
Dottorato di Ricerca in Informatica
Università di Bologna, Padova

A Communication Infrastructure to Support
Knowledge Level Agents on the Web

Davide Guidi

March 2007

Coordinatore: Tutore:

Prof. Özalp Babaoğlu Prof. Mauro Gaspari

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AMS Tesi di Dottorato

https://core.ac.uk/display/11011019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Agent Communication Languages (ACLs) have been developed to provide a way for agents to

communicate with each other supporting cooperation in Multi-Agent Systems. In the past few

years many ACLs have been proposed for Multi-Agent Systems, such as KQML and FIPA-ACL.

The goal of these languages is to support high-level, human like communication among agents,

exploiting Knowledge Level features rather than symbol level ones. Adopting these ACLs, and

mainly the FIPA-ACL specifications, many agent platforms and prototypes have been developed.

Despite these efforts, an important issue in the research on ACLs is still open and concerns

how these languages should deal (at the Knowledge Level) with possible failures of agents. Indeed,

the notion of Knowledge Level cannot be straightforwardly extended to a distributed framework

such as MASs, because problems concerning communication and concurrency may arise when

several Knowledge Level agents interact (for example deadlock or starvation).

The main contribution of this Thesis is the design and the implementation of NOWHERE,

a platform to support Knowledge Level Agents on the Web. NOWHERE exploits an advanced

Agent Communication Language, FT-ACL, which provides high-level fault-tolerant communi-

cation primitives and satisfies a set of well defined Knowledge Level programming requirements.

NOWHERE is well integrated with current technologies, for example providing full integration

for Web services. Supporting different middleware used to send messages, it can be adapted to

various scenarios. In this Thesis we present the design and the implementation of the architecture,

together with a discussion of the most interesting details and a comparison with other emerging

agent platforms. We also present several case studies where we discuss the benefits of program-

ming agents using the NOWHERE architecture, comparing the results with other solutions. Fi-

nally, the complete source code of the basic examples can be found in appendix.

iii

Contents

Abstract iii

List of Tables ix

List of Figures xi

THESIS OUTLINE 1

THESIS CONTRIBUTION 3

1 Introduction 6

I State Of The Art 9

2 Software Agents 11

2.1 Properties of a Software Agent . 11

2.2 Multi-Agent Systems . 13

2.3 MAS focused on Communication Infrastructure 14

2.3.1 JADE Agent Platform . 16

2.3.2 Open Agent Architecture . 18

2.3.3 Other Platforms . 19

2.4 Towards Knowledge Level in MAS . 20

v

II The NOWHERE Architecture 23

3 Introduction to NOWHERE 25

3.1 Overall description . 25

3.2 Comparison with other platforms . 27

3.3 Main Features . 28

3.4 NOWHERE’s Internal Structure . 30

3.4.1 Knowledge Level Layer . 30

3.4.2 Architecture Layer . 31

3.4.3 Network Layer . 31

4 NOWHERE’s Agent Communication Language 32

4.1 FT-ACL: A Fault Tolerant Agent Communication Language 32

4.1.1 Failure model . 33

4.1.2 The Core Language . 34

4.1.3 The Extended Language . 36

4.2 Core Language Primitives . 36

4.2.1 One-to-one knowledge exchange and message handling 37

4.2.2 Request/Response Performatives 41

4.2.3 The Anonymous interaction mechanism 44

5 NOWHERE’s Components 47

5.1 Architecture of a NOWHERE agent . 47

5.2 Messages and Services . 48

5.2.1 Managing Messages . 49

5.2.2 Managing Services: Description, Request and Response 51

5.3 Inside the NOWHERE architecture . 56

5.4 Agent Dispatcher . 57

5.4.1 The Connector . 57

5.4.2 The dispatcher Function . 58

5.4.3 The Set of ACL . 58

vi

5.4.4 The Code Repository . 61

5.5 The Facilitator . 62

5.5.1 The Connector . 63

5.5.2 The Facilitator Core . 63

5.5.3 The Countdown Repository . 63

5.5.4 The Low Level Network Plugin . 64

6 Innovative aspects of NOWHERE 66

6.1 Agent Naming . 66

6.2 Comparing FIPA-ACL Directory Facilitator with NOWHERE’s Facilitator 67

6.3 Transparent timeouts . 69

6.3.1 Using Timeouts for the askOne Primitive 69

6.3.2 Using Timeouts for the askEverybody Primitive 71

6.3.3 Timeout values . 73

6.3.4 Comparing Timeout Handling with other MASs 74

6.4 Adapting NOWHERE to different scenarios using Low Level Network

Plugins . 76

6.5 Using Groups to reduce the Broadcast Scope 77

6.6 Web Services Integration . 78

6.6.1 Registration of a Web service . 78

6.6.2 Agentification of a Web service . 78

6.6.3 Exporting Agents as Web services 79

6.6.4 Using NOWHERE in Web service scenarios 80

III Case Studies 83

7 Case Studies 85

7.1 The Contract Net Protocol . 85

7.1.1 The Initiator agent - Jade . 87

7.1.2 The Initiator Agent - NOWHERE . 91

vii

7.1.3 Discussion . 94

7.2 Gridified Connect 4 . 96

7.3 Realizing a Distributed Grid Performance System 101

8 Conclusions 106

8.1 Future Work . 107

A Source code examples of NOWHERE agents 109

A.1 Server Agent - Java . 110

A.2 One to One Communication Example - Java 115

A.3 Anonymous Interaction Mechanism - Java 117

References 119

viii

List of Tables

4.1 Core Language Primitives . 38

5.1 Message Data Type - User Functions - Java 50

5.2 Message Data Type - System Functions - Java 50

5.3 Functions associated to a Description Object - Java 54

5.4 Functions associated to a Request and a Response Object - Java 55

5.5 ACL Primitives . 60

5.6 Operations supported by the Code Repository Structure 61

ix

List of Figures

3.1 NOWHERE Architecture . 26

3.2 NOWHERE Layers . 30

4.1 Code of Agent A - Python . 39

4.2 Code of Agent B - Python . 40

4.3 Code of Agent B - Using the Handler Primitive - Python 40

4.4 Managing Specific Services using a Specific Function - Java 42

4.5 Code of the Reader Agent - Java . 43

4.6 Code of the Collector Agent - Python . 44

4.7 Code of the Reader Agent using Anonymous Interaction Mechanism - Java 45

4.8 Code of the Collector Agent using Anonymous Interaction Mechanism -

Python . 46

5.1 Inside an Agent . 48

5.2 The Hello Service - WSDL Description . 53

5.3 Creating the Hello Service using makeDescription - Java 54

5.4 Registering a Service - JADE . 55

5.5 Searching for a Service - JADE . 56

5.6 Fetch/Execute Cycle - Python . 58

5.7 Receiving Multiple Messages 1 . 59

5.8 Receiving Multiple Messages 2 . 59

5.9 The LowLevelHandler Abstract Class . 64

6.1 Search the DF for a Service - JADE . 68

xi

6.2 Algorithm Used By The Facilitator To Manage Message’s Timeout 70

6.3 Success Invocation of a Service . 71

6.4 Failure Invocation of a Service (AgentB is already Crashed) 71

6.5 Failure Invocation of a Service (AgentB Crashes before Replying) 72

6.6 AgentB does not Reply in Due Time . 72

6.7 Algorithm used by the Facilitator to manage Message’s Timeout 73

6.8 Successful Execution of an askEverybody Primitive 74

6.9 JADE Timeout Behavior Example . 75

6.10 KQML Timeout Example . 75

6.11 JXTA Peergroups. From Project JXTA 2.0 Super-Peer Virtual Network [69] 77

6.12 Agentification of a Web service . 79

6.13 Registration of an Agent Competence as a Web service 80

7.1 FIPA Contract Net Protocol (source: FIPA Specification) 86

7.2 Jade Initiator Agent - Find Responders agents 88

7.3 Jade Initiator Agent - Send cfp message to Responders 89

7.4 Jade Initiator Agent - Handle proposals . 89

7.5 Jade Initiator Agent - Handle refusals . 90

7.6 Jade Initiator Agent - Handle failures . 90

7.7 Jade Initiator Agent - Evaluate proposals 91

7.8 Jade Initiator Agent - Accepting the best proposal 92

7.9 NOWHERE Initiator Agent - Sending the cfp 92

7.10 NOWHERE Initiator Agent - Managing replies 93

7.11 NOWHERE Initiator Agent - Handling failures 94

7.12 NOWHERE Initiator Agent - A more compact version 95

7.13 Implemented Grid Performance System Scenario 102

7.14 Image Rendering Case Study . 104

THESIS OUTLINE

After the first Chapter, that provides an introduction, this Thesis is composed of three

Parts. In the following we give a brief overview of each Part.

Part I - State of the Art

In this Part we give an overview of the state of the art in Agent Communication Lan-

guages and in Multi-Agent Systems.

Chapter 2 first defines some basic concepts used in the Thesis and then provides a

snapshot of the current state of the art, presenting the scenario in which we locate the

work done in the context of this Thesis.

Part II - The NOWHERE architecture

In this Part we describe in detail the design and the implementation of the NOWHERE

architecture.

Chapter 3 introduces the architecture, providing a brief description of its key features.

Chapter 4 presents FT-ACL, the Agent Communication Language used by NOWHERE,

providing a detailed description of the core language primitives.

Chapter 5 describes the basic components of an agent: the Dispatcher and the Facili-

tator.

Chapter 6 analysis some interesting NOWHERE details, comparing them with other

agent architectures, such as JADE, when possible. In particular, the following features

are highlighted:

• the agent naming mechanism;

• the timeout handling mechanism;

2

• how NOWHERE can be adapted to different scenarios;

• how NOWHERE manages groups of agents;

• the Web service integration;

Part III - Case studies

In this Part we present three case studies. The first one, Chapter 7.1, provides a detailed

comparison of the solutions obtained with the NOWHERE architecture and with a state

of the art agent platform regarding the classic Contract Net protocol.

Chapter 7.2 introduces a “gridified” version of the Connect 4 game, showing how

this problem can be solved using NOWHERE and then comparing this approach with

the IBM Globus Grid toolkit. Furthermore, Chapter 7.3 analyzes the realization of a Dis-

tributed Grid Performance System using NOWHERE. An Image Rendering Architecture

built on top of the Grid Performance System is then presented, together with some col-

lected results.

Finally, Chapter 8 presents the conclusions and highlights some future work. The

complete source code of some basic example can be found in appendix.

THESIS CONTRIBUTION

The main contribution of this Thesis is the design and the implementation of NOWHERE,

an architecture that supports Knowledge Level agents on the Web. In particular, the

results of this Thesis can be summarized as follows.

• Implementation of FT-ACL, an advanced Agent Communication Language which

provides fault tolerant communication primitives maintaining a Knowledge Level

characterization of the ACL.

• Design and implementation of NOWHERE, an agent architecture for supporting

Knowledge Level agents which uses FT-ACL as a communication language. The

main features of FT-ACL are:

– An open architecture, which allows the programmer to dynamically integrate

new agents into the existing MAS.

– A platform for Knowledge Level agents, where the programmer does not have

to handle explicitly many low level issues, such as network and concurrency

problems.

– Support for interoperability. NOWHERE agents can be realised in any pro-

gramming language including AI languages or knowledge representation lan-

guages, provided that they react to a well defined protocol based on the stan-

dard primitives of FT-ACL

– Integration with Web services. NOWHERE supports a complete Web service

integration. Agents have the ability to export capabilities as Web services and

they are also able to invoke Web services using the standard ACL primitives.

An agent can invoke a service provided by another agent or a Web service in

the same way.

4

– Infrastructure adaptable to different scenarios. NOWHERE is built using three dif-

ferent layers. The network layer used to send messages can be changed with-

out affecting the other parts, so that the platform can be adapted to different

scenarios, ranging from a small set of agents that need real time communica-

tion, to a huge set of agents over a network with high latency.

• Comparing to other agent platforms, NOWHERE presents a number of innovative

aspects, such as:

– the realization of a transparent timeout mechanism;

– the internal use of groups of agents interested in specific services, in order to

limit the broadcast scope;

– the integration of Web services.

The material presented in this Thesis has been published in good part in the following

papers:

1. A Fault Tolerant Agent Communication Language for Supporting Web Agent Interaction

N. Dragoni, M. Gaspari, D. Guidi, Agent Communication: International Workshop

on Agent Communication (AC2005), Revised Selected and Invited Papers, volume

3859, LNAI, Springer Verlag, 2006.

2. An Infrastructure to Support Cooperation of Knowledge-Level Agents on the Semantic Grid

N. Dragoni, M. Gaspari, D. Guidi, International Journal of Applied Intelligence,

25(2): 159-180, 2006.

3. NOWHERE - An Open Service Architecture to support Agents and Services within the

Semantic Web

N. Dragoni, M. Gaspari, D. Guidi, In Proc. of the 2nd Italian Semantic Web Work-

shop on Semantic Web Applications and Perspectives (SWAP), Trento, Italy, CEUR

Workshop Proceedings, 2005.

4. An ACL for Specifying Fault-Tolerant Protocols

N. Dragoni, M. Gaspari, D. Guidi, In Proc. of the 9th AI*IA Conference, Milano,

Italy, LNCS, 2005.

5

5. Integrating Knowledge-Level Agents in the (Semantic) Web: an Agent-based Open Service

Architecture

N. Dragoni, M. Gaspari, D. Guidi. In Proc. of the 18th International FLAIRS Con-

ference, AAAI Press, 2005.

6. A Peer-to-Peer Knowledge Level Open Service Architecture

N. Dragoni, M. Gaspari, D. Guidi. In Proc. of WM2005 Workshop on ”Peer-to-

Peer and Agent Infrastructures for Knowledge Management” (PAIKM05), DFKI,

Kaiserslautern, 2005.

Chapter 1

Introduction

Communication protocols have evolved greatly over the last 10 years. Sophisticated

Agent Communication Languages emerged from projects such as the Knowledge Shar-

ing Effort or the Foundation for Intelligent Physical Agents (FIPA). More recently, thanks

to the ubiquity of the Web, new protocols such as SOAP[66] have been proposed. Such

protocols are designed to work specifically with Web Services, and are now evolving to

support Semantic Web Services. While software agents have been recognized as one of

the key technology to exploit these (Semantic) Web services, programming a set of ge-

ographically distributed agents is still a complex task which needs adequate skills and

tools to be carried out successfully.

In fact, the realizations of these protocols do not provide a high level abstraction of

the communication, so that the communication still subject to low level problems. For

example, due to the fact that the communication over the Internet is subject to failures

(communication problems, hardware failures, etc), these protocols no longer guarantee

the delivery of messages, thus the need for handling exceptions. A set of events must be

explicitly handled in order to ensure a successfull communication between two entities,

be they simple software components such as web services, or more complex entities such

as agents.

However, crashed agents and network errors are not managed at high level, but in-

stead using explicit timeout mechanisms to ensure that an entity does not endlessly wait for

an answer. Following this approach, it is not always clear how to set these timeouts and

what action to take when the timeout expires. Furthermore, common concurrency prob-

lems such as deadlock or starvation may arise in the communication and must be explicitly

Chapter 1. Introduction 7

recognized and handled.

Following these considerations, it seems unlikely that software agents will be devel-

oped in the future as Web pages have been created in the past. However, is it possible

to reduce this gap? Is it possible to find a programming model which facilitates the de-

velopment of agents, providing a high level architecture that can automatically manage

these problems, at least for a reasonable class of applications?

In this Thesis we present the design and the realization of NOWHERE, an agent

platform that represents our answer to this question. The high level approach used

in NOWHERE rely in the use of “Knowledge Level” agents, proposed by Newell in

1982[51]. The intuition of Newell is that knowledge is fundamentally different from the

symbols used to represent it. Following this intuition, Newell proposed the existence of a

new level of system description which he called Knowledge Level and which he located

above the symbol (or program) level. The concept of Knowledge Level agents was de-

veloped lately by Genesereth and Nilson, who define it in [36] as “a conceptualization of

agents in which all excess detail is eliminated. In this abstraction an agent internal state

consists entirely of a database of sentences in predicate calculus, and an agent’s men-

tal actions are viewed as inferences on this database”. In other words, the Knowledge

Level rationalizes the agent’s behaviour, while the symbol level mechanises the agent’s

behaviour.

The design and the implementation of NOWHERE continues the work of Prof. Mauro

Gaspari and of Dr. Nicola Dragoni regarding Knowledge Level communication in soft-

ware agents. The research of Gaspari and Dragoni[23, 24], used as starting point for this

Thesis, concerns the definition of a Knowledge Level approach to deal with crash failures

of agents in open Multi-Agent Systems. The approach is based on FT-ACL, an advanced

Knowledge Level Agent Communication Language which allows agents to cooperate in

open environments prone to crash failures. While the work of Gaspari and Dragoni led

to very interesting results, such as the design of FT-ACL and its formal specification, a

series of questions remain open:

• Is it possible to transform the FT-ACL specification in a successful language?

• Is it possible to realize a distributed programming mechanism which does not use

explicit timeouts to deal with agent failures?

8 Chapter 1. Introduction

• Is it possible to design a modular runtime support for FT-ACLwhich would allow

users to easily integrate it in any programming language?

• Is it possible to make all these mechanisms independent from the middleware used

for message passing?

These questions represent the main challenges addressed in this Thesis.

Part I

State Of The Art

9

Chapter 2

Software Agents

The purpose of this Chapter is twofold: to define basic concepts and terminology that are

used in this Thesis and to provide a snapshot of the current state of the art, presenting

the scenario in which we locate the work done in the context of this Thesis.

2.1 Properties of a Software Agent

The term “software agent”, or simply “agent”, identifies a concept used in many areas

ranging from Multi-Agent Systems to Web services, from Peer to Peer Networks to Grid

systems. While the concept of agent is something familiar to a computer scientist, a

common definition is still missing, so that agents are defined in almost as many ways as

there are commentators in the field.

Analysing the properties that agents may provide, researchers have proposed differ-

ent classifications for over a decade [55, 60, 34, 73, 42]. Even if these classifications differ,

there is some consensus on the features that a software agent should exhibit. In [34] the

authors collect a number of different agent’s definitions found in the literature and then

provide a comprehensive list of agent’s properties:

• Reactivity. Agents perceive the context in which they operate and react to it appro-

priately.

• Autonomy. Agents have capabilities of task selection, prioritisation, decision-making

without human intervention.

• Pro-activity. The ability of an agent to be goal-oriented.

12 Chapter 2. Software Agents

• Communication. The ability to communicate with other agents, in order to exploit

functionality such as cooperation or competition.

• Adaptability. It implies sensing the environment and reconfiguring in response. This

can be achieved through the choice of alternative problem-solving-rules or algo-

rithms, or through the discovery of problem solving strategies.

• Temporal continuity. The agent is a continuously running process.

• Mobility. The ability to transport itself from one machine to another.

• Flexibility. The ability to have actions that are not scripted.

• Use of character. The ability to include believable “personality” and emotional state.

We agree with other researchers that consider the first four features as a set of abilities

that a software agent should exhibit in order to be flexible enough to be used extensively

in different scenarios [34, 14].

Agents may also provide characteristics that can be considered important only in spe-

cific contexts. Mobility - the ability of an agent to stop its execution, move itself (and often

its data) to another host and then continue the execution again - is one of these proper-

ties. Even if mobility itself does not allow an agent to do something that it is not possible

using a static agent, there are many fields where mobile agents can be successfully used,

especially when slow network connections are used [37]. At the same time, mobile agents

introduce well known security issues that should be treated with care [27], so that it is

safer to avoid their use in a scenario with a fast network connection. As a result, the im-

portance of the mobility feature, as well as other properties, is heavily dependent on the

context in which agents operate.

Finally, it is interesting to note that having no common definition of an agent is not

considered a problem by Russel and Norvig, who state: “the notion of an agent is meant

to be a tool for analysing systems, not an absolute characterisation that divides the world

into agents and non-agents” [63].

Chapter 2. Software Agents 13

2.2 Multi-Agent Systems

A Multi-Agent System (MAS) (or agent platform, or agent infrastructure) is a system

composed of several agents, collectively capable of reaching goals that are difficult to

achieve by an individual agent or monolithic system. Agents may cooperate or they

may compete, or some combination of cooperation and competition, but there is some

common infrastructure that result in the collection being a ’system’, as opposed to simply

being a disjoint set of autonomous agents. A Multi-Agent System can be either a closed

MAS (the set of agent types is predefined by the entity that sets up and controls the

system) or an open MAS (where arbitrary external software agents can join the system).

