
A UML Extension for the Model-drivenSpe
i�
ation of Audit RulesBernhard Hoisl1,2 and Mark Strembe
k1,2
1 Institute for Information Systems and New Media,Vienna University of E
onomi
s and Business (WU Vienna),Augasse 2-6, 1090 Vienna, Austria
2 Se
ure Business Austria Resear
h (SBA Resear
h),Favoritenstrasse 16, 1040 Vienna, Austria{bernhard.hoisl,mark.strembe
k}�wu.a
.atAbstra
t. In re
ent years, a number of laws and regulations (su
h asthe Basel II a

ord or SOX) demand that organizations re
ord
ertaina
tivities or de
isions to ful�ll legally enfor
ed reporting duties. Most ofthese regulations have a dire
t impa
t on the information systems thatsupport an organization's business pro
esses. Therefore, the de�nition ofaudit requirements at the modeling-level is an important prerequisite forthe thorough implementation and enfor
ement of
orresponding poli
iesin a software system. In this paper, we present a UML extension for thespe
i�
ation of audit properties. The extension is generi
 and
an be ap-plied to a wide variety of UML elements. In a model-driven development(MDD) approa
h, our extension
an be used to generate
orrespondingaudit rules via model transformations.Key words: Audit, Model-driven Development, UML1 Introdu
tionIn information system se
urity, an audit pro
ess re
ords and analyzes data aboutthe a
tivities in a software system in order to dete
t se
urity violations or toidentify the
ause of su
h violations (see, e.g., [1, 2, 3, 4, 5℄). In this paper,we use the term audit for an �independent review and examination of re
ordsand a
tivities to assess the adequa
y of system
ontrols and ensure
omplian
ewith established poli
ies and operational pro
edures� [6℄. Audit requirements notonly stem from organization-spe
i�
 management de
isions or
ost
ontrollingpoli
ies, but also from
orresponding laws and regulations, su
h as the Basel IIA

ord or the Sarbanes-Oxly A
t (SOX) (see [7, 8℄).An audit pro
ess may involve di�erent departments or divisions and fo
us ondi�erent assets of an organization, for example, �nan
ial re
ords,
ustomer pri-va
y regulations, or a

ess
ontrol poli
ies. Nevertheless, all audit pro
esses havein
ommon that they are more and more based on and supported through infor-mation systems. For this reason, the software systems of an organization mustbe able to keep an audit trail of all audit-relevant business pro
esses and a
tiv-ities. However, pro
ess modeling languages su
h as BPMN [9℄ or UML a
tivity

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/11008033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 UML Extension for Audit Modelingdiagrams [10℄ do not provide native language elements to model su
h se
urityproperties. Thus, in order to properly enfor
e business-level se
urity
on
ernsin the
orresponding software systems we need to integrate these
on
epts in amodeling language.In re
ent years, model-driven development (MDD; see, e.g., [11, 12℄) emergedas an approa
h for the spe
i�
ation of tailored domain-spe
i�
 software systems.Due to its versatility, MDD
an be applied as an approa
h for the systemati
spe
i�
ation of information system se
urity properties (see, e.g., [13, 14, 15,16℄). In the
ontext of MDD, domain-spe
i�
 languages (DSLs) are tailor-made(
omputer) languages for a spe
i�
 problem domain (see, e.g., [17, 18, 19℄). Ingeneral, a DSL
an be de�ned as a standalone language or as a domain-spe
i�
extension to a pre-existing (modeling or programming) language. Su
h domain-spe
i�
 extensions are also
alled �embedded DSLs�.In this paper, we present an approa
h for modeling system audits. In parti
-ular, we present a domain-spe
i�
 UML extension that provides new languageelements for the spe
i�
ation of audit events, audit rules, and noti�
ations (ora
tions) that are triggered via audit events. The remainder of this paper is stru
-tured as follows: in Se
tion 2 we give an overview of our audit modeling approa
h.Se
tion 3 des
ribes the metamodel, syntax, and semanti
s of our UML exten-sion. Subsequently, Se
tion 4 gives an example how our extension
an be usedto des
ribe di�erent audit modeling perspe
tives. After that, Se
tion 5 summa-rizes related work and Se
tion 6
on
ludes the paper. In addition, Appendix Aprovides a textual
on
rete syntax for our UML extension.2 Motivation and Approa
h SynopsisFor ea
h organization, a number of laws, regulations, and internal rules demandthat the organization re
ords
ertain a
tivities or de
isions whi
h have a dire
timpa
t on the
orresponding information systems (see, e.g., [20, 21, 22℄). Inparti
ular, audit trails are needed to dis
harge an organization's reporting duties,for example, to prove the
orre
tness of
ertain �nan
ial transa
tions (su
h asthe enfor
ement of the four-eyes-prin
iple for pro
urement operations). However,software engineers are usually not aware of all legal requirements that must beful�lled by a software system. Therefore, we need a means to in
orporate auditrequirements in the respe
tive software models. On the one hand, su
h a meansshould support the software engineer to model
orresponding audit properties ina standard modeling language (su
h as the UML), on the other hand it shouldfa
ilitate the
ommuni
ation between software engineers and domain experts(su
h as lawyers or experts from a
ertain business domain).Moreover, be
ause software systems as well as laws and regulations
hangeover time, an extension for audit modeling should support the integration of au-dit properties with many di�erent types of (heterogeneous) systems. Syn
hronousrequest/reply
ommuni
ation typi
ally results in a strong
oupling of intera
ting
omponents. In
ontrast to that, a loose
oupling of software servi
es helps tointegrate many di�erent types of heterogeneous (lega
y) systems (see, e.g., [23℄).

