
UNIVERSITÀ DEGLI STUDI DI BOLOGNA

DEIS - Dipartimento di Elettronica Informatica e Sistemistica

Dottorato di Ricerca in

Automatica e Ricerca Operativa
(MAT/09)

XVIII Ciclo

LP-based Heuristics for the
Traveling Salesman Problem

Tesi di Dottorato di:

Matteo Fortini

Il Coordinatore Il Supervisore

Ch.mo Prof. Claudio Melchiorri Ch.mo Prof. Andrea Lodi
Ch.mo Prof. Paolo Toth

Bologna, 15 Marzo 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AMS Tesi di Dottorato

https://core.ac.uk/display/11010984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A mia moglie Elena
e alle nostre bimbe Alice e Irene

Contents

List of figures iii

List of tables v

1 Introduction 1

2 Traveling Salesman Problem (TSP) 3
2.1 Some history . 3

2.1.1 A handbook from 1832 . 3
2.1.2 Karl Menger, 1920-1930 . 4
2.1.3 Harvard, Princeton 1930-1934 4
2.1.4 The year 1940 . 5
2.1.5 RAND Corporation 1947-1952 5
2.1.6 Dantzig, Fulkerson, Johnson 1954 5
2.1.7 1954 – today . 5

3 Linear Programming formulation of the TSP 9
3.1 The TSP and Mixed-Integer Programming in general 9

3.1.1 Introduction . 9
3.1.2 Definitions . 9
3.1.3 Preprocessing . 11
3.1.4 Valid Inequalities and Cutting Planes 12
3.1.5 Branch-and-Bound . 14
3.1.6 Branch-and-Cut . 17
3.1.7 Primal Heuristics . 17
3.1.8 Truncated search . 18
3.1.9 Column generation . 19

3.2 IP formulation of the TSP . 19
3.2.1 Separation methods . 20
3.2.2 Degree equations (DEG) . 21
3.2.3 Subtour-elimination constraints (SEC) 21

4 SEP Relaxation, Minimum Cuts and a Tour Construction Heuristic 23
4.1 Subtour Elimination Polytope (SEP) Relaxation 23

4.1.1 Separation method for SECs 23

i

ii CONTENTS

4.2 A Tour Construction Heuristic . 24
4.2.1 The Compatible Tour Heuristic 25

5 Two Negative Results 27
5.1 Finding the best compatible tour is NP-hard in the strong sense. . . 28
5.2 The worst-case ratio versus the optimal tour is at least 5/3 30

6 Algorithms 33
6.1 Tight sets . 33

6.1.1 The cactus-tree representation of minimum cuts 34
6.1.2 PQ-trees . 35
6.1.3 Dominance among Tightness Constraints 36
6.1.4 Properties of a compatible tour 38

6.2 A dynamic programming algorithm 38
6.2.1 PQ-tree based algorithm . 38
6.2.2 Cactus-tree based algorithm 39
6.2.3 Improvements on the algorithm 40

6.3 LP-based implementations . 41
6.3.1 Lagrangean relaxation of the tightness constraints 42
6.3.2 A branch-and-cut algorithm 44

7 Results 47
7.1 Gap for problems in TSPLIB . 47
7.2 Times for the B&C and price algorithm 50
7.3 Dynamic Programming algorithm 53

8 Conclusions 59

List of Figures

4.1 A fractional vertex of SEP(14). 25
4.2 A tour compatible with the fractional vertex shown in Figure 4.1. . . 26

5.1 Cubic Hamiltonian graph G and Eulerian multigraph G′. 28
5.2 Extreme point of SEP(18). 29
5.3 Compatible tour corresponding to traversal of G′. 29
5.4 The graph H35. 30
5.5 A Hamiltonian circuit in H35. 31
5.6 Optimal fractional vertex of SEP(90). 31
5.7 Compatible tour for H35 (one edge omitted for clarity). 31

6.1 PQ-tree corresponding to the fractional point in Figure 4.1. 36
6.2 Cactus-tree corresponding to the fractional point in Figure 4.1 (nodes

above 14 are empty) . 37
6.3 PQ-tree corresponding to the fractional point in Figure 5.2. 39

7.1 Box plot of gaps in table 7.1 . 50
7.2 Times for steps in table 7.3 . 54
7.3 Ttot versus number of nodes in table 7.3 55
7.4 Subproblems versus onechains×maxDeg for table 7.4 57

iii

iv LIST OF FIGURES

List of Tables

7.1 Gap for problems in TSPLIB . 49
7.2 DIMACS Gaps for tour construction heuristics on pcb1173 50
7.3 Times for Branch & Cut . 53
7.4 Dynamic Programming algorithm 57

v

vi LIST OF TABLES

Chapter 1

Introduction

The Symmetric Traveling Salesman Problem, or STSP, is the problem of finding a
minimum weight Hamiltonian circuit in an edge-weighted graph. The STSP is a
fundamental problem in combinatorial optimisation, and has received a huge amount
of attention in the literature (see the books Lawler et al. [15] and Gutin & Punnen
[13] and the survey papers by Jünger, Reinelt & Rinaldi [84, 85]).

The STSP is strongly NP-hard, which means that heuristics must be used to
tackle hard instances. Yet, it is possible to solve suprisingly large instances to opti-
mality via the so-called branch-and-cut technique; see for example Padberg & Rinaldi
[121] or Applegate et al. [18]. The first step in the branch-and-cut approach is
normally to solve the so-called subtour relaxation (or Held-Karp relaxation), giving
a lower bound to the cost of the optimal tour. In practice, this lower bound is
fairly strong, and it has been conjectured (see for example Goemans [71]) that the
worst-case ratio between the optimum and the lower bound is never more than 4/3.

It seems reasonable to suppose that the solution to the subtour relaxation, though
typically fractional, contains some information which could be exploited by a heuristic
method. This is the idea underlying the compatible tour heuristic, which is the topic
of this thesis.

The structure of the remainder of the thesis is as follows. The heuristic is formally
defined in Section 4.2. In Chapter 5, we prove two negative results: that the problem
of finding the best compatible tour is strongly NP-complete, and that the worst-case
ratio between the cost of the best compatible tour and that of the optimum can
approach 5/3, even when the instance is metric (i.e., has edge costs satisfying the
triangle inequality). In Chapter 6, we present some structural properties which are
satisfied by solutions to the subtour relaxation, and show how these can be used to
devise algorithms for finding the best compatible tour. Finally, computational results
are given in Chapter 7.

1

2 Chapter 1. Introduction

Chapter 2

Traveling Salesman Problem (TSP)

The Traveling Salesman Problem can be worded as:

Given a finite set of cities and the distances between each pair of them,
find the shortest tour that passes through each city only once and goes
back to the first one in the end.

A more mathematical formulation is

Find the shortest hamiltonian tour in a finite, complete, weighted graph.

2.1 Some history

Even if the traveling salesman problem can be found in several practical fields, it is
still unclear how and when it started to interest mathematicians from a theoretical
point of view.

2.1.1 A handbook from 1832

One of the first explicit formulation of a “Traveling salesman problem” is found in
a handbook from 1832, dedicated to traveling salespersons, titled “The traveling
salesman – how he should be and what he should do, to get the orders and assure
success for his business – from and old traveling salesman”.

The problem is described in this way:

Business brings the traveling salesman first here, then there, and it is
not possible to describe paths that adapt to every possible case; some-
times however, thanks to a careful choice of paths and to an appropriate
sequence of travels, one can save so much time, that we can’t avoid
showing some rules on this subject.

Anyone can take from these rules as much as he deems useful to his
objectives; we believe, however, that we can largely insure, that it may
not be possible to order the paths through Germany in a more economical

3

4 Chapter 2. Traveling Salesman Problem (TSP)

way in distance terms and, what must be of primary importance to the
traveler, regarding the length of the travel forth and back. The main issue
is visiting the biggest number of places, without having to pass through
anyone of them more than once.

2.1.2 Karl Menger, 1920-1930

The first mathematician who wrote anything about the TSP seems to be Karl Menger,
who solved related problems during his studies about the length of a curved line in a
metric space.

In a speech he gave in Vienna in 1930, Menger talks about what he calls the
Botenproblem:

We call the messenger problem (Botenproblem) (since in practice this
problem should be solved by any postman, and anyhow also by many
travelers) the task of finding, for a finite number of points for which
the relative distances are known, the shortest path that connects them.
Surely, the problem can be solved using an enormous number of ten-
tatives. There are no known rules that allow to lower the number of
tentatives below the number of permutations of the given points. The
rule of going from the starting point to the nearest, then to the nearest
to the reached point, etc., doesn’t lead to the shortest tour.

Note that Menger claimed that a greedy algorithm is not optimal for the TSP.

2.1.3 Harvard, Princeton 1930-1934

The history of the TSP in these years is not clear, primarily regarding the events’
dates.

What is sure is that Menger was visiting lecturer at the Harvard University from
September, 1930 to February, 1931, and in one of his seminars he showed his results
on the length of curved lines, including his formulation of the messenger problem.

Hassler Whitney, then researcher in graph theory at the Harvard University, took
on the problem, suggesting its practical implications.

It was Whitney who brought the problem to Princeton University, where he set
the problem of finding the shortest tour among the 48 American States.

Also in Princeton, Flood and Tucker started to note the similarities between the
TSP and the hamiltonian tour problem, which can be formulated as:

Given a connected graph, find a tour that passes through each node only
once.

The TSP is a natural generalization of the hamiltonian tour problem, since it asks
for the shortest hamiltonian tour.

2.1. Some history 5

2.1.4 The year 1940

The first mathematical papers about the TSP go back to 1940. The main problem
the research focus on is finding a lower-bound for the best tour. The reason behind
the interest came from an expedition in Bengal, for which one of the most expensive
factor was the movement of men and material from a place to some other.

After that, mathematicians generalized the problem, first to a finite number of
random points in a unity-sided square, then in a general area.

In this period Ghosh noted that the problem proved to be very complex, except
for very small instances, that were although scarcely interesting in practice.

2.1.5 RAND Corporation 1947-1952

Merrill Flood brought the traveling salesman problem to RAND Corporation in Santa
Monica, CA.

People in RAND tried to apply known methods for transportation and assignment
problems to the TSP, without success. RAND Corporation promised a reward to
anyone that found a fundamental theorem about the TSP.

2.1.6 Dantzig, Fulkerson, Johnson 1954

RAND researchers RAND Dantzig, Fulkerson and Johnson were the first to set a
milestone in the solution of the TSP.

Applying the simplex method recently developed by Dantzig, they solved a 49 city
problem in the USA very similar to the one stated by Whitney, with a city in every
state, plus Washington, D.C.

The cutting plane method for solving LP problems was developed in this period.

2.1.7 1954 – today

After the solution of the 49 city problem by Dantzig, Fulkerson and Johnson, the
improvements on the solution of the TSP have come mainly from the development of
improved methods of applying the cutting plane method to the LP. However, there
have been no sensational theoretical results, so that the reward posed by the RAND
Corporation is still to be claimed.

The theoretical work has been focused on a better knowledge about the TSP
polytope and its properties, in order to find better cutting planes. On the other
side there has been the development of better and better heuristic algorithm to find
quasi-optimal solutions.

One of the most important theoretical results is the proof by Richard Karp, Eugene
Lawler and Robert Tarjan of the NP-hardness of the decision version of the TSP in
1972. 1

1We briefly recall that the proof of th NP-hardness of a problem P is done in two steps:

1. P can be solved in polynomial time in the best case

6 Chapter 2. Traveling Salesman Problem (TSP)

Today, the research on the TSP is very active and its results have been successfully
applied to other Operations Research problems.

On one side, there is the search for better heuristics, both for speed and for
optimality, using for example simulated annealing, genetic algorithms, tabu-search,
neural networks or ant-colonies.

On the other side, researchers have developed better and better software to solve
the TSP to optimality, mainly through variants of the cutting plane method. CON-
CORDE, which we used for our research, is the best software developed for the TSP in
term of the size of solved problems, and contains a large part of the recent algorithmic
results on the TSP.

The rating to a software designed for solving the TSP is given by its ability of
solving previously unsolved instances, or by its bigger speed in solving already solved
problems compared to existing softwares.

A common test body of instances is being collected by Gerhard Reinelt in a library
called TSPLIB.

We cite an interesting observation by the authors of CONCORDE about the
research on the TSP:

Arguing that [the TSP] is popular because it arises from practical
applications would be hard: even though variations on the TSP theme
come up in practice relatively often, the theme in its pure form appears
only rarely. Two of its sources are (a) drilling holes in printed circuit
boards, where the time spent on moving the drill through a sequence of
prescribed positions is to be minimized, and (b) X-ray crystallography,
where the time spent on moving the diffractometer through a sequence
of prescribed angles is to be minimized. [...]

Writing computer programs to solve TSPLIB problems can hardly
be classified as applied work. The technology of manufacturing printed
circuit boards has changed and the drilling problems from the TSPLIB are
no longer of interest to the industry. Similarly, development of multiplex
cameras is making the TSP problems of X-ray crystallography obsolete;
besides, research laboratories have never considered large investments of
computer time for the small gain of minimizing the time spent by moving
the diffractometer. Furthermore, even if there were a client with a genuine
need to solve TSP problems, such a client would most likely be satisfied
with nearly optimal tours. Finding nearly optimal tours even in fairly large
TSPLIB problems is a relatively easy task: good implementations of the
Lin-Kernighan heuristic and its refinements work like a charm. Most of
the computer time spent on solving TSPLIB problems goes into proving
that a tour is optimal, a fact of negligible interest to the hypothetical
client.

2. ∃P ′ : P ′ ∈ {NP-hard problems} ∧ P ′ ∝ P
⇔ (∀P ′ P ′ ∈ {NP-hard problems} ⇒ P ′ ∝ P)

2.1. Some history 7

Writing computer programs to solve TSPLIB problems can hardly be
classified as theoretical work, either. A prize offered by the RAND corpo-
ration for a significant theorem bearing on the TSP was never awarded;
Dantzig, Fulkerson, and Johnson close their seminal paper with the mod-
est disclaimer: ”It is clear that we have left unanswered practically any
question one might pose of a theoretical nature concerning the traveling-
salesman problem”. All the successful computer programs for solving
TSP problems follow the Dantzig-Fulkerson-Johnson scheme; improve-
ments consist only of better ways of finding cuts and better handling
of the large linear programming relaxations. (Having a faster computer
helps, too.)

Writing computer programs to solve TSPLIB problems could be clas-
sified as a sport , where each new record is established by solving at least
one previously unsolved instance. [. . .] [17]

8 Chapter 2. Traveling Salesman Problem (TSP)

Chapter 3

Linear Programming formulation of
the TSP

The simplex method and the increasing performances of computers make easy to
solve quite large continuous LP instances to the optimum.

A natural way of solving the TSP to optimality has thus been writing it as a mixed
integer LP problem.

3.1 The TSP and Mixed-Integer Programming in

general

3.1.1 Introduction

Many problems in science, technology, business, and society can be modeled as mixed
integer programming (MIP) problems and, as a matter of fact, in the last decade the
use of integer programming models and software has increased dramatically. Nowa-
days, thanks to the progress of computer hardware and, even more, advances in the
solution techniques and algorithms, it is possible to solve problems with thousands
of integer variables on personal computers, and to obtain high quality solutions to
problems with millions of variables (for example, set partitioning problems) often in
a matter of minutes.

Among the currently most successful methods, to solve MIP problems, are linear
programming (LP, for short) based branch-and-bound algorithms, where the underly-
ing linear programs are possibly strengthened by cutting planes.

Today’s codes, however, have become increasingly complex with the incorpo-
ration of sophisticated algorithmic components, such as preprocessing and probing
techniques, cutting plane algorithms, advanced search strategies, and primal heuris-
tics.

