1	The stoichiometric dissociation constants of carbonic acid in seawater brines from 298 to
2	267 K
3	
4	Stathys Papadimitriou ^{a,*} , Socratis Loucaides ^b , Victoire M. C. Rérolle ^{b,1} , Paul Kennedy ^a , Eric P.
5	Achterberg ^{c,2} , Andrew G. Dickson ^d , Matthew Mowlem ^b , Hilary Kennedy ^a
6	
7	^a Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey LL59
8	5AB, UK
9	^b National Oceanography Centre, Southampton, SO14 3ZH, UK
10	^c University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK
11	^d Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San
12	Diego, 9500 Gilman Drive, La Jolla, CA 92093-0244, USA
13	
14	¹ Present address: FLUIDION SAS, 75001 Paris, France
15	² Present address: GEOMAR, Helmholtz Centre for Ocean Research, 24148 Kiel, Germany
16	
17	
18	
19	*Corresponding author: <u>s.papadimitriou@bangor.ac.uk</u> (e-mail)

21 Abstract

The stoichiometric dissociation constants of carbonic acid $(K_{1C}^* \text{ and } K_{2C}^*)$ were determined 22 by measurement of all four measurable parameters of the carbonate system (total alkalinity, total 23 dissolved inorganic carbon, pH on the total proton scale, and CO₂ fugacity) in natural seawater 24 25 and seawater-derived brines, with a major ion composition equivalent to that Reference Seawater, to practical salinity (S_P) 100 and from 25 °C to the freezing point of these solutions and -6 °C 26 temperature minimum. These values, reported in the total proton scale, provide the first such 27 determinations at below-zero temperatures and for $S_P > 50$. The temperature (T, in Kelvin) and S_P 28 dependence of the current pK_{1C}^* and pK_{2C}^* (as negative common logarithms) within the salinity 29 and temperature ranges of this study ($33 \le S_P \le 100$, $-6 \ ^\circ C \le t \le 25 \ ^\circ C$) is described by the 30 following best-fit equations: $pK_{1C}^* = -176.48 + 6.14528 S_P^{0.5} - 0.127714 S_P + 7.396 \times 10^{-5} S_P^2 + 6.14528 S_P^{0.5} - 0.127714 S_P + 7.396 \times 10^{-5} S_P^2 + 6.14528 S_P^{0.5} - 0.127714 S_P + 7.396 \times 10^{-5} S_P^2 + 6.14528 S_P^{0.5} - 0.127714 S_P + 7.396 \times 10^{-5} S_P^2 + 6.14528 S_P^{0.5} - 0.127714 S_P + 7.396 \times 10^{-5} S_P^2 + 6.14528 S_P^{0.5} - 0.127714 S_P + 7.396 \times 10^{-5} S_P^2 + 6.14528 S_P^{0.5} - 0.127714 S_P + 7.396 \times 10^{-5} S_P^2 + 6.14528 S_P^{0.5} - 0.127714 S_P + 7.396 \times 10^{-5} S_P^2 + 6.14528 S_P^{0.5} - 0.127714 S_P + 7.396 \times 10^{-5} S_P^2 + 6.14528 S_P^{0.5} - 0.127714 S_P + 7.396 \times 10^{-5} S_P^2 + 6.14528 S_P^{0.5} - 0.127714 S_P + 7.396 \times 10^{-5} S_P^2 + 6.14528 S_P^{0.5} - 0.127714 S_P^2 + 7.396 \times 10^{-5} S_P^2 + 6.14528 S_P^2 - 0.127714 S_P^2 + 7.396 \times 10^{-5} S_P^2 + 6.14528 S_P^2 - 0.127714 S_P^2 + 7.396 \times 10^{-5} S_P^2 + 7.396 \times 10^{-5}$ 31 $(9914.37 - 622.886 \text{ S}_{p}^{0.5} + 29.714 \text{ S}_{P}) \text{ T}^{-1} + (26.05129 - 0.666812 \text{ S}_{p}^{0.5}) \ln \text{T} (\sigma = 0.011, n = 62),$ 32 and $pK_{2C}^* = -323.52692 + 27.557655 S_P^{0.5} + 0.154922 S_P - 2.48396 \times 10^{-4} S_P^2 + (14763.287 - 14763.287) + 0.154922 S_P - 2.48396 \times 10^{-4} S_P^2 + (14763.287) + 0.154922 S_P - 2.48396 \times 10^{-4} S_P^2 + (14763.287) + 0.154922 S_P - 2.48396 \times 10^{-4} S_P^2 + (14763.287) + 0.154922 S_P - 2.48396 \times 10^{-4} S_P^2 + (14763.287) + 0.154922 S_P - 2.48396 \times 10^{-4} S_P^2 + (14763.287) + 0.154922 S_P - 2.48396 \times 10^{-4} S_P^2 + (14763.287) + 0.154922 S_P - 2.48396 \times 10^{-4} S_P^2 + (14763.287) + 0.154922 S_P - 2.48396 \times 10^{-4} S_P^2 + (14763.287) + 0.154922 S_P - 2.48396 \times 10^{-4} S_P^2 + (14763.287) + 0.154922 S_P - 2.48396 \times 10^{-4} S_P^2 + (14763.287) + 0.154922 S_P^2 + 0.15492 S_P^2 + 0.15$ 33 1014.819 $S_{p}^{0.5} - 14.35223 S_{P} T^{-1} + (50.385807 - 4.4630415 S_{p}^{0.5}) \ln T (\sigma = 0.020, n = 62)$. These 34 functions are suitable for application to investigations of the carbonate system of internal sea ice 35 brines with a conservative major ion composition relative to that of Reference Seawater and 36 within the temperature and salinity ranges of this study. 37

38

40 1. Introduction

The investigation of the carbonate system in aquatic environments is essential in the 41 understanding and monitoring of the carbon cycle in the hydrosphere. Such investigations have 42 intensified in the marine environment because of the crucial role the ocean plays in the absorption 43 and storage of the anthropogenic CO_2 emitted to the atmosphere during the Industrial era 44 (Takahashi et al., 1997; Sabine et al., 2004). Through this process, the ocean is a major repository 45 of anthropogenic CO₂ (Takahashi, 2004), with consequent chemical and ecosystem functioning 46 effects from the acidification of surface oceanic waters (decreased oceanic pH relative to pre-47 industrial era values) (Caldeira and Wickett, 2003; Feely et al., 2004; Takahashi et al., 2014; 48 Gattuso et al., 2015). The acidification effect on the oceanic carbonate system by atmospheric 49 CO2 absorption (Takahashi, 2004; Sabine et al., 2004) has been observed in surface coastal and 50 pelagic waters (Takahashi et al., 2014), including large areas of the Arctic Ocean (Feely et al., 51 2008; Yamamoto-Kawai et al., 2009; Cai et al., 2010; Semiletov et al., 2016). 52

One of the challenges that remain in the high latitude (polar) oceans of the Earth's cryosphere 53 54 is reliable determination of the carbonate system in the brine-ice system in the extensive seasonal sea ice cover of these environments (Brown et al., 2014; Miller et al., 2015; Papadimitriou et al., 55 56 2016). Early investigations in the composition and activity of the ice-associated (sympagic) microbial community in sea ice have uncovered the role of this multi-phase system on the surface 57 58 of high latitude oceans as a habitat akin to other large-scale biomes, such as the desserts and tundra (Fritsen et al., 1994; Gleitz et al., 1995; Arrigo et al., 1997; Thomas and Dieckmann, 59 2002; Kennedy et al., 2002). Subsequent investigations have revealed a complex internal carbon 60 cycle driven not only by the sympagic autotrophic and heterotrophic microbial communities, but 61 also by two other major chemical reactions in the surface ocean, CO₂ gas exchange and hydrated 62 CaCO₃ authigenesis (Papadimitriou et al., 2004; Delille et al., 2007; Dieckmann et al., 2008; 63 Munro et al., 2010; Papadimitriou et al., 2012; Fischer et al., 2013). The internal carbon cycling 64 in sea ice is complemented by measurable CO_2 fluxes to and from the atmosphere as a function of 65 ice temperature (Delille et al., 2014) and to the underlying ocean by gravity drainage of the 66 internal brines (Rysgaard et al., 2007; Rysgaard et al., 2011). These past investigations have 67 culminated in a keen interest in the carbonate system of sea ice brines (Brown et al., 2014; Miller 68 et al., 2015), the residual internal solution where all biogeochemical reactions occur either in 69 isolation from, or in direct exchange with, the adjacent seawater column and the atmosphere 70

depending on the temperature- and salinity-dependent permeability of the medium (Golden et al., 71 72 1998). Sea ice brines are derived from the frozen surface seawater by physical concentration of the dissolved sea solutes following their expulsion from the ice crystal matrix. Along with 73 degassed components, the brines can become trapped in pockets and channels in the sea ice 74 structure. As a result of internal thermal equilibrium in sea ice along temperature gradients 75 extending seasonally slightly above or far below the freezing point of seawater (-1.92 °C at 0 76 dbar pressure and salinity 35; UNESCO, 1983), the salinity of internal brines can vary from the 77 hyposaline to values in excess of 100 below -6 °C, and the concentration of brine solutes can 78 likewise vary (Gleitz et al., 1995; Miller et al., 2011a, 2011b; Papadimitriou et al., 2012; Geilfus 79 et al., 2012a). 80

81 The carbonate system in the marine environment is defined by pressure, temperature, salinity, the total concentration of boron and the dissociation constant of boric acid, the total 82 concentrations of sulfate and fluoride, along with the equilibrium constants for the formation of 83 the bisulfate ion and HF, respectively, the dissociation constants of carbonic acid, the value of 84 85 two of its four measurable parameters [total alkalinity (A_T) , total dissolved inorganic carbon (C_T) , pH, and the fugacity of CO_2 (fCO_2)] and, lastly, the weak acid-base systems in the dissolved 86 macro-nutrient and metabolite pools (phosphate, silicate, ammonium, sulphide) and their 87 respective dissociation constants (Millero, 1995; Dickson et al., 2007). To date, all relevant 88 89 dissociation constants have been adequately constrained empirically as a function of temperature and salinity for above-zero temperatures and practical salinity (S_P) up to 50 (Millero, 1995, and 90 91 references there-in). Great investigative effort has been invested in the experimental determination of the first and second stoichiometric (concentration-based) dissociation constants 92 of carbonic acid in seawater and solutions derived from seawater by dilution or evaporation, both 93 in natural and artificial media with the mean stoichiometric composition of seawater (Hansson, 94 1973; Mehrbach et al., 1973; Goyet and Poisson, 1989; Roy et al., 1993; Mojica-Prieto and 95 Millero, 2002; Millero et al., 2006). The determination of the carbonate system in the complex 96 and sparsely accessible sea ice system is currently limited to direct measurements of A_T and C_T 97 (Miller et al., 2015) and is further compounded by the large uncertainty in the values of the 98 relevant acid-base dissociation constants as they are currently estimated via extrapolation of the 99 existing different salinity-temperature functions to the physical sea ice conditions (temperature < 100 0 °C, $S_P > 50$) (Brown et al., 2014). Direct in-situ measurements of fCO_2 in the sea ice system are 101

still rare either in bulk sea ice (Miller et al., 2011a, b; Geilfus et al., 2012b) or in brines, which 102 103 are, moreover, subject to the sparse spatial resolution afforded by brine collection in boreholes through the ice surface (Delille et al., 2007; Geilfus et al., 2012a; Delille et al., 2014). In addition, 104 direct brine pH measurement has not been possible so far at below-zero temperatures and high 105 salinities as a result of sampling and analytical difficulties in this complex system. As a first step 106 towards the implementation of direct pH measurement in sea ice brines, the pH of Tris buffers 107 (Papadimitriou et al., 2016) and the $p(K_2e_2)$ of the pH-indicator dye meta-Cresol Purple 108 (Loucaides et al., 2017) have recently been characterized electrometrically with the Harned cell 109 and spectrophotometrically, respectively, to $S_P = 100$ and -6 °C. Sea ice geochemists, therefore, 110 have so far relied on indirect determination of brine fCO_2 and pH from the solution of the system 111 112 of equations that describe the acid-base equilibria of the oceanic carbonate system using temperature, salinity, nutrient concentrations (if available), and the direct measurements of A_T 113 and C_T as input parameters, with the caveats of extrapolation mentioned above (Brown et al., 114 2014). 115