In the following we focus on open MASs, which are the subject of the work pre-

sented in this Thesis. Open MASs are more complex and also more interesting than

closed MASs, because they can support “personal” or “user” agents, that carry out tasks

automatically for the user.

The amount of agent platforms and prototypes developed in the past few years is

extremely vast: far more than one hundred, as stated in [67]. The AgentLink site - Euro-

pean Co-ordination Action for Agent Based Computing - currently provide a list of 129

agent platforms and prototypes. The main reason of so many disjoint efforts is proba-

bly because every agent platform is built in order to be used in a predefined context. In

fact, depending on the particular context in which the agent is located, some features

could become important, or even crucial. Agents architectures are generally well suited

for a particular context, the one that the researchers had in mind writing the software.

Probably for this same reason the number of available papers presenting comparisons

and evaluations between agent platforms is very small. Most of these papers evaluate

platforms in a particular context, so the results are not applicable in different fields.

In the last years a huge number of these platform has been abandoned, while com-

munities of researchers started to grow around the most promising platforms. Among

others, there are two main approaches used when building a MAS: focusing on commu-

nication infrastructure and focusing on the representation of internal agent concepts. The

most used approach is probably the one based on communication infrastructure. Here

the key point is the use of an Agent Communication Language to exchange knowledge

between the agents. Many agent platforms uses this approach, both closed source imple-

14 Chapter 2. Software Agents

mentations (such as Tryllian [15]) and open source ones, such as MadKit [30], Jade [12]

and Cougaar [68].

The other approach used in building MAS is to focus on the representation of inter-

nal agent concepts, rather than on communication infrastructure. In this case the most

used model is the BDI model (Belief - Desire - Intention), conceived by Bratman [13] as a

theory of human practical reasoning. Beliefs are informational attitudes of an agent, rep-

resenting the information that an agent has about the world and about its internal state.

Desires (or goals) represent the motivational state of the agent. They consist of objectives

or situations that the agent would like to accomplish. Finally, intentions represent the

deliberative state of the agent: what the agent chooses to do. Interestingly, there are both

MASs focused on ACL that provide a BDI layer, like Jadex [61], and MASs focused on

BDI that provide a standard ACL compatibility, like Jack [45].

An important aspect of MAS, however, is still unhandled by all these platforms: the

concurrency aspect. Due to the fact that a MAS is composed of a set of agents that act

concurrently, a number of problems related to concurrency will arise, such as reliability

of agents, synchronisation of competing requests, allocation of resources, physical allo-

cation of agents on the network and so on.

This is exactly the problem addressed by the novel approach provided by our archi-

tecture: to provide an infrastructure to handle concurrency issues.

2.3 MAS focused on Communication Infrastructure

In this Section we provide an overview of the state of the art in MASs focused in com-

munication infrastructure, in order to illustrate the scenario in which we locate our ar-

chitecture. The introduction of the Knowledge Level in agent technology is fundamental

because, exploiting this concept, it is possible to manage the knowledge at high level, in-

dependently from the programming language used to represent it. Acting at Knowledge

Level, agents need a powerful communication system that let them exchange knowl-

edge. Agent Communication Languages (ACLs) have been developed to provide ad-

equate inter-agent communication mechanisms. They allow agents to effectively com-

municate and exchange knowledge with other agents despite differences in hardware

platforms, operating systems, networks and programming languages. In the last decade

Chapter 2. Software Agents 15

many ACLs have been proposed, incorporating specific mechanisms of agent communi-

cation. Many of these communication mechanisms are based on the speech act theory,

which has originally been developed as a basic model of human communication [64]. In

his famous work, “How to do Things with Words” [8], J. L. Austin outlined his theory of

speech acts and the concept of performative language, in which to say something is to do

something. To make the statement “I promise that p” (in which p is the propositional content

of the utterance) is to perform the act of promising as opposed to making a statement that

may be judged true or false. Austin creates a clear distinction between performatives and

constantives (statements that attempt to describe reality and can be judged true or false)

but he eventually comes to the conclusion that most utterances, at their base, are perfor-

mative in nature: “the speaker is nearly always doing something by saying something”. Speech

act theory has been found useful in Multi-Agent Systems as a foundation for communica-

tion among agents. In Agent Communication Languages, speech acts are represented as

messages expressing performatives, i.e., actions which succeed simply because the agent

communicates that it is doing so. Thus a message of an ACL is called a performative, in

that the message is intended to perform some action by virtue of being sent.

In the past 10 years, two important ACLs gained much attention: KQML [31] and

FIPA-ACL [32], and both of them adopt the speech act theory. The goal of these lan-

guages is to support high-level, human like communication between intelligent agents

using Knowledge Level features, so that agents can focus on the use, request and sup-

ply of knowledge, without having to deal with symbol level issues. Both KQML and

FIPA support high-level agent communication providing a way to encode messages, so

that they can be shared by agents coded in different programming languages. Anyway,

while these two ACLs share some similarities, KQML and FIPA are still very different, as

pointed out in [70].

Interestingly, in the past few years things changed a lot, as more and more researchers

started to use FIPA. The result is that nowadays there are no organised efforts to fur-

ther develop KQML. It happened that the KQML effort was pretty much subsumed

by FIPA’s activities. Many of the people that developed KQML worked with FIPA be-

ginning in the late 90s. In the current scenario, KQML is considered a death project,

while FIPA is now an IEEE standards effort. The same thing that happened to the com-

munication language (KQML vs FIPA), happened also to KQML-compliant MAS and

16 Chapter 2. Software Agents

FIPA-compliant MAS. Even if KQML is not developed anymore, it is still possible to

download the KQML API, which provide primitives to develop KQML-enabled agents.

While many KQML implementations can be found in the original KQML software page

(http://www.cs.umbc.edu/kqml/software/), only one of this seems to be down-

loadable: a 1998 version of a C and lisp implementation. Other KQML-compatible agent

platforms can be found: AgentBuilder [4] and Jack [45]. However it is still difficult to

work with these platforms, because, being closed source, it is not possible to have enough

details about their implementation. The fact that FIPA is currently by far the most used

ACL, however, does not imply that it represents the best approach for agent commu-

nication. This statement is supported by the fact that Multi-Agent Systems researchers

started to focus on issues other than communication, often using an ad-hoc communica-

tion language and infrastructure in any implementations. In fact the problem of agent

communication is only one of the problems involved in the creation of a concurrent sys-

tem.

2.3.1 JADE Agent Platform

Jade [11] is currently one of the most used agent platform both in academy and in the in-

dustry. It was developed jointly by CSELT (Centro Studi e Laboratori Telecomunicazioni)

in conjunction with the Computer Engineering Group of the University of Parma. While

a FIPA sponsored platform, FIPA-OS [54, 14], was built in order to create a FIPA-ACL

standard platform, soon JADE took its place. Now that the FIPA-OS project is halted,

JADE is considered one of the most complete FIPA implementations.

JADE is a full FIPA complaint platform, written in the Java programming language,

which include the following standard FIPA components [7, 5]:

• The Agent Platform (AP). It provides the physical infrastructure in which agents can

be deployed. The AP consists of the machine(s), operating system, agent support

software, FIPA agent management components (DF, AMS and MTS) and agents.

• The Directory Facilitator (DF). It is an optional component of the AP that provides

yellow pages services to other agents. Agents may register their services with the

DF or query the DF to find out what services are offered by other agents.

Chapter 2. Software Agents 17

• The Agent Management System (AMS). It is a mandatory component of the AP. The

AMS exerts supervisory control over access to and use of the AP. The AMS main-

tains a directory of agents registered with the AP, providing white pages services

to other agents.

• The Message Transport Service (MTS). This is the default communication method be-

tween agents on different APs.

Due to the fact that the JADE project started several years ago, it does not directly

support some of the current major key technologies, such as Web services, and inter-

agent communication with firewall avoidance. However many third party extensions

can be downloaded in order to overcome some limitations.

From the point of view of the developer, JADE offers several features:

• A FIPA-compliant Agent Platform, written in the Java programming language.

• Distributed Agent Platform. The agent platform can be split on several hosts and

only one Java Virtual Machine is executed on each node. Agents are implemented

as Java threads and suitable transport is chosen for message delivery, depending

upon relative location of sender and receiver agents.

• Multithreaded execution environment.

• Object Oriented programming environment. Most concepts present in FIPA speci-

fications are represented as Java classes, so that a uniform programming interface

is provided to developers.

• Library of interaction protocols. Ready to use behaviour objects are provided for

the standard interaction protocols such as FIPA-REQUEST and FIPA-CONTRACT-

NET. To build an agent that can act according to an interaction protocol, application

developers just need to implement domain specific actions, while all application

independent protocol logic will be carried out by JADE framework.

• Administration GUI. Common platform management operations can be performed

through a graphical user interface, showing active agents and agent containers.

Using this GUI, platform administrators can create, destroy, suspend and resume

agents, besides creating domain hierarchies with multiple federated DF agents.

18 Chapter 2. Software Agents

JADE does not directly support other programming languages other than Java, but it

should be compatible with any FIPA-compliant platforms. Regarding the physical net-

work layer, agents running on the JADE platform send messages using a generic send

call method. However, the internals of JADE select the most appropriate transport pro-

tocol for each different situation:

• If the receiver agent lives in the same agent container (that is, agents running on

the same Java Virtual Machine), the Java object representing the ACL message is

passed to the receiver by using an event object, without any message translation.

• If the receiver agent lives in the same JADE platform but within a different con-

tainer, the ACL message is sent by using Java Remote Method Invocation. Java RMI

allows transparent object marshaling and unmarshaling, avoiding tedious message

conversions. Apart from performance, the agent receives a Java object, just like

intra-container messaging.

• If the receiver lives on a different agent platform, the IIOP protocol and OMG IDL

interface are used, according to the FIPA standard. This involves translating ACL

message object into a character string and then performing a remote invocation

using IIOP as middleware protocol. On the receiver side, an IIOP unmarshaling

will occur, yielding a Java String object, which will be parsed into an ACL message

object. Eventually, the Java object will be dispatched to the receiver agent (via Java

events or RMI calls).

2.3.2 Open Agent Architecture

The Open Agent Architecture (OAA) [17] is a Multi-Agent System that focuses on en-

abling more flexible interactions among a dynamic community of heterogeneous soft-

ware agents. OAA supports several programming languages using a Facilitator, a spe-

cialized server agent that coordinates the activities of agents for the purpose of achieving

higher-level, complex problem-solving objectives. Instead of using FIPA ACL or KQML,

OAA adopts its own communication language, called Interagent Communication lan-

guage (ICL). ICL is based on an extension of the Prolog language, and uses the Prolog

syntax. ICL provides primitives to achieve what the authors call “delegated computing”:

Chapter 2. Software Agents 19

instead of each agent hard-coding its interactions (method calls or messages), explain-

ing how and who it will interact with, OAA agents express interactions in terms of needs

delegated to a Facilitator agent

JADE and other similar platforms provide two basic features:

• The architecture provides a service repository containing interface specifications for

available services, the Directory Facilitator

• When an agent requires the service of another, it queries the repository to find a ser-

vice by specified name, ID (identifier), attribute, and then interacts with the agent

under control of it’s own code. The Requesting agent decides which agents it will

interact with and how the interactions will occur, and is thus responsible for choos-

ing, monitoring and maintaining the interaction session.

In OAA, agents use the ICL to register their capabilities with a Facilitator. Compe-

tences of other agents are then exploited using ICL, asking one or more agents for the

solution of a particular goal, written as a Prolog-style declaration, such as send(email, Per-

son, Message, AdditionalParameters). The requested capability is then matched against the

set of all the provided capabilities using the unification algorithm. The key difference is

that the OAA architecture takes care of the process of choosing, monitoring and interact-

ing with proper agents that provide this service.

While the publish/request of capabilities is heavily simplified by the OAA architec-

ture, failures of agents are not managed. For example, if a communication error arises

using the Java OAA version, a Java exception is raised and the agent must treat the ex-

ception.

One weakness of the OAA architecture is that it is not actively developed anymore.

Even if several papers describe enhanced OAA prototypes with Web services and Seman-

tic Web integration, the latest version does not provide support for these technologies.

2.3.3 Other Platforms

Just like FIPA-ACL gained attention and became the de-facto ACL despite KQML, many

agent platforms were abandoned in favour of JADE. There are Java-based prototypes

written to test interesting approaches, like Bee-gent [16] that, as opposed to other systems

which make only some use of agents, completely “agentifies” the communication that

20 Chapter 2. Software Agents

takes place between software applications. Aglets [47] is a platform based on the concept

of an “aglet”, a Java agent able to autonomously and spontaneously move from one host

to another. The Java aglet extends the model of network mobile code made famous by

Java applets. Like an applet, the aglet can migrate across a network, but it is also able to

carry its state.

Many other platforms are compliant to the FIPA specifications. April [49] (Agent

PRocess Interaction Language) is interesting because it is not a platform, but instead a

strongly typed, process oriented symbolic language implemented in C, for developing

Multi Agent Systems compatible with the FIPA standard. Other projects are very similar

to JADE, FIPA-compliant platforms written in the same programming language, such as

Grasshopper [10], Zeus [56], OpenCybele [44] and Cougaar [43]. The Cougaar project,

supported by DARPA, is the most interesting one. It is focused on the plugin technology

in order to create an extensible platform that supports also some primitives for planning

and execution.

2.4 Towards Knowledge Level in MAS

As Gaspari discusses in [35], the notion of Knowledge Level agent cannot be straightfor-

wardly extended to a distributed framework such as MASs, because problems concern-

ing communication and concurrency may arise when several Knowledge Level agents

interact (for example deadlock or starvation). In particular, a common agreement on

what Knowledge Level programming means in MAS is still missing. FIPA and KQML,

in fact, do not contain primitives that consider concurrency issues, so that the developer

is forced to handle three kinds of potential communication problems:

1. to manually avoid or to manage concurrency communication problems like dead-

lock or starvation;

2. to manually handle agents faults;

3. to manually manage low level network problems, such as network latency, agents

temporarily disconnected from the network and so on.

Chapter 2. Software Agents 21

In the same paper, Gaspari postulates a set of requirements that an agent communi-

cation language should satisfy to be regarded as Knowledge Level. The requirements

are:

1. The programmer should not have to handle physical addresses of agents explicitly.

2. The programmer should not have to handle communication faults explicitly.

3. The programmer should not have to handle starvation issues explicitly. A situation

of starvation arises when an agents performative never gets executed despite being

enabled.

4. The programmer should not have to handle communication deadlocks explicitly.

A communication deadlock situation occurs when two agents try to communicate,

but they do not succeed; for instance because they mutually wait for each other to

answer a query.

The work done in the context of this Thesis follows this approach, providing a realiza-

tion of the Fault Tolerant Agent Communication Language FT-ACL[23, 26, 25]). FT-ACL

adopts asynchronous non-blocking primitives together with success and failure continu-

ations to provide a framework where Knowedge Level agents can interact.

Part II

The NOWHERE Architecture

23

Chapter 3

Introduction to NOWHERE

In this Chapter we present an introduction to the architecture built in the context of this

Thesis. First we provide an overall description of the architecture, followed by a brief

comparison with other platforms and by a list of its main features. Then in the last part

we describe the internal structure, showing the three levels that compose the architecture.

3.1 Overall description

The most important concept behind NOWHERE is the idea to create an infrastructure

for Knowledge Level agents. The key component of this architecture is then the agent

communication language, FT-ACL. Around the implementation of the FT-ACL, which

provides high level primitives to agents, we built an infrastructure where agents can

interact.

Designing the architecture we tried to create a kind of “generic” platform, which can

optionally be extended in order to satisfy specific requirements. We achieved this goal in

two different ways. Firstly, splitting a single agent in two components: one that provides

a set of facilities and another one that runs the agent code, exploiting these facilities.

Using this technique, we are able to easily adapt NOWHERE to different programming

languages, enabling interoperation between different agents. Secondly, creating the in-

frastructure using three layers that communicate using standard interfaces. Using layers

it is possible to change part of the architecture, maintaining compatibility with the rest

of the platform. For example it is possible to change the layer used to send messages, in

order to adapt NOWHERE to different scenarios.

26 Chapter 3. Introduction to NOWHERE

A general view of our architecture is shown in Figure 3.1.

Figure 3.1: NOWHERE Architecture

NOWHERE supports both User agents and Worker agents. User agents act as interfaces

between users and the Web, providing support for discovering and invoking services.

Users can configure their User agents with their preferences. They can be always con-

nected to the MAS or they can disconnect themselves when their users want. Worker

agents are able to retrieve, execute and compose services provided by other agents in

order to create more sophisticated services. Contrary to User agents, Worker agents are

always connected to the MAS and act like daemon processes. NOWHERE provides full

integration between agents and Web services: agents’ capabilities can be exported as

Web services and existing Web services can be “agentified” by a virtual agent. This vir-

tual agent invokes the Web service and manages its reply according to the requests made

from other agents. In this way the virtual agent acts as a wrapper, exporting the Web

service as its capability to other agents. Web service integration is achieved using Web

Agent Servers, which extend a Web Server with agents’ functionality. Web Agent Servers

are geographically distributed (as Web Servers are) and provide a set of Web services to

the outside world which represents their capabilities. This set can dynamically change

because of new publication of Web services and/or modification of the existing ones.

Worker agents can also be used to provide information retrieved from standard sources

(like databases or the Web) to User agents in a more structured way, publishing advanced

Chapter 3. Introduction to NOWHERE 27

capabilities to User agents.

Implementing a complex project like an agent platform became more easy when using

open source software. NOWHERE is released as open source and contains many external

open source code, such as the standard Base64 encoding protocol, the SHA-1 algorithm

and the whole infrastructure used to send messages (for example Jabber or JXTA).

3.2 Comparison with other platforms

The NOWHERE platform shares many features with other agent architectures. Probably

the OAA architecture is the most similar platform. They share the concept of a Facilitator

component that provide complex functionality to agents. However, while the OAA’s

Facilitator is a shared component that can manage many agents, in NOWHERE every

agent has its own Facilitator. Moreover, the NOWHERE Facilitator contains a failure

detector to handle agent crashes. The mechanism used to register capabilities is also very

similar, with the same callback system: the agent defines a function code to handle the

reply of a previous request that will be automatically called by the architecture. Again,

NOWHERE supports also communication failures using a second callback mechanism.

Finally, the OAA’s “delegating computing” concept is very similar to the NOWHERE’s

anonymous interaction mechanism. In both cases an agent is able to request a specific

service from a set of agents, without any prior knowledge about their names or their

locations.

The main difference with OAA is that NOWHERE uses an ACL based on the speech

acts theory, where communication performatives provides a Knowledge Level layer. Also,

current standard technologies such as Web services are not integrated in the current ver-

sion of OAA.

On the other hand, NOWHERE adopts a plugin methodology similar to the one uti-

lized in JADE. Plugins are used to change specific functionality, such as the method used

to send inter-agent messages. NOWHERE extends this feature, providing an architecture

built on three different layers that can easily be extended. Moreover, NOWHERE takes

care about current technologies, such as Web services, an aspect already present in JADE,

where these extensions are mostly implemented by third party developers.

28 Chapter 3. Introduction to NOWHERE

3.3 Main Features

In this Section we present a list of the main features of our architecture. This list can be

helpful when comparing NOWHERE with the huge number of agent platforms available.

A Dynamic and Open Architecture for User agents.

In the research on Multi-Agent Systems there is an increasing emphasis on the open-

ended nature of agent systems, which refers to the feature of allowing the dynamic in-

tegration of new agents into an existing agent system. This feature becomes particularly

relevant when agents are developed on the Web, where they are usually implemented

by different people at different times. NOWHERE allows new agents to dynamically

connect themselves to the system, providing new capabilities to other agents.

User agents are a special kind of software utilised by computer users. A User agent

is an autonomous entity that acts using a specified set of rules set by its owner, and

that makes choices suitable to reach a predefined goal. While every agent platform can

theoretically be used to program User agents, an additional set of features is essential, for

example the ability to bypass firewall or the ability to easily execute Web services.

A platform for Knowledge Level agents.

One of the main differences between NOWHERE and other agent platforms is the sup-

port for Knowledge Level (KL) agents.

Using a Fault Tolerant Agent Communication Language, FT-ACL, the programmer

does not have to explicitly handle many low level issues, such as network and concur-

rency related problems. The support for KL agents is realised by two components:

• The Facilitator, written in the Java language. This component provides high level

primitives for sending and receiving messages, using a fault tolerant architecture.

• The Agent Dispatcher component. This component provides the basic functional-

ity to support communication between KL agents and the Facilitator. It can easily

be implemented in (virtually) any language that provide tcp support.

