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A B S T R A C T

City planners, urban innovators and researchers are increasingly working on ‘future city’ initiatives to investigate
the physical, social and political aspects of harmonized urban living. Despite this, sustainability principles and
the importance of urban groundwater are lacking in future city visions. Using London as a case study, the
importance of groundwater for cities is highlighted and a range of future city interventions may impact on
groundwater are reviewed. Using data from water resource plans and city planning strategies, changes in the
groundwater balance which may occur as a result of city interventions are calculated for two future city sce-
narios: a ‘strategic’ future informed by organisational policy and an ‘aspirational’ future guided by sustainability
principles. For London, under a strategic future, preferential investment in industry-scale technologies such as
wastewater treatment and groundwater storage would occur. Acknowledgement that behaviour change offers
the potential for a faster rate of transformation than innovation technologies is ignored. The capacity of com-
munity-led action and smart-home technologies to deliver sustainable water use under an aspirational future is
evident, with a measurable impact on urban groundwater. These methods may be used to inform city inter-
ventions that consider the social context in addition to environmental constraints and business drivers.

1. Introduction

As urban populations continue to dominate globally, city planners,
urban innovators and researchers are increasingly working on joint
initiatives to investigate the physical, technological, social and political
aspects of harmonized urban living. The aim is to create cities which
perform well, that are, prosperous, sustainable, resilient, and liveable.
Whilst significant attention is given to smart city information technol-
ogies, data and innovation products, the broader city initiatives tend
towards ‘future city’ concepts where knowledge dissemination, co-
operation, policy reform and urban design run in parallel with big data
and smart technologies (Rogers et al., 2012; Angelidou, 2015). Despite
this broader approach to future city thinking John et al. (2015), in their
review of 92 urban visions across 13 countries, found that sustainability
principles were poorly covered and that no city fully integrated all of
the defined sustainability principles (i.e. relating to built form; eco-
systems services; resource consumption and production; social and
cultural practice; governance, and; city-catchment systems) within their
vision. In the context of a sustainable urban future, the vision may be
defined as a desirable society, which provides permanent prosperity
within biophysical constraints and in a manner that is fair and equitable
now and in the future (Costanza, 2000). A city foresight exercise, un-
dertaken by the UK Government Office for Science, aims to gather

science evidence in support of policy decisions to inform the analysis,
design and transformative actions needed to shape the UK’s urban fu-
ture (GO-Science, 2016). Adopting a trans-disciplinary approach, the
foresight exercise considers urban economies, metabolism, form, in-
frastructure, governance, and city living. At a time when sustainability
principles need promoting in city visions, inclusion of urban metabo-
lism is critical. Originally proposed by Wolman (1965) urban metabo-
lism may be defined as the inflow and outflow transactions required to
sustain city functions, or the production, consumption and disposal of
resources (Huang and Hsu, 2003). In this way the biophysical demand
to sustain urban society is evaluated. Linking urban metabolism con-
cepts with future city programmes brings another dimension to urban
performance metrics by making the connection between the city and its
resource support area, commonly referred to as its hinterland (Lee
et al., 2016). Here, there is an acknowledgment that, in terms of re-
source demand, the city cannot sustain itself using only materials
within the city limits and additional resources must be imported; and it
follows that the by-products, or waste, arising from city metabolism are
also disposed of beyond the city boundary. Strongly aligned with urban
metabolism principles is the ecosystem services approach adopted by
UK National Ecosystem Assessment (2014) through the Natural Capital
Asset Check. Here the ecosystem services (stocks and flows) provided
by the natural environment within the city and its hinterland are
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evaluated. However in their review of sustainability in city visions,
John et al. (2015) conclude that the visions which are led by city re-
presentatives emphasize the functioning of the built environment
within the city limits only, and the relationship with the hinterland is
weak. Furthermore, they argue that this leads to a reduction in city
resilience as experts on the hinterland are not represented and therefore
not involved in the design of solutions.

Water supply and disposal form two critical components of the city’s
metabolism that become more acute as cities grow (Wolman,1965;
Jones, 1966), particularly as ecosystem service demand and consump-
tion of resource per capita are outpacing population growth (John
et al., 2015). In recent decades the rate of demand for water has been
twice the rate of population growth and, under a business-as-usual
climate scenario, a 40% global water deficit is predicted by 2030 (UN-
WWAP, 2015). As traditional water sources become depleted there is an
expectation that cities will need to exploit their hinterlands to broaden
their water supply catchment area, utilize marginal water resources and
invest in innovation solutions and more advanced technologies to ma-
nipulate the natural water systems. The internal city processes that
facilitate the supply, consumption and disposal of resources disturb
natural systems and alter the urban environment and morphology
(Huang and Hsu, 2003). Disturbance of the natural water environment
in urban areas and pressure on the ecosystem services it provides is
likely to become more pronounced where the physical expansion of

cities is occurring at a faster rate than population growth (Sterling
et al., 2012; Hunt et al., 2016). As a result inclusion of water within
urban metabolism and future cities assessment is common (Rojas-Torres
et al., 2014), but explicit consideration of urban groundwater systems is
not, which is symptomatic of the fact that ecosystem services provided
by urban underground space are not yet appreciated by most city re-
presentatives (Hunt et al., 2016).

It is estimated that half of the world’s megacities are groundwater-
dependent and over 40% of water supply across much of Europe comes
from aquifers lying beneath urbanized areas (Wolf et al., 2006). Ad-
ditionally, groundwater resources in urban areas do not just extend to
water for domestic and industrial supply but also to ground source
heating. For example, in London it is estimated that 19% of the city’s
total heat demand (2010) could be derived from ground heat sources
(GLA, 2013). The interaction of groundwater with other urban systems,
such as infrastructure and surface water networks is well-recognized by
expert practitioners and is increasingly on the city agenda, for example
in consideration of baseflow provision to urban and peri-urban rivers
(blue networks), flood risk, management of blue-green infrastructure
(e.g. sustainable drainage systems), adverse effects on underground
infrastructure, control of underground construction, and impacts of
industrial legacy on water quality. These different examples highlight
the range of urban groundwater processes that operate at different
temporal and spatial scales and across the rural-urban transition. Here

Table 1
Anthropogenic interventions in the urban water cycle (recharge, through flow and discharge).

