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This paper investigates optimal portfolio strategies in a market with partial informa-
tion on the drift. The drift is modelled as a function of a continuous-time Markov chain
with finitely many states which is not directly observable. Information on the drift is
obtained from the observation of stock prices. Moreover, expert opinions in the form
of signals at random discrete time points are included in the analysis. We derive the
filtering equation for the return process and incorporate the filter into the state vari-

ables of the optimization problem. This problem is studied with dynamic programming
methods. In particular, we propose a policy improvement method to obtain computable
approximations of the optimal strategy. Numerical results are presented at the end.

Keywords: Portfolio optimization; hidden Markov model; dynamic programming.

1. Introduction

It is well-known that the drift of asset prices has a crucial impact on the optimal
trading strategy in dynamic portfolio optimization problems. At the same time this
parameter is notoriously difficult to estimate from historical asset price data: first,

∗Corresponding author.
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drifts tend to fluctuate randomly over time; second, even if drifts were constant,
a long time series is needed to estimate this parameter with a reasonable degree
of precision as drift effects are usually dominated by volatility. For these reasons
practitioners rely mostly on external sources of information such as news, company
reports or ratings and on their own intuitive views when determining an estimate for
the future growth rate of an asset; these outside sources of information are labelled
expert opinions in this paper. The popular Black-Litterman model (see [2, 19] where
subjective views are used to update equilibrium-implied returns in a Bayesian way
is a typical example for the use of expert opinions in static (one-period) models.
However, to the best of our knowledge expected utility maximization in dynamic
portfolio optimization models with expert opinions has so far not been studied.

In the present paper we set out to do exactly that. We consider a hidden Markov
model (HMM) where asset prices follow a diffusion process whose drift is driven by
an unobservable finite-state Markov chain Y . Information on the hidden chain is
of mixed type. First, investors observe stock prices. Moreover, and this is the novel
feature of this paper, expert opinions are included in the analysis as a second source
of information. Mathematically, expert opinions are represented by a marked point
process with jump-size distribution depending on the current state of Y . Stan-
dard filtering results for HMMs and Bayesian updating are used to derive a finite-
dimensional filter for the state of the hidden Markov chain. This allows us to reduce
the portfolio optimization problem to a problem under complete information where
the new state variables are the filter distribution and the wealth of the investor. In
this model the market is incomplete, as the investor filtration is partly generated by
the non-tradable marked point process that models the expert opinions. This makes
the application of duality methods and of the martingale approach to portfolio opti-
mization relatively involved. Hence we resort to dynamic programming and work
with the associated Hamilton-Jacobi-Bellman (HJB) equation instead. We consider
the case of logarithmic and power utilities. In the latter case the HJB equation can
be simplified by a change of measure and we end up with a quasi-linear integro-
differential equation. Finally we propose a policy improvement method to obtain
an approximation of the optimal strategy.

Portfolio optimization under partial information on the drift has been studied
extensively over the last years. There are two popular model classes for the drift,
linear Gaussian dynamics and HMMs. For Gaussian dynamics explicit solutions
for the problem of optimizing the expected utility of terminal wealth are provided
for example in Lakner [11], Brendle [4], Danilova et al. [5], where the last paper
focuses on additional insider information. Utility maximization for a HMM model
is investigated for example in Rieder and Bäuerle [16], Sass and Haussmann [17],
Sass and Wunderlich [18] and Gabih et al. [10]. These approaches are generalized in
Björk et al. [1]. In the present paper we follow Rieder and Bäuerle [16] for the setup
of the HJB equation in a model with an unobservable drift modelled by a finite-state
Markov chain. Moreover, we were inspired by the change of measure technique used
among others by Nagai and Runggaldier [14] and Davis and Lleo [6].
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The paper is organized as follows. In Sec. 2 we introduce our model of the
financial market and formulate the portfolio optimization problem. Section 3 is
devoted to the filtering problem for the unobservable drift. Section 4 treats the
optimization problem for the special case of logarithmic utility, Sec. 5 is devoted
to the case of power utility. In Sec. 6 we discuss approximation methods for the
optimal strategy; numerical results are presented in Sec. 7.

2. Financial Market Model

Fix some date T > 0 representing the investment horizon. We work on a filtered
probability space (Ω,G, G, P ), with filtration G = (Gt)t∈[0,T ] satisfying the usual
conditions. All processes are assumed to be G-adapted. For a generic G-adapted
process H we denote by GH the filtration generated by H .

