST values are kept constant to the analysed SST provided by the GME

boundary conditions while Ts is diagnosed by a land–scheme. Fig. 4.9 shows that Ts differ-
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Figure 4.8: Differences in g/kg between ASS_MSG1_20040708 and
ASS_NUDG_20040708 of the forecasted q2m during the assimilation temporal win-
dow with a temporal frequency of 1 hour.

ences over the assimilation period result very similar to T2m differences over land.

It is worth noting that the assimilation of clear–sky radiances over the north of Adriatic

sea at the beginning of the assimilation is not able to remove the cloud cover present in the

assimilation run ASS_NUDG_20040708 (not shown) and this will be subject of further de-

velopments of the COSMO model system in the next future.
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Figure 4.9: Differences in K between ASS_MSG1_20040708 and ASS_NUDG_20040708
of the forecasted Ts during the assimilation temporal window with a temporal frequency of
1 hour.

Since this case study concerns a false alarm case occurred in Friuli–Venezia–Giulia

the forecast precipitations cumulated over the 12 hours of the two assimilations have been

plotted only for the north of Italy (see Fig. 4.10). The overestimation of precipitation

in Liguria region forecast by the run ASS_NUDG_20040708 is also present in the run

ASS_MSG1_20040708. The main remarkable differences between the two forecast precipi-
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Figure 4.10: Twelve hours cumulated precipitation in mm from 00 UTC of the
8th of July 2004 forecasted by the runs ASS_MSG1_20040708 (top left panel) and
ASS_NUDG_20040708 (top right panel), the differences (ASS_MSG1_20040708 minus
ASS_NUDG_20040708) of the two forecast precipitation fields (bottom left panel) and the
correspondent observations (bottom right panel).

tations are localised over the north of Adriatic sea where the run ASS_MSG1_20040708 in-

crements the precipitation field. The reflectivity measured by the radar localised at Gattatico

(one of the two radars of the Hydro–Meteorological Service of Emilia–Romagna region,

ARPA-SIM) between 10:12 UTC and 11:42 UTC of the 8th of July 2004 with a tempo-

ral frequency of half an hour shows clearly the presence of hydrometeors in the north of

the Adriatic sea and close to the Veneto coasts (see Fig. 4.11), just in the areas where the

precipitation field forecasted by ASS_MSG1_20040708 is larger than the one forecasted by

ASS_NUDG_20040708; this can be considered a qualitative confirmation that the assimila-

tion of MSG–1 data has a positive impact in the forecasted precipitation and in the production

of the analysis itself.

Finally the ten meters wind fields forecasted by the two assimilations at 12 UTC of the

8th of July have similar structure with some changes in intensity and direction more evident
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Figure 4.11: Radar reflectivity in dBZ at the medium range observed by the radar localised
at Gattatico at 10:12 UTC (top left panel), 10:42 UTC (top right panel), 11:12 UTC (bottom
left panel) and 11:42 UTC (bottom right panel) of the 8th of July 2004 respectively

Figure 4.12: 10 meters wind field in m/s forecasted at the end of the assimilation window
for ASS_MSG1_20040708 (left panel) and ASS_NUDG_20040708 (right panel) plotted to-
gether with the orography field (in meters).

in the Ligurian sea. (see Fig. 4.12)

4.1.2 Forecast

The amplitude of the differences of the integrated water vapour with respect to the saturation

integrated water vapour ones remains greater also over the forecast period. This means that

this greater impact for the integrated water vapour persists also during the forecast, where
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Figure 4.13: Differences in kg/m2 between FOR_MSG1_20040708 and
FOR_NUDG_20040708 of the integrated water vapour in the column during the fore-
cast temporal window with a temporal frequency of 3 hours.

the data assimilation is not performed (see Figg. 4.13 and 4.14).

In particular the largest amplitude of the integrated water vapour differences is initially

localised over the Tyrrhenian sea with positive differences in the south and negative dif-

ferences in the north respectively. Carrying on in forecast time the differences are shifted
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Figure 4.14: Differences in kg/m2 between FOR_MSG1_20040708 and
FOR_NUDG_20040708 of the integrated saturation water vapour in the column dur-
ing the forecast temporal window with a temporal frequency of 3 hours.

towards the east north–east direction with a correspondent reduction of the differences in the

north–west of COSMO–LAMI domain.

