
Università degli Studi di Bologna

Dipartimento di Elettronica Informatica e Sistemistica

Dottorato di Ricerca in Ingegneria Elettronica,
Informatica e delle Telecomunicazioni

XIX Ciclo

Models and Techniques for Approximate
Similarity Search in Large Databases

Tesi di:
Dott. Ing. Alessandro Linari

Coordinatore:
Chiar.mo Prof. Ing. Paolo Bassi

Relatori:
Chiar.mo Prof. Ing. Paolo Ciaccia

Chiar.mo Prof. Ing. Marco Patella

Settore Scientifico Disciplinare ING-INF/05

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AMS Tesi di Dottorato

https://core.ac.uk/display/11011042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Summary of Contributions . 2

1.3 Thesis Outline . 3

2 Similarity Search in Large Data Bases 5

2.1 Similarity Search . 5

2.2 Approximate Similarity Search . 6

2.2.1 Error Metrics . 7

2.2.2 On-line Similarity Search . 7

2.3 Data Regions . 8

2.3.1 Creation . 8

2.3.2 Characterization . 9

2.3.3 Space Topology . 10

2.4 Scheduling Strategies . 11

2.4.1 Exact Scheduling . 12

2.4.2 On-line Scheduling . 13

2.5 Similarity search in Metric Spaces . 15

2.6 Related Work . 16

2.6.1 General Data Structures . 16

2.6.2 Approximate Similarity Search . 17

3 Completely Connected Networks 19

3.1 The Scenario . 19

3.2 Probabilistic Models for On-line Queries 20

3.2.1 Cost-based Queries . 20

3.2.2 Quality-based Queries . 22

3.3 Regions Characterization . 22

i

ii Contents

3.3.1 Regions Indicators . 23

3.3.2 Nearest Neighbor Distance Distribution 24

3.4 Optimal-on-the-Average Schedules . 25

3.4.1 Query-Independent Schedules . 26

3.4.2 Query-Dependent Schedules . 26

3.5 Schedules Based on Indicators . 27

3.5.1 The Case of Uniform Distribution 27

3.5.2 Entropy-based Analysis . 28

3.6 Experimental Evaluation . 30

3.6.1 Cost Models . 31

3.6.2 Optimal Schedules . 35

3.6.3 Entropy . 36

3.6.4 Scheduling on Indicators Values . 37

3.7 Hierarchical networks . 38

3.7.1 Experimental Evaluation . 38

4 Partially Connected Networks 41

4.1 Introduction to P2P networks . 42

4.1.1 Our Solution . 44

4.2 Network Architecture . 45

4.2.1 Metric Distances and Language Model 46

4.3 Building and Maintaining a MON . 48

4.3.1 Algorithms for MON Construction and Maintenance 49

4.3.2 Cost Analysis . 52

4.4 Query Processing in a MON . 53

4.4.1 Query Processing in P2P networks 54

4.4.2 Algorithms for Query Routing . 55

4.5 Experimental Evaluation . 57

5 Conclusions 59

5.1 Future Directions . 60

A Compressing a Language Model 61

A.1 A Solution based on Bloom-Filters . 61

A.2 Efficient Technique for Distance Computation 63

A.3 Choosing Bloom-filter Sizes . 64

Contents iii

B Anonymity and censorship resistance in MON’s 67

B.1 Cloud-based Anonymity . 67

B.2 Cloud-based Censorship Resistance . 69

B.2.1 Censorship Resistance: A First Attempt 69

B.2.2 Censorship Resistance: A Second Attempt 70

B.2.3 A Probabilistic Model for Censorship Resistance 71

Bibliography 75

Chapter 1

Introduction

This thesis investigates the problem of the processing of approximate similarity queries

in very large data bases. We assume that a data base is split in multiple, independent

regions which can be accessed separately.

An informal definition of a data region is:

Definition 1.1 (Data region). A data region is a small subset of a data collection which

can be conveniently stored, searched an retrieved, independently from the rest of data set.

All modern database management systems (DBMS) are organized as a set of regions.

Multimedia DBMS’s, for example, organize their data in pages that are stored in secondary

memory and distributed data bases such as peer-to-peer (P2P) systems rely on storing

each region at physically different locations.

With approximate similarity search we refer to those situation where one can trade-off

the quality of the result for the speed of evaluation. The idea is that the user does not

need to receive as a result the data object(s) that best match the query; in certain cases

the full computation of the query consumes too many resources or it takes too much time

(is it feasible to contact all the peers of a P2P network?). In other circumstances it might

be not needed (if you search a photo of the Colosseum, does it make sense to define the

best-among-all pictures?) and so on.

1.1 Motivation

Despite their differences, the vast majority of modern data base systems are organized

into regions which contain data objects and which are accessed independently when the

query processing takes place. The two main issues are:

Efficiency, i.e., the amount of resources that are needed in order to answer the query.

1

2 Chapter 1. Introduction

effectiveness, i.e., the accuracy of the results that are retrieved by the system.

When a system performs an approximate search it means that there is a constrain

consisting in the amount of resources that can be used to find the answer (limited number

of steps or bounded period of time). In our scenario, then, we aim at developing tools

and techniques for processing similarity queries which optimize the use of these resources

by minimizing the number of regions accessed to find a result and, at the same time,

maximizing its quality.

A standard technique used to reduce query costs is to provide each region with a set

of statistics. This information can also be exploited at query time to guide the search in

a more effective way in order to reduce the costs and to increase the quality of results.

Our solution, then, should address:

• The formal definition of data region, in order to model a variety of different problems;

• Their statistical characterization, to be exploited at query time to distinguish among

relevant and non-relevant regions;

• The existence of optimal scheduling strategies for the problem of similarity search.

1.2 Summary of Contributions

The contribution of this thesis is the following:

• We present a theoretical framework for the characterization of the problem of ap-

proximate similarity search in large data bases. Our framework does not depend on

the specific implementation and is applied both to a centralized and to a distributed

scenario. We are particularly interested to the relevant case of databases which can

be embedded in a metric space.

• We interpret a database as a network of data regions and distinguish among: com-

pletely connected networks, hierarchical networks and partially connected networks.

• We propose a cost model for approximate similarity queries and derive optimal-

on-the-average schedules in completely connected networks. We conduct extensive

experiments with three different data set to validate our theoretical results.

• We study the problem of similarity search in partially connected networks and pro-

pose a novel P2P architecture called Metric Overlay Network (MON), which exploits

a metric distance between peers to build a network where regions are connected to

their k nearest neighbors.

1.3 Thesis Outline 3

• We apply the notion of MON to a problem of Information Retrieval in P2P networks,

where peers are represented as Language Models (LM) and the metric distance is

based on the Karhunen-Loeve divergence.

• We further apply the notion of MON to a problem of security: we show how it

is possible to achieve anonymous and censorship resistant query routing in a P2P

network which is embedded in a metric space. Based on the metric properties of the

system, we give probabilistic guarantees on the level of censorship resistance that

can be achieved by the system.

1.3 Thesis Outline

The thesis is organized as follows:

• In Chapter 2 we formally define the problem of similarity search and we characterize

a data set as a collection of data regions. We statistically represent each data region

through the distance distribution of the nearest neighbor from a random query and

present the algorithm for exact and approximate similarity search.

• In Chapter 3 we present a cost model for approximate 1-NN queries which applies

to completely connected networks. We further show how, given the cost model,

we are able to derive optimal-on-the-average scheduling strategies. We validate our

theoretical framework by conducting extensive experiments on three real data sets

and we show that, within some extent, also the similarity search in hierarchical

networks benefit from our studies.

• In Chapter 4 we investigate the issue of query processing in partially connected

networks. We introduce the concept of Metric Overlay Network(MON). Peers in a

MON self-organize in order to build an infrastructure which facilitates query routing

by exploiting the metric properties of the network. We present three different routing

strategies for queries in a MON and compare them through experiments on a real

data set.

• In Chapter 5 we present the conclusions of our work and a few open problems that

still need to be investigated.

• Appendix A shows an efficient technique to compress a LM by representing it

through a histogram and by further compressing the histogram by using a set of

Bloom-filters.

4 Chapter 1. Introduction

• Appendix B presents Clouds, a P2P system in which the communications can be

made anonymous and censorship resistant by exploiting the metric properties of the

network.

Chapter 2

Similarity Search in Large Data
Bases

In this chapter We introduce our notion of approximate similarity search in metric spaces

and present a formalization for the concepts of data regions. At the end of the chapter

we review some related work in the field of similarity search.

2.1 Similarity Search

The standard way to decide which objects o best match a query q is to utilize a similarity

function sim(q, o), which assigns a numerical score to each pair (q, o). The scores corre-

sponding to different objects are then compared to rank the objects with respect to the

query and a similarity search retrieves the top-ranked objects with respect to the search

criterion.

In general, the result to a similarity query is not a single object, rather it is a list

R of objects, chosen according to some given criterion. We define the problem of exact

similarity search as follows:

Definition 2.1 (Exact similarity search). Let X be the (possibly infinite) set of all query

points, D the set of objects in the data set, sim : X × D → R+
0 a similarity function

between queries and objects and crit(s,R) ∈ {0, 1} a similarity criterion, where s is a

similarity score and R the current result list. Then, we define a problem of similarity

search over the data set D to be the quadruple 〈X,D, sim, crit〉.

The similarity criterion crit(s,R) in Definition 2.1 returns 1 if the object whose simi-

larity value is s should be inserted in the result R, 0 otherwise. Following are the three

classes of queries, and their similarity criterion, which has been considered in this work.

5

6 Chapter 2. Similarity Search in Large Data Bases

Definition 2.2 (Range query). A range query is defined as range(q, r), where q ∈ X is

the query point and r ∈ R+
0 is the query radius. The similarity criterion crit(s, r), where

s = sim(q, o) is defined as: crit(s, r) = 1 iff s ≤ r.

Definition 2.3 (k nearest neighbor query). A k nearest neighbor query is defined as

knn(q, k), where q ∈ X is the query point and k ∈ N is the cardinality of the result list. A

k-NN query selects k objects o1, . . . , ok and keeps them ordered such that sim(q, o1) ≥ . . . ≥
sim(q, ok) ≥ sim(q, o). The similarity criterion crit(s,R) is defined as: crit(s, r) = 1 iff

s ≥ sim(q, ok).

Definition 2.4 (Bounded k nearest neighbor query). A bounded k nearest neighbor query

is defined as bound(q, k, r), where q ∈ X is the query point, k ∈ N is the maximum

cardinality of the result-set and r is the radius of the query. A bounded k-NN query

selects k′ ≤ k objects in the intersection of range(q, r) ∩ knn(q, k) and crit(s, , r,R) is

defined as: crit(s, r,R) = 1 iff s ≥ sim(q, ok) ∧ s ≤ r.

For ease of simplicity in the following we will refer to a query with its query-point q

and we will do otherwise only when needed.

2.2 Approximate Similarity Search

The complexity of processing similarity queries in very large data bases is nowadays well

recognized and has lead in recent years to the development of new approximate search

paradigms, where one can trade-off the quality of the result for the speed of evaluation.

The adoption of these paradigms is is even more justified by the observation that a

similarity function is itself an approximation of the user’s criteria.

An approximate similarity search returns a set of objects R̃ = {õi}, oi ∈ D which,

in terms of similarity with respect to the query, are not better than those returned by a

similarity search as it is defined by Definition 2.1. More formally we characterize it as

follows:

Definition 2.5 (Approximate similarity search). A problem of similarity search over

the data set D is defined by the tuple 〈X,D, sim, crit, err〉, where X,D, sim, crit have the

usual meaning and err : {R}×{R̃} → R+
0 is an error function whose value is proportional

to the difference between the approximate and exact result R̃ and R.

A general definition for the error function err does not exist because it depends on the

type of query that has been processed and on the problem that has to be solved. In the

following paragraph we present a short discussion on the problem of defining a suitable

error function and present a few examples.

2.2 Approximate Similarity Search 7

2.2.1 Error Metrics

If we consider a simple 1-NN query, an typical error measure is given by

Err =
sim(q, R̃)

sim(q,R)
− 1 (2.1)

where sim(q, R̃) is the similarity between the query and the object in the approximate

result, while sim(q,R) is the similarity between the query and the object in the exact

result. Notice that in Equation 2.1 it is subtracted the value 1 such that, in the case of

exact search, an error of 0 is returned.

Extending the previous Equation to the case of k-NN queries is not obvious, because

there are k objects in a result and, even if it is straightforward to define the i-th error as

Erri = sim(q, eRi)
sim(q,Ri)

−1, however it is not clear how these values should be combined together.

Reasonable definitions of error for a k-NN similarity search include (see [CP02] for more

details):

Err =
k

max
i=1

Erri =
k

max
i=1

{
sim(q, R̃i)

sim(q,Ri)
− 1

}
(Maximum Error) (2.2)

Err =
1

k
·

k∑
i=1

Erri =
1

k
·

k∑
i=1

[
sim(q, R̃i)

sim(q,Ri)
− 1

]
(Average Error) (2.3)

Err = Errk =
sim(q, R̃k)

sim(q,Rk)
− 1 (k-th Error) (2.4)

In the case of range search, the error measure should take into account the cardinality

of the result set rather than the similarity between the returned objects and the query.

The derived error measure is shown in Equation 2.5:

Err = 1− |R̃||R| (2.5)

where the cardinality of the approximate and exact result sets are denoted as |R̃| and

|R|, respectively (notice that |R̃| ≤ |R| holds).

2.2.2 On-line Similarity Search

On-line processing of similarity queries aims at delivering as early as possible good ap-

proximate results, R̃, which get progressively refined over time. Eventually, if enough

resources are available, the exact result is obtained, i.e., R̃ converges to R. A fundamen-

tal aspect of on-line processing concerns user interaction, i.e., how the user can control

query execution [Hel97]. We consider the following control policies:

8 Chapter 2. Similarity Search in Large Data Bases

Cost: The user can limit the amount of resources that the algorithm can use, e.g., by

requiring that no more that a certain number of regions are read at every up-

date [CCV02, BN04]

Quality: The user can set a quality threshold θ on similarity values in order to stop the

execution as soon as a result is deemed to be “good enough”.

In general, then, a control policy based on limiting the resources consumption stops

the search has soon as the query has explored a maximum number of regions. A control

policy on the expected quality of the result, on the other hand, continues processing the

query until it has found an approximate result R̃ whose similarity with the query is high

enough.

2.3 Data Regions

Nowadays databases typically occupy several gigabytes of storage and secondary memory

is necessary to store all the data. When a query is processed, the näıve solution consists

in the sequential scan of the data base to search for the objects that match the query. A

better solution consists in organizing the data set in regions which can be stored, queried

and retrieved independently and to access them through an index structure.

2.3.1 Creation

Data regions are created based on a split rule, i.e.,, a criterion by which the objects in the

data set are grouped to form the regions. The split rule can be defined over the dataset

and, in this case, it is said to be user-driven, because it is dictated by external constraints

which are defined directly by the user or by some other “human” factor. An example is

a data base where regions contain all the objects physically stored at the same location,

because they belong to a company or because they can be accessed from a specific web

site.

If the split rule is data-driven, then it is guided by considerations which apply to the

space X and is typically controlled by the underlying system as a way to optimize the

management of certain operations, such as query processing. For example, to optimize

nearest neighbor queries the data set should be clustered based on the similarity function,

such that a query can access only the relevant regions.

Definition 2.6 (User-driven split rule). A user-driven split rule defines the optimal set

{D1,D2, . . .} of (possibly overlapping) regions over the data set D as the one which min-

imizes the cost function fD(D, {Di}, K), where K is a set of user-defined parameters.

2.3 Data Regions 9

In Definition 2.6, the parameter K strongly depends on the problem at hand. In a

distributed data base in which the data is stored across different sites a primary goal is

to avoid to relocate the existing storage. This is, of course, not always convenient from

the query processing point of view: assume user uA at site sA frequently accesses the data

stored at site sB, it would be preferable to move the data to sA to avoid overloading the

communication network and to guarantee a higher response time.

A data-driven split rule can be defined in terms of the self-similarity measure msim(q,Di)
of a region Di with respect to a query q, which measures the discrepancy in the values of

similarity sim(q, o) that are computed between q and all objects in o ∈ Di. For example,

msim can be computed as 1 − var[sim(q,o)], where var[·] is the variance of the random

variable sim(q,o) and o is a random object drawn from Di.
Definition 2.7 (Data-driven split rule). A data-driven split rule defines the optimal set

{D1,D2, . . .} of (possibly overlapping) regions over the data set D as the one which jointly

maximizes the self-similarities msim(q,D1),msim(q,D2), . . . for all regions Di with respect

to the random query q.

Given a set of regions {D1,D2, . . .}, then, we need to define a criterion by which the

msim(q,D1),msim(q,D2), . . . are jointly maximized. Notice that we can exploit similar

arguments to those that were used on the definition of the error metrics in Section 2.2.1.

A data-driven split rule which exploits Definition 2.7 defines a set of highly clustered

regions, i.e.,, which contain objects having approximately the same similarity with respect

to the random query. In the literature several techniques have been presented that propose

optimal split rules when the data set can be embedded in a metric space [CP98]. In many

real situations, however, an optimal strategy cannot be always adopted: (i) a data-driven

split rule may not be feasible, because of a constraint in the physical localization of the

data set, or (ii) it might be too expensive to be performed in practice, because the data

set is too big or the scenario is too dynamic (insertions and deletion are too frequent).

2.3.2 Characterization

Data regions are a powerful tool to describe a data set and can be characterized at

different levels, depending on the context where they are used. In general, a data region

has a physical representation, a region descriptor and a region statistics.

A physical representation of a region is a list of the objects that are contained in it.

In this thesis we refer to Di as the physical representation of the i-th region of the data

set.

The region descriptor Xi, also referred to as its geometrical representation, gives an

exact information about the content of the region and depends on the specific scenario.

10 Chapter 2. Similarity Search in Large Data Bases

Assume to have a relational database which contains the table Students whose physical

representation is Dstud: an example of a region descriptor for Dstud would be Xstud =

〈name, elems, l1, u1, . . . , ln, un〉, where name is the name of the table, elems the number

of elements and li, ui refer, respectively, to the lower and upper bounds on the value of

the i-th attribute.

The statistical characterization of a region Di, denoted as stats(Di), summarizes the

content of the region according to a representation scheme that depends on the specific

scenario but also on other user-defined variables. There are three key elements:

Representation: This is the information that is chosen to effectively represent the re-

gion. Given the table Students, one is probably interested in storing the distribu-

tion of values over a few selected attributes.

Building: This is concerned with the technique according to which the information is

collected. Typically, this might imply a pre-processing over the whole data set,

sampling an already existing data base [GIS03] or even a passive acquisition process

collecting the answers to the user queries [AGP99].

Compression: Given a specific representation, one usually needs to compress it in order

to not let the statistics grow too much. A typical compression technique consists

in using histograms to represent distributions or functions in general [Poo97]. If

a set of elements needs to be represented, a popular technique is to use Bloom

filters [Blo70].

2.3.3 Space Topology

During query processing it is not always possible to have complete knowledge about the

topology of the space that is being explored, i.e.,, given the fact that objects are organized

into regions, the query processor might not know all of them and might need to “explore”

the space to discover new regions.

This is the case, for example, of a query formulated by a peer in a network: the peer,

in fact, knows only its neighbors but there is a high probability that the query is better

answered by some other peers in the network. The query, then, needs to navigate the

“web” that can be built on top of this concept of neighborhood to find a good result. The

same problem can arise in a centralized scenario as well, which is typically characterized by

so many regions that they can hardly be maintained main memory. The typical solution

consists in organizing them in a hierarchy, such that the regions at the higher levels are

big enough to contain those at the lower level. The query, then, starts from the root of the

structure and, at each steps, can descend into one or the other sub-tree [Gut84, CPZ97].