Price dynamics. We consider a market model for one risk-free bond with price
S0

t = 1 and n risky securities with prices St = (S1
t , . . . , Sn

t )� given by

dSi
t = Si

t

µi(Yt)dt +
n∑

j=1

σijdW j
t

, Si
0 = si, i = 1, . . . , n. (2.1)

Here µ = µ(Yt) ∈ Rn denotes the mean stock return or drift which is driven by
some factor process Y described below. The volatility σ = (σij)1≤i,j≤n is assumed
to be a constant invertible matrix and Wt = (W 1

t , . . . , Wn
t ) is an n-dimensional G-

adapted Brownian motion. The invertibility of σ always can be ensured by a suitable
parametrization if the covariance matrix σσ� is positive definite. The factor process
Y is a finite-state Markov chain independent of the Brownian motion W with state
space {e1, . . . , ed} where ei is the ith unit vector in Rd. The generator matrix is
denoted by Q and the initial distribution by π = (π1, . . . , πd)�. The states of the
factor process Y are mapped onto the states µ1, . . . , µd of the drift by the function
µ(Yt) = MYt, where Mlk = µl(ek), 1 ≤ l ≤ n, 1 ≤ k ≤ d.

Define the return process R associated with the price process S by dRi
t =

dSi
t/Si

t, i = 1, . . . , n. Note that R satisfies

dRt = µ(Yt)dt + σdWt,

so that the quadratic variation of Ri and of log Si coincide, [Ri]t = [log Si]t. Since
moreover Ri

t = log(Si
t) + 1

2 [Ri]t we have the equality GR = Glog S = GS . This is
useful, since it allows us to work with R instead of S in the filtering part.

Investor Information. We assume that the investor does not observe the factor
process Y directly; he does however know the model parameters, in particular the
initial distribution π, the generator matrix Q and the functions µi(·). Moreover,
he has noisy observations of the hidden process Y at his disposal. More precisely
we assume that the investor observes the return process R and that he receives at
discrete points in time Tn noisy signals about the current state of Y . These signals
are to be interpreted as expert opinions; a number of examples is given below.
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We model expert opinions by a marked point process I = (Tn, Zn), so that at
Tn the investor observes the realisation of a random variable Zn whose distribution
depends on the current state YTn of the factor process. The Tn are modelled as jump
times of a standard Poisson process with intensity λ, independent of Y , so that the
timing of the information arrival does not carry any useful information. The signal
Zn takes values in some measurable space Z with reference measure dz. Examples
are a discrete space with the counting measure or Z = RN with the Lebesgue
measure. We assume that the Zn are conditionally independent given FY

T and that
the distribution of Zn is absolutely continuous w.r.t. the reference measure dz with
density f(YTn , z). We identify the marked point process I = (Tn, Zn) with the
associated counting measure denoted by I(dt × dz). Note that the G-compensator
of I is λdtf(Yt, z)dz.

Summarizing, the information available to the investor is given by the investor
filtration F with

Ft = GR
t ∨ GI

t , 0 ≤ t ≤ T. (2.2)

Next we give some simple examples for the random variables Zn that are inspired
by the Black-Litterman approach, see for example Schöttle et al. [19].

Example 2.1. In the Black-Litterman framework one distinguishes so-called abso-
lute and relative views of an investor. An absolute view is a prediction on the return
of a single asset; it might take the form “asset i has a return of 5%”. Moreover, the
investor might specify the confidence in his views. This can be modelled by taking

Zn = (Z(1)
n , Z(2)

n ) with Z(1)
n = µi(YTn) + Z(2)

n εn.

Here (εn, Zn) is an iid sequence that is independent of Y ; εn ∼ N (0, 1); Z
(2)
n follows

a given distribution on (0,∞) and Z
(1)
n and Z

(2)
n are independent. A realization

Zn = (0.05, 0.02) means that the investor forecasts a growth rate of 5% and that
he believes that the standard deviation of the prediction error of his forecast is
2% (which would correspond to a high level of confidence); a realization Zn =
(0.05, 0.05) on the other hand corresponds to an investor who believes that the
standard deviation of his prediction error is 5% reflecting a low level of confidence.
A high (low) level of confidence implies that the current view of the investor has a
strong (weak) impact on his filter estimate for the drift as can be seen formally from
the Bayesian updating formula (3.2) below. The special case where the investors’
confidence does not vary is included by setting Z

(2)
n = σε for some constant σε > 0.

A relative view might take the form “on average asset i outperforms asset j by
2%”. This can be modelled by taking

Z(1)
n = µi(YTn) − µj(YTn) + Z(2)

n εn,

where, as before, Z
(2)
n is used to model the investors’ confidence.

Finally we remark that in the Black-Litterman approach the measure P should
be seen as the subjective probability measure of the investor. We do not claim that

1250009-4
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his views are in fact correct or that his predictions are actually unbiased. Rather
we only assume that the investor believes that his predictions are unbiased.