This effect is due to the fact that the boundary conditions have more impact on the North–

Western part because the flow at high elevation comes from that direction. The reduction is
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Figure 4.15: Differences in K between FOR_MSG1_20040708 and FOR_NUDG_20040708
of the T2m during the forecast temporal window with a temporal frequency of 3 hours.

even more evident for the integrated saturation water vapour (see Fig. 4.14); the differences

initially localised in the center part of COSMO–LAMI domain at the end of the forecast

remain localised only in the north–east part of the domain itself.

The reduction of the differences is less evident for the other variables (T2m, q2m and Ts)

(see Figg. 4.15, 4.16 and 4.17 respectively).
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Figure 4.16: Differences in g/kg between FOR_MSG1_20040708 and
FOR_NUDG_20040708 of the q2m during the forecast temporal window with a tem-
poral frequency of 3 hours.

For the 2 meters variables the difference reduction is greater over sea west of Corsica

and Sardinia islands than over land. It is worth noting that the variables T2m and q2m are

diagnosed in COSMO model from the temperature and the specific humidity at the ground

and the lowest model level taking into account the atmospheric stability; this combined to

the constant SST explains why the reduction of the 2 meters variables differences is larger
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Figure 4.17: Differences in K between FOR_MSG1_20040708 and FOR_NUDG_20040708
of the Ts during the forecast temporal window with a temporal frequency of 3 hours.

over sea than over land.

The precipitation fields obtained by the runs FOR_MSG1_20040708 and FOR_NUDG_20040708

have very similar structures. The overestimation of the precipitation over the Central Alps

is present in both the forecasts while the overestimations in Friuli–Venezia–Giulia, just the

region where the false alarm was announced, present in FOR_NUDG_20040708 is remark-
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ably reduced in FOR_MSG1_20040708. The difference of the forecast fields of precipitation

shows the presence of a little phase displacement of the structures (see Fig. 4.18).
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Figure 4.18: Twentyfour hours cumulated precipitation in mm from 12 UTC of the
8th of July 2004 forecasted by the runs FOR_MSG1_20040708 (top left panel) and
FOR_NUDG_20040708 (top right panel), the differences (FOR_MSG1_20040708 minus
FOR_NUDG_20040708) of the two forecast precipitation fields (bottom left panel) and the
correspondent observations (bottom right panel).

86



4.2 A heavy precipitation case–study : 9th of April 2005

The meteorological situation for this event determined heavy precipitations over the whole

Emilia–Romagna region during the two days of 10th and 11th of April 2005 due to the pres-

ence of a cyclonic depression over the Central–Western Mediterranean basin. This synoptic

situation (see Fig. 4.19) was triggered by the arrival of a polar air mass moved from its orig-

inal position in Greenland towards to lower latitude by a jet stream present on the north of

the Atlantic.

Figure 4.19: European Center for Medium range Weather Forecast (ECMWF) analysis at
250 hPa at 12 UTC of 8th of April 2005.

The arrival of the cold front happened in the night between the 8th and the 9th of April

and produced the most significant effects in terms of precipitation in the following days. The

cold air reached the Algerian coasts and triggered a great warm air flow from the African

land towards the central part of the Mediterranean sea. This determined moist and intense
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winds from south–east in the south–east part of Italy which impacted strongly with the cold

air present a slightly more to the west. Furthermore the extensive cloud–system, driven

from the meridional winds at high altitudes, was even more intensified in Emilia–Romagna

region for the presence of north–east winds at the surface which impacted with the Apennine

mountains. The baric minimum on the day of 11th of April reached the position between

Sardinia and Sicily islands where it stationed for the next 36 hours constraining the cloud

vortex to circle the center of low pressure (see Fig. 4.20).

Figure 4.20: Image in the visible channel of Meteosat–7 at 12 UTC of the 11th of April
2005.

For this case–study the temporal window of the two assimilations start at 12 UTC of the

9th of April 2005 and lasts 12 hours. The forecasts are performed for the next 36 hours

starting at 00 UTC of the 9th of April (see Fig. 4.21). Similarly for the false alarm case

previously discussed, to distinguish between the two assimilations and the two forecasts,

with and without the use of the MSG–1 satellite data, they are hereafter called respectively:

- ASS_MSG1_20050409 and FOR_MSG1_20050409 for the assimilation and the fore-

cast where MSG–1 satellite data are assimilated using the 1D–VAR approach in COSMO;
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Figure 4.21: Scheme of the temporal windows for assimilations, in green colour, and fore-
casts, in yellow, for the heavy precipitation case–study

- ASS_NUDG_20050409 and FOR_NUDG_20050409 for the assimilation and the fore-

cast where MSG–1 satellite data are not assimilated, so only the conventional data are

assimilated by the nudging technique.
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4.2.1 Assimilation

Figure 4.22: CT product for the temporal window of the assimilation with a temporal fre-
quency of 1 hour.

