
A UML Extension for the Model-drivenSpei�ation of Audit RulesBernhard Hoisl1,2 and Mark Strembek1,2
1 Institute for Information Systems and New Media,Vienna University of Eonomis and Business (WU Vienna),Augasse 2-6, 1090 Vienna, Austria
2 Seure Business Austria Researh (SBA Researh),Favoritenstrasse 16, 1040 Vienna, Austria{bernhard.hoisl,mark.strembek}�wu.a.atAbstrat. In reent years, a number of laws and regulations (suh asthe Basel II aord or SOX) demand that organizations reord ertainativities or deisions to ful�ll legally enfored reporting duties. Most ofthese regulations have a diret impat on the information systems thatsupport an organization's business proesses. Therefore, the de�nition ofaudit requirements at the modeling-level is an important prerequisite forthe thorough implementation and enforement of orresponding poliiesin a software system. In this paper, we present a UML extension for thespei�ation of audit properties. The extension is generi and an be ap-plied to a wide variety of UML elements. In a model-driven development(MDD) approah, our extension an be used to generate orrespondingaudit rules via model transformations.Key words: Audit, Model-driven Development, UML1 IntrodutionIn information system seurity, an audit proess reords and analyzes data aboutthe ativities in a software system in order to detet seurity violations or toidentify the ause of suh violations (see, e.g., [1, 2, 3, 4, 5℄). In this paper,we use the term audit for an �independent review and examination of reordsand ativities to assess the adequay of system ontrols and ensure omplianewith established poliies and operational proedures� [6℄. Audit requirements notonly stem from organization-spei� management deisions or ost ontrollingpoliies, but also from orresponding laws and regulations, suh as the Basel IIAord or the Sarbanes-Oxly At (SOX) (see [7, 8℄).An audit proess may involve di�erent departments or divisions and fous ondi�erent assets of an organization, for example, �nanial reords, ustomer pri-vay regulations, or aess ontrol poliies. Nevertheless, all audit proesses havein ommon that they are more and more based on and supported through infor-mation systems. For this reason, the software systems of an organization mustbe able to keep an audit trail of all audit-relevant business proesses and ativ-ities. However, proess modeling languages suh as BPMN [9℄ or UML ativity

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/11008033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 UML Extension for Audit Modelingdiagrams [10℄ do not provide native language elements to model suh seurityproperties. Thus, in order to properly enfore business-level seurity onernsin the orresponding software systems we need to integrate these onepts in amodeling language.In reent years, model-driven development (MDD; see, e.g., [11, 12℄) emergedas an approah for the spei�ation of tailored domain-spei� software systems.Due to its versatility, MDD an be applied as an approah for the systematispei�ation of information system seurity properties (see, e.g., [13, 14, 15,16℄). In the ontext of MDD, domain-spei� languages (DSLs) are tailor-made(omputer) languages for a spei� problem domain (see, e.g., [17, 18, 19℄). Ingeneral, a DSL an be de�ned as a standalone language or as a domain-spei�extension to a pre-existing (modeling or programming) language. Suh domain-spei� extensions are also alled �embedded DSLs�.In this paper, we present an approah for modeling system audits. In parti-ular, we present a domain-spei� UML extension that provides new languageelements for the spei�ation of audit events, audit rules, and noti�ations (orations) that are triggered via audit events. The remainder of this paper is stru-tured as follows: in Setion 2 we give an overview of our audit modeling approah.Setion 3 desribes the metamodel, syntax, and semantis of our UML exten-sion. Subsequently, Setion 4 gives an example how our extension an be usedto desribe di�erent audit modeling perspetives. After that, Setion 5 summa-rizes related work and Setion 6 onludes the paper. In addition, Appendix Aprovides a textual onrete syntax for our UML extension.2 Motivation and Approah SynopsisFor eah organization, a number of laws, regulations, and internal rules demandthat the organization reords ertain ativities or deisions whih have a diretimpat on the orresponding information systems (see, e.g., [20, 21, 22℄). Inpartiular, audit trails are needed to disharge an organization's reporting duties,for example, to prove the orretness of ertain �nanial transations (suh asthe enforement of the four-eyes-priniple for prourement operations). However,software engineers are usually not aware of all legal requirements that must beful�lled by a software system. Therefore, we need a means to inorporate auditrequirements in the respetive software models. On the one hand, suh a meansshould support the software engineer to model orresponding audit properties ina standard modeling language (suh as the UML), on the other hand it shouldfailitate the ommuniation between software engineers and domain experts(suh as lawyers or experts from a ertain business domain).Moreover, beause software systems as well as laws and regulations hangeover time, an extension for audit modeling should support the integration of au-dit properties with many di�erent types of (heterogeneous) systems. Synhronousrequest/reply ommuniation typially results in a strong oupling of interatingomponents. In ontrast to that, a loose oupling of software servies helps tointegrate many di�erent types of heterogeneous (legay) systems (see, e.g., [23℄).