UML Extension for Audit Modeling 3Event-based
ommuni
ation is an important paradigm to model and implementsu
h loosely-
oupled systems�it is asyn
hronous and inherently de
ouples inter-a
ting system
omponents (see, e.g., [24℄). Event-based
ommuni
ation followsa publish/subs
ribe s
heme where software
omponents
an produ
e and
on-sume events. This means, an event produ
er does neither know the
onsumersof its events, nor does the produ
er publish events with the intention to triggersome a
tion in an other
omponent. Therefore, event-based
omponents onlyhave to know how to rea
t on a parti
ular noti�
ation and then publish eventsto �whom it may
on
ern�. This allows for a straightforward integration of new
omponents and, thus, dire
tly supports the evolution of event-based systems.Moreover, be
ause event produ
ers and event
onsumers are almost
ompletelyde
oupled, event-based
omponents are widely independent of ea
h other whi
h,again, makes these
omponents more easy to adapt and extend.In this paper, we, therefore, present an approa
h for the event-based modelingof audit properties. Fig. 1 shows an informal overview for the main
on
eptualelements of our approa
h. In essen
e, we provide a UML extension to modelaudit properties of software artifa
ts that
an be applied to di�erent types ofUML models. We have
hosen the UML be
ause it is the de-fa
to standardfor modeling information systems and provides native support for all types ofsoftware models as well as for event-based modeling. The audit properties de�nedvia this modeling extension
an then be used to generate
orresponding auditrules that
an be enfor
ed in a software system.
use

extends

generated from

generated

from

applied to

UML

UML Models Audit Rules

Audit Extension

Fig. 1. Audit extension for UML modelsOur extension supports the de�nition of di�erent perspe
tives, ea
h of whi
hmodels a parti
ular aspe
t of system audits (see Fig. 2). Subsequently, modeltransformations (see, e.g., [25, 26, 27℄)
an be used to generate di�erent types ofsoftware artifa
ts and audit rules from these models. The generated artifa
ts thenenfor
e the behavior that was de�ned on the modeling level. Thereby, our UMLextension allows to map audit requirements from the modeling- to the system-level. Be
ause the UML provides an integrated family of modeling notations, aUML extension helps to avoid the semanti
 gap that
ould o

ur if we integratemodels that are de�ned in di�erent modeling languages (see, e.g., [28, 29℄).

4 UML Extension for Audit Modeling

Model

Transformations

Modeling

Level

System

Level

Modeling

Perspectives

Software Artifacts Audit Rules

applied toFig. 2. Modeling-level audit properties are transformed into system artifa
tsOur extension is generi
 and allows to de�ne audit requirements for arbitraryelements in arbitrary UML models. Moreover, it is event-based and therebyenables a loose-
oupling and a straightforward integration with di�erent typesof (heterogeneous) software
omponents.3 UML Audit Extension3.1 Metamodel OverviewIn this se
tion, we spe
ify a UML extension (see Fig. 3) for modeling event-basedaudit requirements. In parti
ular, we introdu
e a new pa
kage
alled Se
urityAu-dit as a UML metamodel extension [10℄. The pa
kage
onsists of both, a UMLstereotype spe
ialization and MOF-based (Meta Obje
t Fa
ility, [30℄) extensions.In general, the UML
an be extended in two ways: (1) by using UML pro-�les [10℄ or (2) by introdu
ing new modeling
on
epts on the metamodel level.UML pro�les provide a me
hanism for the extension of existing UML meta-
lasses to adapt them for non-standard purposes. However, UML pro�les arenot a �rst-
lass extension me
hanism (see [10, page 660℄). They extend existingmeta
lasses of the UML metamodel and the extension de�ned through a pro�lemust be
onsistent with the semanti
s of the extended (original) UML meta-
lasses. For this reason, more
omplex extensions are de�ned on the level of theUML metamodel (see [10, 30℄). An extension of the UML metamodel allows tode�ne new and spe
i�
ally tailored UML elements (de�ned via new meta
lasses),and allows to de�ne a
ustomized notation, syntax, and semanti
s for the new

UML Extension for Audit Modeling 5modeling elements. In our extension, we employ a
ombination of both methodstwo take advantage of ea
h me
hanism.

notificationAction 0..11..2 constant

Package SecurityAudit

«enumeration»

OperatorKind

equal
notEqual
greater
greaterEqual
less
lessEqual

Element

(from Kernel)

1

*

1..**

LiteralSpecification

(from Kernel)

BehavioredClassifier

(from BasicBehaviors, ...)

Trigger

(from Communications)

Reception

(from Communications)

Event

(from Communications)

MessageEvent

(from Communications)

SignalEvent

(from Communications)

*

1

1

BroadcastSignalAction

(from IntermediateActions)

BehavioralFeature

(from Kernel)

1..*

*

AuditRule

*

InvocationAction

(from BasicActions)

*

Classifier

(from Kernel, ...)

«stereotype»

AuditEventSource* *

*

1

1

**

Property

(from Kernel, ...)