The CT product (see Fig. 4.22), with the same colour palette defined in section 3.2, shows

that the cloud cover in this case study is very much extended and this allows the assimilation

of a small number of observed radiances as shown in the Fig. 4.23 (the colour palette used

is the one defined in section 3.2). Most of the assimilated satellite observations are located

in the Ligurian sea and south of Sicily island.
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Figure 4.23: flg_prc for the temporal window of the assimilation with a temporal frequency
of 1 hour.

For the integrated water vapour the initial differences, localised in the Ligurian sea and

in the south of Italy, are negative; they are spread in space during the assimilation temporal

window by the nudging. At the end of the assimilation cycle the most negative differences

are present in the Ionian sea, while the most positive differences are present in the south of

the Adriatic sea, south–west of Sardinia and in the Ligurian sea. The integrated saturation
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Figure 4.24: Differences in kg/m2 between ASS_MSG1_20050409 and
ASS_NUDG_20050409 of the integrated water vapour in the column during the as-
similation temporal window with a temporal frequency of 1 hour.

water vapour differences (not shown) are almost negligible over the whole assimilation cycle.

For the 2 meters surface variables, T2m and q2m (see Figg. 4.25 and 4.26), initially the

differences are concentrated in the south of Italy and west of Tunisian coasts and subse-

quently they are spread from this original position. For this case–study the amplitude of the
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Figure 4.25: Differences in K between ASS_MSG1_20050409 and ASS_NUDG_20050409
of the forecasted T2m during the assimilation temporal window with a temporal frequency of
1 hour.

differences at the end of the assimilation are rarely greater than 0.5 K for the T2m and 0.5

g/kg for the q2m respectively. It is worth noting the almost total absence of impact in the q2m

over the Alps.

Finally Ts differences (see Fig. 4.27) are very similar to the differences in the T2m over

land, and also for this variable the differences are rarely greater than 0.5 K.
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Figure 4.26: Differences in g/kg between ASS_MSG1_20050409 and
ASS_NUDG_20050409 of the forecasted q2m during the assimilation temporal win-
dow with a temporal frequency of 1 hour.

The forecast precipitation fields for the twelve hours of the two assimilations show sim-

ilar structures with very small differences whose greatest amplitude ranges around 10 mm.

The correspondent observations show that both the forecasts produce a slight overestimation

of the precipitation in the Veneto region, while the other maxima of precipitation, present in

Piemonte region and in the Po valley, are well localised (see Fig. 4.28).
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Figure 4.27: Differences in K between ASS_MSG1_20050409 and ASS_NUDG_20050409
of the forecasted Ts during the assimilation temporal window with a temporal frequency of
1 hour.

Finally the forecasted 10 meters wind fields forecasted by the assimilations at 00 UTC of

10th of April are identical and no such remarkable change can be reported (see Fig. 4.29).
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Figure 4.28: Twelve hours cumulated precipitation in mm from 12 UTC of the
9th of April 2005 forecasted by the runs ASS_MSG1_20050409 (top left panel) and
ASS_NUDG_20050409 (top right panel), the differences (ASS_MSG1_20050409 minus
ASS_NUDG_20050409) of the two forecast precipitation fields (bottom left panel) and the
correspondent observations (bottom right panel).

Figure 4.29: 10 meters wind field in m/s forecasted at the end of the assimilation window
for ASS_MSG1_20050409 (left panel) and ASS_NUDG_20050409 (right panel) plotted to-
gether with the orography field (in meters).

96



4.2.2 Forecast

Figure 4.30: Differences in kg/m2 between FOR_MSG1_20050409 and
FOR_NUDG_20050409 of the integrated water vapour in the column during the fore-
cast temporal window with a temporal frequency of 3 hours.

At the beginning of the forecast most of the negative integrated water vapour differences

are localised in the Ionian sea and south of Sicily, while the most positive differences are

present on the south–east of France. The differences seem to have a general cyclonic rota-

tion in time and at the end of the forecast with the greatest differences in terms of amplitude
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present close to the low pressure localised between Sicily and Sardinia islands (see Fig.

4.30). The integrated saturation water vapour, like during the assimilation cycle, have al-

ways values concentrated between -0.1 and 0.1 kg/m2 (not shown).

Figure 4.31: Differences in K between FOR_MSG1_20050409 and FOR_NUDG_20050409
of the T2m during the forecast temporal window with a temporal frequency of 3 hours.