116 Here, we present measurements that allowed the determination of the dissociation constants of carbonic acid in seawater and seawater-derived brines at below-zero temperatures to the 117 freezing point of these solutions up to $S_P = 100$ and a temperature minimum of -6 °C. The S_P and 118 temperature ranges of this study were set because the ionic composition and inter-ionic ratios in 119 120 surface oceanic water are conserved in the natural sea ice brines over these temperature and salinity ranges. More concentrated, cooler sea ice brines (S_P > 100 and t < -6 °C) become 121 122 supersaturated with respect to a suite of hydrated solid phases, including mirabilite, hydrohalite, and gypsum (Butler and Kennedy, 2015; Butler et al., 2016; Butler et al., 2017), thus altering the 123 chemical composition and ionic ratios of the brines from those in surface oceanic water (Marion, 124 2001). Determination of equilibrium constants beyond the current salinity-temperature range 125 must account for these compositional modifications (Hain et al., 2015) by solid-solution 126 reactions, and so, it requires custom experimental protocols in a separate investigation. 127

128

129 **2. Materials and Methods**

130 The stoichiometric first (K_{1C}^*) and second (K_{2C}^*) dissociation constants of carbonic acid 131 describe the equilibrium of the reactions, $CO_2^* + H_2O \leftrightarrow H^+ + HCO_3^-$ and $HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$, 132 respectively, with $[CO_2^*] = [CO_2(aq)] + [H_2CO_3]$ (Dickson et al., 2007). In this study, they were determined in natural high ionic strength solutions (seawater, seawater-derived brines) from measurements of A_T , C_T , fCO_2 , and $pH_T = -log[H^+]_T$ (total proton scale) as follows (Millero et al., 2002):

136

137
$$K_{1C}^* = [H^+]_T \frac{2C_T - A_C - 2[CO_2^*]}{[CO_2^*]},$$
 (1)

138
$$K_{2C}^* = [H^+]_T \frac{A_C - C_T + [CO_2^*]}{2C_T - A_C - 2[CO_2^*]},$$
 (2)

139

In the above equations, $A_C = \text{carbonate alkalinity} = [\text{HCO}_3^-] + 2[\text{CO}_3^{2-}], C_T = [\text{CO}_2^*] + [\text{HCO}_3^-] + [\text{CO}_3^{2-}], and [\text{CO}_2^*] = K_0 fCO_2$, with $K_0 = CO_2$ solubility constant as a function of salinity and temperature (Weiss, 1974), and brackets denoting total concentrations (single ion plus ion pairs in the case of pair-forming ionic species).

144 Carbonate alkalinity was determined from the measured A_T and pH_T as described in Millero 145 et al. (2002). To this end, the contributions of dissolved phosphate and silicic acid to A_T were computed from their measured total concentrations, the measured pH_T, and the relevant 146 stoichiometric equilibrium dissociation constants computed from the available salinity-147 temperature functions (Millero, 1995; Dickson et al., 2007). For the contribution of boron 148 alkalinity to A_T, the mean total boron concentration, $[B_T] = 0.000432578$ mol $kg_{solution}^{-1}$ (hereafter, 149 mol kg⁻¹), in $S_P = 35$ seawater as computed from the data in Lee et al. (2010) was used as a linear 150 function of salinity (Millero, 1995), along with the measured pH_T and the stoichiometric 151 152 equilibrium dissociation constant of boric acid in Dickson (1990). The contributions to A_T of 153 OH^{-} (positive), H^{+} (total proton scale), and HF (both negative and negligible in the pH range of this study) were determined using the measured $pH_{T},$ the concentration of $SO_{\,4}^{\,2-}$ and F^{-} in 154 Reference Seawater as a linear function of salinity (Millero et al., 2008), and the relevant 155 equilibrium constants from the available oceanographic functions (Millero, 1995; Dickson et al., 156 2007). The oceanographic functions for the equilibrium constants used for these computations 157 were extrapolated outside their empirical salinity-temperature ranges ($t \ge 0$ °C, S_P < 50; Dickson, 158 1990; Millero, 1995) when the experimental conditions extended beyond them ($t \le 0$ °C, S_P > 159 50). Locally sourced seawater (Menai Strait; 53.1806N 4.2333W), UV-sterilized and filtered 160 through a 0.2 μ m filter, was used as the experimental medium (S_P = 33 - 34) and for the 161

preparation of the experimental brines ($S_P = 40 - 100$) by variable freezing and gravimetric dilution, when needed, with ultrapure (18 M Ω ·cm) Milli-QTM water. The brines were filtered through pre-combusted (500 °C, 3 hrs) GF/F filters (0.7 µm, WHATMAN); they were then sampled for the determination of major ion concentrations (Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻ and Br⁻, SO₄²⁻) and were kept stored at room temperature in the dark in acid-washed glass media bottles (DURAN) capped (gas-tight) with Teflon-lined screw-caps.

168 The experiments were conducted at zero and below-zero temperatures to very near the freezing point of seawater and seawater-derived brines, as well as at above-zero temperatures to 169 25 °C, in order for our experimental results to span the existing data sets for the stoichiometric 170 equilibrium dissociation constants of carbonic acid in natural seawater and brines for validation. 171 The freezing point ($t_{\rm FP}$, in °C) of the experimental brines was estimated from the empirical 172 temperature function for the weight-based salinity (S_W , in g kg⁻¹) of thermally equilibrated sea ice 173 brines, $S_W = 1000 [1 - (54.11/t_{FP})]^{-1}$ (Assur, 1958). For S_W to S_P conversion, the recent absolute 174 salinity (S_A) and (conductivity-based) S_P relationship, $S_A = 1.004715$ S_P (Millero and Huang, 175 2009), was used. The estimated $t_{\rm FP}$ was within ± 0.05 °C to -5 °C and -0.15 °C to -6 °C from the 176 177 values computed from the $S_{P}-t_{FP}$ standard oceanographic relationship for seawater in UNESCO (1983) extrapolated to $S_P > 40$. 178

179 Each salinity-temperature experiment was conducted with ~1.1 L seawater or brine in a Teflon-lined-capped media bottle (DURAN), which was thermally equilibrated by immersion in 180 a thermostated ethylene-glycol/water bath (GRANT TX150) and was kept at constant 181 temperature during measurement and sampling for the analysis of the required parameters. The 182 experimental temperature was monitored with a Fluke 5609 Platinum Resistance Probe on a Hart 183 Scientific 1502A Thermometer and is reported as the mean of the values recorded for the 184 185 duration of each experiment. Throughout the experiment, the sample was gently stirred (50 rpm) with an overhead stainless steel stirrer through the cap. Each experiment required about 70 186 minutes to complete the necessary measurements (fCO_2 and pH_T) at the experimental temperature 187 188 and the sample collection for the remainder of analyses. First, the fCO_2 and pH_T measurements 189 were conducted simultaneously in separate aliquots of the sample, drawn through Tygon® tubings with a Watson Marlow 520U peristaltic pump towards the CO₂ Analyzer unit and the pH 190 unit. Upon completion of these measurements, samples for C_T determination were pump-drawn 191 and flame-sealed into pre-weighed 10 mL glass ampoules poisoned with saturated mercuric 192

- 193 chloride. Subsequently, samples for soluble reactive phosphorus (SRP, hereafter, phosphate) and 194 molybdenum reactive silicon [hereafter, silicic acid, $Si(OH)_4$] were removed and the remaining 195 sample was used for replicate A_T determinations.
- 196

197 **2.1** *f*CO₂ measurement

The fCO_2 was determined from the CO₂ mole fraction (x_{CO_2}) measured on a LICOR 840A 198 CO₂/H₂O analyzer of the dry gas generated in a closed loop by exchange with the sample via a 199 0.5×1 MicroModuleTM Membrane Contactor (Liqui-Cell; www.liquicell.com), used here as the 200 201 gas exchange unit (Hales et al., 2004a). The gas was circulated in the closed loop at 48 mL min⁻¹ 202 through a custom-made DRIERITE desiccant column (www.drierite.com) with a custom-made gas micro-pump. The contactor was immersed in a custom-made housing in the same water bath 203 as the sample, which was pumped through the contactor at 9 mL min⁻¹ in Tygon® tubing via the 204 Watson Marlow 520U peristaltic pump. The temperature of the sample in the bottle and at the 205 206 exit of the contactor was monitored with type K thermocouple probes by continuous logging on a Pico Technology USB TC-08 thermocouple data logger. In this set-up, a plateau in $x_{co.}$ was 207 achieved in 50 min, and the x_{CO_2} used for fCO_2 determination in each thermostated sample was a 208 209 5 min average of recorded values within the plateau phase. These values were within 1 ppm for $x_{CO_2} < 1000$ ppm and within 3 ppm for $x_{CO_2} > 1000$ ppm. The measurements were calibrated 210 against CO₂/N₂ mixtures with a certified x_{CO_2} (0, 20, 100, 400, 1000, and 2000 ppm; uncertainty 211 \leq 5%, BOC, boc.com). The calibrations were conducted between two consecutive experiments. 212 The sample fCO_2 was computed from the measured x_{CO_2} as in SOP 5 in Dickson et al. (2007), 213 using the pressure readings from the built-in barometer in the LICOR gas cell. 214

An estimate of the uncertainty of these measurements was possible at above-zero 215 temperatures by analyzing, with this protocol, samples of CO₂ in Seawater Certified Reference 216 217 Materials (CRM, Batches #112, #124, and #125; Scripps Institution of Oceanography) and 218 comparing the measured fCO_2 with that computed from the certified C_T and A_T , as well as the salinity and the phosphate and silicic acid concentrations reported in the certificate. The CRM 219 fCO_2 analyses were thus conducted every 1 – 4 °C in the temperature range from 3.16 °C to 24.99 220 °C (batch #112: n = 11; batch #124, n = 1; batch #125, n = 1). For the calculations, the first and 221 222 second dissociation constants of carbonic acid were computed from the salinity-temperature

functions based on the measurements of Mehrbach et al. (1973) as refitted on the total proton 223 224 scale by Lueker et al. (2000). The dissociation constants of the remainder of the weak acids and bases of the oceanic carbonate system, the solubility of CO₂ in seawater, and the B_T and the total 225 dissolved sulphate and fluoride concentrations were computed as described earlier. All 226 computations were conducted on the total proton scale by solving for pH the system of equations 227 that describe the equilibria of the marine carbonate system using the Solver routine on Microsoft 228 Excel. At the computed CRM fCO₂ from 225 µatm at 3.16 °C to 567 µatm at 24.99 °C for batch 229 #112 and 537 µatm at 22.03 °C for batch #124, the measured fCO_2 differed by (mean $\pm 1\sigma$) $-9 \pm$ 230 10 µatm (n = 12). This estimated uncertainty is equivalent to $-2 \pm 3\%$ relative to the computed 231 fCO_2 and consists of the measurement uncertainty and the computational uncertainty. The 232 233 computational uncertainty is due to the combined uncertainties in the certified parameters and in the acid-base dissociation constants used in the computations, including the uncertainty in pK_{1C}^{*} 234 and pK^{*}_{2C} (0.0055 and 0.0100 pK unit, respectively; Lueker et al., 2000). Based on the 235 assessment in Lueker et al. (2000), the computational fCO_2 uncertainty has been estimated to be 236 1.6% for the uncertainty in the certified A_T and C_T concentrations (3 µmol kg⁻¹ for both A_T and 237 C_T; Bockmon and Dickson, 2015). This indicates that the computational uncertainty was a 238 significant contributor to the estimated uncertainty in the current methodology for up to 600 µatm 239 240 fCO_2 . The measured fCO_2 differed by -85 µatm at CRM $fCO_2 = 1062$ µatm at 18.06 °C for batch #125, equivalent to -8% relative to the computed fCO₂. In contrast, in the assessment of Lueker 241 et al. (2000), the measured fCO₂ was systematically higher by $+3.35 \pm 1.22\%$ than the computed 242 fCO_2 at $fCO_2 > 500$ µatm. In comparison, the uncertainty based on the single high- fCO_2 CRM 243 measurement (batch #125) available during this study suggests an increased negative bias at high 244 fCO_2 (~ 1,000 µatm, or higher) with the current methodology. 245