UML Extension for Audit Modeling 3Event-based ommuniation is an important paradigm to model and implementsuh loosely-oupled systems�it is asynhronous and inherently deouples inter-ating system omponents (see, e.g., [24℄). Event-based ommuniation followsa publish/subsribe sheme where software omponents an produe and on-sume events. This means, an event produer does neither know the onsumersof its events, nor does the produer publish events with the intention to triggersome ation in an other omponent. Therefore, event-based omponents onlyhave to know how to reat on a partiular noti�ation and then publish eventsto �whom it may onern�. This allows for a straightforward integration of newomponents and, thus, diretly supports the evolution of event-based systems.Moreover, beause event produers and event onsumers are almost ompletelydeoupled, event-based omponents are widely independent of eah other whih,again, makes these omponents more easy to adapt and extend.In this paper, we, therefore, present an approah for the event-based modelingof audit properties. Fig. 1 shows an informal overview for the main oneptualelements of our approah. In essene, we provide a UML extension to modelaudit properties of software artifats that an be applied to di�erent types ofUML models. We have hosen the UML beause it is the de-fato standardfor modeling information systems and provides native support for all types ofsoftware models as well as for event-based modeling. The audit properties de�nedvia this modeling extension an then be used to generate orresponding auditrules that an be enfored in a software system.
use

extends

generated from

generated

from

applied to

UML

UML Models Audit Rules

Audit Extension

Fig. 1. Audit extension for UML modelsOur extension supports the de�nition of di�erent perspetives, eah of whihmodels a partiular aspet of system audits (see Fig. 2). Subsequently, modeltransformations (see, e.g., [25, 26, 27℄) an be used to generate di�erent types ofsoftware artifats and audit rules from these models. The generated artifats thenenfore the behavior that was de�ned on the modeling level. Thereby, our UMLextension allows to map audit requirements from the modeling- to the system-level. Beause the UML provides an integrated family of modeling notations, aUML extension helps to avoid the semanti gap that ould our if we integratemodels that are de�ned in di�erent modeling languages (see, e.g., [28, 29℄).

4 UML Extension for Audit Modeling

Model

Transformations

Modeling

Level

System

Level

Modeling

Perspectives

Software Artifacts Audit Rules

applied toFig. 2. Modeling-level audit properties are transformed into system artifatsOur extension is generi and allows to de�ne audit requirements for arbitraryelements in arbitrary UML models. Moreover, it is event-based and therebyenables a loose-oupling and a straightforward integration with di�erent typesof (heterogeneous) software omponents.3 UML Audit Extension3.1 Metamodel OverviewIn this setion, we speify a UML extension (see Fig. 3) for modeling event-basedaudit requirements. In partiular, we introdue a new pakage alled SeurityAu-dit as a UML metamodel extension [10℄. The pakage onsists of both, a UMLstereotype speialization and MOF-based (Meta Objet Faility, [30℄) extensions.In general, the UML an be extended in two ways: (1) by using UML pro-�les [10℄ or (2) by introduing new modeling onepts on the metamodel level.UML pro�les provide a mehanism for the extension of existing UML meta-lasses to adapt them for non-standard purposes. However, UML pro�les arenot a �rst-lass extension mehanism (see [10, page 660℄). They extend existingmetalasses of the UML metamodel and the extension de�ned through a pro�lemust be onsistent with the semantis of the extended (original) UML meta-lasses. For this reason, more omplex extensions are de�ned on the level of theUML metamodel (see [10, 30℄). An extension of the UML metamodel allows tode�ne new and spei�ally tailored UML elements (de�ned via new metalasses),and allows to de�ne a ustomized notation, syntax, and semantis for the new

UML Extension for Audit Modeling 5modeling elements. In our extension, we employ a ombination of both methodstwo take advantage of eah mehanism.

notificationAction 0..11..2 constant

Package SecurityAudit

«enumeration»

OperatorKind

equal
notEqual
greater
greaterEqual
less
lessEqual

Element

(from Kernel)

1

*

1..**

LiteralSpecification

(from Kernel)

BehavioredClassifier

(from BasicBehaviors, ...)

Trigger

(from Communications)

Reception

(from Communications)

Event

(from Communications)

MessageEvent

(from Communications)

SignalEvent

(from Communications)

*

1

1

BroadcastSignalAction

(from IntermediateActions)

BehavioralFeature

(from Kernel)

1..*

*

AuditRule

*

InvocationAction

(from BasicActions)

*

Classifier

(from Kernel, ...)