For the T2m and the q2m the amplitude of the differences is mostly of 0.5 K and 0.5

g/kg respectively, which means that the differences are not significant over the almost whole
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Figure 4.32: Differences in K between FOR_MSG1_20050409 and FOR_NUDG_20050409
of the q2m during the forecast temporal window with a temporal frequency of 3 hours.

domain (see Fig. 4.31 and 4.32).
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Figure 4.33: Differences in K between FOR_MSG1_20050409 and FOR_NUDG_20050409
of the Ts during the forecast temporal window with a temporal frequency of 3 hours.

The Ts differences are very similar to the 2 meters temperature differences over land with

differences which almost always range from -0.5 to 0.5 K (see Fig. 4.33).

It is worth noting that for this case study, on the contrary of what happened for the false

alarm case previously discussed, the variables differences, and in particular the integrated

water vapour differences, do not reduce very much in the forecast. This could be due to
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the presence of a stationary vortex of low pressure between Sicily and Sardinia islands; in

fact this vortex reduces the impact of the boundary conditions hourly provided by the GME

model and determines a more persistence in the differences themselves.
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Figure 4.34: Twentyfour hours cumulated precipitation in mm from 00 UTC of the
10th of April 2005 forecasted by the runs FOR_MSG1_20050409 (top left panel) and
FOR_NUDG_20050409 (top right panel), the differences (FOR_MSG1_20050409 minus
FOR_NUDG_20050409) of the two forecast precipitation fields (bottom left panel) and the
correspondent observations (bottom right panel).

The precipitation field forecasted by the two runs FOR_MSG1_20050409 and FOR_NUDG_20050409

are very similar; it is worth noting that even if the amount of forecasted precipitation is very

high, especially in the Apennine areas of Emilia–Romagna region, the differences in the

north of Italy are very small and ranging between -10 and 10 mm. Comparing the observa-

tions with the forecasted fields it is clear the good localisation of the peaks of the precipitation

over the Emilia–Romagna Apennines but both the forecasts overestimate the precipitation in

Liguria region (see Fig. 4.34).
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4.3 A possible improvement of the B matrix and

its use in the false alarm case–study

Up to now following the Parrish–Derber methodology the 12 hours forecast is assumed to be

the “truth” and it is used to compute the background error covariance matrix B. Nevertheless

this statistical method does not take into account the synoptic situation of the moment which

represents the main forcing of the meteorological system. Hence the best possible approach

in the definition of B is the condensation inside B itself of both climatological and real–time

information. Hence the calculation of “climatological” B matrices has to be coupled with

the calculation of synoptic situation dependent B matrices. The calculation of this improved

B matrix consists in the following three steps:

• calculation of the climatological B matrices;

• calculation of the “Ensemble Islands” B matrices;

• merging of the climatological and ensemble islands B matrices.

This method has been applied to the false alarm case–study of 8th of July 2004 and the

several steps are explained in the following three subsections (4.3.1, 4.3.2 and 4.3.3).

4.3.1 Calculation of the climatological B matrices

The climatological B matrix, originally calculated only over the whole domain, is now also

calculated over twelve subdomains containing the same number of grid points (see Fig. 4.35)

using the Parrish–Derber method. For simplicity the climatological B matrices for a given

variable will be indicated by the symbol Bvariable
clim , hence the temperature climatological B

matrices will be indicated by the symbol BT
clim, while the water vapour climatological B

matrices by B
q

clim.

Figg. 4.36 and 4.37 show the BT
clims and the B

q

clims respectively for the twelve subdo-

mains.

All these twelve BT
clims show the highest positive values on the diagonal in the last ten

levels; in particular for the subdomain number 2 the variances at these levels reach the

102



36°N 36°N

40°N 40°N

44°N 44°N

48°N 48°N

52°N 52°N
4°E 8°E 12°E 16°E 20°E 24°E

ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªª

ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªªªªªª
ªª

ªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªª

ªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªª

ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª

ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª
ªª

ªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªª

ªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªª

ªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªª

1 2 3

4 5 6

7 8 9

10 11 12

Figure 4.35: The twelve subdomains where the climatological B matrices are calculated.

maximum value of 2.47 K2. Furthermore all the BT
clims have negative values in the cross–

correlations between the 5th and the 10th level and the levels at lower altitude, with negative

values which are not lower than -0.65 K.