Signal

(from Communications)

*

1

operator : OperatorKind [1]

Condition

isNested : Boolean [1] = false

publishsubscribe

Fig. 3. UML extension for modeling event-based audit requirementsIn our extension, the �stereotype� AuditEventSour
e extends the UMLElement meta
lass (see Fig. 3). As a spe
ialized Element stereotype, it is possibleto de�ne any UML element as being the sour
e for an event that may triggeran audit-related behavior exe
ution. In this way, an integration with arbitrary(pre-existing) UML models is possible. The isNested attribute de�nes whetherthe AuditEventSour
e stereotype is applied to the owned elements of a stereo-typed element (e.g. to all nodes in an UML a
tivity). Hen
e, it is possible to tagthe owner element only and re
ursively apply the AuditEventSour
e stereotypeand its properties to all nested elements.A Trigger relates an Event to a
ertain type of Signal that is published ea
htime this parti
ular event o

urs. A UML Signal is a spe
ialized Classifier and
an
arry data whi
h is passed via the
orresponding send invo
ation o

urren
e.Events are published through a
orresponding Broad
astSignalA
tion whi
htransmits a Signal instan
e to all potential target obje
ts in a system (see alsoFig. 3 and [10℄). We use a Broad
astSignalA
tion in favor of a SendSignalA
tionbe
ause events are published independent of the entities (software
omponents)
onsuming the events (see, e.g., [24℄).Modeling the re
eipt of a Signal instan
e is done via an A

eptEventA
tion (inbehavior diagrams) or via the Re
eption element (in stru
ture diagrams). Eitherway, a SignalEvent represents the re
eiving of an asyn
hronous Signal instan
e.The elements modeling the transmission and re
eipt of Signal instan
es a
t asthe underlying event noti�
ation servi
e, whi
h mediates between noti�
ationprodu
ers and
onsumers (a

ording to the publish/subs
ribe pattern; see, e.g.,[24, 31℄).

6 UML Extension for Audit ModelingAn AuditRule is de�ned as a spe
ialized BehavioredClassifier and is sub-s
ribed to a spe
i�
 Signal (see Fig. 3). Ea
h AuditRule
onsists of one ormore Condition elements. A Condition evaluates a
ertain attribute of a Signaland
he
ks the
orresponding attribute value (e.g. by using binary in�x op-erators, as in: �pri
e < 63.50� or �
urren
y = EUR�). In our extension, aCondition
an test either two Properties against ea
h other, or it
an
he
k aProperty against a pre-de�ned
onstant value (a LiteralSpe
ifi
ation). A UMLLiteralSpe
ifi
ation referen
es an instan
e of a primitive data type1. For basi

ondition mat
hing, the �enumeration� OperatorKind spe
i�es an exemplary listof valid self-explanatory operator alternatives. Note, however, that these in�x
omparison operators
an easily be extended to represent other types of op-erators, for instan
e, n-ary pre�x operators (su
h as isInAs
endingOrder(...),isInDes
endingOrder(...), or in
ludes(...)).An AuditRule mat
hes an event (resp. the
orresponding Signal) if allConditions that are asso
iated with this AuditRule are ful�lled. In
ase allConditions of an AuditRule are ful�lled, the respe
tive AuditRule triggers theexe
ution of a
ertain BehavioralFeature (see Fig. 3). This BehavioralFeatureimplements a noti�
ation a
tion that informs another system entity that one ofthe audit rules was a
tivated and
auses a
ertain behavior (e.g., generating anew log entry in the audit trail).In general, every stereotype must be in
luded (dire
tly or indire
tly) in a pro-�le [10℄. For our extension, we de�ne that the �stereotype� AuditEventSour
e is
ontained in the AuditEventSour
eProfile. We use the Obje
t Constraint Lan-guage (OCL, [32℄) to formally spe
ify
onstraints for our modeling extension:
ontext AuditEventSour
e inv:self .profile .name = 'AuditEventSour
eProfile 'As this pro�le is an integral part of our extension, we de�ne that it must beapplied to the pa
kage Se
urityAudit:
ontext Se
urityAudit inv:self . profileAppli
ation ->exists(appliedProfile .name = 'AuditEventSour
eProfile ')The relationship of the Se
urityAudit pa
kage, its pro�le appli
ation, andtheir referen
ed metamodels are shown in Fig. 4. The pro�le AuditEventSour
e-Profile referen
es the UML metamodel and is applied to the pa
kage Se
urity-Audit. As we de�ne the pa
kage Se
urityAudit via a UML metamodel exten-sion, it referen
es the MOF and uses elements from the UML. The MOF isself-des
ribing (through re�e
tion; see [30℄) and, therefore, does not need anothermetamodel for its spe
i�
ation. Furthermore, the MOF spe
i�
ation reuses mod-eling
onstru
ts from the UML infrastru
ture library (through pa
kage imports;see [33℄).
1 The UML de�nes six LiteralSpe
ifi
ation subtypes: LiteralNull,LiteralBoolean, LiteralInteger, LiteralReal, LiteralString, andLiteralUnlimitedNatural [10℄. Due to spa
e limitations these six spe
ializ-ing LiteralSpe
ifi
ations are omitted in Fig. 3.

UML Extension for Audit Modeling 7
«apply»

MOF

SecurityAudit

UML

«profile»

AuditEventSourceProfile

«reference» «reference»

«reference»

«import»

«use»

Fig. 4. Dependen
ies of the Se
urityAudit pa
kage3.2 Metamodel Elements' Syntax and Semanti
sTable 1 shows the notation elements of the Se
urityAudit pa
kage (see alsoSe
tion 4). The other UML elements used in our examples
orrespond to theUML spe
i�
ation (see [10℄).Node type Notation ExplanationAuditRule Name
AR

«signal» Name

An AuditRule is shown as a re
tangle withthe en
ir
led
hara
ters AR in the upperright
orner. The optional Signal
ompart-ment states that the AuditRule is preparedto rea
t to the re
eipt of a
ertain signal (see[10℄).
Condition Name