Portfolios and optimization problem. We describe the self-financing trading
strategy of an investor by the initial capital x0 > 0 and the n-dimensional F-adapted
process h where hi

t, i = 1, . . . , n, is the proportion of wealth invested in stock i at
time t. It is well-known that in this setting the wealth process X(h) has the dynamics

dX
(h)
t

X
(h)
t

=
n∑

i=0

hi
t

dSi
t

Si
t

= h�
t µ(Yt)dt + h�

t σdWt, X
(h)
0 = x0. (2.3)

Since µ(Yt) is bounded and σ is constant, equation (2.3) is well defined if∫ T

0
‖hs‖2ds < ∞. It will be useful to impose the stronger requirement

E

(
exp

{∫ T

0

‖hs‖2ds

})
< ∞. (2.4)

A trading strategy satisfying this condition is called admissible; the class of admis-
sible trading strategies will be denoted by H.

We assume that the investor wants to maximize the expected utility of terminal
wealth for logarithmic utility U(x) = log(x) and power utility U(x) =

1

θ xθ, θ <

1, θ �= 0. The optimization problem thus reads as

max{E(U(X(h)
T )) : h ∈ H}. (2.5)

This is a maximization problem under partial information since we have required
that the strategy h is adapted to the investor filtration F. Note that for x0 > 0 the
solution of the SDE (2.3) is strictly positive. This guarantees that X

(h)
T is in the

domain of logarithmic and power utility.

3. Partial Information and Filtering

In this section we explain how the control problem (2.5) can be reduced to a control
problem with complete information via filtering arguments. We use the following
notation: for a generic process H we denote by Ĥt = E(H |Ft) its optional projection
on the filtration F, and the filter for the Markov chain Yt is denoted by pt =
(p1

t , . . . , p
d
t ) with pk

t = P (Yt = ek | Ft), k = 1, . . . , d. Note that for a process of
the form Ht = h(Yt) the optional projection is given by ĥ(Yt) =

∑d
k=1 h(ek)pk

t . In
particular, the projection of the drift is given by

µ̂(Yt) =
d∑

k=1

µkpk
t = Mpt.

The following two processes will drive the dynamics of pt. First, let

W̃t := σ−1

(
Rt −

∫ t

0

Mpsds

)
.
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By standard results from filtering theory W̃ is an F-Brownian motion (the so-called
innovations process). Second, define the predictable random measure

ν(dt × dz) = λdt

d∑
k=1

pk
t−f(ek, z)dz.

By standard results on point processes ν is the F-compensator of I, see for instance
Bremaud [3]. The compensated random measure will be denoted by γ(dt × dz) :=
I(dt × dz) − ν(dt × dz).

Filtering. Next we use filtering results in order to derive a stochastic differential
equation (SDE) for the filter pt. We start with the situation where the investor can
only observe the return process R. In that case we are in the classical situation of
a hidden Markov model and we can use the standard filter for that case (see for
example [7, 12, 20]: It is well-known that pt solves the SDE system

dpk
t =

d∑
j=1

Qjkpj
tdt + pk

t

σ−1

µk −
d∑

j=1

pj
tµj

�dW̃t, pk
0 = πk. (3.1)

In the presence of the additional information contained in I we have to add an
correction term to the above equation. Assume that at time Tn the investor observes
Zn. Denote by pTn− = (p1

Tn−, . . . , pd
Tn−) the a-priori probabilities before the arrival

of this new observation. Then the a-posteriori probabilities pk
Tn

, k = 1, . . . , d, are
determined from Bayes formula as follows:

pk
Tn

=
pk

Tn−f(ek, Zn)

f(pTn−, Zn)
with f(p, z) :=

d∑
j=1

pj f(ej, z). (3.2)

The increment ∆pk
Tn

:= pk
Tn

− pk
Tn− is thus given by

∆pk
Tn

= pk
Tn−

(
f(ek, Zn)

f(pTn−, Zn)
− 1
)

= pk
Tn−

∫
Z

(
f(ek, z)

f(pTn−, z)
− 1
)

I({Tn} × dz).

(3.3)

By combining (3.1) and (3.3) we arrive at the following result.

Proposition 3.1. The filter p solves the following d-dimensional SDE system

dpk
t =

d∑
j=1

Qjkpj
tdt + pk

t

σ−1

µk −
d∑

j=1

pj
tµj

�dW̃t

+ pk
t−

∫
Z

(
f(ek, z)
f(pt−, z)

− 1
)

γ(dt × dz), (3.4)

with initial condition pk
0 = πk. and compensated jump measure γ = I − ν.