«stereotype»

AuditEventSource* *

*

1

1

**

Property

(from Kernel, ...)

Signal

(from Communications)

*

1

operator : OperatorKind [1]

Condition

isNested : Boolean [1] = false

publishsubscribe

Fig. 3. UML extension for modeling event-based audit requirementsIn our extension, the �stereotype� AuditEventSoure extends the UMLElement metalass (see Fig. 3). As a speialized Element stereotype, it is possibleto de�ne any UML element as being the soure for an event that may triggeran audit-related behavior exeution. In this way, an integration with arbitrary(pre-existing) UML models is possible. The isNested attribute de�nes whetherthe AuditEventSoure stereotype is applied to the owned elements of a stereo-typed element (e.g. to all nodes in an UML ativity). Hene, it is possible to tagthe owner element only and reursively apply the AuditEventSoure stereotypeand its properties to all nested elements.A Trigger relates an Event to a ertain type of Signal that is published eahtime this partiular event ours. A UML Signal is a speialized Classifier andan arry data whih is passed via the orresponding send invoation ourrene.Events are published through a orresponding BroadastSignalAtion whihtransmits a Signal instane to all potential target objets in a system (see alsoFig. 3 and [10℄). We use a BroadastSignalAtion in favor of a SendSignalAtionbeause events are published independent of the entities (software omponents)onsuming the events (see, e.g., [24℄).Modeling the reeipt of a Signal instane is done via an AeptEventAtion (inbehavior diagrams) or via the Reeption element (in struture diagrams). Eitherway, a SignalEvent represents the reeiving of an asynhronous Signal instane.The elements modeling the transmission and reeipt of Signal instanes at asthe underlying event noti�ation servie, whih mediates between noti�ationproduers and onsumers (aording to the publish/subsribe pattern; see, e.g.,[24, 31℄).

6 UML Extension for Audit ModelingAn AuditRule is de�ned as a speialized BehavioredClassifier and is sub-sribed to a spei� Signal (see Fig. 3). Eah AuditRule onsists of one ormore Condition elements. A Condition evaluates a ertain attribute of a Signaland heks the orresponding attribute value (e.g. by using binary in�x op-erators, as in: �prie < 63.50� or �urreny = EUR�). In our extension, aCondition an test either two Properties against eah other, or it an hek aProperty against a pre-de�ned onstant value (a LiteralSpeifiation). A UMLLiteralSpeifiation referenes an instane of a primitive data type1. For basiondition mathing, the �enumeration� OperatorKind spei�es an exemplary listof valid self-explanatory operator alternatives. Note, however, that these in�xomparison operators an easily be extended to represent other types of op-erators, for instane, n-ary pre�x operators (suh as isInAsendingOrder(...),isInDesendingOrder(...), or inludes(...)).An AuditRule mathes an event (resp. the orresponding Signal) if allConditions that are assoiated with this AuditRule are ful�lled. In ase allConditions of an AuditRule are ful�lled, the respetive AuditRule triggers theexeution of a ertain BehavioralFeature (see Fig. 3). This BehavioralFeatureimplements a noti�ation ation that informs another system entity that one ofthe audit rules was ativated and auses a ertain behavior (e.g., generating anew log entry in the audit trail).In general, every stereotype must be inluded (diretly or indiretly) in a pro-�le [10℄. For our extension, we de�ne that the �stereotype� AuditEventSoure isontained in the AuditEventSoureProfile. We use the Objet Constraint Lan-guage (OCL, [32℄) to formally speify onstraints for our modeling extension:ontext AuditEventSoure inv:self .profile .name = 'AuditEventSoureProfile 'As this pro�le is an integral part of our extension, we de�ne that it must beapplied to the pakage SeurityAudit:ontext SeurityAudit inv:self . profileAppliation ->exists(appliedProfile .name = 'AuditEventSoureProfile ')The relationship of the SeurityAudit pakage, its pro�le appliation, andtheir referened metamodels are shown in Fig. 4. The pro�le AuditEventSoure-Profile referenes the UML metamodel and is applied to the pakage Seurity-Audit. As we de�ne the pakage SeurityAudit via a UML metamodel exten-sion, it referenes the MOF and uses elements from the UML. The MOF isself-desribing (through re�etion; see [30℄) and, therefore, does not need anothermetamodel for its spei�ation. Furthermore, the MOF spei�ation reuses mod-eling onstruts from the UML infrastruture library (through pakage imports;see [33℄).
1 The UML de�nes six LiteralSpeifiation subtypes: LiteralNull,LiteralBoolean, LiteralInteger, LiteralReal, LiteralString, andLiteralUnlimitedNatural [10℄. Due to spae limitations these six speializ-ing LiteralSpeifiations are omitted in Fig. 3.