Using two separate components has several advantages. First of all the developer is free

to choose the preferred language for the agent code, while the whole communication is

Chapter 3. Introduction to NOWHERE 29

always handled by the Facilitator. Agents written in different programming languages

can then talk each other, using the ACL primitives. Furthermore, the agent and the Facil-

itator could also run on different machines: for example a mobile phone, with a limited

computational power, could run only the agent code, using the Facilitator hosted on a lo-

cal computer. The idea is to keep all the communication issues, such as the fault-tolerant

behaviour, in the Facilitator.

Integration with Web services.

Software agents running in NOWHERE can share capabilities with other agents. Ca-

pabilities are described using a subset of WSDL [18], the same language used to describe

Web services. Web services integration is achieved in two ways:

1. NOWHERE provides a functionality which allows agents to register existing Web

services. As soon as a Web service is registered it becomes reachable as a virtual

agent and it can be transparently invoked using FT-ACL primitives.

2. In a complementary way, an agent could register a particular competence as a Web

service, so other programs can interact with the agent without sharing the agent

architecture. The newly generated Web service is hosted in the external Web Agent

Server.

Support for Interoperability.

NOWHERE agents can be realised in any programming language including AI lan-

guages or knowledge representation languages, provided that they react to a well de-

fined protocol based on the standard primitives of FT-ACL. Although emerging stan-

dards for the Web use formalisms based on XML, most of AI systems are still being de-

veloped using specific AI technologies and languages which usually are not compliant

with Web standards, but provide powerful engines and a rich set of libraries. From a

practical point of view it is not feasible to translate all these technologies in XML based

formalisms or to commit to a single programming language. Thus, enabling the inte-

gration of agents written in different programming languages is essential to a large scale

exploitation of Knowledge Level agents on the Web. Interoperability is also guaranteed

by the fact that NOWHERE is an open source project, that can be freely used or mod-

30 Chapter 3. Introduction to NOWHERE

ified. A Java and a Python versions will be soon available on the popular sourceforge

(http://www.sourceforge.net) site.

3.4 NOWHERE’s Internal Structure

NOWHERE is composed of three interconnected layers: the Knowledge Level at the top,

the Architecture-Level in the middle and the Network-Level at the bottom, as shown in

Figure 3.2

Figure 3.2: NOWHERE Layers

3.4.1 Knowledge Level Layer

The Knowledge Level layer contains the set of high level primitives used by agents to

interact with the MAS. In order to enable inter-agent communication between two agents

written in different languages, it is sufficient that both languages provide the Knowledge

Level layer. This facilitates the porting of NOWHERE to other programming languages,

because the lower levels must not be rewritten in the new programming language. From

the point of view of the developer, the Knowledge Level layer is a stub that must be

Chapter 3. Introduction to NOWHERE 31

extended in order to create Knowledge Level agents. At this time we provide Knowledge

Level support for Java and Python.

3.4.2 Architecture Layer

The Architecture Layer consists of the Facilitator component. Knowledge Level layers

written in different programming languages communicate with different instances of the

same Java Facilitator, using the TCP protocol. These two layers can also be splitted in

different computers. For example, it is also possible to keep the Knowledge Layer on

a device with low computational power, such as a mobile phone or a handheld device,

exploiting the Architecture Layer provided by a desktop computer or a server. Crashes of

agents are detected at the Architecture-Level using various countdown timers, ensuring

that an agent will not endlessly wait for a reply. This middle level contains also the

algorithm used to manages messages, associating requests to their responses and vice-

versa.

3.4.3 Network Layer

The bottom level, the Network Layer, manages the physical route of the messages, pro-

viding one-to-one and one-to-many communication primitives and supporting the cre-

ation of groups of agents that are interested in the same topic. Using different Network-

Levels as plugins, NOWHERE can be adapted to very different scenarios. Currently we

provide a Jabber Network Layer and a JXTA Network Layer. Using the Jabber Network

Layer it is possible to exploit the Jabber protocol (or the Google Talk protocol) to send and

receive messages. Due to the fact that the Jabber network follows a client/server model,

the resulting architecture will be very fast, providing support for agents with realtime

properties. On the other hand, using the decentralised JXTA Network Layer, the result-

ing architecture will provide a better scalability, with more latency in the communication.

Of course other Network Layer plugins can be added, such as ad-hoc ones, exploiting a

standard Java interface that links the Architecture Layer to the Network Layer.

Chapter 4

NOWHERE’s Agent Communication Language

NOWHERE is designed to support various kinds of communication primitives based

on FT-ACL. The base language that we designed is the core language, that supports

asynchronous, non-blocking primitives. We also defined an extended language that uses

blocking primitives to provide support for programming sequential agents like proactive

agents. In the following Sections we describe the key ideas behind these languages. The

full specification of the core language is then presented in Section 4.2.

4.1 FT-ACL: A Fault Tolerant Agent Communication Language

FT-ACL is the communication language implemented in the NOWHERE platform. Like

other popular ACLs such as FIPA ACL and KQML, FT-ACL is based on the speech acts

theory. However the expressive power of these languages is very different.

FIPA ACL sends every communication performative as content of asynchronous mes-

sage passing. More precisely: the concurrent semantics is the same for every perfor-

mative. FIPA ACL performatives are encoded in an ACLMessage object, which is then

transmitted in the queue associated to the recipient agent using a send primitive. The

same send primitive is used by FIPA ACL to transmit every performative.

Instead, in KQML different communication performatives have different declarative

semantics. For example the performative insert(A, B, p) (Agent A wants B to insert p in

his knowledge base) leads to the postconditions:

• know(A, bel(B,p)) (Agent A knows that p is in B’s knowledge base) and

Chapter 4. NOWHERE’s Agent Communication Language 33

• bel(B,p) (p is in B’s knowledge base).

This insert performative cannot be realized just sending a message like in the FIPA

model, but it is necessary that A receives an acknowledge message about the insertion of

p in B’s knowledge base. Moreover, in order to achieve Knowledge Level programming,

agent A must also manage the situation in which agent B crashes without sending back

the acknowledge message.

FT-ACL takes into account these problems providing an ACL for Knowledge Level

agents. It consist of a set of performatives, each one with a different concurrent semantics.

Every performative consist of a complex behaviour that is fundamentally different from a

simple send primitive. FT-ACL provides support for one to one primitives as well as one

to many primitives. One to many primitives can also be used to realize the anonymous

interaction mechanism, where an agent asks a set of other agents for a specified capability,

without any prior knowledge about their names or their locations.

FT-ACL does not dictate any representation language to be used as content of the

messages, so that the developer is free to choose the one that best suits its needs. Finally,

FT-ACL deals with failures of agents, adopting the model specified in the following.

4.1.1 Failure model

Following a well known classification of process failures in distributed systems [50], we

say that an agent is faulty in an execution if its behaviour deviates from that coded in the

algorithm it is running; otherwise, it is correct. A faulty agent crashes if it stops prema-

turely and does nothing from that point on. FT-ACL manages faults considering only

crash failures. This is a common fault assumption in distributed systems, since several

mechanisms can be used to detect more severe failures and to force a crash in case of de-

tection. FT-ACL deals with crash failures of agents allowing the programmer to choose

what actions to invoke for each interaction they perform in the MAS. For example, an

agent could decide to ignore the crash of another agent for a certain interaction while

it could decide to take some precise actions if the same agent crashes in another more

critical interaction.

34 Chapter 4. NOWHERE’s Agent Communication Language

4.1.2 The Core Language

The core language is a set of speech acts performatives implemented with asynchronous,

non-blocking primitives. Using non-blocking primitives, the agent is able to continue

the execution of a task without have to wait for the reply of the sent message. In other

words, the use of non-blocking primitives means that, when executing a communication

primitive, the control flow always passes to the next instruction, even if the recipient

agent has crashed. This is a sound behaviour because in asynchronous systems, when

a communication action is executed, it is not always possible to detect if the recipient

agent has crashed. FT-ACL allows the programmer to deal with faulty agents providing

a high level mechanism which binds specific success and failure continuations to com-

munication primitives. Failure continuations are optional, but they should be specified

to deal with a possible failure, so that if the recipient agent fails the failure continuation

is executed.

In a similar way, the success continuation is called if the communication succeeds

and the reply is received. To attach continuations in communication primitive is par-

ticularly useful when programming reactive agents using functional programming lan-

guages such as Lisp or Python, or logic programming languages such as Prolog. Contin-

uations are automatically executed based on success or failure conditions. While using

continuations may look strange to imperative or object oriented language programmers

(such as Java programmers) it is very common to use them when developing concurrent

software.

The following Python-like pseudo code describes a fault tolerant version of a sam-

ple performativeName primitive, like for example askOne, illustrating how FT-ACL

continuations work.

Chapter 4. NOWHERE’s Agent Communication Language 35

1 def mainCode():

2 ... some code ...

3 performativeName(recipientAgent, content, onAnswer, onFail)

4 ... other code ...

5

6 def onAnswer(replyMessage):

7 % Here we handle the success continuation

8 % of the performativeName primitive

9

10 def onFail():

11 % Here we handle the failure continuation

12 % of the performativeName primitive

In the code presented above there is a main function (mainCode, lines 1-4) that at

some point sends a message to the agent recipientAgent using a generic performa-

tive performativeName (line 3). A typical send primitive is usually realised using only

two arguments: the recipient (recipientAgent) and the content of the message that

must be sent (content). Instead, using the FT-ACL style, the primitive includes also

the success and the failure continuation, onAnswer and onFail respectively. These pa-

rameters are functions that will manage the success and the failure continuation of this

specific communication primitive.

Due to the fact that the core language uses non-blocking primitives, after the execu-

tion of performativeName, the control flow immediately passes to the next instruc-

tions, contained in the “... other code ...” block, line 4. When the reply mes-

sage is received, the success continuation onAnswer (lines 6-8) is executed, with the pa-

rameter replyMessage instantiated with the received reply message. Otherwise, if a

communication error arises, then the failure continuation onFail (lines 10-12) will be

executed.

Agents written using the core language are easy to program because a set of Knowl-

edge Level properties (that we recall in the following) holds:

(1) The programmer does not have to manage physical addresses of agents explicitly.

(2) The programmer does not have to handle communication faults explicitly.

(3) Communication is Starvation free.

36 Chapter 4. NOWHERE’s Agent Communication Language

(4) Communication is Deadlock free.

4.1.3 The Extended Language

We have also defined an extended language, useful when programming proactive agents

in imperative languages languages such as Java. While the design of such language is

not completed yet, we present here the key idea. The extended language extends the core

language providing blocking primitives with a syntax similar to the exception handling

mechanism used in programming languages, such as the Java’s try & catch statement.

An example of the performativeName sample communication primitive using the ex-

tended language is given in the following.

1 def mainCode():

2 try:

3 ... some code ...

4 replyMessage = performativeName(recipientAgent, message)

5 ... other code ...

6 except communicationError:

7 % Here we handle exceptions

This new version of the performativeName primitive uses just only two parame-

ters: the recipient agent and the message that must be sent. After sending the message,

a reply is waited and the variable replyMessage (line 4) is then instantiated with its

value. Communication errors are considered in the exception block (lines 6-7).

Using the extended language, however, KL-properties do not hold. This weakness

resides in the use of blocking primitives, that limit the concurrent behaviour. While the

extended language can be useful in some cases, especially when programming sequential

proactive agents, the developer must explicitly handle concurrent aspects of the agents,

such as concurrent access to its internal resources.

4.2 Core Language Primitives

Core language primitives support communication providing agents with the capability

to exchange messages and invoke services provided by other agents. A Message object

encapsulates the content of the communication in a language-independent way, so that

Chapter 4. NOWHERE’s Agent Communication Language 37

agents written in different languages are able to exchange messages. Using the FT-ACL

communication language, agents provide simple or complex capabilities to other agents

through services. These services are described using a subset of WSDL [18], the standard

XML format for Web services. Services differ from messages because they have a de-

scription that holds information about several aspects, including the name of the service,

its parameters and the data types used. They are used with specific primitives such as

askOne, askEverybody and tell.

In the NOWHERE architecture, a service description is contained in a Description

object. To manage the invocation and to send the reply of a service, NOWHERE provides

a Request and a Response object, that can be retrieved from Description. Both the

Request and the Response objects are templates containing relevant information ex-

tracted from the service description, such as the name of the parameters of the service.

In order to invoke a service (to provide a response), a Request (a Response) template

must first be filled in with the correct information. Due to the fact that these templates

contain part of the service description, they simplify the actions of invoking and replying

to a service. A Message object is very similar to a Request or a Response but is more

generic, because it can contain every kind of data, while the other two objects can only

contain the data specified in the service description. For this reason the NOWHERE ar-

chitecture is designed to send only Message data types, so that Request and Response

must be codified (decoded) into (from) messages (a detailed description is given in Sec-

tion 5.2.2).

The primitives specified by the core language, that follow the FT-ACL specification,

are presented in Table 4.1. In the following we describe them in details, providing also a

few examples. Due to the fact that the NOWHERE architecture supports many program-

ming languages, we provide code examples which illustrate the various primitives for

both Python and Java, two of the languages already supported by NOWHERE.

4.2.1 One-to-one knowledge exchange and message handling

Communication between two agents can be achieved using the inform primitive, the

very basic communication method provided by NOWHERE. The syntax of this primitive

is:

inform(recipientAgent, message)

38 Chapter 4. NOWHERE’s Agent Communication Language

One-to-one knowledge exchange

inform(recipientAgent, message)

informACK(recipientAgent, message, onAnswer[, onFail])

Using functions to manage specific messages

handler(message, function)

Managing Services

Description loadDescription(WSDL Description)

Description makeDescription(targetNS, operation,

parameters, returnParameters)

Using functions to manage specific services

handler(request, function)

Providing and Requesting services

askOne(recipientAgent, request, onAnswer[, onFail])

tell(recipientAgent, response)

Service publishing

register(description)

Anonymous service request

askEverybody(request, onAnswer[, onFail])

allAnswers()

Table 4.1: Core Language Primitives

Chapter 4. NOWHERE’s Agent Communication Language 39

where recipientAgent is the unique ID (identifier) of the recipient agent and message

represents the message containing the information to be sent. The inform primitive is

used to send a message to another agent, without any feedback about the delivery status.

No actions are performed by the sender agent if the recipient receives the message, as

well as no actions are performed if the message is not delivered for some reason.

informACK is a similar but more powerful primitive. With this primitive, a success

and a failure continuation are defined, specifying an action to take if the message is de-

livered and an optional action to take if the message does not reach the recipient for come

reason. The syntax is:

informACK(recipientAgent, message, onAnswer[, onFail])

where the recipientAgent and the message parameters are the same of the previ-

ous inform primitive. The onAnswer parameter represents the function to be called

if the message is delivered (success continuation) while the optional onFail parameter

represents the function to be called if the message is not delivered (failure continuation).

In order to illustrate how this primitive works, let us introduce a simple scenario

where agent A must send the knowledge about a new assertion to agent B. The Python-

like code for these agents can be found in figures 4.1 and 4.2.

1 msg = message(’new assertion’)

2 msg.setElement(’a new assertion’, ’assertionContent’)

3 self.informACK(agentB, msg, messageReceived, errorOccurred)

4

5 def messageReceived():

6 print ’Agent B has received the message’

7

8 def errorOccurred():

9 print ’Error: message not delivered!’

Figure 4.1: Code of Agent A - Python

Lines 1-2 of Figure 4.1 show the creation of a message with the name “new assertion”.

The Message data type contains an element with name ’a new assertion’ and value rep-

resented by the string “assertionContent”. The primitive informACK is contained in line

40 Chapter 4. NOWHERE’s Agent Communication Language

3, where the success continuation is bound to the function messageReceived (lines 5-6)

and the failure continuation is bound to the function errorOccurred (lines 8-9). One of

these two functions will be run as the result of the communication primitive. The Figure

4.2 presents the code of agent B. The Dispatcher function found in line 1 is a standard

function that can be implemented by Knowledge Level agents in NOWHERE. It will be

automatically called by the architecture runtime support when an incoming message is

received. Every actions that an agent want to take in response to a specific message, can

be encoded in this function (lines 2-3).

1 def dispatcher(self, m):

2 if m.getName() == ’new assertion’:

3 # Appropriate actions are taken

Figure 4.2: Code of Agent B - Python

Incoming messages can also be managed using the handler primitive. Figure 4.3

illustrates the code for an equivalent agent B that uses the handler primitive to manage

the same incoming message.

1 msg = message(’new assertion’)

2 handler(msg, assertionHandling)

3

4 def assertionHandling(m):

5 # Handling assertion messages

Figure 4.3: Code of Agent B - Using the Handler Primitive - Python

Using the handler primitive, the developer specifies a function that will manage a

certain set of messages. In line 1 a new message is created with the name “new assertion”.

The second line states that each incoming message that match the one we just defined will

be handled using the assertionHandling function (defined in lines 4-5). In this exam-

ple every incoming message with name “new assertion” will be handled by the specified

function. Other elements can be specified in the message created in line 1, obtaining a

more restrictive set of messages to be handled: the system uses a pattern matching algo-

rithm to match the property of the specified message with the incoming message.

Chapter 4. NOWHERE’s Agent Communication Language 41

4.2.2 Request/Response Performatives

In order to use services, a Description object (that stores the data about the service)

must first be obtained. Such descriptions can be retrieved in two ways: from an existing

WSDL file or from an explicit user specification. The loadDescription primitive can

be used to parse a WSDL file either from a local resource or from the Web, retrieving

a Description object that can then be used in NOWHERE. The loadDescription

primitive has the following syntax:

Description loadDescription(WSDL Description)

where WSDL Description is a string containing the file or the resource to parse.

If a WSDL file does not exist, the developer can create a new WSDL file from scratch

or, in alternative, use an explicit specification. The makeDescription primitive auto-

matically creates a Description object instantiated using the parameters provided by

the user, using the following syntax:

Description makeDescription(targetNS, operation,

parameters, returnParameters)

The parameters are, respectively, the target namespace of the service, the name of

the operation that we are describing, the definition of its parameters (name and data

type) and its return values (name and data type). From every Description object it

is possible to retrieve a Request and a Response object that must be used in order to

invoke a service and to send the results of a provided service. A detailed description of

these objects is given in Section 5.2.2

Using functions to manage specific services.

Just like we have already seen for messages, it is possible to define a function that will

take care of a specific kind of services. This function can be specified using the handler

primitive, this time supplying a Request object as first parameter:

handler(request, function)

42 Chapter 4. NOWHERE’s Agent Communication Language

Every attribute specified in the request template is matched with the incoming mes-

sage. It is then possible to filter services with specific values for certain parameters, using

a pattern matching behaviour. A fragment of a code that highlight this primitive is pre-

sented in Figure 4.4.

1 serviceDescription = loadDescription(wsdlFile)

2 request = serviceDescription.getRequest()

3 request.setParameter(‘‘parameter1’’, ‘‘thisValue’’)

4 handler(request, serviceHandler)

5

6 def serviceHandler(m):

7 # Handling service requests

Figure 4.4: Managing Specific Services using a Specific Function - Java

In this example, a description of a service is first loaded from a file and a Request

object is then retrieved from it (lines 1-2). Here we assume a service with just one pa-

rameter, parameter1, associated to a string value. The value “thisValue” is specified for

parameter1 in line 3 and the resulting Request object is then bound with the function

serviceHandler (line 4). As a result, this function will receive every incoming request

for the loaded service that have “thisValue” as value for the parameter parameter1.

Providing and Requesting Services.

The askOne primitive must be used to invoke a service provided by another agent.

The syntax is:

askOne(recipientAgent, Request, onAnswer[, onFail])

To illustrate the askOne primitive, let us introduce another simple scenario, where

the Reader agent provides a services to retrieve the temperature. The Collector agent acts

as a manager, asking Reader agent for its temperature. In this scenario we use just one

service: temperature, with no parameters and two return values: myTemperature

and myLocation that stores respectively the temperature and the associated location of

the specific measurement given by the Reader agent. The code of the Reader agent is

presented in Figure 4.5 while Figure 4.6 shows the code of the Collector agent.