246

247 **2.2 pH measurement**

The pH_T (total proton scale) was determined spectrophotometrically using purified *meta*-Cresol Purple (mCP) indicator dye, the salinity and temperature functions of its optical parameters and second stoichiometric equilibrium dissociation constant (on the total proton scale) as determined in the same temperature and salinity ranges as in this study by Loucaides et al. (2017), and the custom-made micro-opto-fluidic Lab-On-Chip (LOC) pH system described in Rérolle et al. (2013). The LOC unit with its sample and dye inlets, as well as the optics

(photodiode detector and light source) were all custom-housed and immersed as a separate micro-254 255 unit in the same thermostated water bath as the sample and the fCO_2 contactor described in the previous section. The electronics, pumps, and reagent stores were outside the water bath. The 256 257 mCP solutions used in this study were prepared from the same batch of HPLC-purified dye that was used for the characterization of the dye as reported in Loucaides et al. (2017). The pH_T is 258 reported as the mean of several injections (5 - 10) per sample through the LOC pH system. In the 259 case of the pH_T measurements used in the determination of K_{1C}^* and K_{2C}^* (eqs. 1 and 2), these 260 multiple injections occurred over the course of the simultaneous fCO_2 determination, with a 261 262 reproducibility better than 0.004 pH unit (as 1σ). The uncertainty associated with the pH_T 263 measurement protocol was assessed against the pH_T computed for CRMs as described in the previous section for fCO_2 . The CRM pH analyses were thus conducted every 1 - 2 °C in the 264 temperature range from 1.52 °C to 25.15 °C using CRM batches #112 (n = 5), #124 (n = 1), and 265 #125 (n = 1), which were also used for the fCO₂ protocol validation described in the previous 266 267 section, as well as batch #138 (n = 15), used here only for the validation of the pH measurement protocol. At the computed CRM pH_T for batches #112 (7.908 at 24.99 °C to 8.264 at 1.97 °C), 268 #124 (7.927 at 22.03 °C), and #138 (7.852 at 25.15 °C to 8.215 at 1.52 °C), the measured pH_T 269 differed by (mean $\pm 1\sigma$) -0.013 ± 0.011 pH unit (n = 21). For the high-fCO₂ CRM batch #125 270 (CRM $pH_T = 7.659$ at 18.06 °C), the measured pH_T differed by +0.015 pH unit. Numerical 271 evaluation yielded a computational uncertainty of \pm 0.010 pH unit due to the combined 272 uncertainties in the certified parameters (3 µmol kg⁻¹ for both A_T and C_T; Bockmon and Dickson, 273 2015) and in the pK_{1C}^* and pK_{2C}^* (0.0055 and 0.0100 pK unit, respectively; Lucker et al., 2000) 274 used in the computation of the CRM pH_T. This suggests that about half of the overall uncertainty 275 evaluated on the CRM pH_T determinations (~ 0.020 pH unit as 2σ) can be attributable to 276 computational uncertainty. A similar uncertainty of 0.010 - 0.020 pH unit was evaluated for the 277 pH_T measurement on the same batch of purified mCP and analytical set-up throughout the current 278 experimental temperature and salinity ranges by Loucaides et al. (2017) based on relevant, 279 280 electrochemically characterized Tris-HCl buffer solutions (Papadimitriou et al., 2016).

281

282 **2.3** A_T and C_T measurements

Total alkalinity was determined by open-cell potentiometric titration with 0.1 N HCl at 20 °C using the Gran function for pH < 3.5 (Gleitz et al., 1995; Papadimitriou et al., 2013) with a

Metrohm Titrando 888 unit of automatic burette, pH meter, Pt temperature probe, Ag/AgCl/KCl 285 reference electrode, and glass indicator electrode calibrated with buffers traceable to SRM from 286 NIST and PTB (Merck, pH 2.00, 4.01, 7.00, 9.00, and 10.00 at 25 °C). The titration was 287 conducted in replicate ~ 100 mL aliquots of known weight at constant pCO₂ (400 ppm CO₂) 288 provided at a controlled rate (200 mL min⁻¹) via a CHELL CMD100 microprocessor controller 289 290 and Hastings Mass Flow Control Valve. The rigour of the technique was assessed from several titrations of CRM batch #112 ($A_T = 2223.26 \mu mol kg^{-1}$) with a coulometry-characterized HCl 291 solution (0.100171 mol HCl kg⁻¹, ~0.7 M NaCl; Scripps Institution of Oceanography), vielding a 292 difference of measured from certified A_T of $-1.9 \pm 1.7 \mu$ mol kg⁻¹ (n = 23), equivalent to 0.08% 293 reproducibility and accuracy. Batches of 0.1 N HCl were also prepared gravimetrically in the 294 295 course of this study to a total ionic strength of 0.72 molal using NaCl, and the HCl concentration was calibrated against the A_T of CRM batches #112 and #138. The difference between the A_T 296 measured with these acid batches and the certified concentrations was -1.1 ± 2.8 µmol kg⁻¹ (n =297 99) in good agreement with that determined with the Scripps CRM and acid. Because the acid 298 299 batches were calibrated against seawater CRMs and the response of commercial glass electrodes may be unreliable in hypersaline solutions, the A_T in brines was determined in samples diluted 300 301 gravimetrically to a salinity of 34 with ultrapure (18 M Ω ·cm) Milli-QTM water. The A_T of the brine batches (Table 2), normalized to salinity 35, was $A_{T,35} = 2424 \pm 39 \text{ } \mu\text{mol } \text{kg}^{-1}$ (n = 10), 302 while the local seawater had a two-year (2014-2015) average $A_{T,35} = 2398 \pm 22 \mu mol kg^{-1}$ (n =303 37). 304

305 The C_T concentration was determined manometrically in 3 – 10 replicate sample aliquots (~10 mL) from the CO₂ generated and extracted in vacuo in a glass manifold following reaction 306 of a weighed sample aliquot with H₃PO₄ and cryogenic CO₂ gas distillation in successive cold (-307 95 °C) methanol and liquid nitrogen traps, using an in-line manometer (CHELL) and a virial 308 equation of state (Bockmon and Dickson, 2015). The reproducibility of these measurements was 309 better than 0.4% in the 2000 to 5600 μ mol kg⁻¹ concentration range. Determination of C_T on 310 311 CRM batches #112, #124, #125, and #138 (Scripps Institution of Oceanography) yielded a difference between the measured and certified C_T of (mean $\pm 1\sigma$) +0.7 $\pm 8.8 \mu$ mol kg⁻¹ (n = 111). 312

313

314 **2.4 Other measurements**

The salinity of the experimental solutions was measured at laboratory temperature (~20 °C) 315 316 using a portable conductivity meter (WTW Cond 3110) with a WTW Tetracon 325 probe. When salinities exceeded 70, they were determined following gravimetric dilution with distilled water. 317 The initial major ion composition of the brines was determined as follows: (i) potentiometric 318 titration with EDTA as titrant and Tris-buffered acetylacetone (0.1 M) as the complexing agent at 319 pH ~8.5 for Ca^{2+} and Mg^{2+} as described in Papadimitriou et al. (2012), (*ii*) ion chromatography 320 321 on a Dionex Ion Exchange Chromatograph ICS 2100 for Na⁺ and K⁺, (iii) gravimetric Mohr titration for total halides (except F⁻, but mostly Cl⁻, with comparatively small contributions from 322 bromide and smaller by iodine; hereafter termed: $[Cl^-] + [Br^-]$) with 0.3 mol kg⁻¹ AgNO₃ 323 standardized against NaCl purified by re-crystallization (Dickson, 1990; Millero et al., 1993), and 324 (iv) for SO₄²⁻, precipitation as BaSO₄ in EDTA followed by titration with MgCl₂ (Howarth, 325 1978). The phosphate and silicic acid concentrations were determined within 4 to 8 weeks from 326 327 collection on refrigerated aliquots stored in acid-washed (2 N HCl) 20 mL PE vials. These analyses were conducted on a SEAL AA3 MR continuous segmented flow autoanalyzer using 328 329 standard colorimetric methodology (Hales et al., 2004b).

330

331 2.5 Error analysis

The error in the experimental K_{1C}^* and K_{2C}^* values was computed as $\sigma_{K_{4C}^*}^2 = \sum [(dK_{iC}^*/dX) \sigma_X]^2$ 332 (Barford 1985), with $X = H^+$, C_T , A_C , $CO_2(aq)$ (all in mol kg⁻¹). The maximum measurement 333 uncertainty (σ_X) was 0.020 pH unit for the pH measurements, 0.4% for the C_T determinations, 20 334 335 μ atm for $fCO_2 < 1000 \mu$ atm, 90 μ atm for $fCO_2 > 1000 \mu$ atm, and 0.1% for the A_C estimates based on the uncertainty of the A_T measurement. The magnitude of the extrapolation error for the 336 estimates of the non-carbonate A_T components is unknown at this stage. The available 337 measurement uncertainties in pH_T, C_T, fCO₂, and A_C determinations indicated that K_{1C}^{*} is most 338 sensitive to uncertainties in the pH and fCO_2 measurements, while K_{2C}^* is most sensitive to the 339 uncertainties in the A_C estimates and the C_T and pH measurements. The K_{1C}^* uncertainty was 340 thus calculated to range from 0.020 - 0.040 pK unit at $fCO_2 > 250$ µatm to 0.050 pK unit at fCO_2 341 < 250 µatm. The K_{2C}^* uncertainty was calculated to be 0.040 pK unit for our experiments. The 342 uncertainties of both constants in this study are therefore estimated to be about twice those 343

reported for standard oceanographic conditions (0.020 pK unit for K_{1C}^* and 0.030 pK unit for K_{2C}^* ; Dickson and Millero, 1987).