2.4 Scheduling Strategies 11

More precisely, we a neighborhood as follows:

Definition 2.8. A region D∗ ∈ {D1,D2, . . .} is in the neighborhood of region Di if there

exists a unidirectional link from Di to D∗. .

Depending on the size of the neighborhood of the regions in the space and on the

resulting topology, we can distinguish among three different types of networks, which will

be analyzed more in detail in the remaining chapters of the thesis:

Completely connected network Each region is neighbor of each other region, thus

generating a completely connected network. This topology represents an ideal case,

because it is equivalent to a situation of “complete knowledge” of the search space

or, in a more traditional terminology, to a system where all regions’ descriptors are

in main memory. Though this might seem a far too simplifying scenario, it allowed

us to derive important theoretical results;

Hierarchical network Each region has a variable number of neighbors (also called child

regions) which contain objects drawn from their parent’s data space. It is said,

then, that a region “contains” its neighbors. Notice that the containment property

is usually only virtual, because objects are not replicated and can only be found at

the lower levels of the hierarchy (in the leaf regions). More precisely, there exists a

root region D0 which is equivalent to the whole data set D. The root has |N (D0)|
neighbors such that D0 =

⋃
iDi and so on in a recursive fashion until the leaf regions

are small enough to match the desired size. This scenario is typical of a centralized

environment and of certain distributed systems (e.g.,, the DNS system) because of

its efficiency.

Flat network Each region has a variable number of neighbors, but without any par-

ticular dependency between them. We will show a scenario in which each region

chooses its neighbors according to some given criteria, however, it is still a very

difficult scenario, because query processing can only rely on a very limited knowl-

edge of the network topology. This paradigm is typically adopted by peer-to-peer

environments, because of its flexibility to a fast changing environment.

2.4 Scheduling Strategies

The purpose of any technique for solving similarity queries is to speed up the evaluation

by discarding irrelevant parts of the search space. Typically, this is done by exploring first

the regions that are more promising with respect to the query, while trying to prove that

12 Chapter 2. Similarity Search in Large Data Bases

Algorithm 1 Algorithm for exact similarity search

Require: Problem 〈X,D, sim, crit〉, query q ∈ X
Ensure: List R of results in D

1: PQ← [D0,MaxSim(q,D0)]
2: LV ← ∅,R ← ∅, r ←∞
3: while PQ 6= ∅ do
4: [Di,MaxSim(q,Di)]← Dequeue(PQ)
5: Insert(Di,LV)
6: if MaxSim(q,Di) > r then
7: Explore(Di)
8: for all objects oj in Di do
9: if crit(sim(q, oj),R) = True then Insert(oj,R) and update r

10: for all regions Dn neighbor of Di do
11: if MaxSim(q,Dn) > r and ¬Present(Dn,LV) then
12: Enqueue(PQ,MaxSim(q,Dn))
13: return R

no better result can be found in the other regions. In this section we present a very general

framework for similarity queries which does not depend on the specific implementation.

2.4.1 Exact Scheduling

We assume that there exists a function MaxSim(q,Di) which associates a region Di its

similarity upper-bound, i.e.,, the maximum value of similarity which can be achieved by

any object in Di. MaxSim typically refers to the geometrical representation of the region

Di: if such a representation is not present, then a value of MaxSim cannot be derived for

the regions in the space and all regions are equal to the query processor until it explores

them. This means that the search becomes random. If, on the other hand, a MaxSim

function is defined, it induces an ordering of the data regions and Algorithm 1 is optimal

for the problem of exact similarity search.

The algorithm operates a best-first search over the regions that the query can reach,

keeping them ordered in a priority queue PQ according to their maximum similarity from

the query point. The list LV contains the regions already visited, to avoid that a query

reaches the same region through different paths. The result R contains the set of objects

that match the criterion crit and the current similarity threshold r contains the value of

similarity below which no objects will be inserted in the result. If the query is a k-NN

query, R contains the best-so-far k points, kept ordered by decreasing values of similarity

with respect to q, and r is equal to the k-th distance value in R. If the query is a range

2.4 Scheduling Strategies 13

query, R contains all objects whose similarity is above the threshold without the need to

keep them ordered, and r is fixed to the threshold value of the query. The idea is that

a region Di is worth exploring only if the result can benefit from it, which means that

MaxSim(q,Di) > r must hold. In any other case Di can be safely removed from PQ. We

refer to this as geometric pruning [RKV95, CPZ97, HS03] because it only exploits the

geometrical information about regions.

The optimality of Algorithm 1 was proved for the case of metric spaces [BBKK97,

HS03], however it straightforwardly extends to the general problem of similarity search and

follows from the observation that if MaxSim(q,Di) < MaxSim(q,Dj), then accessing Dj
first can never lead to prune Di without giving up the correctness of the result [BBKK97].

Also notice that as soon as a region extracted from PQ is pruned (line 3), then the algorithm

can be immediately stopped, since all other regions in PQ will be pruned as well.

2.4.2 On-line Scheduling

In many real situation it is required to return fast, even if imprecise, results and eventually

to continue processing the query in the background. The major issue that needs to be

addressed for implementing an effective on-line algorithm concerns the criterion according

to which regions are scheduled. In Section 2.2.2 we have introduced two control policies,

namely a cost- and a quality- based policy. The key observation here is that, although

visiting regions according to decreasing values of MaxSim guarantees that the exact result

is determined with a minimum number of regions accesses [BBKK97], there is no proof

that this extends to the case when the user is willing to accept an approximate result.

Intuitively, a scheduling policy Π aims at discovering as soon as possible objects which

are similar to q. Ordering regions based on MaxSim, while it gives bounds on the

maximum expected similarity, might be not enough precise to characterize the expected

similarity that can be achieved by visiting that specific region. The idea, then, is that,

given the geometric and statistical description of a data region Di, one can derive several

indicators ΨA,ΨB, . . .
1, each assigning to Di a value, ΨA (q,Di) ,ΨB (q,Di) , . . ., that

depends on the specific query q and which has a correlation with the probability that Di
contains “good” objects with respect to Π. From now on, we will assume that a scheduling

policy ΠA, based on indicator ΨA, given two regions Di and Dj, chooses to explore Di
first, if ΨA (q,Di) ≤ ΨA (q,Dj).

All these considerations are integrated in the on-line Algorithm 2 for similarity search,

which, with respect to Algorithm 1, shows the following modifications:

1In general, we write Ψj (q,DDi) to indicate that the value of Ψj for the query q depends on either
the geometrical description of Di or on its statistics stats(Di).

14 Chapter 2. Similarity Search in Large Data Bases

Algorithm 2 Algorithm for on-line similarity search

Require: Problem 〈X,D, sim, crit〉, query q ∈ X, scheduling policy Π

State: current approximate results R̃, current search radius r, current PQ
Ensure: List R̃ of approximate results in D

1: PQ← [D0,MaxSim(q,D0)]
2: LV ← ∅,R ← ∅, r ←∞
3: while ¬PQ 6= ∅ ∨ Suspend(q, R̃) do
4: [Di, stats(Di)]← Dequeue(PQ,Π)
5: Insert(Di,LV)
6: if MaxSim(q,Di) > r then
7: Explore(Di)
8: for all objects oj in Di do
9: if crit(sim(q, oj),R) = True then Insert(oj,R) and update r

10: for all regions Dn neighbor of Di do
11: if MaxSim(q,Dn) > r and ¬Present(Dn,LV) then
12: Enqueue(PQ, [q,Dn] ,Π)

13: return R̃

1. The Suspend(q, R̃) Boolean method at line 3 checks whether the current termination

condition is satisfied, i.e., Suspend encapsulates the specific control policy enforced

at that moment (e.g., R̃ guarantees the desired quality or the maximum execution

cost has been reached).

2. The scheduling policy Π is passed as argument to the Dequeue and Enqueue methods

(lines 4 and 12, respectively), which manage the priority queue.

3. The value of the indicator Ψ (q,Di) for each region Di is computed by the schedule

within the priority queue.

4. The priority queue, the current approximate result, and the search radius are main-

tained as an internal state that allows the execution to be correctly resumed at the

point it left.

An interesting property of Algorithm 2 is that it can be seen as a generalization of the

problem of exact similarity search. In particular, Algorithm 1 can be simply obtained by

letting ΨΠ (q,Di) ≡MaxSim(q,Di).

2.5 Similarity search in Metric Spaces 15

2.5 Similarity search in Metric Spaces

In this section we introduce the notion of similarity search in metric spaces, which is

based on the property that there exists a function fm : D → X which maps objects of

the data set into points of the space X, such that the co-domain of D is a subset of X
(i.e., fm(D) ⊆ X). The following definitions are very important because the problem of

similarity search assumes a well-defined geometrical meaning.

Assume to have a (possibly infinite) set X and a function d defined as d : X×X → R+.

The pair (X, d) is a metric space and d is a metric distance if for all x, y, z ∈ X the following

properties hold:

d (x, x) = 0 (Reflexivity) (2.6)

d (x, y) = d (y, x) (Symmetry) (2.7)

d (x, y) + d (y, z) ≥ d (x, z) (Triangle inequality) (2.8)

A problem of similarity search for the data set D is defined in the metric space (X, d)
if, for any two objects oi, oj ∈ D whose projections in the space X are fm(oi) and fm(oj),

then it holds sim(oi, oj) ∝ d (fm(oi), fm(oj))
−1.

According to Property 2.6, then, the highest similarity a point x can achieve in the

space is with itself, which corresponds to a distance of 0; Property 2.7 states the the

similarity between any two points x and y is reciprocal, i.e., it does not depend on the

viewpoint. Finally, the third property is the triangle inequality. The importance of this

property, that will be fully exploited in the rest of the thesis to reduce the size of the

search space, is easily explained through an example. Given a query q and two objects

x, y assume we know the distances d (q, x) = a and d (x, y) = b, then we can infer that

d (q, y) ≥ |a− b|. This means that we might know in advance that y is not suitable to be

inserted in the result if |a− b| is outside the current search radius (if we are processing a

range query) or if we have already found k objects whose distance is lower (with a k-NN

query).

Typically, a data region D in a metric space is defined in terms of a ball region Bc(r)
where c is the center of the region and r is its radius and delimits the area in which

an object must be contained in order to be part of that region. In a metric space, the

concept of coordinates cannot be defined, thus only the relative distance among objects

can be used. This is the reason why it is more difficult to define complex shapes for data

regions which, even if they can be tuned to be more more efficient, are also more costly

to maintain (see discussion in [CNBYM01]).

Finally, consider the algorithms for exact and on-line search presented in Section 2.4.

In general, since the problem of maximizing the similarity between two objects in a

16 Chapter 2. Similarity Search in Large Data Bases

metric space is equivalent to minimize their distance, the function MaxSim(q,Di) can

be substituted by its metric counterpart MinDist(q,Xi), which returns the minimum

distance between a query q and any point x ∈ Xi, where Xi is the representation of Di
in X. Algorithms 1 and 2, then, aim at minimizing the distance rather than maximizing

the similarity.

2.6 Related Work

In this section we review some previous work on similarity search in metric spaces that

is relevant to our scenario. In particular, we distinguish between data structures for

similarity search and approximate similarity search techniques.

2.6.1 General Data Structures

In the literature the number of data structures for similarity search in metric space

is relatively low, due to the difficulty of defining efficient and effective tools an tech-

niques for such a complex scenario. Here we only review a few data structures and refer

to [CNBYM01] for a more complete survey.

One of the first data structures that were proposed in the literature is the Vantage

Point Tree [Yia93] (VPT). The VPT is a binary tree based on vantage points which

partition the space according to the associated radius as follows: pick a vantage point p0

of radius r0, then all objects o from the data set such that d (p0, o) ≤ r0 are in the left

subtree, the others in the right subtree. The process is repeated until each node as only

one object.

The Geometric Near-Neighbor Access Tree [Bri95] (GNAT) is a static data structure

for main memory. At the first step, m split points are chosen such that any data object

is associated to the closer split point in the space. Those regions which have a too high

number of data objects are recursively partitioned, until a suitable number of objects

is contained in each region. The result is an unbalances hierarchy with non-overlapping

regions. The bigger problem with GNAT is how the split points should be chosen. The

basic idea presented in [Bri95] works as follows: pick the first point at random and the

second as far as possible from the first one, pick the third as far as possible from the first

two and so on.

The M-Tree [CPZ97] operates is data structure that can be used with the secondary

memory. It can be seen as a generalization of the R-tree [Gut84], but with the major

difference that the data regions are ball region and, due to the absence of ccoordinates

an object bbelongsto those regions whose distance from the center is lower than their

2.6 Related Work 17

radius.In general, an M-tree is built bottom-up: the space is split in a certain number of

regions, such that each region is not bigger than a memory page (thus, they can be stored

as an atomic element). At the higher level, the space is split again in bigger regions which

contain the lower level regions rather than data objects. This way we end up with a single

region which represents the whole space.

2.6.2 Approximate Similarity Search

In [GR00] Goldstein and Ramakrishnan introduce the Probabilistic Sphere Tree (P-

Sphere), a completely connected network of overlapping data regions which also accept

replication at the data level. This data structure allows one to perform an approximate

nearest neighbor search as follows: given a query q, the region Bc(r) whose center c is

closer to q is searched first. Let the local nearest neighbor be p, than if the ball region

Bq(d (q, p)) is completely contained in the explored region, p is the provably correct near-

est neighbor and can be returned to the user, otherwise it is not provably correct and

P-Sphere cannot retrieve the correct result. The claim in [GR00] is that the fraction of

the times that this happens (i.e., of not finding a provably correct result) can be tuned

at construction time by making the regions large enough.

A more flexible technique to approximate similarity search in large data bases is the

PAC approach [CP00a], which constitutes the starting point of this thesis. The idea is to

let the user specify a pair (ε, δ), where ε is the maximum error allowed (cf. Section 2.2.1)

and δ is a confidence value which represents the probability that the error will really

be lower than ε. A data set is described through the (global) distribution G (r) of the

distance of the nearest neighbor from a random query. Given a query q and a confidence

value δ, then, with probability δ, the distance dq (NN) between the query and its nearest

neighbor will be not lower than rδ = G−1(δ). Then, the stop can be stopped as soon as

an object at a distance lower than rδ is found (or (1 + ε)rδ if an error ε is allowed).

Chapter 3

Completely Connected Networks

Traditional strategies for supporting similarity queries in complex database systems have

been demonstrated to be optimal with respect to the problem of finding the “best” an-

swer. However, they experience high execution costs, due to the intrinsic difficulty of the

problem. In this chapter we focus on the ideal case of a completely connected network,

i.e.,we assume that each region has all other regions as neighbors, such that, at each step,

the most promising region with respect to the scheduling policy can be accessed.

In Section 3.1 we characterize our scenario in terms of the classification presented in

the previous chapter. In Section 3.2 we present a general cost model for on-line similarity

queries which exploits information on the distribution of the distance of a query from its

nearest neighbor. This distribution can be estimated in several ways and we present four

of them in Section 3.3. In Section 3.4 we introduce the notion of optimal-on-the-average

schedules for the problem of approximate similarity search, an approach which allows one

to strongly reduce execution costs while achieving probabilistic guarantees on the quality

of the result and we present a relevant approximation of such a schedule which exploits

information given by simple indicators (Section 3.5. Finally we present the experimental

results in Section 3.6 to show the effectiveness of our method of analysis.

3.1 The Scenario

Our scenario consists of a completely connected network which is an instance of the

framework presented in Chapter 2. Its main characteristics can be summarized as follows:

• Our theoretical model is developed for 1-NN bounded queries, however we evaluate

it with k-NN and bounded k-NN queries;

• Refer to a quality-based control policy and let the threshold be θ. This is equivalent

to a bounded query of radius θ, i.e., the search is stopped whenever the approximate

19

20 Chapter 3. Completely Connected Networks

result R̃ contains an object o such that d (q, o) ≤ θ;

• The network is built adopting a data-driven split rule, which clusters data objects

based on their distance. Our cost model, however, does not depend on the distri-

bution of the data inside each region, therefore it applies to any split-rule.

• A data region is equivalent to a ball region Bc(r) ⊆ X, of center c and radius r,

because, as we have anticipated in Section 2.5, this is the most natural way to

describe data regions in a metric space.

3.2 Probabilistic Models for On-line Queries

In this section, we investigate the problem of defining a model for on-line nearest neighbor

queries which are executed according to a cost-based control policy (cf. Section 2.2.2).

This model will be used to predict the cost of a query which aims at finding a result whose

distance from the query point is lower than a user-defined threshold θ and will be further

exploited to derive optimal on the average scheduling policies. Finally, at the end of the

section, (cf. Paragraph 3.2.2 we will present how an analogous model can be defined to

predict the behavior of on-line queries which adopt a quality-based control policy.

A nearest neighbor query can be stopped as soon as it finds a data region which con-

tains an object “sufficiently” close to the query point, i.e., such that dDi
(q) = minoj∈Di

{d (q, oj)}
is lower than θ. A data region Di, then, can be characterized in terms of the probability

Pr {dDi
(q) ≤ θ} that Di stores a solution for the random query q.

We start by considering the case of 1-NN search and 2-levels trees, since this is the

scenario more amenable to be formally characterized. Then, the index tree consists of a

root and of M leaf regions, and a schedule Π can thus be viewed as a permutation of the

set {1, . . . ,M}:
Π = (Π1,Π2, . . . ,Πi, . . . ,ΠM) (3.1)

where DΠi
is the leaf that schedule Π will fetch at step i. Clearly, the position of each

region Di in the schedule depends on the query and on the stats(Di) statistics of the

region.

3.2.1 Cost-based Queries

The cost of a query executed according to a cost-based control policy is measured as

the number of regions that need to be accessed in order to satisfy the query criteria. A

query is a pair (q, θ), where q is the query point and θ is the (fixed) search radius. The

upper-bound to the cost of this query is equal to the number of regions in the system,

3.2 Probabilistic Models for On-line Queries 21

because it might happen that either the solution is found only in the last region visited

or a solution is not found at all. In the following we have made the assumption that at

least one solution to the query exists in the data set.

Let pstop (c, θ; Π) = Pr {mini≤c {dΠi
(q)} ≤ θ} be the probability that the search algo-

rithm, using schedule Π, will find, in no more than c steps, an object whose distance from

the random query q is not higher than θ, i.e.,

pstop (c, θ; Π) = Pr

{
min
i≤c
{dΠi

(q)} ≤ θ

}

= 1−
c∏
i=1

Pr {dΠi
(q) > θ} = 1−

c∏
i=1

(1− Pr {dΠi
(q) ≤ θ}) (3.2)

where 1−Pr{dΠi
(q) ≤ θ} in Equation 3.2 represents the event that the i-th visited region

does not contain a solution to the query. Then, the expected cost Cost [q,Π; θ] of schedule

Π, is

Cost [q,Π; θ]=
M∑
c=1

c · [pstop (c, θ; Π)− pstop (c− 1, θ; Π)]

=
M∑
c=1

c · pstop (c, θ; Π)−
M−1∑
c=0

(c+ 1) · pstop (c, θ; Π)

=
M∑
c=1

c · pstop (c, θ; Π)−
M−1∑
c=0

c · pstop (c, θ; Π)−
M−1∑
c=0

pstop (c, θ; Π) (3.3)

=M ·pstop (M, θ; Π)−
M−1∑
c=1

c ·pstop (c, θ; Π)=M−
M−1∑
c=1

c ·pstop (c, θ; Π)

where pstop (c, θ; Π)−pstop (c− 1, θ; Π) be the probability that the object is found in exactly

c steps. In Equation 3.3 the first two passages are due to arithmetic manipulation of the

indices in the respective sums. In the third line, the first two sums erase each other,

leaving the term M · pstop (M, θ; Π), which is equal to M , because we have assumed that

the query always find a solution in the data set (thus, pstop (M, θ; Π) = 1).