Human intervention Potential impact

Recharge
Evaporation Climatic warming allows more moisture to be held in the

atmosphere.
Increased rainfall and increased intensity of individual rainfall events.

Hard surfacing (anthropogenic aquitards) and reduced
vegetative cover.

Potential reduction and redistribution of effective porosity. Reductions in the
potential for evapo-transpiration.

Funnelling of wind through high storey developments. Increased evaporation.
Run-off Hard surfacing (anthropogenic aquitards). Increased run-off and reduced baseflow to surface water courses; potential to mobilize

more sediment; water arrives more quickly increasing the potential for contaminant
mobilisation. The reduced run-off times and base flow result in greater flashiness of
surface water courses. Layers of hard surfacing, e.g. palimpsests of development may
result in multiple levels of perched water.

Recharge Hard surfacing Reduction in natural groundwater recharge: exacerbated by silt and sediment
clogging; local increases in recharge associated with pipe leakage, and anthropogenic
aquifers (e.g. gravel packs to services).

Made Ground Increase in near surface storage, particularly in areas underlain by low permeability
lithologies.

Quarrying Local increases in the extent of bare ground available for recharge.
Urban development Leakage from pipes; irrigation water (parks and recreation areas); potential for

groundwater level rise beneath urban environments. Granular bedding materials form
anthropogenic aquifers.

Freshwater/saline
interface

Dewatering In coastal environments dewatering and lowering of the groundwater table may lead
to saline intrusion.

Through-flow and storage
Water as a resource. Lowering of groundwater table and changes to geochemistry, increased depth of

unsaturated zone. Increased hydraulic gradients, potential to mobilize contaminants
to greater depth. Potable supply can result in cross-catchment transfer of water. The
introduction of artificial storage (e.g. reservoir storage to maintain water supply)
removes groundwater from aquifers. Overuse may result in derogation of supply.

Dewatering In coastal environments dewatering and lowering of the groundwater table may lead
to saline intrusion.

Culverting of watercourses in unconfined aquifers. Water culverted to allow access across watercourses; may affect recharge processes;
potential impact on quality (reduced oxygenation).

Geothermal energy. Changes to ground temperature with potential impacts on evapo-transpiration
Deep construction, e.g. underground tunnels, reservoir
construction, landfill.

Compartmentalisation of water; a more irregular water table, and time of vadose zone
recharge lengthened by obstacles to flow.

Discharges, e.g. soakaways. Ponding of water may alter flow paths.
Moving water through the unsaturated zone more quickly as a
result of underground development and physical disturbance to
the ground.

May result in a change to groundwater chemistry, e.g. negative saturation indices
move to greater depth in the aquifer, resulting in changes to baseline water chemistry;
dry fallout moved deeper into the aquifer.

Discharge
Industrial discharge to surface watercourses, e.g. process and
mine water, contaminated drainage from industrial units.

Changes to water quality and temperature impacts on ecology.

Use of abstraction wells. Alters flow to natural discharge points.
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we consider the factors that affect the groundwater cycle in urban en-
vironments where the interaction between the anthropogenic and nat-
ural environment causes not only physical alteration to the ground but
also a change in natural capital stocks, disturbance to natural flows and
shifts in natural boundary conditions.

Using London, the UK’s megacity as a case study, the complexity of
groundwater systems in urban and peri-urban environments is illu-
strated. A semi-quantitative water balance method is used to highlight a
number of physical, social and political interactions between the nat-
ural environment and anthropogenic activity and to account for
changes to the groundwater system that may arise as a result of future
city interventions. Insights into urban water management to underpin
plausible and scientifically-informed city visions and interventions are
provided.

2. Urban-groundwater systems

Conceptually, urban groundwater accounting should follow the
path of the water cycle, which essentially comprises a system of re-
charge or replenishment by rainwater through the unsaturated zone;
storage and through-flow within underground voids (fractures and
pores in the subsurface geology), and; discharge or abstraction via
springs, rivers or boreholes. Using this approach, consideration can be
given to the constituent elements of urban development that intervene
in the natural water cycle, thereby impacting the quality and quantity
of the resource (Table 1). Rates of water movement are also funda-
mental to water accounting in terms of both water quantity and water
quality. Therefore one also needs to establish: [1] resource catchment
boundary conditions in terms of recharge and base-level (the level to
which groundwater flows, e.g. the main river of outlet at the sea) and
[2] physical material properties such as porosity and permeability (the
underground voids and their degree of connectivity).

The key components of urbanisation that impact on boundary
conditions (points of recharge, discharge or barriers to flow) are: al-
teration of groundwater tables as a consequence of resource exploita-
tion, dewatering for construction, quarrying and industry and leakage
from urban water transport systems or tunnel drainage. Where these
effects are measurable at a regional scale they are monitored through
groundwater level monitoring, e.g. by environmental regulators and by
resource suppliers such as Thames Water Utilities Ltd (TWUL) in
London. Mathematical modelling in conjunction with geospatial ana-
lysis can be used to evaluate these impacts and their sensitivity, e.g. the
conceptual model presented for Bucharest, Romania, by Boukhemacha
et al. (2015) or Jones et al. (2012).