The B
q

clims calculated on the twelve subdomains show significant values greater than

zero localised down the 15th level; the covariances for the higher levels have values lower in

amplitude, since the presence of water vapour at these altitudes results scarce. The highest

positive value of covariance is reached in the subdomain number 5 around the 30th level

with a value of 2.30 (g/kg)2. Significant but very little negative values, non lower than -0.1

(g/kg)2, are present only in the subdomain number 3.

It is worth noting that for both the BT
clims and B

q

clims on the twelve subdomains the

positive covariances are greater in amplitude than the negative ones. Finally the BT
clims and

B
q

clims are calculated over the whole integration domain; their shapes are more regular than

in the correspondent matrices calculated on the twelve subdomains (see Fig. 4.38).
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Figure 4.36: The BT
clims in K2 on the twelve subdomains.

4.3.2 Calculation of the Ensemble Islands B matrices

The use of the ensemble members to compute Ensemble Islands B matrices is based on the

assumption that the ensemble spread can give an important contribution to define the synoptic
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Figure 4.37: The B
q

clims in (g/kg)2 on the twelve subdomains.

dependent component of the background error covariances. For the false alarm case–study of

the 8th of July 2004 five ensemble members were run. The initial conditions and the bound-

ary conditions used to produce the ensemble members is provided by GME model of 00 UTC
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Figure 4.38: All domain BT
clim in K2 (left panel) and B

q

clim in (g/kg)2 (right panel).

of the 8th of July 2004, while the perturbations are obtained varying some parameterisations

inside the COSMO model. One of the five members is obtained running the operational

COSMO model, two of the other four members are obtained replacing the Tiedtke convec-

tion scheme, which is used operationally in COSMO model, by the Kain-Fritsch convection

scheme and removing any type of convection parameterisation scheme (explicit convection)

respectively. The remaining two are instead obtained setting a parameter related to the tur-

bulence scheme (rlam_heat), which has value 1 for the operational COSMO model, to the

values 0.1 and 50 respectively (see Fig. 4.39).

Figure 4.39: The different five ensemble members produced starting from the GME initial
conditions and boundary conditions varying the COSMO parameters concerning the convec-
tion parameterisation scheme or the turbulence parameters (see the text for more details).

The ensemble runs start at 00 UTC of the 8th of July 2004 and the 12 hours forecast fields

are used in the calculations. The mean of the ensemble members is considered our “truth”
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and the departures from this “truth” is used to estimate the spread of the ensemble members

for the variable temperature in each point and at each level of the integration domain. This

three–dimensional field is then convolved with a normalised weighting function which has

maximum value at 3 km at the altitudes where the use of satellite data has the major impact;

the weighting function (see Fig. 4.40) has been chosen to have the following form:

W (z, z0, A) =
z

z0
exp

(−(z − z0)
2

A

)

(4.1)

where z0 and A are parameters allowed to be changed (see Fig. 4.40).

Figure 4.40: Weighting function of the temperature spread used to determine the ensemble
islands (z0 = 2.0, A = 6.0).

Finally a percentile technique is applied to this two–dimensional field to detect geograph-

ical areas, called “islands”, where the ensemble B matrices will be calculated. The percentile

technique can be explained as follows: first of all the p1th percentile and the p2th percentile,

with 0 < p1 < p2 < 100, of the two dimensional field are calculated; then starting from the

left corner of the domain and proceeding in west–east direction firstly and in south–north

direction secondly the points where the two–dimensional field has value bigger than the p2th

percentile are searched. If one points satisfies this condition, then this point is considered a
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point of an island, and the size of this island is obtained proceeding from this point in each

of the four cardinal directions until the two–dimensional field reaches a value lower than the

p1th percentile. The island so obtained is dismissed if the number of points inside itself is

lower than a minimum number, otherwise the points constituting the island are not allowed

to be inside other islands (see Fig. 4.41).
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Figure 4.41: Ensemble temperature two–dimensional field obtained convolving the weight-
ing function with the ensemble spread field of the temperature (top left panel) in K2, the
islands obtained by the percentile technique (the minimum number of points constituting the
islands is set to 150, p1 is set to 70, and finally p2 is set to 99) (top right panel), and the
brightness temperature, in K, of the 10.8 µm infrared channel at 12 UTC of the 8th of July
2004 (bottom panel).

The islands are principally localised where the cloud systems are present. The ensemble

B matrices will be calculated on these “islands”.
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Figure 4.42: The BT
enss in K2 on the eight islands.