Practical hints on how probability Pr {dΠi
(q) ≤ θ} should be computed are given

in Section 3.3, while in Section 3.6 we present experimental results on the comparison

between predicted and effective costs of different schedules.

Cost Model and the Problem of Geometrical Pruning

The problem with the cost model presented in the previous section is that it does not take

geometrical pruning into consideration. In a real setting, since we consider bounded near-

est neighbor queries, all regions Di for which MinDist(q,Di) > θ are removed from the

22 Chapter 3. Completely Connected Networks

search space, independently from the probability Pr {dDi
(q) ≤ θ}. Geometrical pruning

is not taken into consideration in the model proposed by Equation 3.3. To understand

this point consider the following Example:

Example 3.1. Assume that, at step c∗, the stopping probability as defined by Equation 3.2

is pstop (c∗, θ; Π) and that, at step c∗+1 is chosen a region Πc∗+1 which lower-bound is grater

than θ (i.e., MinDist(q,Πc∗+1) > θ). In general, pstop (c∗ + 1, θ; Π) ≥ pstop (c∗, θ; Π), even

if, in this specific example, there is no chance of finding an object at a distance lower than

θ in Πc∗+1. The effect is that the estimated cost increases (cf. Equation 3.3).

The reason why this happens is that the stopping probability pstop (c, θ; Π) does not

consider the region’s geometry. We will show in Section 3.6.1 that this results in a sensible

overestimation of the final cost of a schedule Π. A solution consists in conditioning the

stopping probability to the value of MinDist of the region chosen at step c. Equation 3.2,

then, can be rewritten as:

p′stop (c, θ; Π) = Pr

{
min
i≤c
{dΠi

(q)} ≤ θ | MinDist(q,Πi)

}

=

{
pstop (c, θ; Π) , if MinDist(q,Πi) ≤ θ
0, otherwise

(3.4)

3.2.2 Quality-based Queries

In this setion we briefly introduce the model that estimates the expected quality that a

schedule Π achieves if the user specifies a threshold on the number of regions accessed

rather then on the quality. In other words, given the maximum number of region c, we

want to estimate

E

[
min
i≤c

dΠi
(q)

]
=

∫ d+

0

θ
dpstop (c, θ; Π)

dθ
dθ = |θpstop (c, θ; Π) |d+0 −

∫ d+

0

pstop (c, θ; Π) dθ

= d+ −
∫ d+

0

pstop (c, θ; Π) dθ (3.5)

where d+ is the maximum possible distance value and the equation is interpreted as

follows: we compute the expected value of the continuous variable θ as the integral over

the domain [0, d+], weighted by the probability dpstop(c,θ;Π)

dθ
that an object at a distance θ

from the query is found in c steps.

3.3 Regions Characterization

To compute Equations 3.3 and 3.5 we need to estimate the stopping probability pstop (c, θ; Π)

with respect to a random query q. This means knowing the joint distance distribution of

3.3 Regions Characterization 23

the NN local to each region in the data set G1,...,M (r1, . . . , rM), computed with respect to

q. Then,

Pr {dDi
(q) ≤ θ} = G1,...,M

(
dDi

(q) ≤ θ|{dDj
(q)}, ∀j 6= i

)
(3.6)

which is clearly too hard to compute (and to store in practice), because it requires the

knowledge of a far too complex joint distribution.

In Section 3.3.2 we propose four different approximations of Equation 3.6 which are

based on two simple observations:

• It is not realistic to assume that the values {dDj
(q)},∀j 6= i are known, because it

would require to have already explored all other regions to be able to collect such

knowledge;

• On the other hand, it is realistic to assume that the geometric descriptors of the

data regions are available, because typically they are known before actually visiting

the region.

3.3.1 Regions Indicators

In this section we study in detail the concept of indicators, that have been already intro-

duced in Section 2.4 to choose a scheduling strategy.

An indicator Ψ (q,Di) is an observation of a data region Di made from q’s point of

view, which can be used as a representative for Di to characterize Equation 3.6. We use

this term because Ψ (q,Di) indicate the position of region Di with respect to q.

In general, given a point (the query q) and a ball (the region Di) in a metric space,

the most common and intuitive indicators of the relative position of q and Di are the

following:

Ψ (q,Di) = MinDist(q,Di) It is the lower-bound on the distance between the query and

the region. Given the region’s descriptor Bci(ri), it is computed as MinDist(q,Di) =

max {d (q, ci)− ri, 0}, i.e., as the distance between the query and the center of the

region minus its radius.

Ψ (q,Di) = MinMaxDist(q,Di) It is the upper-bound on the distance between the query

and the region. It is computed as MinMaxDist(q,Di) = d (q, ci) + ri.

Ψ (q,Di) = MaxDist(q,Di) It is the maximum distance between the query and any

other object in the region. The center of a region is often a real object, therefore

MaxDist(q,Di) = d (q, ci). If this is not the case MaxDist(q,Di) = MinMaxDist(q,Di).

24 Chapter 3. Completely Connected Networks

Other indicators can be derived, such as the average between the MinDist and Min-

MaxDist (or MinDist and MaxDist), however, in the rest of the dissertation we will

concentrate on these three, because they are the most relevant.

3.3.2 Nearest Neighbor Distance Distribution

In this section we show how the distribution of the distance of the nearest neighbor

Pr {dDi
(q) ≤ θ} given in Equation 3.6 can be simplified in order to be efficiently imple-

mented.

In general, the idea behind the introduction of indicators is that they are observable

characteristics of a data region, which do not require to effectively visit it to be collected.

Thus, they can be used to substitute the events {dDj
(q)} in Equation 3.6 to obtain the

approximation

G1,...,M (θ| (dD1 (q) , . . . , dDM
(q))) ≈ G1,...,M (θ| (ψ1, . . . ,ΨM)) (3.7)

≈ Gi (θ|ψi) (3.8)

where ψi = Ψ (q,Di). Notice that Equation 3.7 is still too complex to be maintained by

each region, thus we can further approximate it by assuming independence among regions

to obtain Equation 3.8. Gi (θ|ψi) is the distance distribution of the NN in the region Di
with respect to the random query q, conditioned to the observed value ψi of the indicator

Ψ.

We start by distinguishing among two classes of distance distributions, the query-

independent and the query-dependent ones.

Definition 3.1 (Query-independent distance distribution). Let q1 and q2 be two queries

for which ψ1 = Ψ (q1,Di) and ψ2 = Ψ (q2,Di). Then a distance distribution is query-

independent if Pr {dDi
(q) ≤ θ|ψ1} = Pr {dDi

(q) ≤ θ|ψ2} for any ψ1, ψ2.

Definition 3.2 (Query-dependent distance distribution). Let q1 and q2 be two queries

for which ψ1 = Ψ (q1,Di) and ψ2 = Ψ (q2,Di). Then a distance distribution is query-

dependent if Pr {dDi
(q) ≤ θ|ψ1} = Pr {dDi

(q) ≤ θ|ψ2} iff ψ1 = ψ2.

The main difference between the previous classes is that the query-independent dis-

tribution does not depend on the relative position of the query with respect to the data

region. In other words, Equation 3.8 is not conditioned to the value ψi, which means that

all queries see the same probability Gi (θ|ψi) for region Di (or queries are statistically

identical from the regions’ perspective).

A distance distribution can be further classified as novelty-based or simple. Let di (q) =

{dDi
(q) > θ} be the boolean event that a query of radius θ does not find a solution in

3.4 Optimal-on-the-Average Schedules 25

region Di, a novelty-based distribution aims at balancing the hypothesis of Independence

among regions introduced by Equation 3.8. This is done by introducing the evidence that

at step i “all previously visited regions have not solved the query”. The novelty-based

distributions are defined as follows:

Definition 3.3 (Novelty-based distance distribution). The query-independent novelty-

based distance distribution is defined as

Pr {dDi
(q) ≤ θ} ≈ GΠ1,...,ΠM

(
dDi

(q) ≤ θ | d1 (q) , . . . , di−1 (q)
)

(3.9)

and the query-dependent novelty-based distance distribution is defined as

Pr {dDi
(q) ≤ θ} ≈ GΠ1,...,ΠM

(
dDi

(q) ≤ θ | ψi, d1 (q) , . . . , di−1 (q)
)

(3.10)

Definition 3.4 (Simple distance distribution). The query-independent simple distance

distribution is defined as

Pr {dDi
(q) ≤ θ} ≈ GΠi

(dDi
(q) ≤ θ) = GΠi

(θ) (3.11)

and the query-dependent simple distance distribution is defined as

Pr {dDi
(q) ≤ θ} ≈ GΠi

(dDi
(q) ≤ θ|Ψ (q,Di)) = GΠi

(θ|ψi) (3.12)

3.4 Optimal-on-the-Average Schedules

In this section we consider schedules that, although not necessarily optimal for a query,

are optimal on the average. A schedule Π that is either cost- or quality-optimal on the

average has the property that no other schedule Π′ performs better than it when a random

query is considered. Considering the control policies in Section 2.2.2 and assuming that

the cost is evaluated in terms of number of region accesses, there are two possible scenarios

to consider:

1. Given a threshold value θ, minimize the average cost, and

2. given a cost limit c, minimize the average approximate NN distance.

Optimal on the average schedules require one to compute the probability pstop (c, θ; Π)

defined by Equation 3.2

Theorem 3.1 (Optimal on the average schedule). The optimal schedule is incremen-

tally obtained by choosing at each step j the region that, among the unread regions Di,
maximizes the quantity Pr {dΠi

(q) ≤ θ}.

26 Chapter 3. Completely Connected Networks

Proof. When a distance threshold θ is given, the expected cost for processing a random

query q with schedule Π can be expressed, according to Equations 3.3 and 3.2, as:

Cost [q,Π; θ] = M −
M−1∑
c=1

c · pstop (c, θ; Π) = M −
M−1∑
c=1

(
1−

c∏
i=1

(1− Pr {dΠi
(q) ≤ θ})

)

= 1 +
M−1∑
c=1

c∏
i=1

(1− Pr {dΠi
(q) ≤ θ}) (3.13)

which amounts to choose, at each step j, the region maximizing Pr {dΠi
(q) ≤ θ} (similar

arguments apply to Equation 3.5, when one wants to minimize the approximate distance

of the NN).

3.4.1 Query-Independent Schedules

From Theorem 3.1, a query-independent optimal schedule maximizes, at each step, the

probability defined by Equation 3.9 (novelty-based schedule) or by Equation 3.11 (simple

schedule).

These schedules do not depend on the query point q and, for a given θ, the regions are

always explored according to the same (static) ordering. From a practical point of view,

however, it is an interesting, though simple, case study that has the advantage that can

be implemented by simply adding each region a link which points to the following step

in the chain. The first region accessed has the highest probability of solving the query

or, from a probabilistic point of view, it can solve, in one single step, more queries than

any other region (on average). The second region, if we adopt a novelty-based schedule,

is the one which solves the highest number of queries that did not find a solution in the

first step.

This schedule is an elegant solution to those scenarios that requires the system to

return a fast, even if approximate, response.

3.4.2 Query-Dependent Schedules

A query-dependent optimal schedule maximizes, at each step, the probability defined by

Equation 3.10 (novelty-based schedule) or by Equation 3.12 (simple schedule).

In order to implement a query-dependent simple schedule based on the indicator Ψ, one

has to discretize the indicator domain [ψmin, ψmax] and store, for each region, an histogram

histψi
(θ) for each value ψi. Given a page size of approximately 8KB (cf. [CPZ97]), 10

possible values of Ψ and 20 different values of θ (and assuming 4B for each cell of the

histograms), the space overhead is 800B, i.e., 10% of the page size, which is still affordable.

3.5 Schedules Based on Indicators 27

Implementing a query-dependent novelty-based schedule is more complex because

Equation 3.10 basically relies on exploiting the joint distribution G1,...,M (θ).

Our implementation of the schedule is based on a sample set of queries which are

used to compute the probability Gi

(
θ | ψi, d1 (q) , . . . , di−1 (q)

)
at query time. Given a

discretization of the indicator’s domain, each region Di stores, for each possible value ψj

of the indicator, the queries from the sample set for which Ψ (q,Di) = ψj holds. These

queries are partitioned in two sets and in the first set there are those that can be solved

exploring the region, while in the other those that can not be solved. The probability

Gj (θ|ψj) can be estimated as |solved|
|solved|+|unsolved| . To take novelty into account, each time

the schedule chooses a region Di, the queries from the sample set that are solved by Di
has to be removed from all other regions’ solved lists.

3.5 Schedules Based on Indicators

In general, maintaining a set of statistics stats(Di) for a region Di may be too expensive,

because of a limited storage space or because they cannot be compute efficiently. In

this section we investigate alternative scheduling strategies that do not explicitly rely on

statistical descriptions stored at each data region, but only assume that it is possible to

conduct a preliminary off-line study on the data set.

In the remainder of the section we presents formal results that show that for regions

whose data objects are uniformly distributed within them, if we consider the geometrical

indicators presented in Section 3.3.1, then the lower is the value of the indicator for a

given data region, the higher is the probability that dDi
(q) ≤ θ.

The direct consequence is that a query-dependent schedule, which maximizes the

probability Pr {dDi
(q) ≤ θ}, can be approximated by one which minimizes the value of

Ψ (q,DDi
).

These results are generalized to any data distribution in a region by taking into account

the entropy of the event which models the value of an indicator with respect to a random

query. These results are presented in Section 3.5.2.

3.5.1 The Case of Uniform Distribution

Consider the optimal query-dependent schedules which maximize, at each step i, the

probability Gi (θ|ψi) (eventually conditioned to the previously explored regions). In this

formula the event that a region Di satisfies dDi
(q) ≤ θ is correlated to the event of

observing, for the same region, an indicator Ψ whose value is equal to ψi.

In general, when we have two events A and B and the conditioned probability P (A|B),

28 Chapter 3. Completely Connected Networks

if A and B are highly correlated, then whenever B is verified it is very likely that also

A will be verified. Under these conditions, a first-order approximation of the conditional

probability P (A|B) would be P (A|B) ≈ P (B).

C

q2 θ

q1 θ

Figure 3.1: Data region and uniform distribution of objects.

Theorem 3.2. Let BC(rC) be a ball region in a metric space whose data is distributed

uniformly within the region and let q1 and q2 be two queries of radius θ, such that lb1 =

MinDist(q1,DC) and lb2 = MinDist(q2,DC). If lb1 ≤ lb2, then Pr {dDC
(q1) |lb1} ≥

Pr {dDC
(q2) |lb2}.

Proof. The proof derives from simple geometrical considerations: assume q1 and q2 are

two random queries such that lb1 = lb2, then they would share the same viewpoint on

DC (and eventually the same distance from the NN) disregarding their effective position

in the space. Due to the metric properties of the space, It naturally follows that if one

of the two queries lies farther from the region, then it is also farther from the nearest

neighbor.

Notice that analogous considerations are valid for the other indicators presented in

Section 3.3.1 (MinMaxDist and MaxDist). From Theorem 3.2 we derive the following

corollary, which gives us indications on how to schedule data regions based on indicators:

Corollary 3.1. Let D1 and D2 be two regions with uniform data distribution and let

ψ1 = Ψ (q,D1) and ψ2 = Ψ (q,D2) be the only available information about D1 and D2

with respect to a random query q. If ψ1 ≤ ψ2, then Pr {d1 (q) ≤ θ} ≥ Pr {d2 (q) ≤ θ}.
Proof. Without any other information, we can assume that the radii r1 and r2 of D1 and

D2, respectively, are equal. The proof, then follows from Theorem 3.2.

3.5.2 Entropy-based Analysis

In Section 3.5 we have assumed a uniform distribution of the objects in the data regions.

In this section we generalize the previous results and present a technique which, with-

out relying on any particular data distribution, constitutes a power tool to estimate the

3.5 Schedules Based on Indicators 29

correlation existing between two events: the value assumed by an indicator Ψ in a data

region with respect to a random query and the probability that the region has a solution

for that query.

We study the entropy associated to an indicator Ψ, i.e., the relationship between the

value Ψ (q,Di) computed with respect a random region Di and the probability that “the

threshold is reached exploring Di”. More precisely, adopting an information-theoretic

approach, we consider how much information an indicator Ψ can provide us about the

probability of finding an object at distance lower than θ from q.

This analysis should be propedeutical to choosing, among all the available indicators,

the one that maximizes such information. In a more sophisticated scenario, one might

even partition the set of all possible queries to derive the optimal indicator for each specific

partition. This further characterization is, however, out-of-the-scope of this work.

The following analysis relating an indicator with NN information assumes that we will

not incur substantial errors if we try to understand the relationship between the values of

an indicator Ψ and the global NN distribution, G(·), rather than the distributions of theM

regions. Consider the probabilistic event S (θ) = “dDi
(q) ≤ θ for a random region Di”,

its entropy is defined as:

H(S (θ)) = −G (θ) log2G (θ)− (1−G (θ)) log2(1−G (θ)) = H(G(θ)) (3.14)

where H(p) is the entropy of a Bernoulli variable with probability of success p. In other

words, H(S (θ)) represents the uncertainty of the event “the termination threshold is

reached” for a given value of θ. The use of an indicator Ψ should allow us to reduce

such uncertainty. If Ψ can assume m distinct values, ψ1, . . . , ψm, one can compute the

conditional entropy of success assuming Ψ, i.e.,:

H(S (θ) |Ψ) =
m∑
i=1

Pr(ψi)H(S (θ) |ψi) =
m∑
i=1

Pr(ψi)H(G (θ|ψi)) (3.15)

H(S (θ) |Ψ) quantifies the amount of uncertainty of the event “the termination threshold

is reached” for a given value of θ if we know, at each trial, the value of the Ψ indicator

(it has to be noted that H(S (θ) |Ψ) ≤ H(S (θ))). The mutual information I(S (θ) ,Ψ)

represents the information about the termination event contained in the Ψ indicator, and

is defined as:

I(S (θ) ,Ψ) = H(S (θ))H(S (θ) |Ψ) (3.16)

The higher the value of I(S (θ) ,Ψ) for a given indicator, the better the estimation of the

success probability given by the Ψ indicator, and the sooner we are expected to reach the

termination threshold for a query if we schedule regions according to values of Gi (θ|ψi).

30 Chapter 3. Completely Connected Networks

This suggests that the indicator that maximizes I(S (θ) ,Ψ) for a given data set is the one

that provides the optimal schedule.

3.6 Experimental Evaluation

In this Section we present the experimental evaluation of the techniques proposed in the

previous sections. Results included are all obtained from the following real data sets:

Corel: This data set contains 68,040 32-dimensional color histograms extracted from a

collection of Corel images. The value for each dimension in the histogram represents

the density of the relative color in the entire image. We downloaded the data set

from the UCI Knowledge Discovery Site (http://kdd.ics.uci.edu/).

Airphoto: This data set consists of 274,424 60-dimensional vectors. Each vector contains

texture information extracted from a tile of size 64×64 that is part of a large aerial

photograph (there are 40 air-photos in the data set). Each tile is analyzed by

means of 30 Gabor filters, and for each filter the mean and the standard deviation

of the output are stored in the feature vector. This data set was given to us by

B.S. Manjunath.

EEG: This data set contains 2,824,483 64-dimensional vectors, where each component

represents a measurement obtained from an EEG electrode placed on a subject’s

scalp. Again, the data set was downloaded from the UCI Knowledge Discovery Site.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.1

E
[c

o
st

]

θ

Estimated cost for MinDist

Experiments

CM, G(θ)

CMwp, G(θ)

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.1

E
[c

o
st

]

θ

Estimated cost for MinMaxDist

Experiments

CM, G(θ)

CMwp, G(θ)

(b)

Figure 3.2: Estimated cost based on Gi (θ) for (a) MinDist and (b) MinMaxDist

3.6 Experimental Evaluation 31

3.6.1 Cost Models

In the following figures we show the prediction capabilities of the cost model presented in

Section 3.2.1. We denote with CM the cost model which uses the stopping probability

defined by Equation 3.2, while with CMwp the one defined in Equation 3.4, which is

conditioned to the value of the MinDist of the selected region.