Chapter 4. NOWHERE’s Agent Communication Language 43

1 Description description = loadDescription(WSDLFile);

2 Request request = description.getRequest();

3 handler(request, "provideTemp");

4

5 public void provideTemp(Message m) {
6 Response response = description.getResponse();

7 response.setParamater(‘‘myLocation’’, "laboratory");

8 response.setParameter(‘‘myTemperature’’, ‘‘32’’);

9 tell(m.getSender(), response);

10 }

Figure 4.5: Code of the Reader Agent - Java

The first line of code, containing the loadDescription primitive, is shared by the

two agents and it is used to retrieve the Description object of the service. This object

is exploited by the Reader agent (line 2 of Figure 4.5) to create a Request object. In order

to provide this service, the Reader agent binds the Request object with the function

provideTemp (line 3). Without specifying fixed valued for the parameters of the service,

every request concerning this service will be managed by the provideTemp function

(lines 5-10), that will send back a Response object with the parameters myLocation

and myTemperature properly instantiated. The reply of a service must be send with

the tell performative:

tell(recipientAgent, response)

The code of the Collector agent (Figure 4.6) is composed of a main part (lines 1-3),

which contains the service invocation, and by the two functions that will manage the

continuations: printTemp (lines 5-8) and fail (lines 10-11). The printTemp function

accepts a Message parameter that represents the Reader agent’s reply. If the Collector

agent receives a reply, it extracts the Response object using the retrieveResponse-

FromMessage function (line 6). The result of the executed service is then printed on the

screen (lines 7-8).

44 Chapter 4. NOWHERE’s Agent Communication Language

1 description = loadDescription(WSDLFile)

2 request = description.getRequest()

3 self.askOne(agentA, request, printTemp, fail)

4

5 def printTemp(msg):

6 response = description.retrieveResponseFromMessage(msg)

7 print ’Temperature in ’, response.getParameter(’myLocation’)

8 print ’ is: ’,response.getParameter(’myTemperature’)

9

10 def fail():

11 print ’Agent not found!’

Figure 4.6: Code of the Collector Agent - Python

4.2.3 The Anonymous interaction mechanism

NOWHERE gives support for invoking a service from a set of agents. This mechanism is

also called content-based request, because a service can be invoked specifying its content,

without have to specify the names of the agents that provide it. In order to use this fea-

ture, agents must first publish their services using the register primitive. The syntax

of this primitive is:

register(description)

The register primitive must be invoked after the associated handler primitive:

a function to manage this service must already be defined. Published services can be

invoked using the askEverybody primitive, whose syntax is:

askEverybody(Request, onAnswer, onFail)

The parameters are the same of the askOne primitive seen before, except that in this

case the recipient agent is not specified. It is the runtime support that will send the

request to all (and only) the agents that provide the wanted service. Following the same

scenario introduced for the askOne primitive, figures 4.7 and 4.8 present the source code

for the Reader and the Collector agent respectively, using the anonymous interaction.

Chapter 4. NOWHERE’s Agent Communication Language 45

1 Description description = loadDescription(WSDLFile);

2 Request request = description.getRequest();

3 handler(request, "provideTemp");

4 register(description);

5

6 public void provideTemp(Message m) {
7 Response response = description.getResponse();

8 response.setParamater(‘‘myLocation’’, "laboratory");

9 response.setParameter(‘‘myTemperature’’, ‘‘32’’);

10 tell(m.getSender(), response);

11 }

Figure 4.7: Code of the Reader Agent using Anonymous Interaction Mechanism - Java

The code above differs from the one in Figure 4.5 because we add a register prim-

itive (line 4). Instead, the code of the new Collector agent, shown below in Figure 4.8,

differs from the previous one in the communication primitive used: askEverybody

instead of askOne (line 3). Moreover, lines 9-10 illustrate the use of the allAnswers

primitive. allAnswers is a boolean predicate that returns true if the current response

is the last reply for the associated askEverybody, false otherwise.

46 Chapter 4. NOWHERE’s Agent Communication Language

1 description = loadDescription(WSDLFile)

2 request = description.getRequest()

3 self.askEverybody(request, printTemp, fail)

4

5 def printTemp(m):

6 response = description.retrieveResponseFromMessage(m)

7 print ’Temperature in’, response.getParameter(’myLocation’)

8 print ’is:’,response.getParameter(’myTemperature’)

9 if allAnswers():

10 print ’No more data.’

11

12 def fail():

13 print ’No agents found!’

Figure 4.8: Code of the Collector Agent using Anonymous Interaction Mechanism -

Python

Chapter 5

NOWHERE’s Components

Every NOWHERE agent is composed of two main components that work together: the

Dispatcher and the Facilitator. Being different entities, possibly written in different pro-

gramming languages, the Dispatcher and the Facilitator communicates exchanging only

a specific Message data type. In this Chapter we first describe this Message data type,

together with the similar Service data type, and then we present in details the other

components.

5.1 Architecture of a NOWHERE agent

From a logical point of view, every agent is composed of two different components: a

Dispatcher and a Facilitator. The Dispatcher is a language dependent stub that can be

extended to create Knowledge Level agents while the Facilitator is a Java object that, as

the name suggests, provides facilities to the Dispatcher. A very simple illustration of the

internal components of three agents is presented in Figure 5.1.

In the Figure, a KL agent extends the specific Dispatcher, written in the same pro-

gramming language. The resulting agent communicates with its own Facilitator using

the TCP protocol. Thus NOWHERE agents can be programmed in every programming

language that supports this network protocol. While a NOWHERE agent is logically

composed of a Dispatcher together with a Facilitator, these two components can also

physically run on different computers. This is especially useful when using devices with

power or computational limitations, such as cellular phones or portable computer de-

vices. The Facilitator is a shared component: different instances of the same component

48 Chapter 5. NOWHERE’s Components

Figure 5.1: Inside an Agent

are used together with different KL agents. Furthermore, a single computer can host

several Facilitator instances, providing facilities for a set of agents, for example acting as

Facilitator for an entire network.

We paid particular attention to the design of the NOWHERE architecture. The agent

Dispatcher is designed to minimise the efforts needed to port it to a new programming

language. Moreover, due to the fact that the Facilitator component is shared by the dif-

ferent agent dispatchers, every improvement made in the Facilitator is immediately re-

flected in all the agents involved in the architecture.

5.2 Messages and Services

The NOWHERE architecture introduces some new data type used to manage messages

and services. NOWHERE agents written in different programming languages must be

able to understand each others, so that creating standard data types, easy to implement

in many languages, is an essential property.

Chapter 5. NOWHERE’s Components 49

5.2.1 Managing Messages

The NOWHERE architecture allows agents to send and receive a specific data type called

Message. This data type encapsulates the content of the message in a language-independent

way, enabling interoperation among agents written in different programming languages.

Every Message data type stores information about:

• the performative (the type of speech act used, such as askEverybody or askOne)

associated with the message;

• the sender and the receiver ID;

• the name (the topic) of the message;

• the agentType and agentReactiveness parameters, used for managing the

fault tolerant behaviour (for details see Section 6.3);

• other objects that can be associated to the message using the elements container.

The elements container stores additional data that can be associated to the message.

Currently it accepts the following common data types: String, Integer, Boolean and

the Message data type itself. Furthermore every other data types, like binary objects,

can be added as well, converting them as string using the standard Base64 algorithm

encoding [48], that is available on almost every programming languages.

Several functions are associated to a Message data type in order to manipulate its

content. They can be basically divided in two categories: a set of user functions that are

used by agent developers and a set of system functions that are normally used by the

NOWHERE architecture itself in order to manage messages. The list of the most impor-

tant user functions, written in a Java-like form, together with a brief description, can be

found in Table 5.1, while the list of the most important system functions, again with a

brief comment, can be found in Table 5.2.

While user functions are self-explicative, because they are basically used to get and set

elements in a Message object, system functions need some clarifications. The getBase-

64StringRepresentation function is used to transform a Message structure related

to a specific programming language to a language-independent string that can be shared

with other agents. The translation is made as follow: first an equivalent string object

50 Chapter 5. NOWHERE’s Components

int getAgentReactiveness()

setAgentReactiveness(int) Used to get/set the timeout

int getAgentType() properties of a message

setAgentType(int)

String getName()

setName(String)

String getPerformative() Used to get/set the

setPerformative(String) Name, Performative,

String getReceiver() Receiver and Sender

setReceiver(String) parameters of a message

String getSender()

setSender(String)

boolean checkMessageName(String) Used to checking Name and

boolean checkMessagePerformative(String) Performative parameters

void setElement(String, Object)

Object getElement(String)

Boolean containsElement(String)

Iterator<String> getElementsName(String) Used to get/set additional

TreeMap<String, Object> getElements() data in the message

removeElement(String)

setElements(TreeMap<String, Object>)

int size()

Message copyMessage(Message) Copy and Comparison

boolean equals(Message) functions

Table 5.1: Message Data Type - User Functions - Java

String Converts a message to a

getBase64StringRepresentation(Message) language-independent one

Message getMessageFromBase64String(String) and vice-versa

String getMessageId() Retrieves a fingerprint

of the message

Table 5.2: Message Data Type - System Functions - Java

Chapter 5. NOWHERE’s Components 51

is generated, with the full content the message. This temporary object contains every

element of the message, together with its data type, processed with an escape function.

After that, the string is processed using the standard Base64 algorithm encoding, and

the resulting object is returned. The getMessageFromBase64String function works

exactly in the opposite way, retrieving a Message structure, specific for the particular

programming language used, from a Base64 encoded string.

The getMessageId function is internally used to retrieve a unique ID of a message.

To generate the ID, the message is first translated in its Base64 representation using the

getBase64StringRepresentation() function, and then a “fingerprint” is obtained.

While one of the most standard algorithm used for retrieve fingerprinting is still the MD5

[62], we used the “relatively” 1 more secure SHA-1 [3] algorithm. Both the Base64 and the

SHA-1 algorithm used in the implementation of the Message data type are well known

standards and they are already implemented in almost every programming languages.

5.2.2 Managing Services: Description, Request and Response

In the NOWHERE architecture, services differ from messages because they are associated

to a description that stores information about the name of the service, the name and data

type of its parameters and its return parameters. Messages can then be considered a

generalisation of services, because without such description, they can be filled with any

parameter.

Services in NOWHERE.

NOWHERE services are quite similar to Web services. They can be imported or ex-

ported using the standard Web Service Description Language, WSDL [18]. In NOWHERE,

a service description is contained in a Description object, that can be retrieved from

an existing WSDL file, using the loadDescription primitive, or from a specification

provided by the user, using the makeDescription primitive.

When importing descriptions from WSDL, NOWHERE uses only a subset of the full

WSDL specification. In fact, a complete WSDL description consists of six elements:

1. Type, which provides data type definitions used to describe the messages.

1In 2005 a Chinese researcher team has found that SHA-1 is not collision-free [72].

52 Chapter 5. NOWHERE’s Components

2. Message, which represents an abstract definition of the data being transmitted.

A message consists of logical parts, each of which is associated with a definition

within some type system.

3. PortType, which is a set of abstract operations. Each operation refers to an input

message and output messages.

4. Binding, which specifies concrete protocol and data format specifications for the

operations and messages defined by a particular portType.

5. Port, which specifies an address for a binding, thus defining a single communica-

tion endpoint.

6. Service, which is used to aggregate a set of related ports.

A Description object is generated using only the first 3 parameters (Type, Message

and PortType), because Binding, Port and Service are used to describe how to physically

access the service. Instead, NOWHERE uses its own lower level network to access to its

services.

Using the makeDescription to create a service is straightforward, and easier than

write the associated WSDL code. We illustrate how these primitives work introducing a

sample hello service. The hello service has one parameter named firstParameter, of

type string, and a return parameter named greetings, also of type string. An example

of this service written in the WSDL, without the information about how to physically

access the service, is given in Figure 5.2. An equivalent WSDL code can be exported from

a Description object created using makeDescription, as shown in Figure 5.3.

These two ways of loading a service in the NOWHERE architecture are especially

useful in different contexts. When creating a NOWHERE agent, having separated files

containing the WSDL description of the services used, facilitates the reuse of the services.

In fact, in order to use these services in another application, the developer can retrieve

information about the services directly from the WSDL files, without looking into the

source code. On the other hand, if we consider agents that create new custom services at

runtime, it is easier to create new description directly from the programming language

using the makeDescription primitive, instead of having to write a correct WSDL file.

Chapter 5. NOWHERE’s Components 53

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="HelloService"

targetNamespace="http://www.ecerami.com/wsdl/HelloService.wsdl"

xmlns:tns="http://www.ecerami.com/wsdl/HelloService.wsdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<message name="HelloRequest">

<part name="firstName" type="xsd:string"/>

</message>

<message name="HelloResponse">

<part name="greetings" type="xsd:string"/>

</message>

<portType name="Hello Service">

<operation name="sayHello">

<input message="tns:HelloRequest"/>

<output message="tns:HelloResponse"/>

</operation>

</portType>

</definitions>

Figure 5.2: The Hello Service - WSDL Description

Description.

This is the main structure that contains information about a specific service. Table 5.3

shows the most important primitives associated to a Description object. The Request

and the Response objects are the main entities that can be retrieved from the description

of a service. The getRequest and getResponse functions are used for this purpose,

retrieving the information stored in the Description. The retrieveRequestFrom-

Message and the retrieveResponseFromMessage functions are similar, but retrieve

the object from an external message, passed as argument in the functions. This is com-

monly used while managing requests or responses of services coming from other agents,

that have been encoded in a Message data type.

54 Chapter 5. NOWHERE’s Components

1 TreeMap<String, String>

2 parameters = new TreeMap<String, String>();

3 parameters.put(‘‘firstName’’, ‘‘string’’);

4 TreeMap<String, String>

5 returnParameters = new TreeMap<String, String>();

6 returnParameters.put(‘‘greetings’’, ‘‘string’’);

7 Description desc = makeDescription(

8 ‘‘http://www.ecerami.com/wsdl/HelloService.wsdl’’,

9 ‘‘Hello’’, parameters, returnParameters);

10 WSDLDescription wsdlD = desc.getWSDL();

Figure 5.3: Creating the Hello Service using makeDescription - Java

Request getRequest() Retrieves a Request or a Response

Response getResponse() object from a Description

String getServiceId() Retrieves the unique ID of the service

Request

retrieveRequestFromMessage(Message) Retrieves a Request or a Response

Response object from a Message

retrieveResponseFromMessage(Message)

Table 5.3: Functions associated to a Description Object - Java

Request and Response.

These objects can be considered templates that can be filled with proper data in order

to invoke a service or to provide a response. A Request object contains data about the

parameters of the service to invoke, while the Response object contains data about the

parameters of the return value of the same service. These templates can be filled with

data using the functions illustrated in Table 5.4.

Services as messages.

While messages contain elements composed of a name and a value, services contain pa-

rameters composed of the same properties, a name and a value. Exploiting this similarity,

NOWHERE provides a toMessage primitive which converts requests or responses into

Chapter 5. NOWHERE’s Components 55

Object getParameter(String)

void Get/Set parameters

setParameter(String, Object)

String getServiceId() Retrieves the service id

Message toMessage() Converts a Request or a Response

object to a Message object

Table 5.4: Functions associated to a Request and a Response Object - Java

messages, so that they can be sent as common Message data types. In the same way,

requests or responses can be extracted from messages using the appropriate functions

provided by a Description object.

Comparison with FIPA - JADE JADE implements a Directory Facilitator (DF) agent

as specified by FIPA. Agents wishing to advertise their services register them in the DF.

Other agents can then search the DF, looking for agents which provide the services they

desire.

1 DFAgentDescription dfd = new DFAgentDescription();

2 dfd.setName(getAID())

3 ServiceDescription sd = new ServiceDescription();

4 sd.setType("buyer");

5 sd.setName(getLocalName());

6 dfd.addServices(sd);

7 try {
8 DFService.register(this, dfd);

9 }
10 catch (FIPAException fe) { fe.printStackTrace(); }

Figure 5.4: Registering a Service - JADE

The FIPA specification describes several parameters to describe a service:

• name (string) - The name of the service.

• type (string) - The type of the service.

56 Chapter 5. NOWHERE’s Components

1 DFAgentDescription dfd = new DFAgentDescription();

2 ServiceDescription sd = new ServiceDescription();

3 sd.setType("buyer");

4 dfd.addServices(sd);

5 DFAgentDescription[] result = DFService.search(this, dfd);

6 System.out.println(result.length + " results");

7 if (result.length>0)

8 System.out.println(" " + result[0].getName());

Figure 5.5: Searching for a Service - JADE

• protocols (set of strings) - A list of interaction protocols supported by the service.

• ontologies (set of strings) - A list of ontologies supported by the service

• languages (set of strings) - A list of content languages supported by the service.

• ownership (string) - The owner of the service

• properties (set of properties) - A list of properties that discriminate the service.

The main difference between the NOWHERE approach and the FIPA approach, is

that FIPA does not allow to search for a service using ACL performative. In the following

example (Figure 5.4) the minimal code needed for a JADE agent to register itself as a buyer

agent is shown. In Figure 5.5 we shown the code needed to search for a specific service.

The difference with NOWHERE is that, once discovered all the agents that provide a

specific service, the invoking agent must define a way to contact the providing agents,

and it must also deal with possible faults.

5.3 Inside the NOWHERE architecture

In this Section we present the two main components of every NOWHERE agent, the

Dispatcher and the Facilitator, providing details about their design and showing their

internal modules.

Chapter 5. NOWHERE’s Components 57

5.4 Agent Dispatcher

The agent Dispatcher is a software written in a specific programming language that en-

ables NOWHERE support for that particular language. Thus it can be considered as an

extension that enables programs to access the NOWHERE architecture.

Each agent Dispatcher implementation contains a minimal set of structures that pro-

vides well defined functionality. The fastest way to develop an agent Dispatcher for a

previously unsupported programming language is to replicate these structures, follow-

ing the code provided for the already implemented dispatchers. The rest of this Section

provides a description of the structures that each agent Dispatcher must provide, to-

gether with the provided functionality.

5.4.1 The Connector

The Connector is a simple object that provides communication with the local Facilita-

tor. The Connector provides three basic functionality: read, write and close, that act

using standard TCP sockets (the open functionality is automatically achieved with the

creation of this object). The primitives read and write accept only a Message data type,

in order to provide the language-independent feature. Three basic steps are followed by

the Connector to send a message to the Facilitator:

1. the message is converted into its Base64 representation;

2. the size of the message is then calculated and sent to the Facilitator in a 4 bytes least

significant bit form;

3. the Base64 representation of the message is then sent to the Facilitator.

The reading phase works in the opposite way: the first 4 bytes are first read to cal-

culate the total length of the message, and then the message is read and decoded into a

local Message data type. For simplicity, the read function can be written using a block-

ing primitive, so that the resulting Connector module is developed as a separated thread.

The main code that implements the Connector behaviour in the Dispatcher is a simple

fetch/execute cycle, presented in Figure 5.6.

58 Chapter 5. NOWHERE’s Components

1 def run(self):

2 while self.isRunning:

3 messageFromFacilitator = self.read()

4 if messageFromFacilitator == None:

5 # Connection with the Facilitator lost!

6 self.isRunning = False

7 else:

8 # Forward the message to the Dispatcher

9 self.agentDispatcher(messageFromFacilitator)

Figure 5.6: Fetch/Execute Cycle - Python

5.4.2 The dispatcher Function

Incoming messages are managed using the dispatcher function. This function will

be automatically called every time an external message is delivered to the agent. The

dispatcher function is called with the received message as parameter. Figure 5.7 shows

the internal state of the agent A that receives three messages in sequence from three dif-

ferent agents B, D and C.

As the messages are received, they are moved in the incoming message queue. Then

the Facilitator fetches the first message (the message from agent B) from the queue and

forwards it to the Dispatcher for the execution, invoking the dispatcher function.

While the KL Agent takes the appropriate actions, the Facilitator can accept other in-

coming messages, moving them into the incoming messages queue. The KL Agent can

eventually send some message in response to the one received, and the Facilitator can

handle this using only one slot for the outgoing message queue. When the KL Agent ter-

minates the execution of the code associated with the incoming message, the Facilitator

will fetch the next message (from agent D) and execute it, as shown in Figure 5.8 .

5.4.3 The Set of ACL

The Dispatcher is the component that provides the entire set of communication prim-

itives to the specific programming language in which it is implemented. Following the

idea to minimise the effort while porting the Dispatcher to a new programming language,

Chapter 5. NOWHERE’s Components 59

Figure 5.7: Receiving Multiple Messages 1

Figure 5.8: Receiving Multiple Messages 2

60 Chapter 5. NOWHERE’s Components

Affect Dispatcher Affect Facilitator Affect both

allAnswers tell start

setAgentType inform bye

getAgentType handler

setReactiveness unhandler

getReactiveness register

unregister

informACK

askOne

askEverybody

Table 5.5: ACL Primitives

we moved as much complexity as possible in the Facilitator. In fact many primitives pro-

vided by the Dispatcher simply forward a message to the Facilitator, that implements the

real behaviour. Following this idea, communication primitives can be divided in three

categories, presented in Table 5.5. The categories are:

1. Primitives that affect only the state of the local agent Dispatcher. The execution of

such primitives does not imply any communication with the Facilitator.