346

347 **2.6 Data evaluation**

The K_{1C}^* and K_{2C}^* determinations in seawater at above-zero temperatures were evaluated against the existing major data sets in natural seawater, i.e., the Mehrbach et al. (1973) data set (experimental ranges: $S_P = 19 - 43$, t = 2 - 35 °C) as refitted on the total proton scale by Lueker et al. (2000) and the Millero et al. (2006) data set (experimental ranges: $S_P = 1 - 51$, t = 1.0 - 50.5°C). Because the latter data set has been reported on the seawater proton scale, it was converted to the total proton scale as described in Millero (1995) and was re-fitted here using the same equation format as in the original study:

355

6
$$pK_{iC}^* = pK_{iC}^o + A_i + B_i/T + C_i \ln T \ (i = 1, 2),$$
 (3)

357

In the above equation, T = temperature (in Kelvin), $A_i = a_0 S_P^{0.5} + a_1 S_P + a_2 S_P^2$, $B_i = a_3 S_P^{0.5} + a_4 S_P$, $C_i = a_5 S_P^{0.5}$, and $pK_{iC}^{\circ} = b_0 + b_1/T + b_2 lnT$ = thermodynamic equilibrium dissociation constant, with a_0 , a_1 , a_2 , a_3 , a_4 , a_5 = best-fit parameters (Table 3) determined by non-linear regression using the Excel regression routine, while b_0 , b_1 , and b_3 are from Millero et al. (2006). The standard error of the fit was the same as in the original study ($\sigma_{pK_{1C}^*} = 0.006$ and $\sigma_{pK_{2C}^*} = 0.011$).

The current pK_{1C}^* and pK_{2C}^* determinations in natural seawater (S_P = 33 - 34; mean S_P = 363 33.66 \pm 0.36, n = 5) over the temperature range from 0 to 25 °C (Table 2) are in very good 364 agreement with the previously published data sets (Fig. 1). Specifically, in the 0 – 25 $^\circ C$ 365 temperature range, the current observations (n = 23) differed by $\Delta p K_{1C}^* = -0.009 \pm 0.016$ and 366 $\Delta p K^*_{_{2C}}$ = +0.002 \pm 0.018 relative to the Mehrbach et al. (1973) data set, and $\Delta p K^*_{_{1C}}$ = –0.014 \pm 367 0.016 and $\Delta p K_{\rm 2C}^{*}$ = –0.003 \pm 0.022 relative to the Millero et al. (2006) data set, all within 368 experimental error. The determinations beyond the salinity-temperature bounds of the available 369 oceanographic data sets (t < 0 °C, S_P > 50) were compared with the extrapolated values of the 370 oceanographic equations as will be discussed in the sections 3 and 4. In addition, the K_{1C}^* and 371

 K_{2C}^{*} determinations near the freezing point of seawater and seawater-derived brines from this study were compared with the values calculated from appropriate thermodynamic data as follows. Stoichiometric equilibrium constants are related to the thermodynamic equilibrium constants at infinite dilution (pure water) via the activity coefficients of the reacting ions. In the case of K_{1C}^{*} and K_{2C}^{*} , this relationship is given by the following equations (Millero et al., 2006):

(4)

378
$$K_{1C}^* = K_{1C}^{\circ} \frac{\gamma_{CO_2} \alpha_{H_2O}}{\gamma_{H^+} \gamma_{HCO_3^-}} \Theta,$$

379
$$K_{2C}^* = K_{2C}^{\circ} \frac{\gamma_{HCO_3^-}}{\gamma_{H^+} \gamma_{CO_3^{2^-}}} \Theta,$$
 (5)

380

where K_{1C}° , K_{2C}° = thermodynamic equilibrium dissociation constants of carbonic acid, α_{H_2O} = 381 activity of water, γ_i = total ion activity coefficient (i = CO₂(aq), H⁺, HCO₃⁻, CO₃²⁻) (in mol 382 $kg_{H,O}^{-1}$), and $\Theta = 1 - 0.001005 \ S_P = conversion factor from mol <math>kg_{H,O}^{-1}$ to mol $kg_{solution}^{-1}$ (Millero, 383 1995). For the calculation of the required thermodynamic equilibrium dissociation constants, 384 $\alpha_{\rm H_{2}O},$ and $\gamma_{i}\,$ at below-zero temperatures, the database of the FREZCHEM code (version 15.1) 385 was used here, which is frequently used to examine geochemical processes in the cryosphere and 386 is based on the Pitzer formalism of ionic interactions in strong electrolyte solutions (Marion, 387 2001; Marion et al., 2010). The FREZCHEM v15.1 includes some of the equilibria of the 388 aqueous carbonate system (boron and fluoride chemistry, CaCO₃-solution equilibrium) and is 389 rooted in the extant above-zero temperature data of the relevant thermodynamic equilibrium 390 391 constants and Pitzer coefficients, with additional validation at below-zero temperatures from the metal-carbonate solubility data of the early 20th century Russian literature mostly at the eutectic 392 point of these salt solutions (Marion, 2001). The model was run in the freezing mode (ice-water 393 equilibrium) at 0.1 °C steps from 0 to -6 °C at 1 atm and a fixed pCO₂ at 400 µatm (non-394 395 conservative C_T) for a starting ionic composition equivalent to the composition of Reference 396 Seawater of salinity 35 (Millero et al., 2008), with all other solid phases disabled (conservative major ionic composition and A_T). Total ion activity coefficients are directly proportional to the 397 398 free ion activity coefficients, with the concentration ratio of the free ion to the sum of the free ion

and ion pairs as the proportionality factor (Pytkowicz and Kester, 1969). In the case of the total 399 proton scale used in this study, $\gamma_{H^+} = \gamma_{H^+, \text{free}} \ m_{H^+, \text{free}} / (m_{H^+, \text{free}} + m_{HSO_4^-})$ (Millero, 1995), with m 400 = molality (in mol $kg_{H_{2}O}^{-1}$) and all quantities in the right side of this equation obtained from the 401 output of the code. The FREZCHEM code output provides the ionic strength (I) of model brines, 402 and their S_P was estimated from the relationship, I = 19.924 S_P / (1000 – 1.005 S_P) (Dickson et al. 403 2007). The code also computes α_{H_2O} , γ_{CO_2} , and the single ion activity coefficients of HCO_3^- and 404 CO_3^{2-} from the Pitzer equations (Pitzer, 1973) and relevant Pitzer parameters. All ion pairs for 405 HCO_3^- are considered adequately represented in the Pitzer computation (He and Morse, 1993) 406 and so, the single ion activity coefficient of HCO_3^- in the code output is equivalent to $\gamma_{HCO_3^-}$ in 407 eqs. (3) and (4). The code takes into account explicitly ion pair formation for CO_3^{2-} in the form of 408 CaCO₃° and MgCO₃° (He and Morse, 1993; Marion, 2001). The molalities of these ion pairs were 409 taken into account along with the molality and activity coefficient of CO_3^{2-} as a single ion in the 410 code output to compute the total activity coefficient of CO_3^{2-} ($\gamma_{CO_3^{2-}}$) for use in eqs. (3) and (4) by 411 applying the same principle as outlined above for γ_{u^+} . 412

413

414 **2.7 Application to sea ice brines**

415 A simple numerical model was used to illustrate the changes in the parameters of the carbonate system in seawater-derived brines with (i) conservative major ionic composition, A_T, 416 and C_T , and (*ii*) brines of otherwise conservative chemical composition but at constant fCO_2 and, 417 hence, non-conservative C_T, such as that which will occur as a result of dissolved-gaseous CO₂ 418 exchange to atmospheric equilibrium. These scenarios are chosen for their simplicity for 419 illustration purposes and cannot reflect the complexity of the carbonate system in sea ice brines 420 as it is driven by several internal brine reactions at different and varying rates (Papadimitriou et 421 al., 2004; Papadimitriou et al., 2007; Delille et al., 2007; Dieckmann et al., 2008; Munro et al., 422 2010; Geilfus et al., 2012a; Papadimitriou et al., 2012; Delille et al., 2014). The model was 423 described in detail in Papadimitriou et al. (2014); briefly, it uses as a system of equations the 424 weak acid-base equilibria in seawater, the salinity-normalized measured concentrations of 425 phosphate, Si(OH)₄, C_T, and A_T in surface waters of the seasonal sea ice zone (SIZ) in the 426

427 western Weddell Sea, Antarctica, reported in Papadimitriou et al. (2012), along with the concentrations of SO_4^{2-} and F⁻ in Reference Seawater (Millero et al., 2008) and the mean total 428 boron concentration in oceanic waters from Lee et al. (2010). In scenario (i) above, all these 429 430 concentrations are conserved as a linear function of salinity, and the set of equations is solved for pH_T from A_T and C_T at each salinity-temperature pair at the freezing point of brines, allowing 431 computation of the C_T speciation. In scenario (*ii*) above, all concentrations are conserved except 432 433 C_T , and the system is solved for pH_T from fCO_2 and A_T , yielding C_T and its speciation. In this case, the fCO₂ was set at a constant value computed for 1 atm total pressure as described in 434 Pierrot et al. (2009) from the average 2015 atmospheric CO₂ molar 435 ratio (www.esrl.noaa.gov/gmd/ccgg/trends/). These calculations were done using the K_{1C}^* and K_{2C}^* 436 determined in this study, as well as the values computed by extrapolation beyond their salinity 437 maximum and temperature minimum of the salinity-temperature oceanographic functions 438 described in the previous section. 439

440

441 **3. Results**

442 The initial composition of the brines for all major ions (Table 1), normalized to salinity 35, was in very good agreement with that of Reference Seawater (Millero et al. (2008) except for K⁺, 443 which was less by 1 mmol kg⁻¹ on average, likely as a result of shading of the K^+ peak by the 444 much greater Na⁺ peak during ion chromatographic analysis. The conservative composition of the 445 446 brines relative to that of Reference Seawater indicates no measurable alteration due to production of authigenic CaCO₃, CaSO₄, or Na₂SO₄ polymorphs over the short time scales of variable 447 448 freezing of the seawater (6 - 15 hours) used here for brine preparation. It also justifies the use of the ionic composition of Reference Seawater in the thermodynamic evaluation of the current 449 determinations of the stoichiometric equilibrium dissociation constants of carbonic acid. 450

The measured parameters and the determined stoichiometric equilibrium dissociation constants of carbonic acid (as negative common logarithms, pK_{1C}^* and pK_{2C}^*) are given in Table 2, with pK_{1C}^* and pK_{2C}^* reported in the total proton scale of the pH measurements. In the narrow below-zero temperature range to the freezing point of seawater [for the seawater S_P range from 33.14 to 34.04 used in this study (Table 2), $t_{FP} = -1.82^{\circ}C$ to $-1.87^{\circ}C$ (UNESCO, 1983)], the current observations (n = 6) were systematically higher than, but within experimental error from,

the values determined by below-zero temperature extrapolation of the best-fit curves on the 457 existing data sets, with an overall $\Delta p K_{1C}^* = +0.015 \pm 0.005$ and $\Delta p K_{2C}^* = +0.019 \pm 0.015$ relative 458 to both the Mehrbach et al. (1973) and Millero et al. (2006) data sets (Fig. 1). The measurements 459 from natural brines (Table 2) from $S_P = 40$ to $S_P = 100$ and from 25 °C to near their freezing point 460 (from –2.1 °C at $S_P = 40$ to –6.0 °C at $S_P = 100$) demonstrate that the determined pK_{1C}^* and pK_{2C}^* 461 at $S_P > 60$ differ substantially at all temperatures from the values derived from the extrapolation 462 of the existing oceanographic salinity-temperature functions (Fig. 2). Specifically, the current 463 464 values are between the extrapolated values derived from the two oceanographic data sets used here for comparison. The greatest differences between measured and extrapolated values were 465 seen at the highest salinities in the pK_{2C}^* relative to the best-fit equation derived from the Millero 466 et al. (2006) data set, with $\Delta p K_{2C}^* = +0.72 \pm 0.09$ (n = 5) and $+1.26 \pm 0.12$ (n = 6) at $S_P = 85$ and 467 S_P = 100, respectively. For comparison, the equivalent $\Delta p K_{1C}^*$ was +0.13 \pm 0.04 and +0.24 \pm 0.07 468 at $S_P = 85$ and $S_P = 100$, respectively. The difference between the current and extrapolated values 469 derived from the best fits to the Mehrbach et al. (1973) data set were similar for both pK_{1C}^{*} and 470 pK_{2C}^{*} at the highest salinities (Fig. 2) and were more modest than those from the extrapolation of 471 the Millero et al. (2006) data set, with $\Delta p K_{1C}^* = -0.19 \pm 0.02$ and $\Delta p K_{2C}^* = -0.12 \pm 0.02$ (n = 5) at 472 $S_P = 85$ and $\Delta p K_{1C}^* = -0.32 \pm 0.05$, $\Delta p K_{2C}^* = -0.21 \pm 0.04$ (*n* = 6) at $S_P = 100$. 473