1250009-6



February 28, 2012 11:6 WSPC/S0219-0249 104-IJTAF SPI-J071
1250009

Portfolio Optimization Under Partial Information with Expert Opinions

Proof. In view of (3.1) and (3.3), all that remains to show is the relation∫
[0,t]×Z

(
f(ek, z)
f(ps−, z)

− 1
)

ν(ds × dz) = 0 for all t; (3.5)

this allows us to replace the integral with respect to I in (3.3) by an integral with
respect to the compensated jump measure γ. Using the representation ν(ds×dz) =
λdsf(ps−, z)dz and f(ps−, z) =

∑d
j=1 pj

s−f(ej , z) we get∫
[0,t]×Z

(
f(ek, z)
f(ps−, z)

− 1
)

ν(ds × dz)

=
∫

[0,t]×Z
(f(ek, z) − f(ps−, z))λdsdz

=
∫

[0,t]

∫
Z

f(ek, z) dz −
d∑

j=1

pj
s−

∫
Z

f(ej, z)dz

λds

=
∫

[0,t]

1 −
d∑

j=1

pj
s− · 1

λds = 0,

where we used the normalization properties
∫
Z f(ek, z)dz = 1 and

∑d
j=1 pj

s− = 1.

It is well-known (see for example [11, 17] that the F-semimartingale decomposi-
tion of X(h) is given by

dX
(h)
t

X
(h)
t

= h�
t Mpt dt + h�

t σdW̃t. (3.6)

Now note that for given h ∈ Rn the (d + 1)-dimensional process (X(h), p) is an
F-Markov process as is immediate from the dynamics in (3.4) and (3.6). Hence the
optimization problem (2.5) can be considered as a control problem under complete
information with the (d + 1)-dimensional state variable process (X(h), p). In Sec. 5
we will study this problem using dynamic programming techniques.

4. Logarithmic Utility

In the case of logarithmic utility the optimization problem can be solved directly.

Lemma 4.1. Suppose that U(x) = log x, then the optimal strategy for problem (2.5)
equals h∗

t = (σσ�)−1µ̂(Ys).
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Proof. From (3.6) it follows that

U(X(h)
T ) = log X

(h)
T = log x0 +

∫ T

0

(
h�

s µ̂(Ys) − 1
2
‖σ�hs‖2

)
ds +

∫ T

0

h�s σdW̃s.

For h ∈ H we have E(
∫ T

0 h�s σdW̃s) = 0 and hence

E[U(X(h)
T )] = log x0 + E

(∫ T

0

(
h�

s µ̂(Ys) − 1
2
‖σ�hs‖2

)
ds

)
. (4.1)

Since µ̂(Yt) = Mpt is bounded, the strategy h∗ given in the lemma is bounded;
in particular h∗ ∈ H. Moreover, for all s ∈ [0, T ] the quantity h∗

s maximizes the
integrand in (4.1), which implies that h∗ is the maximizer of E(log(X(h)

T )).

Remark 4.1. If the factor process Yt and hence the drift µ(Yt) is observable then
the optimal strategy is well-known — at time t one has to invest the fractions
(σσ�)−1µ(Yt) of wealth in the risky stocks. So for logarithmic utility the so-called
certainty equivalence principle holds, i.e. the optimal strategy under partial infor-
mation is obtained by replacing the unknown drift µ(Yt) by the filter estimate µ̂(Yt)
in the formula for the optimal strategy under full information.

5. Dynamic Programming Equation for the Case of Power Utility

A simplified optimization problem. In Sec. 3 we have shown that using filtering
theory the original problem (2.5) can be transformed into a problem under complete
information where the state variables are X(h) and p. In principle this problem could
be attacked with dynamic programming methods. However, it turns out that the
resulting HJB equation is fully nonlinear. Following Nagai and Runggaldier [14] we
simplify the problem by a change of measure. This will lead to a new problem where
the set of state variables is reduced to p and where the HJB equation takes on a
simpler quasi-linear form.

First we compute the utility of terminal wealth U(X(h)
T ) = 1

θ (X(h)
T )θ. From (3.6)

it follows that

1
θ
(X(h)

T )θ =
xθ

0

θ
exp

{
θ

∫ T

0

(
h�

s µ̂(Ys) − 1
2
‖σ�hs‖2

)
ds + θ

∫ T

0

h�s σdW̃s

}
. (5.1)

Define now the random variable Z
(h)
T = exp{∫ T

0
θh�

s σdW̃s − 1
2

∫ T

0
‖θσ�hs‖2ds} and

the function

b(p, h) = b(p, h; θ) = −θ

(
h�Mp − 1 − θ

2
‖σ�h‖2

)
. (5.2)

Recall that µ̂(Ys) =
∑d

k=1 µkpk
s = Mps. Hence (5.1) can be written in the form

1
θ
(X(h)

T )θ =
xθ

0

θ
Z

(h)
T exp

{∫ T

0

−b(ps, hs; θ)ds

}
. (5.3)
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Since σ is deterministic, the Novikov condition together with (2.4) implies that
E(Z(h)

T ) = 1. Hence we can define an equivalent measure P (h) on FT by dP (h)/dP =
Z

(h)
T , and Girsanov’s theorem guarantees that Bt := W̃t−θ

∫ t

0 σ�hsds is a standard
(P (h), F)-Brownian motion. We set

ak(p) = pkσ−1

µk −
d∑

j=1

µjp
j

 = pkσ−1M(ek − p) ∈ Rn, (5.4)

and let as before f(p, z) =
∑d

k=1 pkf(ek, z). Hence we have the following dynamics
for the filter under P (h)

dpk
t = ((Q�pt)k + θa�

k (pt)σ�ht)dt + a�
k (pt)dBt + pk

t

∫
Z

(
f(xk, z)
f(pt−, z)

− 1
)

γ(dt × dz).