2. Primitives that affect only the state of the Facilitator. These primitives are directly

forwarded to the Facilitator, that will implement the behaviour.

3. Primitives that affect the state of both the Dispatcher and the Facilitator. As conse-

quence of the execution of such primitives, the Dispatcher will modify its state and

will also send a message to the Facilitator.

The allAnswers primitive can be called by an agent while managing the replies

from an askEverybody performative. It is used to check if the actual reply is the last

one. This primitive is implemented locally in the Dispatcher, thanks to the fact that ev-

ery reply message of an askEverybody primitive reaches the Dispatcher with an ex-

tra boolean field that indicates if it is the last one. Also the get/set primitives of the

agentType and agentReactive attribute affect only the Dispatcher. These parame-

ters are automatically attached to every message sent by the agent, so that every message

Chapter 5. NOWHERE’s Components 61

can have a different timeout property. On the other hand, the tell and the inform per-

formatives don’t affect the local Dispatcher. These primitives are directly forwarded to

the Facilitator. The rest of the properties affect both the Dispatcher and the Facilitator.

The Dispatcher is affected by the start and bye primitives (used to start and stop the

architecture) because they need to initialise the architecture, and by the other primitives

because they all regard services, that are managed locally. The Facilitator is always af-

fected by these primitives because they need to interact with the low level network for

initialisation or communication purposes.

5.4.4 The Code Repository

The code repository is a structure that helps to manage both services and continuations

in NOWHERE. It provides mechanisms to store and execute functions. Following the

idea to move as much complexity as possible into the Facilitator, the Dispatcher job is

just to store code in the repository. Then the Facilitator will command the execution (or

the removal) of a specific function, reacting to the incoming message. The Table 5.6 lists

the set of operations that can be used for a code repository structure.

bindOnAnswer(code, function, args)

bindOnError(code, function, args)

bindService(service, function, args) unbind(service)

isBound(service)

register(service)

runService(service, m, isLastOne)

runErrorService(service)

Table 5.6: Operations supported by the Code Repository Structure

Managing continuation.

Success and failure continuations of a communication primitive like askOne or ask-

Everybody are stored using bindOnAnswer and bindOnError, for the success and

failure continuation respectively. Using both primitives, the code parameter is repre-

sented by a string that indicates the unique ID of the specific message, retrieved using

62 Chapter 5. NOWHERE’s Components

the appropriate command. The function parameter represents the associated code to

be executed, while the args parameter can be used to pass additional values to the code

to be executed. An optional failure continuation can be stored using the bindOnError

primitive, where the parameters have the same meaning of the ones seen before.

Continuations are automatically removed from the code repository when they be-

come useless. Using one-to-one primitives, such as askOne or informACK, continua-

tions are automatically deactivated just after the execution of the success or the failure

continuation. Instead, using the one-to-many primitive askEverybody, continuations

remain active until the last reply for a given communication primitive.

Managing services.

A service is stored using the bindService primitive, that differs from the bind com-

mands seen previously for the first parameter. Using bindService, the first parameter

is a string that represents the service, usually codified using a URI. The developer can test

if a particular service is bound using the boolean predicate isBind, and can also unbind

the service with the unbind command. Binding a service exports an agent capability to

other agents, so that the associated Facilitator is able to invoke the service when other

agents ask for it using an askOne performative. The register primitive implements

the ACL primitive with the same name. With the registration of a service, other agents

are able to invoke it using the anonymous interaction protocol.

Executing services.

The execution of the services provided by the Dispatcher is managed directly by the

Facilitator. When an external agent asks for a service, the Facilitator sends an execution

message to the Dispatcher. This message is automatically intercepted and executed by

the agent Dispatcher, that will act executing the corresponding function stored in the

code repository.

5.5 The Facilitator

The Facilitator is a complex distributed component that manages communication for the

Knowledge Level agent. Written in the Java programming language, the Facilitator acts

Chapter 5. NOWHERE’s Components 63

as an interface, connecting the NOWHERE platform to every programming language

that provides a Dispatcher.

5.5.1 The Connector

The Facilitator interacts with the Dispatcher using a Connector module, that is almost

identical to the Connector module used by the Dispatcher. The Connector provides com-

munication with the Dispatcher, using the TCP protocol, so that the same Facilitator can

be used by many Dispatcher implementations.

5.5.2 The Facilitator Core

The Facilitator core is the module that contains the code to route incoming and outgo-

ing messages. From the point of view of the Facilitator, outgoing messages come from

the connector module, while incoming messages come from the particular Low Level

network plugin chosen. The Facilitator core manages several kinds of messages:

• Internal initialisation messages from Dispatcher to the Dispatcher itself

• Internal messages from Dispatcher to Facilitator

• Outgoing messages from Dispatcher to other agents

• Incoming messages from other agents

• Incoming ask-everybody messages from other agents

• Incoming messages sent by Countdown timers

5.5.3 The Countdown Repository

The countdown repository is a container that stores the countdown objects used in the

architecture. A countdown object is a thread associated to an appropriate countdown and

to a custom message. The behaviour of the countdown object is to start the countdown

timer and just wait until it reaches zero. If the timer reaches zero, than the associated

message is sent to the Facilitator, and the appropriate action is taken. If the countdown

object is halted before the timer reaches zero, then no action is performed.

In NOWHERE, countdowns are automatically used for two purposes:

64 Chapter 5. NOWHERE’s Components

• associated to outgoing messages (those that imply a response from other agents),

to ensure that the agent will not endlessly wait;

• associated to incoming ask-everybody messages, to ensure that the agent that re-

quested the service will wait until the response is provided.

Timeout handling in NOWHERE is described in Section 6.3.

5.5.4 The Low Level Network Plugin

NOWHERE routes messages to other agents using a low level network plugin. Using

different network plugins, NOWHERE has the ability to adapt itself to various scenar-

ios, from real-time systems to networks with a huge number of agents. Network plu-

gins must be implemented as Java classes that extend an abstract class containing a

common set of basic primitives. These primitives are described in the abstract class

LowLevelHandler, and must be implemented by the new plugin. These primitives

are presented in Figure 5.9.

1 import message.Message;

2

3 public abstract class LowLevelHandler {
4 public abstract void login();

5 public abstract String retrieveId();

6 public abstract void logout();

7 public abstract boolean isConnected();

8 public abstract void sendMessage(Message m);

9 public abstract void join(String group);

10 public abstract void leave(String group);

11 public abstract boolean hasJoined(String group);

12 public abstract void broadcastMessage(Message m);

13 }

Figure 5.9: The LowLevelHandler Abstract Class

Chapter 5. NOWHERE’s Components 65

The login process is managed by the primitives login, retrieveId, logout and

isConnected. While the behaviour of these primitives is self-explicative, it is interest-

ing to note that the ID returned by the retrieveID primitive is a string that represents

the agent in the specific low level network used. Changing the network plugin will then

change the entire set of IDs used (see Section 6.1 for more details about this topic). The

primitive sendMessage is used to send a message to a specific agent. Every needed

parameters, such as the recipient agent, are encoded in the Message data type. The prim-

itives in lines 9-11 are used to manage groups of agents in the network. While IDs are

managed by network plugins, groups are managed directly by agents. This is a very

important property, because in this way a specific service can be retrieved in the same

way using different low level network plugins. Because every group contains agents that

provide a particular service, group names are creating using the name of the service as-

sociated to them. Finally, the broadcastMessage in line 12 is used to send a message

to every agent in a specific group.

Chapter 6

Innovative aspects of NOWHERE

In this Chapter we present some interesting details of NOWHERE, comparing them with

the JADE platform when possible. We choose JADE for several reasons: because it is one

the most used platform, with a big community of both developers and users, because

it is a well documented software and finally because - contrary to many other similar

abandoned projects - it is still under development.

6.1 Agent Naming

The concept of the agent ID, a unique identifier for each agent, is something usually

hardcoded in an agent platform or peer to peer network. The Jabber protocol, for ex-

ample, defines users in a way similar to email addresses (user@domain/resource), like

juliet@capulet.com/home. A totally different approach is the one adopted by the JXTA

super peer to peer network, where IDs are more similar to the IPv6 numbering, like

urn:jxta:uuid-59616261646162614A78746150325033F3BC76FF13C2414CBC0AB663666DA-

53903.

Due to the fact that NOWHERE supports more than one Network Layer plugin, and

that these plugins can be changed at runtime, we decided to manage IDs directly at the

Network Layer. Referring to the three layers adopted by NOWHERE (Knowledge Level

layer, Architecture Layer and Network layer), only the Network layer will manage di-

rectly the agent IDs. The Architecture Layer and the Knowledge Level will gather in-

formation about IDs through the Network Layer, so that changing the Network Layer

(and then changing the agent naming) will change also the IDs used at Architecture and

Chapter 6. Innovative aspects of NOWHERE 67

Knowledge Level. Using NOWHERE with the JXTA Network Layer, will lead to agents

with a JXTA ID. Using NOWHERE with the Jabber Network Layer will lead to agents

with a Jabber ID. Following the approach that we have chosen, an agent cannot directly

change its ID.

Agent Naming in JADE.

The FIPA agent naming reference model identifies an agent through an extensible col-

lection of parameter-value pairs, called an Agent Identifier (AID). The extensible nature

of an AID allows it to be augmented to accommodate other requirements, such as social

names, nick names, roles, etc. which can then be attached to services within the AP. An

AID comprises:

1. The name parameter, which is a globally unique identifier that can be used as a

unique referring expression of the agent. One of the simplest mechanisms is to

construct it from the actual name of the agent and its home agent platform address,

separated by the @ character.

2. The addresses parameter, which is a list of transport addresses where a message

can be delivered.

3. The resolvers parameter, which is a list of name resolution service addresses.

An example of a complete JADE AID is main@Jeans-Computer.localhost:1099/JADE. The

parameter values of an AID can be edited or modified by an agent, for example, to update

the sequence of name resolution servers or transport addresses in an AID.

6.2 Comparing FIPA-ACL Directory Facilitator with NOWHERE’s

Facilitator

While the term Facilitator is used in both FIPA and NOWHERE implementations, the

components identified by this name are very different. In FIPA a Directory Facilitator

(DF) is a centralized registry of entries which associate service descriptions to agents

IDs. The DF provide primitives to register services and to search for a specific service.

Moreover, it allows to search services based on their content rather than their name.

68 Chapter 6. Innovative aspects of NOWHERE

The main difference between this approach and the NOWHERE’s approach, is that in

FIPA the interaction between the agent and the DF is made outside the ACL. The source

code of a JADE agent used to search for a service is shown in Figure 6.1. The agent has the

ability to search for services using the DFService.search primitive, that is not part of

the ACL. After this phase, the requesting agent must interact with the other agents that

provide the wanted service, using a primitive of the ACL.

DFAgentDescription dfd = new DFAgentDescription();

DFAgentDescription[] result = DFService.search(this, dfd);

sd = new ServiceDescription();

sd.setType(”buyer”);

dfd.addServices(sd);

result = DFService.search(this, dfd);

Figure 6.1: Search the DF for a Service - JADE

Generally speaking, using JADE three different phases can be identified:

1. To retrieve the name of the agents that provide the wanted service

2. To request the execution of the service

3. To manage possible failures

Instead, in the NOWHERE architecture, an agent can ask for a service using an ACL

primitive. For example, in order to ask for a service S to every agent that provides it, an

agent can use the performative askEverybody, encoding the service S in the appropriate

Request object:

askEverybody(Request, onAnswer, onFail)

This approach represents a very high level communication mechanism, because the

agent just asks for a service and manages the replies. The three phases identified for a

JADE agent are then achieved with just one primitive.

Chapter 6. Innovative aspects of NOWHERE 69

6.3 Transparent timeouts

NOWHERE uses timeout objects in order to ensure an efficient communication between

agents. While the basic usage of timeouts is to avoid agents that endlessly wait for a reply,

they can be exploited to provide a framework that can be adaptable to different situations.

We call them “transparent timeouts” because they are managed by the architecture itself,

so that the user does not have to explicitly deal with them.

In NOWHERE, timeout objects are countdown timers that are activated when a cer-

tain primitive is issued or, in some cases, received. Each timeout is associated to a custom

message containing an action to do if the countdown timer reaches zero. Usually the ac-

tion is to execute the failure continuation for the associated primitive.

Every timeout object contains:

• A message, which encodes the action to be taken if the countdown timer reaches

zero.

• Two parameters that define the timer: the agentType andagentReactiveness.

The message associated with every countdown timer is automatically sent using the

Facilitator if the countdown reaches zero. The value for the countdown is calculated

using the properties agentType and agentReactiveness.

The agentType property can be considered an upper bound of the time that the

agent will wait. It defines the maximum time that an agent will wait for external replies.

If no replies are given during this time, then the failure continuation is fired.

The agentReactiveness is instead the minimum time that an agent will wait for

an answer. The Facilitator uses a Java Thread to control each timeout, providing a passive

waiting behavior.

6.3.1 Using Timeouts for the askOne Primitive

The algorithm implemented by the Facilitator to manage the timeout when using the

askOne primitive is shown in Figure 6.2.

The algorithm has a loop (lines 3-5) which will end with the success or failure con-

tinuation, in lines 4 and 6. The NeedMoreTime message is automatically generated and

manged by the Facilitator.

70 Chapter 6. Innovative aspects of NOWHERE

1 - The Agent executes the askOne primitive.

2 - The associated Facilitator sends the message containing the primitive.

3 - The Facilitator then starts a countdown timer set to the lesser value between

agentReactiveness and agentType.

4 - If, before the countdown reaches zero, the Facilitator receives the reply, than it will

halt the countdown and it will forward the received message to the dispatcher

(success continuation).

5 - If, before the countdown reaches zero, the Facilitator receives a NeedMoreTime

message, than the agentType value is decremented by the actual number of

milliseconds already passed since the countdown started.

The algorithm continues to step 3.

6 - If the countdown reaches zero, then the message associated to the countdown

timer will be forwarded to the Dispatcher (failure continuation).

Figure 6.2: Algorithm Used By The Facilitator To Manage Message’s Timeout

Timeouts are contained in the CountdownRepository, a structure that provide two

basic mechanisms: stop, to halt a specific timer, and restart, to restart it.

In order to explain this algorithm we introduce a simple scenario, in which AgentA

executes an askOne primitive in order to invoke a service from AgentB. In this scenario

there are four possible cases:

1. AgentB replies in due time: the time waited by AgentA for the reply is less than

the maximum allowed time set by AgentA (agentType). This case is illustrated in

Figure 6.3, where FA and FB indicates the Facilitator of AgentA and the Facilitator

of AgentB respectively.

2. AgentB has already crashed when AgentA invokes the service. This case is illus-

trated in Figure 6.4.

3. AgentB receives the request, but it crashes (or a network error occurres) before re-

plying, so that AgentA never receives a proper reply. This case is illustrated in

Figure 6.5.

Chapter 6. Innovative aspects of NOWHERE 71

Figure 6.3: Success Invocation of a Service

Figure 6.4: Failure Invocation of a Service (AgentB is already Crashed)

4. AgentB does not reply in due time, that is AgentA does not receive the reply in

the maximum allowed time (specified by agentType). This case is considered in

Figure 6.6.

6.3.2 Using Timeouts for the askEverybody Primitive

Timers are also very important for the implementation of the askEverybody primitive.

In this case the success continuation will be executed by the Facilitator for every given

reply. The agent can check if a specific reply is the last one using the allAnswers prim-

itive. The algorithm used to manage timers with the askEverybody primitive is pre-

sented in Figure 6.7.

72 Chapter 6. Innovative aspects of NOWHERE

Figure 6.5: Failure Invocation of a Service (AgentB Crashes before Replying)

Figure 6.6: AgentB does not Reply in Due Time

Chapter 6. Innovative aspects of NOWHERE 73

1 - AgentA executes the askEverybody communication primitive.

2 - The associated Facilitator sends the message containing the primitive.

3 - The Facilitator starts a countdown timer set to the lesser value between

agentReactiveness and agentType.

4 - If, before the countdown reach zero, the Facilitator receives a reply, than it

will put the message in a temporary queue (with just one free slot).

If the queue already contains a message, than the old message will be

forwarded to the Dispatcher (success continuation).

5 - If, before the countdown reaches zero, the Facilitator receives a NeedMoreTime

message, then the agentType value is decremented by the actual number of

milliseconds already passed since the countdown started.

The algorithm continues to the step 3.

6 - If the countdown reaches zero, then if the queue is full, its content will be

forwarded to the agent (success continuation). In this case the allAnswers

primitive will return a true value (this is the last reply).

Otherwise, if there is no message in the queue then the message associated to

the countdown timer will be forwarded to the Dispatcher (failure continuation).

Figure 6.7: Algorithm used by the Facilitator to manage Message’s Timeout

The related scenario is AgentA that executes an askEverybody primitive to invoke

a service from a set of agents (in this case AgentB and AgentC). The case in which AgentB

and AgentC replies in due time is illustrated in Figure 6.8.

6.3.3 Timeout values

The agentType parameter associates an agent to a specific class of agents with similar

interactive characteristics. While any numeric value can be associated to this parameter

using the setAgentType primitive, NOWHERE specifies a predefined set of values:

• Real Time Agent, with maximum waiting time of 2 seconds.

• Web Agent, with maximum waiting time of 4 seconds.

• Worker Agent, with maximum waiting time of 1 minutes.

74 Chapter 6. Innovative aspects of NOWHERE

Figure 6.8: Successful Execution of an askEverybody Primitive

• Trusty Agent, an agent that waits forever until a reply is given.

These values were defined according to the work made by Nielsen in [53], one of the

standard reference for the Web usability.

6.3.4 Comparing Timeout Handling with other MASs

Timeouts are widely used in agents platforms. However, the use of timeouts in other

architecture lead the developer to deal with low level issues. JADE provides timeouts

using behaviors, so that an agent is able to wait for the reply until a specified delay. The

source code of an agent that uses this behavior to wait up to 40000 milliseconds for a

reply is shown in Figure 6.9. The example comes from the JADE Tutorial [71].

A similar approach can be obtained in KQML, where a specific timeout can be as-

sociated to each low level send performative. An excerpt of the source code for the

kqml send primitive is presented in Figure 6.10. This primitive supports both block-

ing and non-blocking behaviors. It contains a pointer to the optional reply, that will be

set to NULL if a nonblocking behavior is wanted. The return value indicates if the wanted

Chapter 6. Innovative aspects of NOWHERE 75

1 addBehaviour(new myReceiver(this, 40000,

2 MessageTemplate.MatchPerformative(ACLMessage.INFORM REF) {
3 public void handle(ACLMessage msg) {
4 if (msg == null)

5 System.out.println("Timeout");

6 else

7 System.out.println("Received: "+ msg);

8 }
9 });

Figure 6.9: JADE Timeout Behavior Example

operation was successful. Again, the developer will have to handle low level issues using

this primitive.

1 int kqml send (int timeout value, kqml message *msg,

2 kqml message **reply) {
3 /* Sending message...*/

4 /* if nonblocking, you are done */

5 if (!blocking) {
6 if (reply)

7 *reply = NULL;

8 return 1;

9 }
10 /* sleep until reply */

11 if (reply message == NULL) {
12 return -1;

13 }
14 if (reply) {
15 *reply = reply message;

16 }
17 return 1;

18 }

Figure 6.10: KQML Timeout Example

76 Chapter 6. Innovative aspects of NOWHERE

6.4 Adapting NOWHERE to different scenarios using Low Level

Network Plugins

The NOWHERE architecture itself cannot be classified as a client-server network or as a

peer to peer network, because its behavior is dictated by the Low Level Network used.

For example, when using the JXTA Low Level Network, NOWHERE inherits the fea-

tures of the JXTA network, such as:

• A truly decentralized platform;

• An infrastructure that supports runtime changes of the network topology, where

peers can dynamically change to super peers, providing facilities for other agents

(for example to the ones behind firewalls);

• A platform that provides a basic model for security access.

Instead, using the Jabber Low Level Network, NOWHERE inherits other features,

such as:

• A decentralized network, with distributed Jabber servers that can interoperate;

• A very stable platform, with tens of thousands of Jabber servers running on the

Internet today;

• A fast network, used in many real time application.

Comparison with Jade.

The standard JADE distribution lacks some features that are important in certain appli-

cations. However, using third party software it is possible to overcome many limits. The

ability to bypass network firewalls, for example, can be achieved using the FIPA Mail-

box for Jade [19]. Other JADE extension let the use of a Jabber protocol [39] and a Java

Messaging Service [20] for exchanging messages.