474

475 **4. Discussion**

476 **4.1.** The stoichiometric equilibrium dissociation constants of carbonic acid

It is of note that pK_{2C}^* changed more dramatically (over 0.4 pK unit) than pK_{1C}^* (over 0.1 pK 477 unit) as a function of salinity at all temperatures in the current experiments (Fig. 2). The pK_{1C}^* 478 computed from the output of the FREZCHEM thermodynamic code for the ionic composition of 479 Reference Seawater at ice-water equilibrium was in excellent agreement with the current freezing 480 point observations (Fig. 3). According to eq. (4), this indicates that all relevant thermodynamic 481 parameters (K_{1C}° , γ_{CO_2} , $\gamma_{HCO_3^-}$, γ_{H^+} and α_{H_2O}) are predicted reliably by the FREZCHEM code in 482 the temperature range from the freezing point of seawater to that of $S_P = 100$ seawater-derived 483 brine: K_{1C}^{o} , γ_{CO_2} , and $\gamma_{HCO_3^-}$ via extrapolation of the relevant above-zero temperature data sets of 484

He and Morse (1993) and Plummer and Busenberg (1982), γ_{H^+} from the Pitzer parameters for the 485 specific interaction of the proton with all other ions in the model solutions, and $\alpha_{H,O}$ from the 486 Pitzer parameterization of the osmotic coefficient. This was not the case, however, for pK_{2C}^* , 487 with differences up to 0.2 pK unit between current determinations and FREZCHEM-derived 488 489 values (Fig. 3), which is higher than experimental uncertainty. A similar discrepancy trend was observed in the study of the stoichiometric equilibrium solubility product of ikaite in 490 Papadimitriou et al. (2013). The current pK_{2C}^* determinations are based on the A_C estimated from 491 the measured pH_T and A_T, and are, therefore, affected by the (unknown) extrapolation error for 492 493 the estimates of the non-carbonate A_T components (section 2). However, the FREZCHEMderived values are also affected by the same extrapolation error, which thus cannot exclusively 494 explain the discrepancy between the current pK_{2C}^* determinations and the FREZCHEM-derived 495 values. Based on eqs. (4) and (5), the disagreement in pK_{2C}^* with the thermodynamic code 496 suggests uncertainty in K_{2C}° or the total activity coefficient of CO_3^{2-} , or both, at below-zero 497 temperatures. The total activity coefficient of CO_3^{2-} depends strongly on the extent of ion pair 498 formation in solution. Its ion pairs with Ca^{2+} and Mg^{2+} have large equilibrium association 499 500 constants which have to be taken into account explicitly in Pitzer parameterization routines, such as FREZCHEM, to complement the formal Pitzer parameterization of the CO_3^{2-} interactions in 501 multi-electrolyte solutions (He and Morse, 1993; Marion, 2001). Knowledge about the behaviour 502 of these strong ion pairs is based on the above-zero temperature study of Plummer and Busenberg 503 (1982), while the Pitzer parameters for the single ion activity coefficient of CO_3^{2-} are based on 504 the above-zero temperature experiments of He and Morse (1993). It is conceivable that targeted 505 relevant experiments that will expand the empirical thermodynamic data base for the C_T species 506 to below-zero temperatures may reconcile such differences as that seen here with respect to 507 CO_3^{2-} (Fig. 3). This is in line with the objectives of the recent SCOR Working Group 145 for the 508 update of chemical speciation modelling in seawater (Turner et al., 2016). 509

510 The pK_{1C}^* and pK_{2C}^* values determined in this study were fitted to the same equation format 511 (eq. 3) as described in *Section 2.6*, and the best-fit coefficients are given in Table 3. The standard 512 error of the fit was $\sigma_{pK_{1C}^*} = 0.011$ and $\sigma_{pK_{2C}^*} = 0.020$, and the fitted residuals demonstrated no

significant trends as a function of salinity and temperature (Fig. 4). These equations are suitable 513 514 for interpolation within the salinity and temperature ranges of this investigation ($33 \le S_P \le 100, -$ 6 °C $\leq t \leq 25$ °C), but not outside these ranges, in conservative seawater-derived brines only. 515 Specifically, they are relevant to solutions with the composition of Reference Seawater (Table 1) 516 and the conservative-composition brines that can be derived from it. By altering the free-ion and 517 total-ion activity coefficients, solution composition changes can affect the value of stoichiometric 518 equilibrium constants as a function of ionic strength relative to the temperature-dependent 519 thermodynamic value of said constants at constant temperature [e.g., He and Morse (1993) for 520 pK_{1C}^{\ast} and pK_{2C}^{\ast} at above-zero temperatures in NaCl, Mg-Na-Cl, and Na-SO4-Cl solutions to 6 521 m]. Assessment of solution composition is, therefore, the first step for rigorous use of available 522 empirical stoichiometric equilibrium constants. More specifically, the current empirical salinity 523 and temperature functions of pK_{1C}^* and pK_{2C}^* (Table 3) are not recommended for extrapolation in 524 the hyposaline and more hypersaline regions of the salinity spectrum in sea ice, not least because, 525 526 at the coldest part of sea ice temperature (t < -6 °C) where S_P > 100, the brine inclusions will have non-conservative ionic composition and altered major ionic ratios as a result of reactions 527 528 with authigenic ikaite, mirabilite, gypsum, and hydrohalite (Papadimitriou et al., 2013; Butler and Kennedy, 2015; Butler et al., 2016; Butler et al., 2017). This will affect the value of 529 530 stoichiometric equilibrium constants (Hain et al., 2015), which must be determined in the context 531 of authigenic mineral-brine equilibria.

532

533 **4.2.** The carbonate system in sea ice

The simple numerical model described in Section 2.7 was used to compute the change in pH_T, 534 fCO_2 , and CO_3^{2-} with decreasing temperature from the freezing point of S = 35 seawater to -6 °C 535 $(S_P = 100)$ in sea ice brines (Fig. 5). In brines which are conservative with respect to major ionic 536 composition, A_T, and C_T, the pK_{1C}^* and pK_{2C}^* equations derived in this study predict a monotonic 537 decrease in the pH_T from 8.03 to 7.86 coupled with increase in both the internal brine fCO₂ from 538 429 to 2262 μ atm and the CO₃²⁻ concentration from 84 to 330 μ mol kg⁻¹. These changes are 539 anticipated solely from the physical concentration during the expulsion of seawater solutes from 540 the ice crystal matrix in the process of sea ice formation and further cooling to -6 °C. If gas 541 exchange occurs during seawater freezing and cooling of the sea ice system with all major ions 542

and A_T conserved in the internal brines, the composition of the brines is non-conservative with respect to C_T and, as a result, the brine fCO_2 is controlled by its equilibrium solubility. In this case, if atmospheric equilibrium is achieved in the brines, the brine pH_T is predicted to increase from 8.06 to 8.48 and the CO_3^{2-} concentration will also increase but to a much larger extent from 89 to 1017 µmol kg⁻¹.

The advantage gained by the current K_{1C}^* and K_{2C}^* data set relative to the extrapolation of the 548 oceanographic equations parameterized for above-zero temperatures and $S_P < 50$ is evident in the 549 difference in absolute values for all parameters concerned here. Of the two major oceanographic 550 data sets used here for comparison, the extrapolation of the equations based on the Mehrbach et 551 al. (1973) data set yielded the smallest such differences (Fig. 5), especially with respect to CO_3^{2-} 552 in the conservative brine scenario (mean difference: $-0.2 \pm 3.8 \ \mu mol \ kg^{-1}$) over the temperature 553 range of the simulation (Fig. 5c). At the temperature minimum of this study and depending on the 554 set of extrapolated oceanographic pK_{1C}^* and pK_{2C}^* equations, these differences were calculated to 555 be up to +0.9 pH unit and -6000 μ atm fCO₂ in the conservative brine C_T scenario (Figs. 5a-c), as 556 well as up to $-1300 \ \mu mol \ CO_3^{2-} \ kg^{-1}$ in the non-conservative brine C_T scenario (Fig. 5f). Similar 557 differences have been reported as perplexing uncertainties of extrapolation in the sensitivity 558 analysis for the sea ice brine carbonate system within $S_P = 50 - 70$ in Brown et al. (2014). The 559 differences between the current and the two sets of extrapolated oceanographic $\, pK_{1C}^*$ and $\, pK_{2C}^*$ 560 equations in respect of pH_T and fCO₂ computations at the freezing point for the conservative 561 brine C_T scenario (Fig. 5a, b) can be coupled with the differences between measured pH_T and 562 563 fCO_2 near the freezing point of experimental brines and their values derived from the relevant A_T and C_T measurements (Table 2) as computed using the two sets of extrapolated oceanographic 564 pK_{1C}^{\ast} and pK_{2C}^{\ast} equations (Lucker et al., 2000; Millero et al., 2006). These are illustrated as a 565 function of the C_T to A_T ratio (C_T/A_T) of the brine system (Fig. 6) and are increasingly significant 566 at $S_P > 60$, higher C_T/A_T at constant $t_{FP}-S_P$, and, also, when the salinity- and temperature-567 extrapolated pK_{1C}^{*} and pK_{2C}^{*} equations in Millero et al. (2006) are used. The above comparisons 568 (Figures 5 and 6) highlight the importance of re-evaluating the coefficients of the existing 569 570 salinity-temperature functions on empirical data when applied to extended conditions.

Direct measurements at below-zero temperatures are rare for fCO_2 in sea ice brines (Delille et 571 572 al., 2007; Geilfus et al., 2012a; Delille et al., 2014) or bulk sea ice (Miller et al., 2011a, b; Geilfus et al., 2012b) and have not been possible until recently for pH (Loucaides et al., 2017) due to 573 sampling and analytical difficulties in this complex medium. Sea ice geochemists thus far have 574 often relied on indirect determination of brine fCO_2 and pH in sea ice from direct measurements 575 of A_T and C_T to determine the brine carbonate system, with the caveats of extrapolation (Brown 576 et al., 2014), in order to assess the inorganic carbon budget in sea ice (Papadimitriou et al., 2007; 577 Delille et al., 2007; Munro et al., 2010; Fransson et al., 2011; Geilfus et al., 2012a; Papadimitriou 578 et al., 2012). The results of this study will provide confidence in the output of indirect parameter 579 determination for the carbonate system in the below-zero temperature range in high salinity 580 581 brines in parts of sea ice that are still warm enough to allow exchange with the air and the ocean. Additional studies are still required to extend the current empirical data base of the equilibrium 582 583 dissociation constants of carbonic acid to the coldest temperature spectrum of sea ice to the eutectic and, also, to determine the behavior of the remainder weak acids and bases of the 584 585 carbonate system in the full salinity and temperature spectrum of sea ice brines.