PropertyName

OperatorKind::Name

PropertyName | ConstantName

C

A Condition is shown as a re
tangle withthe en
ir
led
hara
ter C in the upperright
orner. The lower
ompartment in-
ludes the attributes and the operator that
onstitute the respe
tive
ondition. The�rst attribute is the name of a Propertywhi
h referen
es a
ertain Signal attribute,the se
ond attribute may either be an-other Property or a
onstant value (i.e.a LiteralSpe
ifi
ation), and the opera-tor is of type OperatorKind (see Fig. 3).Thereby, a
ondition
onsists of an opera-tor that
ompares two operands (for exam-ple �pri
e < 63.50� or �
urren
y = EUR�).Table 1. Modeling elements of the Se
urityAudit pa
kageIn addition to the graphi
al modeling elements, Appendix A provides a tex-tual syntax for event-based audits that is spe
i�ed via a variant of the Ba
kus-Naur-Form (BNF; see [34℄). We have
hosen the BNF as a
ontext-free grammar

8 UML Extension for Audit Modelingas it is also applied in OMG spe
i�
ations (e.g., [10, 32℄), it is
ommonly usedto formally spe
ify the syntax of
omputer languages, and it is widely tool-supported (e.g., the E
lipse Xtext notation is very similar to an extended BNF).To model event-based audits, the graphi
al or the textual syntax
an be usedseparately and equivalently. Moreover, it is also possible to
ombine the textualand graphi
al syntaxes (see the example in Se
tion 4).In addition, to the syntax de�nitions we spe
ify OCL invariants that ensurethe
orre
t semanti
s of models de�ned with our UML extension (see Fig. 3). TheAuditEventSour
e stereotype
an be applied re
ursively to all owned elements of atagged element (if the isNested attribute is set to true). All stereotype propertiesof the tagged owner element are inherited, ex
ept if a nested element expli
itlyde�nes its own Trigger and Signal. In this
ase, the properties of the taggedowner element are overwritten:
ontext AuditEventSour
e inv:self .isNested impliesself. base_Class .ownedElement ->forAll(oe |oe. getAppliedStereotype ('AuditEventSour
eProfile::AuditEventSour
e ') <> null)To be able to evaluate a Condition of an AuditRule, exa
tly one Propertymust be a referen
ed attribute of the subs
ribed Signal instan
e:
ontext AuditRule inv:self .
ondition ->forAll(
 |self. subs
ribe .ownedAttribute ->interse
tion (
. property)->size () =
.ownedAttribute ->sele
t(oa |oa.name = 'property ') ->first(). lowerBound ())We de�ne that a Condition
an test either two Properties against ea
h otheror one Property against a
onstant (as spe
i�ed in the metamodel), but not both.Spe
ifying a Condition without mat
hing operands is also not allowed:
ontext Condition inv:self .property ->size () + self .
onstant ->size () =self.ownedAttribute ->sele
t(oa |oa.name = 'property ') ->first().upperBound ().o
lAsType (Integer)Mat
hing Properties against ea
h other or against a LiteralSpe
ifi
ation
onstant implies that they
onform to the same type (e.g., both are of type<Primitive Type> Integer):
ontext Condition inv:if self .
onstant ->notEmpty () thenself. property .type .
onformsTo (self .
onstant .type)elseself.property ->forAll(p1 ,p2 |p1.type .
onformsTo (p2.type))endif

UML Extension for Audit Modeling 94 Audit Modeling Perspe
tivesIn this se
tion, we des
ribe an example for audit modeling of a simple event-basedsystem. In order to thoroughly des
ribe a software system, di�erent modelingperspe
tives have to be de�ned. Therefore, we take di�erent viewpoints intoa

ount to explain the appli
ation of our UML extension to di�erent stru
turaland behavioral models. The perspe
tives in Fig. 5 are exemplary and
an beused inter
hangeable.Fig. 5a shows a pro
ess-based perspe
tive modeled via a UML a
tiv-ity diagram. Here, the �AuditEventSour
e� stereotype is applied to twoBroad
astSignalA
tions. The example models a basi
 login pro
ess to an ERPsystem that should in
lude audit trails for su

essful as well as for failed loginattempts (indi
ated via the �AuditEventSour
e� stereotype). Two
onstraintsare atta
hed to the a
tions de�ning the Trigger for the audit event and the
or-responding Signal
lassi�er. However, using this perspe
tive alone, informationabout the Signals, the AuditRules, their Conditions and A
tions
an not bemodeled su�
iently.Therefore, Fig. 5b presents the AuditRule perspe
tive. It shows an ERP-System
lassi�er that implements two methods whi
h mat
h the exe
ution operations ofthe
orresponding Broad
astSignalA
tions shown in Fig. 5a. The �AuditEvent-Sour
e� stereotypes bind both, the �signal� LoginInfo to the loginFailure()method and the �signal� LoginInfo2 to the loginSu

essful() method. Further-more, Fig. 5b shows two simple AuditRules LoginError and LoginSu

essful withea
h having a
ompartment de�ning the
orresponding subs
ribed Signal. TheAuditRule LoginError
onsists of one Condition (IfAdmin) whi
h
he
ks for failedadministrator logins (i.e., if the userID in
luded in the
orresponding Signalinstan
e equals 12). The se
ond AuditRule LoginSu