Chapter 6. Innovative aspects of NOWHERE 77

Figure 6.11: JXTA Peergroups. From Project JXTA 2.0 Super-Peer Virtual Network [69]

6.5 Using Groups to reduce the Broadcast Scope

One of the problems that arises using open MASs with many agents is how implement a

multicast primitive to a set of agents without have to broadcast the primitive to all agents.

In the NOWHERE architecture, this behavior is achieved using the askEverybody

primitive. This primitive allow an agent to ask for a service S to every agent in the net-

work that provide this service. In order to avoid to broadcast the message to every agent,

causing network congestion, we adopted the same technique used in peer to peer sys-

tems, and specifically in the JXTA network: to manage groups of “entities”. In the case

of JXTA these entities are peers, while in the case of NOWHERE they are agents. In the

JXTA peer to peer network, agents can self-organize themselves in peergroups, as shown

in Figure 6.11.

Using groups, messages are not broadcasted to every agent in the network, but to

every agent in a specific group. A group is a set of agents interested in the same topic,

in other words interested in providing or requesting the same service. NOWHERE auto-

matically manages groups of agents, associating them with the services that they provide.

Agents that provide the service S (executing the register primitive) will be automat-

ically part of a group of agents named S, the same name of the service. Agents that ask

anonymously (askEverybody primitive) for service S, will temporarily (and automati-

cally) join the group S, broadcasting the message, retrieving the replies and the automat-

ically leave the group. Of course agents can be part of multiple groups at the same time;

the Architecture Layer will automatically manage groups for the agent.

78 Chapter 6. Innovative aspects of NOWHERE

6.6 Web Services Integration

Additional mechanisms are needed to enable the full integration of the NOWHERE archi-

tecture in contexts with Web services. Agents can always use Web services in the standard

way, invoking them directly. However, in our vision agents should use Web services in a

simpler way: ideally, the communication from an agent to a Web Server should happen

with an ACL primitive, like a communication between two agents. Furthermore, agents

should register their competences as Web services, enabling the interaction with conven-

tional programs. NOWHERE provides these features exploiting an external Web Agent

Server. A Web Agent Server is an extension of a common Web Server that provides a

mechanism for publishing Web services. It is implemented as a Java Servlet hosted in the

standard Apache Tomcat [1] servlet container.

6.6.1 Registration of a Web service

NOWHERE provides a functionality which allows Worker agents to register existing Web

services locally. As soon as a Web service is registered it becomes reachable as a virtual

agent and it can be transparently invoked using the FT-ACL primitives. When an agent

requires a competence provided by a virtual agent, its Facilitator recognizes that there is

a Web service that matches this competence and maps the ask/tell protocol of the ACL

into a standard request/response protocol for Web service invocation. The registration

of Web services is a local action: every agent must register the same Web service in order

to invoke it with ACL primitives.

6.6.2 Agentification of a Web service

The agentification of a Web service is a more powerful mechanism that integrate Web

services in NOWHERE. As shown in Figure 6.12, the Worker agent acts like a wrapper:

it provides a competence implemented by the Web service. Every time that an agent

asks for that competence, the Worker agent simply invokes the associated Web service

and replies with the response gathered from the Web service itself. More than one Web

service can be exported by a single Worker agent.

The Worker agent handles the entire communication process with the Web service,

converting parameters as needed. The result is that other agents can use the Web ser-

Chapter 6. Innovative aspects of NOWHERE 79

Figure 6.12: Agentification of a Web service

vice with ACL primitives, for example with an askEverybody or an askOne primitive.

Moreover the Worker agent can extend the Web service to provide additional functional-

ity or to integrate it with other Web services.

6.6.3 Exporting Agents as Web services

In a complementary way, a Worker agent could register a particular competence as a Web

service, so other programs can interact with the agent without sharing the agent architec-

ture. Every time a Worker agent registers a competence as a Web service, a Web service

is generated in the Web Agent Server, with the same name of the registered competence.

As shown in Figure 6.13, once the Web service is invoked, the request is translated into

an askOne performative, then the result is gathered and a standard response is sent back

to the caller of the Web service.

Discussion. Both virtual agents and agentified Web services allow agents to discover

and to invoke services with an askEverybody performative. However, the agentifica-

tion of a Web service is a more powerful mechanism. For example, agentification can be

combined with the export functionality enabling these agents to implement simple Web

services or more complex reasoning services. An agentified Web service can be extended

80 Chapter 6. Innovative aspects of NOWHERE

Figure 6.13: Registration of an Agent Competence as a Web service

with an intelligent behavior to provide a more sophisticated version of the same service.

This new service can be exported by the agent becoming available to other applications

as a standard Web service.

6.6.4 Using NOWHERE in Web service scenarios

Despite our ACL only providing a small set of primitives, they can be successfully ex-

ploited in several well known scenarios for Web services usages (as those described in

[41] by the W3C Working Group), to come up with original solutions. For example the

tell primitive is an example of a fire-and-forget to a single receiver scenario, while

askOne and tell can realize a general asynchronous messaging scenario or more com-

plex conversational message exchanges (as the W3C usage scenarios request/response

and request with acknowledgment). Another important feature of our ACL is that it sup-

ports an anonymous interaction protocol. This allows an agent to perform an asynchronous

request of services based on contents without knowing the name of the recipient agents

(ACL primitive askEverybody). If required they can also continue the cooperation us-

ing one-to-one communication primitives. In terms of W3C Web services usage scenarios,

this is a case of registry based discovery where the registry is distributed in all the facilita-

tors. Also the third party intermediary W3C usage scenario can be easily realized by means

Chapter 6. Innovative aspects of NOWHERE 81

of our ACL primitives askEverybody, askOne and tell. Moreover, the discovery fa-

cility is then integrated with fault-tolerant primitives to manage multiple (non serialized)

asynchronous responses.

Web service integration in JADE. There are several approaches for integration Web

services in JADE. WS2Jade [52] integrates Web services in the agents architecture, but the

integration is only one-way: agents cannot publish their capabilities as Web services.

Another approach is the one proposed by Whitestein Technology, consisting of WSAI

and WSIG [21, 38]. WSAI allows Web service clients to use JADE agents services. In

order to do this, WSDL files are generated for these agent services. WSIG is a JADE add-

on that provides support for bidirectional invocation of Web services from JADE agents,

and JADE agent services from Web service clients. It consists of a JADE agent, called

the Gateway agent, which controls the gateway from within a JADE container. The im-

plementation of WSIG uses a set of xerces (a XML parser) based codecs to bidirectionally

translate ACL messages into WSDL, tModels and SOAP according to the specific context.

It also has a socket connection to an Axis [33] Web Server (a Web Service Container) from

where agent services can be exposed as callable stubs as if they were Web services. The

Axis server also receives calls for invocation from external Web service clients onto agent

services. This mechanism is similar to the one adopted by NOWHERE, that provides the

same features.

Part III

Case Studies

83

Chapter 7

Case Studies

In this Chapter we present three case studies that highlight several interesting features

of our architecture. In the first case study we present an implementation of the classic

Contract Net protocol realized with a state of the art agent platform, and then we provide

a detailed comparison with a solution obtained using NOWHERE. The remaining case

studies are related the Grid, one of the most interesting application scenario. We provide

an evaluation of NOWHERE in terms of usability, reliability and scalability, comparing

it, when possible, with other Grid-based solutions.

7.1 The Contract Net Protocol

The purpose of this case study is to compare our architecture with Jade, a state of the

art agent platform. We choose the classic Contract Net[65] example because it is an im-

portant protocol, fully described in the FIPA specification[6]. The Contract Net protocol

allows an agent to distribute tasks among a set of agents by means of negotiation. We

only considered a restricted version of the protocol with a single manager agent, the

Initiator, and a set of worker agents, the Responders.

The FIPA specification fully describes a Contract Net protocol version that also in-

cludes rejection and confirmation communicative acts. Due to the fact that the Jade soft-

ware distribution comes with an example of this slightly modified protocol, we used it as

subject for our comparison.

In the following we just recall the basic principles of the protocol, described in detail

in the FIPA specification. A representation of this protocol is given in Figure 7.1 which

86 Chapter 7. Case Studies

Figure 7.1: FIPA Contract Net Protocol (source: FIPA Specification)

is based on extensions to UML1.x[57]. The sequence diagram describes the inter-agent

transactions needed to implement the protocol, where the diamond symbol indicates a

decision that can result in zero or more communications being sent, depending on the

conditions it contains. According to the FIPA specification, the Initiator agent sends a

call for proposal (cfp) act, asking a proposal from every other m agents, specifying the

task to be done. Responders receiving the call for proposals are viewed as potential

contractors and are able to generate n responses. Of these, j are proposals to perform

the task, specified as propose acts. The Responder’s proposal includes the preconditions

that the Responder is setting out for the task, which may be the price, time when the

task will be done, etc. Alternatively, the i=n-j Responders may refuse to propose. Once

Chapter 7. Case Studies 87

the deadline passes, the Initiator evaluates the received j proposals and selects agents to

perform the task; one, several or no agents may be chosen.

Being a FIPA compliant platform, Jade adheres as much as possible to FIPA specifi-

cations. In the case of Contract Net, Jade implements the FIPA Contract Net providing

facilities that simplify the programming task. In fact, the task of the programmer is just

to extend the two Java classes provided for the Initiator and for the Responder. Using

the Jade FIPA Contract Net behaviour, written specifically for this protocol, the task of

programming these agents is heavily simplified. For example, in order to handle pro-

posals from Responder agents, the developer must only write the proper code inside the

handlePropose function. The Jade architecture will then invoke this function properly,

for each received proposal.

Even if Jade provides ad-hoc facilities to handle this protocol, we think that this can

still be an example where programming using the NOWHERE architecture shows some

benefit. For the comparison we proceed in this way: first we introduce the algorithm used

in the Jade platform (adapted from an example found in the Jade software distribution)

and then we provide an equivalent solution for the NOWHERE architecture. We decided

to analyze just the Initiator agent, because the Responder agent has a very simple reactive

algorithm.

Finally, in this case study we focus on the task of programming the protocol, avoid-

ing technical details such as the initialization of the architecture (both in Jade and in

NOWHERE). However, the interested reader can found full source code examples of

simple NOWHERE agents in the appendix.

7.1.1 The Initiator agent - Jade

The algorithm implemented by the Initiator agent is composed of 4 main steps:

1. Find the set of available Responder agents;

2. Send a cfp message to Responder agents;

3. Managing replies from Responder agents (proposals, refuses and failures);

4. Evaluate the proposals and accept the best offer;

In the following we describes every single step in details.

88 Chapter 7. Case Studies

1 - Find the set of available agents

The existing source code available in the Jade examples expected the names of the

Responders as a list passed as argument to the agent. We modified this code adding the

support for the dynamic search for Responder agents, in order to make this case study

more adherent to a real world example.

The source code for this first step is presented in Figure 7.2.

1 // Fill in a ServiceDescription to find Responders

2 DFAgentDescription df = new DFAgentDescription();

3 ServiceDescription sd = new ServiceDescription();

4 sd.setType("Responder");

5 df.addServices(sd);

6 DFAgentDescription[] agentList = null;

7 try {
8 // Search for other agents

9 agentList = DFService.search(this, df);

10 } catch (Exception e) {
11 e.printStackTrace();

12 }

Figure 7.2: Jade Initiator Agent - Find Responders agents

In the Jade platform the task of finding other agents is delegated to the Directory Fa-

cilitator component. In order to find other agents, the Initiator should first fill in a Service

Description object (lines 1-5). The Service Description object contains information about

the resource that we want to find. In this case we used a type tag to identify Responder

agents. (line 4). The next block of code, lines 6-12, performs a query on the Directory

Facilitator and retrieves a list of the available Responder agents.

2 - Send a cfp message to Responder agents

The second step is to send a cfp message to every Responder agent found in the previ-

ous step. We used the code shown in figure 7.3.

The code will create a proper cfp message (lines 14-19), specifying every collected

agent as receiver, if there are any (line 13). Additionally, the agent sets a maximum

Chapter 7. Case Studies 89

13 if (agentList != null && agentList.length > 0) {
14 // Fill the CFP message

15 ACLMessage msg = new ACLMessage(ACLMessage.CFP);

16 for (int i = 0; i < agentList.length; ++i) {
17 msg.addReceiver(((DFAgentDescription)agentList[i]).getName());

18 }
19 msg.setProtocol(FIPANames.InteractionProtocol.FIPA CONTRACT NET);

20 // We want to receive a reply in 10 secs

21 msg.setReplyByDate(new Date(System.currentTimeMillis() + 10000));

22 msg.setContent("dummy-action");

23 addBehaviour(new ContractNetInitiator(this, msg) {

Figure 7.3: Jade Initiator Agent - Send cfp message to Responders

timeout of 10 seconds for the proposals (lines 20-21) and the name of the task to be

dispatched (line 22). The newly created message is then automatically sent using the

ContractNetInitiator behaviour (line 23).

3 - Managing replies from Responder

Replies from Responder agents are managed exploiting Jade’s FIPA Contract Net be-

haviour, specifying appropriate code in proper functions. There are three kind of mes-

sages to be managed: proposals, refusals and generic failures. Proposals are managed

using the handleProposal function (source code in Figure 7.4) , refusals are managed

using the handleRefuse function (source code in Figure 7.5) and failures are managed

using the handleFailure function (source code in Figure 7.6).

24 protected void handlePropose(ACLMessage propose, Vector v) {
25 System.out.println("Agent " +propose.getSender().getName()+

26 " proposed "+propose.getContent());

27 }

Figure 7.4: Jade Initiator Agent - Handle proposals

The code used to manage these replies is straightforward, it just prints on the screen

the name of the agent that proposed or refused. Two kind of failures are managed: agents

90 Chapter 7. Case Studies

28 protected void handleRefuse(ACLMessage refuse) {
29 System.out.println("Agent "+

30 refuse.getSender().getName()+" refused");

31 }

Figure 7.5: Jade Initiator Agent - Handle refusals

32 protected void handleFailure(ACLMessage failure) {
33 if (failure.getSender().equals(myAgent.getAMS())) {
34 // FAILURE notification from the JADE runtime: the receiver

35 // does not exist

36 System.out.println("Responder does not exist");

37 }
38 else {
39 System.out.println("Agent "+

40 failure.getSender().getName()+" failed");

41 }
42 // Immediate failure --> no responses from this agent

43 }

Figure 7.6: Jade Initiator Agent - Handle failures

that does not exist (those who are not connected anymore in the platform) and generic

communication errors.

4 - Evaluate and accept proposals

In this final step the Initiator agent need to evaluate every proposals, selecting the best

one for the particular task. This is done using the code in Figures 7.7 and 7.8.

Note that also this code exploits the Jade’s FIPA Contract Net behaviour. In fact the

function handleAllResponses is automatically invoked once every reply is collected

or when the selected timeout is expired. The proposal are simply evaluated comparing

them against the bestProposal variable that stores in every iteration the best proposal

received. Replies to the Responder agents are stored in the acceptances Java Vector,

and are then automatically sent.

Chapter 7. Case Studies 91

44 protected void handleAllResponses

45 (Vector responses, Vector acceptances) {
46 // Evaluate proposals.

47 int bestProposal = -1;

48 AID bestProposer = null;

49 ACLMessage accept = null;

50 Enumeration e = responses.elements();

51 while (e.hasMoreElements()) {
52 ACLMessage msg = (ACLMessage) e.nextElement();

53 if (msg.getPerformative() == ACLMessage.PROPOSE) {
54 ACLMessage reply = msg.createReply();

55 reply.setPerformative(ACLMessage.REJECT PROPOSAL);

56 acceptances.addElement(reply);

57 int proposal = Integer.parseInt(msg.getContent());

58 if (proposal > bestProposal) {
59 bestProposal = proposal;

60 bestProposer = msg.getSender();

61 accept = reply;

62 }
63 }
64 }

Figure 7.7: Jade Initiator Agent - Evaluate proposals

Finally, the Initiator agent accepts the best proposal using the code in lines 65-73 of

Figure 7.8.

7.1.2 The Initiator Agent - NOWHERE

In the following we provide a similar solution obtained using the NOWHERE architec-

ture. We used only two step for this version.

1 & 2 - Send a cfp message to Responder agents

The code used for sending the cfp is shown in Figure 7.9. However, in this case the

92 Chapter 7. Case Studies

65 // Accept the proposal of the best proposer

66 if (accept != null) {
67 System.out.println("Accepting proposal "+

68 bestProposal+" from responder "+bestProposer.getName());

69 accept.setPerformative(ACLMessage.ACCEPT PROPOSAL);

70 }
71 }
72

73 } // This one closes the addBehaviour statement - line 24

Figure 7.8: Jade Initiator Agent - Accepting the best proposal

1 // Creating service descriptions

2 TreeMap<String, String> par = new TreeMap<String, String>();

3 par.put("taskName", "string");

4 TreeMap<String, String> returnPar = new TreeMap<String, String>();

5 returnPar.put("proposal", "int");

6 Description cfp = makeDescription("", "cnet-cfp", par, returnPar);

7 par = new TreeMap<String, String>();

8 returnPar = new TreeMap<String, String>();

9 returnPar.put("result", "string");

10 Description action =

11 makeDescription("", "cnet-do-task", par, returnPar);

12 this.setAgentType(10000);

13 // Filling in the cfp message

14 Request r = cfp.getRequest();

15 r.setParameter("taskName", "dummy-action");

16 askEverybody(r, "handleNotify", null, "handleErrors", null);

Figure 7.9: NOWHERE Initiator Agent - Sending the cfp

first step is missing. In fact, thanks to the anonymous interaction mechanism, the cfp

message can be sent directly to Responder agents, that are automatically discovered. The

solution presented in the NOWHERE platform uses two services, one for sending the cfp

Chapter 7. Case Studies 93

17 public void handleNotify(Message m) {
18 responses.add(m);

19 if (allAnswer()) {
20 // Evaluate proposals.

21 int bestProposal = -1;

22 String bestProposer = null;

23 Enumeration e = responses.elements();

24 while (e.hasMoreElements()) {
25 m = (Message) e.nextElement();

26 Response r = cfp.retrieveResponseFromMessage(m);

27 int proposal = (Integer) r.getParameter("proposal");

28 if (proposal > bestProposal) {
29 bestProposal = proposal;

30 bestProposer = m.getSender();

31 if (bestProposer != null)

32 inform(bestProposer, new Message("reject-proposal"));

33 }
34 else

35 inform(bestProposer, new Message("reject-proposal"));

36 }
37 // Accept the proposal of the best proposer

38 if (bestProposer != null) {
39 System.out.println("Accepting proposal "+ bestProposal +

40 "from responder "+bestProposer);

41 askOne(bestProposer, action.getRequest(), "taskDone",

42 null, "handleErrors", null);

43 }
44 }
45 }

Figure 7.10: NOWHERE Initiator Agent - Managing replies

to Responder agents and one to assign the task to the agent that has replied with the best

proposal. The code in lines 1-11 creates the descriptions of these services from scratch,

94 Chapter 7. Case Studies

without relying on external web services definition. The code in line 12 sets the timeout to

10 seconds, accordingly to the Jade’s version. A message is then instantiated with proper

values (lines 13-15) and sent to the Responder agents using an askEverybody primitive

(line 16).

3 & 4 - Managing replies Replies from Responder agents are managed using the code

shown in Figure 7.10. For every reply received, the Initiator stores the message con-

taining the proposal in a Vector object (line 18). When the last reply is collected, it will

execute the code in lines 20-44, that evaluates the proposals and accept the best one. In

order to compare the architecture properly, this code is almost identical in both versions.

The main difference is that the messages regarding rejected proposals are sent using an

inform primitive to the less competitive Responder proposals (lines 31-32 and 34-35).

The best proposal is finally accepted (lines 38-43).

Failure messages are managed using the code in Figure 7.11, that just prints the errors

on the screen.

46 public void handleErrors() {
47 System.out.println("Communication error occurred!");

48 }

Figure 7.11: NOWHERE Initiator Agent - Handling failures

7.1.3 Discussion

At a first glance, using the Jade’s FIPA Contract Net behaviours, the solution obtained

are very similar. However, the source code related to the NOWHERE-based solution

is smaller than the Jade-based one, even if the Jade version is built using ad-hoc facili-

ties for the Contract Net protocol. This fact highlights the very high level nature of the

NOWHERE primitives, even when comparing with a state of the art agent platform.

Analyzing in details the Jade solution, the reader can find that the Jade’s FIPA Con-

tract Net behaviour provides mainly two features that are exploited in this example:

• the facility to automate some tasks, like to automatically reply to Responder agents

with rejection or acceptance of proposals;

Chapter 7. Case Studies 95

• the facility that allows the developer to consider just the correct proposals, for ex-

ample implementing only the handleProposal function (and then avoiding the

implementation of the handleFailure function)

However, while these facilities are limited to the FIPA Contract Net scenario, NOWHERE

provides high level primitives that may be used in the solution of every kind of problem.

