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Abstract

In variety testing as well as in psychological assessment, the situation occurs that in a
two-way ANOVA-type model with only one replication per cell, analysis is done under
the assumption of no interaction between the two factors. Tests for this situation are
known only for fixed factors and normally distributed outcomes. In the following we will
present five additivity tests and apply them to fixed and mixed models and to quantitative
as well as to Bernoulli distributed data. We consider their performance via simulation
studies with respect to the type-I-risk and power. Furthermore, two new approaches
will be presented, one being a modification of Tukey’s test and the other being a new
experimental design to test for interactions.

Keywords: Additivity tests, Two-way ANOVAwithout replication, Mixed model, block design,
Rasch model.

1. Introduction

Two-way ANOVA-type models are a well known class of linear models that allow estimation
and testing of two main effects and one interaction effect. Usually, the number of replications
per factor level combination or cell is greater than one, which enables estimation of the main
effects and the interaction effect simultaneously. If the number of replications in each cell is
equal to one, the classic way of estimating or testing the interaction effect is not applicable
anymore. A number of solutions to the test problem have been developed - the most prominent
by Tukey (1949) - and will be presented subsequently, as well as a modification of Tukey’s
test and a new way of designing experiments to test for interaction.

Unfortunately, all of these developments apply to the case of fixed effects and normally dis-
tributed data. Since many possible applications correspond to mixed effect models, it is
necessary to find out if the proposed additivity tests can be used with mixed models as well
and, if so, how powerful they are. Therefore results concerning the robustness and power of
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additivity tests in mixed models will be presented in the following, as well as results concerning
robustness and power of additivity tests in the case of binary data.

In particular, two applications motivated the use of additivity tests for (generalized) mixed
models. Mainly, in variety testing, a relatively large number a (30 or more) of varieties has
to be tested in b blocks, where each block contains a relatively small number k of varieties.
In case of a = k results a complete block design and usually there is only one observation
for each variety × block combination. The varieties can be considered as levels of a fixed
factor, whereas the blocks are usually considered as randomly selected from a population of
possible blocks. One is interested in the effect of the varieties and wants to know if there is
reason to suspect that an interaction of block and variety is present. The second application
arises in psychology, in the calibration phase of psychologic-diagnostical instruments, where
a relatively large number a (50 or more) of items are presented to a large number b (100 or
more) of individuals or testees. As a result there is only one observation per item × person
combination, a correct (=1) or wrong (=0) answer. The items can be considered as levels of a
fixed factor, whereas the people are selected randomly from a population of possible testees.
The dependent variable is binary. One is interested if a certain model - the Rasch model
(Rasch 1960) - holds, which requires the absence of interaction between items and people.

The fixed effects model is (random variables are bold print)

yij = µ+ ai + bj + (ab)ij + eij (i = 1, . . . , a; j = 1, . . . , b) (1)

with the side conditions
∑a

i=1 ai = 0,
∑b

j=1 bj = 0, and
∑

i(ab)ij =
∑

j(ab)ij = 0. The (ab)ij
stand for the interactions and at this stage are deliberately not assumed to have a certain
structure. The error term eij is distributed as N(0, σ2).

For the mixed model we are concerned with

zij = µ+ ai + bj + (ab)ij (i = 1, . . . , a; j = 1, . . . , b) (2)

where E(yij) = zij and yij are the normally distributed observations in case of variety testing
and E(yij) = g−1(zij), where yij ∈ {0, 1} and g(.) is a known link function (e.g. the logit link)
in case of binary data. Furthermore we have the side conditions

∑a
i=1 ai = 0, V ar(bj) = σ2

b ,
and V ar(ab)ij = σ2

ab. All random effects are assumed to be from an exponential family.