(5.5)

In view of these transformations, for 0 < θ < 1 the optimization problem (2.5)
is equivalent to the new optimization problem

max

{
E

(
exp

{∫ T

0

−b(p(h)
s , hs; θ)ds

})
: h ∈ H

}
(5.6)

where for h ∈ H the process p(h) has the dynamics (5.5) with initial condition
p
(h)
0 = π.

For θ < 0 on the other hand (2.5) is equivalent to minimizing the expectation
in (5.6). In the sequel we will concentrate on the case 0 < θ < 1; the necessary
changes for θ < 0 will be indicated where appropriate. Moreover, θ will be largely
removed from the notation. The reward function for this control problem equals

v(t, p, h) = Et,p

(
exp

{∫ T

t

−b(p(h)
s , hs)ds

})
for h ∈ H,

and the value function is given by V (t, p) = sup{v(t, p, h) : h ∈ H}. Note that
v(T, p, h) = V (T, p) = 1.

The HJB equation. As a first step in the derivation of the HJB equation we com-
pute the generator of the process p

(h)
t with dynamics (5.5) for a constant strategy

ht ≡ h ∈ Rn. In that case p(h) is obviously Markovian and a standard application
of the Ito-formula shows that the generator Lh operates on g ∈ C2(S) as follows

Lhg(p) =
1
2

d∑
i,j=1

a�
i (p)aj(p)gpipj +

d∑
i=1


d∑

j=1

Qjipj + θa�
i (p)σ�h

 gpi

+λ

∫
Z
{g(p + ∆(p, z)) − g(p)}f(p, z)dz. (5.7)
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Here S = {p ∈ [0, 1]d :
∑d

i=1 pi = 1} denotes the unit simplex in Rd and ∆(p, z) is
defined via

∆k(p, z) = pk

(
f(xk, z)
f(p, z)

− 1
)

, k = 1, . . . , d. (5.8)

Next we turn to a heuristic derivation of the HJB equation for the optimization
problem (5.6). Consider an arbitrary admissible strategy h and time points t ≤ u ≤
T . We obtain, by conditioning on Fu

V (t, p) ≥ v(t, p, h) = Et,p

(
exp
{
−
∫ u

t

b(p(h)
s , hs)ds

}
v(u, p(h)

u , h)
)

. (5.9)

Consider now a sequence of strategies hn on the time interval [u, T ] such that
v(u, p

(h)
u , hn) converges monotonically to V (u, p

(h)
u ). Then we get by passing to the

limit in (5.9) that

V (t, p) ≥ Et,p

(
exp
{
−
∫ u

t

b(p(h)
s , hs)ds

}
V (u, p(h)

u )
)

. (5.10)

Define βh
t = exp{− ∫ t

0 b(p(h)
s , hs)ds}. It is immediate from (5.10) that βh

t V (t, p(h)
t )

is a supermartingale. Suppose now that h∗ is an optimal strategy. In that case we
have equality in (5.9) and βh∗

t V (t, p(h∗)
t ) is a martingale. If we moreover assume that

V (t, ·) ∈ domLh for all t ∈ [0, T ), we get from the Dynkin formula the following
HJB equation

Vt(t, p) + sup
h∈Rn

{LhV (t, p) − b(p, h; θ)V (t, p)} = 0, (t, p) ∈ [0, T )× S, (5.11)

with terminal condition V (T, p) = 1. In case that θ < 0 the equation is similar, but
the sup is replaced by an inf. Plugging in Lh as given in (5.7) and b(p, h) as given
in (5.2) into (5.11) the HJB equation can be written more explicitly as

0 = Vt(t, p) +
1
2

d∑
k,l=1

a�
k (pt)al(pt)Vpkpl(t, p) +

d∑
k=1

{
d∑

l=1

Qlkpl

}
Vpk(t, p)

+ sup
h

{
d∑

k=1

a�
k (pt)σ�θhVpk (t, p) + θV (t, p)

(
h�Mp − 1

2
‖σ�h‖2(1 − θ)

)}

+ λ

∫
Z
{V (t, p + ∆(p, z)) − V (t, p)}f(p, z)dz.