For simplicity the ensemble B matrices for a given variable will be indicated by the sym-

bol Bvariable
ens , hence the temperature ensemble B matrices will be indicated by the symbol

BT
ens, while the water vapour ensemble B matrices by Bq

ens.
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Figure 4.43: The Bq
enss in (g/kg)2 on the eight islands.

Both the BT
enss and Bq

enss calculated on the ensemble islands result more irregular than

the correspondent BT
clims and B

q

clims matrices (see Figg. 4.42 and 4.43 respectively). The

values of BT
enss calculated on the ensemble islands are always smaller than the values of

BT
clims over the twelve subdomains, anyway the highest values are as before present on the

diagonal in the levels close to the surface (see Fig. 4.42). The Bq
enss calculated on the en-
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semble islands have values whose order of magnitude is the same of the B
q

clims, in particular

in the island number 7 is reached the maximum value of 3.22 (g/kg)2 in the diagonal between

the 25th and the 30th level (see Fig. 4.43).

Figure 4.44: All domain BT
ens in K2 (left panel) and Bq

ens in (g/kg)2 (right panel).

Over the whole domain the BT
clims and B

q

clims are not only more homogeneous but also

contain lower information than the correspondent B matrices calculated on the ensemble

islands (see Fig. 4.44).

4.3.3 Merging of the two B matrices

Once the climatological B matrices and the ensemble B matrices are calculated, they are

merged for each point of the integration domain. There are two possibilities:

• if the point falls in the subdomain number i and in the ensemble island number j, then

the flow–dependent B matrix for this point is:

Bflow−dependent = 0.7Bclim + 0.3Bens (4.2)

• if the point falls in the subdomain number i but no ensemble island includes it, then

the flow–dependent B matrix for this point is:

Bflow−dependent = Bclim (4.3)
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Using this “improved” B matrix assimilation and forecast are performed for the false

alarm case–study with the same manner discussed at the beginning of this chapter. The as-

similation and the forecast are called ASS_MSG1_20040708_ens and FOR_MSG1_20040708_ens

respectively.

4.3.4 Assimilation

Figure 4.45: flg_prc during the assimilation temporal window with a temporal frequency of
1 hour.
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Fig. 4.45 shows the flg_prc (the used colour palette is defined in section 3.2) for the

assimilation period; most of the assimilated radiances are concentrated during the first hours

of the assimilation and their number decreases carrying on in the assimilation time itself.

Figure 4.46: Differences in kg/m2 between ASS_MSG1_20040708_ens and
ASS_NUDG_20040708 of the integrated water vapour in the column during the as-
similation temporal window with a temporal frequency of 1 hour.

The integrated water vapour differences have significant values already in the first hours

of the assimilation with positive values between 2.5 and 3.0 kg/m2 north of Sicily island and
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in the north–east part of the COSMO–LAMI domain. During the assimilation the differences

are spread over the whole domain and at the end of the assimilation reach values greater than

10 kg/m2 south of Sardinia island, with the most positive values in the south of the Tyrrhenian

sea and the most negative ones south of Sicily island (see Fig. 4.46).
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Figure 4.47: Twelve hours cumulated precipitation in mm from 00 UTC of the 8th of July
2004 forecasted by the run ASS_MSG1_20040708_ens (left panel) and the correspondent
observations (right panel).

The forecasted precipitation presents overestimation of precipitation in Liguria region

and in the north–west part of the Po Valley, while the maxima of precipitation in the Western

Alps are well localised (see Fig. 4.47).

4.3.5 Forecast

At the beginning of the forecast the integrated water vapour differences have values greater

than 10 kg/m2 south of Sardinia island and negative values south of Sicily. These differences

are reduced and shifted towards the east direction during the forecast. At the end of the fore-

cast the most significant differences are present only on the Eastern part of the domain. This

is due to the effect of the boundary conditions of the GME model which drive the COSMO

model; in fact the synoptic situation was characterised at high altitude by intense north–west

winds (see Fig. 4.48).

Finally the forecasted precipitation field shows an overestimation of precipitation over

the Central Alps, in the Liguria region and also over Friuli–Venezia–Giulia where the false

alarm case was announced (see Fig. 4.49).
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Figure 4.48: Differences in kg/m2 between FOR_MSG1_20040708_ens and
FOR_NUDG_20040708 of the integrated water vapour in the column during the fore-
cast temporal window with a temporal frequency of 3 hours.