586

587 5. Conclusions

The stoichiometric equilibrium dissociation constants of carbonic acid determined in this 588 589 study extended the existing oceanographic data set to below-zero temperatures and salinities greater than 50 to the freezing point of salinity 100 brines with major ionic composition and 590 591 major ionic ratios equivalent to those of Reference Seawater. They are reported here in the total proton scale and each was fitted to a salinity and temperature function for interpolation in sea ice 592 593 brine investigations of the internal carbonate system of the medium. This work confirmed the uncertainties of the salinity and temperature extrapolation of the existing oceanographic functions 594 for application outside their empirical ranges. There were also indications for uncertainty in the 595 current state of knowledge of the thermodynamic parameters (e.g., total activity coefficient of the 596 597 carbonate ion) for the second equilibrium dissociation constant of carbonic acid at below-zero temperatures. Further relevant work is thus needed for accurate parameterization of the carbonate 598 ion interactions with the remainder of sea solutes in brines at below-zero temperatures and for the 599 dissociation constants of carbonic acid in the coldest temperature and salinity range of non-600

conservative oceanic brines at equilibrium with authigenic cryogenic minerals to the eutectic ofseawater.

603

604 Acknowledgements

This work was supported by a NERC-UK grant (grant NE/J011096/1). We thank Susan Allender for the dissolved macro-nutrient analyses and Dr. Ben Butler for the analyses of the major ions in the experimental solutions. We also thank three anonymous reviewers for their supportive and insightful comments.

609

610 **References**

- Arrigo K. R., Worthen D. L., Lizotte M. P., Dixon P. and Dieckmann G. S. (1997) Primary
 production in Antarctic sea ice. *Science* 276, 394-397.
- Assur A. (1958) Composition of sea ice and its tensile strength in Arctic sea ice. U. S. National
 Academy of Sciences, National Research Council, Publ. 598, 106-138.
- Barford N. C. (1985) Experimental measurements: Precision, error, and truth. John Wiley &
 Sons, Chichester, UK.
- Bockmon E. E. and Dickson A. G. (2015) An inter-laboratory comparison assessing the quality
 of seawater carbon dioxide measurements. *Mar. Chem.* 171, 36-43.
- Brown K. A., Miller L. A., Davelaar M., Francois R. and Tortell P.D. (2014) Over-determination
 of the carbonate system in natural sea-ice brine and assessment of carbonic acid dissociation
 constants under low temperature, high salinity conditions. *Mar. Chem.* 165, 36-45.
- Butler B. M. and Kennedy H. (2015) An investigation of mineral dynamics in frozen seawater
 brines by direct measurement with synchrotron X-ray powder diffraction. J. Geophys. Res.
- 624 *Oceans* **120**, 5686-5697, doi:10.1002/2015JC011032.
- Butler B. M., Papadimitriou S., Santoro A., Kennedy H. (2016) Mirabilite solubility in
 equilibrium sea ice brines. *Geochim. Cosmochim. Acta* 182, 40-54.
- Butler B. M., Papadimitriou S., Day S. J., Kennedy H. (2017) Gypsum and hydrohalite dynamics
 in sea ice brines. *Geochim. Cosmochim. Acta* 213, 17-34.
- 629 Cai W.-J., Chen L., Chen B., Gao Z., Lee S. H., Chen J., Pierrot D., Sullivan K., Wang Y., Hu X.,
- Huang W.-J., Zhang Y., Xu S., Murata A., Grebmeier J. M., Jones E. P. and Zhang H. (2010)
- 631 *Science* **329**, 556-559.

- 632 Caldeira K. and Wickett M. E. (2003) Anthropogenic carbon and ocean pH. *Nature* **425**, 365.
- Delille B., Jourdain B., Borges A. V., Tison J.-L. and Delille D. (2007) Biogas (CO₂, O₂,
 dimethylsulfide) dynamics in spring Antarctic fast ice. *Limnol. Oceanogr.* 52, 1367-1379.
- 635 Delille B., Vancoppenolle M., Geilfus N.-X., Tilbrook B., Lannuzel D., Schoemann V.,
- Becquevort S., Carnat G., Delille D., Lancelot C., Chou L., Dieckmann G. S. and Tison J.-L.
- 637 (2014) Southern ocean CO_2 sink: The contribution of the sea ice. J. Geophys. Res. Oceans 638 **119**, 6340-6355.
- Dickson A. G. (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater
 from 273.15 to 318.15 K. *Deep-Sea Res.* 37, 755-766.
- Dickson A. G. and Millero F. J. (1987) A comparison of the equilibrium constants for the
 dissociation of carbonic acid in seawater media. *Deep-Sea Res.* 34, 1733-1743.
- Dickson A. G., Sabine C. L. and Christian J. R. (Eds.) (2007) Guide to best practices for ocean
 CO₂ measurements. PICES Special Publication 3, 191 pp.
- Dieckmann G. S., Nehrke G., Papadimitriou S., Göttlicher J., Steininger R., Kennedy H., WolfGladrow D. and Thomas D. N. (2008) Calcium carbonate as ikaite crystals in Antarctic sea
 ice. *Geophys. Res. Lett.* 35, L08501, doi:10.1029/2008GL033540.
- Feely R. A., Sabine C. L., Lee K., Berelson W., Kleypas J., Fabry V. J., Millero F. J. (2004)
 Impact of anthropogenic CO₂ on the CaCO₃ system in the oceans. *Science* 305, 362-366.
- Feely R. A., Sabine C. L., Hernandez-Ayon J. M., Janson D. and Hales B. (2008) Evidence for
 upwelling of corrosive "acidified" water onto the continental shelf. *Science* 320, 1490-1492.
- 652 Fischer M., Thomas D. N., Krell A., Nehrke G., Göttlicher J., Norman L., Meiners K. M., Riaux-
- Gobin C. and Dieckmann G. S. (2013) Quantification of ikaite in Antarctic sea ice. *Antarct. Sci.* 25, 421-432.
- Fransson A., Chierici M., Yager P. L. and Smith Jr. W. O. (2011) Antarctic sea ice carbon
 dioxide system and controls. J. Geophys. Res. 116, C12035, doi:10.1029/2010JC006844.
- Fritsen C. H., Lytle V. I., Ackley S. F. and Sullivan C. W. (1994) Autumn bloom of Antarctic
 pack-ice algae. *Science* 266,782-784.
- 659 Gattuso J.-P., Magnan A., Billé R., Cheung W. W. L., Howes E. L., Joos F., Allemand D., Bopp
- 660 L., Cooley S. R., Eakin C. M., Hoegh-Guldberg O., Kelly R. P., Pörtner H.-O., Rogers A. D.,
- Baxter J. M., Laffoley D., Osborn D., Rankovic A., Rochette J., Sumaila U. R., Treyer S. and

- Turley C. (2015) Contrasting futures for ocean and society from different anthropogenic CO₂
 emissions scenarios. *Science* 349, 45, http://dx.doi.org/10.1126/science.aac4722.
- Geilfus N. X., Carnat G., Papakyriakou T. N., Tison J.-L., Else B., Thomas H., Shadwick E. and
 Delille B. (2012a) Dynamics of pCO₂ and related air-ice CO₂ fluxes in the Arctic coastal zone
 (Amundsen Gulf, Beaufort Sea). *J. Geophys. Res.* 117, C00G10, doi:10.1029/2011JC007118.
- Geilfus N. X., Delille B., Verbeke V. and Tison J.-L. (2012b) Towards a method for high vertical
 resolution measurements of the partial pressure of CO₂ within bulk sea ice. J. Glaciol. 58,
- 669 208-212.
- Gleitz M., v.d. Loeff M. R., Thomas D. N., Dieckmann G. S. and Millero F. J. (1995)
 Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in
 Antarctic sea ice brine. *Mar. Chem.* 51, 81-91.
- Golden K. M., Ackley S. F. and Lytle V. I. (1998) The percolation phase transition in sea ice. *Science* 282, 2238-2241.
- Goyet C. and Poisson A. (1989) New determination of carbonic acid dissociation constants in
 seawater as a function of temperature and salinity. *Deep-Sea Res.* 36, 1635-1654.
- Hales B., Chipman D. and Takahashi T. (2004a) High-frequency measurements of partial
 pressure and total concentration of carbon dioxide in seawater using microporous hydrophobic
 membrane contactors. *Limnol. Oceanogr. Methods* 2, 356-364.
- Hales B., van Greer A. and Takahashi T. (2004b) High-frequency measurements of seawater
 chemistry: Flow-injection analysis of macronutrients. *Limnol. Oceanogr. Methods* 2, 91-101.
- Hain M. P., Sigman D. M., Higgins J. A. and Haug G. H. (2015) The effects of secular calcium
 and magnesium concentration changes on the thermodynamics of seawater acid/base
 chemistry: Implications for Eocene and Cretaceous ocean carbon chemistry and buffering.
- 685 *Global Biogeochem. Cycles* **29**, 517-533.
- Hansson I. (1973) A new set of acidity constants for carbonic acid and boric acid in seawater. *Deep-Sea Res.* 20, 461-478.
- He S. and Morse J. W. (1993) The carbonic acid system and calcite solubility in aqueous Na-KCa-Mg-Cl-SO₄ solutions from 0 to 90°C. *Geochim. Cosmochim. Acta* 57, 3533-3554.
- 690 Howarth R. W. (1978) A rapid and precise method for determining sulfate in seawater, estuarine
- 691 waters, and sediment pore waters. *Limnol. Oceanogr.* 23, 1066-1069.

- 692 Kennedy H., Thomas D. N., Kattner G., Haas C. and Dieckmann G. S. (2002) Particulate organic
- matter in Antarctic summer sea ice: concentration and stable isotopic composition. *Mar. Ecol. Prog. Ser.* 238, 1-13.
- Lee K., Kim T.-W., Byrne R. H., Millero F. J., Feely R. A. and Liu Y.-M. (2010) The universal
 ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. *Geochim. Cosmochim. Acta* 74, 1801-1811.
- Liu X., Patsavas M. C. and Byrne R. H. (2011) Purification and characterization of meta-Cresol
 Purple for spectrophotometric seawater pH measurements. *Environ. Sci. Technol.* 45, 48624868.
- Loucaides S., Rérolle V. M. C., Papadimitriou S., Kennedy H., Mowlem M. C., Dickson A. G.,
 Gledhill M. and Achterberg E. P. (2017) Characterization of *meta*-Cresol Purple for
 spectrophotometric pH measurements in saline and hypersaline media at sub-zero
 temperatures. *Sci. Rep.* 7, 2481, doi:10.1038/s41598-017-02624-0
- Lueker T. J., Dickson A. G. and Keeling C. D. (2000) Ocean pCO₂ calculated from dissolved
 inorganic carbon, alkalinity, and equations for K₁ and K₂: validation based on laboratory
 measurements of CO₂ in gas and seawater at equilibrium. *Mar. Chem.* 70, 105-119.
- Marion G. M. (2001) Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl SO₄-OH-HCO₃-CO₂-H₂O system. *Geochim. Cosmochim. Acta* 65, 1883–1896.
- Marion G. M., Mironenko M. V. and Roberts M. W. (2010) FREZCHEM: A geochemical model
 for cold aqueous solutions. *Comput. Geosci.* 36, 10-15.
- Mehrbach C., Culberson C. H., Hawley J. E. and Pytkowicz R. M. (1973) Measurement of the
 apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. *Limnol. Oceanogr.* 18, 897-907.
- Miller L. A., Fripiat F., Else B. G. T., Bowman J. S., Brown K. A., Collins R. E., Ewert M.,
 Fransson A., Gosselin M., Lannuzel D., Meiners K. M., Michel C., Nishioka J., Nomura D.,
- 717 Papadimitriou S., Russell L. M., Sørensen L. L., Thomas D. N., Tison J.-L., van Leeuwe M.
- A., Vancoppenolle M., Wolff E.W., Zhou J. (2015) Methods for biogeochemical studies of sea
- 719 ice: The state of the art, caveats, and recommendations. Elementa: Science of the
- 720 *Anthropocene* **3**, 000038, doi: 10.12952/journal.elementa.000038.