UML Extension for Audit Modeling 7
«apply»

MOF

SecurityAudit

UML

«profile»

AuditEventSourceProfile

«reference» «reference»

«reference»

«import»

«use»

Fig. 4. Dependenies of the SeurityAudit pakage3.2 Metamodel Elements' Syntax and SemantisTable 1 shows the notation elements of the SeurityAudit pakage (see alsoSetion 4). The other UML elements used in our examples orrespond to theUML spei�ation (see [10℄).Node type Notation ExplanationAuditRule Name
AR

«signal» Name

An AuditRule is shown as a retangle withthe enirled haraters AR in the upperright orner. The optional Signal ompart-ment states that the AuditRule is preparedto reat to the reeipt of a ertain signal (see[10℄).
Condition Name

PropertyName

OperatorKind::Name

PropertyName | ConstantName

C

A Condition is shown as a retangle withthe enirled harater C in the upperright orner. The lower ompartment in-ludes the attributes and the operator thatonstitute the respetive ondition. The�rst attribute is the name of a Propertywhih referenes a ertain Signal attribute,the seond attribute may either be an-other Property or a onstant value (i.e.a LiteralSpeifiation), and the opera-tor is of type OperatorKind (see Fig. 3).Thereby, a ondition onsists of an opera-tor that ompares two operands (for exam-ple �prie < 63.50� or �urreny = EUR�).Table 1. Modeling elements of the SeurityAudit pakageIn addition to the graphial modeling elements, Appendix A provides a tex-tual syntax for event-based audits that is spei�ed via a variant of the Bakus-Naur-Form (BNF; see [34℄). We have hosen the BNF as a ontext-free grammar

8 UML Extension for Audit Modelingas it is also applied in OMG spei�ations (e.g., [10, 32℄), it is ommonly usedto formally speify the syntax of omputer languages, and it is widely tool-supported (e.g., the Elipse Xtext notation is very similar to an extended BNF).To model event-based audits, the graphial or the textual syntax an be usedseparately and equivalently. Moreover, it is also possible to ombine the textualand graphial syntaxes (see the example in Setion 4).In addition, to the syntax de�nitions we speify OCL invariants that ensurethe orret semantis of models de�ned with our UML extension (see Fig. 3). TheAuditEventSoure stereotype an be applied reursively to all owned elements of atagged element (if the isNested attribute is set to true). All stereotype propertiesof the tagged owner element are inherited, exept if a nested element expliitlyde�nes its own Trigger and Signal. In this ase, the properties of the taggedowner element are overwritten:ontext AuditEventSoure inv:self .isNested impliesself. base_Class .ownedElement ->forAll(oe |oe. getAppliedStereotype ('AuditEventSoureProfile::AuditEventSoure ') <> null)To be able to evaluate a Condition of an AuditRule, exatly one Propertymust be a referened attribute of the subsribed Signal instane:ontext AuditRule inv:self .ondition ->forAll(|self. subsribe .ownedAttribute ->intersetion (. property)->size () =.ownedAttribute ->selet(oa |oa.name = 'property ') ->first(). lowerBound ())We de�ne that a Condition an test either two Properties against eah otheror one Property against a onstant (as spei�ed in the metamodel), but not both.Speifying a Condition without mathing operands is also not allowed:ontext Condition inv:self .property ->size () + self .onstant ->size () =self.ownedAttribute ->selet(oa |oa.name = 'property ') ->first().upperBound ().olAsType (Integer)Mathing Properties against eah other or against a LiteralSpeifiationonstant implies that they onform to the same type (e.g., both are of type<Primitive Type> Integer):ontext Condition inv:if self .onstant ->notEmpty () thenself. property .type . onformsTo (self .onstant .type)elseself.property ->forAll(p1 ,p2 |p1.type .onformsTo (p2.type))endif