In Section 3.3.2 we have introduced four different classes of distance distributions with

respect to a random query q. In Figure 3.2 we show:

• The comparison between the original cost model CM and the cost model CMwp;

• The comparison between the experiments and the predictions based on a query-

independent simple distance distribution.

It is worth noting that CM overestimates the experimental costs, both in the case of

the MinDist and the MinMaxDist indicators (Figures 3.2(a) and 3.2(b), respectively).

Even with a cost model which performs the pruning of the search space, the predictions

are not accurate. The problem is that the cost model is not able to differentiate among

different queries, thus showing poor performances, as it is certified by this figures.

 0

 10

 20

 30

 40

 50

 60

 70

 0.1

E
[c

o
st

]

θ

Estimated cost for MinDist

Experiments

CMwp, G(θ | MinDist)

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 0.1

E
[c

o
st

]

θ

Estimated cost for MinMaxDist

Experiments

CMwp, G(θ | MinMaxDist)

(b)

Figure 3.3: Estimated cost based on Gi (θ|ψi) for (a) MinDist and (b) MinMaxDist

In Figures 3.3(a) and 3.3(b) a query-dependent simple distance distribution is used by

the model and the predictions are more accurate that in the previous case.

In Figure 3.4, it is shown the relative error on the predictions |costest−costreal|
costreal

, i.e., the

difference between the estimated cost costest and the real cost costreal divided by the

real cost, for the schedules MinDist and MinMaxDist. In particular, it is shown how

the error depends on the number of buckets in which Gi (θ|ψi) is partitioned for a fixed

32 Chapter 3. Completely Connected Networks

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

R
e
l.

 E
rr

o
r

num. buckets

Num. Buckets vs. Relative Error

MinDist, θ=0.05

MinDist, θ=0.07

MinDist, θ=0.1

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

R
e
l.

 E
rr

o
r

num. buckets

Num. Buckets vs. Relative Error

MinMaxDist, θ=0.05

MinMaxDist, θ=0.07

MinMaxDist, θ=0.1

(b)

Figure 3.4: Relative error in the prediction of the (a) MinDist and (b) MinMaxDist
schedule for various values of θ.

θ. Notice that there exists an optimal number of buckets which, depending on the θ

considered, ranges between 10 and 20. In the rest of the section we have chosen the value

10, because it is a good compromise between the memory consumption and the accuracy

of the model.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.05 0.06 0.07 0.08 0.09 0.1

P
r
(M

in
D

is
t=

0
 |

 d
n

n
<

=
θ)

θ

MinDist Correlation

P(MinDist=0)

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.05 0.06 0.07 0.08 0.09 0.1

R
e
l.

 E
r
r
o
r

θ

Theta vs. Relative Error (MinDist)

MinDist

(b)

Figure 3.5: (a) Probability P (MinDist(q,Di) = 0|d (q,Di) ≤ θ) and (b) relative error in
the prediction of MinDist as a function of θ.

If the schedule considered is MinDist, the relative error is approximately constant

for a given value of θ and the dependency is shown in Figure 3.5(b). At a first glance,

this is a “strange” behavior, which however, can be explained by looking at Figure 3.5(a),

i.e., to the probability P (MinDist(q,Di) = 0|d (q,Di) ≤ θ). There is a strong correlation

3.6 Experimental Evaluation 33

between the event that a random region in the data set contains an object o∗ s.t. d (q, o∗) ≤
θ and the event that, for that specific region, MinDist(q,Di) = 0. Due to the ordering

criterion, if the correlation is high enough, only regions whose MinDist is 0 are explored,

being the resulting prediction independent from the number of buckets of the histogram.

As a final remark, note that the “quality” of the prediction degrades when θ increases:

this is due to the decrease of the first bucket’s precision, which brings the relative error

back to “normal” levels (if compared to the values shown in Figure 3.4).

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30

R
e
l.

 E
rr

o
r

num. buckets (stats MinMaxDist)

Num. Buckets vs. Relative Error

MinDist, θ=0.05

MinDist, θ=0.07

MinDist, θ=0.1

(a)

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30

R
e
l.

 E
rr

o
r

num. buckets (stats MinDist)

Num. Buckets vs. Relative Error

MinMaxDist, θ=0.05

MinMaxDist, θ=0.07

MinMaxDist, θ=0.1

(b)

Figure 3.6: Relative error for the prediction of (a) the schedule MinDist based on the
statistics Gi (θ|MinMaxDist) and (b) the schedule MinMaxDist based on the statistics
Gi (θ|MinDist).

In Figures 3.6(a) and 3.6(b) we show, for indicators MinDist and MinMaxDist

respectively, the relative error obtained if a “wrong” set of statistics were used. The

predictions are still good, which confirms the robustness of the model and this can be

verified by comparing the relative error of Figures 3.4 and 3.6(b).

In general, if we refer to histograms that are accurate enough (i.e., which have a

sufficient number of buckets), the prediction is more accurate if the ordering criterion and

the statistics are homogeneous: this is true if there exists a positive correlation between

the ordering of the region and the probability of finding an element at a distance lower

than θ, which is what actually happens in practice. On the other hand, however, if we

are looking for a more efficient solution in terms of memory consumption at the price of

a little degradation in the model performance, it is interesting to consider using statistics

on MinDist only, because, due to the correlation described by Figure 3.5.(a), it performs

better with fewer number of buckets (see Figure 3.7).

Now consider a schedule that orders the data region according to a criterion that is

34 Chapter 3. Completely Connected Networks

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

co
s
t e

s
t

-
co

s
t r

e
a
l

num. buckets

Num. Buckets vs. Absolute Error (MinMaxDist, θ = 0.05)

Stats on MinMaxDist

Stats on MinDist

(a)

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

co
s
t e

s
t

-
co

s
t r

e
a
l

num. buckets

Num. Buckets vs. Absolute Error (MinMaxDist, θ = 0.07)

Stats on MinMaxDist

Stats on MinDist

(b)

Figure 3.7: Absolute error in the prediction of MinMaxDist with statistics on (a) Min-
MaxDist and on (b) MinDist.

 0

 20

 40

 60

 80

 100

 120

 0.1

E
[c

o
st

]

θ

Estimating Random schedule through different statistics

Experiments

G(θ | MinDist)

G(θ | MinMaxDist)

Figure 3.8: Random schedule and expected cost based on Gi (θ|MinDist) and
Gi (θ|MinMaxDist).

3.6 Experimental Evaluation 35

 0

 10

 20

 30

 40

 50

 60

 70

 0.06 0.08 0.1 0.12 0.14 0.16 0.18

E
[c

o
st

]

θ

Experiments (Pruning on θ)

Gi(θ)

Gi(θ) (Novelty-based)

Gi(θ | MinDist), (Novelty-based)

Gi(θ | MinDist)

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 0.06 0.08 0.1 0.12 0.14 0.16 0.18

E
[c

o
st

]

θ

Experiments (Pruning on θ)

Gi(θ)

Gi(θ) (Novelty-based)

Gi(θ | MinMaxDist), (Novelty-based)

Gi(θ | MinMaxDist)

(b)

Figure 3.9: Average cost of a query for the optimal-on-the-average schedules using (a)
MinDist and (b) MinMaxDist statistics.

independent from the indicator on which the statistics are built. We expect that the

model CMwp predicts approximately the same cost with any set of statistics, given that

they are accurate enough. In Figure 3.8 we show the cost of a random schedule and the

expected cost, computed by using statistics on MinDist and on MinMaxDist.

3.6.2 Optimal Schedules

The cost model presented in the previous sections is a powerful tool to estimate the

expected cost of a workload of queries, however it can also be used to derive an optimal-

on-the-average schedule, as explained in section 3.4. In particular, it suggests that the

optimal ordering criterion is the one which chooses, at each step i, a region Di such that

the probability Pr {∃o ∈ Di} is maximized.

Figure 3.2 shows us that a query-independent simple distance distribution Gi (θ) can-

not estimate the expected cost of a schedule. The same distance distribution, as we would

have expected, cannot be used as the ordering criterion as well: it does not distinguish

among different queries, therefore it generates a static ordering of the regions of the space

which, adopted by any query executed in the data set, leads to poor performances.

In Figure 3.9(a) and 3.9(b), we have shown the average cost of a query when the or-

dering criterion is based on the probability of finding the nearest neighbor in the chosen

region. Each schedule corresponds to a different implementation of Pr {di (q) ≤ θ} pre-

sented in Section 3.4. In Figure 3.9(a) the query-dependent schedules are conditioned to

the values of MinDist and in Figure 3.9(b) they are conditioned to the values of Min-

36 Chapter 3. Completely Connected Networks

MaxDist. Also notice that the query independent schedules are reported in both figures

for ease of completeness, though they are identical.

 0

 5

 10

 15

 20

 5 10 15 20 25 30

E
[c

o
s
t]

num. buckets

Schedule on Gi(θ | MinDist), Num. Buckets vs. E[cost]

Gi(θ=0.05 | MinDist)

Gi(θ=0.07 | MinDist)

Gi(θ=0.1 | MinDist)

(a)

 0

 5

 10

 15

 20

 5 10 15 20 25 30

E
[c

o
s
t]

num. buckets

Schedule on Gi(θ | MinMaxDist), Num. Buckets vs. E[cost]

Gi(θ=0.05 | MinMaxDist)

Gi(θ=0.07 | MinMaxDist)

Gi(θ=0.1 | MinMaxDist)

(b)

Figure 3.10: Average cost of a query for different values of θ using a schedule based on
(a) Gi (θ|MinDist) and (b) Gi (θ|MinMaxDist).

The more accurate is the estimate of the Pr {di (q) ≤ θ} probability, the lower is the

average cost of the query. The novelty-based query-dependent schedule is too complex

to implement and, in the case of the MinMaxDist indicator doe not have any relevant

improvement on the simple query-dependent schedule. Therefore, in Figure 3.10 we only

consider a simple query-dependent schedule and compare the average cost of a query

and how it depends on the number of buckets in the histograms of Gi (θ|MinDist) and

Gi (θ|MinMaxDist) (Figures 3.10(a) and 3.10(b), respectively).

3.6.3 Entropy

In Figure 3.9 we observe different performances between the schedules based on MinDist

and those based on MinMaxDist. This effect is even more visible if we allow a large

number of buckets in the histogram of Gi (θ|MinMaxDist), making the MinMaxDist

indicator heavily outperforming MinDist.

The ultimate reason for these differences is to be searched in the information that

each indicator brings as a representative of the region. We have experimentally seen

that the task of estimating the probability Pr {di (q) ≤ θ} for each region Di through

the distribution Gi (θ) leads to poor results: from an information-theoretic point of view,

conditioning that distribution to the event that a query has seen a certain indicator means

reducing the uncertainty of the system, thus increasing its information. In Figure 3.11.(a)

3.6 Experimental Evaluation 37

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

H
(s

(θ
)

|
 Ψ

)

θ

H(s(θ))

H(s(θ) | MinDist)

H(s(θ) | MinMaxDist)

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

I Ψ
->

s
(θ

)

θ

IMinDist -> s(θ)

IMinMaxDist -> s(θ)

(b)

Figure 3.11: (a) Entropy and (b) mutual information for different indicators.

we show the entropy associated to various indicators and in Figure 3.11.(b) the additional

information that they introduce into the system.

It is interesting to compare Figures 3.9 and 3.11: the indicator MinMaxDist, which

has a better performance, is also the one to which it is associated the lower entropy. As

we have already introduced in Section 3.5.2, we exploit the knowledge of the conditional

entropy of these indicators in order to choose among the available indicators the one which

has a higher correlation with the event that “the region contains the nearest neighbor with

respect to the query”. Notice that this information, in general, depends on the considered

data set.

3.6.4 Scheduling on Indicators Values

There are cases in which it is not possible to rely on a set of statistics for each data region,

for example because it is not possible to rebuild the whole data structure in order to collect

such statistics, or because the data cannot be directly accessed. In these situations, we

can exploit our results on the relation between indicator values and their ability to predict

the content of data regions.

In Figure 3.12 we show the average cost of a query for different indicators. Notice

that, as we would have expected, the MinMaxDist outperforms the MinDist indicator

and the MaxDistindicator is slightly better than the MinMaxDist.

As a final remark, notice that the concept of optimality for a schedule, now, is more

vague, because we should also consider the entropy associated to an indicator.

38 Chapter 3. Completely Connected Networks

 0

 10

 20

 30

 40

 50

 60

 70

 0.06 0.08 0.1 0.12 0.14 0.16 0.18

E
[c

o
st

]

θ

Experiments (Pruning on θ)

Random

MinDist

MinMaxDist

MinMax

Figure 3.12: Average cost of the query for various indicators.

3.7 Hierarchical networks

As data sets grow exponentially in size, the number of data regions in which they are

partitioned grows, eventually becoming a data set of regions which is smaller in size,

but still too big to be managed efficiently by the system. The split rule presented in

Section 2.3.1, then, can be reiterated, in order to create certain number of levels, each of

them associated to a different division of the data set.

A hierarchical network consists of a set of regions organized on two or more levels with

the characteristic that the regions residing at the lower levels of the structure are fully

contained in the regions at the higher level. In particular, each region Di at level l has

all its child regions D1,D2, . . . at level l + 1 and Di ⊇
⋃
j Dj. Query processing typically

begins at the root region and descends the hierarchy, exploring the most promising sub-

hierarchies first.

3.7.1 Experimental Evaluation

In this section, we show that if a hierarchy has more than two levels the problem of deriv-

ing analytically an optimal schedule becomes increasingly difficult, because, at each step,

only a partial knowledge on the network structure and on the probabilistic information

associated to the regions is available. We performed an extensive evaluation with the

M-tree index structure [CPZ97] on the three considered data sets and validated exper-

imentally the generality of our hypotheses. The overall conclusion is that most of the

conclusions drawn for 2-levels hierarchies are still valid for general hierarchies. However,

for some indicators, performance highly degrades for taller hierarchies, since they mislead

3.7 Hierarchical networks 39

to choose to explore the wrong parts of the hierarchy at upper levels.

In this section we show the experimental results of a cost-optimal control policy for a

variety of indicators. As an example, in Figures 3.13, 3.14, and 3.15 we plot the distance

of the 10-th NN to the query as a function of the number of accessed regions and of

accessed leaf regions, respectively (results for other values of k were similar and have

been omitted here for brevity). Notice that lb refers to the MinDist indicator, ub to the

MinMaxDist and ubRO to the MaxDist. random represents a random schedule and
lb+ub

2
and lb+ubRO

2
are two indicators whose meaning is evident.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

E
[d

(q
,n

n
k
)]

#pages

COREL: IOCost vs. E[dnn] K = 10

lb

ub

ubRO

(ub + lb) / 2

(ubRO + lb) / 2

random

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10 100 1000

E
[d

(q
,n

n
k
)]

#leaves

COREL: LeafCost vs. E[dnn] K = 10

lb

ub

ubRO

(ub + lb) / 2

(ubRO + lb) / 2

random

(b)

Figure 3.13: Result quality (k = 10) for different indicators on the Corel data set as a
function of the number of fetched regions (a) and accessed leaves (b).

As for the k > 1 case, we performed an extensive evaluation with the M-tree index

structure [CPZ97] on the three considered data sets and validated experimentally the

generality of our hypotheses. The

40 Chapter 3. Completely Connected Networks

0

5

10

15

20

25

30

10 100 1000

E
[d

(q
,n

n
k
)]

#pages

AIRPHOTO: IOCost vs. E[dnn] K = 10

lb

ub

ubRO

(ub + lb) / 2

(ubRO + lb) / 2

random

(a)

0

5

10

15

20

25

30

1 10 100 1000

E
[d

(q
,n

n
k
)]

#leaves

AIRPHOTO: LeafCost vs. E[dnn] K = 10

lb

ub

ubRO

(ub + lb) / 2

(ubRO + lb) / 2

random

(b)

Figure 3.14: Result quality (k = 10) for different indicators on the Airphoto data set as
a function of the number of fetched regions (a) and accessed leaves (b).

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000

E
[d

(q
,n

n
k
)]

#pages

EEG: IOCost vs. E[dnn] K = 10

lb

ub

ubRO

(ub + lb) / 2

(ubRO + lb) / 2

random

(a)

0

0.02

0.04

0.06

0.08

0.1

1 10 100 1000 10000 100000

E
[d

(q
,n

n
k
)]

#leaves

EEG: LeafCost vs. E[dnn] K = 10

lb

ub

ubRO

(ub + lb) / 2

(ubRO + lb) / 2

random

(b)

Figure 3.15: Result quality (k = 10) for different indicators on the EEG data set as a
function of the number of fetched regions (a) and accessed leaves (b).

Chapter 4

Partially Connected Networks

In Chapter 2 we have introduced the idea of partitioning a data set into different regions

in order to (i) optimize the efficiency of query processing or (ii) model, from a logical

point of view, a situation already existing in practice, in the form of a data set already

partitioned in physically different regions, such as a distributed system. In this chapter

we deal with those network organizations in which each region is directly linked to a finite

number of other regions and does not have any knowledge about the others, such that a

query that is processed at region, say, Di has no means to guess the global topology of the

network other than Di’s direct neighbors. Despite the evident gap that intercurs between

an ad-hoc data structure (such as well-tuned hierarchy) and a flat network in terms of

efficiency of the query processing, there is a more notable difference that concerns the

quality of the results that are found by a query in the two scenarios. In general, it is not

guaranteed that all regions can be reached by any other region in the network by simply

navigating the links among two neighbors. Consider, for example, a situation in which

there exists a small cluster of regions which have ingoing links but not outgoing ones. If

a query starts from any one region belonging to that group, there is no way it can find

its way out, therefore either it finds the optimal solution in one of those regions or the

global solution cannot be found at all.

Figure 4.1: The reachability problem in flat topologies

In Figure 4.1, we show the reachability problem from an abstract point of view: for

41

42 Chapter 4. Partially Connected Networks

each region Di, there exists a subset D′ ⊆ D of the original data set D, such that the

solution for a query q can only be found in D′. Therefore, the definition of exact solution

for a query q strongly depends on the region where the query is executed the first time.

Maintaining a flat topology does not require any central coordination: however, if

we compare a flat topology to a hierarchical system which is built on the same identical

data, the latter is more efficient and does not incur in the reachability problem. In terms

of efficiency and efficacy, then, there is no apparent need to prefer a flat topology to a

hierarchical one when dealing with a centralized scenario.

In the following we will show how to organize data regions in a flat topology and how to

query them. In Section 4.1 we investigate the problem of building and maintaining a Met-

ric Overlay Network (MON), i.e., a particular type of peer-to-peer (P2P) network which

is embedded in a metric space, in a scenario typical of information retrieval [BYRN99]. In

such a scenario, a critical issue is constituted by the overhead generated by the network

maintenance algorithms and by the data they exchange. A variety of query processing

techniques are presented in Section 4.4.2, where we show experimental results based on

the same data sets that had been used in Section 3.6. .

4.1 Introduction to P2P networks

Peer-to-peer networks potentially offer major advantages for large-scale decentralized

search of information such as file sharing or Web search [SW05]. We envision an ar-

chitecture where every peer has a powerful local search engine, with its own crawler,

indexer, and query processor. Such a peer can compile its own content from themati-

cally focused crawls and other sources, and make this content available in a P2P overlay

network. Search requests issued by a peer can first be executed locally, on the peer’s lo-

cally indexed content, with a strong potential for personalization and other advanced IR

techniques. In cases when the recall of the local search result is unsatisfactory, the query

may be forwarded to a small set of other peers that are expected to provide thematically

relevant, high-quality and previously unseen results. Deciding on this set of target peers

is the query routing problem in a P2P search network (aka. collection selection).