2. Fixed Effect Models

2.1. Additivity tests

Several tests for model (1) with normally distributed errors have been developed over the
years. Five of them will be used here, namely the tests by Tukey (1949), Mandel (1961),
Johnson and Graybill (1972), Tusell (1990, 1992) and Boik (1993). A review on additivity
tests is given by Karabatos (2005) and Alin and Kurt (2006). Subsequently the following
notation will be used: Let ȳ.. denote the overall mean and ȳ.j and ȳi. the respective j-th
column and i-th row means. The matrix R will denote a residual matrix with respect to the
main effects and comprises of the entries rij = yij − ȳi. − ȳ.j − ȳ... The decreasingly ordered
list of eigenvalues of RRT will be denoted by λ1 ≥ λ2 ≥ . . . and their scaled analogues as
ωl = λl/

∑

s λs, l = 1, 2, . . .
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Tukey’s Test (1949) Tukey suggested to estimate row and column effects first and test for
interaction of the type (ab)ij = k ·ai ·bj , with k = 0 referring to the situation of no interaction
(additivity). The test statistic ST is

ST = MSint/MSerror, (3)

with

MSint =

(

∑

i

∑

j yij(ȳi. − ȳ..)(ȳ.j − ȳ..)
)2

∑

i(ȳi. − ȳ..)2
∑

j(ȳ.j − ȳ..)2
(4)

and

MSerror =

∑

i

∑

j(yij − ȳ..)
2 − a

∑

j(ȳ.j − ȳ..)
2 − b

∑

i(ȳi. − ȳ..)
2 −MSint

(a− 1)(b− 1)− 1
(5)

ST is F distributed with 1 and (a−1)(b−1)−1 degrees of freedom under the null hypothesis
of no interaction.

Mandel’s Test (1961) Mandel generalized the approach of Tukey (1949) and derived a
test for the interaction (ab)ij = ci · bj with ci being a certain row constant. He defined the
test statistic SM to test for ci = 0 as

SM =

∑

i(zi − 1)2
∑

j(ȳ.j − ȳ..)
2

a− 1
/

∑

i

∑

j((yij − ȳi.)− zi(ȳ.j − ȳ..))
2

(a− 1)(b− 2)
, (6)

with

zi :=

∑

j yij(ȳ.j − ȳ..)
∑

j(ȳ.j − ȳ..)2
. (7)

This statistic is F distributed with a − 1 and (a − 1)(b − 2) degrees of freedom under the
additivity hypothesis.

Johnson & Graybill’s Test (1972) These authors chose a different approach and derived
a test for (ab)ij = k · ci · dj with ci and dj being a certain row or column constant and k an
overall constant. They suggested the test statistic

SJ =
λ1(RRT )

tr(RRT )
= ω1. (8)

For a type-I-error probability of α, the null hypothesis is rejected in favor of H1 if SJ > Scrit,
where Scrit is such that PH0

(SJ > Scrit) = α.

The non-standard distribution of this test statistic is derived in Johnson and Graybill (1972)
and critical values are given.

Tusell’s Test (Tusell (1990, 1992)) Tusell chose a similar approach to Johnson and Graybill
(1972) and derived a test for (ab)ij = 0. Without loss of generality, a ≤ b is assumed. The
suggested test statistic is

SU = (a− 1)[(a−1)(b−1)]/2

(

a−1
∏

l=1

ωl

)(b−1)/2

. (9)
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Additivity is rejected if SU < Scrit, where Scrit is such that PH0
(SU < Scrit) = α.

Critical values for this test statistic are given e. g. in Kres (1972). Note that these tables are
to be used with (a− 1) = p and b = N .

Boik’s Test (1993) Boik derived a test for (ab)ij = 0 that was designed to maximize power
in the sense explained by Cox and Hinkley (1979) (therefore coined“locally best invariant test”
or LBI ). Without loss of generality, again a ≤ b is assumed. If the test statistic

SB = (a− 1)−1

(

a−1
∑

l=1

ω2
l

)

−1

. (10)

is small, i.e. if SB < Scrit where Scrit. is such that PH0
(SB < Scrit) = α, H0 is rejected.

How to compute critical values for this test statistic is explained in Boik (1993).

2.2. Modification of Tukey’s test

It is known in literature (e.g. Johnson and Graybill 1972) that Tukey’s test has good power
for the interaction of type (ab)ij = k · ai · bj in model (1). We propose a modification of
Tukey’s test to overcome its problem with low power in more general cases.