3.1.2 Definitions

A mixed integer program (MIP) is a system of the following form:

9

10 Chapter 3. Linear Programming formulation of the TSP

zMIP = min cT x
subject to Ax ≤ b

x ≤ x ≤ x
x ∈ ZG × RC,

(3.1)

where A ∈ QM×(G∪C), c ∈ QG∪C , b ∈ QM. Here, cT x is the objective function,
Ax ≤ b are the constraints of the MIP, and M, G and C are non-empty, finite sets
with G and C disjoint. Without loss of generality, we may assume that the elements
of M, G and C are represented by numbers, i.e., M = {1, . . . , m}, G = {1, . . . , p}
and C = {p + 1, . . . , n}. The vectors x ∈ (Q ∪ {−∞})G∪C, andx ∈ (Q ∪ {∞})G∪C
are called lower and upper bounds on x, respectively. A variable xj , j ∈ G ∪ C, is
unbounded from below (above), if xj = −∞ (xj = ∞). An integer variable xj ∈ Z

with xj = 0 and xj = 1 is called binary. If G = ∅ then (3.1) is called linear program
or LP. If C = ∅ then (3.1) is called integer program or IP. A 0-1 MIP is a MIP where
all the integer variables are binary. A vector x that satisfies all constraints is called
a feasible solution. An optimal solution is a feasible solution for which the objective
function achieves the smallest value.

From a complexity point of view mixed integer programming problems belong to
the class of NP-hard problems (see Garey and Johnson [131], for example) which
makes it unlikely that efficient, i.e., polynomial time, algorithms for their solution
exist.

The linear programming (LP) relaxation of a MIP is the problem obtained from
(3.1) by dropping the integrality restrictions, i.e., replacing x ∈ ZG × RC with x ∈
RG∪C. The optimal value of the LP relaxation provides a lower bound on the optimal
value of the MIP. Therefore, if an optimal solution to the LP relaxation satisfies
the integrality restrictions, then that solution is also optimal for the MIP. If the LP
relaxation is infeasible, then the MIP is also infeasible, and if the LP relaxation is
unbounded, then the MIP is either unbounded or infeasible. If the MIP is feasible and
its LP relaxation is bounded, then the MIP has optimal solution(s)1.

A common approach to solving a MIP consists of solving its LP relaxation2 in the
hope of finding an optimal solution x∗ which happens to be integer. If this is not
the case, there are two main ways to proceed. In the cutting-plane approach, one
enters the separation phase, where a linear inequality (cut) αT x ≤ α0 is identified
which separates x∗ from the feasible solutions of the MIP. The cut is appended to
the current LP relaxation, and the procedure is iterated. In the branch-and-bound
approach, instead, the MIP is replaced by two subproblems obtained, e.g., by imposing
an additional restriction of the type xj ≤ ⌊x∗

j⌋ and xj ≥ ⌈x∗
j⌉, respectively, where xj

1This is in general not true when the problem is not rational. Consider for example the problem
max{x1 −

√
2x2 : x1 ≤

√
2x2, x1, x2 integer}; this has feasible solutions with negative objective

values arbitrarily close to 0, but none equal to 0.
2Linear programs can efficiently be solved using Dantzig’s simplex algorithm or interior point

methods. For an introduction to linear programming see, for instance, Nemhauser and Wolsey
[111], or Bertsimas and Tsitsiklis [132].

3.1. The TSP and Mixed-Integer Programming in general 11

is an integer-constrained variable with fractional value in x∗. The procedure is then
recursively applied to each of the subproblems.

3.1.3 Preprocessing

Preprocessing is the name for a number of techniques, employed by MIP solvers,
aimed at reducing the size of an instance and strengthen its LP bound [133]. Pre-
processing can alter a given formulation quite significantly by fixing, aggregating,
and/or substituting variables and constraints of the problem, as well as changing the
coefficients of the constraints and the objective function.

As an example (taken from Martin [134]), consider the following bounds strength-
ening technique, where we exploit the bounds on the variables to detect so-called
forcing and dominated rows. Given some row i, let

Li =
∑

j∈Pi

aijxj +
∑

j∈Ni

aijxj ,

Ui =
∑

j∈Pi

aijxj +
∑

j∈Ni

aijxj

(3.2)

where Pi = {j : aij > 0} and Ni = {j : aij < 0}. Obviously, Li ≤
∑n

j=1 aijxj ≤ Ui.
The following cases might come up. An inequality i is an infeasible row if Li > bi. In
this case the entire problem is infeasible. An inequality i is a forcing row if Li = bi. In
this case all variables in Pi can be fixed to their lower bound and all variables in Ni to
their upper bound. Row i can be deleted afterwards. An inequality i is a redundant
row if Ui < bi. In this case i can be removed.

This row bound analysis can also be used to strengthen the lower and upper
bounds of the variables. Compute for each variable xj and each inequality i

uij =

{

(bi − Li)/aij + xj , if aij > 0
(Li − Ui)/aij + xj , if aij < 0

lij =

{

(Li − Ui)/aij + xj , if aij > 0
(bi − Li)/aij + xj , if aij < 0.

(3.3)

Let uj = mini uij and lj = maxi lij . If uj ≤ xj and lj ≥ xj we speak of an implied
free variable. The simplex method might benefit from not updating the bounds but
treating variable xj as a free variable (note that setting the bounds of xj to −∞ and
+∞ will not change the feasible region). Free variables will commonly be in the basis
and are thus useful in finding a starting basis. For mixed integer programs however,
if the variable xj is integer, it is better in general to update the bounds by setting
xj = min{xj, uj} and xj = max{xj , lj}, because the search region of the variable
within an enumeration scheme is reduced. In case xj is an integer (or binary) variable
we round uj down to the next integer and lj up to the next integer. For example
consider the following inequality:

−45x6 − 45x30 − 79x54 − 53x78 − 53x102 − 670x126 ≤ −443 (3.4)

12 Chapter 3. Linear Programming formulation of the TSP

Since all variables are binary we get Li = −945 and Ui = 0. For j = 126 we obtain
lij = (−443 + 945)/ − 670 + 1 = 0.26. After rounding up it follows that x126 must
be 1. Note that with these new lower and upper bounds on the variables it might pay
to recompute the row bounds Li and Ui, which again might result in tighter bounds
on the variables.

Techniques that are based on checking infeasibility are called primal reduction
techniques. Dual reduction techniques make use of the objective function and attempt
to fix variables to values that they will take in any optimal solution.

One preprocessing technique that may have a big impact in strengthening the LP
relaxation of a MIP formulation is coefficient improvement. This technique updates
the coefficients of the formulation so that the constraints define a smaller LP relax-
ation, hence leading to improved LP bounds (see Nemhauser and Wolsey [111], for
example).

Probing is another technique that considers the implications of fixing a variable to
one of its bounds. For instance, if fixing a binary variable x1 to one, forces a reduction
in the upper bound of x2, then one can use this information in all constraints in which
x2 appears and possibly detect further redundancies, bound reductions, and coefficient
improvements.

See, for example, Savelsbergh [133] or Martin [134] for a survey of these and other
preprocessing techniques.

Finally, all these techniques can be applied not only before solving the initial
formulation at the root node, but also before each sub-problem in the branching
tree. However, since the impact of node preprocessing is limited to only the subtree
defined by the node, one should take into consideration whether the time spent on
node preprocessing is worthwhile.

3.1.4 Valid Inequalities and Cutting Planes

A valid inequality for a MIP is an inequality that is satisfied by all feasible solutions.
A cutting plane, or simply cut, is a valid inequality that is not satisfied by all feasible
points of the LP relaxation. Thus, if we find a cut, we can add it to the formulation
and strengthen the LP relaxation.

In the late 50’s, Gomory [135] pioneered the cutting-plane approach, proposing a
very elegant and simple way to derive cuts for an IP by using information associated
with an optimal LP basis. This was later generalized by Chvátal [46] (see also Wolsey
[136], for instance).

We can construct a valid inequality for the set X := P ∩ Zn, where P := {x ∈
Rn

+ : Ax ≤ b}, and A is an m× n matrix, as follows. Let u be an arbitrary vector in
Rm

+ . Then the inequality

uT Ax ≤ uT b (3.5)

is a valid inequality for P . Since x ≥ 0 in P , we can round down the coefficients
of the left-hand side of (3.5) and obtain that the inequality

3.1. The TSP and Mixed-Integer Programming in general 13

⌊uTA⌋x ≤ uT b. (3.6)

Finally, as x is integer in X, we can also round down the right-hand side and get

⌊uT A⌋x ≤ ⌊uT b⌋ (3.7)

as a valid inequality for X.

Quite surprisingly, all valid inequalities for an integer program can be gener-
ated by applying repeatedly this procedure a finite number of times (for a proof
see Chvátal[46], Schrijver [138], or Wolsey [136]).

In principle MIPs can be solved to optimality using the cutting plane algorithm of
Algorithm 1, however practical experience with Gomory’s algorithm shows that the
quality of the cuts generated becomes rather poor after a few iterations, which causes
the so called tailing-off phenomenon: a long sequence of iterations without significant
improvements towards integrality. Adding too many cutting planes also leads to
numerical problems, thus a stopping criterion is used to terminate the generation of
cuts, even if a feasible solution is not reached.

repeat1

solve the current LP relaxation2

if the optimal solution x∗ is integer feasible then3

return x∗
4

else5

find a cutting plane (π, π0) violated by x∗
6

add the cut πT x ≤ π0 to the current formulation7

end8

until stopping criterion reached ;9

Algorithm 1: Generic cutting plane algorithm

The first successful application of a cutting plane algorithm is due to Dantzig,
Fulkerson, and Johnson [56] who used it to solve large (for that time) instances of
the traveling salesman problem.

The cutting planes implemented in MIP solvers can be classified into two broad
categories. The first are general cuts that are valid for any MIP problem; these in-
clude Gomory mixed-integer and mixed-integer rounding cuts [137, 139]. The second
category includes strong polyhedral cuts from knapsack [140, 141, 142, 154, 155],
fixed-charge flow [156, 143] and path [144], and vertex packing [145] relaxations of
MIPs. Strong inequalities for these simpler substructures are usually quite effective
in improving LP relaxations of more complicated sets. MIP solvers automatically
identify such substructures by analyzing the constraints of the formulation and try to
add appropriate cuts.

14 Chapter 3. Linear Programming formulation of the TSP

3.1.5 Branch-and-Bound

Branch-and-bound algorithms for mixed integer programming use a “divide and con-
quer” strategy to explore the set of all feasible mixed integer solutions. These al-
gorithms build a search tree, in which the nodes of the tree represent subproblems
defined over subsets of the feasible region. According to Wolsey [136] the first paper
presenting a branch-and-bound strategy for the solution of integer programs is due
to Land and Doig [146].

Let P0 be a mixed-integer programming problem of the form (3.1). Let X0 :=
{x ∈ Zp × Qn−p : Ax ≤ b, x ≤ x ≤ x} be the set of feasible mixed integer solutions
of problem P0. If it is too difficult to compute

zMIP = min cT x
subject to x ∈ X0,

(3.8)

then we can split X0 into a finite number of disjoint subsets X1, . . . , Xk ⊂ X,
such that ∪k

j=1Xj = X0, and try to solve separately each of the subproblems

min cT x
subject to x ∈ Xj , ∀ j = 1, . . . , k.

(3.9)

Afterwards we compare the optimal solutions of the subproblems and choose the
best one. Since each subproblem is usually only slightly easier than the original
problem, this idea is iterated recursively splitting the subproblems again into further
subproblems. The (fast-growing) list of all subproblems is usually organized as a tree,
called a branch-and-bound tree and we say that a father or parent problem is split into
two or more son or child problems. This is the branching part of the branch-and-bound
method.

For the bounding part of this method we assume that we can efficiently compute
a lower bound z∗(P) of each subproblem P (with feasibility set X), so that z∗(P) ≤
minx∈X cT x. In the case of mixed integer programming this lower bound can be
obtained by using the LP relaxation.

During the exploration of the search tree we can find that the optimal solution
x∗ of the LP relaxation of a subproblem P is also a feasible mixed integer point, i.e.,
x∗ ∈ X. When x∗ is not feasible, it is sometimes possible to obtain a feasible point
by rounding the integer variables, or using more advanced heuristics. The feasible
solution with the smallest objective value, zbest, found so far is called the incumbent
solution. This allows us to maintain an upper bound on the optimal solution value zMIP

of P0, as zMIP ≤ zbest. Having a good upper bound is crucial in a branch-and-bound
algorithm, because it keeps the branching tree small. In fact, suppose the solution
of the LP relaxation of some other subproblem P ′ satisfies z∗(P ′) ≥ zbest, then
the subproblem P ′ can be pruned, without further processing, because the optimal
solution of this subproblem cannot be better than the incumbent one.

Algorithm 2 summarizes the whole branch-and-bound procedure for mixed-integer
programs.

3.1. The TSP and Mixed-Integer Programming in general 15

let L := {P0}1

let zbest := +∞2

repeat3

select a problem P from L4

remove P from L5

solve the LP relaxation of P6

if LP feasible then7

let x∗ be an optimal solution of P8

let z∗(P) := cT x∗
9

if x∗ feasible (for P0) then10

if zbest > zopt(P) then11

let zbest := z∗(P)12

let x̃ := x∗
13

delete from L all subproblems P with z∗(P) ≥ zbest
14

end15

else16

split problem P into subproblems and add them to L17

end18

end19

until L = ∅ ;20

return zbest and x̃21

Algorithm 2: Generic branch-and-bound algorithm

16 Chapter 3. Linear Programming formulation of the TSP

Initially the active node list L contains only the root node. Then, whenever a
node is processed, its LP relaxation is solved and the node is either pruned or split
into sub-problems which are added back to the list. Therefore, at any given time,
the nodes in the list L correspond to the unsolved problems in the branch-and-bound
tree, which are the leaves of the tree.

Within this general framework, there are two aspects that requires a choice to be
taken. The first one is how to perform the branching at step 17, that is how split a
problem P into subproblem. And the second one is how to choose which problem to
process next at step 4 (node selection).

Branching

A natural way to divide the feasible region of a MIP problem is to choose a variable
xi that is fractional in the current linear programming solution x∗ and create two
subproblems, one with the updated bound xi ≤ ⌊x∗

i ⌋ and the other with xi ≥ ⌈x∗
i ⌉.

This type of branching is referred to as variable dichotomy.
In general there are several fractional variables to choose from. Since the effec-

tiveness of the branch-and-bound algorithm depends heavily on the convergence of
upper and lower bounds, we would like to choose the variable that leads to the high-
est bound improvement. However this has been proved to be “difficult” so what is
typically done is select a list of “candidate” branching variables, among those that are
most fractional, and then, for each of these, estimate the LP bound that a branching
on that variable would lead to. One of the methods used to estimate the bound im-
provement consists in performing a small number of pivots and observe what happens
to the objective function (strong branching).

Node selection

There are two main possible strategies to visit the branching tree. In the best-first
search, the node P with the lowest z∗(P) is chosen, since it is supposed to be closer
to the optimal solution. At the other extreme is the depth-first search: nodes are
ordered according to their depth in the branching tree, and the deepest pending node
is processed first.

For a fixed branching rule, best-first search minimizes the number of nodes eval-
uated before completing the search. However, there are two main drawbacks: one is
that the search tends to stay in the higher levels of the branching tree, where problems
are less constrained and, thus, hardly lead to improvements of the incumbent solution.
The second one is that the search tree tends to be explored in a breadth-first fashion,
so subsequent linear programs have little relation to each other, leading to longer
evaluation times. One way to mitigate this second issue could be to save the basis
information at all the nodes, but in this case the memory requirements for searching
the tree in a best-first manner might become prohibitive.

Depth-first is easier to implement, has lower memory requirement, and changes in
the linear program, from one node to the next, are minimal (only a variable bound). It
also usually finds feasible solutions more quickly than with best-first search as feasible

3.1. The TSP and Mixed-Integer Programming in general 17

solutions are typically found deep in the search tree. One disadvantage is that, when
a “bad” branch (i.e., not containing good feasible solutions) is visited, this strategy
searches exhaustively the whole sub-tree before backtracking to different areas. Also,
it can spend a lot of time solving nodes that could have been pruned if a better
incumbent had been known.

Most integer programming solvers employ a hybrid of best-first search and depth-
first search, trying to benefit from the strengths of both, regularly switching between
the two strategies during the search. In the beginning the emphasis is usually more
on depth-first, to find high quality solutions quickly, whereas in the later stages of
the search, the emphasis is usually more on best-first, to improve the lower bounds.