- 721 Miller L. A., Carnat G., Else B. G. T., Sutherland N. and Papakyriakou T. N. (2011a) Carbonate
- system evolution at the Arctic Ocean surface during autumn freeze-up. *J. Geophys. Res.* 116,
 C00G04, doi: 10.1029/2011JC007143.
- Miller L. A., Papakyriakou T. N., Collins R. E., Deming J. W., Ehn J. K., Macdonald R. W.,
 Mucci A., Owens O., Raudsepp M. and Sutherland N. (2011b) Carbon dynamics in sea ice: A
- winter flux time series. J. Geophys. Res. **116**, C02028, doi: 10.1029/2009JC006058.
- Millero F. J. (1995) Thermodynamics of the carbon dioxide system in the oceans. *Geochim. Cosmochim. Acta* 59, 661–677.
- Millero F. J. and Huang F. (2009) The density of seawater as a function of salinity (5 to 70 g kg⁻¹) and temperature (273.15 to 363.15 K). *Ocean Sci.* 5, 91-100.
- Millero, F.J., Zhang, J.Z., Fiol, S., Sotolongo, S., Roy, R.N., Lee K., Mane S. (1993) The use of
 buffers to measure the pH of seawater. *Mar. Chem.* 44, 143-152.
- 733 Millero F. J., Pierrot D., Lee K., Wanninkhof R., Feely R., Sabine C. L., Key R. M. and
- Takahashi T. (2002) Dissociation constants for carbonic acid determined from field
 measurements. *Deep-Sea Res. Part I* 49, 1705-1723.
- Millero F. J., Graham T. B., Huang F., Bustos-Serrano H. and Pierrot D. (2006) Dissociation
 constants of carbonic acid in seawater as a function of salinity and temperature. *Mar. Chem.* **100**, 80-94.
- Millero F. J., Feistel R., Wright D. G. and McDougall T. J. (2008) The composition of standard
 seawater and the definition of the reference-composition salinity. *Deep-Sea Res Part I* 55, 5072.
- Mohica-Prieto F. J. and Millero F. J. (2002) The values of $pK_1 + pK_2$ for the dissociation of carbonic acid in seawater. *Geochim. Cosmochim. Acta* **66**, 2529–2540.
- Munro D. R., Dunbar R. B., Mucciarone D. A., Arrigo K. R. and Long M. C. (2010) Stable
 isotopic composition of dissolved inorganic carbon and particulate organic carbon in sea ice
 from the Ross Sea, Antarctica. *J. Geophys. Res.* 115, C09005, doi:10.1029/2009JC005661.
- 747 Papadimitriou S., Kennedy H., Kattner G., Dieckmann G. S. and Thomas D. N. (2004)
- Experimental evidence for carbonate precipitation and CO₂ degassing during sea ice
 formation. *Geochim. Cosmochim. Acta* 68, 1749-1761.

- 750 Papadimitriou S., Thomas D. N., Kennedy H., Haas C., Kuosa H., Krell H. and Dieckmann D. S.
- 751 (2007) Biogeochemical composition of natural sea ice brines from the Weddell Sea during early austral summer. Limnol. Oceanogr. 52, 1809-1823. 752
- Papadimitriou S., Kennedy H., Norman L., Kennedy D. P. and Thomas D. N. (2012) The effect 753 of biological activity, CaCO₃ mineral dynamics, and CO₂ degassing in the inorganic carbon
- 754
- cycle in sea ice in late winter-early spring in the Weddell Sea, Antarctica. J. Geophys. Res. 755
- 117, C08011, doi: 10.1029/2012JC008058. 756
- Papadimitriou S., Kennedy H., Kennedy P. and Thomas D. N. (2013) Ikaite solubility in 757 seawater-derived brines at 1 atm and sub-zero temperatures to 265 K. Geochim. Cosmochim. 758 759 Acta 109, 241-253, doi:10.1016/j.gca.2013.01.044.
- Papadimitriou S., Kennedy H., Kennedy P. and Thomas D. N. (2014) Kinetics of ikaite 760 precipitation and dissolution in seawater-derived brines at subzero temperatures to 265 K. 761 762 Geochim. Cosmochim. Acta 140, 199-211, doi: 10.1016/j.gca.2014.05.031.
- Papadimitriou S., Loucaides S., Rérolle V. M. C., Achterberg E. P., Dickson A. G., Mowlem M. 763 764 C. and Kennedy H. (2016) The measurement of pH in saline and hypersaline media at subzero temperatures: Characterization of Tris buffers. Mar. Chem. 184, 11-20. 765
- 766 Pierrot D., Neill C., Sullivan K., Castle R., Wanninkhof R., Lüge H., Johannessen T., Olsen A., Feely R. A. and Cosca C. E. (2009) Recommendations for autonomous underway pCO₂ 767 768 measuring systems and data reduction techniques. Deep-Sea Res Part II 56, 512-522.
- Pitzer K. S. (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. 769 770 Phys. Chem. 77, 268–277.
- 771 Plummer N. L. and Busenberg E. (1982) The solubility of calcite, aragonite, and vaterite in CO₂-772 water solutions between 0 - 90 °C and an evaluation of the aqueous model for the system 773 CO₂-H₂O-CaCO₃. Geochim. Cosmochim. Acta 46, 1011-1040.
- 774 Pytkowicz R. M. and Kester D. R. (1969) Harned's rule behaviour of NaCl-Na₂SO₄ solutions explained by an ion association model. Am. J. Sci. 267, 217–229. 775
- 776 Rérolle V. M. C., Floquet C. F. A., Harris A. J. K., Mowlem M. C., Bellerby R. R. G. J. and Achterberg E. P. (2013) Development of a colorimetric microfluidic pH sensor for 777 autonomous seawater measurements. Anal. Chim. Acta 786, 124-131. 778

- Roy R. N., Roy L. N., Lawson M., Vogel K. M., Porter-Moore C., Davis W., Millero F. J. and
 Campbell D. M. (1993) The dissociation constants of carbonic acid in seawater at salinities 5
 to 45 and temperatures 0 to 45 °C. *Mar. Chem.* 44, 249-259.
- Rysgaard S., Glud R. N., Sejr M. K., Bendtsen J. and Christensen P. B. (2007) Inorganic carbon
 transport during sea ice growth and decay: A carbon pump in polar seas. *J. Geophys. Res. Oceans* 112, C03016, doi: 10.1029/2006JC003572.
- Rysgaard S., Bendtsen J., Delille B., Dieckmann G. S., Glud R. N., Kennedy H., Mortensen J.,
 Papadimitriou S., Thomas D. N. and Tison J.-L. (2011) Sea ice contribution to the air–sea CO₂
 exchange in the Arctic and Southern Oceans. *Tellus B* 63, 823-830.
- Sabine C. L., Feely R. A., Gruber N., Key R. M., Lee K., Bullister J. L., Wanninkhof R., Wong
 C. S., Wallace D. W. R., Tilbrook B., Millero F. J., Peng T.-H., Kozyr A., Ono T., Rios A. F.
 (2004) The oceanic sink for anthropogenic CO₂. *Science* **305**, 367-371.
- 791 Semiletov I., Pipko I., Gustafsson Ö., Anderson L. G., Sergienko V., Pugach S., Dudarev O.,
- Charkin A., Gukov A., Bröder L., Andersson A., Spivak E. and Shakhova N. (2016)
 Acidification of East Siberian Arctic Shelf waters through addition of freshwater and
 terrestrial carbon. *Nat. Geosci.* 9, 361-365.
- Takahashi T. (2004) The fate of industrial carbon dioxide. *Science* **305**, 352-353.
- Takahashi T., Sutherland S. C., Chipman D. W., Goddard J. G., Ho C., Newberger T., Sweeney
 C. and Munro D. R. (2014) Climatological distributions of pH, pCO₂, total CO₂, alkalinity,
 and CaCO₃ saturation in the global surface ocean, and temporal changes at selected locations.
- 799 *Mar. Chem.* **164**, 95-125.
- Takahashi T., Feely R. A., Weiss R. F., Wanninkhof R. H., Chipman D. W., Sutherland S. C. and
 Takahashi T. T. (1997) Global air-sea flux of CO₂: An estimate based on measurements of
 sea-air pCO₂ difference. *Proc. Natl.Acad. Sci. USA* 94, 8292-8299.
- Thomas D. N. and Dieckmann G. S. (2002) Sea ice A habitat for extremophiles. *Science* 295, 641-644.
- Turner D. R., Achterberg E. P., Chen C.-T. A., Clegg S. L., Hatje V., Maldonado M., Sander S.
 G., van den Berg C. M. G. and Wells M. (2016) Toward a quality-controlled and accessible
- 807 Pitzer model for seawater and related systems. Front. Mar. Sci. 3, 139,
- doi:10.3389/fmars.2016.00139.

- UNESCO (1983). Algorithms for computation of fundamental properties of seawater. UNESCO
 Technical Papers in Marine Science 44, 53 pp.
- Weiss R. S. (1974) Carbon dioxide in water and seawater: The solubility of a non-ideal gas. *Mar. Chem.* 2, 203-215.
- 813 Yamamoto-Kawai M., McLaughlin F. A., Carmack E. C., Nishino S. and Shimada K. (2009)
- 814 Aragonite undersaturation in the Arctic Ocean: Effects of ocean acidification and sea ice melt.
- 815 *Science* **326**, 1098-1100.
- 816
- 817
- 818

819 List of Figures

Figure 1. The stoichiometric equilibrium first and second dissociation constants of carbonic acid as negative common logarithm versus temperature (open circles) in natural seawater ($S_P = 33 - 34$). The curves were derived from the salinity-temperature functions in Lueker et al. (2000) based on the measurements of Mehrbach et al. (1973) (dashed line) and from the measurements on the seawater proton scale of Millero et al. (2006), converted to the total proton scale as in Millero (1995) and re-fitted here (solid line). Note the difference in the scale of the *y*-axis in the pK_{1C}^* and pK_{2C}^* panels.

Figure 2. The stoichiometric equilibrium first and second dissociation constants of carbonic acid 827 828 as negative common logarithm versus salinity from this study (open circles) and from Millero et al. (2006) (crosses) when available at 20 °C [panels (a) and (b)], 5 °C [panels (c) and (d)], 0 °C 829 [panels (e) and (f)], and the freezing point [panels (g) and (h)]. The dashed curve represents the 830 salinity-temperature functions in Lueker et al. (2000) based on the measurements of Mehrbach et 831 832 al. (1973), extrapolated outside their empirical range of $S_P = 19 - 43$ and for t < 2.0 °C. The solid curve represents the salinity-temperature functions based on the measurements on the seawater 833 proton scale of Millero et al. (2006), converted to the total proton scale and re-fitted here, and 834 extrapolated outside their empirical range for $S_P > 51$ and for t < 1.0 °C. Note the difference in 835 the scale of the y-axis in the pK_{1C}^* and pK_{2C}^* panels. 836

Figure 3. The stoichiometric equilibrium first and second dissociation constants of carbonic acid as negative common logarithm versus temperature in panels (a) and (b), and versus salinity in panels (c) and (d), respectively, at the freezing point of seawater and seawater-derived brine from this study (open circles) and from the output of the thermodynamic code FREZCHEM v15.1 (dashed line). Note the equivalent scale of the *y*-axis in the pK_{1C}^* and pK_{2C}^* panels.