In Tukey’s test, the model

yij = µ+ ai + bj + k · ai · bj + eij (i = 1, . . . , a; j = 1, . . . , b) (11)

is tested against the submodel without interaction. The estimators of row and column effects
are calculated in the same way in both models although the dependency of yij on these
parameters is not linear for the full model.

The main idea behind the presented modification is that the full model (11) is fitted by non-
linear regression and tested against the submodel by the likelihood ratio test. The estimators
of row and column effects therefore differ for each model. The estimators of parameters in the
non-linear model (11) are computed by the standard iterative procedure (e.g. Bates and Watts
1988); in one step of the iteration two parameters of the model are assumed to be fixed (equal
to the last estimators) and the third parameter is estimated by the linear regression (the
dependency is linear for this case).

Under the additivity hypothesis, the maximum likelihood estimators can be calculated simply

as µ̂ = ȳ
··
, â

(0)
i = ȳi· − ȳ

··
and b̂

(0)
j = ȳ

·j − ȳ
··
. The residual sum of squares equals

RSS
(0) =

∑

i

∑

j

(

yij − µ̂− â
(0)
i − b̂

(0)
j

)2
=
∑

i

∑

j

(yij − ȳi· − ȳ
·j + ȳ

··
)2 .

In the full model (11) let us first take

k̂(0) =

∑

i

∑

j

(

yij − â
(0)
i − b̂

(0)
j − µ̂(0)

)

· â
(0)
i · b̂

(0)
j

∑

i

∑

j

(

â
(0)
i

)2
·
(

b̂
(0)
j

)2 ,

Copyright© 2009 Springer-Verlag. http://www.springer.com/
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which gives the same estimator (only written in different notation) of interaction as in Tukey’s
test, and - to get an estimator in the non-linear model - then continue with an iterative
procedure that updates the estimators based on versions of the previous step:

â
(n)
i =

∑

j

(

yij − µ̂− b̂
(n−1)
j

)

·
(

1 + k̂(n−1) · b̂
(n−1)
j

)

∑

j

(

1 + k̂(n−1) · b̂
(n−1)
j

)2

b̂
(n)
j =

∑

i

(

yij − µ̂− â
(n−1)
i

)

·
(

1 + k̂(n−1) · â
(n−1)
i

)

∑

i

(

1 + k̂(n−1) · â
(n−1)
i

)2

k̂(n) =

∑

i

∑

j

(

yij − â
(n−1)
i − b̂

(n−1)
j − µ̂

)

· â
(n−1)
i · b̂

(n−1)
j

∑

i

∑

j

(

â
(n−1)
i

)2
·
(

b̂
(n−1)
j

)2 .

The iteration should be stopped if the difference |RSS(n) − RSS
(n−1)| is low; denote RSS =

RSS
(n). The iteration converges very quickly in the most cases, usually just one step is enough.

The likelihood ratio statistic, i.e. a difference of twice log-likelihoods, equals (RSS(0)−RSS)/σ2

and is asymptotically χ2 distributed with 1 degree of freedom.

The consistent estimate of the residual variance σ2 is s2 = RSS

ab−a−b and RSS

σ2 is approximately

χ2 distributed with ab− a− b degrees of freedom. Thus, using a linear approximation of the
nonlinear model (11),

SMT =
RSS

(0) − RSS

RSS

ab−a−b

(12)

is F distributed with 1 and ab−a−b degrees of freedom. The Modified Tukey test rejects the
additivity hypothesis if and only if SMT is greater than F1,ab−a−b(1−α), where F1,ab−a−b(1−α)
stands for the 1− α quantile of the F distribution with 1 and ab− a− b degrees of freedom.

It was shown by simulations that for a small number of rows or columns the type-I-risk is
around 6% instead of 5%. The reason is that the likelihood ratio test statistic converges to
a χ2 distribution rather slowly (see Bartlett 1937) and a correction for small sample sizes is
needed.

One possibility to overcome this obstacle is to estimate the residual variance s2 = RSS

ab−a−b and
then generate samples of a distribution

y
(sample)
ij (t) = µ̂+ â

(0)
i + b̂

(0)
j + e

(NEW )
ij (t), k = 1, . . . , N (sample)

where (e
(NEW )
ij )(t) are i.i.d. generated from a N(0, s2).