3.1.6 Branch-and-Cut

Combination of cutting-plane and branch-and-bound techniques was attempted since
the early 70’s. Initially, however, the constraint generators were used only at the
root node, as a simple preprocessor, to obtain a tighter LP relaxation of the original
MIP formulation. In the mid 80’s, Padberg and Rinaldi [118, 121] introduced a new
methodology for an effective integration of the two techniques, which they named
branch-and-cut. This is an overall solution scheme whose main ingredients include:
the generation at every node of the branching tree of (facet-defining) cuts globally
valid along the tree; efficient cut management by means of a constraint pool structure;
column/row insertion and deletion from the current LP; variable fixing and setting;
and the treatment of inconsistent LP’s.

Branch-and-cut has a number of advantages over pure cutting-plane and branch-
and-bound schemes. With respect to the branch-and-bound approach, the addition
of new cuts improves the LP relaxation at every branching node. With respect to
the pure cutting-plane technique, one can resort to branching as soon as tailing-off is
detected. As the overall convergence is ensured by branching, the cut separation can
be of heuristic type, and/or can restrict to subfamilies of problem-specific cuts which
capture some structures of the problem in hand. Moreover, the run-time variable
pricing and cut generation/storing mechanisms allow one to deal effectively with
tight LP relaxations having in principle a huge number of variables and constraints.

While a branch-and-cut algorithm spends more time in solving the LP relaxations,
the resulting improved LP bounds usually leads to a significantly smaller search tree.
Naturally, as with all techniques designed to improve the performance of the basic
branch-and-bound algorithm, the time spent on cut generation must be contained in
order not to outweigh the speed-up due to improved LP bounds.

For more information about branch-and-bound and branch-and-cut see also Nemhauser
and Wolsey [111], for instance.

3.1.7 Primal Heuristics

In order to reduce the size of the branching tree, it is very useful to find good
incumbent solutions as soon as possible. On the other hand, waiting to find feasible

18 Chapter 3. Linear Programming formulation of the TSP

solutions at a node just by solving its LP relaxations can take a very long time.
Therefore MIP solvers attempt to find feasible solutions early in the search tree by
means of simple and quick heuristics. As an extreme example, if the optimal solution
would be known at the root node, then branch-and-bound would be used only to
prove the optimality of the solution. In this case, for a fixed branching rule, any node
selection rule would produce the same tree with the minimum number of nodes.

While cutting planes (and, to some extent, bounds) are used to strengthen the
lower bound on the optimal solution, primal heuristics have the complementary role
of improving the upper bound, given by incumbent solutions, and help close the gap
between the two.

Finding a feasible solution of a given MIP model is, however, a very important
(NP-complete) problem that can be extremely hard in practice. Several techniques
are typically used, involving simple rounding, partial enumeration, diving (into the
branching-tree) and variable fixing. Once one feasible solution has been found, other
improvement algorithms can be used to iteratively try to obtain a better solution.
Neighborhood search algorithms (alternatively called local search algorithms) are a
wide class of improvement algorithms where at each iteration an improving solution
is found by searching the “neighborhood” of the current solution.

Since these procedures can be quite time consuming, it seems reasonable to spend
more effort on finding good feasible solutions early in the search tree, since this would
have the most impact on the solution process. Very recently, Fischetti, Glover and
Lodi proposed a heuristic scheme for finding a feasible solution to 0-1 MIPs, called
Feasibility Pump (FP).

3.1.8 Truncated search

While mixed-integer linear programming plays a central role in modeling difficult-to-
solve (NP-hard) combinatorial problems of practical interest, the exact solution of the
resulting models often cannot be carried out (in a reasonable time) for the problem
sizes of interest in real-world applications, hence one is interested in effective heuristic
methods.

Although several heuristics have been proposed in the literature for specific classes
of problems, only a few papers deal with general-purpose MIP heuristics, including
[147, 148, 149, 150, 151, 152, 153, 157, 158] among others.

Exact MIP solvers are nowadays very sophisticated tools designed to hopefully
deliver, within acceptable computing time, a provable optimal solution of the input
MIP model, or at least a heuristic solution with a practically-acceptable error. In fact,
what matters in many practical cases is the possibility of finding reasonable solutions
as early as possible during the computation.

In this respect, the “heuristic behavior” of the MIP solver plays a very important
role: an aggressive solution strategy that improves the incumbent solution at very
early stages of the computation is strongly preferred to a strategy designed for finding
good solutions only at the late steps of the computation (that, for difficult problems,
will unlikely be reached within the time limit).

3.2. IP formulation of the TSP 19

Many commercial MIP solvers allow the user to have a certain control on their
heuristic behavior through a set of parameters affecting the visit of the branching tree,
the frequency of application of the internal heuristics, the fact of emphasizing the
solution integrality rather than its optimality, etc. Some recently proposed techniques
(Local Branching [159] and RINS [160]), have provided a considerable improvement
in this direction enhancing the heuristic behavior of MIP solvers through appropriate
diversification mechanisms borrowed from local search paradigms.

Therefore, even if branch-and-cut algorithms are NP-hard, it may be reasonable
to model a problem as a MIP instance and search for “heuristic” solutions by means
of a black-box general purpose MIP solver with a truncated search - thus exploiting
the level of sophistication reached nowadays by these tools.

3.1.9 Column generation

Another problem with MIP problems is the cost of storing an processing all the
variables involved in the problem. For each variable the solver must store the corre-
sponding (sparse) column vector in the tableau and must process it for every new cut
inserted in the LP. For this reason, it’s useful to keep the minimum needed number
of variables in the LP, inserting variables that can lead to a better solution every
time one finds an extreme point. The initial set of variables can be defined in several
ways, but it’s better if it contains all the variables involved in a feasible solution. In
this way the LP won’t become infeasible for cuts that are globally valid, reducing the
time needed to search for variables to add. With column generation a point with no
violated cuts in the current set of variables, could have some variables with possibly
negative reduced cost, which means that they could lower the objective function if
they entered the basis. Such variables can be found by computing the reduced costs
of all the variables which are not in the LP using the dual values of the cuts in the
LP. The reduced cost of a variable can be computed if the LP is feasible by

c̄i,j = ci,j − πiai,j for i = 1, 2, . . . , m

where πi is the dual value of cut i. If the LP is infeasible, the variables that could
make it feasible are still the ones with the most negative reduced costs, calculated as:

c̄i,j = −πiai,j for i = 1, 2, . . . , m

The column generation phase looks for variables with negative reduced costs, then
adds at least some of the most negative ones to try to lower the objective function.
The reoptimization after having added the variables can lead to a better extremum
point or can expose some violated cuts.

3.2 IP formulation of the TSP

A problem with n vertices must give n (n − 1) /2 distances for each pair of vertices.
Enumerating all the possible pairs, or edges, it is possible to write any instance of the

20 Chapter 3. Linear Programming formulation of the TSP

TSP as a costs vector c of size n (n − 1) /2, containing the distance between each
pair of vertices. Every feasible tour for the TSP can be written as an incidence vector
x of size n (n − 1) /2, with a variable for each pair of vertices, where xi,j is 1 if the
edge ei,j is in the tour and 0 otherwise.

Calling S the set of all feasible solutions, the TSP becomes:

min cT x s.t. x ∈ S (3.10)

Problem (3.10) is a MIP problem, so it is intrinsecally NP-hard.

Dantzig and his colleagues changed the stated problem to a linear programming
one, with constraints as linear inequalities:

min cT x s.t. Ax ≥ b, x ∈ [0, 1]n(n−1)/2 (3.11)

This is a linear relaxation of the TSP, because every solution of (3.11) is also a
solution of (3.10), but the contrary need not be true.

Moreover, the cost cT x∗ of a solution x∗ of (3.11) is a lower bound for the
optimum of (3.10).

3.2.1 Separation methods

To apply the branch & cut method to any problem, it is necessary to define for each
type of cuts an algorithm which, given the current fractional point x̄ and the current
LP, finds a constraint that can be added to the LP and which is violated by x̄, but is
not violated by any feasible solution of the problem.

This kind of procedures is called a separation method. Separation methods can
be divided into two categories:

• Exact: the ones for which there is a proof that there’s no x̄ that violates some
cut for which the procedure was designed and is not found by the algorithm.

• Heuristic: there are some x̄ that violate some cut for which the procedure was
designed and that are not identified.

One can prefer an heuristic procedure over an exact one depending on several
factors:

• Contingental: there is no known exact separation procedure for that particular
family of cuts.

• Computational: there is at least one exact separation procedure, which unfor-
tunately is too time-consuming to be of practical interest.

3.2. IP formulation of the TSP 21

Template paradigm for the TSP

The affine hull S of all tours on V is given by the solutions x of the continuous
relaxation of the two-matching problem.

Any cut is the sum of:

• a linear combination of the degree equations (3.12)

• a non-negative combination of linear inequalities that induce facets of S
These observations lead to a two-phase paradigm for finding cuts for the TSP:

1. describe some family of linear inequalities that induce facets of S

2. find an efficient algorithm that, given a fractional point x̄ finds a cut following
the template given in phase (1)

In CONCORDE the authors tried to define new separation methods that find cuts
that don’t respect the template paradigm, called local-cuts.

3.2.2 Degree equations (DEG)

Most of the LP representations of the TSP start by inserting a very sparse kind
of constraints, the degree equations. They enforce a common characteristic of all
Hamiltonian tours on a graph, the fact that the tour has to touch any node only
once:

∑

u∈e

xe = 2 ∀u ∈ V (3.12)

Where V is the set of all nodes, u is a node and {u ∈ e ⇔ e is and extremum of u}.
The number of degree equations is |V |, and they present just two non-zero coef-

ficients in any row or column, being very sparse.
The 01-LP minimization problem which included just the degree equations is called

the (exact) two-matching problem.
Since the degree equations are very sparse and quick to test and add to the LP,

they tend to be inserted in the LP from the beginning, without using a separation
method. The separation method is anyway straightforward: one just finds any nodes
for which the degree equations are violated, then inserts the corresponding constraint.

3.2.3 Subtour-elimination constraints (SEC)

A problem with the solutions obtained using the TSP LP with just the degree equa-
tions, is that they generally lead to subtours, i.e. cycles of nodes which are not con-
nected to each other. Subtours can obviously form in any subset S, |S| >= 3,S ⊂ V .
A way to forbid any subtour is to insert a subtour-elimination constraint for each sub-
set, in the form:

∑

e=(u,v),u∈S,v /∈S

xe >= 2 ∀S ⊂ V, |S| >= 3

22 Chapter 3. Linear Programming formulation of the TSP

We define for each set S and for a solution vector x the value

δx(S) =
∑

e=(u,v),u∈S,v /∈S

xe

so that the previous constraints can be written more concisely as:

δx(S) ≥ 2 ∀S ⊂ V, |S| >= 3

Another complementary way of writing the subtour elimination constraints is to
observe that the number of edges that connect vertices in any of the previously defined
subsets S must be at most |S| − 1, in fact if they were more than that, then they
would form a cycle in the set

The constraints become:

∑

e=(u,v),u∈S,v∈S

xe ≤ |S| − 1 ∀S ⊂ V, |S| >= 3

and if we define for each set S and for a solution vector x the value

x(E(S)) =
∑

e=(u,v),u∈S,v∈S

xe

we can write more concisely:

x(E(S)) ≤ |S| − 1 ∀S ⊂ V : 3 ≤ |S| ≤ |V |/2)

The subtour elimination constraints are facet-inducing, and there are very efficient
exact and heuristic separation methods to generate this kind of cuts. Most of the
exact separation methods use an algorithm based on finding the minimum cuts related
to the current fractional point, which will be described in the next chapter, since they
form the basis of the compatible tour heuristic we studied.

IP Formulation for the TSP

The IP problem defined by:

min
∑

e∈E cexe

s.t. x(δ({i})) = 2 (i ∈ V) (3.13)

x(δ(S)) ≥ 2 (S ⊂ V : 3 ≤ |S| ≤ |V |/2) (3.14)

xe ∈ {0, 1} (e ∈ E). (3.15)

completely solves the TSP to the optimum.
However, as we stated above, an IP is NP-hard to solve in general.
We can observe that the upper bounds xe ≤ 1 implicit in (3.15) can then be

viewed as ‘degenerate’ SECs in which |S| = 2.

Chapter 4

SEP Relaxation, Minimum Cuts and
a Tour Construction Heuristic

In this chapter, we define a tour construction heuristic, called the Compatible-tour
heuristic, which is based on a continuous relaxation of problem (3.13).

4.1 Subtour Elimination Polytope (SEP) Relaxation

To approach the solution of problem (3.13), it is common to relax the integrality
constraints on the variables, changing it to

min
∑

e∈E cexe

s.t. x(δ({i})) = 2 (i ∈ V) (4.1)

x(δ(S)) ≥ 2 (S ⊂ V : 3 ≤ |S| ≤ |V |/2) (4.2)

xe ∈ [0, 1] (e ∈ E) (4.3)

We will call the above formulation the subtour relaxation. (It is sometimes also
called he Held-Karp relaxation, because Held & Karp [14] gave an algorithm, based
on Lagrangean relaxation, for quickly computing an approximate solution to it.)

We define the polytope induced by the SECs the Subtour Elimination Polytope.
The set of feasible solutions to the subtour relaxation, viewed as a polyhedron

in R|E|, is called the subtour elimination polytope and, when there are n vertices,
denoted by SEP(n) (see, e.g., Boyd & Pulleyblank [6]). More formally,

SEP (n) =
{

x ∈ [0, 1]|E| : (4.1), (4.2) hold
}

.

The subtour relaxation can be solved in polynomial time, for example by the
ellipsoid method, but in practice it can be solved very quickly by a linear programming-
based cutting plane technique.

4.1.1 Separation method for SECs

An exact separation method for SECs on a fractional point x∗ has to find the existing
sets S for which x∗ violates the corresponding SEC.

23

24 Chapter 4. SEP Relaxation, Minimum Cuts and a Tour Construction Heuristic

Minimum Cuts

The basis of such a method is finding the minimum value

mx∗ = min (δx∗(S), (S ⊂ V : 3 ≤ |S| ≤ |V |/2))

The sets S for which δx∗(S) = mx∗ are called the minimum cuts for vector x∗.
This definition is based on the fact that a cut C(S) on a graph G = (V, E) is the

set of all the edges in E which cross the boundary of S ⊂ V . The cost of the cut if
we apply x∗ as the cost vector of the graph is the sum of all the edges in the cut, or
δx∗(S).

The algorithm for finding violated SECs for vector x̄ is then:

Find the minimum cut value mx̄1

if mx̄ < 2 then2

find all minimum cuts S in G for x̄3

end4

Algorithm 3: SEC separation

All the sets S found by algorithm (3) violate the subtour elimination constraints,
so to solve the SEP relaxation of the TSP we can iterate it and write:

Find the minimum cut value mx̄1

if mx̄ ≥ 2 then2

STOP3

else4

if mx̄ < 2 then5

find all minimum cuts S in G for x̄6

and add a SEC for each one of them7

then reoptimize with dual simplex8

end9

end10

Algorithm 4: Optimizing over the SEP

At the end of algorithm (4) the minimum cut value for solution x∗ is 2.

4.2 A Tour Construction Heuristic

In this work we present the Compatible Tour Heuristic for the TSP, which can be
viewed as a tour construction heuristic, i.e. one that constructs a tour for the TSP
based on some additional rules.

4.2. A Tour Construction Heuristic 25

u u
u u u

u uu
u

u
u

u u
u

1

2

3

4

5

6 7

8

9 10

11

12
13

14

 J

J
J
J

J
J
J

J
J

ppppp
pppp

ppppp
pppp

ppppp
pppp

ppppp
pppp

p p p p p p p p p p p p p p p p p pp p p p p p p p p

p p p p p p p p ppppppppppppp pppppp
pppppp

ppppppppppppp p p p p
p p p p p

p

p p p p p p
p p p p p p

pp p p p p p p p p p p p p
Figure 4.1: A fractional vertex of SEP(14).

An example of tour construction heuristic is the Christofides algorithm, which
is based on finding the shortest spanning-tree on graph G, extending it to solve a
perfect matching, doubling the resulting graph, finding an eulerian tour on the graph
and shortcutting it to get the solution.

4.2.1 The Compatible Tour Heuristic

We denote by x∗ the solution to the subtour relaxation. Without loss of generality,
we assume that x∗ is a basic solution (i.e., it corresponds to a vertex of the subtour
polytope).