(5.12)

Now the second line of (5.12) is quadratic in h so that the optimum is attained at
the solution h∗ of the following linear equation (the first-order condition)

σ

d∑
k=1

ak(p)Vpk(t, p) + V (t, p)(Mp − σσ�h(1 − θ)) = 0.
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Since σ is an invertible matrix, h∗ is given by

h∗ = h∗(t, p) =
1

(1 − θ)
(σσ�)−1

{
Mp +

1
V (t, p)

σ

d∑
k=1

ak(p)Vpk(t, p)

}
. (5.13)

If we plug this form of h∗ back in the HJB equation (5.12) we obtain a quasi-
linear integro-differential equation since the resulting equation is linear in the second
derivatives Vpkpl and in the integral part.

Remark 5.1 (On the formal justification of the Bellman equation). So
far, our derivation of the HJB equation and of the candidate optimal strategy h∗

in (5.13) is purely heuristic. A possible approach to give a precise mathematical
meaning to the equation is to use verification arguments : if we can find a classi-
cal solution V ∈ C1,2([0, T ) × S) of equation (5.12) with bounded derivatives, the
function h∗ introduced in (5.13) is bounded. Hence there exists a solution p∗ of the
SDE (5.5) with ht = h∗(t, p∗t ). Then a standard verification result such as Theo-
rem 3.1 of Fleming and Soner [8] immediately gives that V is the value function of
the control problem (5.6) and that h∗

t := h∗(t, p∗t ) is the optimal strategy.
However, the existence of a classical solution of equation (5.12) is an open issue.

The main problem is the fact that one cannot guarantee that the equation is uni-
formly elliptic. To see this note that the coefficient matrix of the second derivatives
in (5.12) is given by C = A�A where the matrix A is given by

A = A(p) = (a1(p), . . . , ad(p)) ∈ Rn×d.

By definition equation (5.12) is uniformly elliptic if we can find some c > 0 such
that for all ξ ∈ Rd we have ξ�Cξ ≥ c‖ξ‖2; in particular the matrix C needs to be
strictly positive definite. This is possible only if there are no non-trivial solutions of
the linear equation Ax = 0 so that we need to have the inequality n ≥ d (at least
as many assets as states of the Markov chain Y ). Such an assumption is hard to
justify economically; imposing it nonetheless out of mathematical necessity would
severely limit the applicability of our approach.

At present we therefore study an alternative route to justifying equations (5.12)
and (5.13), see Frey et al. [9]. First, using results from Pham [15], it is possible to
show that V is a viscosity solution of (5.12). Moreover, we are currently working
on a homogenization argument that will show that (5.13) can be used to compute
an approximately optimal strategy. For this we add a term

√
εdB̃t, with ε > 0

and B̃ a d-dimensional Brownian motion independent of B, to the dynamics of the
state equation (5.5). The HJB equation associated with these modified dynamics
has an additional term ε

∑d
k=1 Vpkpk and is therefore uniformly elliptic. Hence the

results of Davis and Lleo [6] apply directly to the modified equation, yielding the
existence of a classical solution V ε. Moreover, the optimal strategy hε,∗ of the
modified problem is given by (5.13) with V ε instead of V . Clearly, one expects that
for ε sufficiently small hε,∗ is approximately optimal in the original problem. We
are currently working on a formal proof of this statement.
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Remark 5.2. Inspection of equation (5.13) shows that in the case of power utility
the candidate optimal strategy consists of two parts. The first part

h
(0)
t =

1
1 − θ

(σσ�)−1Mpt (5.14)

is the so-called myopic strategy; it is obtained by replacing the unknown drift µ(Yt)
with the filter estimate Mpt in the classical formula for the optimal strategy under
full information. Moreover, there is a correction term

1
(1 − θ)V (t, p)

(σ�)−1
d∑

k=1

ak(p)Vpk (t, p)

which is called drift risk in Rieder and Bäuerle [16]. In particular, in the case of
power utility the certainty equivalence principle does not hold.

6. Policy Improvement

Solving the Bellman equation (5.12) numerically with finite difference methods is
feasible only if d (the number of states of the hidden Markov chain Y ) is small. In
this section we therefore propose a policy improvement procedure that permits to
find an approximation of the optimal strategy which is computable using Monte-
Carlo methods. The starting point is the myopic strategy h

(0)
t from (5.14) with

corresponding reward function

v(0)(t, p) := v(t, p, h(0)) = Et,p

(
exp

{
−
∫ T

t

b(p(h(0))
s , h(0)

s )ds

})
. (6.1)

Assume
that v(0) is a C1,2 function. Motivated by the derivation of the HJB equation in
the previous section we compute a new strategy h(1) by maximizing (for 0 < θ < 1)
resp. minimizing (for θ < 0) the drift of βh

t v(0)(t, p(h)
t ). This leads to the following

optimization problem

max{sign(θ)(Lhv(0)(t, p) − b(p, h)v(0)(t, p)) : h ∈ Rn}. (6.2)

By analogous arguments as in the derivation of the candidate optimal strategy h∗

in the previous section we obtain

h(1)(t, p) = h(0)(t, p) +
1

(1 − θ)v(0)(t, p)
(σ�)−1

d∑
k=1

ak(p)v(0)

pk (t, p). (6.3)

Note that h(1) has a similar structural form as the optimal strategy h∗, but with v(0)

instead of the value function V in the correction term for the drift risk. The reward
function corresponding to the strategy h(1) is given by v(1)(t, p) := v(t, p, h(1)). The
next lemma shows that h(1) is in fact an improvement of h(0).