essful
onsists of two
on-ditions whi
h
he
k if a login happened outside of normal business hours. If oneof these Conditions evaluate to true, the log() method of the AuditTrail
lassi-�er is invoked (as both AuditRules referen
e the same noti�
ation a
tion). Thisperspe
tive, of
ourse, omits all pro
ess information.Fig. 5
 shows an example of the textual perspe
tive. The syntax
onformsto the BNF grammar de�ned in Appendix A. The textual syntax is equiva-lent to the graphi
al AuditRule perspe
tive (see Fig. 5b); i.e. all AuditRules andConditions are equally de�ned. The textual syntax
an be used
omplementaryto the graphi
al representation.Fig. 5d shows a perspe
tive of the audit system as a UML state ma
hine. Thestate ma
hine is used to model the re
eiving Signal instan
es, their Conditions,and
orresponding a
tions. As
an be seen from the AuditRule and the textualperspe
tive, the se
ond Signal named LoginInfo2 serves as the noti�
ation mes-sage of a
tion Login su

essful in the pro
ess-based view. The state ma
hine, forinstan
e, shows the same Signal, Condition, and a
tion information asso
iatedwith the
orresponding transition. In this perspe
tive, the modeled states and
2 For the sake of simpli
ity, we assume that the administrator of the ERP system hasthe value 1 for the attribute userID.

10 UML Extension for Audit Modeling
(a) Process-based AuditEventSource perspective (b) AuditRule perspective

(c) Textual perspective

Login to

ERP system

«AuditEventSource»

Login successful

«AuditEventSource»

Login failure

...

{ trigger = loginFailure(),

publish = LoginInfo }

{ trigger = loginSuccessful(),

publish = LoginInfo2 }

[failure]

[success]

userID : Integer

timestamp : TimeExpression

«signal»

LoginInfo

publish

publish

userID : Integer

time : TimeExpression

privilege : Integer

«signal»

LoginInfo2

«AuditEventSource» loginFailure()

«AuditEventSource» loginSuccessful()

ERP-System

AuditSystem

<AR> LoginSuccessful -> LoginInfo2 :

 { AuditTrail::log() }

 <C> [time, OperatorKind::less, 08:00]

 <C> [time, OperatorKind::greater, 17:00]

«AuditEventSource» Login successful :

 loginSuccessful() -> LoginInfo2

 { userID, time, privilege }

 <AR> LoginSuccessful

«AuditEventSource» Login failure :

 loginFailure() -> LoginInfo

 { userID, timestamp }

 <AR> LoginError -> LoginInfo :

 { AuditTrail::log() }

 <C> [userID, OperatorKind::equal, 1]

(d) State-based audit system perspective

AuditSystem

(e) Sequence-based interaction perspective

AuditSystemERP-System

LoginInfo (userID, timestamp)«AuditEventSource»

loginFailure()
AuditTrail::log()

LoginInfo2 (userID, time, privilege)«AuditEventSource»

loginSuccessful()
AuditTrail::log()

par
[userID, OperatorKind::equal, 1]

[time, OperatorKind::less, 08:00 or
time, OperatorKind::greater, 17:00]

idle

start

do / observing

[shutdown]

LoginInfo2
[time, OperatorKind::less, 08:00 or
time, OperatorKind::greater, 17:00]
/ AuditTrail::log()

LoginInfo
[userID, OperatorKind::equal, 1]

/ AuditTrail::log()

[audit finished]

audit

LoginError AR

«signal» LoginInfo

IfAdmin

userID

OperatorKind::equal

1

C

condition

AuditTrail

log()

notificationAction

LoginSuccessful AR

«signal» LoginInfo2

TooEarly

time

OperatorKind::less

08:00

C

condition

time

OperatorKind::greater

17:00

TooLate C

notificationAction

condition

Fig. 5. Modeling event-based audit requirements from di�erent perspe
tivestheir transitions of an audit system reveal neither pro
ess- nor obje
t-spe
i�
information.Finally, Fig. 5e shows a message intera
tion perspe
tive as a UML se-quen
e diagram. Therein, the sending and re
eiving events of the two in-volved systems, together with the inter
hanged signal messages are shown. Both�AuditEventSour
e� events are de�ned for parallel exe
ution, i.e. there is no se-quential order between these events. The
orresponding messages are de�ned viathe respe
tive Signal names in
luding their owned attributes. The Conditionsfor invoking audit a
tions are de�ned as guards on the lifeline of the AuditSystem.This perspe
tive neither shows the pro
ess �ow nor the detailed stru
ture of theaudit rules.All perspe
tives presented here are
omplementary and
an be used inter-
hangeable. The
ombination of perspe
tives are dependent on the modeledsoftware system (e.g., state-based).

UML Extension for Audit Modeling 115 Related WorkIn [35℄, Jürjens des
ribes how to model audit se
urity for smart-
ard payments
hemes with UMLSe
. The UMLSe
 extension is de�ned as a UML pro�le. Ourextension for audit modeling supports the de�nition of di�erent audit perspe
-tives and
omplements the UMLSe
 approa
h. In general, we extend the UMLElement meta
lass and, thereby, allow to extend a wide variety of UML ele-ments with audit properties. Furthermore, our extension supports event-basedmodeling and, thus, aims to fa
ilitate the integration of audit properties intopre-existing models for heterogeneous (or lega
y) systems.Rodríguez et al. [36℄ present a UML pro�le extension for a
tivity diagramswhi
h aims to support the spe
i�
ation of
ertain se
urity properties (e.g., a

ess
ontrol, integrity, non-repudiation, and priva
y). In [36℄, audits are spe
i�ed asan additional
hara
teristi
 for another se
urity property. The audit pro
ess istreated as a logging of data, and the logged data must be de�ned via attributesof the
orresponding audited entity. In
ontrast, our extension is more generi
and
an be used to model audit rules for arbitrary UML elements. Moreover, ouraudit extension is integrated with other UML extensions for se
urity modeling(see, e.g., [15, 37, 38, 39, 40℄)In [41℄, Fernández-Medina et al. provide support for modeling a