The physical properties of urban groundwater systems are altered
by a range of anthropogenic interventions (Table 1). The greatest im-
pact results from the construction of near surface and buried low per-
meability layers that impede water flow. Anthropogenic construction of
hard surfacing in urban environments takes a range of forms from
foundations, tunnels and reservoirs to the provision of buildings with
their associated services, such as parking, storage and leisure facilities,
e.g. sports areas, including swimming pools and the range of buried
services that convey people and resources (water, energy and waste)
beneath ground. The construction of “impermeable hard surfacing” not
only limits water infiltration to the ground by virtue of the low per-
meability of the construction materials, but it is also commonly asso-
ciated with ground loading and compression, which closes near surface
voids, further limiting infiltration. The presence of surface hard
standing both increases overland flow (rather than infiltrating the
ground to replenish aquifers) and focuses accelerated surface flow to
surface drainage systems. The consequential surface water flooding is
increasingly occupying the minds of planners (e.g. Pitt Review, 2008;
Slingo et al., 2014) and modellers since the early 1990s (e.g. Macdonald
et al., 2012; Jankowfsky et al., 2014), leading to the realization that
urban systems have to be viewed in an integrated manner and in terms
of the host river catchment (i.e. the entirety of their recharge area), e.g.

River Basin Catchment Management plans (Jaspers, 2003).
Though not explicitly considered here in the groundwater ac-

counting exercise, changes to groundwater quality in the urban en-
vironment may result from a number of impacts, including: con-
taminating land uses, leaking infrastructure industrial cooling and
processing water, leachate from landfills and other industrial dis-
charges. Many of these impacts occur at discrete points (point-source
pollution) or occur along linear routes such as transport networks or
drainage channels. Furthermore, many major urban developments are
close to the downstream end of catchments, because their development
is closely associated with water transport and trading and where nat-
ural groundwater is supplemented by anthropogenic sources that are
situated farther upstream, e.g. mine drainage impacts on the River
Humber (Neal and Robson, 2000). This reinforces the fact that urban
groundwater systems cannot be considered in isolation, but as part of
connected catchment or hinterland. As well as exposure to a large range
of contaminants, there are changes in groundwater quality that are
brought about as a consequence of physical changes to the groundwater
environment, e.g. saline intrusion in coastal cities where influx of sea-
water occurs as a result of groundwater lowering–often as a result of
groundwater abstraction, or changes in Oxidation/Reduction Potential
(Eh) or pH conditions that result from a change in groundwater level,
including for example culverting of surface water. There is an extensive
literature that describes these impacts, e.g. (Barker et al., 1998; Everard
and Moggridge, 2012). However, to date cost accounting has not been
fully embraced in this conceptual understanding, e.g. Banks et al.
(2014). Some of the impacts are well understood, e.g. the macro-
pollutants determined from monitoring the impacts of landfill (Peel,
2014) septic tanks and sewage networks (Navarro and Carbonell, 2007)
and legacy industries (Hatheway and Doyle, 2006). This contrasts with
low levels of understanding with respect to the impacts of emerging
groundwater contaminants (Stuart et al., 2012), such as micro-
pollutants (Musolff et al., 2009) and nanoparticles (Baun et al., 2009).
Specific determinands commonly detected in UK groundwater include
pesticides, metabolites, pharmaceuticals including carbamazepine and
triclosan, nicotine, food additives and alkyl phosphates (Stuart et al.,
2012).

There are a number of other impacts which to date have been less
well constrained, but nevertheless are identified in Table 1. Many of
these impacts broadly align with the direction of climate change
(Taylor et al., 2013), consequently mitigation of urban impacts aligns
well with developing broader climate change resilience.

As well as exacerbating the potential for surface run-off to con-
tribute to the issue of surface flooding (Perry and Nawaz, 2008), the
construction of paved areas leads to the reduction of moisture in the soil
zone and reduces the potential for evapotranspiration in these areas, in
turn leading to changes in the engineering properties of near-surface
soils. A level of mitigation can be achieved through green roofs, which
provide additional benefits of lowering absorption and release of solar
radiation. The penetration of foundations into the unsaturated zone has
the potential to block groundwater flow paths, resulting in localized
focusing of flow, and provides the potential for compartmentalisation of
groundwater, which can potentially impact on water quality and re-
source availability. There is potential to mitigate against these impacts
through the use of sustainable drainage systems (SuDs), which comprise
alternatives to channelling surface water through networks of pipes and
sewers, either through storage or managed infiltration to the ground.
However, increased intensity of rainfall events, as a potential con-
sequence of climate change, may demand greater capacity for tem-
porary storage and release of surface water, particularly in flood sus-
ceptible areas.

2.1. London’s groundwater system

London, a megacity with significant historical legacy having un-
dergone multiple phases of development, makes an excellent case study
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for evaluating urban groundwater systems and accounting for future
change. It is located in the estuary of the River Thames catchment with
the Chalk aquifer, the most important aquifer within the UK
(MacDonald and Allen, 2001), lying at depth beneath the city. The
aquifer is covered and confined by clays with interbedded sand and
gravel deposits. These overlying deposits afford a degree of protection
to the Chalk aquifer as well as providing a small component of addi-
tional resource from the more permeable granular deposits. The Chalk
aquifer in London has been significantly exploited for public and in-
dustrial supply since the 1850s and is one of the most monitored and
managed aquifer-systems in the UK (Royse et al., 2012). The ready
supply of groundwater in London has been an integral part of its in-
dustrial development (e.g. Wilkinson, 1985); similarly changes in in-
dustry are reflected in fluctuations in water demand and water resi-
lience (groundwater resource, energy, hazard and ecosystem services).

Here we systematically try to capture the current baseline for
London (water supply and utility, built environment, energy, ecosystem
services and hazard), whilst recognizing the significance of the histor-
ical industrial development to this baseline. So whilst London does
make a good case study for cities that have experienced multiple phases
of development, it represents one of the most historic urban develop-
ments in the world. Therefore, a unique set of circumstances prevail
that make urban planning particularly difficult in terms of changes in
land use and transition through secondary and tertiary industries,
which results in competition for subsurface space, legacy contaminants
and heavily exploited natural resources in an area of heterogeneous
ground conditions.