The proposed statistic of interest is abs(k(n)). The additivity hypothesis is rejected if more
than (1−α) · 100% of sampled statistics lie below the observed value of the statistic based on
real data.

2.3. Evaluation of interaction in block designs

In a common fixed effects model for a block design, i.e. model (1), it is not possible to separate
interaction and error term. Hence the mean squares value for interaction serves as a basis for

Copyright© 2009 Springer-Verlag. http://www.springer.com/
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the test of main effects. This only makes sense in those situations where no interaction at all
exists.

It is possible to gain an alternative test procedure by applying an additional restriction to the
sum of interaction effects within a column. In a common block design, restrictions to factor
and interaction effects refer to the sums

∑a
i=1 ai = 0,

∑b
j=1 bj = 0, and

∑

i(ab)ij = 0. If we
expand a block design to a Latin square design by adding an appropriate number of blocks, it
seems to be reasonable to use

∑

k(ab)ik = 0 as an additional restriction for interaction effects
within each column k (as there is no real difference between blocks and columns). Applying
such a restriction to a column has an interesting effect on the mean of that column. All block
and factor effects are included within the column the same number of times, therefore all of
these effects sum up to zero. Based on this new restriction (all interaction effects within a
column sum up to 0), there is only one effect left within the mean of a column and this is
the error term (besides µ). Therefore it is possible to calculate a sum of squares value for the
error term by computing SSE =

∑a
k=1(ȳ.k − ȳ..)

2. The sum of squares value for interaction
can be gained as the difference SSAB = SST − SSA − SSB − SSE with SSAB denoting sum
of squares for interaction, SST denoting sum of squares total, SSA refers to sum of squares
for factor A and SSB is the sum of squares for block/factor B.

The method as such is not restricted to Latin squares but can be used in Latin rectangles as
well. The essential part is that a number of columns can be found that includes all levels of
blocks and factor effects. This can easily be done in Latin rectangles by combining two or
more columns to a column block. Again the mean values of these column blocks include the
error term only (besides µ).

Applying this method to any arbitrary block design is possible too, although some correction
for the sum of column blocks has to be made.

a1 a2 a3 a4 a5 b1
a5 a3 a4 a1 a2 b2

cb1 cb2

In column block 1 (cb1) all levels of the factor A are included, but it contains two times
block effect 1 (b1) and three times block effect 2 (b2). If we subtract the estimated effect of
the second block (b̂2) from the sum of cb1 and apply a corresponding correction for cb2, an
unbiased estimator for SSE can be found. This means that there is no restriction to the use
of the method in any block design.

By means of a simulation study the power of the method was evaluated. The standard
deviations for interaction and factor effects varied between 0 and 4 and for the error term
between 1 and 4. For each combination of factor, interaction and error effects 100 000 datasets
were generated and analysed. Based on these simulations the properties of the new method
are summarized in the following:

� The method keeps type-I-risk exactly.

� The power of the method is good.

� Violations of prerequisites (
∑

k(ab)ik = 0) lead to a reduction of power.

� With a high number of plots per block (a ≥ 5) this loss of power is small.

Copyright© 2009 Springer-Verlag. http://www.springer.com/
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No restrictions to the nature of interaction as with the tests by Tukey (1949), Mandel (1961),
etc. have to be made, the restriction is only related to the sum of interaction effects within
a column block. The method is easy to use and common statistical packages can be applied
with some additional calculations.

The following example demonstrates the method.

column
block 1 2 3 x̄B

1 1 8.452 3 7.880 2 11.374 9.235

2 2 8.312 1 11.302 3 11.768 10.461

3 3 12.600 2 9.192 1 5.122 8.971

x̄C 9.788 9.458 9.421 9.556

factor
1 2 3

x̄A 8.292 9.626 10.749

Table 1: data set for a 3 × 3 block design with corresponding means for factor- (x̄A), block-
(x̄B), and column- effects (x̄C) ( i denotes ith level of factor A).