UML Extension for Audit Modeling 94 Audit Modeling PerspetivesIn this setion, we desribe an example for audit modeling of a simple event-basedsystem. In order to thoroughly desribe a software system, di�erent modelingperspetives have to be de�ned. Therefore, we take di�erent viewpoints intoaount to explain the appliation of our UML extension to di�erent struturaland behavioral models. The perspetives in Fig. 5 are exemplary and an beused interhangeable.Fig. 5a shows a proess-based perspetive modeled via a UML ativ-ity diagram. Here, the �AuditEventSoure� stereotype is applied to twoBroadastSignalAtions. The example models a basi login proess to an ERPsystem that should inlude audit trails for suessful as well as for failed loginattempts (indiated via the �AuditEventSoure� stereotype). Two onstraintsare attahed to the ations de�ning the Trigger for the audit event and the or-responding Signal lassi�er. However, using this perspetive alone, informationabout the Signals, the AuditRules, their Conditions and Ations an not bemodeled su�iently.Therefore, Fig. 5b presents the AuditRule perspetive. It shows an ERP-Systemlassi�er that implements two methods whih math the exeution operations ofthe orresponding BroadastSignalAtions shown in Fig. 5a. The �AuditEvent-Soure� stereotypes bind both, the �signal� LoginInfo to the loginFailure()method and the �signal� LoginInfo2 to the loginSuessful() method. Further-more, Fig. 5b shows two simple AuditRules LoginError and LoginSuessful witheah having a ompartment de�ning the orresponding subsribed Signal. TheAuditRule LoginError onsists of one Condition (IfAdmin) whih heks for failedadministrator logins (i.e., if the userID inluded in the orresponding Signalinstane equals 12). The seond AuditRule LoginSuessful onsists of two on-ditions whih hek if a login happened outside of normal business hours. If oneof these Conditions evaluate to true, the log() method of the AuditTrail lassi-�er is invoked (as both AuditRules referene the same noti�ation ation). Thisperspetive, of ourse, omits all proess information.Fig. 5 shows an example of the textual perspetive. The syntax onformsto the BNF grammar de�ned in Appendix A. The textual syntax is equiva-lent to the graphial AuditRule perspetive (see Fig. 5b); i.e. all AuditRules andConditions are equally de�ned. The textual syntax an be used omplementaryto the graphial representation.Fig. 5d shows a perspetive of the audit system as a UML state mahine. Thestate mahine is used to model the reeiving Signal instanes, their Conditions,and orresponding ations. As an be seen from the AuditRule and the textualperspetive, the seond Signal named LoginInfo2 serves as the noti�ation mes-sage of ation Login suessful in the proess-based view. The state mahine, forinstane, shows the same Signal, Condition, and ation information assoiatedwith the orresponding transition. In this perspetive, the modeled states and
2 For the sake of simpliity, we assume that the administrator of the ERP system hasthe value 1 for the attribute userID.

10 UML Extension for Audit Modeling
(a) Process-based AuditEventSource perspective (b) AuditRule perspective

(c) Textual perspective

Login to

ERP system

«AuditEventSource»

Login successful

«AuditEventSource»

Login failure

...

{ trigger = loginFailure(),

publish = LoginInfo }

{ trigger = loginSuccessful(),

publish = LoginInfo2 }

[failure]

[success]

userID : Integer

timestamp : TimeExpression

«signal»

LoginInfo

publish

publish

userID : Integer

time : TimeExpression

privilege : Integer

«signal»

LoginInfo2

«AuditEventSource» loginFailure()

«AuditEventSource» loginSuccessful()

ERP-System

AuditSystem

<AR> LoginSuccessful -> LoginInfo2 :

 { AuditTrail::log() }

 <C> [time, OperatorKind::less, 08:00]

 <C> [time, OperatorKind::greater, 17:00]

«AuditEventSource» Login successful :

 loginSuccessful() -> LoginInfo2

 { userID, time, privilege }

 <AR> LoginSuccessful

«AuditEventSource» Login failure :

 loginFailure() -> LoginInfo

 { userID, timestamp }

 <AR> LoginError -> LoginInfo :

 { AuditTrail::log() }

 <C> [userID, OperatorKind::equal, 1]

(d) State-based audit system perspective

AuditSystem

(e) Sequence-based interaction perspective

AuditSystemERP-System

LoginInfo (userID, timestamp)«AuditEventSource»

loginFailure()
AuditTrail::log()

LoginInfo2 (userID, time, privilege)«AuditEventSource»

loginSuccessful()
AuditTrail::log()

par
[userID, OperatorKind::equal, 1]

[time, OperatorKind::less, 08:00 or
time, OperatorKind::greater, 17:00]

idle

start

do / observing

[shutdown]

LoginInfo2
[time, OperatorKind::less, 08:00 or
time, OperatorKind::greater, 17:00]
/ AuditTrail::log()

LoginInfo
[userID, OperatorKind::equal, 1]

/ AuditTrail::log()

[audit finished]

audit

LoginError AR

«signal» LoginInfo

IfAdmin

userID

OperatorKind::equal

1

C

condition

AuditTrail

log()

notificationAction

LoginSuccessful AR

«signal» LoginInfo2

TooEarly

time

OperatorKind::less

08:00

C

condition

time

OperatorKind::greater

17:00

TooLate C

notificationAction

condition

Fig. 5. Modeling event-based audit requirements from di�erent perspetivestheir transitions of an audit system reveal neither proess- nor objet-spei�information.Finally, Fig. 5e shows a message interation perspetive as a UML se-quene diagram. Therein, the sending and reeiving events of the two in-volved systems, together with the interhanged signal messages are shown. Both�AuditEventSoure� events are de�ned for parallel exeution, i.e. there is no se-quential order between these events. The orresponding messages are de�ned viathe respetive Signal names inluding their owned attributes. The Conditionsfor invoking audit ations are de�ned as guards on the lifeline of the AuditSystem.This perspetive neither shows the proess �ow nor the detailed struture of theaudit rules.All perspetives presented here are omplementary and an be used inter-hangeable. The ombination of perspetives are dependent on the modeledsoftware system (e.g., state-based).