2.1.1. Water supply and utility
Privatisation of water supply in the UK has resulted in the formation

of twenty four water companies. TWUL is responsible for the provision
of water to the London area and five other water resource zones to the
west of London. TWUL serves over 13.5 million customers in London
and the Thames Valley (TWUL, 2015). Within the broader River
Thames catchment within which London lies, 80% of public water
supply comes from groundwater and 20% from surface water sources,
while the reverse is true in London where 20% of public water supply
comes from groundwater. Whilst direct groundwater abstraction for
public water supply in London is low, the baseflow index (BFI) for the
River Thames at Kingston (Thames tidal limit) is 0.63 (NFRA; gauging
station 39001—period of record 1883–2014), indicating that 63% of
the river flow is derived from groundwater. This demonstrates the in-
direct contribution of groundwater from the wider river catchment to
support London’s surface water abstraction.

With a rising population that uses an increasing volume of water per
head, in conjunction with climate change projections, London is facing
an increasing water supply deficit, projected to rise from 59.4 Ml/d in
2015–415.9 Ml/d in 2040 (TWUL, 2015). As well as emphasising the
requirements for leakage detection and repair, this increasing deficit
requires the sourcing of additional resources, which includes artificial
recharge schemes, e.g. the North London (Enfield-Haringey) and South
London (Merton, Streatham) artificial recharge schemes (Jones et al.,
2012; O’Shea and Sage 1999; TWUL, 2015). Abstraction and recharge
for these schemes is typically not balanced. For example, at the North
London facility abstraction reaches up to 10981 Ml/yr but typically has
been less than 5000 Ml/yr in recent years. In contrast artificial aquifer
recharge at the sites reaches quantities of up to ∼4000 Ml/yr but has
been negligible in recent years.

Water supply and demand reduction in the short to medium-term is
being driven through a combination of leakage reduction, progressive
metering and water efficiency measures (TWUL, 2015). However whilst
leakage from the pipe network is 665 Ml/d, equivalent to 25% of the
total water demand (2014/15; TWUL, 2015) the Economic Level of
Leakage has been reached i.e. the level at which the cost of further
reducing leakage exceeds the cost of producing water from an alter-
native source (DEFRA, 2008; TWUL, 2015). The water deficit is also

increasingly being met through increasing the hinterland for ground-
water supply, i.e. through trading with other water companies such as
Essex and Suffolk Water and RWE N-Power and identifying new re-
source options. The first water desalination plant in the United
Kingdom, the TWUL Desalination Plant, or Beckton Desalination Plant
was built in Beckton, in the London Borough of Newham in east London
for TWUL at a cost of £250 million (Water Technology, 2016). It was
opened on 2 June 2010 and provides up to 150 Ml/d. This is enough for
nearly one million people in north-east London. Consideration is also
being given to new wastewater re-use schemes, e.g. two wastewater
reverse osmosis re-use plants are planned: Deephams recycling 60 Ml/d
in 2027 and Beckton recycling 100 Ml/d in 2032 (TWUL, 2015).
However the problems of emerging contaminants e.g. pharmaceuticals
(Stuart et al., 2012) have to be considered in the evaluation of these
schemes.

Water for public supply is the primary consumptive use of ab-
stracted groundwater under licence in London (80%), with non-con-
sumptive groundwater abstraction licences for ground source heating
and cooling systems also increasing across the city (Environment
Agency 2015). Proportionally about half of TWUL’s supply is for
household use, a quarter is lost through leakage and just 20% is used for
non-household purposes (TWUL, 2015).

2.1.2. Built environment
London’s subsurface is host to an increasing density of infrastructure

such as transport tunnels, requiring dewatering schemes to control
groundwater during their construction (Royse et al., 2012). Conflicting
demands and restrictions on underground space render it necessary to
take such infrastructure to increasing depths, e.g. at the time of con-
struction (2010) the Lee Sewerage Tunnel was the deepest tunnel in
London, exceeding the depth of the deepest underground station
Hampstead (58.5 m) by 20 m. Whilst this depth may not seem sig-
nificant when compared with the Gotthard Tunnel (Simoni, 2013),
which is 2.3 km under the Alps at its deepest point, construction be-
neath London is difficult because of the weak nature of the ground and
the requirement to manage the groundwater conditions. Engineering in
London is made even more difficult by rising groundwater levels, which
result from reductions in water demand by industry (Fry, 2009; Lucas
and Robinson, 1995; Wilkinson, 1985).

The demands for urban space, accompanied by a relaxation in
planning constraints, have resulted in a proliferation of basements,
which impact on natural recharge and impede shallow groundwater,
thereby lowering resilience to flooding e.g. the London Borough of
Kensington and Chelsea received 450 applications for basements in
2013. To help address this local planning policy in parts of London
restrict basement size to 50% of the garden to protect “the character
and function of gardens, allow flexibility in planting and natural surface
water drainage” (RBKC, 2014). The urban flooding issue is complex and
has been compounded by rising groundwater levels in the Chalk aquifer
in central London following reductions in groundwater abstraction after
industrial decline (Fry 2009; Lucas and Robinson, 1995) and the his-
toric culverting of the surface water system (Barton, 1992). Rising
groundwater levels have been addressed and are now stabilized
through a collaborative groundwater abstraction operation led by the
environmental regulator, TWUL and London Underground. Meanwhile
broader flooding issues are being addressed through the Greater
London Authority Drain London programme, a partnership of 33
London boroughs, the Environment Agency, TWUL and Transport for
London, which is aimed at better prediction and management of surface
water flood risk in London.

The consequences for groundwater of construction in the subsurface
are multi-facetted and include: (i) partitioning of groundwater, thereby
altering natural flow paths, which adds complexity to groundwater
modelling; (ii) increasing vulnerability due penetration of the confining
layer which affords protection to the groundwater quality; (iii) the
networks of transport, energy and fluids all have the potential to leak
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contaminants; (iv) the networks of transport, energy and fluids have the
potential to take up groundwater through any ruptures; (v) as con-
struction moves deeper into the subsurface dewatering imposes a
greater potential for groundwater mixing with the potential for reduc-
tions in groundwater quality. Such consequences demand increasingly
technical and more robust solutions to meet the resilience requirements
of the city’s growing population. New technologies are emerging to
achieve this, e.g. the use of robots to repair underground pipes
(Hollingum, 1998) and geophysics for pipe leak detection (Kuras et al.,
2016). The extent of groundwater abstraction can be monitored from
the induced ground level change, seen in remotely sensed radar inter-
ferometry (e.g. Cigna et al., 2015; Boni et al., 2016; Pratesi et al., 2016).