ess
ontroland audit properties for multidimensional data warehouses with a UML pro�lede�nition. Audit requirements are
onsidered by de�ning audit rules for logginguser requests and a
tivities. Audit rules are de�ned via a
ustom-made gram-mar spe
i�ed in Extended Ba
kus-Naur-Form (EBNF). These audit rules arerepresented in the form of
onstraints for a UML
lass diagram. In
ontrast, ourapproa
h is not spe
i�
 to a parti
ular appli
ation domain and
an be integratedwith other UML-based approa
hes.In [42℄, an approa
h for the modeling of se
urity-
riti
al, servi
e-oriented sys-tems is presented. The authors provide a UML pro�le that de�nes stereotypesfor the extension of
lass diagrams. Se
urity patterns and proto
ols are appliedto identi�ed se
urity
riti
al use
ases. Servi
e
omposition rules
an be de�nedas post-obligations to be taken into a

ount while (or after) exe
uting a proto
ol(e.g., auditing). In [42℄, audit requirements are not de�ned as spe
ialized mod-eling elements, but via OCL
onstraints. Thus, the modeling approa
h is ratherspe
ialized and has a limited expressiveness (for both, syntax and semanti
s).6 Con
lusionIn this paper we presented a UML extension for modeling system audits. Ourextension supports an event-based modeling style and thereby aims to enablethe integration of audit properties in a wide variety of di�erent types of UMLmodels. We support the de�nition of stru
tural and behavioral perspe
tives tomodel di�erent aspe
ts of system audits. In addition to graphi
al model elements,we also provide a fully equivalent textual syntax.

12 UML Extension for Audit ModelingWith our extension, ea
h UML element
an be de�ned as an audit eventsour
e. Thus, the extension is not limited to a spe
i�
 type of UML diagram.Moreover, it
an be
ustomized to di�erent types of system audits. However, inthis paper we do not elaborate on the modeling of an event noti�
ation servi
e(i.e., we omit Broad
astSignalA
tions and A

eptEventA
tions in our examples).Furthermore, we neither show an example of nested audit models nor dis
usswild
ard triggers whi
h invoke a spe
i�ed audit rule on every event o

urren
eof an element or nested elements. Appli
ation-spe
i�
 OCL
onstraints
an beused to further re�ne, for instan
e, event triggers or audit rules (e.g., pre- andpost
onditions). The textual syntax of our extension is fully integrated with thegraphi
al perspe
tives and
an be applied either inter
hangeable or in additionto the graphi
al models.In our future work, we will integrate support for the expli
it modeling of
omposite as well as hierar
hi
al audit event types. Moreover, we are workingon a tool integration of our extension whi
h will implement both, the graphi
aland textual syntax.A
knowledgmentsThis work has partly been funded by the Austrian Resear
h Promotion Agen
y(FFG) of the Austrian Federal Ministry for Transport, Innovation and Te
h-nology (BMVIT) through the Competen
e Centers for Ex
ellent Te
hnologies(COMET K1) initiative and the FIT-IT program.Referen
es1. Garera, S., Rubin, A.: An Independent Audit Framework for Software Depen-dent Voting Systems. In: Pro
. of the 14th ACM Conferen
e on Computer andCommuni
ations Se
urity (CCS). (2007) 256�2652. Hasan, R., Winslett, M.: E�
ient Audit-based Complian
e for Relational DataRetention. In: Pro
. of the 6th ACM Symposium on Information, Computer andCommuni
ations Se
urity. (2011) 238�2483. King, J., Smith, B., Williams, L.: Modifying Without a Tra
e: General AuditGuidelines are Inadequate for Open-sour
e Ele
troni
 Health Re
ord Audit Me
h-anisms. In: Pro
. of the 2nd ACM SIGHIT International Health Informati
s Sym-posium. (2012) 305�3144. Sandhu, R., Samarati, P.: Authenti
ation, A

ess Control, and Audit. ACM Com-puting Surveys 28(1) (Mar
h 1996) 241�2435. S
hneier, B., Kelsey, J.: Se
ure Audit Logs to Support Computer Forensi
s. ACMTransa
tion on Information and System Se
urity 2(2) (May 1999) 159�1766. Committee on National Se
urity Systems: National Information Assuran
e (IA) �Glossary. Available at: http://www.
nss.gov/Assets/pdf/
nssi_4009.pdf (2010)7. Basel Committee on Banking Supervision: Basel II: International Con-vergen
e of Capital Measurement and Capital Standards. Available at:http://www.bis.org/publ/b
bs107.pdf (2004)