A practically viable query routing strategy needs to consider the similarity of peers

in terms of their thematic profiles, the overlap of their contents, the potential relevance

of a target peer for the given query, and also the costs of network communication. Many

proposals have been made in the literature, for example: globally available term statistics

about the peers’ contents [CLC95, GGMT99, MYL02, BNST05], epidemic routing using

gossiping strategies [KNOT06], routing indices with peer summaries from local neigh-

4.1 Introduction to P2P networks 43

borhoods [CGM04, LTQ+05], statistical synopses such as Bloom filters or hash sketches

maintained in a directory based on distributed hash tables (DHT) [BMT+05, MBTW06,

PRL+06], randomized expander graphs with low-diameter guarantees [MS05, MS06] and

randomized rendezvous [PMW05], clustering of thematically related peers [DNV06a, DNV06b,

LC06], superpeer-based hierarchical networks [LC03, LC05b], cost/benefit optimization

based on coarse-grained global knowledge [NF04, NF06], and many more.

Typically, query routing decisions would be made at query run-time, when the query

is issued at some peer. But many of the above methods involve directory lookups, statis-

tical computations, and multi-hop messages; so it is desirable to precompute some basic

elements of query routing decisions and amortize this information over many queries.

A technique for doing this is to encode a similarity-based precomputed binary relation

among peers into a so-called semantic overlay network [CGM04, ACM05]. Each peer P

becomes directly connected to a small number of peers that are likely to be good routing

targets for many of P ’s queries. At query run-time, the query router would consider only

the semantic overlay network neighbors of the query initiator and select a subset of these

based on a more detailed analysis of similarity, overlap, networking costs, etc.

From a given peer’s viewpoint, one particularly intriguing choice of network neighbors

are those peers with the lowest Kullback-Leibler (KL) divergence [CT91] regarding the

term-frequency distributions in the peers’ locally indexed contents. This information-

theoretic measure captures the general thematic similarity of two peers in a natural man-

ner and is well-founded in the recent work on statistical language models for IR [LC05a].

In a language model (LM), queries and documents are viewed as samples generated from

an underlying probability distribution over terms. When we assume that the contents of

a peer represents this distribution and assume that queries are generated according to a

multinomial model, the best peer for a query is the one that has the highest likelihood of

generating the query; this is mathematically equivalent, in terms of peer ranking, to the

lowest KL divergence between the query LM and the peer LM. Finally, if we do not have

a specific query at hand at the time we want to precompute the similarity of two peers,

we consider the contents of the query-initiating peer as a substitute for the query itself

and replace the query LM by that peer’s contents LM.

LM’s have become state-of-the-art practice for many IR tasks, and they have already

been proposed also for P2P IR by [LC03]. In conventional IR settings, with one LM

for each document and one LM for each query, parameter estimation and smoothing are

very critical parts of LM-based approaches; details of smoothing techniques are often

decisive for search result quality [ZL04]. In contrast, a P2P setting provides a much

more convenient and robust environment for LM’s, as the peers have rich and naturally

44 Chapter 4. Partially Connected Networks

available sources for parameter estimation and smoothing. Instead of a document LM we

can use the entire contents of a peer as the basis of the LM or as a background corpus for

smoothing, and instead of a query LM we can leverage the user-behavior history (query

logs, click streams, bookmarks) for robust parameter estimation. In this sense, LM’s and

P2P networks are a “marriage made in heaven”.

Unfortunately, however, an LM-based approach to P2P IR also entails major computa-

tional costs, and it is unclear how to make this approach practically viable in a large-scale

environment.1 More specifically, we face the following efficiency problems:

1. Computing the exact KL divergence between two peers’ term-frequency distri-

butions incurs non-negligible overhead as it ranges over high-dimensional feature

spaces. It would be desirable to disregard a large part of “insignificant” features,

but it is not obvious how to efficiently approximate the KL divergence this way and

control the approximation error.

2. The computations involve shipping term-frequency vectors over the network. With

high-dimensional feature spaces, these messages have non-negligible size and may

incur significant consumption of network bandwidth.

3. Most severely, as the KL divergence is not a metric (i.e., the triangle inequality

does not hold), there is no obvious way of transitively inferring, from knowing the

distances for some pairs of peers, transitive distances so as to eliminate peers that

are “too far away” from a given peer. Thus, we would need to compute the KL

divergence for all pairs of peers, and this quadratic cost is out of the question

for a scalable approach. Being able to prune the search space of all peer pairs is

fundamentally important and poses a great challenge.

4.1.1 Our Solution

We address the above problems by combining insights and methods from different areas

and integrating them into a novel kind of network which we call Metric Overlay Network,

because its ultimate objective is to embed both peers and data objects in a metric space, in

order to facilitate network maintenance and query routing. First, we utilize recent results

from information theory [ES03], which show that the square root of the Jensen-Shannon

(JS) divergence is a metric. The JS divergence is a symmetrized and smoothed relative of

the KL divergence. We adopt the JS divergence instead of the KL divergence as a metric

1This is probably the reason why prior work has considered LM-based approaches only for superpeer-
based P2P systems, but these approaches do not scale up to completely decentralized networks with
millions of equally standing peers and no hierarchical structure at all.

4.2 Network Architecture 45

distance measure because it allows us to effectively prune the search space of peer pairs.

Second, we build on existing methods for metric similarity search in centralized settings

and adapt them for our P2P setting. Peers meet randomly and exchange information

about their nearest neighbors in the metric space. Peers remember the distances to

interesting peers, and with the JS-divergence-based metric, they can effectively use the

triangle inequality for early elimination of uninteresting peers. This technique is key for

scalability. Third, we compress the term-frequency vectors and speed up the computation

of two peers’ JS divergence by using appropriately designed compact synopses based on

Bloom filters [Blo70]. Our technique comes with guarantees about the approximation

error.

1. Fast comparisons of per-peer LM’s by synopsis-based approximations with error

bounds,

2. Low communication cost by LM compression and search-space pruning using the

JS-based metric,

3. Judicious message routing for MON construction and maintenance.

4.2 Network Architecture

Our system consists of a physical layer (an example is the TCP/IP infrastructure) con-

necting a variable number of autonomous peers, which cooperate in order to build and

maintain a virtual network of regions that are directly linked only if their local data

collections are “semantically similar”. Ideally, this similarity should be (reciprocal to) a

metric distance, computed by a function d : X × X → R+
0 which satisfies the triangular

inequality and where X is a space containing all objects and peers in the system. Each

peer Pi is responsible for a region of the data set Di and is represented by the ball region

Bci(ri), centered in ci and with radius ri. Notice that the problem of choosing ci such

that ri is minimized is hard and out of the scope of this dissertation.

In general, we are interesting in viewing the P2P network as a metric space and

construct the MON from the metric distances between peers. The advantage of such a

model would be that we can exploit the triangle inequality to prune the search space of

all peer-pairs when we construct the edges of the MON. Once we know that for peers

x, y, z the distances are upper-bounded by d(x, y) ≤ a and d(y, z) ≤ b, we can infer that

d(x, z) ≤ a + b. With sufficiently small values a and b we could then consider peer z as

a candidate to be linked to x in the MON. Conversely, if we do not have any indication

of this kind and rather suspect that z is semantically far away from x based on other

46 Chapter 4. Partially Connected Networks

observed distances, we could prune z from our search for good neighbors of peer x even

without computing d(x, z).

With the above consideration, an intriguing strategy is to run a process of random

(but possibly biased) meetings of peer-pairs. When two peers “meet”, we compute or

approximate their semantic distance and keep this pair as a candidate for a MON edge

if we estimate that the distance is small enough. We iterate these meetings and use the

triangle inequality and other techniques for distance estimation. In the end, the peer-

pairs with the lowest (estimated) distances form the edges of the MON. As peers may

leave the P2P network anytime, new peers join, and the document contents of a peer

evolves over time, we actually run peer meetings continuously in the background in order

to maintain the MON in the presence of this dynamics. We present more details of this

MON construction later in Section 4.3.

In a MON peers search for their nearest neighbors with respect to the function d.

When this procedure is given a sufficiently large time, it eventually converges to a stable

situation in which each peer has found its exact nearest neighbors (this is true only in a

very slow-changing network). This kind of links is usually referred to as short-distance

links, because only the ks closest regions are kept as neighbors, while the others are

simply left behind. At the beginning of this Chapter we have introduced the reachability

problem, as a serious limitation to the accuracy of any query processing technique in a

P2P network. To overcome to such difficulty, each peer is provided with kl long-distance

links, so called because they store a set of neighbors chosen at random among those that

the peer has previously met during its lifetime. The reason for this second type of links

is two-fold: they avoid the network to become disconnected if a highly clustered group

of regions start establishing links one with each other and can be used to jump from one

region to the other of the space, thus reducing the impact of reachability problem (notice,

however, that it cannot be completely avoided).

4.2.1 Metric Distances and Language Model

In our scenario we consider each data object to be described by a set of keywords, such as a

text document which is characterized by its terms, an image, which is often associated to

a set of tags, or even an Mp3 file. We further associate a weight to each keyword so as to

represent the importance of the keyword as a description for the given object. A query is

also a set of keywords, for which the weights are explicitly assigned by the user or they are

given by the system (e.g., through relevance feedback techniques [WFSP00]). The geomet-

rical descriptor of an object oi, then, consists of the set of tuples {〈k1, v1,i〉, . . . , 〈kn, vn,i〉},
where each kj is a keyword and vj,i is the weight of kj in oi. Analogously, a peer descriptor

4.2 Network Architecture 47

is obtained by the descriptors of the objects o1, . . . , om stored at this peer as follows. For

each keyword kj ∈ o1 ∪ o2 ∪ . . . ∪ om, the average weight vj is given by vj =
Pm

i=1 vj,i

m
and

the resulting descriptor is the set {〈k1, v1〉, 〈k2, v2〉, . . .}. Notice that vj,i = 0 if keyword

kj is not present in the descriptor oi.

Such a descriptor is usually referred in Information Retrieval as the Language Model

of the object oi [BYRN99]. In general, a peer PΘ is geometrically characterized by a

Language Model Θ and a radius rΘ, such that all objects oi stored at PΘ have a distance

(that will be defined soon in this section) from Θ lower than rΘ. In other words, BΘ(rΘ)

is the ball region associated to PΘ.

From now on, we will refer to a peer through its LM and will use gGreekletters, such

as Θ and Ψ, to denote the LM’s associated to peers PΘ and PΨ.

A typical “distance” which measures the dissimilarity between any two objects oΘ and

oΨ is the Kullback-Leibler divergence [CT91] between their respective Language Models

Θ and Ψ:

DKL(Θ ‖ Ψ) =

|T |∑
i=1

θilog
θi
ψi

(4.1)

where θi and ψi are the weights associated to term ti in the two Language Models. Un-

fortunately, DKL is not symmetric and does not satisfy the triangular inequality. A

symmetrized version is the Jensen-Shannon divergence [CT91],

DJS(Θ,Ψ) =
1

2
· [DKL (Θ ‖ Φ) +DKL (Ψ ‖ Φ)] (4.2)

where Φ = 1
2
(Θ + Ψ). Adopting an information-theoretic approach, if we have a random

variable A whose observations can be drawn with equal probability from any of two

distributions Θ and Ψ, then the minimum codelength needed to represent A can be found

computing the “inefficiency distance” of both distributions from Φ and by averaging over

the result. Recent advances in the field of information theory [ES03] have shown that the

measure
√
DJS is a metric. Thus, the metric distance function d : Θ×Ψ→ R+

0 between

any two Language Models Θ and Ψ is defined as:

d(Θ,Ψ) =

√ ∑
ti∈TΘ∪TΨ

dJS(θi, ψi) (4.3)

and

dJS(θi, ψi) =
1

2

[
θi · log

2 · θi
θi + ψi

+ ψi · log
2 · ψi
θi + ψi

]
. (4.4)

In Table 4.2.1 we summarize the notation that will be used in the rest of the section.

In particular, Θ and Ψ denote the Language Models of peers PΘ and PΨ; Θ̃ and Ψ̃ are

their approximate versions (introduced in Appendix A) and rΘ and rΨ denote the search

radii for the two peers (used by the meeting algorithms in Section 4.3).

48 Chapter 4. Partially Connected Networks

Table 4.1: Summary of relevant notation
Symbol Description
T Global term space
TΘ ⊂ T Term space of peer PΘ

Θ, Ψ LM’s associated with peers PΘ, PΨ

Θ̃, Ψ̃ Approximate LM’s of peers PΘ, PΨ

θi, ψi Weight of the i-th term in PΘ, PΨ

θ̃i, ψ̃i Approx. Weight of the i-th term

θ
(i)
H Weight associated with the l-th BF
rΘ, rΨ Search radii for peers PΘ, PΨ

d = d(Θ,Ψ) Distance between PΘ and PΨ

d̃ = d(Θ̃, Ψ̃) Approx. distance between PΘ and PΨ

4.3 Building and Maintaining a MON

When two peers meet they first exchange their LM’s and then compute their similarity by

applying Equation 4.3: unfortunately, this operation leads to high communication costs

because it requires a huge set of term weights to be sent across the network.

In general, the problem of network overhead becomes critical whenever the peer de-

scriptors that are exchanged during a meeting are too big. Our solution requires the peer

descriptors and the distance function to follow these rules:

1. A peer descriptor Di is split in I segments D(1)
i , . . . ,D(I)

i , which are eventually

compressed to reduce;

2. Given two peers P1 and P2, their descriptors D1 and D2, and any two segments

D(i)
1 ∈ D1 and D(i)

2 ∈ D2 such that D(i)
1 and D(i)

2 represent the same partition in

their respective descriptors, then the distance d
(
D(i)

1 ,D(i)
2

)
computed between the

two segments is a lower-bound of the exact distance dD1 (D2);

3. Given two pairs of segments D(i)
1 ,D(j)

1 ∈ D1 and D(i)
2 ,D(j)

2 ∈ D2, such that D(i)
1 ⊆

D(j)
1 and D(i)

2 ⊆ D(j)
2 , then d

(
D(i)

1 ,D(i)
2

)
≤ d

(
D(j)

1 ,D(j)
2

)
, i.e., the previous property

is incremental.

A vector space provided with the Euclidean distance follows the previous rules:

Example 4.1 (Euclidean distance). Let D1 and D2 be two vectors whose coordinates

are 〈v1,1, . . . , vn,1〉 and 〈v1,2, . . . , vn,2〉, respectively, and D(i)
1 and D(i)

2 the projection of the

two vectors in a subspace such that D(i)
1 = 〈v1,1, . . . , vi,1〉 and D(i)

2 = 〈v1,2, . . . , vi,2〉. The

4.3 Building and Maintaining a MON 49

Euclidean distance does guarantee the previous properties:

d (D1,D2) =

√√√√
n∑
j=1

(vj,1 − vj,2)2 ≥
√√√√

i∑
j=1

(vj,1 − vj,2)2 = d
(
D(i)

1 ,D(i)
2

)

If the previous rules are satisfied, then a peer descriptor can be sent to the remote

peer one segment at a time and the remote peer can decide to early stop the meeting if

it realizes that the distance between them is growing too much. In Appendix A we show

how a LM can be partitioned in I independent segments and how it can be represented

through a set of Bloom-filters [Blo70]. We further present a technique which exploits this

representation to efficiently compute the distance between the peers, allowing only a small

and controllable error on the final value.

4.3.1 Algorithms for MON Construction and Maintenance

In this section we present the algorithms needed to build the semantic overlay as outlined

in Section 4.2. Each peer aims to find its k nearest neighbors in the network, in terms

of the introduced metric distance. The nearest neighbor problem in a metric space has

been widely studied for centralized environments [HS03, ZADB05], where the space re-

gions relevant for the query are distinguished from the non relevant ones by exploiting

information of an index data structure built on the data collection; since in our scenario

we cannot rely on such an index structure, each peer needs to perform a series of random

meetings with other peers in order to find its neighbors and build its own view of the

network.

Whenever a meeting (see Algorithm 3) occurs, the two peers exchange information in

order to compute a lower-bound on their similarity distance 2, so that they can decide

whether they should become MON neighbors or not. The search radius of a peer is defined

as the distance from the farthest peer in the current list of nearest neighbors, and is used

to prune the search space of those regions whose distance (or lower-bound) is too high.

To increase the probability of success of future meetings, after a peer PΘ has completed

a meeting, it computes a lower-bound between the met peer PΨ and all peers currently

in its neighbors list and “suggests” these values to PΨ (see Algorithm 4). Algorithm 5

shows the strategy by which peers are chosen to initiate a meeting with. Note that, in

order to minimize the chance that two peers meet too frequently, each peer maintains a

list of peers already met, along with their distances or lower-bounds.

2In this section the lower-bound is intended to be an approximation on the final distance, to not be
confused with the MinDist indicator, which expresses the minimum distance between a query and a
region.

50 Chapter 4. Partially Connected Networks

The random choice of meeting partners can be facilitated by the underlying network,

using, for example, a distributed hash table or epidemic message spreading. The random

choice may be biased, based on different criteria such as network distance (e.g., measured

in round-trip latency). In our actual algorithm, we use a priority queue which stores

peers (and their lower-bounds) suggested by others: the highest priority is given to the

peer with the lowest lower-bound, in order to shrink the initiating peer’s search radius as

quickly as possible [HS03].

For additional flexibility and robustness to network dynamics (i.e., peer failures, churn,

and evolving contents of peers), each peer periodically initiates new meetings, even if it

has reached its “optimal state”.

The Meeting Algorithm

Algorithm 3 meeting(PΘ, PΨ)

Require: PΘ, PΨ, rΘ and rΨ

1: i← 0 and lbΘ ← 0
2: while (lbΘ < rΘ ∧ i < I) do

3: PΘ: receive(PΨ, BF
(i)
Ψ) and lbΘ.update(·)

4: i← i+ 1
5: if (i = I) then {All BF’s were received}
6: PΘ: d̃← lbΘ
7: if (d̃ < rΘ) neighbors(PΘ).Insert([PΨ, d̃])

8: PΘ: send(PΨ, d̃)

9: if (d̃ < rΨ) then
10: PΨ: receive PΘ’s Bloom-filters
11: PΨ: neighbors(PΨ).Insert([PΘ, d̃])
12: else {PΨ is pruned on lower-bound}
13: PΘ: send(PΨ, lbΘ)
14: if (lbΘ ≥ rΨ) then Stop
15: i← 0 and lbΨ ← 0
16: while (lbΨ < rΨ ∧ i < I) do

17: PΨ: receive(PΘ, BF
(i)
Θ) and lbΨ.update(·)

18: i← i+ 1
19: if (lbΨ ≥ rΨ) then Stop

20: else PΨ: d̃← lbΨ
21: PΨ: neighbors(PΨ).Insert([PΘ, d̃])

Algorithm 3 shows the procedure by which two peers PΘ and PΨ exchange information

about their LM’s, compute a lower-bound and, if necessary, the distance d̃. The search

4.3 Building and Maintaining a MON 51

radii of PΘ and PΨ are denoted as rΘ and rΨ, respectively, and lbΘ and lbΨ are the

lower-bounds computed at each peer. As explained in Section A.2, the lower-bound in

lines 1-4 (and 15-18) is computed by using a partial representation of the two Language

Models, i.e., only the subset of the I BF’s that is currently available. Thus, as a new

BF arrives from the remote peer, the value of the lower-bound increases (line 3 for PΘ

and 17 for PΨ), and when no BF’s are left, eventually turns into the distance d̃ (i.e., the

second condition at lines 2 and 16 fails). This technique minimizes the number of BF’s

sent when an unsuccessful meeting occurs. Unfortunately, if PΘ is not interested in the

meeting anymore, PΨ needs to restart the computation (line 15), since, in general, the

i-th BF in different peers contains different terms. Note that if PΘ has already computed

the distance d̃, PΨ needs PΘ’s BF’s only to make it one of its MON neighbors (lines 9-11).