2.1.3. Ecosystem services
The multiple functions that ecosystem services provide with respect

to the ground beneath urban areas are increasingly being recognized by
city practitioners. For example groundwater provides multiple services,
primarily for potable water supply but also by diluting and attenuating
contaminants and by acting as a medium for exploiting ground heat.
However, appropriate assessment and management of ecosystem ser-
vices provided by the ground are less clearly understood. There are
more than 40 active ground source heating and cooling systems uti-
lising groundwater in central London, including those used by London
Underground where groundwater pumped from Victoria Station as part
of the station’s dewatering system is used to cool the platform. It is
estimated that up to 19% of London’s total heat demand (2010) could
be derived from ground heat sources (GLA, 2013). Despite the oppor-
tunity, rising groundwater temperatures are already a concern with a
2 °C rise in temperature between 2005 and 2014 recorded in parts of
London (Environment Agency, 2015).

Groundwater is also influenced by other ecosystem services pro-
vided in urban areas. For example, to facilitate natural recharge, sus-
tainable drainage systems have been promoted and incorporated as
local planning policy for London. A drainage hierarchy is adopted,
whereby storage of rainwater for subsequent use, natural infiltration
systems and attenuation of water are to be considered in preference to
direct discharge of water to water courses and combined sewers. Whilst
sustainable drainage systems have the benefit of increasing natural
groundwater recharge, enhancing urban ecology and attenuating con-
taminants in surface water, if not installed in appropriate locations they
may increase local groundwater flood risk, cause dissolution of soluble
rocks and mobilize contaminants present in soils and the shallow sub-
surface unsaturated zone (Dearden and Price, 2012). Additionally, they
may disrupt natural filtration and geochemical processes operating in
the subsurface.

3. Future city interventions

Commonly, environmental challenges in cities are a construct of
multiple social and political dynamics. For example, low environmental
standards are not merely problems of human behaviour, caused by
collective human and political actions, but of their underlying interests,
beliefs, and values as well (Koger and Winter, 2010). Conversely, col-
lective creative management of the urban environment across industry
domains, can deliver improved human well-being, leisure, recreational
and biodiversity benefits (Rachwal et al., 2014). As we transition to a
desirable, but sustainable future state, and tackle these environmental
challenges, a range of different interventions or measures will be im-
plemented by various city actors, for different purposes that will have
complimentary and competing objectives. Urban planners, working
collaboratively with experts across environmental, social, economic
and political domains have a critical role in shaping the necessary
conditions that deliver positive outcomes for both urban environments
and communities. In consideration of the relationship between water
and cities, Rachwal et al. (2014) construct five nonexclusive visions of
how communities might potentially tackle the issue of integrated water

management. The visions embrace the role of sensitive urban design,
green landscapes and nature-based solutions, sensors and system effi-
ciencies, in addition to citizen participation and sustainable habits,
each of which has a bearing on the urban groundwater system. How-
ever, their vision of ‘Cities and the Underworld' deals directly with
groundwater systems and highlights a future where infrastructure is
increasingly built underground in cities and the subsurface is more ef-
fectively managed to deliver effective drainage, water storage, heating
and cooling. These concepts are in keeping with recent research which
highlights the benefits of modern urban innovation and policy, for ex-
ample, growing investment in smart utilities and digital technologies
(Angelidou 2015), conjunctive use of alternative water storage and
water re-use options (Dillon et al., 2006; Hunt et al., 2013; Rojas-Torres
et al., 2014), decentralized water supply systems (Chen et al., 2010)
and green infrastructure and sustainable urban drainage (Chow et al.,
2014; Dearden and Price, 2012).

In addition to the anthropogenic influences described in Table 1, the
following urban interventions have a potential influence on urban
groundwater systems: use of marginal groundwater, aquifer storage and
recovery, sustainable drainage systems, urban greening, rainwater
harvesting, wastewater recycling, household water efficiencies, smart
metering and sensor technologies, pipe leakage reduction and ground
source heating systems. These interventions are described further in
Table 2 and represent measures for which a simple semi-quantitative
assessment of their impact can be undertaken using existing research
outcomes and openly available data. Though not an exhaustive list,
these interventions cover a mix of measures provided by different city
organisations which significantly affect water supply and demand, be-
havioural change and new technologies.

4. Future visions for London

London covers 1595 km2, is home to over 8.5 million people and is
one of the largest metropolitan economies in the world. By 2036
London's job market is expected to grow to 5.8 million jobs from 4.9
million in 2011 and an additional ∼1 million households will be ac-
commodated over the same period (GLA, 2015). In parallel significant
investment in infrastructure, of the order of £1.3 trillion, is anticipated
by 2050 (Mayor of London, 2014). Whilst much of this investment is
allocated for transport and housing, investment in water infrastructure
(4%) and green infrastructure (2%) is accounted for and ambitions for a
10% increase in urban green space have been outlined (Mayor of
London, 2014).

London is located in a water-stressed region in the southeast of
England and already experiences water-deficits during dry years
(TWUL, 2015). By 2036 London’s population is projected to exceed 10
million (GLA, 2015), increasing water demand by approximately 16%.
Pressures on water availability within the river Thames catchment will
be compounded by climate change with storm events and climatic ex-
tremes expected to dominate. At present 15% of London, 1.5 million
people and 480,000 properties lie within the floodplain of the Thames
and its tributaries (GLA, 2015). By 2050 winter rainfall is predicted to
increase by 14% with an associated increase in river flows of approxi-
mately 13%, meanwhile summer rainfall is predicted to fall by 19%
leading to a reduction in summer river flows of 15% (Prudhomme et al.,
2012; Haxton et al., 2012). These effects are potentially very significant
for London given its high reliance on surface water and groundwater
baseflow. TWUL currently expect the effects of climate change to re-
duce water availability by approximately 72 Ml/d (TWUL,
2015)–equivalent to the daily water demand of over 400,000 Lon-
doners.