UML Extension for Audit Modeling 138. United States Congress: Sarbanes-Oxley A
t of 2002. Available at:http://www.se
.gov/about/laws/soa2002.pdf (2002)9. Obje
t Management Group: Business Pro
ess Model and Notation (BPMN) �Version 2.0. Available at: http://www.omg.org/spe
/BPMN/2.0/PDF (2011)10. Obje
t Management Group: OMG Uni�ed Modeling Language(OMG UML), Superstru
ture � Version 2.4.1. Available at:http://www.omg.org/spe
/UML/2.4.1/Superstru
ture/PDF/ (2011)11. Seli
, B.: The Pragmati
s of Model-driven Development. IEEE Software 20(5)(September 2003) 19�2512. Stahl, T., Völter, M.: Model-Driven Software Development. John Wiley & Sons(2006)13. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Se
urity: From UML Modelsto A

ess Control Infrastru
tures. ACM Transa
tions on Software Engineering andMethodology (TOSEM) 15(1) (January 2006)14. Hoisl, B., Sobernig, S.: Integrity and Con�dentiality Annotations for Servi
e Inter-fa
es in SoaML Models. In: Pro
eedings of the International Workshop on Se
urityAspe
ts of Pro
ess-aware Information Systems (SAPAIS), Vienna, IEEE (2011)15. Strembe
k, M., Mendling, J.: Modeling Pro
ess-related RBAC Models with Ex-tended UML A
tivity Models. Information and Software Te
hnology (IST) 53(5)(2010) 456�48316. Wolter, C., Menzel, M., S
haad, A., Miseldine, P., Meinel, C.: Model-driven busi-ness pro
ess se
urity requirement spe
i�
ation. Journal of Systems Ar
hite
ture55(4) (April 2009)17. Deursen, A.V., Klint, P.: Little Languages: little Maintenan
e? Journal of SoftwareMaintenan
e: Resear
h and Pra
ti
e 10(2) (Mar
h 1998) 75�9218. Mernik, M., Heering, J., Sloane, A.: When and How to Develop Domain-spe
i�
Languages. ACM Computing Surveys (CSUR) 37(4) (De
ember 2005) 316�34419. Strembe
k, M., Zdun, U.: An Approa
h for the Systemati
 Development ofDomain-Spe
i�
 Languages. Software: Pra
ti
e and Experien
e (SP&E) 39(15)(O
tober 2009)20. Cannon, J.C., Byers, M.: Complian
e De
onstru
ted. ACM Queue 4(7) (September2006)21. Damianides, M.: How does SOX
hange IT? Journal of Corporate A

ounting &Finan
e 15(6) (2004)22. Mishra, S., Weistro�er, H.R.: A Framework for Integrating Sarbanes-Oxley Com-plian
e into the Systems Development Pro
ess. Communi
ations of the Asso
iationfor Information Systems (CAIS) 20(1) (2007)23. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, andDeploying Messaging Solutions. Addison-Wesley, Boston, Massa
husetts, USA(2004)24. Mühl, G., Fiege, L., Pietzu
h, P.: Distributed Event-Based Systems. Springer,Berlin Heidelberg (2006)25. Mens, T., Gorp, P.V.: A Taxonomy of Model Transformation. Ele
troni
 Notes inTheoreti
al Computer S
ien
e 152 (2006) 125�14226. Sendall, S., Koza
zynski, W.: Model Transformation: The Heart and Soul of Model-Driven Software Development. IEEE Software 20(5) (2003)27. Zdun, U., Strembe
k, M.: Modeling Composition in Dynami
 Programming Envi-ronments with Model Transformations. In: Pro
. of the 5th International Sympo-sium on Software Composition, Le
ture Notes in Computer S
ien
e (LNCS), Vol.4089, Springer-Verlag (Mar
h 2006)

14 UML Extension for Audit Modeling28. Axenath, B., Kindler, E., Rubin, V.: AMFIBIA: A Meta-Model for the Integra-tion of Business Pro
ess Modelling Aspe
ts. In Leymann, F., Reisig, W., Thatte,S.R., van der Aalst, W., eds.: The Role of Business Pro
esses in Servi
e OrientedAr
hite
tures. Number 06291 in Dagstuhl Seminar Pro
eedings (2006)29. Zdun, U.: Patterns of Component and Language Integration. In: D. Manoles
u,M. Voelter, J. Noble (editors): Pattern Languages of Program Design 5. (2006)30. Obje
t Management Group: OMG Meta Obje
t Fa
ility (MOF) Core Spe
i�
ation� Version 2.4.1. Available at: http://www.omg.org/spe
/MOF/2.4.1/PDF/ (2011)31. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elementsof Reusable Obje
t-Oriented Software. Addison-Wesley, Reading, Massa
husetts,USA (1995)32. Obje
t Management Group: OMG Obje
t Constraint Language (OCL) � Version2.3.1. Available at: http://www.omg.org/spe
/OCL/2.3.1/PDF (2012)33. Obje
t Management Group: OMG Uni�ed Modeling Language(OMG UML), Infrastru
ture � Version 2.4.1. Available at:http://www.omg.org/spe
/UML/2.4.1/Infrastru
ture/PDF/ (2011)34. International Organization for Standardization: Information Te
hnol-ogy � Synta
ti
 Metalanguage � Extended BNF (ISO/IEC 14977).Available at: http://standards.iso.org/ittf/Publi
lyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip (1996)35. Jürjens, J.: Modelling Audit Se
urity for Smart-Card Payment S
hemes with UML-SEC. In: Pro
eedings of the 16th International Conferen
e on Information Se
urity,Paris, Fran
e (2001)36. Rodríguez, A., Fernández-Medina, E., Trujillo, J., Piattini, M.: Se
ure BusinessPro
ess Model Spe
i�
ation through a UML 2.0 A
tivity Diagram Pro�le. De
isionSupport Systems 51(3) (June 2011) 446�46537. Hoisl, B., Strembe
k, M.: Modeling Support for Con�dentiality and Integrity ofObje
t Flows in A
tivity Models. In: Pro
. of the 14th International Conferen
e onBusiness Information Systems (BIS), Berlin, Springer � Le
ture Notes in BusinessInformation Pro
essing (LNBIP), Vol. 87 (June 2011) 278�28938. S
hefer, S., Strembe
k, M.: Modeling Pro
ess-Related Duties with Extended UMLA
tivity and Intera
tion Diagrams. In: Pro
. of the International Workshop onFlexible Work�ows in Distributed Systems, Ele
troni
 Communi
ations of theEASST. (Mar
h 2011)39. S
hefer, S., Strembe
k, M.: Modeling Support for Delegating Roles, Tasks, andDuties in a Pro
ess-Related RBAC Context. In: Pro
. of the International Work-shop on Information Systems Se
urity Engineering (WISSE), Springer � Le
tureNotes in Business Information Pro
essing (LNBIP), Vol. 83 (June 2011)40. S
hefer-Wenzl, S., Strembe
k, M.: Modeling Context-Aware RBAC Models forBusiness Pro
esses in Ubiquitous Computing Environments. In: Pro
. of the 3rdInternational Conferen
e on Mobile, Ubiquitous and Intelligent Computing (MU-SIC). (June 2012)41. Fernández-Medina, E., Trujillo, J., Villarroel, R., Piattini, M.: A