Lemma 6.1. Suppose that the reward functions v(0) and v(1) are C1,2 functions.
Then it holds that v(1)(t, p) ≥ v(0)(t, p), (t, p) ∈ [0, T ) × S.
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Proof. We concentrate on the case θ > 0. Here we have the following inequalities

0 = v
(0)
t + (Lh(0)

v(0) − b(p, h(0))v(0)) ≤ v
(0)
t + (Lh(1)

v(0) − b(p, h(1))v(0))

where the first equality follows from the fact that βh(0)

t v(0)(t, p(h(0))
t ) is a martingale

while the inequality follows from the fact, that h(1) is the maximum of (6.2). This

implies that the process βh(1)

t v(0)(t, p(h(1))
t ) has a non-negative drift, consequently

it is a submartingale. Since v(0)(T, ·) = v(1)(T, ·) ≡ 1 we obtain

βh(1)

t v(0)(t, p) ≤ Et,p(βh(1)

T v(0)(T, ph(1)

T ))

= Et,p(βh(1)

T v(1)(T, ph(1)

T )) = βh(1)

t v(1)(t, p),

where the last equality follows since βh(1)

t v(1)(t, ph(1)

t ) is a martingale. Division by
βh(1)

t yields the assertion.

In order to compute h(1) one needs to compute the reward function v(0) and its
partial derivatives. Since h(0) is known this can be done with standard Monte-Carlo
methods.

Remark 6.1. The assumption that v(0) and v(1) are C1,2 functions can be verified
for the modified version of the state equation introduced in Remark 5.1, since the
Kolmogorov backward equation associated with the modified version of the state
process is strictly elliptical. The argument outlined at the end of Remark 5.1 shows
that for ε sufficiently small h(ε,1) (the policy improvement in the modified model)
is also a “good” strategy for the original problem.

7. Numerical Example

In this section we illustrate the findings of the previous sections. We consider a
market with n = 1 stock with volatility σ = 0.2. The drift process µ(Yt) is
modelled by a Markov chain with d = 2 states, µ1 = 0.4 and µ2 = −0.2. The
transition intensities of Y are set as λ12 = 1.5 and λ21 = 1, yielding the sta-
tionary distribution (0.4, 0.6) and the ergodic mean limt→∞ E[µ(Yt)] = 0.06. The
trading horizon is T = 2 years, time discretization works with M = 250 time
steps.

We consider absolute views for the drift as described in Example 2.1. At the
jump times Tn of a Poisson process with intensity λ the views Zn are generated
according to Zn = µ(YTn)+σεεn where the constant σε > 0 describes the confidence
of the prediction.

We have simulated a path of the drift process µ(Yt), predictions Zn with con-
fidence parameter σε = 0.1 arriving with intensity λ = 2 and stock returns using
∆St/St = µ(Yt)∆t + σ∆Wt. The upper panel of Fig. 1 shows the non-observable
drift path µ(Yt). The quantities which are observable to the investor are divided into
two parts. First, the path of the stock price St shown in the lower panel together
with the (non-observable) path of exp(

∫ t

0
µ(Ys)ds) representing the drift component.
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 Stock Price

time t

 exp( ∫
0
t µ(Y

s
) ds )

Stock Price S
t

Drift
HMM Filter
Z

n

Updated Filter

Fig. 1. Top: drift µ(Yt), classical HMM filter, predictions Zn and updated filter µ̂(Yt) Bottom:
stock price St and drift component exp(

R t
0 µ(Ys)ds).

Second, the predictions Zn constituting the extra information, which are represented
by crosses in the upper panel.

Filter. Given the observations of the stock prices respective returns and the marked
point process (Tn, Zn) the investor can compute the filter pt by integrating the filter
equation (3.4). As initial distribution π we use the stationary distribution of the
Markov chain. The resulting filter for the drift µ̂(Yt) =

∑d
k=1 µkpk

t is drawn in
the upper panel of Fig. 1. For the sake of comparison we also show the classical
HMM filter which is based on the observed stock returns only, but not on the extra
information.