UML Extension for Audit Modeling 115 Related WorkIn [35℄, Jürjens desribes how to model audit seurity for smart-ard paymentshemes with UMLSe. The UMLSe extension is de�ned as a UML pro�le. Ourextension for audit modeling supports the de�nition of di�erent audit perspe-tives and omplements the UMLSe approah. In general, we extend the UMLElement metalass and, thereby, allow to extend a wide variety of UML ele-ments with audit properties. Furthermore, our extension supports event-basedmodeling and, thus, aims to failitate the integration of audit properties intopre-existing models for heterogeneous (or legay) systems.Rodríguez et al. [36℄ present a UML pro�le extension for ativity diagramswhih aims to support the spei�ation of ertain seurity properties (e.g., aessontrol, integrity, non-repudiation, and privay). In [36℄, audits are spei�ed asan additional harateristi for another seurity property. The audit proess istreated as a logging of data, and the logged data must be de�ned via attributesof the orresponding audited entity. In ontrast, our extension is more generiand an be used to model audit rules for arbitrary UML elements. Moreover, ouraudit extension is integrated with other UML extensions for seurity modeling(see, e.g., [15, 37, 38, 39, 40℄)In [41℄, Fernández-Medina et al. provide support for modeling aess ontroland audit properties for multidimensional data warehouses with a UML pro�lede�nition. Audit requirements are onsidered by de�ning audit rules for logginguser requests and ativities. Audit rules are de�ned via a ustom-made gram-mar spei�ed in Extended Bakus-Naur-Form (EBNF). These audit rules arerepresented in the form of onstraints for a UML lass diagram. In ontrast, ourapproah is not spei� to a partiular appliation domain and an be integratedwith other UML-based approahes.In [42℄, an approah for the modeling of seurity-ritial, servie-oriented sys-tems is presented. The authors provide a UML pro�le that de�nes stereotypesfor the extension of lass diagrams. Seurity patterns and protools are appliedto identi�ed seurity ritial use ases. Servie omposition rules an be de�nedas post-obligations to be taken into aount while (or after) exeuting a protool(e.g., auditing). In [42℄, audit requirements are not de�ned as speialized mod-eling elements, but via OCL onstraints. Thus, the modeling approah is ratherspeialized and has a limited expressiveness (for both, syntax and semantis).6 ConlusionIn this paper we presented a UML extension for modeling system audits. Ourextension supports an event-based modeling style and thereby aims to enablethe integration of audit properties in a wide variety of di�erent types of UMLmodels. We support the de�nition of strutural and behavioral perspetives tomodel di�erent aspets of system audits. In addition to graphial model elements,we also provide a fully equivalent textual syntax.

12 UML Extension for Audit ModelingWith our extension, eah UML element an be de�ned as an audit eventsoure. Thus, the extension is not limited to a spei� type of UML diagram.Moreover, it an be ustomized to di�erent types of system audits. However, inthis paper we do not elaborate on the modeling of an event noti�ation servie(i.e., we omit BroadastSignalAtions and AeptEventAtions in our examples).Furthermore, we neither show an example of nested audit models nor disusswildard triggers whih invoke a spei�ed audit rule on every event ourreneof an element or nested elements. Appliation-spei� OCL onstraints an beused to further re�ne, for instane, event triggers or audit rules (e.g., pre- andpostonditions). The textual syntax of our extension is fully integrated with thegraphial perspetives and an be applied either interhangeable or in additionto the graphial models.In our future work, we will integrate support for the expliit modeling ofomposite as well as hierarhial audit event types. Moreover, we are workingon a tool integration of our extension whih will implement both, the graphialand textual syntax.AknowledgmentsThis work has partly been funded by the Austrian Researh Promotion Ageny(FFG) of the Austrian Federal Ministry for Transport, Innovation and Teh-nology (BMVIT) through the Competene Centers for Exellent Tehnologies(COMET K1) initiative and the FIT-IT program.Referenes1. Garera, S., Rubin, A.: An Independent Audit Framework for Software Depen-dent Voting Systems. In: Pro. of the 14th ACM Conferene on Computer andCommuniations Seurity (CCS). (2007) 256�2652. Hasan, R., Winslett, M.: E�ient Audit-based Compliane for Relational DataRetention. In: Pro. of the 6th ACM Symposium on Information, Computer andCommuniations Seurity. (2011) 238�2483. King, J., Smith, B., Williams, L.: Modifying Without a Trae: General AuditGuidelines are Inadequate for Open-soure Eletroni Health Reord Audit Meh-anisms. In: Pro. of the 2nd ACM SIGHIT International Health Informatis Sym-posium. (2012) 305�3144. Sandhu, R., Samarati, P.: Authentiation, Aess Control, and Audit. ACM Com-puting Surveys 28(1) (Marh 1996) 241�2435. Shneier, B., Kelsey, J.: Seure Audit Logs to Support Computer Forensis. ACMTransation on Information and System Seurity 2(2) (May 1999) 159�1766. Committee on National Seurity Systems: National Information Assurane (IA) �Glossary. Available at: http://www.nss.gov/Assets/pdf/nssi_4009.pdf (2010)7. Basel Committee on Banking Supervision: Basel II: International Con-vergene of Capital Measurement and Capital Standards. Available at:http://www.bis.org/publ/bbs107.pdf (2004)