London’s future water resource situation is dictated not only by
changes in climate and the natural systems but also by the anthro-
pogenic activities, described earlier, that act on or intervene with it. As
we tend towards a more desirable sustainable future, a series of mea-
sures or interventions will be put in place, by various stakeholders in
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London to deliver on agreed social, environmental and economic goals.
There is a need to consider the ways in which the proposed interven-
tions may interact with other city systems and the extent to which
undesirable outcomes or complimentary benefits may occur (e.g. Price
et al., 2016). This point is illustrated by considering how groundwater
systems might be affected by the implementation of a range of city
interventions in London. To assess the extent to of these effects two
contrasting visions for London have been selected and simple ground-
water accounting undertaken for a range of future city interventions
(Table 2). The aim of the accounting exercise is to calculate, across the
London water supply area, the effect that different city interventions
have on the urban water balance and to identify which elements of the
urban groundwater system are disturbed as a result. Hydrometric data,
geospatial data and water supply information embedded within water
resource management plans and urban strategic plans are used in
combination to perform the semi-quantitative analysis. For example,
TWUL uses industry standard methodologies to forecast future demand
taking into account population (an increase of 2.0–2.9 million people
by 2040 with 75% forecast in London); property projections; water use
data and trends to forecast how the components of demand for water
are likely to vary over the next 25 years (TWUL, 2015). Further in-
formation about the data sources and assumptions are provided in
Table 3. The impact of the interventions is expressed in megalitres per
day (Ml/d) and as a proportion of i) London's predicted water demand
in 2036, and ii) London's predicted groundwater recharge in 2036.

The first vision, referred to as ‘Strategic 2036’ sets out a future for
London guided by strategic plans and policy information provided by
the organisations with responsibility for planning London’s future, e.g.
the local authority, water provider and environmental regulator. In
essence, this scenario provides a projection of a likely future state
should the organisational objectives for London in 2036 be im-
plemented as planned. Current operational and business needs dom-
inate in this vision.

The second, referred to as ‘Aspirational 2036’, provides a future
vision for London which goes beyond the city strategic plans and adopts
a desirable but plausible sustainable future. Under this vision, in line
with the Urban Futures new sustainability paradigm (Rogers et al.,
2012), resources are used sustainably, social responsibility dominates
and citizens are engaged. This vision also embodies a more idealistic,
innovative and open approach in keeping with the notion of visioning
exercises (Wiek and Iwaniec, 2014).

These two visions were chosen to highlight the potential disparity
between i) strategic plans developed by individual organisations that
are guided by operational needs and short-term business models, and ii)
a future which is still plausible but unconstrained in the way that city
interventions are implemented to transition to a sustainable urban fu-
ture. That is, the visions contrast a projected future and a desirable
future. A description of the various interventions included within the
groundwater accounting exercise, under a strategic and aspirational
future vision for 2036 is provided in Table 2.

5. Results: groundwater in London 2036

The results of the groundwater accounting exercise for the future
city interventions are summarized in Table 3. The interventions are
categorized into those which affect the availability of supply, those
which affect demand for water and those which have a neutral impact
on water supply. The water balance is also presented graphically, for
both future visions, in Figs. 1 and 2 to highlight the extent to which the
individual components of the urban water cycle are affected by the
selected future city interventions.

5.1. Strategic future 2036

Under a strategic future for 2036 the greatest water-saving gains, as
a percentage of London’s water demand, would be made through theTa
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construction of smart homes (10.9%) and the development of waste-
water recycling technologies (6.9%). These are also positive interven-
tions with respect to groundwater as smart homes and wastewater re-
cycling both reduce demand for water, reducing pressure on
groundwater supplies. Furthermore, water discharged to foul sewers is

also reduced under this scenario reducing the risk of sewer water
overflows into natural water systems. Groundwater recharge is not re-
duced.

Fig. 1. An annotated urban water cycle showing the results of
the accounting exercise for a strategic future.

Fig. 2. An annotated urban water cycle showing the results of
the accounting exercise for an aspirational future.
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5.2. Aspirational future for 2036

Under an aspirational future for 2036 the greatest water-saving
gains, as a percentage of London’s water demand, would be delivered
through the construction of smart homes (27.1%) and installation of
greywater recycling (19.3%). Wastewater recycling is also capable of
delivering significant gains. As with the strategic future vision, both of
these interventions deliver positive benefits for groundwater systems
through, demand reduction and water recycling, with pressure on
groundwater supplies reduced and groundwater recharge unaffected.

5.3. Disparity between strategic and aspirational

The level of disparity between a strategic vision and aspirational
vision for 2036 is evaluated, that is, where organisational policies are
out of line with what is achievable under a more aspirational sustain-
able future. The greatest disparity is observed for both smart homes and
greywater recycling, where organisational policy for these interven-
tions falls short and a further 16% of London’s water demand could be
found through each of these interventions if more aspirational targets
were set. Organisational ambitions for the implementation of sustain-
able drainage systems and water meters also fall short of what is
plausible, where an additional 9% and 8% of London’s water demand
respectively could potentially be if more proactive initiatives were
implemented.