The sum of squares values (SS) for block, factor and column effects are calculated as usual.
The SS for columns serves as SS for the error term. The remaining SS value is a measure-
ment for interaction (error term in Latin Squares). The following table presents the ANOVA
for this kind of Analysis.

Effect df SS MS F Prob

factor 2 9.0799 4.5400 37.11 0.02624
block 2 3.7893 1.8946 15.49 0.06066
Interaction 2 32.7668 16.3834 133.91 0.00741
Error 2 0.2447 0.1223
Total 8 45.8807

Table 2: ANOVA for the data set of table 1 corresponding to the new methode

Analysing data from table 1 as an ordinary Latin Square leads to F -values all smaller then 1
and to no significant result.

3. Mixed Effect Models

3.1. Type-I-risk and power of additivity tests

The tests described in Section 2.1 were designed for the ANOVAmodel with both factors fixed.
In this section their type-I-risk will be verified for the mixed ANOVA model by simulation.
Only the most common nominal significance level 5% was assumed.

The number of levels of the fixed factor were a = 3, 4, . . . , 10, the number of levels of the

Copyright© 2009 Springer-Verlag. http://www.springer.com/
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random factor b was chosen to lie between 4 and 50 (by 2 between 4 and 20, by 5 between 20
and 50), the variance of the random factor was σ2

b = 2, 5, 10 and the variance of the random
error σ2 = 1. Thus we have 360 combinations in total. In case of other values of σ2, the
model can be scaled.

In each step of the simulation a data set was generated based on the model without interaction.
Then the test of no interaction was applied. The percentage of significant test statistics after
all steps was used as the actual level (αact) of the test.

For each combination of parameter values, 10 000 simulations were repeated 10 times and
the standard error of the estimation of the mean actual level was computed based on these
10 repetitions. Then a one-sided one sample t-test of αact ≤ .05 was performed (on the 5%
level, without correction for multiple testing). The results of these tests are summarized in
Table 3.

Test αact ≤ .05 αact > .05

Tukey test 349 (96.94) 11 (3.06)
Mandel test 348 (96.67) 12 (3.33)
Johnson Graybill test 339 (94.17) 21 (5.83)
LBI test 336 (93.33) 24 (6.67)
Tusell test 337 (93.61) 23 (6.39)

Table 3: Absolute frequencies and percentage of non-significant (second and third column)
and significant (fourth and fifth column) t-tests of αact ≤ .05 for all 360 combinations of
parameter values.

For the tests by Tukey (1949) and Mandel (1961) results that in the vast majority (>95%) of
cases the actual level is not significantly above the .05 level. In less than 4% the type-I-risk
is higher than the nominal .05. For the other tests, the estimated level is greater than .05 in
slightly more cases. However, this may also be false positives caused by multiple testing.

In ANOVA models with both factors fixed, there is the important assumption of
∑a

i=1 ai =
∑b

j=1 bj = 0. In the case of a mixed model that is not valid. It is assumed that the expected
value of the random term E(bj) equals zero, but in one particular case the sum was not zero
(almost surely). It might have caused the inaccuracy of the tests. However, for high numbers
of levels of the random factor, the sum converges to zero (law of large numbers) and this
problem disappears.

To evaluate the power of the additivity tests, a simulation study was performed. Assume
model (2) and two types of interaction:

(i) (ab)ij = k · ai · bj where k is a real constant.

(ii) (ab)ij = k ·ai ·cj where cj are independent normally distributed random variables with
zero mean and variance σ2

b , independent of bj and eij , and a real constant k.

The other parameters were set to µ = 0, σ2
B = 2, σ2 = 1, a = 10, (a1, . . . , a10) =

(−2.03,−1.92,−1.27,−0.70, 0.46, 0.61, 0.84, 0.94, 1.07, 2.00). Two possibilities were considered
for b, either b = 10 or b = 50. For the interaction parameter k, 10 different values between 0
and 12 were considered.

Copyright© 2009 Springer-Verlag. http://www.springer.com/
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Figure 1: Power dependence on k, b (b = 10 left, b = 50 right) and interaction type ((i)
upper panel, (ii) lower panel). Tukey’s test: solid line, Mandel’s test: dashed line, Johnson
& Graybill’s test: dotted line, LBI test: dot-dash line (these two lines overlapped), Tusell’s
test: long dash line.