The key to our heuristic is the notion of tight sets:

Definition: We say that a vertex set S ⊂ V is tight at x∗ if x∗(δ(S)) = 2.

Intuitively, if a set is tight at x∗, there is a high probability that it will also be
tight in the optimal tour. (This intuition has been confirmed in our computational
experience.) This motivates the following definition:

Definition: We say that a tour T is compatible with x∗ if the associated incidence
vector (x̄, say) has the following property: every vertex set which is tight at x∗ is also
tight at x̄. (The reverse need not be true.)

Figures 4.1 and 4.2 illustrate this concept. Figure 4.1 shows a fractional vertex of
SEP(14). Solid lines represent variables with value 1, dotted lines represent variables
with value 1/2. The sets {1, 2}, {6, 7} and {5, 6, 7}, for example, are tight. Figure
4.2 shows a tour compatible with this fractional vertex.

The compatible tour heuristic for the STSP is as follows: optimize over the subtour
polytope, giving a solution vector x∗, and then find the best tour compatible with
x∗. Of course, it is not obvious how to find the best compatible tour, so that some
thought has to be put into how to actually implement the heuristic. (The number of
compatible tours can be exponential in n.)

Since the heuristic does not use any local search, one might categorise it as a
‘constructive’ heuristic. Yet, it differs from most constructive heuristics (such as the

26 Chapter 4. SEP Relaxation, Minimum Cuts and a Tour Construction Heuristic

u u
u u u

u uu
u

u
u

u u
u

1

2

3

4

5

6 7

8

9 10

11

12
13

14

 J

J
J
J

J
J
J

J
J

�
�
�
�
�
�

�
�

�
@

@
@

@
@

@
�
�
�
�
�
�
�
�
�

Figure 4.2: A tour compatible with the fractional vertex shown in Figure 4.1.

‘double spanning tree’ heuristic of Rosenkrantz, Stearns & Lewis [16] or the ‘spanning
tree plus matching’ heuristic of Christofides [8]), in that the tour is selected from a
well-defined, exponentially-large collection of tours. Some other heuristics of this
type have been proposed recently, such as the ‘double spanning tree with optimal
shortcuts’ heuristic of Deineko & Tiskin [9] and the heuristics based on triangulations
described in Letchford & Pearson [92].

Chapter 5

Two Negative Results

In this chapter, we prove two negative results. The first is that finding the best
compatible tour is a hard problem. For this, we need the following well-known result.

Proposition 1 (Garey, Johnson & Stockmeyer [12]). Testing if a cubic (i.e., 3-
regular) graph is Hamiltonian is NP-complete in the strong sense.

We will also need the following lemma.

Lemma 1. Let G = (V, E) be a cubic Hamiltonian graph and let C ⊂ E form a
Hamiltonian circuit. Let G′ be the multigraph obtained by duplicating the edges in
E \ C. Then G′ is Eulerian and there exists a traversal of G′ in which the edges of
C are visited in the same order that they are visited in the Hamiltonian circuit itself.

Proof. Since G is cubic and E \C forms a perfect matching, G′ is 4-regular. Since
G is Hamiltonian, G′ is connected. So G′, being connected and having even vertex
degrees, is Eulerian. We can easily construct the desired traversal of G′ by taking
the sequence of edges of the Hamiltonian circuit and inserting each pair of parallel
edges in an appropriate place in the sequence. Specifically, a pair of parallel edges
{i, j}, {j, i}, with i < j, can be traversed immediately after vertex i is visited in the
Hamiltonian circuit. �

Example: The cubic graph G on the left of Figure 5.1 is Hamiltonian. A suitable set
C consists of the edges {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6} and {6, 1}. The resulting
multigraph G′ is displayed on the right of the figure. There are three edge pairs that
need to be inserted in the sequence. The pair {2, 4}, {4, 2} is inserted between {1, 2}
and {2, 3}, the pair {3, 6}, {6, 3} is inserted between {2, 3} and {3, 4}, and the pair
{1, 5}, {5, 1} is inserted between {6, 1} and {1, 2}. The resulting traversal of G′

is {1, 2}, {2, 4}, {4, 2}, {2, 3}, {3, 6}, {6, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 1}, {1, 5},
{5, 1}.

We are now ready to prove the hardness result.

27

28 Chapter 5. Two Negative Results

�
�

�

@
@

@

@
@

@ �
�

�

u u
u u

u u1 2

3

45

6

�
�

�

@
@

@

@
@

@ �
�

�

u u
u u

u u1 2

3

45

6

Figure 5.1: Cubic Hamiltonian graph G and Eulerian multigraph G′.

5.1 Finding the best compatible tour is NP-hard in

the strong sense.

Theorem 1. Finding the best compatible tour is NP-hard in the strong sense.

Proof. We reduce the problem of testing if a cubic graph is Hamiltonian to the
compatible tour problem. Let G = (V, E) be an arbitrary cubic graph, with n vertices
and 3n/2 edges. Without loss of generality, we can assume that G is biconnected
(i.e., contains no cut-vertices) since, if not, it is clearly non-Hamiltonian.

We construct an instance of the STSP on 3n vertices as follows. For each edge
{i, j} in E, we have two vertices, labelled vij and vji. For all {i, j} in E, we set
the cost of the edge connecting vij and vji to 0. For any two adjacent edges {i, j},
{i, k} in E, we set the cost of the edge connecting vij and vik to 1. We also set the
cost of the edge connecting vij and vki, and that of the edge connecting vik and vji,
to some large positive integer M . Finally, for all remaining edges, say connecting vip

and vjq, we set the cost to M2.
It is not difficult to show that the unique optimal solution to the subtour relax-

ation is 1/2-integral, with the following structure. For each edge of zero cost, the
corresponding variable takes the value 1. For each edge of cost 1, the corresponding
variable takes the value 1/2. The remaining variables take the value 0. Since there
are 3n edges of cost 1, the total cost of this 1/2-integral solution is 3n/2.

Figure 5.2 illustrates the 1/2-integral solution corresponding to the cubic bicon-
nected graph illustrated in Figure 5.1. Solid (respectively, dotted) lines represent
edges whose variables have value 1 (respectively, 1/2).

Note that each of the 3n/2 edges of zero cost forms a tight set. Any compatible
tour must traverse these 3n/2 edges. Now, note that, since all vertex degrees are odd
in a cubic graph, any compatible tour must use at least n/2 of the expensive edges
(i.e., those of cost M or M2). In order to minimize costs, the optimal compatible
tour will use, if possible, no edges of cost M2 and exactly n/2 edges of cost M .
Such a tour also uses exactly n edges of cost 1, and therefore has a total cost of
n(1 + M/2). (Figure 5.3 illustrates such a compatible tour for our example. The 3
dotted lines represent the edges of cost M .)

Now we show that such a compatible tour exists if and only if G is Hamiltonian.
First, if G is Hamiltonian, then, by Lemma 1, for any tour there exists a traversal

5.1. Finding the best compatible tour is NP-hard in the strong sense. 29

�
�
�

A
A

A

A
A
A �

�
�

p p p p p p p p

p p p p p p p p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

pp

p

p

p

p

p

v12

v15 v16

v21

v23 v24

v32

v34
v36

v42v43

v45

v51

v54

v56

v61

v63v65

Figure 5.2: Extreme point of SEP(18).

�
�
�

A
A
A

A
A
A �

�
�

@
@

@
@

��

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p

p
p

p
p
p

p
p

p
p

p
p
p

p
p

p
p
p

p
p

p
p
p

p
p

p
p
p

p
p

p
p
p

v12

v15 v16

v21

v23 v24

v32

v34
v36

v42v43

v45

v51

v54

v56

v61

v63v65

Figure 5.3: Compatible tour corresponding to traversal of G′.

30 Chapter 5. Two Negative Results

��

��@@

@@q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q

q q q q q q q q q q q

q

q

q

q

q

q

q

q

q

q

Figure 5.4: The graph H35.

of G′ in which the edges are visited in the same order that they are visited in the
Hamiltonian circuit itself. Such a traversal can be extended to a compatible tour
of the desired form for the STSP instance. On the other hand, if there exists a
compatible tour of the desired form, it corresponds to a traversal of G′ that can
then be ‘short-cut’ (by omitting the edge-pairs in the duplicated matching) to yield
a Hamiltonian circuit of G. �

Note that the hardness result still holds even when the instance is metric, since
any STSP instance can be made metric by adding a large constant to the cost of
every edge.

Now we move on to our second negative result, which is stated in the following
theorem.

5.2 The worst-case ratio versus the optimal tour is

at least 5/3

Theorem 2. The compatible tour heuristic can return a tour whose cost is arbitrarily
close to 5/3 times the cost of the optimal tour, even when the instance is metric and
even when the subtour lower bound is equal to the cost of the optimal tour.

Proof. We construct a family of instances as follows. Let p ≥ 2 and q ≥ 2 be
arbitrary positive integers. We construct a graph Hpq on 6pq vertices as follows (see
Figure 5.4 for an illustration). For i = 1, . . . , pq−1 and j = 0, . . . , 5, vertex jpq+i is
connected to vertex jpq+i+1 by an edge. For i = 0, 1, 2 and j = 0, . . . , q−1, vertex
2ipq + jq + 1 is connected to vertex (2i + 1)pq + jq + 1 and vertex 2ipq + (j + 1)q
is connected to vertex (2i + 1)pq + (j + 1)q. Finally, vertex 1 is connected to vertex
5pq + 1 and vertex pq is connected to vertex 6pq.

Associated with the graph Hpq, we define an STSP instance with 6pq vertices
as follows. If the edge {i, j} appears in Hpq, then the cost of that edge is set to 1
in the STSP instance. Otherwise, the cost is set equal to the number of edges in
the shortest path from i to j in Hpq. The resulting costs clearly satisfy the triangle
inequality.

It is easy to check that several Hamiltonian circuits exist in the graph Hpq. One
such circuit is shown in Figure 5.5 for H35. Since each edge used in such a tour has a

5.2. The worst-case ratio versus the optimal tour is at least 5/3 31

q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q

q q q q q q q q q q q

q

q

q

q

q

q

q

q

q

q

Figure 5.5: A Hamiltonian circuit in H35.

q q q q q q q q q q q

q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q

q q q q q q q q q q q

q

q

q

q

q

q

q

q

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p

Figure 5.6: Optimal fractional vertex of SEP(90).

cost of 1, each of these circuits represents an optimal solution of the STSP instance
with a cost of 6pq.

Since every point in SEP(6pq) satisfies x(E) = 6pq, and every edge has a cost
of at least 1, the subtour lower bound is equal to the cost of the optimal tour(s)
for this family of instances. That is, any optimal tour is also an optimal solution to
the subtour relaxation. Moreover, there exist many alternative optimal solutions to
the subtour relaxation that are fractional. One such fractional solution is shown in
Figure 5.6. As before, solid (respectively, dotted) lines represent edges e with x∗

e = 1
(respectively, x∗

e = 1/2). There are 6(p− 1)q edges with x∗
e = 1 and 12q edges with

x∗
e = 1/2. Since all of these edges have cost 1, the cost of the fractional solution is

also equal to 6pq as stated.
It is a simple exercise to show that the cheapest tour compatible with the fractional

point of the form displayed in Figure 5.6 has a cost of more than (10q − 2)p (See
Figure 5.7 for an illustration.) As p and q approach infinity, the ratio of (10q − 2)p
to 6pq approaches 5/3. �

q

q

q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q
q q q q q q q q q q q q q q q

q

q

q q q q q q q q q q q

q q q q q q q q q q q

q

q

q

q

�
�

PPPPP

����

����

����

����

����

����HHHH

HHHH

HHHH

HHHH

HHHH

HHHH

Figure 5.7: Compatible tour for H35 (one edge omitted for clarity).

32 Chapter 5. Two Negative Results

Chapter 6

Algorithms

Despite the negative complexity result, there are some algorithms for computing
the best compatible tour that work well on many instances of practical interest. In
this section, we describe two such algorithms. These algorithms are based on some
structural results about tight sets, that we establish next.

6.1 Tight sets

Given a point x∗ belonging to the subtour polytope, the support graph G∗ = (V, E∗)
is the subgraph of G induced by edges whose variables are positive at x∗, that is,
E∗ = {e ∈ E : x∗

e > 0}. As usual, for any edge e ∈ E∗, we interpret the variable
value x∗

e as the weight of e. Note that, under the assumption that x∗ satisfies all
SECs, each tight set S ⊂ V induces a minimum weight cut in G∗. In this section, we
recall some structural properties which are known to hold for the tight sets of G∗, as
a direct consequence of known results for minimum cuts in weighted graphs.

The following result is well known, but we give a proof for the sake of completeness.

Proposition 2. Suppose S1 and S2 are two vertex sets which cross, i.e., that S1 \S2,
S2 \ S1, S1 ∩ S2 and V \ (S1 ∪ S2) are all non-empty. If S1 and S2 are tight, then so
are S1 ∩ S2 and S1 ∪ S2.

Proof. By definition,

x(δ(S1)) + x(δ(S2)) ≥ x(δ(S1 ∩ S2)) + x(δ(S1 ∪ S2)). (6.1)

Since S1 and S2 are assumed to be tight, the LHS of (6.1) is 2 + 2 = 4. Since
x∗ is assumed to satisfy all SECs, this immediately implies that x(δ(S1 ∩ S2)) =
x(δ(S1 ∪ S2)) = 2. �

This property leads naturally to the concept of a necklace.

Definition 1. A necklace is a partition of V into subsets S1, . . . , Sm(m ≥ 3) such
that the union

⋃k=i+j
k=i Sk is tight for any 1 ≤ i ≤ m and any 0 ≤ j < m− 1 (indices

taken modulo m).

33

34 Chapter 6. Algorithms

It is assumed that each necklace defines a partition which is as fine as possible,
i.e., that no tight set Si in the necklace can be partitioned further into two or more
smaller tight sets. Following Applegate et al. [17], we call the individual tight sets Si

the beads of the necklace, and we call the union of two adjacent beads, i.e., a tight
set of the form Si ∪ Si+1, a domino. For example, for the fractional point shown in
Figure 4.1, one necklace has the beads {1, . . . , 11}, {12}, {13} and {14}. The asso-
ciated dominoes are therefore {1, . . . , 12}, {12, 13}, {13, 14} and {1, . . . , 12}∪{14}.

It is also necessary to allow ‘degenerate’ necklaces in which m = 2. These simply
represent vertex sets S (and their complements V \ S) which are tight, but which
cannot be viewed as part of a larger necklace. For the point shown in Figure 4.1, the
partition of V into {1, 2} and {3, . . . , 14} forms a degenerate necklace.

Proposition 3. The tight sets for a given x∗ can be arranged in O(n) necklaces.
Moreover, the total number of beads and dominoes over all necklaces, including
degenerate ones, is also O(n).

Corollary 1. The total number of tight SECs is O(n2).

The concept of necklaces provides a nice representation of the tight sets. However,
there exists a more compact (linear-space) data structure for representing and storing
the tight sets: the cactus of Dinitz, Karzanov & Lomonosov [10]. Later, Applegate
et al. [17] showed that one can instead use the PQ-tree of Booth & Lueker [5]. The
two representations are equivalent.

6.1.1 The cactus-tree representation of minimum cuts

As we said the cactus-tree representation of minimum cuts in a graph is more compact
than the original set of minimum cuts. A cactus tree can be stored in fact in O(n)
space: more precisely, it has at most 2n nodes and O(n) edges.

The cactus is defined as a weighted graph in which every edge is in at most one
cycle. There are two types of edges:

• cycle edges are in one cycle

• tree edges are in none. Tree edges have twice the weight of cycle edges.

For a cactus we say node instead of vertex. Any node in a cactus maps to a –
possibly empty – set of vertices of the original problem.

We define:

• an empty node as a node that doesn’t map to any vertex in the original problem.

• a k-way cut node as a node which, when removed, splits the graph in k con-
nected components.

6.1. Tight sets 35

To extract a minimum cut from a cactus, one has to remove two different edges
in a cycle, or one tree edge. This operation splits the cactus in two connected
components. The minimum cuts are found by collecting the vertices contained in the
cactus’ nodes for one of these two connected components.