UML Extension for Audit Modeling 138. United States Congress: Sarbanes-Oxley At of 2002. Available at:http://www.se.gov/about/laws/soa2002.pdf (2002)9. Objet Management Group: Business Proess Model and Notation (BPMN) �Version 2.0. Available at: http://www.omg.org/spe/BPMN/2.0/PDF (2011)10. Objet Management Group: OMG Uni�ed Modeling Language(OMG UML), Superstruture � Version 2.4.1. Available at:http://www.omg.org/spe/UML/2.4.1/Superstruture/PDF/ (2011)11. Seli, B.: The Pragmatis of Model-driven Development. IEEE Software 20(5)(September 2003) 19�2512. Stahl, T., Völter, M.: Model-Driven Software Development. John Wiley & Sons(2006)13. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Seurity: From UML Modelsto Aess Control Infrastrutures. ACM Transations on Software Engineering andMethodology (TOSEM) 15(1) (January 2006)14. Hoisl, B., Sobernig, S.: Integrity and Con�dentiality Annotations for Servie Inter-faes in SoaML Models. In: Proeedings of the International Workshop on SeurityAspets of Proess-aware Information Systems (SAPAIS), Vienna, IEEE (2011)15. Strembek, M., Mendling, J.: Modeling Proess-related RBAC Models with Ex-tended UML Ativity Models. Information and Software Tehnology (IST) 53(5)(2010) 456�48316. Wolter, C., Menzel, M., Shaad, A., Miseldine, P., Meinel, C.: Model-driven busi-ness proess seurity requirement spei�ation. Journal of Systems Arhiteture55(4) (April 2009)17. Deursen, A.V., Klint, P.: Little Languages: little Maintenane? Journal of SoftwareMaintenane: Researh and Pratie 10(2) (Marh 1998) 75�9218. Mernik, M., Heering, J., Sloane, A.: When and How to Develop Domain-spei�Languages. ACM Computing Surveys (CSUR) 37(4) (Deember 2005) 316�34419. Strembek, M., Zdun, U.: An Approah for the Systemati Development ofDomain-Spei� Languages. Software: Pratie and Experiene (SP&E) 39(15)(Otober 2009)20. Cannon, J.C., Byers, M.: Compliane Deonstruted. ACM Queue 4(7) (September2006)21. Damianides, M.: How does SOX hange IT? Journal of Corporate Aounting &Finane 15(6) (2004)22. Mishra, S., Weistro�er, H.R.: A Framework for Integrating Sarbanes-Oxley Com-pliane into the Systems Development Proess. Communiations of the Assoiationfor Information Systems (CAIS) 20(1) (2007)23. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, andDeploying Messaging Solutions. Addison-Wesley, Boston, Massahusetts, USA(2004)24. Mühl, G., Fiege, L., Pietzuh, P.: Distributed Event-Based Systems. Springer,Berlin Heidelberg (2006)25. Mens, T., Gorp, P.V.: A Taxonomy of Model Transformation. Eletroni Notes inTheoretial Computer Siene 152 (2006) 125�14226. Sendall, S., Kozazynski, W.: Model Transformation: The Heart and Soul of Model-Driven Software Development. IEEE Software 20(5) (2003)27. Zdun, U., Strembek, M.: Modeling Composition in Dynami Programming Envi-ronments with Model Transformations. In: Pro. of the 5th International Sympo-sium on Software Composition, Leture Notes in Computer Siene (LNCS), Vol.4089, Springer-Verlag (Marh 2006)