The non-remarkable improvement of the forecast in Friuli–Venezia–Giulia region using

the flow-dependent B matrix could be due to the fact that in this case the assimilation of

points in the north of the Adriatic sea at the beginning of the assimilation is not performed at

the contrary of the run ASS_MSG1_20040708. This does not permit to produce the precipi-

tation in the north of the Adriatic sea during the assimilation and results in an overestimation
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Figure 4.49: Twentyfour hours cumulated precipitation in mm from 12 UTC of the 8th of
July 2004 forecasted by the run FOR_MSG1_20040708_ens (left panel) and the correspon-
dent observations (right panel).

of precipitation in Friuli–Venezia–Giulia region in the forecast.
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Chapter 5

CONCLUSIONS

The requirement to improve the prediction of severe weather events and localised heavy pre-

cipitation regimes driven by deep convection and complex orography has lead many national

forecast centres to steadily increase the resolution of regional scale models, posing unprece-

dented problems to widely used variational data assimilation systems. On the one hand,

analysis at 1 km resolution requires dense and frequent observations to capture spatially in-

coherent and quickly evolving structures typical of the meso-γ scales. On the other hand the

applicability of variational techniques such as 4D–VAR imposes the linearity of the observa-

tion operator and the validity of balances imposed by the large scale flow (Rabier et al., 1998

[27]), which are violated at high resolutions. As the role of non-conventional observations

such as radar or new high resolution satellite platforms becomes crucial for regional mod-

elling at the kilometre scale, the suitability of 3D–VAR/4D–VAR analysis systems which al-

low direct radiance/reflectivity assimilation remains widely debated (Chevallier et al., 2003

[4] and Chevallier et al., 2004 [5]).

A possible way to overcome the linearity problem at high resolution while still retaining a

variational approach is by performing an intermediate step in which part of the satellite infor-

mation is transferred to prognostic variable increments which can then be used as “pseudo-

observations” to be ingested into the assimilation system (Marécal and Mahfouf, 2000 [21]).

The tractability of the assimilation problem is enhanced and detailed studies of model ad-

justments related to a certain observation are possible. Here this simplified approach is used

and a 1D–VAR technique is employed to investigate the quality of temperature and humidity
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retrievals from SEVIRI on board of the geostationary Meteosat Second Generation (MSG)

satellite. Since observations from MSG platforms are available at 3 km resolution and with

15′ repetition cycle they can substantially enrich assimilation systems based on rapidly up-

dating cycles. The study has been performed for clear sky measurements over sea points and

for a period of 20 days starting from 1st September 2006. Background data fields were pro-

vided by the regional non-hydrostatic model COSMO–LAMI during its assimilation cycle

integration.

Between the eight available infrared channels of SEVIRI the two water vapour wave-

lengths at 6.2 and 7.3 µm have been shown to possess the largest ’information content’,

both in terms of absolute reduction of background errors (largest DFS) and relative perfor-

mance compared to the other available wavelengths (largest DRM) ( Rodgers, 2000 [32]).

They produce a substantial reduction of background errors between 200 hPa and 600 hPa.

For the reduction of both temperature and humidity errors below 600 hPa the inclusion of

wavelengths at 8.7µm, 10.8µm and 12.0µm is beneficial. The ozone and carbon dioxide

monitoring channels are instead blacklisted. They were demonstrated to posses a poor in-

formation content (low values of DRM and DFS). Moreover inaccuracies in the radiative

transfer calculations for these two wavelengths are expected as the concentration of both

gases is not predicted by the model. Therefore, the theoretical evaluation of their impact into

the analysis obtained using values of the DFS and MRM can be not reliable.

With this five channel configuration an expected maximum reduction of 11% in tem-

perature and 20% in specific humidity standard deviations has been estimated. The vertical

resolution of the expected analysis increments has been found quite coarse at roughly 10

km in the troposphere and worse above. Finally while the 1D–VAR algorithm is not able to

reduce the 2m temperature and humidity errors it improved the background SST .

The quality of the 1D–VAR products has been assessed both on model departure statis-

tics and comparing the final analysis to independent observations coming from collocated

radiosondes which were not included in the analysis, and microwave based satellite SST

products. From the background and analysis statistics the 1D–VAR methodology in the se-
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lected configuration was shown to be a robust technique to extract temperature and humidity

information from satellite radiances. The mean expected variable increments were close to

zero showing the ease of performing air-mass dependent bias corrections.

The warm and dry biases revealed in COSMO–LAMI background fields by the compari-

son to the TEMP observations were reduced substantially in the 1D–VAR analysis. Moreover

the 1D–VAR was able to correct for most of the forecast model bias variability producing

profiles which were highly correlated with the radiosonde observations. In particular the

analysed temperature profiles showed a maximum correlation of 80 % and the humidity

around 40 %.