Every cycle in the graph forms a necklace. Removing every edge in a cycle with
k edges leaves k connected components which are the beads of the necklace.

A degenerate necklace is obtained from:

• tree nodes: they represent a (trivial) mincut made by a single node

• 2-way cutnodes

Cacti of TSP Support Graphs

When a cactus is generated from a fractional point in SEP, for which every single
vertex is a mincut, it has some added properties:

• every non-empty node in the cactus maps to just one vertex in the TSP

• every cutnode is empty

6.1.2 PQ-trees

A PQ-tree is a rooted acyclic tree composed of P-nodes, Q-nodes and leaf-nodes.
Each leaf-node corresponds to a vertex of the original graph. A P node has at least
two children, and a Q node has at least three children.

A P-node indicates that, when traversing the graph, its descendants can be visited
in any order.

A Q-node forces to visit its descendants consecutively, i.e. in one of the two
possible orders: left-to-right or right-to-left.

It is possible to construct a PQ-tree from a TSP support graph, so that removing
any edge splits the tree in two connected components, which represent a minimum
cut and its complement.

PQ-trees are equivalent to cactus-trees, and they can express the structure of the
minimum cuts of a graph in a compact and efficient way.

Figure 6.1 shows the PQ-tree corresponding to the point shown in Figure 4.1.
Following Applegate et al., the circle denotes a P-node and the squares denote Q-
nodes. The P-node expresses the fact that the vertex sets {1, 2}, {3, 4}, {5, 6, 7},
{8, 9}, {10, 11} and {12, 13, 14} are tight, but that the union of any two of these sets
is not tight. (Equivalently, each of these six sets is part of a degenerate necklace.)
The Q-node on the bottom right, for example, expresses the fact that the partition
of V into vertex sets {1, . . . , 11}, {12}, {13} and {14} defines a necklace. There are
seven Q-nodes for this example, meaning seven necklaces in total. Figure 6.2 shows
the cactus tree corresponding to the same point. The nodes with number greater
than 14 are the empty ones.

The conversion between a cactus-tree and a PQ-tree is clearly straightforward,
even if not unique:

36 Chapter 6. Algorithms

��
����

��

S
S

SS

S
S

SS

�
�

��

1

2 3

4

10

11 12

13
14

8
9 5

6
7

Figure 6.1: PQ-tree corresponding to the fractional point in Figure 4.1.

• Any k-way cutnode with k ≥ 4 is a P-node

• Any cycle is a Q-node

For a given point x∗, the cactus tree or PQ-tree can be computed efficiently,
for example in O(nm log(n2/m)) time using the algorithm of Fleischer [11] or in
O(nm log n log(n2/m)) time using the algorithm of Wenger [1]

6.1.3 Dominance among Tightness Constraints

At this point it is useful to restate Proposition 2 in terms of linear inequalities:

Lemma 2. Suppose S1 and S2 are two vertex sets which cross. The equations
x(δ(S1)) = 2 and x(δ(S2)) = 2, together with non-negativity, imply the equations
x(δ(S1 ∩ S2)) = 2 and x(δ(S1 ∪ S2)) = 2.

The above structural results can then be used to characterise the compatible tours,
in two different ways.

Proposition 4. A tour x̄ is compatible with x∗ if and only if:

• x̄(δ(Si ∪ Si+1)) = 2 for all dominoes Si ∪ Si+1, and

• x̄(δ(Si)) = 2 for each tight set belonging to a degenerate necklace.

Corollary 2. Using the alternative expression of the SECs, the first constraint in
proposition 4 can be rewritten as:

x̄(E(Si ∪ Si+1)) = |Si ∪ Si+1| − 1 for all dominoes Si ∪ Si+1

Proposition 5. A tour x̄ is compatible with x∗ if and only if:

• x̄(δ(Si)) = 2 for all beads Si, and

6.1. Tight sets 37

15

6

16

7

5

10

12

8

3

1

11

13
14

9

4

2

Figure 6.2: Cactus-tree corresponding to the fractional point in Figure 4.1 (nodes
above 14 are empty)

38 Chapter 6. Algorithms

• x̄uv = 0 for each edge {u, v} such that u and v appear in non-consecutive
beads of a necklace.

Proof. Let B1, B2 and B3 be 3 consecutive beads in a necklace, and let domino
D1 be composed of B1 and B2 and domino D2 be composed of B2 and B3. Then
we have:

x(δ(D1)) + x(δ(D2)) = x(δ(B1)) + x(δ(B3)) + 2x(B2 : (V \ (B1 ∪ B2 ∪ B3))).

But B1 and B3 are tight and x(B2 : (V \ (B1 ∪ B2 ∪ B3))) is zero by construction.
Hence (δ(D1)) + x(δ(D2)) = 4, which, if SECs and non-negativity hold, implies that
D1 and D2 are also tight. �

These results are of interest because, when looking for the best compatible tour,
we will need to somehow enforce that all sets which are tight at x∗ be also tight
in the tour. A natural way to do this in the linear programming context is to add
one equation for each of the O(n2) tight SECs, but, as the above propositions show,
O(n) equations suffice. The latter method has the advantage that, as well as adding
only O(n) equations, one also gets to eliminate some edges entirely.

Using this latter method, it is not difficult to see that:

Corollary 3. It is always possible to choose the set of O(n) equations in such a way
that the corresponding tight cuts form a laminar family.

6.1.4 Properties of a compatible tour

Proposition 6. From proposition 2 follows that all the edges in the cactus tree that
connect two non-empty nodes will be in the compatible tour.

Proposition 7. If a cycle has n > 3 beads, then the beads are visited in the order
set by the cycle.

6.2 A dynamic programming algorithm

6.2.1 PQ-tree based algorithm

Recall from the previous section that the cactus tree or PQ-tree provides a compact
(O(n)-sized) representation of the tight sets. Using the ideas of Burkhard, Deineko
& Woeginger[7], there is a combinatorial algorithm (based on dynamic programming)
to find the best compatible tour. The algorithm runs in polynomial time when the
degree of each P-node in the PQ-tree (or, equivalently, each cut-node in the cactus
tree) is bounded by a constant, but in exponential time if P-nodes of arbitrary degree
are allowed. Unfortunately, we have the following negative result:

Theorem 3. PQ-trees associated with extreme points of the subtour polytope can
contain P-nodes of arbitrarily large degree.

6.2. A dynamic programming algorithm 39

��
��

����������

�
�

�
��

@
@

@
@@

HHHHHHHHHH

q q q q q q q q q q

Figure 6.3: PQ-tree corresponding to the fractional point in Figure 5.2.

Proof. Consider again the proof of Theorem 1 and assume that the biconnected cubic
graph G is also 3-edge-connected. Then, in the fractional point for the associated
TSP instance, all of the tight sets have cardinality 2. Indeed, there are precisely |E|
such tight sets, one for each edge of E. (Since G is 3-edge-connected, all other
vertex sets S ⊂ V ′ satisfy x∗(δ(S)) ≥ 3.) Therefore, the PQ-tree contains a single
P-node, of degree |E|, and |E| Q-nodes (see Figure 6.3.) Since biconnected, cubic,
3-edge-connected graphs can be arbitrarily large, the result follows. �

Fortunately, in practice the degrees of the P-nodes (if any) tend to be very small.
In 20 instances from TSPLIB, there is only one instance in which the maximum
degree exceeds 4. In that case, it is 6. So we would expect the dynamic programming
algorithm to be fast in practice (certainly much faster than solving the original TSP
instance to optimality via branch-and-cut).

Another observation is that, when looking for the best compatible tour, we can use
reduced costs instead of original costs. It is not clear whether this could be exploited.

6.2.2 Cactus-tree based algorithm

The dynamic programming algorithm we developed for solving the compatible tour
problem is based on the following result:

Proposition 8. From any eulerian tour E on the cactus we can derive a compatible
tour by just eliminating the empty nodes of the cactus.

An eulerian tour for a graph G = (V, E) is a tour that uses all the edges in E.
Such a tour always exists on a cactus tree, since every node has an even number of
incident edges.

For a cactus C = (W, F) of a TSP with graph G = (V, E), we define the ordered
pair

Pu (S, v) , where S ⊆ V, v ∈ S

as the minimum Hamiltonian Path through all the nodes in S, which

• uses any edge in F at most once

• starts from node u ∈ S and ends in v.

40 Chapter 6. Algorithms

We then use the following property:

Pu (S, v) = min ({Pu (S \ {w}, w)})
and define

Pu ({v} , v) = 0 ∀v ∈ V

Then the shortest compatible tour is given by

T = min (Pu (V, v) + cv,u)

If Vf is the set of vertices in W which are extrema of edges in (u, v) ∈ F with
both u ∈ V and v ∈ V , then the first set of initial solutions for the DP-algorithm we
used is:

{Pu ({u, v}, v) = cu,v} , u, v ∈ Vf

And there are obviously at most 2 such sets. Due to the cyclic nature of the
cactus, we can just choose one of the two and start from just one set.

Then from any subproblem Pu (S, v) we found the next generation subproblem as
Pu (S ∪ {w}, w) by extending it using a neighbor w ∈ V .

The search for a neighbor node is done in this way:

• Let F ′ be the set {(u, v) ∈ W, u is empty OR v is empty}
• For each subproblem Pu (S, v) we save the graph F ′

Pu
composed of the remain-

ing edges in F ′ for Pu, i.e. the ones that still have to be used by Pu.

• To determine the edges used by a subproblem, we say that if P ′
u(S ∪ {w}, w)

derives from Pu(S, v) by extending it from node v to node w,

– if edge (v, w) ∈ F , then F ′
Pu

≡ F ′
P ′

u

– otherwise, we define the used edges for (v, w) as the shortest path from
v to w in F ′

Pu
, with all edges’ costs set to 1.

If such a shortest path doesn’t exist, then we can’t extend Pu(S, v) with w.

Then a node w is a neighbor to v for problem Pu ⇐⇒ it is reachable from v on
graph GPu

.

6.2.3 Improvements on the algorithm

The algorithm described above can be largely improved by exploiting some properties
of the compatible tour, related to the cactus.

First of all, we can use proposition 6 to derive

Corollary 4. Define a one-chain as a hamiltonian path on cactus C in a set O ⊆ V
that starts with a node u ∈ O and ends with node v ∈ O, passing through all
nodes in V . (The one-chain derives its name by the fact that it is composed of
an uninterrupted sequence of edges at the upper bound in the fractional point from
which the cactus is derived.)

The compatible tour is a cyclic connection of all one-chains in C.

6.3. LP-based implementations 41

All one-chains (u, . . . , v) can then be shrunk, i.e. substituted by a single edge
(u, v) with cost equal to the length of the path from u to v.

If U is the set of one-chains, then we can change the initial set of subproblems to

{Pu ({u, v}, v) = cu,v} , (u, v) ∈ U

And we observe that there is just one such set for any starting node after shrinking
the graph.

Another property is that the set of neighbors w to test for a node v can be reduced
–in general– by applying property (7):

• if we are trying w as a neighbor to v in subproblem Pu(S, v)

• if we eliminate from the remaining edges F ′
Pu

of Pu(S, v) the path from v to
w, getting F ′

P ′
u

• if the set of nodes reachable from v on the F ′
P ′

u
is not the same as the set of

nodes that was reachable from w on F ′
Pu

,

then going from v to w would mean that the resulting subproblem would be pruned
in the future iterations, since it would have no neighbors to its last node, without
having covered all the nodes in V .

A new implementation using all these improvements leaded to a much smaller
number of subproblems to be tested.

Lower bound

During the exploration of the subproblems, we can substitute the length of the path
λu,v in S from u to v by the projected length of the solution, adding to λu,v the
length of all the one-chains that have still to be inserted in Pu.

Early pruning

We can observe that it is very straightforward to find a complete compatible tour by
exploring the subproblems’ structure in depth-first order, by repeatedly extending a
starting subproblem.

It is thus possible to find one or more solutions with depth-first exploration, keeping
the best one t as an upper bound and then pruning any subproblem which lower bound
is greater or equal to the cost of t

6.3 LP-based implementations

A direct implementation of the compatible tour heuristic is to directly insert in the
subtour LP the compatibility constraints. This is the same of changing to equality all
the SECs that are tight for x∗.

42 Chapter 6. Algorithms

All the approaches we present are based on first solving the subtour relaxation,
then finding the cactus tree representation of the tight sets in the resulting extreme
point x∗.

From the results presented in proposition 4, for each non-degenerate necklace
S1, S2, . . . , Sm we add the constraints:

∑

i∈Dk ,j /∈Dk

xi,j ≤ 2 for each Dk in Sk ∪ Sk+1, k = 0, . . . , m − 1

∑

i∈Dm,j /∈Dm

xi,j ≤ 2 for Dm = Sm ∪ S1 (6.2)

and for each degenerate necklace S1, S2 we add the constraint:

∑

i∈S1,j /∈S1

xi,j ≤ 2

which, together with the SECs, force all the tight sets to remain as such.
Moreover, we fix:

• at 1 all the edges that are in a domino of two vertices

• at 0 all the edges that don’t connect any two consecutive beads in any necklace.

The CONCORDE TSP solver

We based a large part of our code on the CONCORDE callable library, developed by
Applegate, Bixby, Chvátal & Cook for the homonymous TSP solver [2].

It is the most advanced software for the solution of the TSP, and it was able to
solve most of the problems that Gerhard Reinelt collected in TSPLIB [3], up to a tour
of Germany composed of 15,112 cities.

CONCORDE’s callable library offers LP-based functions for the separation of cuts
and even for the complete solution of TSP problems. It was very convenient having
such a library to avoid reimplementing separation procedures from scratch.

6.3.1 Lagrangean relaxation of the tightness constraints

As a preliminary approach, we tested the heuristic on the CONCORDE software by
modifying the original TSP instance after having created the cactus representation of
the tight sets.

Since the LP formulation for the TSP we are using (3.13) is a minimization
problem, the lagrangean relaxation of the tightness constraints in (6.2) must increase
the objective function when any of the constraints is violated.

A constraint of the type
x̄(δ(S)) ≤ 2

is violated if
x̄(δ(S)) > 2

6.3. LP-based implementations 43

or equivalently if x̄(δ(S)) − 2 > 0
For each domino or degenerate bead S, we add the quantity

λ (x̄(δ(S)) − 2)

to the objective function. This is the same as adding λ to the cost ci,j of each edge
that crosses the boundary of S.

To speed up the calculations, we can polarize the problem even more by using
the dual representation of the SECs, which we showed in (3.2.3): the equation that
represents the tightness constraint in the alternative form is

x̄(E(S)) ≥ |S| − 1

which is violated when
x̄(E(S)) < |S| − 1

or equivalently (|S| − 1) − x̄(E(S)) > 0. We can then add for each domino or
degenerate bead S the quantity

λ ((|S| − 1) − x̄(E(S)))

to the objective function. This is the same of subtracting λ to the cost ci,j of each
edge that is inside S. In the latter case, we must choose λ so that the cost of any
edge doesn’t become negative, so

λ ≤ ǫ + min
i∈S,j∈S

{ci,j}

The final algorithm is:

find the SEP extremum point x∗ using CONCORDE1

for each domino or degenerate bead S do2

subtract λ to the cost ci,j of every edge ei,j : i ∈ S, j ∈ S and add3

λ (|S| − 1) to the objective function
add λ to the cost ci,j of every edge ei,j : i ∈ S, j /∈ S and subtract 2λ4

from the objective function
solve the modified instance using CONCORDE5

end6

if the resulting tour T is not compatible then7

increase λ and regenerate the modified instance8

else9

return T10

end11

Algorithm 5: Lagrangean relaxation

The parts of the algorithm that created the new instance were coded in the Python
programming language, allowing for rapid prototyping.

44 Chapter 6. Algorithms

6.3.2 A branch-and-cut algorithm

A stricter way of implementing the compatible tour heuristic is to add the tightness
constraints (6.2) and (6.3) directly to the TSP LP.

At first, we tried to work inside the CONCORDE software for solving the TSP, to
modify it in order to find a compatible tour. This approach should the most natural
one, since CONCORDE is to date one of the most advanced and performing softwares
for solving the TSP. We forced the cutting stage of the root node of CONCORDE’s
branch-and-cut algorithm to use only the subtour elimination constraints. In this way,
at the end of the root node we had the SEP extremum x∗.