Algorithm 4 gossip(PΘ, PΨ)

Require: lbΘ, d̃1, . . . , d̃k, PQmet

1: VΘ: vector containing up to k elements
2: for i = 1, . . . , k do
3: Pi: i-th neighbor of PΘ

4: VΘ[i] = 〈Pi, |lbΘ − d̃i|〉
5: PΘ: send(PΨ, VΘ)
6: VΨ ← receive(PΨ, VΨ)
7: for all (〈P, lb〉 ∈ VΨ) do
8: if(P /∈ PQmet) then PQ.Enque(P) with priority lb

Algorithm 4 shows the procedure by which any two peers PΘ and PΨ exchange in-

formation about their knowledge of the network topology. We present the algorithm

from PΘ’s viewpoint denoting with lbΘ the lower-bound it computed on d̃(Θ,Ψ) and with

d̃1, . . . , d̃k the distances between PΘ and its k nearest neighbors P1, . . . , Pk. Another in-

put to the algorithm is the list PQmet, containing those peers that PΘ has met during

previous meetings. This list, filled at the end of Algorithm 3, was not shown to simplify

the notation.

By applying the triangular inequality to PΘ, Pi and PΨ, it is possible to compute

a lower-bound on the distance d̃(PΨ, Pi) without the need of any additional computa-

tion (line 4). PΘ, then, builds the vector VΘ with the pairs 〈Pi, lb〉 and sends it to PΨ

(line 5). When receiving PΨ’s vector, PΘ extracts all PΨ’s neighbors and inserts them in

its candidate list PQ, with priority given by the lower-bound computed by PΨ (lines 6-8).

52 Chapter 4. Partially Connected Networks

Algorithm 5 choosePeer()

Require: PQ, α
1: Prrm ← Pr{random meeting occurs}
2: if (PQ 6= ® and Prrm > α) then P ← PQ.Deque()
3: else P ← chooseRandomPeer()
4: meeting(PΘ, P)
5: gossip(PΘ, P)

6: if rΘ > d̃k then rΘ ← d̃k
7: if (PQ.F irst().lb > rΘ) then PQ.Clear()

Algorithm for Network Maintenance

Algorithm 5 shows the procedure adopted by peer PΘ to choose the next peer to meet.

When a peer joins the network, its search radius is set to the maximum distance, so

that the first k meetings are always successful. Note that, in general, the peer to meet is

chosen as the top one in the priority queue PQ, i.e., the one with the smallest lower-bound;

however, it might happen that PQ is empty and a peer is chosen at random.

To add flexibility to the meeting strategy, and to increase the chances that even peers

far from each other will eventually meet, with a certain probability α a random meeting

will occur even with a non-empty priority queue (lines 1-2). When a peer P has been

chosen, themeeting() and gossip() procedures are invoked (lines 4-5) and, if P has become

a neighbor of PΘ, the search radius is updated (line 6). Note that if rΘ becomes smaller

than any lower-bound in PQ (line 7), the priority queue may be safely emptied because

it does not contain any peer whose distance is lower than rΘ.

4.3.2 Cost Analysis

In this section, we derive a cost model for Algorithm 3, which describes a meeting between

two peers PΘ and PΨ. In the first phase of the algorithm, peer PΘ asks PΨ for one BF

at a time and, at each step i of the algorithm, checks whether the condition lb(i) < rΘ is

satisfied, before continuing the meeting. The second phase is analogous to the first one,

with PΨ asking PΘ for its BF’s. To characterize the cost of the meeting, we introduce the

probability distribution G
(i)
P (r), which denotes the probability that, upon the reception of

i BF’s, peer P is still interested in the meeting:

G
(i)
P (r)=Pr

{
lb(i)≤r, lb(i) = lb(BF (1), . . . , BF (i))

}
. (4.5)

The cost of the i-th step of the first phase of the algorithm, then, is characterized by the

cost CBF of a Bloom-filter (proportional to its size m), multiplied by the probability that

4.4 Query Processing in a MON 53

the BF is needed by PΘ. The cost CΘ for the first phase, then, is given by

CΘ = CBF ·
[
1 +

I−1∑
i=1

G
(i)
P (rΘ)

]
. (4.6)

Note that the sum ranges between 0 and I − 1, with G
(0)
P (r) = 1, assuming that no prior

information is given about peers that have not been met.

The cost CΨ, which characterizes the second phase of Algorithm 3, can be expressed

as:

CΨ = G
(I−1)
P (rΘ) · CΨ,1 +

[
1−G(I−1)

P (rΘ)
]
· CΨ,2 (4.7)

where PΘ, with probability G
(I−1)
P (rΘ), has computed the distance d̃ (i.e., it has asked for

I BF’s) and, with probability 1−G(I−1)
P (rΘ), has computed a lower-bound using i∗<I BF’s.

{
CΨ,1 = I · CBF ·G(I)

P (rΘ)

CΨ,2 = CBF ·
[
1 +

∑I−1
i=1 G

(i)
P (rΨ)

]
·G(i∗)

P (rΨ)
(4.8)

In CΨ,1’s expression, PΨ will not ask for any BF, unless it wants PΘ to become its neighbor

(a lower-bound computed with I BF’s is equal to the distance d̃). On the other hand,

to compute CΨ,2, we take into consideration the probability that PΨ stops the meeting

by means of PΘ’s lower-bound (we approximate the probability Pr{lb(i∗) ≤ rΨ} with

G
(i∗)
P (rΨ)); if this is not the case, and PΨ has to compute its own lower-bound, the same

considerations valid for CΘ apply.

The overall cost is proportional to the number I of BF’s that are sent across the

network, which should be kept as low as possible (note that this can be done at the price

of a higher absolute error εabs); on the other hand, by increasing I, the average number

n of elements inserted in each BF will automatically decrease, thus reducing the cost

CBF as well. This suggests that there exists an optimal I which minimizes transmission

costs: computing this optimal value, however, is not easy because the data distribution

among peers, which is represented by the G
(i)
P (r) functions, should also be taken into

account, since they play a key role in the cost model. If we consider, for example, CΘ and

CΨ,2 in Equations 4.6 and 4.8, we observe that whenever we have to deal with a set of

G
(i)
P (r) functions that are fast decreasing on i, a higher number I of BF’s could still be

acceptable because, on average, only a subset of the whole LM will be asked by a peer

during a meeting.

4.4 Query Processing in a MON

The lack of information about the distribution of the data among peers strongly reduces

the efficiency of P2P systems. This problem is alleviated by adopting a MON where

54 Chapter 4. Partially Connected Networks

peers become neighbors if they share similar content. In this section we investigate the

performances of similarity queries in a MON. We briefly review the most common query

answering techniques in unstructured P2P networks (Section 4.4.1). In Section 4.4.2 we

present three different routing strategies specifically designed to take advantage of the

MON structure as it is opposed to a standard P2P network. The main difference among

these techniques is the information that they are allowed to exploit when taking routing

decisions. Our experimental evaluation, in Section 4.5, is conducted assuming a “stable”

network, i.e., disregarding the dynamics of the networks.

4.4.1 Query Processing in P2P networks

Query answering in unstructured networks is usually a hard task, because the absence of

correlation between the data stored at different peers and the network topology prevents

the peers from having any knowledge about the network topology that might be used

during query routing. In the Gnutella (protocol 0.4) network [Gnu], the first and most

widespread used P2P network, a breath-first strategy is adopted. When a peer receives a

query it simply broadcasts it to all its neighbors. To avoid flooding the whole network,

a TTL (time-to-live) is used, i.e., the query expires after having being forwarded TTL

times. Apart from the obvious network overhead that is generated, there are two other

problem: choosing the correct TTL is not easy and the data objects that are too far away

from the querying peer cannot be retrieved.

An alternative routing strategy is the Random Walk [LCC+02], which consists in for-

warding any incoming query to a randomly chosen neighbor and relies on the assumption

that, since the most popular data objects are also those that have a higher replication rate,

than the randomness of the routing strategy still allows to achieve good performances.

In [CGM02] each peer stores, for each one of its neighbors, a routing index [CGM02], which

summarizes the content which can be found if the query were forwarded to that neighbor.

Routing indices are, then, exploited to make the queries follow the most promising paths.

A different philosophy is that of Semantic Overlay Networks [CGM04], unstructured

networks in which peers with related content tend to be directly linked or, at least, they

are at a short hop-distance from each other. The idea is to form a topically focused

cluster, such that the task of finding a “good” answer to a query becomes easy as soon as

the clusters that best match the query are found. The fireworks query model [KNS02] is

based on a system in which peers are clustered based on a similarity function sim(Pi, Pj),

where Pi and Pj are peers. When, at query time, peer P1 generates the query q, a random

walk is initiated in the network, using only the long-distance links of the encountered

peers; any peer P that is met during the walk is matched against the query and if the

4.4 Query Processing in a MON 55

condition sim(q, P) < ε is verified (for some value ε), then the query has found the target

cluster. The query, then, goes through a limited broadcast (only short-distance links are

used) which aims at reaching all regions around the target peer that might be able to

answer it.

For a more comprehensive survey on query answering techniques in P2P networks we

refer to [BCLP05].

4.4.2 Algorithms for Query Routing

We have presented the MON building and maintenance algorithms in Section 4.3. In this

section we investigate the problem of query routing in a MON by assuming that each

peer has found its ks short-distance neighbors and has chosen kl other peers to be its

long-distance ones. In particular, we assume that the network has reached a “stable”

state, i.e., for each peer the short-distance neighbors it has found are its true ks nearest

neighbors in the network.

Given a query at time t, the network can be partitioned in two sets LNV(t) and LV(t)

of peers which represent:

Non-visited peers LNV(t): A list of peers which, at time t, have not been visited yet.

We can distinguish among peers relevant with respect to the query and peers not

relevant. The internal composition of LNV(t) depends on the current result R̃. If a

k-NN search is performed, whenever a new object is found, the search radius may

be reduced, thus making it possible to prune unexplored regions. When no more

relevant peers are left, the search should be stopped because no better results can

be found by the current query.

Visited peers LV(t): This are the peers which, at time t, have been already visited by

the query, i.e., a sort of search history. The search history is used to avoid contacting

the same peer twice.

Notice that, since we do not consider a dynamic network, the two sets depends on the

time t only indirectly (then we can omit its indication) through the number of steps of

the algorithm, because when a peer is extracted from LNV it is inserted in LV .

In the ideal case, the union of the two lists LNV ∩ LV coincides with the whole net-

work,and at step 0 all peers are in LNV . A query q, then, chooses, at each step, the best

peer to be visited according to the query criteria (see Chapter 3 for details). The real

scenario, however, is quite different: q only knows the peers that it has already visited

plus their neighbors. At step 0 LNV contains the querying peer and its neighborhood and

LV is empty, however both of them may become very long as soon as q is forwarded to

56 Chapter 4. Partially Connected Networks

new peers and it might become a problem to append them to the query, because their

size might grow too much. the

In the following we present three routing strategies that differ in the way they manage

and store the lists LNV and LV . In Section 4.5, then, we will evaluate them experimen-

tally.

Given either LNV or LV lists, they can be maintained as lists of peers attached to

the query, or distributed lists stored at the peers where the query is routed. Notice that:

• If LNV is attached to the query, for each peer Pi ∈ LNV , also the indicator value

Ψ (q,DDi
) needs to be remembered;

• A solution based on distributed lists means that each query has a state at each peer

it traverses, with the need of implementing a synchronization technique.

In the following we present the three routing strategies:

Biased random walk: Neither LNV nor LV is maintained. Peers always route incom-

ing queries toward the most promising neighbor with respect to the quality criterion,

without considering the case of already visited regions.

Best-first: Both LNV and LV are maintained within the query which, at each step,

is always routed toward the best peer among those that have been encountered so

far. If the quality criterion is accurate enough, this strategy should guarantee high

quality results, because the most promising peer is always contacted first. However,

major problems arise if we consider the overhead of transmitting such a query in

the network because the two lists might become big and space consuming.

Depth-first: The list of visited peers LV is stored by the query, but LNV is distributed.

A peer which receives an incoming query routes it to the most promising neighbor

and the chosen neighbor does the same, and so on; the query descends the network

until it finds a peer whose neighbors have been already visited or they are not

relevant with respect to the quality criterion. The query, then, tracks back to the

last visited peer and so on until it finds a yet non-visited neighbor. The network

assumes a hierarchical structure which is visited in a depth-first fashion and whose

root is the peer which originated the query.

Finally, in Section 4.5 we present three routing strategies that differ in the way they

manage the lists LNV and LV . In particular, we show that the more a query is allowed

to know about the lists, the more accurate are the retrieved results.

4.5 Experimental Evaluation 57

4.5 Experimental Evaluation

We have tested our system using the Corel data set that was also used for the completely

connected network in Section 3.6. Our experimental setup consisted in the following

points:

Data partitioning The Corel data set (67457 objects) has been partitioned into 266

data regions containing, approximately, 253 objects.

Queries assignment The query distribution follows the data distribution. We run 681

queries which are assigned to peers randomly.

Network maintenance The network is built according to the techniques presented in

Section 4.3. Each peer is represented by a centroid (i.e., the center of the region)

and is linked (short-distance links) to its k nearest neighbors in the network.

Long-distance links Each peer further have k long-distance links which connect it to

k random peers in the network. We utilize long-distance links only when a short-

distance link is not available, either because they have been all explored or because

their lower-bound is too high.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 10 100 1000

E
[d

n
n

]

cost

Biased RW, MinDist

Best First, MinDist

Depth First, MinDist

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 10 100 1000

E
[d

n
n

]

cost

Biased RW, MinMaxDist

Best First, MinMaxDist

Depth First, MinMaxDist

(b)

Figure 4.2: Average cost of the query with different routing strategies using theMinDist
(a) and MinMaxDist indicators.

In Figure 4.2(a) and 4.2(a) we show the performances of an on-line query that is

executed according to a cost-based control policy. The regions of the network are ordered

with respect to the values of the indicator (MinDist in Figure 4.2(a) and MinMaxDist

in Figure 4.2(b)). We can make the following observations:

58 Chapter 4. Partially Connected Networks

• If the routing is based on a biased random walk, the performances are very poor, be-

cause the lack of “memory” on the visited regions avoid the query to take unexplored

paths that might eventually lead to better results;

• The performances of the best-first and the depth-first strategies have approximately

the same performances (the best-first performs slightly better);

• As we would have expected from the formal analysis of the previous chapter, the

MinMaxDist indicator is still more accurate that the MinDist.

In general, the good performances that can be achieved by the similarity search

paradigm in a P2P network justifies its adoption is such a scenario. Moreover, the ex-

istence of powerful tools of analysis in the case of completely connected networks leaves

open to possible improvements.

Finally, we would like to point to Appendix B, where we show a real setting in which

the property of a network to be embedded in a metric space allows to achieve anonymity

and censorship resistance in a P2P network.

Chapter 5

Conclusions

In this thesis we presented a framework for processing approximate similarity queries in

general metric spaces.

The main conclusions we can draw from our work are the following:

• The problem of approximate similarity search in complex data bases cannot be

considered fully solved, which contrasts with the problem of exact search, for which

an optimal solution does exists [BBKK97, HS03].

• We have developed a model that predicts the average cost of a query with high

precision. This model is based on very general assumptions and only exploits prob-

abilistic information about the data regions.

• We have derived an optimal-on-the-average schedule and we have shown how it can

be conveniently implemented, given the statistical description of a data region.

• We have studied the problem of approximate similarity search to the case of P2P

networks. In this scenario, we have proposed the MON, a novel data structure for

processing these queries and we have applied it to two completely different scenarios.

• We have applied the notion of MON to the field of Information Retrieval in P2P

networks, where the similarity between peers is computed by a metric distance which

takes advantage of the KL-divergence and a Language Model is represented through

a set of Bloom filters.

• We have applied the notion of MON to a problem of security in P2P networks. We

have presented a Clouds, an anonymous and censorship-resistant search infrastruc-

ture where anonymity is achieved by clouds, namely peer clusters hiding the actual

identity of communication participants and censorship resistance is guaranteed by

59

60 Chapter 5. Conclusions

the query and the answers to follow different paths in the network. By exploiting

the metric properties of the MON we were able to give probabilistic guarantees on

the level of censorship resistance achieved by Clouds.

5.1 Future Directions

Throughout the thesis we have pointed out several interesting issues for future research.

These include:

• Our cost model only applies to completely connected networks and its analytical

complexity prevents us to extend it to any other kind of network. We plan to

find an alternative way to estimate the cost of a query in hierarchical and partially

connected networks. This might involve the introduction of suitable approximations

or non-obvious simplifying assumption.

• We plan to extensively test the MON in the near future, in particular in terms of

systems performances. We are particularly interested in query processing techniques

which can give some kind of quality guarantees on the final result. This may involve

combining our approach with distributed indexes for metric spaces (e.g., work along

the lines of [FGZ05, BNFZ06]).

• Referring to its application to the field of information retrieval [LW06], we believe

that a MON has a broader applicability. In many modern information systems, not

only distributions in data collections, but also user preferences, recommendations,

profiles, and other elements of user behavior can be described in terms of LM-

style distributions with information-theoretic comparisons being natural measures

of similarity. Thus, embedding measures like KL divergence or JS divergence in

a metric search space is an appealing direction for much broader classes of social

networks.

• Finally, Clouds is currently under development and we plan to evaluate, apart from

its efficiency and effectiveness, the anonymity and censorship resistance achieved.

Appendix A

Compressing a Language Model

In this chapter we address the problem of how to compress a Language Model by using a

set of I Bloom-filters and how this representation can be exploited to efficiently compute

the distance between the peers, allowing only a small and controllable error on the final

value. At the end of the chapter, we will give practical guidelines to the design of the

system, in terms of correctly choosing the number and the size of the Bloom-filters used

to represent the Language Model.

A.1 A Solution based on Bloom-Filters

Bloom filters have received a lot of attention since their introduction in [Blo70], because

of their ability of giving probabilistic error guarantees when representing a set of elements

drawn from any given domain. A Bloom-filter is a vector of m bits initially set to 0, which

is used to represent a set of n elements and to subsequently test their membership to the

set. Each element is drawn from a finite universe U and is hashed by h hash functions

which independently set one of the m bits. To test if an element is in the Bloom-filter,

the h hash functions are applied to it: if each bit addressed by the hash functions is 1,

then the searched element “should” be present, being the false positive probability given

by

fpp ≈
[
1− e−hn

m

]h
. (A.1)

To represent a LM in a compact manner, first note that when comparing two LM’s by

the square root of the JS divergence, the most important contributors to a large distance

are the terms for which the two LM’s have widely differing weights. So these terms

should be captured more precisely than the terms for which the two LM’s show low

differences in the term weights. Our approach conceptually compresses an LM in two

steps. First, we construct a histogram of possible term weights with a small number

61

62 Appendix A. Compressing a Language Model

of equi-width histogram cells. Conceptually, each histogram cell is associated with the

subset of terms whose weights fall into the cell’s boundaries. As a second step, we then

compress these subsets by mapping them onto a Bloom-filter (BF). Thus, we arrive at

one BF per histogram cell of each LM.

A histogram for PΘ which describes the distribution of terms in Θ is built over the

domain of weights by partitioning it in I disjoint intervals of equal-size, such that the

i-th interval corresponds to the range
[
θ

(i)
H − δ

2
, θ

(i)
H + δ

2

]
. Each interval is represented

by a Bloom-filter which contains all terms whose weight belongs to it: the approximate

Language Model Θ̃ is represented by the set {BF (θ
(i)
H)}i=1,...,I , where BF (θ

(i)
H) is the i-

th Bloom-filter. To extract from a given set of BF’s the weights which characterize the

corresponding Θ̃, the following rules apply:

1. For each term ti ∈ Θ̃, its weight θ̃i is θ
(i)
H if t ∈ BFΘ(θ

(i)
H).