For each combination of parameter values a dataset was generated based on model (2). The
tests of additivity were carried out with α = 5% and the decision was noted. This step was
repeated 10 000 times. The percentage of positive results was used as an estimate of the power
of the test. Tukey’s and Mandel’s tests outperformed the omnibus tests for interaction (i) but
they completely failed to detect the interaction (ii), even for large values of k. Therefore, it is
desirable to have a test which is able to detect a spectrum of practically relevant alternatives,
while still having the power comparable to the tests by Tukey (1949) and Mandel (1961) for
the most common interaction scheme (i). The Modified Tukey test from Section 2.2 might
serve this purpose, which should be investigated in further research.

3.2. Robustness with binary data

Another interesting application of additivity tests arises in the calibration of instruments for
psychological assessment. The appropriate model is again a mixed model as in model (2),
but this time an additional complication appears, namely that only binary responses (“item
solved” or “item not solved”) are observed. If no interaction is present and a logit link is used
for g(.), model (2) reduces to - if formulated differently as E(yij) = g−1(bj − µi) - the Rasch
model (Rasch 1960) and plays an important role in measurement theory of psychological
traits. Here, ai denotes the “easiness” of item i (item parameter) and bj denotes the ability
of person j (person parameter).

The Rasch model has a number of desirable properties (see, e.g., Fischer and Molenaar 1995)
and a necessary condition for the Rasch model to hold is the absence of any kind of interaction
between the person parameter and the item parameter. It therefore assumes strict additivity.
This assumption can be tested with additivity tests.

Copyright© 2009 Springer-Verlag. http://www.springer.com/
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One possible way of being able to test the additivity assumption would be to use one of the
parametric tests presented above. Clearly, these tests have not been developed for the binary
case, so we investigated their behaviour in case of binary data to see if they are robust against
the violation of the assumption of a normal distribution.

To assess the type-I-risk, the number of levels for the fixed factor (items) were a = 10, 15, . . . ,
40, 50, . . . , 100, 150 and 200 and the number of levels of the random factor (the testees) were
b = 50, 100, . . . , 400, 500, . . . and 1000. The levels ai of the fixed factor were set as equally
spaced out on the interval [−5, 5], which basically corresponds to the whole spectrum of item
difficulties that arise in practice. The levels of the fixed factor bj were drawn randomly from
a N(0, 1), again corresponding to the values of person parameters that are likely to occur in
practice. In each step of the simulation a data set was generated by calculating the solving
probability pij for each person j on item i by g−1(ai + bj) = exp(ai + bj)/1 + exp(ai + bj).
Then a Bernoulli trial has been carried out with the parameter pij , which led to a matrix
that conforms to the Rasch model. 10 000 data matrices were generated for each person ×
item combination.

Unfortunately, none of the tests showed robustness against the violation of the normality
assumption and could be used to test if interactions are present.

4. Discussion

Of the six tests (including the Modified Tukey test) for model (1) which were developed in
the literature or by us, five have been tested by simulation for quantitative and binary data.
Unfortunately, for the binary case, no test can be recommended. For quantitative data, the
actual type-I-risk was pretty near to the nominal one for all tests, with the LBI and Tusell’s
being the worst.

Concerning power, the tests behaved quite differently for different types of interaction. For
interaction type (i), the tests by Tukey and Mandel were the best but they failed with inter-
action of type (ii). The others performed well in case of interaction type (ii). For both cases,
the Modified Tukey test provided satisfactory results.

To summarize: For model (1), the experimental design approach using no structure for the
interaction term can be recommended but its behaviour for the mixed model is still an open
question. For the mixed model we recommend to use the tests by Mandel or Tukey or its
modified version as long as we are interested in the error of the first kind only. If we are
interested in high power and no specific interaction can be assumed, the omnibus tests or the
Modified Tukey test would be methods of choice.

5. Computational Details

All calculations have been carried out with R (R Core Team 2008). Implementations of the
mentioned additivity tests can be found in the R package additivityTests (Simeckova, Simecek, and Rusch
2007).
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