After that, we calculated the cactus representation of the root node using Wenger’s
code, and started enumerating the necklaces.

The problem with inserting the compatibility constraints in CONCORDE, is that
they cannot be represented in CONCORDE’s cuts’ standard format, which uses hy-
pergraphs or ordered couples (V, F) where V is a set of vertices and F is a set of (not
necessarily disjoint) non-empty subsets of V . This structure is capable of expressing
cuts of the form

∑

ai,jxi,j >= bi, but not of the form
∑

ai,jxi,j < bi. In other
words, cuts explicited in this way are valid for any subproblem in the TSP branch-and
cut tree: this allows CONCORDE to keep a pool of all the cuts it generated, to look
into for finding violated ones.

Unfortunately this means that it’s not possible to represent in CONCORDE’s for-
mat any cut that restricts the solution to some subset of the TSP polytope, i.e. forces
the solution of some subproblem. CONCORDE of course has a very powerful branch-
ing engine, and we implemented the compatibility cuts as subproblems. However,
since branching for CONCORDE involves the generation of a whole new instance of
the TSP, together with a new bound and a set of edges, adding all the constraints
we needed proved to be very time-consuming, up to the point of being impractical
except for very small-sized instances.

We then decided to switch to a complete implementation of a branch-and-cut
(B&C) algorithm for the compatible tour, in order to test it against more instances.

Implementing the compatible heuristic by B&C with Pricing

The code we wrote to solve the compatible tour heuristic is based on a branch-and-cut
with pricing algorithm.

Initial set of edges First of all, it determines a set of edges to insert into the initial
LP, which is the union of:

• All the edges in a computed greedy solution

• The first n shortest edges adjacent to every vertex in the TSP

We add all the edges in a solution because this way any cut that is globally valid
will have at least a set of edges that can fulfill it. The second set is instead one of
the various heuristics that can be used to find a good starting set. The number n of
shortest edges can be constant or related to the size of the problem.

6.3. LP-based implementations 45

The root node The initial LP contained just the DEG equations. The root node
is then solved to optimality using a B&C with Pricing algorithm:

Solve the initial LP1

repeat2

repeat3

Find violated SECs4

Add violated SECs to the LP and solve with Dual Simplex5

until There are no violated SECS ;6

Find variables with negative reduced cost7

Add variables with negative reduced cost to the LP and solve with Primal8

Simplex
until There are no variables with negative reduced cost ;9

Algorithm 6: Pricing

The algorithm above can be improved by applying these two rules:

• At step 5, add only the m most violated SECs, to try to improve the solution
without increasing too much the size of the tableau

• At step 8, add only the p most negative variables, for the same reason

Moreover, we applied cut and variable aging:

• For every cut, we keep a counter of the number of optimization cycles (age) in
a row in which the cut is not tight

• For every edge, we keep a similar counter for the number of cycles (age) in a
row in which the edge has positive reduced costs (i.e. is not in the basis)

• We remove a cut or an edge when its age is greater than some threshold.

The improvements above allow to keep the size of the tableau limited and speed
up the computation.

46 Chapter 6. Algorithms

Chapter 7

Results

In this chapter we present some of the results obtained by applying our different
approaches to the problem.

7.1 Gap for problems in TSPLIB

In table 7.1 we show the gap associated to some instances of the TSPLIB.
The columns show the instance name, the compatible tour value, the best tour

value and the relative gap:

gap =
compat − opt

opt
× 100

Instance Compatible TSP Optimum GAP%

burma14 3323 3323.00 0.00
ulysses16 6859 6859.00 0.00
gr17 2085 2085.00 0.00
gr21 2707 2707.00 0.00
ulysses22 7013 7013.00 0.00
gr24 1328 1272.00 4.22
fri26 937 937.00 0.00
bays29 2039 2020.00 0.93
bayg29 1610 1610.00 0.00
dantzig42 699 699.00 0.00
swiss42 1273 1273.00 0.00
att48 10653 10628.00 0.23
gr48 5226 5046.00 3.44
hk48 11525 11461.00 0.56
eil51 448 426.00 4.91

continued on next page

47

48 Chapter 7. Results

continued from previous page

Instance Compatible TSP Optimum GAP%

berlin52 7542 7542.00 0.00
brazil58 25395 25395.00 0.00
st70 731 675.00 7.66
eil76 543 538.00 0.92
gr96 57929 55209.00 4.70
rat99 1256 1211.00 3.58
kroD100 21765 21294.00 2.16
kroE100 24703 22068.00 10.67
kroA100 21767 21282.00 2.23
kroC100 22011 20749.00 5.73
kroB100 23106 22141.00 4.18
rd100 8134 7910.00 2.75
eil101 629 629.00 0.00
lin105 14504 14379.00 0.86
pr107 44303 44303.00 0.00
gr120 7145 6942.00 2.84
pr124 59824 59030.00 1.33
bier127 126457 118282.00 6.46
ch130 6276 6110.00 2.64
pr136 98632 96772.00 1.89
gr137 72341 69853.00 3.44
pr144 59282 58537.00 1.26
ch150 6613 6528.00 1.29
kroA150 28090 26524.00 5.57
kroB150 27595 26130.00 5.31
pr152 75799 73682.00 2.79
brg180 1950 1950.00 0.00
rat195 2479 2323.00 6.29
d198 16001 15780.00 1.38
kroB200 32165 29437.00 8.48
kroA200 30516 29368.00 3.76
gr202 40326 40160.00 0.41
ts225 146110 126643.00 13.32
tsp225 4301 3916.00 8.95
pr226 81845 80369.00 1.80
gr229 140484 134602.00 4.19
gil262 2460 2378.00 3.33
pr264 49670 49135.00 1.08
a280 2784 2579.00 7.36

continued on next page

7.1. Gap for problems in TSPLIB 49

continued from previous page

Instance Compatible TSP Optimum GAP%

pr299 50871 48191.00 5.27
lin318 42736 42029.00 1.65
rd400 15704 15281.00 2.69
fl417 12112 11861.00 2.07
gr431 178367 171414.00 3.90
pr439 109320 107217.00 1.92
pcb442 52166 50778.00 2.66
d493 36769 35002.00 4.81
ali535 208312 202339.00 2.87
u574 39106 36905.00 5.63
rat575 7136 6773.00 5.09
d657 50705 48912.00 3.54
gr666 302923 294358.00 2.83
u724 43944 41910.00 4.63
rat783 9307 8806.00 5.38
pcb1173 60467 56892.00 5.91

Table 7.1: Gap for problems in TSPLIB

We can observe that the largest gap was 13.32% for ts225 and the smallest gap
was 0, which means that the heuristic is capable of finding the optimal solution.

The average gap was 3.08%, which is quite a good performance for a tour con-
struction heuristic.

As an example, we gathered some comparison results in table 7.2 from the DI-
MACS challenge [4] pages for tour construction heuristics and problem pcb1173. The
compatible tour heuristic performed better than all but one of the tour construction
heuristic listed on the results page for this particular problem.

Algorithm GAP%

Greedy 18.15
CONCORDE Greedy 19.76
Bentley “multi-fragment” 18.29
Boruvka (CONCORDE) 17.47
“Quick”-Boruvka (CONCORDE) 14.82
Nearest neighbor (CONCORDE) 28.26
Farthest Insertion 15.13
Farthest Addition 42.47
Farthest Augmented Addition 15.27
Clarke-Wright Savings 11.45
Golden-Stewart CCA 11.91

continued on next page

50 Chapter 7. Results

0 2 4 6 8 10 12

Figure 7.1: Box plot of gaps in table 7.1

continued from previous page
Algorithm GAP%

Christo-S 12.24
Christo-G 8.20
HK one-tree 5.29
MST approx, greedy 7.84
MST, half-LK 12.78
Compatible Tour 5.91

Table 7.2: DIMACS Gaps for tour construction heuristics on pcb1173

In figure 7.1 we see that the population is well represented by the average and
that the largest gap we found is an outlier. Most of the values are in fact in the range
from 1 to 5.

7.2 Times for the B&C and price algorithm

In table 7.3 we gathered some results obtained by running our complete compatible-
tour B&C code with pricing on a PIII-M 1133MHz laptop, using CPLEX 10.0 and

7.2. Times for the B&C and price algorithm 51

Linux as the underlying Operating System. The software was coded in ansi-C pro-
gramming language.

Times are in seconds.
The columns are:

• Instance the TSPLIB instance

• Ttot the total time to find the compatible tour

• Tx∗ the time to get the extremum point of the SEP x∗

• Tcactus the time to generate the cactus

• Tmincuts the time to insert the minimum cuts in the LP

• Tcut the time spent for separating violated cuts using CONCORDE callable
library

• Tcheck the time spent for proving the best integral solution

• Tprice the time spent for pricing

• Nbranches the total number of branching nodes explored

Instance Ttot Tx∗ Tcactus Tmincuts Tcut Tcheck Tprice Nbranch

ulysses16 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0
gr17 0.04 0.03 0.00 0.00 0.01 0.00 0.00 0
gr21 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0
ulysses22 0.06 0.04 0.00 0.00 0.02 0.00 0.00 0
gr24 0.04 0.02 0.00 0.01 0.01 0.00 0.00 0
fri26 0.08 0.05 0.00 0.00 0.02 0.00 0.00 0
bays29 0.04 0.01 0.00 0.00 0.01 0.00 0.00 0
bayg29 0.04 0.02 0.00 0.00 0.01 0.00 0.00 0
dantzig42 0.11 0.04 0.00 0.01 0.00 0.00 0.01 0
swiss42 0.10 0.03 0.00 0.01 0.01 0.00 0.00 0
att48 0.20 0.08 0.00 0.01 0.07 0.00 0.02 2
hk48 0.19 0.10 0.00 0.02 0.04 0.00 0.01 0
gr48 0.13 0.06 0.00 0.01 0.03 0.00 0.01 0
eil51 0.12 0.06 0.00 0.01 0.02 0.00 0.00 0
berlin52 0.16 0.04 0.00 0.00 0.01 0.00 0.00 0
brazil58 0.26 0.10 0.00 0.01 0.02 0.00 0.03 0
st70 0.24 0.12 0.00 0.01 0.05 0.00 0.04 0
eil76 0.26 0.08 0.00 0.02 0.01 0.00 0.01 0
pr76 0.26 0.08 0.00 0.01 0.06 0.00 0.02 4

continued on next page

52 Chapter 7. Results

continued from previous page

Instance Ttot Tx∗ Tcactus Tmincuts Tcut Tcheck Tprice Nbranch

gr96 0.62 0.23 0.00 0.02 0.06 0.00 0.07 0
rat99 0.51 0.08 0.00 0.04 0.06 0.00 0.02 0
kroC100 0.59 0.31 0.00 0.02 0.05 0.00 0.12 0
kroA100 0.41 0.15 0.00 0.03 0.04 0.00 0.04 0
kroD100 0.63 0.37 0.00 0.02 0.08 0.00 0.14 0
rd100 0.78 0.42 0.00 0.04 0.11 0.00 0.19 0
kroE100 0.55 0.19 0.00 0.02 0.05 0.00 0.06 0
kroB100 0.62 0.32 0.00 0.02 0.04 0.00 0.15 0
eil101 1.01 0.19 0.00 0.02 0.06 0.00 0.08 2
lin105 1.05 0.26 0.00 0.02 0.04 0.00 0.09 0
pr107 1.59 0.46 0.00 0.02 0.05 0.00 0.24 0
gr120 1.00 0.47 0.00 0.08 0.12 0.00 0.25 0
pr124 1.00 0.46 0.00 0.04 0.08 0.00 0.22 0
bier127 1.38 0.54 0.00 0.04 0.10 0.00 0.26 0
ch130 1.22 0.56 0.00 0.05 0.24 0.00 0.22 0
pr136 3.36 0.72 0.01 0.18 1.76 1.18 0.23 18
gr137 1.29 0.42 0.01 0.05 0.09 0.00 0.15 0
pr144 1.86 1.19 0.00 0.04 0.20 0.00 0.52 0
ch150 1.66 1.00 0.00 0.10 0.14 0.00 0.52 0
kroA150 1.58 0.78 0.00 0.06 0.13 0.00 0.38 0
kroB150 1.26 0.49 0.00 0.06 0.10 0.00 0.26 0
pr152 4.34 3.41 0.01 0.08 0.45 0.00 1.50 0
u159 2.68 0.56 0.00 0.04 0.08 0.00 0.32 0
brg180 3.22 0.83 0.02 0.33 0.73 0.50 0.12 28
rat195 5.04 0.70 0.01 0.17 1.90 0.31 0.37 82
d198 5.12 3.25 0.01 0.12 0.48 0.00 1.68 4
kroA200 2.87 1.37 0.01 0.12 0.23 0.00 0.87 0
kroB200 2.06 0.76 0.01 0.09 0.12 0.00 0.40 0
gr202 7.63 1.28 0.00 0.08 0.11 0.00 0.83 0
tsp225 3.91 1.50 0.01 0.12 0.26 0.00 0.96 2
ts225 1.70 0.07 0.00 0.08 0.02 0.00 0.01 0
pr226 25.62 19.25 0.01 0.14 0.82 0.00 13.42 0
gr229 6.02 2.00 0.01 0.28 2.10 0.00 1.10 6
gil262 9.26 3.74 0.01 0.12 0.26 0.00 2.64 0
pr264 21.53 2.47 0.02 0.14 0.19 0.00 1.66 0
a280 5.82 1.11 0.01 0.14 0.26 0.06 0.74 6
pr299 10.71 3.00 0.01 0.13 0.22 0.00 2.33 0
lin318 26.30 17.12 0.02 0.22 1.14 0.00 11.58 0
rd400 35.19 10.04 0.02 0.36 1.29 0.00 7.40 4

continued on next page

7.3. Dynamic Programming algorithm 53

continued from previous page

Instance Ttot Tx∗ Tcactus Tmincuts Tcut Tcheck Tprice Nbranch

fl417 83.31 26.15 0.02 0.36 0.87 0.00 21.33 4
gr431 31.99 11.01 0.03 0.82 1.94 0.00 8.30 0
pr439 49.94 17.69 0.03 0.83 1.98 0.00 13.50 0
pcb442 25.09 3.22 0.02 0.45 0.81 0.06 2.34 14
d493 43.78 19.39 0.02 0.58 1.00 0.00 15.96 2
ali535 74.42 56.56 0.03 0.92 1.37 0.00 49.10 0
u574 62.94 32.68 0.02 0.83 1.34 0.00 28.33 0
rat575 24.57 4.95 0.03 0.87 0.95 0.00 3.58 0
d657 65.42 27.68 0.04 1.42 1.90 0.00 23.46 0
gr666 140.24 28.08 0.05 3.47 60.26 5.39 23.57 32
u724 99.98 50.12 0.06 1.51 1.85 0.02 44.01 4
rat783 133.73 23.09 0.06 1.38 0.90 0.00 19.71 0
pcb1173 336.15 70.92 0.08 4.15 1.57 0.00 63.44 0
nrw1379 722.05 143.85 0.18 12.43 231.07 8.91 131.84 24
d1655 3976.12 1615.66 0.20 10.55 7.95 0.00 1555.01 0

Totals 2214.13 1.08 44.43 330.42 16.43 2055.77

Table 7.3: Times for Branch & Cut
It is clear from Figure 7.2 that most of the time is spent finding the initial fractional

solution x∗ and for pricing, while the time spent in implementing the core of the
heuristic is comparatively very small.

In our experience the time for pricing was mainly spent when proving that there
were no negative reduced costs variables, which requires to test every variable not in
the tableau.

We didn’t include in the figure the time to build the cactus tree representation of
the minimum cuts because it was too small, compared to the others.

From figure 7.3 we can see that the time to solve the problem grows exponentially
with the size of the problem, as we expected.

The number of branches was very low in general, with a maximum of 82 branches
to optimality for rat195. Most of the problems found the optimal solution at the
root node after having inserted the compatibility constraints and cutting.