The assimilation of MSG satellite data is assessed for two three–dimensional case–

studies: a false alarm case occurred in Friuli–Venezia–Giulia region on the 8th of July 2004

and a heavy precipitation case occurred in Emilia Romagna region between the 9th and the

12th of April 2005. Both these case–studies are analysed in two steps: the first one is the

assimilation, with initial condition and boundary conditions provided hourly by the GME

model, for twelve hours and the second one is the forecast, with boundary conditions pro-

vided hourly by the GME model, for the subsequent thirtysix hours. The impact of the

1D–VAR technique is evaluated in terms of variable differences: the integrated (over the

column) water vapour and saturation water vapour, the T2m, the q2m and the Ts. The inte-

grated saturation water vapour translates humidity information into temperature differences

allowing a direct comparison between these two variables.

During the assimilation period the differences, initially localised in the points where

MSG satellite data are assimilated, are spread; the extension and the speed of this spreading

depends on the considered variable and on the number of MSG satellite data that are assim-

ilated. For example during the assimilation period of the false alarm case–study the amount

of MSG satellite data assimilated is larger than in the heavy precipitation case–study and this

determines a more intense spreading of the differences in the first case for all the considered

variables. It is worth noting that in both the case–studies during both the assimilation and

the forecast the amplitude of the integrated water vapour differences is larger than the inte-
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grated saturation water vapour in the column produced by the variation of temperature in the

column using the 1D–VAR interfaced with the nudging technique.

During the forecast period the evolution of the differences for the two case–studies is

different and affected by the different synoptic situations. In fact in the false alarm case–

study, characterised by intense north–west winds at high altitudes, the differences of all the

considered variables decrease in amplitude mainly in the north–west part of COSMO–LAMI

domain. This behaviour is more evident for the integrated differences of water vapour and

saturation water vapour where the impact of the winds at high altitude is bigger. The dif-

ferences of the 2 meters fields, T2m and q2m, show a main reduction over the sea at west

of Corsica and Sardinia islands. It is worth noting that the variables T2m and q2m are ob-

tained in COSMO model combining the temperature and the specific humidity at the surface

and at the level closest to the surface respectively; furthermore the SST is kept constant in

COSMO during the forecast. Hence these two constraints, since the impact of the boundary

conditions is bigger on the north–west part of domain, explain why the biggest reduction of

the T2m and q2m is just over the sea.

The heavy precipitation case–study was instead characterised by a low pressure center

which stationed between Sicily and Sardinia islands; this synoptic situation determines a

weak impact of the boundary conditions in the forecast and in fact the amplitude of the dif-

ferences in the forecast time remain the same for all the variables.

The impact of MSG satellite data is anyway more evident in the false alarm case–study

where the assimilation of these new generation data allows the localisation of a precipitation

cell in the north of the Adriatic sea during the assimilation and a subsequent reduction of

the overestimation of precipitation in Friuli–Venezia–Giulia region during the forecast. The

presence of an extended cloud system in the heavy precipitation case–study instead permits

the assimilation of a very scarce number of MSG data avoiding a possible improvement of

the forecast. This can be considered a proof of the limitation in the assimilation of MSG

satellite data only in clear–sky points over sea.
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An improvement in the definition of the B matrix is discussed using a flow–dependent ap-

proach. This approach tries to take into account the errors of the model depending also on the

synoptic situation. On the one hand Parrish–Derber B matrices are calculated over twelve

COSMO–LAMI subdomains, obtained dividing the domain in twelve parts containing the

same number of grid points. These matrices are also called “climatological” B matrices. On

the other hand ensemble members are used to select the areas where the model errors can

vary remarkably with respect to the climatological values. The selection of these areas, also

called “ensemble islands”, is performed convolving a predefined weighting function with the

temperature ensemble spread field and applying to the two–dimensional field so obtained a

percentile technique. Finally these two types of B matrices are appropriately merged to-

gether. The flow–dependent B method has been applied to the false alarm case–study but no

remarkable improvement with respect to the run without the assimilation of MSG satellite

data is obtained.

In summary, it has been shown that high spatial and temporal MSG observations can be

exploited with a 1D–VAR approach resulting in an improved analysis of T and q profiles in

clear sky over oceans. Furthermore these new generation data can be used in operational

forecasts to detect possible scenarios of risk as it is demonstrated here for a false alarm

case–study. The next step will be to extend the use of these MSG channels over land and

investigate their impact on the subsequent forecasts using deterministic scores.
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