2. When a term belongs to two or more BF’s at the same time, we suspect a false

positive. This case should happen with very low probability, but it may happen

because of the lossy compression characteristics of Bloom-filters. We could then

make a heuristic choice such as choosing the average value of the term weights, or

we may directly ask the original peer for the correct weight. In any case, the metric

properties of the data space are preserved if, for each peer, only one of the these

policies is consistently applied.

Finally, we can define the approximate distance d̃ between two peers PΘ and PΨ as

d̃(Θ,Ψ) = d(Θ̃, Ψ̃). (A.2)

by observing that, if there exists only one possible approximation for each LM, then d̃

will still be a metric distance over the space of all peers.

In the following, we study the behavior of Equation 4.3, given the approximation

introduced by the BF-based histograms. Note that representing a weight distribution

with a histogram is a well-known technique in the database community and has already

been extensively studied, however the problem we are facing now is quite different because

we do not need to estimate the performance of this technique per se, rather we want to

characterize the approximation introduced in the computation of the distance function.

We start our analysis by introducing εΘ,max, defined as the maximum distance between

a LM and its approximation, i.e., as max {d(Θ, Θ̃)} for any Θ. By applying the triangular

inequality to any two peers PΘ and PΨ whose exact distance is d, we can write that:

max {0, d̃− 2 · εΘ,max} ≤ d ≤ d̃+ 2 · εΘ,max (A.3)

A.2 Efficient Technique for Distance Computation 63

where d̃ is the the approximate distance d̃(PΘ, PΨ). From Equation A.3, then, we compute

an upper-bound on the absolute error εabs, defined as the the difference between the

approximate and exact distance between any pair of peers:

εabs = |d(Θ,Ψ)− d(Θ̃, Ψ̃)| ≤ 2 · εΘ,max. (A.4)

Before fully characterizing εΘ,max, we consider the distance d (Θ, Lmax) as it is computed

by Equation 4.3 and move the square-root inside the sum; then, we find that:

d(Θ, Θ̃) ≤
∑
ti∈T

√
dJS(θi, θ̃i). (A.5)

Note that each term in Equation A.5 is a single-term LM: for any pair of weights θi and

θ̃i, then, if the difference |θi − θ̃i| is maximized, their JS-divergence is maximized as well.

Since each approximate weight θ̃i is drawn from the set {θ(1)
H , . . . , θ

(I)
H }, we conclude that

the natural choice for θi is among θ
(i)
H − δ

2
and θ

(i)
H + δ

2
. If we define εlat as the maximum

distance between any θi and its approximation θ̃i, i.e.,

εlat = max
d

{
d =

√
dJS

(
θ

(i)
H , θ

(i)
H ±

δ

2

)
, ∀i

}
, (A.6)

we obtain that εΘ,max = N · εlat, where N = |T | is the number of terms in Θ. We can

further substitute this result in Equation A.4 and eventually find the expression of the

absolute error

εabs ≤ 2 ·N · εlat (A.7)

which, as we would have expected, is proportional to the approximation introduced by

the BF-based histogram.

A.2 Efficient Technique for Distance Computation

A distance function based on the JS-divergence is computationally very expensive, because

it consists of a sum of several terms whose mathematical expression is not trivial.

Consider two Language Models Θ̃ and Ψ̃, represented by a set of I Bloom-filters as

described in Appendix A.1, and suppose you want to compute the distance d
(
Θ̃, Ψ̃

)

between them. The computation can be highly optimized if we have a data structure M ,

that we represent as a matrix of dimension [I × I], which stores, at location (i, j), the

result of the computation of the JS-divergence (Equation 4.2) between any two weights

drawn from the set {θ(1)
H , . . . , θ

(I)
H }. The algorithm works as follows:

64 Appendix A. Compressing a Language Model

1. For each term ti ∈ T search the two sets of Bloom-filters in parallel to obtain the

two approximate weights θ̃i and ψ̃i.

2. When there is indication of a false positive (i.e., a term appearing in two BF’s, see

above), we heuristically choose a value or we directly ask the peer for the exact

value.

3. In repeated computations (i.e., in a series of peer-pair meetings), we use the pre-

computed value at location M [θ̃i, ψ̃i] or, if not present, we compute it explicitly and

insert it into M .

4. We maintain an incremental sum over all terms and return the square-root of the

final value.

This technique has the major advantage that M is common to all meetings and that

its size is proportional to O(I2) which, considering the small number of BF’s needed to

represent a Language Model, leads to a negligible space consumption. The approximate

distance is computed very efficiently and has the desirable property to be incremental (this

will be fully exploited in Section 4.3.1 to allow peers to perform an early pruning during

their meetings). Suppose, for example, that PΘ has received from PΨ only I ′ < I BF’s:

the lower-bound is then obtained by applying Equation 4.2 only to the terms contained in

the available BF’s. By separately applying the square-root to the result, the computation

does not need to start again when a new BF is received.

A.3 Choosing Bloom-filter Sizes

A key element for our architecture is to choose the correct number I and the size m of the

Bloom-filters used to represent a peer. From Equation A.7, we observe that each term

contributes to the absolute error with a value proportional to εlat: given Equation A.6,

we need to compute the single-term JS-divergence between the generic θH and the lower-

and upper-limits of its interval (we should consider the farthest one). If we denote with

a and b the two weights such that a < b holds, i.e. we indicate that (a, b) =
(
θH − δ

2
, θH

)

or (a, b) =
(
θH , θH + δ

2

)
, we characterize their JS-divergence in terms of Equation 4.4 as:

dJS(a, b) = a · log
2a

a+b
+ b · log

2b

a+b
≤ (b− a) log

b

a
(A.8)

The proof of this inequality is straightforward, by observing that the first term is always

negative; the difference b−a equals to δ
2

in both cases and the logarithm is always positive

A.3 Choosing Bloom-filter Sizes 65

and increases with the two values getting closer to 0. The expression of εlat is, thus, the

following:

εlat ≤
√√√√δ

2
· log

θ
(1)
H

θ
(1)
H − δ

2

, θ
(1)
H ≤ θ

(i)
H ∀i (A.9)

with θ
(1)
H being the smallest weight used to build a BF with. This result has a major im-

pact on the tuning of the system. In particular, it suggests that variable-width histograms

would be preferable as different weight ranges contribute differently to the overall approx-

imation. We make the following observations that may lead to further optimizations: the

first BF might contain only terms with a weight close to 0. Moreover, it produces the

largest error. BF’s representing higher weights should have wider histogram intervals,

since they cause smaller absolute errors.

Consequently, we should use variable-width histogram boundaries for the BF approx-

imation, with carefully tuned cell widths. Here we can apply results from selectivity

estimation and data synopses in database systems [GMP02, KW03]. The analysis of the

LM approximation error can be extended along these lines, but this is beyond the scope

of the current paper.

The last step of our tuning procedure consists in choosing the size of the Bloom-filters:

consider, for a moment, the false positive probability given by Equation A.1. If we use an

optimal number of hash functions, given by h = m/n · ln 2 [BM03], Equation A.1 can be

approximated by fpp =
(

1
2

)m
n , which gives us the possibility to tune the size of our BF’s

in order to achieve the desired value of fpp.

Unfortunately, this is not always the case: in particular, when the number n of elements

inserted in the BF grows too much, the compression technique based on BF’s might

become not convenient anymore. Suppose, for example, that n gets close to |T | (which is

the number of elements in the universe): to have a false positive probability fpp ≈ 1/2

(which is indeed a very high value), we need at least m ≈ |T | bits in the BF. On the other

hand, if we use a bit vector of size |T |, we can represent the whole universe without any

error, as long as we assume to have a function which univocally maps the i-th object on

the i-th bit of the vector.

Appendix B

Anonymity and censorship resistance
in MON’s

In this chapter we present Clouds, an anonymous and censorship resistant search infras-

tructure built on top of a MON. Anonymity is achieved by clustering semantically close

peers so as to hide the actual identity of the communication participants. Censorship

resistance is guaranteed by a cryptographic protocol securing the anonymous communi-

cation between the querying peer and the resource provider. Finally, theoretical results

formalize the degree of anonymity and censorship resistance provided by the architecture.

B.1 Cloud-based Anonymity

The communication protocols traditionally adopted in P2P networks do not guarantee

anonymity to any of the participants because they need to exchange their physical ad-

dresses in order to be identified in the network and the whole communication is made

publicly known.

Our solution constitutes in hiding the identity of both the querying and the answering

peer behind a group of other peers, which we call cloud. Anonymity in Clouds is achieved

by implying that all peers in a cloud share the same probability of being involved in a

communication that has this cloud as a start- or end-point. One of the first systems to

employ this idea in a client/server model was Crowds [RR98], where the group of peers is

referred to as crowd. Contrary to our approach, crowds rely on a trusted server to store

the list of participating peers and the crowd topology is assumed to be known in advance.

A naive solution to achieve anonymous communication between two peers P and P ′

consists in removing any reference to their addresses from the messages they exchange

and allow them to communicate through message broadcasts. This way, the identities of

67

68 Appendix B. Anonymity and censorship resistance in MON’s

P

C
 C
'

S
UBMIT
Q
(
q, L
)

R
ETURN
R
ES
(
r,
L
)

A
NS
M
ETADATA
(
m(r)
, L
)

R
EQUEST
R
ES
(
id(r), L
)

P'

Figure B.1: A cloud-based P2P protocol, with Pi belonging to cloud Ci.

the two peers are kept secret, at the price of a considerable increase in message traffic. A

more sophisticated technique consists in defining small groups of semantically close peers,

namely clouds. A cloud can be represented as a finite graph whose nodes are peers and

edges are direct links among such peers. Each cloud is thus associated to a cloud-identifier

Cid, chosen by the cloud generating peer P . This identifier represents a point in the space

surrounding P .

The communication between P and P ′ is described by the protocol of Figure B.1,

where peers P and P ′ are hidden behind clouds C and C ′ and their physical addresses

are replaced, in each of the exchanged messages, by their respective cloud identifiers.

During the first step of the protocol the identifiers of all clouds that are traversed by the

SubmitQ message are collected into a list L, called footprint list. L initially contains

only cloud C and whenever the query reaches a peer Pi such that Pi ∈ Ci, Ci is added

to L if and only if L does not already contain Ci. This way, the footprint list always

describes the path from P to P ′ in terms of clouds traversed. The only information a

peer is allowed to know about the network consists of the physical addresses of its direct

neighbors and the clouds they participate in. Thus, after the first message, the footprint

list is utilized to efficiently reach P from P ′ and vice-versa. This routing technique

differs significantly from the techniques currently used to guarantee anonymity, such as

Freenet routing [CMH+02] or Onion routing [GRS99]. While in these approaches the path

connecting the communicating peers is univocally determined, in our case intra-cloud

broadcast introduces flexibility in the selection of paths. This way, the communication

between the querying peer and the resource provider is not interrupted in the case of peer

failure. Notice that intra-cloud broadcast can be further optimized by using techniques

like gossiping protocols [EGKM04] or spanning trees [Dim87].

Finally, notice that the resulting network is an unstructured network of clouds mapped

onto possibly overlapping sections of the original overlay network. Since cloud identifiers

are points in the space, traditional search techniques as presented in Section 4.4.2 can be

applied, i.e., given a query q at cloud C, we look for cloud C ′ which may contain resources

matching q. This property is also exploited in Section B.2 to achieve censorship resistance

B.2 Cloud-based Censorship Resistance 69

P

C
 C
'

P'

R
EQUEST
R
ES
)
,
)}
(
{
,
(

'

L
r
id
S

PP
k
id

A
NS
M
ETADATA
)
,
}
),
(
,
({
 '
 L
k
r
m
S

P
k
PP
id

S
UBMIT
Q
)
,
,
(

P
k
L
q

R
ETURN
R
ES
)
,
}
{
,
(

'

L
r
S

PP
k
id

Figure B.2: A cloud-based cryptographic P2P protocol

against man-in-the-middle attacks.

Intuitively, using clouds as a way of communicating is sufficient to allow a peer to per-

form anonymous and efficient similarity search in a MON (for a more detailed discussion

see [BLMT07]). In the following section we show how Clouds can be improved to achieve

censorship resistance.

B.2 Cloud-based Censorship Resistance

While anonymity is a well-understood property that has been widely studied and formal-

ized (see for example [SS99, Shm04, MVdV04]), only a few works have been proposed

on the formal definition of censorship-resistance [PRW05, DA04]. In general, we can dis-

tinguish between two kinds of censorship, i.e., at storage and communication level. The

former focuses on preventing hosts from storing undesired data, while the latter on fil-

tering the communication according to message content. Traditional P2P approaches to

censorship-resistance, such as Freenet [CMH+02], typically prevent censorship at storage

level through data replication: information is spread all over the network, usually without

the involved peers knowing what they are storing, and storage providers are kept anony-

mous. However, even if censorship at storage level is prevented, censorship at communi-

cation level may still be possible. For instance, a malicious host might inspect the content

of incoming messages and block them, whenever they convey or refer to undesired data.

In this section we present a cryptographic protocol for achieving censorship-resistance at

communication level in a P2P environment.

B.2.1 Censorship Resistance: A First Attempt

Censorship may happen when nodes in the network are willing to prevent peers from

sharing undesired data. A malicious node may censor a communication between two

peers by inspecting the content of incoming messages and by blocking (i) undesired

queries in SubmitQ messages; (ii) undesired resource identifiers in AnsMetaData and

70 Appendix B. Anonymity and censorship resistance in MON’s

R
EQUEST
R
ES
)
,
)}
(
{
,
(

'

L
r
id
S

PP
k
id

A
NS
M
ETADATA
)
,
}
),
(
,
({
 '
 L
k
r
m
S

P
k
PP
id

R
ETURN
R
ES
)
,
}
{
,
(

'

L
r
S

PP
k
id

P

C
m

C
'

P'

C
1

P

S
UBMIT
Q
)
,
,
(

P
m
 k
C
q

Figure B.3: A cloud-based cryptographic P2P protocol

RequestRes messages; and undesired resources in ReturnRes messages. In order to

prevent censorship, we thus need to protect the information sent on the network.

The query is the only message that cannot be encrypted since it is supposed to be

read by every peer. However, this is not a relevant problem, at least until the number of

censoring nodes is limited, since queries are typically forwarded through multiple paths

and blocking all of them requires a pervasive control of the network. In contrast, the

rest of the messages follows a certain path and stopping them may suffice to censor

the communication. For tackling this problem, we let P generate a key-pair, which is

composed of a public key k+
P and a private key k−P . The public key is sent in SubmitQ

along with the query. In AnsMetaData, P ′ encrypts resource metadata with k+
P : this

way only P can read the message, thus preventing censorship due to metadata inspection.

The ciphertext contains also a fresh session key kPP ′ (i.e., a symmetric key only used in one

session and then discarded). Notice that only P can read kPP ′ , since it is encrypted with

P ’s public key. Session key kPP ′ is used in RequestRes and ReturnRes for protecting

message content, thus avoiding censorship due to identifier and resource inspection: the

use of symmetric cryptography in place of public key cryptography allows for reducing

the complexity of encryption and decryption operations.

B.2.2 Censorship Resistance: A Second Attempt

The previously proposed cryptographic protocol is conceptually appealing but provides

only a limited degree of censorship-resistance, since a malicious peer residing in the path

between P and P ′ can impersonate P and perform the following attack:

P PE P ′

SubmitQ(q,L,k+
P)

//
SubmitQ(q,L,k+

PE
)

//

oo
AnsMetaData({Sid,m(R),kPP ′}k+

PE

,L)

The attacker PE replaces P ’s public key with its own key in SubmitQ and, upon the

reception of AnsMetaData, gets the knowledge of the session key kPP ′ and, even worse,

B.2 Cloud-based Censorship Resistance 71

can stop the communication between P and P ′ after inspecting the resource identifier

m(R). This attack is well-known in cryptography and it arises since P and P ′ are at-

tempting to build up a secret communication without sharing any previous secret. Notice

that the attacker has to reside in the path used by P and P ′ for exchanging the first

message. On the one hand, the query is typically replicated and follows several paths,

thus the attacker should control a large fraction of the network to perform such an attack:

a single safe path between P and P ′ (i.e., it is not populated by a malicious peer) suffices

to prevent the man-in-the-middle attack. On the other hand, the resource provider does

not know which queries have been filtered by malicious peers and is thus forced to reply

to all of them. This leads to replicated answers and inefficient communication.

We tackle this problem by guaranteeing that SubmitQ and AnsMetaData follow

different paths and by letting the rest of the communication take place on the path

followed by AnsMetaData. The refined version of the protocol is depicted in Figure

B.3. Notice that in SubmitQ, P specifies a cloud different from C1 (i.e., the cloud which

the message originates from): we assume that a peer belongs to several clouds and, in the

specific example, let us suppose that P belongs to cloud Cm too. In order to perform the

previously shown attack, the censoring peer should either control all the paths followed

by SubmitQ or lie both in one of the paths followed by SubmitQ and in the path

followed by AnsMetaData (see Figure B.3). In the latter case the attacker can use the

destination cloud for binding SubmitQ and AnsMetaData messages, thus censoring the

communication if the query is undesired. The former case requires a pervasive control of

the network, while the probability that the latter occurs depends on the distance between

C1 and Cm and the position of the attacker, as formally characterized in the next section.

Finally, we remark that after the second message exchange, the cryptographic scheme is

effective and the secrecy of the rest of the messages is preserved even if such messages

follow the same path.

Finally, notice that Clouds does not rely on a public-key infrastructure, where every

principal is associated to a key-pair and a trusted third party is in charge of public key

distribution. In our approach, the querying peer generates a key-pair and distributes the

public component (message SubmitQ) in an anonymous way. Furthermore, peers may

decide to use a previously generated key-pair even in later protocol sessions.

B.2.3 A Probabilistic Model for Censorship Resistance

In this section we present an effective method for estimating the probability that a ma-

licious peer PE lies in the paths of both SubmitQ and AnsMetaData messages. As

discussed in the previous section, whenever this happens the attacker can effectively mon-

72 Appendix B. Anonymity and censorship resistance in MON’s

(a) (b)

Figure B.4: (a) Graphical representation of the ideal paths followed by the first two
messages and (b) overlap between two ball regions Bx and By belonging to the two paths.

itor and censor the communication. Devising an effective technique that reduces this

probability is crucial for enhancing the censorship resistance of our architecture.

Assume that P ∈ C1 sends a SubmitQ message to P ′ ∈ C ′ and asks for the answer

AnsMetaData to be sent to position Pm such that the distance d(P, Pm) is dPPm . The

ideal paths of the two messages are shown in Figure B.4(a) and they consist of two sets

of peers aligned in straight lines. In general, however, peers do not occupy such ideal

positions: in the following, P
(i)
i denotes the position that a peer Pi would occupy if the

routing were ideal and P
(r)
i denotes its real position in the vector space (i.e., P

(r)
i is Pi).

As it is discussed in Section B.2.2 a man-in-the-middle attack can take place if a

malicious peer is in the paths of both SubmitQ and AnsMetaData messages, and thus

responsible for two ideal positions P
(i)
x and P

(i)
y which belong to the path from P to P ′

and from P ′ to Pm, respectively. Without loss of generality, we assume that P
(r)
x and P

(r)
y

lie within a finite distance ri and ry from P
(i)
x and P

(i)
y , as it is shown in Figure B.4(b).

Intuitively, then, the probability that a man-in-the-middle attack takes place is pro-

portional to the area defined by the intersection of the ball regions Bx and By and centered

in P
(i)
x and P

(i)
y and it also depends on the number of peers in the network that are ac-

tually contained in that region. In the rest of the section we formalize this intuition and

propose a method to compute the probability of a man-in-the-middle attack, given two

peers P and P ′ and the position of a malicious peer PE with respect to P .