7.3 Dynamic Programming algorithm

In this section we present the performance of the Dynamic programming algorithm.
The columns are:

54 Chapter 7. Results

Figure 7.2: Times for steps in table 7.3

7.3. Dynamic Programming algorithm 55

0 500 1000 1500

0
10

00
20

00
30

00
40

00

nodes

T
T

ot
al

Figure 7.3: Ttot versus number of nodes in table 7.3

56 Chapter 7. Results

• Instance the instance from TSPLIB

• Onechains the number of chains of one that have been shrunk

• maxDeg the maximum degree for a node in the cactus

• Nsubproblems the number of generated subproblems

• Ttot the total time spent

The time figure cant’t be directly compared to the one obtained by B&C because
the DP algorithm was coded in the Python programming language for testing pur-
poses. We can expect at least a 1/10 ratio over the performance of optimized C code.
Note that the DP code started from the cactus representation of minimum cuts, so
it doesn’t take into account the time for finding x∗.

Instance Onechains maxDeg Nsubproblems Ttot

gr10 5 4 82 0.521472
att15 4 4 34 0.294400
gr24 5 4 82 0.530799
bays29 3 4 16 0.195719
bayg29 4 4 30 0.291470
dantzig42 8 4 798 2.940290
swiss42 5 4 56 0.570392
hk48 8 4 226 1.127665
att48 9 7 962 2.869591
gr48 9 4 678 2.095302
eil51 5 4 62 0.655221
brazil58 3 4 16 0.230893
st70 7 4 66 0.639436
pr76 9 12 2656 6.331394
eil76 4 4 34 0.462664
gr96 7 4 162 0.990478
rat99 15 4 1654 10.470588
rd100 15 4 3220 14.872333
kroC100 9 4 336 2.337255
kroA100 13 4 862 3.913415
kroE100 3 4 16 0.341285
kroD100 12 4 782 4.005255
kroB100 9 4 336 1.627935
eil101 11 8 4284 15.830658
lin105 4 4 34 0.588565
gr120 24 8 76330 1756.254541

continued on next page

7.3. Dynamic Programming algorithm 57

0 100 200 300 400

0
20

00
0

40
00

0
60

00
0

I(onechains * maxDeg)

su
bp

ro
bl

em
s

Figure 7.4: Subproblems versus onechains×maxDeg for table 7.4

continued from previous page

Instance Onechains maxDeg Nsubproblems Ttot

pr124 8 4 112 2.096782
bier127 13 4 1022 6.247325
ch130 20 11 7886 66.639272
pr136 46 9 58656 5852.500642

Table 7.4: Dynamic Programming algorithm

We can see that the time increases linearly with the number of subproblems that
are generated. The number of subproblems is directly affected by the number of
one-chains and the maximum degree for a node as one can see in figure 7.4

58 Chapter 7. Results

Chapter 8

Conclusions

In this work we presented a novel heuristic for the TSP, called the Compatible Tour
heuristic. The algorithm is a tour construction one, and it is strongly based on a fun-
damental LP relaxation of the TSP, which constrains define the Subtour Elimination
Polytope.

We studied the problem from a theoretical point of view and found several prop-
erties that reduce the steps required for the implementation of the algorithm.

We proved the NP-hard computational complexity of the heuristic and pinpointed
a class of “bad” instances which have a relative gap that goes up to 5/3.

We implemented three different algorithmic approaches to the solution of the
problem, the first based on the lagrangean relaxation of the constraints, the sec-
ond on a complete Branch&Cut with pricing solution and the third using Dynamic
Programming.

We tested the software against a wide range of benchmark problems from TSPLIB,
finding that it performed quite well on a large number of instances, having a small
average and absolute gap compared to other known tour-construction heuristics.

59

60 Chapter 8. Conclusions

Bibliography

[1] K.M. Wenger (2002) A New Approach to Cactus Construction Applied to TSP
Support Graphs. 9th International IPCO Conference Proc., LNCS 2337, Springer,
109–126

[2] D. Applegate, R.E. Bixby, V. Chvátal & W. Cook (2003) CONCORDE TSP
Solver http://www.tsp.gatech.edu/concorde.html

[3] G. Reinelt, TSPLIB http://www.iwr.uni-heidelberg.de/groups/comopt/

software/TSPLIB95/

[4] D.S. Johnson, DIMACS Challenge http://www.research.att.com/∼dsj/

chtsp/index.html

[5] K.S. Booth & G.S. Lueker (1976) Testing for the consecutive ones property,
interval graphs, and graph planarity using pq-tree algorithms. J. Comp. Sys.
Sci., 12, 335–379.

[6] S. Boyd & W. Pulleyblank (1991) Optimizing over the subtour polytope of the
travelling salesman problem. Math. Program., 49, 163–187.

[7] R.E. Burkhard, V.G. Deineko & G.J. Woeginger (1998) The travelling salesman
and the PQ-tree. Math. Oper. Res., 23, 613–623.

[8] N. Christofides (1976) Worst-case analysis of a new heuristic for the travelling
salesman problem. Report 388, Graduate School of Industrial Administration,
Carnegie Mellon University.

[9] V. Deineko & A. Tiskin (2006) Double-tree approximations for metric TSP: is
the best one good enough? Technical Report.

[10] E.A. Dinitz, A.V. Karzanov & M.V. Lomonosov (1976) A structure for the sys-
tem of all minimum cuts of a graph. In A.A. Fridman (ed.) Studies in Discrete
Optimization, Nauka, Moscow, pp. 290–306 (in Russian).

[11] L. Fleischer (1999) Building chain and cactus representations of all minimum
cuts from Hao-Orlin in the same asymptotic run time. J. of Algorithms, 33,
51–72.

61

62 BIBLIOGRAPHY

[12] M.R. Garey, D.S. Johnson & L. Stockmeyer (1974) Some simplified NP-
complete problems. In Proc. 6th annual ACM Symposium on Theory of Com-
puting, pp. 47–63.

[13] G. Gutin & A.P. Punnen (eds) (2002) The Traveling Salesman Problem and its
Variations. Kluwer.

[14] M. Held & R.M. Karp (1970) The traveling salesman problem and minimum
cost spanning trees. Oper. Res., 18, 1138–1162.

[15] E. Lawler, J. Lenstra, A. Rinnooy Kan & D. Shmoys (eds.), The Traveling
Salesman Problem. John Wiley & Sons, Chichester.

[16] D.J. Rosenkrantz, R.E. Stearns & P.M. Lewis (1977) An analysis of several
heuristics for the traveling salesman problem. SIAM J. Comput., 6, 563-581.

[17] D.L. Applegate, R.E. Bixby, V. Chvátal & W.J. Cook (1995) Finding cuts in the
TSP (a preliminary report). Technical Report 95–05, DIMACS, Rutgers Univer-
sity, New Brunswick, NJ.

[18] D.L. Applegate, R.E. Bixby, V. Chvátal & W.J. Cook (1998) On the solution
of traveling salesman problems. Documenta Mathematica Extra Volume ICM III
645–656.

[19] D.L. Applegate, R.E. Bixby, V. Chvátal & W.J. Cook (2001) TSP cuts which
do not conform to the template paradigm. In M. Jünger and D. Naddef (eds.)
Computational Combinatorial Optimization. Springer.

[20] D.L. Applegate, R.E. Bixby, V. Chvátal & W.J. Cook (2003) Implementing
the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems.
Math. Program., 97, 91–153.

[21] D.L. Applegate, R.E. Bixby, V. Chvátal & W.J. Cook (2006) The Traveling
Salesman Problem: A Computational Study. Princeton University Press.

[22] E. Balas (1989) The asymmetric assignment problem and some new facets of
the traveling salesman polytope. SIAM J. Discr. Math., 2, 425–451.

[23] E. Balas, R. Carr, M. Fischetti & N. Simonetti (2006) New facets of the STS
polytope generated from known facets of the ATS polytope. Discr. Opt., 3, 3-19.

[24] E. Balas & M. Fischetti (1992) The fixed out-degree 1-arborescence polytope.
Math. Oper. Res., 17, 1001–1018.

[25] E. Balas & M. Fischetti (1993) A lifting procedure for the asymmetric traveling
salesman polytope and a large new class of facets. Math. Program., 58, 325–352.

[26] E. Balas & M. Fischetti (1997) On the monotonization of polyhedra. Math.
Program., 78, 59–84.

BIBLIOGRAPHY 63

[27] E. Balas & M. Fischetti (1999) Lifted cycle inequalities for the asymmetric trav-
eling salesman problem. Math. Oper. Res., 24, 273–292.

[28] E. Balas & M. Fischetti (2002) Polyhedral theory for the asymmetric traveling
salesman problem. In G. Gutin & A.P. Punnen (eds.) The Traveling Salesman
Problem and Its Variations. Kluwer Academic Publishers.

[29] S.C. Boyd, S. Cockburn & D. Vela (2006) On the domino-parity inequalities for
the TSP. Math. Program., to appear.

[30] S.C. Boyd & W.H. Cunningham (1991) Small traveling salesman polytopes.
Math. Oper. Res., 16, 259–271.

[31] S.C. Boyd, W.H. Cunningham, M. Queyranne & Y. Wang (1995) Ladders for
travelling salesmen. SIAM J. Optim., 5, 408–420.

[32] S. Boyd & G. Labonté (2002) Finding the exact integrality gap for small travelling
salesman problems. In W.J. Cook & A.S. Schulz (eds.) Integer Programming and
Combinatorial Optimization 9, Lecture Notes in Computer Science 2337. Berlin:
Springer-Verlag.

[33] S.C. Boyd & W.R. Pulleyblank (1990) Optimizing over the subtour polytope of
the traveling salesman problem. Math. Program., 49, 163–187.

[34] A. Caprara & M. Fischetti (1996) {0, 1/2}-Chvátal-Gomory cuts. Math. Pro-
gram., 74, 221–235.

[35] A. Caprara, M. Fischetti & A.N. Letchford (2000) On the separation of maximally
violated mod-k cuts. Math. Program., 87, 37–56.

[36] A. Caprara & A.N. Letchford (2003) On the separation of split cuts and related
inequalities. Math. Program., 94, 279–294.

[37] R.D. Carr (1996) Separating over classes of TSP inequalities defined by 0
node-lifting in polynomial time. In W.H. Cunningham, S.T. McCormick & M.
Queyranne (eds.) Integer Programming and Combinatorial Optimization 5, Lec-
ture Notes in Computer Science 1084. Berlin: Springer-Verlag.

[38] R.D. Carr (1997) Separating clique tree and bipartition inequalities having a
fixed number of handles and teeth in polynomial time. Math. Oper. Res., 22,
257–265.

[39] R.D. Carr (2000) Some results on node lifting of TSP inequalities. J. Comb.
Opt., 4, 395–414.

[40] R.D. Carr (2004) Separation algorithms for classes of STSP inequalities arising
from a new STSP relaxation. Math. Oper. Res., 29, 80–91.

64 BIBLIOGRAPHY

[41] S. Chopra & G. Rinaldi (1990) The graphical asymmetric traveling salesman
polyhedron. In R. Kannan & W.R. Pulleyblank (eds.) Integer Programming and
Combinatorial Optimization 1, University of Waterloo Press.

[42] S. Chopra & G. Rinaldi (1996) The graphical asymmetric traveling salesman
polyhedron: symmetric inequalities. SIAM J. Discr. Math., 9, 602–624.

[43] T. Christof, M. Jünger, G. Reinelt (1991) A complete description of the traveling
salesman polytope on 8 nodes. Oper. Res. Lett., 10, 497–500.

[44] T. Christof & G. Reinelt (1995) Parallel cutting plane generation for the TSP.
In P. Fritzson & L. Finno (eds.) Parallel Programming and Applications. Ams-
terdam: IOS Press, 163–169.

[45] T. Christof & G. Reinelt (1996) Combinatorial optimization and small polytopes.
Top (J. Span. Stat. & O.R. Soc.), 4, 1–64.

[46] V. Chvátal (1973) Edmonds polytopes and weakly Hamiltonian graphs. Math.
Program., 5, 29–40.

[47] V. Chvátal, W. Cook & M. Hartmann (1989) On cutting plane proofs in combi-
natorial optimization. Lin. Alg. Appl., 114/115, 455–499.

[48] J.-M. Clochard & D. Naddef (1993) Using path inequalities in a branch-and-cut
code for the symmetric traveling salesman problem. In G. Rinaldi & L.A. Wolsey
(eds.) Integer Programming and Combinatorial Optimization 3, CORE, Catholic
University of Louvain, 291–311.

[49] W. Cook, D. Espinoza & M. Goycoolea (2005) A study of domino-parity and k-
parity constraints for the TSP. In M. Junger & V. Kaibel (eds.) Integer Program-
ming and Combinatorial Optimization 11. Lecture Notes in Computer Science
vol. 3509. Berlin: Springer-Verlag.

[50] W. Cook, D. Espinoza & M. Goycoolea (2006) Computing with domino-parity
inequalities for the TSP. INFORMS J. Computing, to appear.

[51] W. Cook, D. Espinoza & M. Goycoolea (2007) A generalization of domino-parity
constraints to multiple-handle configurations. Working paper.

[52] G. Cornuéjols, J. Fonlupt & D. Naddef (1985) The travelling salesman on a
graph and some related integer polyhedra. Math. Program., 33, 1–27.

[53] G. Cornuéjols, D. Naddef & W.R. Pulleyblank (1985) The traveling salesman
problem in graphs with 3-edge cutsets. J. of the ACM, 32, 383–410.

[54] H. Crowder & M.W. Padberg (1980) Solving large-scale symmetric traveling
salesman problems to optimality. Mgt. Sci., 26, 495–509.

BIBLIOGRAPHY 65

[55] W.H. Cunningham & Y. Wang (2000) Restricted 2-factor polytopes. Math. Pro-
gram., 87, 87–111.

[56] G.B. Dantzig, D.R. Fulkerson & S.M. Johnson (1954) Solution of a large-scale
traveling salesman problem. Oper. Res., 2, 393–410.

[57] R. Euler & H. Le Verge (1995) Complete linear descriptions of small asymmetric
traveling salesman polytopes. Discr. Appl. Math., 62, 193–208.

[58] M. Fischetti (1991) Facets of the asymmetric traveling salesman polytope. Math.
Oper. Res., 16, 42–56.

[59] M. Fischetti (1992) Three lifting theorems for the asymmetric traveling salesman
polytope. E. Balas, G. Cornuéjols, R. Kannan (eds.) Integer Programming and
Combinatorial Optimization 2, Pittsburgh. Carnegie Mellon University, 260–273.

[60] M. Fischetti (1995) Clique tree inequalities define facets of the asymmetric trav-
eling salesman polytope. Discr. Appl. Math., 56, 9–18.

[61] M. Fischetti, A. Lodi & P. Toth (2002) Exact methods for the asymmetric
traveling salesman problem. In G. Gutin & A. Punnen (eds.) The Traveling
Salesman Problem and its Variations. Kluwer Academic Publishers.

[62] M. Fischetti, A. Lodi & P. Toth (2003) Solving real-world ATSP instances by
branch-and-cut. In M. Jünger, G. Reinelt & G. Rinaldi (eds.) Combinatorial
Optimization - Eureka, You Shrink! Lecture Notes In Computer Science vol.
2570. Berlin: Springer-Verlag.

[63] M. Fischetti & P. Toth (1997) A polyhedral approach to the asymmetric traveling
salesman problem. Mgt. Sci., 43, 1520–1536.

[64] L.K. Fleischer, A.N. Letchford & A. Lodi (2006) Polynomial-time separation of
a superclass of simple comb inequalities. Math. Oper. Res., 31, 696–713.

[65] L. Fleischer & É. Tardos (1999) Separating maximally violated comb inequalities
in planar graphs. Math. Oper. Res., 24, 130–148.

[66] B. Fleischmann (1985) A cutting plane procedure for the travelling salesman
problem on a road network. Eur. J. Opl Res., 21, 307–317.

[67] B. Fleischmann (1987) Cutting planes for the symmetric travelling salesman
problem. Technical report, Universität Hamburg.

[68] B. Fleischmann (1988) A new class of cutting planes for the symmetric travelling
salesman problem. Math. Program., 40, 225–246.

[69] J. Fonlupt & A. Nachef (1993) Dynamic programming and the graphical traveling
salesman problem. J. Assoc. Comput. Mach., 40, 1165–1187.

66 BIBLIOGRAPHY

[70] J. Fonlupt & D. Naddef (1992) The traveling salesman problem in graphs with
excluded minors. Math. Program., 53, 147–172.