The anonymous interaction mechanism, for example, can be used to send a message to

every agent in the network that satisfies a set of specific criteria (such as to be a Responder

agent).

Moreover, the general idea behind NOWHERE is to simplify the agent programming

task, allowing the developer to concentrate in writing the code he is working on, avoiding

as much as possible the need to explicitly write code to handle failures. If we focus on the

problem that we have to solve (to dispatch a specific task to the agent that replied with the

proposal) instead of writing a solution that follows the FIPA Contract Net specification,

the resulting source code can be much smaller.

17 public synchronized void handleNotify(Message m) {
18 Response r = cfp.retrieveResponseFromMessage(m);

19 int proposal = (Integer) r.getParameter("proposal");

20 if (proposal > bestProposal) {
21 bestProposal = proposal;

22 bestProposer = m.getSender();

23 }
24 if (allAnswer() && bestProposer != null)

25 askOne(bestProposer, action.getRequest(),

26 "taskDone", null,"handleErrors" , null);

27 }

Figure 7.12: NOWHERE Initiator Agent - A more compact version

The source code shown in Figure 7.12 represents an alternative solution to manage

Responder replies. Using this code, we are able to achieve the same functionality of the

Contract Net Initiator agent, but with much less code. The main difference is that here

we focus just on the result: we dispatch our task to the agent that replied with the best

proposal. This means that we are not required to reply to every Responder (for example

96 Chapter 7. Case Studies

with a proposal rejection), because we are interested just in the best offer.

The provided solutions differ also in the way they manage communication problems.

The Jade solution uses a classic timeout approach, whose goal is to wait up to 10 seconds

if at least one agent have not replied. Additionally, the NOWHERE platform can be pro-

grammed with transparent timeouts (as explained in Section 6.3), which ensure a better

exception handling.

7.2 Gridified Connect 4

The purpose of this case study is to show some real application code in order to spot

the powerful of NOWHERE in terms of facility of programming with respect to common

Grid toolkits. The example application is a gridified version of the popular board game

Connect 4. We choose this simple example because it is a classic Grid application which

has been coded with Globus [46]. In the following we first discuss the case study showing

a solution in our architecture and then we compare our solution with the one provided

by Globus.

Scenario. The purpose of the game is to align four chips in a chessboard to win, in

horizontal, vertical or diagonal way. To choose the next move an intelligent agent works

in this way:

• It evaluates the value of each position from the first column to the eighth.

• For each position, it also evaluates the next positions that the adversary could pos-

sibly play and reevaluates its tested position accordingly.

Realization. The gridification of this problem is simple: the problem is divided in the

eight different evaluations of the current move, one for every possible column choice.

The associated function, that calculates the evaluation, is called simulate. It evaluates a

specific column and can be executed independently by other calls on different columns.

The function needs the state of the game and the selected column as parameters and

returns the evaluation of the specified move.

In this example we used two kinds of agents: User agents, that interact with the user,

and Worker agents, that provide facilities to other agents. User agents are used to manage

Chapter 7. Case Studies 97

the game, the interaction with the player and to display the graphic, while Worker agents

are used to evaluate the moves.

In the following we show the programs executed by these agents. We assume the

existence of a shared WSDL description for the connect 4 application services. This

description contains two services: getName and simulate. getName is a simple ser-

vice that, once invoked, returns a string containing the name of the agent that provides

this service. simulate is instead a service with two input parameters, gameData and

columnChosen, that store the game situation and the column chosen by the player re-

spectively. As output, the simulate service returns an evaluation of the player’s move

associated to the specified column.

The first piece of code describes the routine executed by a User agent to gather infor-

mation about available Worker agents.

1 # User agent code to retrieve available Worker

2 # agents - Python version

3 availableAgents = []

4 getNameDesc = loadDescription(’connect4NameService.wsdl’)

5

6 # Success continuation - store agent name

7 def addAgents(msg):

8 response = getNameDesc.retrieveResponseFromMessage(msg)

9 availableAgents.append(response.getParameter(’agentName’))

10

11 # Failure continuation

12 def c4Fail():

13 print(’Grid Connect 4 failed: no agents available!’)

14

15 # Retrieve available agents

16 getNameRequest = getNameDesc.getRequest()

17 askEverybody(getNameRequest, addAgents, c4Fail)

In this example we used one service, getName, shared by the agents. The description

of this service is loaded by the loadDescription primitive (line 4), while a request

template used to invoke the service is retrieved using the getRequest primitive (line

16). The gathering process is realized by means of the askEverybody primitive (line

98 Chapter 7. Case Studies

17): the User agent makes a request to every other agents, asking for the service used to

retrieve agent names. The success continuation is associated to the addAgents function

that will handle the replies (lines 6-9). The role of this function is to collect the available

Worker agents, retrieving their name from the Response object. Note that the protocol is

deadlock-free also in the worst situation. Indeed, if all the agents that provide the wanted

service crashes, then the failure continuation c4Fail is called.

In order to provide the service used by the User agent to retrieve names, a Worker

agent must register the getName service by means of the register primitive, as shown in

the following code.

1 # Worker agent code to register the getName service and

2 # to reply to a query for that service - Python version

3

4 getNameDesc = loadDescription(’connect4NameService.wsdl’)

5 def sendName(msg):

6 response = getNameDesc.getResponse()

7 response.setParameter(’agentName’, ’myName’)

8 tell(msg.getSender(), response)

9

10 handler(getNameDesc.getRequest(), sendName)

11 register(getNameDesc)

Here the function sendName is called by the Worker agent to send its own name as

a reply to the multicast query previously done by the User agent. The reply is made by

means of the tell primitive (line 8). When the User agent has received all the replies, it

asks the evaluation of the Connect 4 next move to a selection of eight Worker agents. In

the following code, the selection criterion is the receiving order, where we suppose that

availableAgents is a sublist of exactly 8 elements (retrieved from the same variable

found in the previous code).

Chapter 7. Case Studies 99

1 # User agent code to ask the Connect 4 service and to gather the

2 # results of each agent reply - Python version

3

4 simulateDesc = loadDescription(’connect4SimulateService.wsdl’)

5 bestChoice = -1

6 associatedColumn = -1

7

8 def gatherResults(msg):

9 response = simulateDesc.retrieveResponseFromMessage(msg)

10 currentEvaluation = response.getParameter(’currentEvaluation’)

11 column = response.getParameter(’column’)

12 if (currentEvaluation > bestChoice):

13 bestChoice = currentEvaluation

14 associatedColumn = column

15

16 request = simulateDesc.getRequest()

17 request.setParameter(’gameData’, gameData)

18 column = 0

19 for agent in availableAgent:

20 request.setParameter(’column’, column)

21 column = column + 1

22 askOne(agent, request, gatherResults)

The User agent simply executes eight times the askOne primitive, targeted to specific

available Worker agents (previously registered for the Connect 4 service).

The gatherResults success continuation specifies the routine that handles the replies.

The last piece of code is the Worker agent algorithm to simulate the move:

100 Chapter 7. Case Studies

1 # Worker agent code to simulate the move - Python version

2

3 simulateDesc = loadDescription(’connect4SimulateService.wsdl’)

4 def simulate(msg)

5 request = simulateDesc.retrieveRequestFromMessage(msg)

6 gameData = request.getParameter(’gameData’)

7 columnChosen = request.getParameter(’columnChosen’)

8 evaluation = simulate AI(gameData, columnChosen)

9 response = simulateDesc.getResponse()

10 response.setParamater(’currentEvaluation’, evaluation)

11 response.setParameter(’column’, columnChosen)

12 tell(msg.getSender(), response);

13

14 handler(simulateDesc.getRequest(), simulate)

In this code the function simulate AI, (called in line 8) implements the intelligent

behavior of the agent. The result of this evaluation, together with the associated column

number is returned to the User agent that asked for it (line 12).

Discussion: Comparison With Globus

The main benefit achieved using our architecture instead of other Grid softwares (such

as Globus) is usability. In fact, thanks to the expressive power of FT-ACL, the task of

writing a concurrent solution to this problem, programming the behavior of Knowledge

Level agents, is simplified. For example the code used to retrieve the evaluation of a

move done by a Worker agent is:

askOne(agent, request, gatherResults)

The code of the same example built on the Globus architecture is more complex,

because it must explicitly handle the activation of the peers and the ftp connections

for sending data. Moreover the syntax of Globus commands is more complex because

they deal with many low level issues. On the other hand NOWHERE’s primitives have

been designed to be at Knowledge Level, thus they only contain requests of the relevant

knowledge. To illustrate this point we present below the relative C++ code used in the

implementation realized with the Globus toolkit:

Chapter 7. Case Studies 101

// Code to ask for a job in Globus

for(i=0;i!=8;i++) {
cout << "submission on " << node[i] << endl;;

char tmpc[2];

sprintf(tmpc,"%d",i);

// build the RSL commands

rsl req = "&(executable=SmallBlueSlave) (arguments=";

rsl req += tmpc[0];

rsl req += ") (stdout=https://";

rsl req +=hostname;

rsl req +=":10001";

rsl req +=get current dir name();

rsl req +="/eval) (stdin=https://";

rsl req +=hostname;

rsl req +=":10001";

rsl req +=get curren dir name();

rsl req +="/GAME) (count=1)";

// submit it to the GRAM

if (Current.CanPlay(i))

if (job[i]->Submit(node[i],rsl req))

exit(1);

};

The above example shows even more clearly the benefits of programming at Knowl-

edge Level.

7.3 Realizing a Distributed Grid Performance System

The role of a Grid Performance System (GPS) is to monitor a laboratory in which work-

stations are available as computing engines for Grid applications. The goal of the GPS

is to make the CPU load of the machines available to the system administrator for mon-

itoring purposes and to Grid applications for distributing tasks appropriately. In [9] a

simple scenario for GPS is presented. It describes a laboratory in which workstations are

used as desktop systems and are also available as resources for Grid applications. Each

102 Chapter 7. Case Studies

scientist can decide to share its own workstation or not. A Central Server Machine (CSM)

on the same local area network is responsible to monitor the CPU load of all the shared

workstations and to make the load information available to other systems. A system

administrator for the workstations monitors the loads from his/her machine, to ensure

that no problems exist. The monitoring machine can be on a different network than the

workstations. All the load measurements are archived by an Archiving Service, on a dif-

ferent machine. The archival data could be used for example to analyze daily system load

patterns and to identify time periods when the workstations are heavily used.

Scenario. In this case study we illustrate how this scenario can be extended to monitor

and integrate in a single Grid performance system machines which belong to different,

possibly geographically distributed, local area networks. The aim is to highlight the scal-

ability and reliability features of NOWHERE showing how machines in several subnets

can be used for a Grid application despite firewalls and malfunction of nodes. We have

tested our GPS with a simple Image Rendering Application.

Figure 7.13: Implemented Grid Performance System Scenario

Realization. Consider three laboratories featuring three different ethernet LANs. Fig-

ure 7.13 illustrates the components involved in the implemented scenario and their in-

Chapter 7. Case Studies 103

teractions. Note that subnetworks cs.unibo.it and ei.unibo.it are protected by

firewalls.

A Worker agent runs on each workstation, on the Central Server Machine and on

the Archiving Machine. A User agent runs on the Administrator Machine to allow the

system administrator of monitoring the loads. We illustrate the functionality of our GPS

by means of an example.

Image Rendering Architecture

To show how the Grid Performance System could be used, we have built an Image Ren-

dering Architecture on top of it. This scenario can be considered one of the most im-

portant in Grid architectures, since it is common to both computer graphic studios and

medicine, by the increased availability and diversity of tomographic scanning technolo-

gies. In this example we have reduced the complexity of a real world example, rendering

only a total of 10 images. Each image needs different time to be rendered: from 30 to 39

seconds each.

To show that machines in different subnets can be used successfully in this application

without loosing performance, we first used up to 10 hardware-identically computers,

located in a single LAN. Then we repeated the experiment using two different sets of

computers from two laboratories in different cities1.

The implicit client-server architecture works as follows:

• The client just registers the agent as a Grid node providing two different services,

one related to the GPS (cpuLoad - that returns both the cpu load and the name of

the agent) and one that actually renders the image (renderImage - that gets in input

the image to render and returns the rendered image).

• The CSM dynamically retrieves nodes that can be used to render images. If an

agent with a low cpu load is found, then the server performs an askOne primitives

to that agent, specifying the image as argument.

The result of the experiment is shown in the chart in Figure 7.14. The first column

represents the time needed by the rendering process itself: at least 345 seconds. As shown

1The University of Bologna is organized with a multicampus structure spread across different cities in

the Emilia-Romagna region, Italy.

104 Chapter 7. Case Studies

Figure 7.14: Image Rendering Case Study

by the second column, using a grid with only one agent is not, of course, a good idea, due

to the time wasted by the server to dynamically search for Grid nodes and to dispatch

images to the client. The data in the other columns confirms that the architecture works

as expected: with 2 nodes the time needed is exactly one half of the time needed with only

one node, and so on. Finally, the last column shows that using 10 nodes to rendering 10

images needs a total of 41 seconds, where the most complex image took 39 seconds to

be rendered. The results of the second experiment using computers in two laboratories

are identical because the two laboratories are connected by a fast backbone and the time

needed to render images is much higher than the time spent in communication.

Discussion

The implemented case study highlights some important features of our architecture:

• Scalability: NOWHERE scales well using computers in different networks, the GPS

can be extended to several subnets without considering firewalls and any network

restrictions.

• Dynamic platform: the list of workstations available at a given time is dynamically

retrieved when the Central Server Machine performs an askEverybody primitive.

Moreover, at any time unshared workstations can register themselves becoming

shared at run-time.

Chapter 7. Case Studies 105

• Fault Tolerance: thanks to the fault-tolerant askEverybody primitive, the list of

workstations available at a given time does not include crashed workstations. This

feature is fundamental in order to avoid infinite waiting and to build real Grid

systems.

Chapter 8

Conclusions

The contributions of this Thesis can be summarized in the following main topics.

A Fault Tolerant Agent Communication Language

The proposed ACL is probably the first communication language using high level

mechanisms to handle failures. Those mechanisms does not exist in standard ACLs such

as FIPA and are based on continuations , which can be successful integrated in declarative

programming languages in order to realize Knowledge Level agents. Moreover, the com-

munication language presented provides multicast primitives that are not available in

the current FIPA standard. Another innovation that has been proposed regards transpar-

ent timeouts. With transparent timeouts it is possible to send a multicast message to a set

of agents, asking for a specific knowledge, without having to deal with agents names or

timeout values. Thanks to the high level nature of the communication language, the task

of programming agents is heavily simplified, as shown comparing the solutions obtained

from a problem solved using our architecture and other state of the art platforms.

A Language-independent Agent Platform

The second important aspect of this work regards the methodology adopted in the

realization of the NOWHERE platform. We focused on interoperability, building a mod-

ular platform that can be used with different programming languages. The Facilitator

component is written in Java, currently one the most used programming language. In

this way many low level network protocols, which are available as open source Java li-

braries, can be integrated. At the same time, however, the Dispatcher component can be

Chapter 8. Conclusions 107

written in programming languages such as Prolog or Lisp, that provide a more rich envi-

ronment for tasks such as inference or reasoning. Given a specific task, the developer can

then choose the best programming language for that specific purpose. Moreover, agents

written in different programming languages are able to cooperate. This is a very differ-

ent approach (agent platforms are usually programmed for a specific language), similar

to mechanisms such as OMG’s CORBA[2], that integrates distributed objects realized in

different programming languages. However our approach extends these mechanisms to

support Knowledge Level agents that communicate using high level primitives.

Low Level Network Plugin Layer

During the design of NOWHERE, we defined an interface between the Architecture

Level and the Low Level used to send messages. First we have identified a minimum

set of requirements needed to build a flexible architecture. Then we have integrated

several low level networks, such as Jabber and Jxta. These network protocols provide

very different features and can be successfully exploited in different scenarios. Moreover,

other network layers can be integrated using a plugin framework, providing support for

ad-hoc protocols.

Other innovative aspects regard the bidirectional integration between the ACL and

Web services. This mechanism enable the invocation of Web services using the same

ACL primitive as well as exporting agent functionality as Web services

8.1 Future Work

We considered many enhancements and new features for our architecture. First of all,

we planned to release a first version of NOWHERE as open source software, so that

other researchers can test it. We also planned to port the software to other programming

languages, to increase interoperability.

Another interesting work will be to investigate the platform with mobile devices,

creating useful applications with personal agents features.

Finally, the idea of a Semantic Web Layer for NOWHERE is the most interesting re-

search problem of our future work. Both KQML and FIPA messages contain an ontology

parameter that can be used to identify a specific vocabulary. According to Gruber [40],

108 Chapter 8. Conclusions

an ontology is a formalization of a shared conceptualization. In Multi-Agent Systems, an

ontology can be considered a shared terminology on which different agents must agree,

in order to be able to understand each others. In our architecture, agents are not forced to

specify an ontology while sending messages. This can be useful when developing small

ad-hoc applications, so that the programmer can create agents without having to deal

with the construction of an ontology at all.

On the other hand, when developing complex applications it is necessary to have a

common terminology that describes the particular domain, to ensure that agents are able

to understand each other. To provide such support we plan to extend the core ACL with

new primitives and with the related code to handle the Semantic Web extension. The

resulting ACL will be available as a “Semantic Agent”, that can be extended in order to

create KL Semantic Web-enabled agents, replacing the plain Knowledge Level layer.

The overall approach is that, by augmenting Web services with rich formal descrip-

tions of their competence, many aspects of their management (such as Web service dis-

covery, invocation and composition) will become automatic. To realize this vision many

open problems need still to be solved. In our opinion, the fundamental ones are:

• Provide a language to semantically express the capabilities of Web services (or ser-

vice advertisements) and the service requests. Main ongoing works in this direction

are OWL-S [58], WSMO [74] or SAWSDL [28].

• Provide an infrastructure which supports the creation of Semantic Web services.

The infrastructure must clarify who realize Web services and where the semantic

descriptions of Web services are stored (in a centralized or distributed repository).

Existing prototypes include WSMF [29] and IRS-III [22].

• Enable automatic discovery and invocation of Web services, that is, enable agents to

discover and invoke Web services on the basis of the capabilities that they provide.

The discovery problem is also known as “Semantic Matching problem“ [59].

Appendix A

Source code examples of NOWHERE agents

In the following we provide the source code of some Java NOWHERE agents. The first

example, the Server Agent, is a simple program that just registers two services, ping and

bping. The ping service is used to send a ping-like command to a specific agent, in order

to check if the agent is alive, while the bping service can be used to broadcast a ping

command to a set of agents. The second example shows the code needed to exploit the

ping service. Finally, the third source code example shows the anonymous interaction

mechanism, exploiting the bping service.

While the core language is still the same in any implementation, some Java-related

unique features of NOWHERE are used in the following examples. We provide a brief ex-

planation of these features in the following. Even if the purpose of these examples is just

to show the simplicity of programming real NOWHERE agents. An agent is created ex-

tending the AgentCL1 class, that provides the Core Language primitives and implement-

ing the DispatcherInterface interface, that ensure the creation of the dispatcher

function. The NOWHERE architecture uses a configuration file to store some parameter,

like the name and the password used by the agent. A sample file is generated using the

writeConfigFile function by the Server program, where the getFreePort function

is used to detect a free port on a specific host. The start function, used to start the ar-

chitecture, is called specifying a generic message (“init” or “startup”). This message is

automatically passed back to the Dispatcher once the network is initialized.