5.4. Implications for urban groundwater systems

A number of future city interventions included in the accounting
exercise have a direct bearing on groundwater systems. For example the
direct withdrawal of groundwater through the development of new
extraction wells and the utilisation of aquifer storage through artificial
recharge schemes (ASR). Traditionally we might expect these schemes
to have the greatest impact on the urban groundwater balance. Under
both the strategic and aspirational visions for London 2036, the de-
velopment of new groundwater sources and ASR schemes has a minimal
impact on groundwater systems compared with other interventions (i.e.
∼2% of London’s water demand). Other interventions have a more
indirect, but potentially significant effect on groundwater systems. For
example, rainwater harvesting and pipe leakage reduction both serve to
reduce urban recharge to aquifers while infiltration SuDS are designed
to enhance groundwater recharge to urban aquifers. Under a strategic
vision for 2036, rainwater harvesting would potentially reduce re-
charge to urban aquifers by up to 13%, though arguably a significant
proportion of rainfall is currently lost to surface water drains and does
not contribute to aquifer recharge, and leakage reduction could reduce
urban recharge up to ∼35%; meanwhile infiltration SuDS may increase
urban recharge by 28.3%, the net effect being a reduction in recharge of
∼20%. Under an aspirational future there is a less significant net effect
on urban recharge (< 5%) as increased groundwater infiltration is
delivered through greater implementation of sustainable drainage sys-
tems.

6. Discussion

Applying a groundwater accounting exercise to plausible cities in-
terventions provides semi-quantitative scenario analysis of aspirational
urban futures. Primarily an insight is gained as to the expected extent of
disturbance to groundwater stocks and flows that might occur as a re-
sult of fulfilling the city’s ambitions. It has the distinct advantage over
traditional groundwater balancing, in that it considers not only the
direct groundwater processes (e.g. recharge, interflow, discharge) but
also the ways in which these processes are coupled to other anthro-
pogenic activities (e.g. surface sealing, construction) and behaviours
(e.g. water saving, policy development). As a result, a more holistic
evaluation of urban groundwater management can be defined. For

example, based on disturbance to groundwater systems should future
investment in water infrastructure be focused on increasing supply or
reducing demand? Equally, it is possible to evaluate whether the most
positive interventions from a groundwater perspective will be delivered
through new technologies or by a change in people behaviour and
whether there is an over-reliance on organisational policy and practice
and an under investment in private enterprize and innovation.

Considering urban groundwater systems in isolation, there is sig-
nificant merit in adopting wastewater recycling and greywater re-
cycling technologies in combination with smart home water efficiency
and water meters, as measures to meet London’s projected water re-
source demand. These interventions have the potential to deliver sig-
nificant benefits under both strategic and aspirational futures. They also
reflect a balance between the development of new water recycling
technologies to increase supply in parallel with modification of people
behaviour to reduce water demand and consumption. These options are
also economically favourable in terms of the net present value calcu-
lated by the water supplier (TWUL, 2015).

Controversially, from a groundwater perspective, leakage reduction
might be discouraged as it is likely to lead to a significant reduction in
urban recharge, though there are inevitable water quality concerns
associated with leakage from sewage pipe networks. Groundwater re-
charge modelling under future climate scenarios (Haxton et al., 2012)
suggests that the volume of water lost from pipe network through leaks
is equivalent to ∼35% of London's total groundwater recharge in 2036.
Even under an aspirational future, the level of groundwater recharge
delivered through infiltration SuDS is unlikely to be sufficient to deliver
an equivalent volume of recharge to urban aquifers that is lost if pipe
leakage is reduced to zero.

However, we must not consider groundwater in isolation but in
combination with economic assessments and public acceptance.
Kirkpatrick and Smith (2011) show, for aging cities in the US, that
public water infrastructure works are funded independently of city
budgets such that key infrastructure decisions are often far removed
from community sentiment. Under both a strategic and aspirational
futures, the greatest water gains can be delivered through the in-
troduction of water-saving technologies in smart homes–noting that
this also has a positive effect on groundwater systems. This sentiment is
echoed by Newton and Meyer (2013) in their discussion of water use,
that “individual and household behaviour changes offer the potential
for a much faster rate of sustainability transformation than supply-side
technological innovation of key infrastructures and services”. Sig-
nificantly though, there is the greatest disparity between the strategic
future and aspirational future for smart home water-saving, suggesting
that current and projected organisational practice falls someway short
of the potential for change. Here then we can start to consider the or-
ganisational and behavioural constraints that are limiting in-home
water saving. For example, there is currently no policy driver for in-
stalling water-saving technologies in new homes and a heavy reliance
on home-builders to drive uptake in new builds. Moreover, London’s
water provider has rejected retrofitting domestic properties with
modified toilet cisterns and showerheads and enforced use of water
efficiency measures in new buildings on the grounds that the costs and
benefits cannot be modelled by comparison with alternative water
management options (TWUL, 2015). This is largely a result of high
uncertainty that, given the heavy reliance on modified people beha-
viours, these technologies will deliver the predicted water-savings once
installed.

The influence of people’s behaviour in the uptake and use of water-
saving technologies is an important consideration in water utility (Hunt
et al., 2013). While there are many environmentally minded citizens,
the environment is not a major motivator for water conservation. Ap-
peals to environmental values when asking people to change their
water-use habits are unlikely to succeed on their own as they are often
outweighed by barriers such as lifestyle factors (Ministry for the
Environment, 2009). Selby (2011) argues that in many cultures water
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usage is not just a product of climate but reflects the social and political
ideals, for example maintaining private lawns and gardens, and per-
ceived levels of hygiene and cleanliness (Kooy and Bakker, 2008).
Additionally, water provision is seen by some as a fundamental human
right and plans to curtail water use may be viewed as a challenge to
social justice and equity (Ministry for the Environment, 2009). These
ideas driven by political distinctiveness and social standing are difficult
to challenge and overcome (Selby, 2011).

Wiek and Iwaniec (2014) draw attention to more sophisticated vi-
sualization techniques and gaming approaches such as 3D visuals and
immersive experiences to encourage people to participate in visioning
exercises. These gaming-models (e.g. SimCity) allow a more systemic
vision to be created by participants where interconnected systems and
dynamic feedbacks can be presented (Wiek and Iwaniec, 2014). In this
way people can understand how their actions and goals relate to and
affect each other. Though not a controlled visioning exercise, such an
approach was adopted by the Future Cities Catapult, the UK's Govern-
ment-funded enabler of urban innovation. Using an interactive gaming-
model, questions on water resources, housing and transport were posed
to members of the public to provide integrated systematic insights into
the public’s aspirations for London’s future in the year 2036. Each
participant was provided with a forecasted future for London unique to
their answers which evaluated water availability, carbon emissions,
housing levels and transport capacity, thus allowing participants to
reflect on the implications of their responses. As well as providing
participants with individual feedback on future scenarios, results from
the gaming-models provide an informal insight to assess public accep-
tance of new initiatives and policy decisions for London. It also provides
an opportunity to review people’s perceptions on London’s future
against the strategic and aspirational futures mapped out for London in
2036.