Figure 4. Difference between observed and fitted values of the stoichiometric equilibrium first and second dissociation constants of carbonic acid as negative common logarithm in seawater and brines as a function of salinity [panels (a) and (b)] and temperature [panels (c) and (d)].

Figure 5. Change in pH in the total proton scale [panels (a), (d)], CO₂ fugacity [panels (b), (e)], and the total concentration of the carbonate ion [panels (c), (f)] in sea ice brine inclusions at icebrine equilibrium (freezing point) as a function temperature in conservative seawater-derived brines with respect to major ionic composition, A_T , and C_T (upper panels), and in conservative brines at equilibrium with current atmospheric CO₂ (non-conservative C_T) (lower panels). The

values of the illustrated parameters were determined for equilibrium freezing of surface seawater 850 851 from the western Weddell Sea, Antarctica, in Papadimitriou et al. (2012) by solving the system of equations that describe the chemical equilibria of the marine CO_2 system using the dissociation 852 constants of carbonic acid from this study (solid line), and as computed from the salinity-853 temperature functions fitted to the measurements of Mehrbach et al. (1973) by Lueker et al. 854 (2000) (dashed line) and to the measurements of Millero et al. (2006) following conversion to the 855 total proton scale and re-fitting in this study (dotted line). Further details are given in Section 2.7. 856 Figure 6. The differences between the current data set and each of the two sets of extrapolated 857 oceanographic pK_{1C}^* and pK_{2C}^* equations (Lueker et al., 2000; Millero et al., 2006) in respect of 858 859 fCO_2 [ΔfCO_2 : panels (a) and (b)] and pH on the total proton scale [ΔpH_T : panels (c) and (d)] computed from A_T and C_T at the freezing point as a function of the C_T to A_T ratio (C_T/A_T) of the 860 brine system. The $\Delta f CO_2$ and $\Delta p H_T$ are shown for $S_P = 50$ (squares), 60 (diamonds), 85 (circles), 861 and 100 (triangles, crosses) for (i) the conservative brine A_T and C_T scenario (closed symbols; 862 863 also illustrated in Fig. 5a, b), (ii) between measured pH_T and fCO₂ near the freezing point of experimental brines and their values derived from the relevant A_T and C_T measurements (Table 864 2) as computed using each of the two sets of extrapolated oceanographic pK_{1C}^* and pK_{2C}^* 865 equations (open symbols), and (iii) for illustration purposes, for C_T/A_T decreasing from the 866 867 conservative C_T/A_T scenario to lower values (conservative A_T, non-conservative C_T) at a constant $t_{\rm FP} = -6.0$ °C and $S_{\rm P} = 100$ (crosses). 868

869

870

Salinity	[Na ⁺]	[Mg ²⁺]	[Ca ²⁺]	[K ⁺]	[Cl ⁻]+[Br ⁻]	[SO ₄ ²⁻]
100.52	1347	150.64	29.96	25.85	1566	77.21
98.69	1323	148.89	28.99	26.26	1554	77.47
84.62	1134	128.02	25.00	22.26	1327	66.97
61.54	825	92.66	18.18	16.23	968	50.48
60.30	808	91.34	17.87	15.40	946	47.25
60.28	808	91.25	17.84	16.11	944	47.93
50.24	681	74.20	14.54	13.57	795	39.79
50.15		75.15	14.55			40.37
48.90		72.65	14.30			38.80
40.20	539	60.84	11.83	11.09	632	32.77
^a 35	470±2	52.60±0.45	10.29±0.10	9.27±0.23	550±2	27.82±0.54
^b 35	469	52.82	10.28	10.21	547	28.24

Table 1. Major ion composition of brines (in mmol kg⁻¹).

^amean concentration of brines normalized to salinity 35

^bcomposition of Reference Seawater of salinity 35 (Millero et al., 2008)

Table 2. Practical salinity (S_P), temperature (*t*, in °C), phosphate (SRP) and silicic acid [Si(OH)₄] (in µmol kg⁻¹), the measured parameters of the carbonate system in seawater and seawaterderived brines [C_T (in µmol kg⁻¹), A_T and derived carbonate alkalinity (A_C) (in µmol kg⁻¹), *f*CO₂ (in µatm), and pH_T (total proton scale; in mol kg⁻¹)], and the stoichiometric equilibrium first and second dissociation constants of carbonic acid (in mol kg⁻¹, total proton scale) as negative common logarithms (pK^{*}_{1C} and pK^{*}_{2C}).

Sp	SRP	Si(OH) ₄	t	C_{T}	A_{T}	Ac	fCO ₂	$pH_{\rm T}$	pK_{1C}^{*}	$\mathrm{pK}^*_{\mathrm{2C}}$
33.14	0.1	2.9	-1.79	2047	2259	2177	184	8.345	6.167	9.468
33.54	0.0	8.1	17.98	2042	2282	2200	369	8.052	5.889	9.089
33.64	0.3	3.8	-1.53	2153	2287	2231	329	8.125	6.163	9.432
			-1.53	2157	2287	2231	329	8.122	6.158	9.448
			-1.53	2154	2287	2232	331	8.118	6.158	9.425
			22.01	2139	2287	2233	788	7.780	5.866	9.007
33.64	0.3	3.8	15.07	2114	2281	2221	520	7.934	5.932	9.126
			15.07	—	2281	2221	519	7.929	—	-
			15.11	2119	2281	2220	518	7.935	5.928	9.151
			25.01	2144	2281	2229	887	7.731	5.832	8.991
			25.02	2138	2281	2228	872	7.737	5.833	8.977
			25.06	2141	2281	2228	880	7.732	5.830	8.984
33.94	0.0	7.1	-1.17	2063	2278	2194	186	8.333	6.143	9.457
			-1.06	2073	2278	2199	206	8.298	6.148	9.436
			-1.06	—	2278	2199	203	8.298	_	_
			-0.03	2045	2278	2192	186	8.329	6.127	9.401
			0.04	2064	2278	2194	201	8.309	6.132	9.435
			0.04	2061	2278	2195	202	8.308	6.135	9.420
			0.04	2061	2278	2195	201	8.305	6.130	9.418
			5.03	2050	2278	2195	237	8.232	6.052	9.309
			9.94	2048	2278	2198	280	8.148	5.968	9.210
			20.04	2044	2278	2202	433	7.986	5.866	9.019
			24.96	2100	2278	2213	676	7.835	5.831	9.003
			24.99	2100	2278	2214	682	7.832	5.832	8.996
			25.04	2091	2278	2213	680	7.833	5.835	8.968
34.04	0.2	4.8	0.00	2053	2286	2199	191	8.327	6.134	9.403
			0.00	2054	2286	2199	190	8.324	6.128	9.403
			0.00	—	2286	2199	191	8.323	—	-
			0.06	2049	2286	2195	181	8.350	6.133	9.427
			20.03	2050	2286	2206	430	8.005	5.880	9.045
			20.03	2048	2286	2206	420	8.004	5.870	9.039
			20.03	2048	2286	2206	427	8.004	5.877	9.039

882

Table 2 (continued)

SP	SRP	Si(OH) ₄	t	Ст	AT	Ac	fCO ₂	pНт	pK [*] _{1C}	pK_{2C}^{*}
40.20	0.1	16.9	2 15	2512	2806	2703	216	8 377	6 1 2 3	9 375
40.20	0.1	40.7	-2.15 1 97	2584	2800	2703	210 426	8.071	6.025	9.279
48 90	0.0	259/	-272	2304	2500	3411	420 347	8 247	6.134	9 300
+0.70	0.0	237.7	-0.09	3155	3528	3413	385	8 198	6.092	9.206
			20.05	3142	3528	3420	851	7 883	5 841	9.200 8.850
50.15	0.0	55.2	-2.74	3026	3481	3329	224	8 397	6 1 2 3	9 326
20.12	0.0	00.2	-2.74	3038	3481	3337	248	8.366	6.134	9.300
50.24	0.0	38.3	-1.56	2947	3446	3296	232	8.373	6.114	9.223
00121	010	0010	-0.06	2976	3446	3306	268	8.312	6.082	9.191
			4.88	2976	3446	3308	329	8.233	6.013	9.109
			10.00	2944	3446	3306	383	8.168	5.949	8.998
			15.00	2984	3446	3318	532	8.051	5.896	8.921
			25.05	2977	3446	3323	807	7.895	5.807	8.743
60.28	0.4	15.3	-3.36	3645	4116	3965	379	8.284	6.137	9.264
			-0.27	3643	4116	3968	419	8.229	6.073	9.202
			25.02	3627	4116	3987	1183	7.802	5.765	8.718
60.30	1.2	26.9	-3.37	3641	4180	4012	302	8.340	6.101	9.259
			-2.40	3652	4180	4016	308	8.310	6.060	9.240
			-2.37	3661	4180	4016	318	8.308	6.069	9.250
			20.29	3649	4180	4035	864	7.925	5.802	8.819
61.54	0.4	0.5	-3.46	3707	4228	4060	328	8.331	6.115	9.279
			-0.11	3705	4228	4062	370	8.276	6.056	9.219
84.62	1.0	18.0	-4.97	4863	5811	5562	371	8.409	6.118	9.167
			-4.93	4842	5811	5560	366	8.413	6.120	9.155
			0.04	4840	5811	5567	455	8.318	6.035	9.054
			5.02	4855	5811	5579	583	8.216	5.960	8.954
			20.33	4847	5811	5599	1088	7.953	5.773	8.668
98.69	1.4	22.6	-6.00	5457	6795	6486	392	8.509	6.196	9.130
			-5.93	5454	6795	6483	356	8.512	6.156	9.134
			0.03	5459	6795	6498	459	8.390	6.042	9.007
			4.87	5441	6795	6504	546	8.304	5.960	8.907
100.52	2.0	20.7	-5.98	5628	6901	6611	417	8.469	6.157	9.129
			20.30	5656	6901	6673	1308	7.946	5.755	8.587

885

Table 3. Best fit values for the coefficients of the salinity-temperature functions of the first and
second stoichiometric equilibrium dissociation constants of carbonic acid in seawater and
seawater-derived brines on the total proton scale.

		data set							
		Millero et a	1. (2006)	this study					
Parameter	Coefficient	pK_{1C}^{*}	$\mathrm{pK}^*_{\mathrm{2C}}$	\mathbf{pK}_{1C}^{*}	$\mathrm{pK}^*_{\mathrm{2C}}$				
$\mathbf{S}_{\mathrm{P}}^{0.5}$	ao	13.47667	21.07076	6.14528	27.557655				
$\mathbf{S}_{\mathbf{P}}$	a_1	0.032404	0.12322	-0.127714	0.154922				
S_P^2	a_2	-5.534×10^{-5}	-3.68×10^{-4}	7.396×10 ⁻⁵	-2.48396×10^{-4}				
$S_{P}^{0.5}/T$	a ₃	-535.036	-774.97	-622.886	-1014.819				
S _P /T	a 4	-5.8655	-19.5835	29.714	-14.35223				
$S_P^{0.5} lnT$	a_5	-2.07643	-3.328487	-0.666812	-4.4630415				
constant	bo	^a -126.34048	^a –90.18333	-176.48	-323.52692				
1/T	\mathbf{b}_1	^a 6320.813	^a 5143.692	9914.37	14763.287				
lnT	b_2	^a 19.568224	^a 14.613358	26.05129	50.385807				
user confir $S_P = 35$, T	mation value = 273.15 K	6.1184	9.3827	6.1267	9.3940				
^a from Mille	ero et al. (2006)								

891

890