110 Appendix A. Source code examples of NOWHERE agents

A.1 Server Agent - Java

package testAgents;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.OutputStreamWriter;

import java.net.Socket;

import java.util.Random;

import java.util.TreeMap;

import services.Description;

import services.Request;

import services.Response;

import agent.AgentCL1;

import message.Message;

import agent.DispatcherInterface;

public class Server extends AgentCL1 implements DispatcherInterface {

String configuration = "";

Description ping;

Description bping;

// Start the agent architecture

public void runAgentCode(String configDir) {
// This message m will be automatically sent back after the initalization

Message m = new Message("init");

start(configDir, "maya.ei.unibo.it:8080", m);

}

Appendix A. Source code examples of NOWHERE agents 111

// The broadcasted ping service (anonymous interaction mechanism)

public synchronized void bping(Message m) {
System.out.println("Provide bping service to " + m.getSender());

Request request = bping.retrieveRequestFromMessage(m);

System.out.println("Parameter is " + request.

getParameter("parameter1"));

Response r = bping.getResponse();

r.setParameter("returnValue",

"This is the solution to service BPing");

tell(m.getSender(), r);

}

// The one-to-one ping service

public synchronized void ping(Message message) {
System.out.println("Running ping service for " + message.

getSender());

Request request = ping.retrieveRequestFromMessage(message);

System.out.println("Ping parameter is: " + request.

getParameter("parameter1"));

Response response = ping.getResponse();

response.setParameter("returnValue",

"This is the solution to service Ping");

tell(message.getSender(), response);

}

// Every message from other agents is managed here

public void dispatcher(Message m) {
// Manages the automatic initialization message

if (m.checkMessageName("init")) {
System.out.println("Initializing server agent. " +

"(ID: " + myId + ")");

System.out.println("Binding service ping");

TreeMap<String, String> parameters = new

TreeMap<String, String>();

parameters.put("parameter1", "string");

TreeMap<String, String> returnParameters = new

TreeMap<String, String>();

parameters.put("returnValue", "string");

ping = makeDescription("", "ping", parameters,

returnParameters);

112 Appendix A. Source code examples of NOWHERE agents

handler(ping.getRequest(), "ping");

parameters.clear();

parameters.put("parameter1", "string");

returnParameters.clear();

parameters.put("returnValue", "string");

bping = makeDescription("", "bping", parameters,

returnParameters);

System.out.println("Binding service broadcastPing");

handler(bping.getRequest(), "bping");

System.out.println("Registering service broadcastPing");

register(bping);

System.out.println("Agent initialized.");

}
else {

// Other messages are ignored

System.out.println("Received message: " + m.toString());

}
}

// Simple routing to write a standard NOWHERE config file

public void writeConfigFile(String configFile) {
// Writing new config file

try {
OutputStreamWriter out = new OutputStreamWriter(new

FileOutputStream(configFile), "US-ASCII");

String config = "# NOWHERE Configuration file" +

"\n# Copyright (C) 2004-2006, Applied AI LAB, " +

"Department of Computer Science, " +

"University of Bologna" +

"\n# \n" +

"\nversion\t\t\t 0.7" +

"\nfacilitatorHost\t\t localhost" +

"\nfacilitatorPort\t\t " + getFreePort("localhost") +

"\nusername\t\t user" +

"\npassword\t\t password" +

"\nentryPoint\t\t maya.ei.unibo.it:8080" +

"\nlocalFacilitator\t true" +

"\n\n#This is the low level architecture option" +

"\n#At this time you can use one of ’Jabber’ or ’Jxta’" +

"\nlowLevel\t\t Jabber" +

Appendix A. Source code examples of NOWHERE agents 113

"\n\n# Low Level Jxta-related optional properties" +

"\nreconfigure\t\t false" +

"\nserver\t\t\t false" +

"\n\n";
out.write(config);

out.close();

}
catch (Exception e) {

System.out.println("Exception: " + e);

}
}

// Detects a random free port on the specified host

private static String getFreePort(String host) {
// Try to get an open port

int lowerPort = 49152;

int higherPort = 65535;

boolean portIsFree = false;

while (!portIsFree) {
int randomPort = new Random().nextInt(higherPort - lowerPort);

randomPort = randomPort + lowerPort;

Socket s = null;

try {
s = new Socket(host, randomPort);

}
catch (IOException ex) {

portIsFree = true;

// Returns the discovered free port

return new Integer(randomPort).toString();

}
finally {

try {
if (s != null)

s.close();

}
catch (IOException ex) { }

}
}
return new Integer(higherPort).toString();

}

114 Appendix A. Source code examples of NOWHERE agents

// Standard static main method

public static void main(String args[]) {
Server ta = new Server();

String prefix = File.separator + "tmp";

if (args.length > 0)

ta.runAgentCode(args[0]);

else

ta.runAgentCode(prefix + File.separator + ta.getClass().

getSimpleName());

}
}

Appendix A. Source code examples of NOWHERE agents 115

A.2 One to One Communication Example - Java

package testAgents;

import java.io.File;

import java.util.Scanner;

import java.util.TreeMap;

import services.Description;

import services.Request;

import services.Response;

import agent.AgentCL1;

import agent.DispatcherInterface;

import message.Message;

public class AskOne extends AgentCL1 implements DispatcherInterface {

String myId = "";

Description ping;

// Initialize the agent architecture

public void runAgentCode(String configDir) {
Message m = new Message("startup");

start(configDir, "maya.ei.unibo.it:8080", m);

}

// Handles the initialization message

public void dispatcher(Message m) {
if (m.checkMessageName("startup")) {

TreeMap<String, String> parameters = new

TreeMap<String, String>();

parameters.put("parameter1", "string");

TreeMap<String, String> returnParameters = new

TreeMap<String, String>();

parameters.put("returnValue", "string");

ping = makeDescription("", "ping", parameters,

returnParameters);

Request r = ping.getRequest();

r.setParameter("parameter1", "askOne Parameter");

System.out.println("Sending ask-one performative.");

116 Appendix A. Source code examples of NOWHERE agents

System.out.print("ID of the agent to ask to: ");

// Asks the user for an agent name to ping

String id = new Scanner (System.in).next();

setAgentType(WEB AGENT);

setAgentReactiveness(WEB AGENT);

// Invokes the ping service

askOne(id, r, "onAnswer", null, "onError", null);

}
else { System.out.println("Received unknown message: " +

m.toString());

}
}

// This code handles the reply of the ping service

public void onAnswer(Message m) {
System.out.println("Received reply from " + m.getSender());

Response response = ping.retrieveResponseFromMessage(m);

System.out.println("Response is " + response.

getParameter("returnValue"));

bye();

}

// This code will handles problems in the invocation of the’ service

public void onError() {
System.out.println("Error occurred.");

System.out.println("Exiting");

bye();

}

public static void main(String args[]) {
AskOne ta = new AskOne();

String prefix = File.separator + "tmp";

if (args.length > 0)

ta.runAgentCode(args[0]);

else

ta.runAgentCode(prefix +File.separator + ta.getClass().

getSimpleName());

}
}

Appendix A. Source code examples of NOWHERE agents 117

A.3 Anonymous Interaction Mechanism - Java

package testAgents;

import java.io.File;

import java.util.TreeMap;

import services.Description;

import services.Request;

import services.Response;

import agent.AgentCL1;

import agent.DispatcherInterface;

import message.Message;

public class AskEv extends AgentCL1 implements DispatcherInterface {
String myId = "";

Description bping;

public void runAgentCode(String configDir) {
Message m = new Message("startup");

start(configDir, "maya.ei.unibo.it:8080", m);

}

public void dispatcher(Message m) {
if (m.checkMessageName("startup")) {

System.out.println("Sending ask-everybody performative.");

TreeMap<String, String> parameters = new

TreeMap<String, String>();

TreeMap<String, String> returnParameters = new

TreeMap<String, String>();

parameters.put("parameter1", "string");

parameters.put("returnValue", "string");

bping = makeDescription("", "bping", parameters,

returnParameters);

this.setAgentType(100000);

Request r = bping.getRequest();

r.setParameter("parameter1", "askEverybody parameter");

// Request the Bping service to every agent that provides it

askEverybody(r, "onAnswer", null, "onError", null);

}

118 Appendix A. Source code examples of NOWHERE agents

else {
System.out.println("Received unknown message: " +

m.toString());

}
}

// Handles every replies for the invoked service

public void onAnswer(Message m) {
if (allAnswers())

System.out.println("Received LAST reply from " +

m.getSender());

else

System.out.println("Received reply from " +

m.getSender());

Response r = bping.retrieveResponseFromMessage(m);

System.out.println("Return value: " + r.getParameter(

"returnValue"));

if (allAnswers())

// All answers received; exiting

bye();

}

public void onError() {
System.out.println("Error occurred.");

System.out.println("Exiting");

bye();

}

public static void main(String args[]) {
AskEv ta = new AskEv();

String prefix = File.separator + "tmp";

if (args.length > 0)

ta.runAgentCode(args[0]);

else

ta.runAgentCode(prefix +File.separator +

ta.getClass().getSimpleName());

}
}

References

[1] Apache tomcat. Available online at http://tomcat.apache.org/.

[2] The corba website. Available online at http://www.corba.org/.

[3] D. Eastlake 3rd. Us secure hash algorithm 1 (sha1). Available online at: http:

//www.ietf.org/rfc/rfc3174.txt, 2001.

[4] Inc. Acronymics. Agentbuilder user’s guide. Available online at http://www.

agentbuilder.com/Documentation/UsersGuide-v1.4.pdf, 2004.

[5] FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS. Fipa abstract ar-

chitecture specification. Available online at http://www.fipa.org/specs/

fipa00001/SC00001L.html, 2002.

[6] FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS. Fipa contract net inter-

action protocol specification. Available online at http://www.fipa.org/specs/

fipa00029/SC00029H.pdf, 2002.

[7] FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS. Fipa agent management

specification. Available online at http://www.fipa.org/specs/fipa00023/

SC00023K.html, 2004.

[8] J.L. Austin. How To Do Things With Words. Harvard University Press, 1962.

[9] R. Aydt, D. Gunter, W. Smith, V. Taylor, and B. Tierney. Simple Case Study of

a Grid Performance System. Available online: http://www-didc.lbl.gov/

GGF-PERF/GMA-WG/documents.html. Grid Working Draft GWD-Perf-9-3, 2002.

120 References

[10] C. Baumer, M. Breugst, S. Choy, and T. Magedanz. Grasshopper: a univer-

sal agent platform based on omg masif and fipa standards. Available on-

line at: http://cordis.europa.eu/infowin/acts/analysys/products/

thematic/agents/ch4/ch4.htm, 2000.

[11] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with jade.

In Proceedings of the Seventh International Workshop on Agent Theories, Architectures, and

Languages, 2000.

[12] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Jade: a fipa2000 compli-

ant agent development environment. In AGENTS ’01: Proceedings of the fifth inter-

national conference on Autonomous agents, pages 216–217, New York, NY, USA, 2001.

ACM Press.

[13] M. E. Bratman. Intention, Plans, and Practical Reason. Harvard University Press,

Cambridge, MA, 1987.

[14] F. Brazier, B. Overeinder, M. van Steen, and N. Wijngaards. Generative migration of

agents. Proc. of the AISB’02 Symposium on Adaptive Agents and MAS, 2002.

[15] Tryllian Solutions B.V. Public agent runtime environment specifications. Available

online at http://www.tryllian.org/docs/are-spec/index.html, 2005.

[16] Knowledge Media Laboratory Corporate Research & Development Center. Bee-

gent - bonding and encapsulation enhancement agent. Available online at http:

//www2.toshiba.co.jp/rdc/beegent/index.htm.

[17] A. Cheyer and D. Martin. The Open Agent Architecture. Journal of Autonomous

Agents and Multi-Agent Systems, 4(1):143–148, March 2001. OAA.

[18] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.

Web services description language (wsdl) 1.1. Available online at: http://www.

w3.org/TR/wsdl, 2001.

[19] Owen Cliffe. Fipa mailbox for jade. Available online at http://agents.cs.

bath.ac.uk/agents/software/fipamailbox/, 2006.

References 121

[20] Edward Curry. Mtp implementation based on java messaging service. Available on-

line at http://ecrg.it.nuigalway.ie/downloads/jmsmtp-latest.zip.

[21] M. Calisti D. Greenwood. An automatic, bi-directional service integration gateway.

In In Proc. of IEEE Systems, Cybernetics and Man Conference, 2004.

[22] J. Domingue, L. Cabral, F. Hakimpour, D. Sell, and E. Motta. IRS-III: A Platform and

Infrastructure for Creating WSMO-based Semantic Web Services. In Proceedings of

the WIW 2004 Workshop on WSMO Implementations, Frankfurt, September 29-30 2004.

[23] N. Dragoni and M. Gaspari. An Object Based Algebra for Specifying A Fault Toler-

ant Software Architecture. Journal of Logic and Algebraic Programming, 63(2):271–297,

2005.

[24] N. Dragoni and M. Gaspari. Crash failure detection in asynchronous agent com-

munication languages. Autonomous Agents and Multi-Agent Systems, 13(3):355–390,

2006.

[25] N. Dragoni, M. Gaspari, and D. Guidi. An ACL for Specifying Fault-Tolerant Pro-

tocols. In Proceedings of AIIA Conference, Lecture Notes in Computer Science, pages

237–248, Milan, ITALY, 2005. Springer Verlag.

[26] N. Dragoni, M. Gaspari, and D. Guidi. A fault tolerant agent communication

language for supporting web agent interaction. In Agent Communication: Interna-

tional Workshop on Agent Communication (AC2005), Revised Selected and Invited Papers.

Springer Verlag, 2005.

[27] W. Farmer, J. Guttman, and V. Swarup. Security for mobile agents: Issues and re-

quirements. In Proceedings of the 19th National Information Systems Security Conference,

pages 591–597, 1996.

[28] Joel Farrell and Holger Lausen. Semantic annotations for wsdl. Available online:

http://www.w3.org/TR/sawsdl/. W3C Working draft.

[29] D. Fensel, C. Bussler, Y. Ding, and B. Omelayenko. The Web Service Modeling

Framework WSMF. Electronic Commerce Research and Applications, 1(2), 2002.

122 References

[30] Jacques Ferber, Olivier Gutkecht, and Fabien Michel. Madkit development

guide. Available online at http://www.madkit.org/madkit/doc/devguide/

devguide.html.

[31] T. Finin, Y. Labrou, and J. Mayfield. KQML as an Agent Communication Language.

In Software Agents, pages 291–316. MIT Press, 1997.

[32] FIPA Communicative Act Library Specification. Available online: http://www.

fipa.org/, 2002. Document number: SC00037J.

[33] The Apache Software Foundation. Axis user’s guide. Available online at http:

//ws.apache.org/axis/java/user-guide.html.

[34] S. Franklin and A. Graesser. Is it an agent, or just a program?: A taxonomy for au-

tonomous agents. In Proceedings of the Third International Workshop on Agent Theories,

Architectures, and Languages. Institute for Intelligent Systems, University of Mem-

phis, Springer-Verlag, 1996.

[35] M. Gaspari. Concurrency and Knowledge-Level Communication in Agent Lan-

guages. Artificial Intelligence, 105(1-2):1–45, 1998.

[36] M. R. Genesereth and N. J. Nilsson. Logical Foundation of Artificial Intelligence. Mor-

gan Kaufmann, Palo Alto, CA, 1987.

[37] Robert S. Gray, George Cybenko, David Kotz, and Daniela Rus. Mobile agents:

Motivations and state of the art. Technical Report TR2000-365, Dept. of Computer

Science, Dartmouth College, 2000.

[38] D. Greenwood and M. Calisti. Engineering web service agent integration. In In

Proc. of IEEE Systems, Cybernetics and Man Conference, 2004.

[39] Miguel Escriva Gregori, Javier Palanca Camara, and Gustavo Aranda Bada. A

jabber-based multi-agent system platform. In In Proc. of the fifth international joint

conference on Autonomous agents and multiagent systems, 2006.

[40] T. Gruber. A Translation Approach to Portable Ontologies. Knowledge Acquisition,

5(2):199–220, 1993.

References 123

[41] H. He, H. Haas, and D. Orchard. Web Services Architecture Usage Scenarios. Tech-

nical Report NOTE-ws-arch-scenarios-20040211, W3C, February 2004.

[42] A. Hector and V.L. Narasimhan. A new classification scheme for software agents.

In In Proc of ICITA 2005 - Third International Conference on Information Technology and

Applications, 2005, volume 1, pages 191–196, 2005.

[43] Aaron Helsinger and Todd Wright. Cougaar: A robust congurable multi agent plat-

form. In Proc. of IEEE Aerospace Conference, 2005.

[44] Intelligent Automation Inc. Cybelepro agent infrastructure user guide. Available

online at: www.opencybele.org/docs/UsersGuideCybeleProVersion1.0.

pdf.

[45] Jack intelligent agents user guide. Available online at: http://homepage.cs.

latrobe.edu.au/mchhabra/doc/Agent Manual WEB/index.html, 2001.

Version 3.0.

[46] Bart Jacob, Luis Ferreira, Norbert Bieberstein, Candice Gilzean, Jean-Yves Girard,

Roman Strachowski, and Seong (Steve) Yu. Enabling Applications for Grid Com-

puting with Globus. Available online at: http://www.redbooks.ibm.com/

redbooks/pdfs/sg246936.pdf. IBM Redbooks, SG24-6895, 2003.

[47] Danny B. Lange and Mitsuru Oshima. Programming and Deploying Java Mobile Agents

with Aglets. Addison-Wesley, 1998.

[48] J. Linn. Privacy enhancement for internet electronic mail: Part i: Message encryption

and authentication procedure. Available online at: http://www.ietf.org/rfc/

rfc1421.txt, 1993.

[49] Frank G. McCabe and Keith L. Clark. April – agent process interaction language.

In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories, Architec-

tures, and Languages (LNAI volume 890), pages 324–340. Springer-Verlag: Heidelberg,

Germany, 1995.

[50] S. Mullender. Distributed Systems. ADDISON-WESLEY, 1993.

[51] A. Newell. The knowledge level. Artificial Intelligence, 19:87–127, 1982.

124 References

[52] Thang Xuan Nguyen and Ryszard Kowalczyk. Ws2jade: Integrating web service

with jade agents. Technical Report SUTICT-TR2005.03, Swinburne University of

Technology, 2005.

[53] J. Nielsen. Usability Engineering. MA Academic Press, 1993.

[54] Nortel Networks Corporation, 8200 Dixie Road, Suite 100, Brampton, On-

tario, Canada L6R 5P6. FIPA-OS Developers Guide, 2001. http://fipa-os.

sourceforge.net/docs/Developers Guide.pdf.

[55] H.S. Nwana. Software agents: an overview. The Knowledge Engineering Review,

11(3):205–244, 1996.

[56] Hyacinth S. Nwana, Divine T. Ndumu, Lyndon C. Lee, and Jaron C. Collis. Zeus:

A toolkit for building distributed multi-agent systems. In Oren Etzioni, Jorg P.

Muller, and Jeffrey M. Bradshaw, editors, Third International Conference on Au-

tonomous Agents, pages 360–361, Seattle, WA, 1999. ACM Press.

[57] James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Representing agent inter-

action protocols in UML. In AOSE, pages 121–140, 2001.

[58] OWL-S 1.0 Release. Available online: http://www.daml.org/services/

owl-s/1.0/.

[59] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic Matching of Web Ser-

vices Capabilities. In Proceedings of the first International Semantic Web Conference

(ISWC), Sardinia, Italy, June 2002.

[60] H. V. D. Paranuk. Applications of distributed artificial intelligence in industry. Foun-

dations of Distributed Artificial Intelligence, pages 139–164, 1996.

[61] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: A BDI Reasoning

Engine, Chapter of Multi-Agent Programming. Kluwer Book, 2005.

[62] Ronald Rivest. The md5 message-digest algorithm. Available online at: http:

//tools.ietf.org/html/rfc1321, 1992.

[63] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall Inc,

1995.

References 125

[64] J.R. Searle. Speech Acts. Cambridge University Press, 1969.

[65] R. G. Smith. The Contract Net Protocol: High Level Communication and Control

in a Distributed Problem Solver . IEEE Transactions on Computers, 29(12):1104–1113,

1980.

[66] Simple Object Access Protocol (SOAP). Available online: http://www.w3.org/

TR/soap.

[67] Nguyen T. and Giang T.Tung. Agent platform evaluation and comparison. Tech-

nical Report Pellucid EU 5FP IST-2001-34519 RTD, Institute of Informatics, Slovak

Academy of Sciences, 2002.

[68] BBN Technologies. Cougaar architecture document. Available online at http://

cougaar.org/docman/view.php/17/170/CAD 11 4.pdf, 2004.

[69] B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Haywood, J-C. Hugly, E. Pouy-

oul, and B. Yeager. Project jxta 2.0 super-peer virtual network. Available online

at: http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf,

2003.

[70] Venu Vasudevan. Objs technical note: Comparing agent communication languages.

Technical report, Object Services and Consulting, Inc., 1998.

[71] Jean Vaucher and Ambroise Ncho. Jade tutorial and primer. Technical report, Dep.

d’informatique, Universit de Montrl, 2004.

[72] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1.

j-LECT-NOTES-COMP-SCI, 3621, 2005.

[73] M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. Knowl-

edge Engineering Review, 10(2):115–152, 1995.

[74] WSMO Working Group. Web Service Modeling Ontology (WSMO), 2004. WSMO

Working Draft D2v1.1.