[71] M.X. Goemans (1995) Worst-case comparison of valid inequalities for the TSP.
Math. Program., 69, 335–349.

[72] M. Grötschel (1980) On the monotone symmetric travelling salesman problem:
hypohamiltonian / hypotracable graphs and facets. Math. Oper. Res., 5, 285–
292.

[73] M. Grötschel (1980) On the symmetric travelling salesman problem: solution of
a 120–city problem. Math. Program. Study, 12, 61–77.

[74] M. Grötschel & O. Holland (1991) Solution of large-scale symmetric traveling
salesman problems. Math. Program., 51, 141–202.

[75] M. Grötschel, L. Lovász & A.J. Schrijver (1988) Geometric Algorithms and Com-
binatorial Optimization. Berlin: Springer-Verlag.

[76] M. Grötschel & M.W. Padberg (1975) Partial linear characterizations of the
asymmetric travelling salesman polytope. Math. Program., 8, 378–381.

[77] M. Grötschel & M.W. Padberg (1979) On the symmetric travelling salesman
problem I: inequalities. Math. Program., 16, 265–280.

[78] M. Grötschel & M.W. Padberg (1979) On the symmetric travelling salesman
problem II: lifting theorems and facets. Math. Program., 16, 281–302.

[79] M. Grötschel & M.W. Padberg (1985) Polyhedral theory. In E. Lawler, J. Lenstra,
A. Rinnooy Kan, D. Shmoys (eds.). The Traveling Salesman Problem, John Wiley
& Sons, Chichester, 251–305.

[80] M. Grötschel & W.R. Pulleyblank (1986) Clique tree inequalities and the sym-
metric traveling salesman problem. Math. Oper. Res., 11, 537–569.

[81] M. Grötschel & Y. Wakabayashi (1981) On the structure of the monotone asym-
metric travelling salesman polytope I: hypohamiltonian facets. Discr. Math., 34,
43–59.

[82] M. Grötschel & Y. Wakabayashi (1981) On the structure of the monotone asym-
metric travelling salesman polytope II: hypotraceable facets. Math. Program.
Study, 14, 77–97.

[83] M. Hartmann, M. Queyranne & Y. Wang (1999) On the Chvátal rank of certain
inequalities. In G. Cornuéjols, R.E. Burkard & G.J. Woeginger (eds.) Integer
Programming and Combinatorial Optimization 7, Lecture Notes in Computer
Science 1610. Berlin: Springer-Verlag.

BIBLIOGRAPHY 67

[84] M. Jünger, G. Reinelt, G. Rinaldi (1995) The traveling salesman problem. In
M. Ball, T. Magnanti, C. Monma & G. Nemhauser (eds.). Network Models,
Handbooks in Operations Research and Management Science, 7, Elsevier Pub-
lisher B.V., Amsterdam, 225–330.

[85] M. Jünger, G. Reinelt & G. Rinaldi (1997) The traveling salesman problem.
In M. Dell’Amico, F. Maffioli & S. Martello (eds.) Annotated Bibliographies in
Combinatorial Optimization. Chichester: Wiley.

[86] M. Jünger, G. Reinelt & S. Thienel (1994) Provably good solutions for the
traveling salesman problem. Z. Oper. Res., 40, 183–217.

[87] R.M. Karp & C.H. Papadimitriou (1982) On linear characterizations of combi-
natorial optimization problems. SIAM J. Comput., 11, 620–632.

[88] A.N. Letchford (2000) Separating a superclass of comb inequalities in planar
graphs. Math. Oper. Res., 25, 443–454.

[89] A.N. Letchford (2001) On disjunctive cuts for combinatorial optimization. J.
Comb. Opt., 5, 299–315.

[90] A.N. Letchford (2003) Binary clutter inequalities for integer programs. Math.
Program., 98, 201–221.

[91] A.N. Letchford & A. Lodi (2002) Polynomial-time separation of simple comb
inequalities. In W.J. Cook & A.S. Schulz (eds.), Integer Programming and Com-
binatorial Optimization 9. Lecture Notes in Computer Science vol 2337. Berlin:
Springer-Verlag.

[92] A.N. Letchford & N.A. Pearson (2006) Exploiting planarity in separation routines
for the symmetric traveling salesman problem. Discr. Opt., to appear.

[93] A.N. Letchford, G. Reinelt & D.O. Theis (2004) A faster exact separation algo-
rithm for blossom inequalities. In G. Nemhauser & D. Bienstock (eds.) Integer
Programming and Combinatorial Optimization 10. Lecture Notes in Computer
Science vol. 3064. Berlin: Springer-Verlag.

[94] P. Miliotis (1976) Integer programming approaches to the travelling salesman
problem. Math. Program., 10, 367–378.

[95] P. Miliotis (1978) Using cutting planes to solve the symmetric travelling salesman
problem. Math. Program., 15, 177–188.

[96] J.-F. Maurras & V.H. Nguyen (2003) A procedure of facet composition for the
symmetric traveling salesman polytope. In M. Jünger, G. Reinelt & G. Rinaldi
(eds.) Combinatorial Optimization - Eureka, You Shrink! Lecture Notes In Com-
puter Science vol. 2570. Berlin: Springer-Verlag.

68 BIBLIOGRAPHY

[97] D. Naddef (1990) Handles and teeth in the symmetric traveling salesman poly-
tope. In W. Cook & P.D. Seymour (eds.) Polyhedral Combinatorics. Baltimore:
American Mathematical Society.

[98] D. Naddef (1992) The binested inequalities for the symmetric traveling salesman
polytope. Math. Oper. Res., 17, 882–900.

[99] D. Naddef (2002) Polyhedral theory and branch-and-cut algorithms for the TSP.
In G. Gutin & A.P. Punnen (eds), The Traveling Salesman Problem and Its
Variations. Kluwer Academic Publishers.

[100] D. Naddef (2004) The domino inequalities for the symmetric traveling sales-
man problem. In M. Grötschel (ed.) The Sharpest Cut: the Impact of Manfred
Padberg and His Work. MPS-SIAM Series on Optimization vol. 4.

[101] D. Naddef & J.-M. Clochard (1994) Some fast and efficient heuristics for comb
separation in the symmetric traveling salesman problem. Technical Report RR–
941, ARTEMIS, Grenoble.

[102] D. Naddef & Y. Pochet (2001) The symmetric traveling salesman polytope
revisited. Math. Oper. Res., 26, 700-722.

[103] D. Naddef & G. Rinaldi (1988) The symmetric traveling salesman polytope:
New facets from the graphical relaxation. Technical Report 248, IASI-CNR,
Rome.

[104] D. Naddef & G. Rinaldi (1991) The symmetric traveling salesman polytope and
its graphical relaxation: composition of valid inequalities. Math. Program., 51,
359–400.

[105] D. Naddef & G. Rinaldi (1992) The crown inequalities for the symmetric trav-
eling salesman polytope. Math. Oper. Res., 17, 308–326.

[106] D. Naddef & G. Rinaldi (1993) The graphical relaxation: a new framework for
the symmetric travelling salesman polytope. Math. Program., 58, 53–88.

[107] D. Naddef & S. Thienel (2002) Efficient separation routines for the symmetric
traveling salesman problem I: general tools and comb separation. Math. Pro-
gram., 92, 237–255.

[108] D. Naddef & S. Thienel (2002) Efficient separation routines for the symmetric
traveling salesman problem II: separating multi-handle inequalities. Math. Pro-
gram., 92, 257–283.

[109] D. Naddef & E. Wild (2003) The domino inequalities: facets for the symmetric
traveling salesman polytope. Math. Program., 98, 223–251.

[110] H. Nagamochi, T. Ono & T. Ibaraki (1994) Implementing an efficient minimum
cut algorithm. Math. Program., 67, 325-341.

BIBLIOGRAPHY 69

[111] G.L. Nemhauser & L.A. Wolsey (1988) Integer and Combinatorial Optimization.
New York: Wiley.

[112] M. Oswald, G. Reinelt & D.O. Theis (2005) Not every GTSP facet induces
an STSP facet. In M. Jünger & V. Kaibel (eds.) Integer Programming and
Combinatorial Optimization 11. Lecture Notes in Computer Science vol. 3509.
Berlin: Springer.

[113] M. Oswald, G. Reinelt & D.O. Theis (2006) On the graphical relaxation of the
symmetric traveling salesman polytope. To appear in Math. Program.

[114] M.W. Padberg & M. Grötschel (1985) Polyhedral computations. In E. Lawler,
J. Lenstra, A. Rinnooy Kan, D. Shmoys (eds.). The Traveling Salesman Problem,
John Wiley & Sons, Chichester, 307–360.

[115] M.W. Padberg & S. Hong (1980) On the symmetric travelling salesman prob-
lem: a computational study. Math. Program. Study, 12, 78–107.

[116] M.W. Padberg & M.R. Rao (1974) The travelling salesman problem and a class
of polyhedra of diameter two. Math. Program., 7, 32–45.

[117] M.W. Padberg & M.R. Rao (1982) Odd minimum cut-sets and b-matchings.
Math. Oper. Res., 7, 67–80.

[118] M.W. Padberg & G. Rinaldi (1987) Optimization of a 532 city symmetric trav-
eling salesman problem by branch-and-cut. Oper. Res. Lett., 6, 1–7.

[119] M.W. Padberg & G. Rinaldi (1990) Facet identification for the symmetric trav-
eling salesman polytope. Math. Program., 47, 219–257.

[120] M.W. Padberg & G. Rinaldi (1990) An efficient algorithm for the minimum
capacity cut problem. Math. Program., 47, 219–257.

[121] M.W. Padberg & G. Rinaldi (1991) A branch-and-cut algorithm for the res-
olution of large-scale symmetric travelling salesman problems. SIAM Rev., 33,
60–100.

[122] C.H. Papadimitriou (1978) The adjacency relation on the traveling salesman
polytope is NP-complete. Math. Program., 14, 312–324.

[123] C.H. Papadimitriou & M. Yannakakis (1984) The complexity of facets (and
some facets of complexity). J. Comp. System Sci., 28, 244–259.

[124] M. Queyranne & Y. Wang (1990) Facet-tree composition for symmetric trav-
elling salesman polytopes. Technical Report 90-MCS-001, Faculty of Commerce
and Business Administration, University of British Columbia.

[125] M. Queyranne & Y. Wang (1991) Composing facets of symmetric travelling
salesman polytopes. Technical Report, Faculty of Commerce and Business Ad-
ministration, University of British Columbia.

70 BIBLIOGRAPHY

[126] M. Queyranne & Y. Wang (1993) Hamiltonian path and symmetric travelling
salesman polytopes. Math. Program., 58, 89–110.

[127] M. Queyranne & Y. Wang (1995) Symmetric inequalities and their composition
for asymmetric travelling salesman polytopes. Math. Oper. Res., 20, 838–863.

[128] M.R. Rao (1976) Adjacency of the traveling salesman tours and 0-1 vertices.
SIAM J. Appl. Math. 30, 191–198.

[129] G. Reinelt & K.M. Wenger (2003) Small instance relaxations for the traveling
salesman problem. In D. Ahr, R. Fahrion, M. Oswald & G. Reinelt (eds.) Selected
Papers of the Int. Conf. on Oper. Res. 2003. Springer, pp. 371–378.

[130] A. Schrijver (2003) Combinatorial Optimization: Polyhedra and Efficiency.
Springer.

[131] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

[132] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, Belmont, Massachusetts, 1997.

[133] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer
programming problems. ORSA Journal on Computing, 6:445–454, 1994.

[134] A. Martin. Integer Programs with Block Structure. Habilitationsschrift, Tech-
nische Universität Berlin, 1999.

[135] R. E. Gomory. Outline of an Algorithm for Integer Solutions to Linear Programs.
Bulletin of The American Mathematical Society 64, 275–278, 1958.

[136] L. A. Wolsey. Integer Programming. John Wiley & Sons, New York, 1998.

[137] H. Marchand and L. A. Wolsey. Aggregation and mixed integer rounding.
Operations Research, 49:363–371, 2001.

[138] A. Schrijver. On cutting planes. Annals of Discrete Mathematics 9, 291–296,
1980.

[139] G. L. Nemhauser and L. A. Wolsey. A recursive procedure for generating all
cuts for 0-1 mixed integer programs. Mathematical Programming, 46:379–390,
1990.

[140] E. Balas. Facets of the knapsack polytope. Mathematical Programming, 8:146–
164, 1975.

[141] E. Balas and E. Zemel. Facets of the knapsack polytope from minimal covers.
SIAM Journal of Applied Mathematics, 34:119–148, 1978.

BIBLIOGRAPHY 71

[142] Z. Gu, G. L. Nemhauser and M. W. P. Savelsbergh. Lifted cover inequalities for
0-1 integer programs: Computation. INFORMS Journal on Computing, 10:427–
437, 1998.

[143] M. W. Padberg, T. J. Van Roy and L. A. Wolsey. Valid linear inequalities for
fixed charge problems. Operations Research, 33:842–861, 1985.

[144] T. J. Van Roy and L. A. Wolsey. Solving mixed integer programming problems
using automatic reformulation. Operations Research, 35:45–57, 1987.

[145] M. W. Padberg. On the facial structure of set packing polyhedra. Mathematical
Programming, 5:199–215, 1973.

[146] A. H. Land and A. G. Doig. An Automatic Method for Solving Discrete Pro-
gramming Problems. Econometrica 28, 497–520, 1960.

[147] E. Balas, S. Ceria, M. Dawande, F. Margot and G. Pataki. OCTANE: A New
Heuristic For Pure 0-1 Programs. Operations Research 49, 207–225, 2001.

[148] E. Balas and C. H. Martin. Pivot-And-Complement: A Heuristic For 0-1 Pro-
gramming. Management Science 26, 86–96, 1980.

[149] F. Glover and M. Laguna. General Purpose Heuristics For Integer Programming:
Part I. Journal of Heuristics 2, 343–358, 1997.

[150] F. Glover and M. Laguna. General Purpose Heuristics For Integer Programming:
Part II. Journal of Heuristics 3, 161–179, 1997.

[151] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publisher, Boston,
Dordrecht, London, 1997.

[152] T. Ibaraki, T. Ohashi and H. Mine. A Heuristic Algorithm For Mixed-Integer
Programming Problems. Mathematical Programming Study 2, 115–136, 1974

[153] A. Løkketangen. Heuristics for 0-1 Mixed-Integer Programming. In P.M. Parda-
los and M.G.C. Resende (ed.s) Handbook of Applied Optimization, Oxford Uni-
versity Press, 474–477, 200

[154] P. L. Hammer, E. L. Johnson and U. N. Peled. Facets of regular 0-1 polytopes.
Mathematical Programming, 8:179–206, 1975.

[155] M. W. Padberg. Covering, packing and knapsack problems. Annals of Discrete
Mathematics, 4:265–287, 1979.

[156] Z. Gu, G. L. Nemhauser and M. W. P. Savelsbergh. Lifted flow cover inequalities
for mixed 01 integer programs. Mathematical Programming, 85:439–467, 1999.

[157] A. Løkketangen and F. Glover. Solving Zero/One Mixed Integer Programming
Problems Using Tabu Search. European Journal of Operational Research 106,
624–658, 1998.

72 BIBLIOGRAPHY

[158] M. Nediak and J. Eckstein. Pivot, Cut, and Dive: A Heuristic for 0-1 Mixed
Integer Programming. Research Report RRR 53-2001, RUTCOR, Rutgers Uni-
versity, October 2001.

[159] M. Fischetti and A. Lodi. Local Branching. Mathematical Programming 98,
23–47, 2003.

[160] E. Danna, E. Rothberg and C. Le Pape. Exploring relaxation induced neigh-
borhoods to improve MIP solutions. Mathematical Programming 102, 71–90,
2005.

Acknowledgements

I would like to thank Prof. Andrea Lodi, Prof. Paolo Toth and all the Operations
Research people at DEIS for their unending support, competence and friendliness.

I owe much to Prof. Adam Letchford, who helped me greatly on the intricacies
of theorem proving and has been a bottomless vault of bad instances and intuitions.

I would also like to thank Klaus Wenger for letting me use his very good cactus
construction code.

All this wouldn’t have been possible without the loving and caring support of my
wonderful family.

73