In general, the real position of a peer Pi is unknown and can only be estimated in

terms of its distance from P
(i)
i . Let G

P
(i)
i

(r) be the probability that P
(r)
i is at a distance

not greater than r from P
(i)
i , i.e., it is within a ball region Bi of radius r centered in P

(i)
i :

G
P

(i)
i

(r) = Pr{d(P (r)
i , P

(i)
i) ≤ r} (B.1)

The distribution G
P

(i)
i

(r) in Equation B.1 depends on the specific position P
(i)
i : since it is

not practical to compute and store it for each possible P
(i)
i , in our analysis we approximate

B.2 Cloud-based Censorship Resistance 73

G
P

(i)
i

(r) ≈ G(r), where given a random ideal position of a peer, G(r) is the probability

distribution of the real position.

As anticipated, the ball regions Bx and By in Figure B.4.b delimit the area in which

there is a non-zero probability of finding P
(r)
x and P

(r)
y . As formalized by Theorem B.1,

two paths, then, intersect if

• P (r)
x ∈By and P

(r)
y ∈Bx (assuming that they belong to Bx and By, respectively), and

• P (r)
x =P

(r)
y =PE, where PE is the peer that is responsible for them.

Theorem B.1 (Probability of path intersection). For any pair of random paths, the

probability that there exists a peer P which is responsible for point P
(i)
x belonging to the

first path and point P
(i)
y belonging to the second path is given by

Pr{∃PE | P (r)
x = P (r)

y = PE} = Ω(Bx,By) =
Pr{P (r)

x ∈ By ∧ P (r)
y ∈ Bx}

|Bx ∩ By| (B.2)

where the probability at the numerator is conditioned to the events P
(r)
x ∈ Bx and P

(r)
y ∈

By, while |Bx ∩ By| is the number of peers in the intersection of the two regions.

Proof. By representing the numerator of Equation B.2 as the product of two independent

events, we have that for any peer PE which lies in the intersection Bx∩By, the probability

that PE = P
(r)
x is equal to Pr{P (r)

x ∈By |P (r)
x ∈Bx}

|Bx∩By| . The probability that PE corresponds to

both P
(r)
x and P

(r)
y , than, is equal to Pr{P (r)

x ∈ By} · Pr{P (r)
y ∈ Bx}. This expression is

further multiplied by |Bx ∩ By| to obtain the probability that at least one of the peers in

the intersection satisfies the constraints.

Now if we consider a malicious peer PE whose ideal position P
(i)
E lies in the path of

message SubmitQ, we can assume independence among {PE = Pi}i=1...n, where PE = Pi

represents the event that PE is also the i-th peer in the path from P ′ to Pm. A man-in-

the-middle attack, then, takes place if PE is one of the n intermediate peers which route

message AnsMetaData to Pm, as it is defined by the following corollary:

Corollary B.1 (Probability of Censorship). Let us assume a communication session

between two peers P and P ′, with return address Pm and malicious peer PE in the path

from P to P ′. Let P
(i)
E be the ideal position of PE and with P

(i)
1 , . . . , P

(i)
n the ideal positions

of the n peers from P ′ to Pm.

Then, the probability Γ(P
(i)
E , P

(i)
1 , . . . , P

(i)
n) that PE will censor the communication

through a man-in-the-middle attack is given by

Γ(P
(i)
E , P

(i)
1 , . . . , P (i)

n) =
n∑
i=1

Ω(BE,Bi) (B.3)

74 Appendix B. Anonymity and censorship resistance in MON’s

Proof. This is a direct consequence of Theorem B.1 and the assumption of independence

among the events PE = Pi.

In the following, we consider the problem of computing, from a practical point of view,

the probability defined by Corollary B.1. In particular we rely on the results presented by

Amato et al. in [ARSZ03], where they introduce the concept of proximity as a measure

of the number of elements that are contained in the intersection of two ball regions when

a metric space is defined over the data set.

Let the distance probability distribution F (r) be the probability that for any pair of

random peers P1 and P2 in the network their distance in the space is not greater than r.

F (r) = Pr{d(P1, P2) ≤ r} (B.4)

Equation B.4 was first introduced in [CPZ98] to estimate the number of resources from a

data set that lie within a certain distance r from the query [CP00b]; in [ARSZ03] it was

further exploited to compute the proximity X (Bx,By) of any two ball regions, defined as

the probability that a (random) resource belongs to both Bx and By.

X (Bx,By) ≈
∫ bx(dxy ,rx,ry)

0

∫ b2y(x,dxy ,rx,ry)

b1y(x,dxy ,rx,ry)

f(x) · f(y)dydx (B.5)

The full details of how Equation B.5 is derived (along with practical hints on its imple-

mentation) can be found in [ARSZ03], here we only give the intuition. The joint density

fX,Y (x, y) is integrated over the volume of the intersection Bx ∩ By and X and Y rep-

resent the events that a resource belongs to Bx or By, respectively. Since X and Y are

independent, fX,Y (x, y) = fX(x) · fY (y) holds. Finally notice that the integration bounds

bx(·), b1y(·) and b2y(·) depend on the specific implementation of the integral.

By relying on these results, Equation B.5 can be used to estimate the value Ω(Bx,By)
defined in Theorem B.1. Let the proximity X be a template which can be indifferently

applied to both G
P

(i)
x

(r) and F (r). Equation B.2, then, is rewritten as

Ω(Bx,By) =
X [G

P
(i)
x

] · X [G
P

(i)
y

]

X [F]
(B.6)

Notice that Equation B.6 relies only on two sets of global statistics, namely F (r) and G(r),

which can be easily maintained by each peer. Furthermore, the computation resolves to

a geometrical problem because only the relative distances between P
(i)
E and the ideal

positions P
(i)
1 , . . . , P

(i)
n need to be determined.

Bibliography

[ACM05] Karl Aberer and Philippe Cudré-Mauroux. Semantic overlay networks. In

VLDB Tutorial, page 1367, Aug. 2005.

[AGP99] Swarup Acharya, Phillip B. Gibbons, and Viswanath Poosala. Aqua: A fast

decision support systems using approximate query answers. In VLDB, pages

754–757, 1999.

[ARSZ03] Giuseppe Amato, Fausto Rabitti, Pasquale Savino, and Pavel Zezula. Region

proximity in metric spaces and its use for approximate similarity search.

ACM Trans. Inf. Syst., 21(2):192–227, 2003.

[BBKK97] Stefan Berchtold, Christian Böhm, Daniel A. Keim, and Hans-Peter Kriegel.

A cost model for nearest neighbor search in high-dimensional data space. In

Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems (PODS’97), pages 78–86, Tucson, AZ, May

1997. ACM Press.

[BCLP05] Ilaria Bartolini, Paolo Ciaccia, Alessandro Linari, and Marco Patella. Crit-

ical analysis of query processing techniques for heterogeneous environ-

ments. Technical Report D3.R2, WISDOM (Web Intelligent Search based

on DOMain ontologies) - Italian MIUR Project, 2005. Available at URL

http://dbgroup.unimo.it/wisdom/ (valid as of March 15, 2007).

[BLMT07] Michael Backes, Alessandro Linari, Matteo Maffei, and Christos Try-

fonopoulos. Anonymity and censorship resistance in semantic overlay net-

works. In Submitted to PET, 2007.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM, 13(7):422–426, July 1970.

[BM03] Andrei Broder and Michael Mitzenmacher. Network applications of bloom

filters: a survey. Internet Mathematics, 1(4):485–509, 2003.

75

76 Bibliography

[BMT+05] Matthias Bender, Sebastian Michel, Peter Triantafillou, Gerhard Weikum,

and Christian Zimmer. Improving collection selection with overlap awareness

in P2P search engines. In SIGIR, pages 67–74, Aug. 2005.

[BN04] Benjamin Bustos and Gonzalo Navarro. Probabilistic proximity searching

algorithms based on compact partitions. J. Discrete Algorithms, 2(1):115–

134, 2004.

[BNFZ06] Michal Batko, David Novk, Fabrizio Falchi, and Pavel Zezula. On scalability

of the similarity search in the world of peers. In INFOSCALE, May 2006.

[BNST05] Wolf-Tilo Balke, Wolfgang Nejdl, Wolf Siberski, and Uwe Thaden. DL meets

P2P - distributed document retrieval based on classification and content. In

ECDL, pages 379–390, Sep. 2005.

[Bri95] Sergey Brin. Near neighbor search in large metric spaces. In Proceedings of

the 21st International Conference on Very Large Data Bases (VLDB’95),

pages 574–584, Zurich, Switzerland, September 1995. Morgan Kaufmann.

[BYRN99] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information

Retrieval. ACM Press / Addison-Wesley, 1999.

[CCV02] Antonio Corral, Joaqúın Cañadas, and Michael Vassilakopoulos. Approxi-

mate algorithms for distance-based queries in high-dimensional data spaces

using r-trees. In ADBIS, pages 163–176, 2002.

[CGM02] Arturo Crespo and Hector Garcia-Molina. Routing indices for peer-to-peer

systems. In Proceedings of the 22nd International Conference on Distributed

Computing Systems (ICDCS’02), pages 23–32, Vienna, Austria, jul 2002.

IEEE Computer Society. Online publication.

[CGM04] Arturo Crespo and Hector Garcia-Molina. Semantic overlay networks for

P2P systems. In AP2PC, pages 1–13, July 2004.

[CLC95] James P. Callan, Zhihong Lu, and W. Bruce Croft. Searching distributed

collections with inference networks. In SIGIR, pages 21–28, July 1995.

[CMH+02] Ian Clarke, Scott G. Miller, Theodore W. Hong, Oskar Sandberg, and Bran-

don Wiley. Protecting free expression online with freenet. IEEE Internet

Computing, 6(1):40–49, 2002.

Bibliography 77

[CNBYM01] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Mar-

roqúın. Proximity searching in metric spaces. ACM Computing Surveys,

33(3):273–321, September 2001.

[CP98] Paolo Ciaccia and Marco Patella. Bulk loading the M-tree. In Proceedings

of the 9th Australasian Database Conference (ADC’98), pages 15–26, Perth,

Australia, February 1998. Springer.

[CP00a] Paolo Ciaccia and Marco Patella. PAC nearest neighbor queries: Approxi-

mate and controlled search in high-dimensional and metric spaces. In Pro-

ceedings of the 16th International Conference on Data Engineering (ICDE

2000), pages 244–255, San Diego, CA, March 2000. IEEE Computer Society.

[CP00b] Paolo Ciaccia and Marco Patella. Pac nearest neighbor queries: Approxi-

mate and controlled search in high-dimensional and metric spaces. In Pro-

ceedings of the 16th International Conference on Data Engineering, ICDE,

pages 244–255. IEEE Computer Society, 2000.

[CP02] Paolo Ciaccia and Marco Patella. Similarity queries. Technical Report

CSITE-02-02, CSITE–CNR, 2002.

[CPZ97] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access

method for similarity search in metric spaces. In Proceedings of the 23rd

International Conference on Very Large Data Bases (VLDB’97), pages 426–

435, Athens, Greece, August 1997. Morgan Kaufmann.

[CPZ98] Paolo Ciaccia, Marco Patella, and Pavel Zezula. A cost model for similarity

queries in metric spaces. In Proceedings of the Seventeenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, PODS,

pages 59–68. ACM Press, 1998.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.

John Wiley & sons, 1991.

[DA04] George Danezis and Ross Anderson. The economics of censorship resis-

tance. In Proceedings of Workshop on Economics and Information Security

(WEIS04), May 2004.

[Dim87] Dimitri P. Bertsekas and Robert G. Gallager. Data Networks. Prentice Hall,

1987.

78 Bibliography

[DNV06a] Christos Doulkeridis, Kjetil Noervaag, and Michalis Vazirgiannis. Scalable

semantic overlay generation for P2P-based digital libraries. In ECDL, Sep.

2006.

[DNV06b] Christos Doulkeridis, Kjetil Noervaag, and Michalis Vazirgiannis. The

SOWES approach to P2P web search using semantic overlays. In WWW,

pages 1027–1028, May 2006.

[EGKM04] Patrick Th. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and Lau-

rent Massoulié. Epidemic information dissemination in distributed systems.

IEEE Computer, 37(5):60–67, 2004.

[ES03] Dominik M. Endres and Johannes E. Schindelin. A new metric for proba-

bility distributions. IEEE Trans. Inf. Theory, 49(7):1858–1860, July 2003.

[FGZ05] Fabrizio Falchi, Claudio Gennaro, and Pavel Zezula. A content-addressable

network for similarity search in metric spaces. In DBISP2P, pages 126–137,

Aug. 2005.

[GGMT99] Luis Gravano, Hector Garcia-Molina, and Anthony Tomasic. GlOSS: Text-

source discovery over the internet. ACM Trans. Database Syst., 24(2):229–

264, June 1999.

[GIS03] Luis Gravano, Panagiotis G. Ipeirotis, and Mehran Sahami. QProber: A

system for automatic classification of hidden-web databases. 21(1):1–41,

January 2003.

[GMP02] Phillip B. Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremen-

tal maintenance of approximate histograms. ACM Trans. Database Syst.,

27(3):261–298, Sep. 2002.

[Gnu] The Gnutella project. http://www.gnutella.com (valid as in Fef. 2007).

[GR00] Jonathan Goldstein and Raghu Ramakrishnan. Contrast plots and p-sphere

trees: Space vs. time in nearest neighbour searches. In VLDB, pages 429–

440, 2000.

[GRS99] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing. Com-

mun. ACM, 42(2):39–41, 1999.

Bibliography 79

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial search-

ing. In Proceedings of the 1984 ACM SIGMOD International Conference on

Management of Data, pages 47–57, Boston, MA, June 1984. ACM Press.

[Hel97] Joseph M. Hellerstein. Online processing redux. IEEE Data Eng. Bull.,

20(3):20–29, 1997.

[HS03] Gı́sli R. Hjaltason and Hanan Samet. Index-driven similarity search in met-

ric spaces. ACM Transactions on Database Systems, 28(4):517–580, Decem-

ber 2003.

[KNOT06] Panos Kalnis, Wee Siong Ng, Beng Chin Ooi, and Kian-Lee Tan. Answering

similarity queries in peer-to-peer networks. Inf. Syst., 31(1):57–72, Mar.

2006.

[KNS02] Irwin King, Cheuk Hang Ng, and Ka Cheung Sia. Distributed content-

based visual information retrieval system on peer-to-peer networks. ACM

Transactions on Information Systems, 22(3):477–501, 2002.

[KW03] Arnd Christian König and Gerhard Weikum. Automatic tuning of data

synopses. Inf. Syst., 28(1-2):85–109, Mar. 2003.

[LC03] Jie Lu and James P. Callan. Content-based retrieval in hybrid peer-to-peer

networks. In CIKM, pages 199–206, Nov. 2003.

[LC05a] Xiaoyong Liu and W. Bruce Croft. Statistical language modeling for infor-

mation retrieval. Annual Review of Information Science and Technology,

39:3–31, 2005.

[LC05b] Jie Lu and Jamie Callan. Federated search of text-based digital libraries in

hierarchical peer-to-peer networks. In ECIR, pages 52–66, Mar. 2005.

[LC06] Jie Lu and Jamie Callan. User modeling for full-text federated search in

peer-to-peer networks. In SIGIR, aug 2006.

[LCC+02] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and

replication in unstructured peer-to-peer networks. In ICS, pages 84–95,

2002.

[LTQ+05] Alexander Löser, Christoph Tempich, Bastian Quilitz, Wolf-Tilo Balke, Stef-

fen Staab, and Wolfgang Nejdl. Searching dynamic communities with per-

sonal indexes. In ISWC, pages 491–505, Nov. 2005.

80 Bibliography

[LW06] Alessandro Linari and Gerhard Weikum. Efficient peer-to-peer semantic

overlay networks based on statistical language models. In P2PIR, Nov.

2006.

[MBTW06] Sebastian Michel, Matthias Bender, Peter Triantafillou, and Gerhard

Weikum. Iqn routing: Integrating quality and novelty in P2P querying

and ranking. In EDBT, pages 149–166, Mar. 2006.

[MS05] Peter Mahlmann and Christian Schindelhauer. Peer-to-peer networks based

on random transformations of connected regular undirected graphs. In

SPAA, pages 155–164, July 2005.

[MS06] Peter Mahlmann and Christian Schindelhauer. Distributed random digraph

transformations for peer-to-peer networks. In SPAA, Aug. 2006.

[MVdV04] S. Mauw, J. Verschuren, and E.P. de Vink. A formalization of anonymity and

onion routing. In Proceedings of ESORICS 2004: 9th European Symposium

On Research in Computer Security, volume 3193, pages 109–124. LNCS,

2004.

[MYL02] Weiyi Meng, Clement T. Yu, and King-Lup Liu. Building efficient and

effective metasearch engines. ACM Comput. Surv., 34(1):48–89, Mar. 2002.

[NF04] Henrik Nottelmann and Norbert Fuhr. Combining CORI and the decision-

theoretic approach for advanced resource selection. In ECIR, pages 138–153,

Apr. 2004.

[NF06] Henrik Nottelmann and Norbert Fuhr. Comparing different architectures

for query routing in peer-to-peer networks. In ECIR, pages 253–264, Apr.

2006.

[PMW05] Josiane Xavier Parreira, Sebastian Michel, and Gerhard Weikum.

p2pDating: Real life inspired semantic overlay networks for web search. In

SIGIR workshop on Heterogeneous and Distributed Information Retrieval,

aug 2005.

[Poo97] Viswanath Poosala. Histogram-Based Estimation Techniques in Database

Systems. PhD thesis, 1997.

[PRL+06] Ivana Podnar, Martin Rajman, Toan Luu, Fabius Klemm, and Karl Aberer.

Beyond term indexing: A P2P framework for web information retrieval.

Informatica, 30(2):153–161, June 2006.

Bibliography 81

[PRW05] Ginger Perng, Michael K. Reiter, and Chenxi Wang. Censorship resistance

revisited. In Proceedings of Information Hiding Workshop (IH 2005), June

2005.

[RKV95] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. Nearest neighbor

queries. In Proceedings of the 1995 ACM SIGMOD International Conference

on Management of Data, pages 71–79, San Jose, CA, May 1995. ACM Press.

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity for web transac-

tions. ACM Transactions on Information and System Security, 1(1):66–92,

1998.

[Shm04] Vitaly Shmatikov. Probabilistic model checking of an anonymity system.

Journal of Computer Security, 12(3-4):355–377, 2004.

[SS99] Paul F. Syverson and Stuart G. Stubblebine. Group principals and the

formalization of anonymity. In FM ’99: Proceedings of the Wold Congress

on Formal Methods in the Development of Computing Systems-Volume I.

Springer-Verlag, 1999.

[SW05] Ralf Steinmetz and Klaus Wehrle. Peer-to-Peer Systems and Applications.

Springer, 2005.

[WFSP00] Leejay Wu, Christos Faloutsos, Katia P. Sycara, and Terry R. Payne. Falcon:

Feedback adaptive loop for content-based retrieval. In VLDB, pages 297–

306, 2000.

[Yia93] Peter N. Yianilos. Data structures and algorithms for nearest neighbor

search in general metric spaces. In Proceedings of the 4th ACM-SIAM Sym-

posium on Discrete Algorithms (SODA’93), pages 311–321, Austin, TX,

January 1993. ACM Press.

[ZADB05] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Simi-

larity Search: The Metric Space Approach (Advances in Database Systems).

Springer-Verlag New York, Inc., 2005.

[ZL04] ChengXiang Zhai and John D. Lafferty. A study of smoothing methods for

language models applied to information retrieval. ACM Trans. Inf. Syst.,

22(2):179–214, Apr. 2004.