Over a four-month period more than 15,000 people played the
London 2036 gaming-model, of these participants a third failed to im-
plement measures to meet London’s forecasted water demand.
Additionally and equally concerning for groundwater practitioners are
respondents’ views on urban infrastructure, a clear preference for both
increased subterranean rail networks and high rise buildings would
result in greater disturbance to, and greater need for protection of
shallow groundwater systems in London. Despite these outcomes, pro-
spects for water management and water-saving options are generally
positive with respect to the urban groundwater system. 80% of parti-
cipants indicated a preference for waste water recycling (also favour-
able under both the strategic and aspirational futures presented here)
over importing water from the hinterland. Meanwhile there was clear
inclination for rainwater harvesting (48.5%) over leakage reduction
(36.5%), new reservoirs (10%) and reduction of water exports from the
catchment (5%) as a means to increase water availability, and equally
there was support for water metering and in-home water saving devices
to reduce water demand. These results suggest that people are generally
open to the idea of innovative approaches to urban water management
and perhaps it is organisational policy and practice that is more of a
barrier to implementation. However, implementation of novel water
efficiencies, re-use and decentralisation of water systems, e.g. as pro-
posed by Rachwal et al. (2014) in their water and cities vision, requires
people in the UK to be active water managers, rather than passive
consumers. Given that a plentiful and uninterrupted water service is
already established and remains an operational requirement there ex-
ists a challenge to motivate people to be active managers of water when
a passive attitude delivers what is needed.

Semi-quantitative scenario forecasting and more qualitative insight
assessments provide useful mechanisms to evaluate city visions, but
there exist a number of natural and anthropogenic interventions and
influences that remain difficult to account for, e.g. changes in climate
and localized weather patterns, rates of development and ground dis-
turbance and population changes. Understanding the uncertainty of
these pressures and the potential impacts requires not just future

scenarios forecasting but predictive modelling. Implementation of in-
tegrated and linked modelling approaches such that multiple processes
can be considered in tandem is increasingly being employed for in-
tegrated water management (Heinz et al., 2007) and presents the op-
portunity for linked physical and socio-economic modelling of city vi-
sions.

7. Conclusion

Visioning exercises are increasingly being used in cities to define
desirable future states, to create a shared vision that cuts across tech-
nical and social spectrums, and which acknowledges the physical city
constraints whilst still being ambitious. As cities attempt to trend to-
wards a more sustainable urban future, visioning exercises may be used
as a tool to evaluate environmental challenges and innovative solutions
against urban futures. At present however, sustainability principles and
the natural environment tend to be lacking in city visions with a focus
on the built environment instead.

For environmental considerations to be better captured in city vi-
sions we need to consider the city in the context of its connected re-
source catchment or ‘hinterland’, furthermore an integration of, urban
metabolism approaches completed by city-practitioners, and ecosystem
service assessments–completed by environmental experts, is needed.
For this to be implemented successfully a more-fluid approach to nat-
ural catchment and political boundaries is warranted where boundary
conditions are instead guided by the dynamics of the system stocks and
flows operating across the rural-urban fabric.

Significant effort is being invested to map the pathways needed to
transition towards a desirable sustainable future and to enable the
implementation of urban innovations and city interventions to meet
these aspirations. Frequently, and particularly for water resource
supply, the interventions and future management plans are guided by
individual organisational needs and business demands. These planning
exercises, which are completed separately to visioning exercises, are
robust but they are constrained by operational practice, siloed, and not
systemic.

There is a growing body of evidence highlighting the importance of
groundwater to support urban living and the impact of urbanism on
natural groundwater systems however it is rarely considered in city
systems thinking. The groundwater accounting exercise employed here
is successful in highlighting the interconnections between groundwater
processes and other city systems; in doing so the potential benefits and
undesirable consequences of various city interventions on urban
groundwater systems are defined and can be evaluated against other
social and political considerations. For London, if a strategic future
guided by existing operational practice and organisational need were to
unfold, we would see preferential investment in industry-scale tech-
nologies such as wastewater treatment and aquifer storage and re-
covery. While these interventions deliver positives benefits under both
futures, acknowledgement that behaviour change offers the potential
for a faster rate of sustainability transformation than innovation tech-
nologies is ignored.

We need to be guided by unconstrained ideas and innovation and
encourage more joint business and community enterprize and invite
city practitioners to inform the pathways to implementation that con-
sider the social context in addition to the environmental constraints and
business drivers. For London, adopting such an aspirational vision there
is greater opportunity to deliver benefits via community-led action such
as sustainable drainage and green infrastructure and in-home water
efficiency measures.

For more aspirational urban groundwater interventions to be im-
plemented in cities we need to encourage more integrated, systemic and
quantitative evaluation of the likely pathways, interventions and in-
teractions. This is increasingly possible with the use of linked and in-
tegrated modelling where groundwater process models, physical
models and water industry models can be coupled and inform socio-
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economic assessment, where the value of water, in all its guises, is in-
creasingly being recognized (e.g. Barthel et al., 2005).

Throughout the visioning exercises we need to be mindful that the
plausible and the possible are only achievable if there is public accep-
tance. In tandem with more traditional predictive, quantitative
groundwater modelling which allows for probabilistic forecasting,
more-qualitative future scenario assessments is being advocated (GO-
Science, 2016). Such scenario development encourages greater parti-
cipatory engagement and unconstrained ideas, to support judgement-
based, context-driven future states. Such approaches are starting to be
utilized by the water resource sector and should be further-encouraged
to develop more active behaviours in water resource management by
communities.
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