It can be seen that for the chosen parameters the observed drift predictions Zn

arriving at the information dates Tn are very informative for the investor since for
t = Tn the filter is quite close to the actual value of the drift. That means, for t = Tn

and for the chosen distribution of Zn, the investor has nearly full information on the
drift. Between the information dates the filter is pushed back towards the ergodic
mean.

For the computation of the filter pt we apply the procedure described in Sec. 3.
We integrate filter equation (3.4) between two jumps, i.e. in the interval (Tn−1, Tn),
using a Euler scheme with time step size ∆t = T/M and add at Tn the correction
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term resulting from Bayesian udating. In order to reduce time-discretization errors
in the integration of the filter equation between the jumps we work instead of the
nonlinear Wonham filter equation (3.1) for the normalized filter pt with a linear
filter equation for the unnormalized filter and apply robust filter techniques, see
Sass and Wunderlich [18].

Information gain for log-utility. In order to quantify the value of the addi-
tional information from the expert opinions we compare two utility maximizing
investors. First, the “non-informed” investor can only observe stock returns. Sec-
ond, the “informed” investor additionally has access to expert opinions. Now we
consider the initial capital which the non-informed investor needs to obtain the
same maximized expected utility at time T as the informed investor who started at
time 0 with unit wealth. The difference between this capital and one can be inter-
preted as information gain for the informed investor. This comparison is restricted
to logarithmic utility. Here the optimal strategy h∗ given in Lemma 4.1 coincides
with the strategy h(0) and expected utility E(U(X(h∗)

T )) can be computed easily via
Monte-Carlo simulation using representation (4.1).

Denote by XI
T and XN

T the optimal terminal wealth of the informed and of
the non-informed investor starting both with an initial wealth of one. Then the
additional initial capital required by the non-informed investor is given by xN

0 =
exp{E(log(XI

T )) − E(log(XN
T ))}. Figure 2 shows this initial capital as a function

of the intensity λ for different values of the confidence parameter σε = 0.1, 0.3, 0.5
representing high, moderate and low confidence. As expected the information gain
increases with λ and decreases with σε. The figure also shows the result for the fully
informed investor which is obtained for λ → ∞.

Optimal strategy for power utility: Next, we consider an investor who max-
imizes expected power utility U(x) = xθ/θ of terminal wealth with θ = 2/3.

0 1 2 3 4 5
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1.2

1.4

1.6

1.8

2

Intensity  λ

Initial Capital of Non-Informed Investor

σ
ε
 = 0.1

σ
ε
 = 0.3

σ
ε
 = 0.5

0 50 100 150 200
1

1.5

2

2.5

3

Intensity  λ

Initial Capital of Non-Informed Investor

σ
ε
 = 0.1

σ
ε
 = 0.3

σ
ε
 = 0.5

Full Information

Fig. 2. Initial capital of the non-informed investor which is required to obtain the same maximized
expected log-utility at time T as the informed investor who started at time 0 with unit wealth.
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For computing an approximation of the optimal strategy h∗ we apply the policy
improvement described in the preceding section. We start with the myopic strategy
h(0) given in (5.14) which can be computed directly from the filter for the drift
µ̂(Yt) = µ(pt). For the computation of the first improvement h(1) given in (6.3)
we need the reward function v(0) and its partial derivatives. Here we use represen-
tation (6.1) of v(0) as conditional expectation. Assume that at time t∗ based on
observations of the stock prices St and the marked point process I in [0, t∗] we have
obtained the filter pt∗ = p∗. Then a Monte-Carlo approximation of v(0)(t∗, p∗) is
computed from N = 1000 paths of ph(0)

s on [t∗, T ] which are solutions of the filter
equation (5.5) starting at time t∗ with p∗. The partial derivatives of v(0)(t, p) with
respect to pk, k = 1, . . . , d are approximated using central differences.

Figure 3 shows in the second panel the myopic strategy h(0) and the first approx-
imation h(1) of the policy improvement. For the chosen parameters the myopic strat-
egy h(0) is very close to the first approximation h(1) of the policy improvement. The
lower panel shows the correction term h(1) − h(0) of the policy improvement. It
turns out, that this difference vanishes for t = Tn (marked by dotted vertical lines)

0 1 2

−0.2

0.4

 Drift and Filter

Drift
Z

n

Filter

0 1 2
−10

0

10

 Strategy   ht

Policy Impr.
Myopic

0 1 2
0

1

2

Time t 

 Correction          h
(1)

h
(0)

Fig. 3. Top: drift µ(Yt), filter µ̂(Yt) and predictions Zn, Center: myopic strategy h(0) and first
approximation h(1), Bottom: correction term h(1) − h(0).
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where additional information allows for quite accurate estimates for the drift which
are close to the actual values. So the investor has nearly full information on the
drift, and both, the optimal strategy under incomplete information and the myopic
strategy are close to the optimal strategy under full information. Moreover, the
correction term tends to zero for t → T as one would expect.
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