ess Control andAudit Model for the Multidimensional Modeling of Data Warehouses. De
isionSupport Systems 42(3) (De
ember 2006) 1270�128942. Memon, M., Hafner, M., Breu, R.: SECTISSIMO: A Platform-independent Frame-work for Se
urity Servi
es. In: Pro
eedings of the Modeling Se
urity Workshop inAsso
iation with MODELS 2008, Toulouse, Fran
e (2008)

UML Extension for Audit Modeling 15A Textual Syntax for the Se
urityAudit Pa
kage

<
S
e
c
u
r
i
t
y
A
u
d
i
t
>

:
:
=

(
<
A
u
d
i
t
E
v
e
n
t
S
o
u
r
c
e
>

|

<
A
u
d
i
t
R
u
l
e
>
)
*

<
A
u
d
i
t
E
v
e
n
t
S
o
u
r
c
e
>

:
:
=

’
<
<
A
u
d
i
t
E
v
e
n
t
S
o
u
r
c
e
>
>
’

U
M
L
:
:
E
l
e
m
e
n
t
.
n
a
m
e

’
:
’

<
T
r
i
g
g
e
r
>

’
-
>
’

<
P
u
b
l
i
c
a
t
i
o
n
>

<
A
u
d
i
t
R
u
l
e
>

<
T
r
i
g
g
e
r
>

:
:
=

U
M
L
:
:
T
r
i
g
g
e
r
.
n
a
m
e

<
P
u
b
l
i
c
a
t
i
o
n
>

:
:
=

U
M
L
:
:
S
i
g
n
a
l
.
n
a
m
e

|

<
S
i
g
n
a
l
>

<
S
i
g
n
a
l
>

:
:
=

U
M
L
:
:
S
i
g
n
a
l
.
n
a
m
e

’
{
’

U
M
L
:
:
S
i
g
n
a
l
.
a
t
t
r
i
b
u
t
e
.
n
a
m
e

[
’
,
’

U
M
L
:
:
S
i
g
n
a
l
.
a
t
t
r
i
b
u
t
e
.
n
a
m
e
]
*

’
}
’

<
A
u
d
i
t
R
u
l
e
>

:
:
=

’
<
A
R
>
’

U
M
L
:
:
A
u
d
i
t
R
u
l
e
.
n
a
m
e

(

’
-
>
’

<
S
u
b
s
c
r
i
p
t
i
o
n
>

’
:

{
’

<
A
c
t
i
o
n
>

[
’
,
’

<
A
c
t
i
o
n
>
]
*

’
}
’

<
C
o
n
d
i
t
i
o
n
>
+

)
?

<
S
u
b
s
c
r
i
p
t
i
o
n
>

:
:
=

<
P
u
b
l
i
c
a
t
i
o
n
>

<
A
c
t
i
o
n
>

:
:
=

U
M
L
:
:
B
e
h
a
v
i
o
r
a
l
F
e
a
t
u
r
e
.
n
a
m
e

<
C
o
n
d
i
t
i
o
n
>

:
:
=

’
<
C
>
’

(

U
M
L
:
:
C
o
n
d
i
t
i
o
n
.
n
a
m
e

|

’
[
’

<
O
p
e
r
a
n
d
>

’
,
’

<
O
p
e
r
a
t
o
r
>

’
,
’

<
O
p
e
r
a
n
d
>

’
]
’

)

<
O
p
e
r
a
n
d
>

:
:
=

<
P
r
o
p
e
r
t
y
>

|

<
C
o
n
s
t
a
n
t
>

<
P
r
o
p
e
r
t
y
>

:
:
=

U
M
L
:
:
P
r
o
p
e
r
t
y
.
n
a
m
e

<
C
o
n
s
t
a
n
t
>

:
:
=

U
M
L
:
:
L
i
t
e
r
a
l
S
p
e
c
i
f
i
c
a
t
i
o
n

<
O
p
e
r
a
t
o
r
>

:
:
=

U
M
L
:
:
O
p
e
r
a
t
o
r
K
i
n
d
:
:
E
n
u
m
e
r
a
t
i
o
n
L
i
t
e
r
a
l

	A UML Extension for the Model-driven Specification of Audit Rules
	Bernhard Hoisl and Mark Strembeck
	Introduction
	Motivation and Approach Synopsis
	UML Audit Extension
	Metamodel Overview
	Metamodel Elements' Syntax and Semantics

	Audit Modeling Perspectives
	Related Work
	Conclusion
	References
	Textual Syntax for the SecurityAudit Package