14 UML Extension for Audit Modeling28. Axenath, B., Kindler, E., Rubin, V.: AMFIBIA: A Meta-Model for the Integra-tion of Business Proess Modelling Aspets. In Leymann, F., Reisig, W., Thatte,S.R., van der Aalst, W., eds.: The Role of Business Proesses in Servie OrientedArhitetures. Number 06291 in Dagstuhl Seminar Proeedings (2006)29. Zdun, U.: Patterns of Component and Language Integration. In: D. Manolesu,M. Voelter, J. Noble (editors): Pattern Languages of Program Design 5. (2006)30. Objet Management Group: OMG Meta Objet Faility (MOF) Core Spei�ation� Version 2.4.1. Available at: http://www.omg.org/spe/MOF/2.4.1/PDF/ (2011)31. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elementsof Reusable Objet-Oriented Software. Addison-Wesley, Reading, Massahusetts,USA (1995)32. Objet Management Group: OMG Objet Constraint Language (OCL) � Version2.3.1. Available at: http://www.omg.org/spe/OCL/2.3.1/PDF (2012)33. Objet Management Group: OMG Uni�ed Modeling Language(OMG UML), Infrastruture � Version 2.4.1. Available at:http://www.omg.org/spe/UML/2.4.1/Infrastruture/PDF/ (2011)34. International Organization for Standardization: Information Tehnol-ogy � Syntati Metalanguage � Extended BNF (ISO/IEC 14977).Available at: http://standards.iso.org/ittf/PublilyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip (1996)35. Jürjens, J.: Modelling Audit Seurity for Smart-Card Payment Shemes with UML-SEC. In: Proeedings of the 16th International Conferene on Information Seurity,Paris, Frane (2001)36. Rodríguez, A., Fernández-Medina, E., Trujillo, J., Piattini, M.: Seure BusinessProess Model Spei�ation through a UML 2.0 Ativity Diagram Pro�le. DeisionSupport Systems 51(3) (June 2011) 446�46537. Hoisl, B., Strembek, M.: Modeling Support for Con�dentiality and Integrity ofObjet Flows in Ativity Models. In: Pro. of the 14th International Conferene onBusiness Information Systems (BIS), Berlin, Springer � Leture Notes in BusinessInformation Proessing (LNBIP), Vol. 87 (June 2011) 278�28938. Shefer, S., Strembek, M.: Modeling Proess-Related Duties with Extended UMLAtivity and Interation Diagrams. In: Pro. of the International Workshop onFlexible Work�ows in Distributed Systems, Eletroni Communiations of theEASST. (Marh 2011)39. Shefer, S., Strembek, M.: Modeling Support for Delegating Roles, Tasks, andDuties in a Proess-Related RBAC Context. In: Pro. of the International Work-shop on Information Systems Seurity Engineering (WISSE), Springer � LetureNotes in Business Information Proessing (LNBIP), Vol. 83 (June 2011)40. Shefer-Wenzl, S., Strembek, M.: Modeling Context-Aware RBAC Models forBusiness Proesses in Ubiquitous Computing Environments. In: Pro. of the 3rdInternational Conferene on Mobile, Ubiquitous and Intelligent Computing (MU-SIC). (June 2012)41. Fernández-Medina, E., Trujillo, J., Villarroel, R., Piattini, M.: Aess Control andAudit Model for the Multidimensional Modeling of Data Warehouses. DeisionSupport Systems 42(3) (Deember 2006) 1270�128942. Memon, M., Hafner, M., Breu, R.: SECTISSIMO: A Platform-independent Frame-work for Seurity Servies. In: Proeedings of the Modeling Seurity Workshop inAssoiation with MODELS 2008, Toulouse, Frane (2008)

UML Extension for Audit Modeling 15A Textual Syntax for the SeurityAudit Pakage

<
S
e
c
u
r
i
t
y
A
u
d
i
t
>

:
:
=

(
<
A
u
d
i
t
E
v
e
n
t
S
o
u
r
c
e
>

|

<
A
u
d
i
t
R
u
l
e
>
)
*

<
A
u
d
i
t
E
v
e
n
t
S
o
u
r
c
e
>

:
:
=

’
<
<
A
u
d
i
t
E
v
e
n
t
S
o
u
r
c
e
>
>
’

U
M
L
:
:
E
l
e
m
e
n
t
.
n
a
m
e

’
:
’

<
T
r
i
g
g
e
r
>

’
-
>
’

<
P
u
b
l
i
c
a
t
i
o
n
>

<
A
u
d
i
t
R
u
l
e
>

<
T
r
i
g
g
e
r
>

:
:
=

U
M
L
:
:
T
r
i
g
g
e
r
.
n
a
m
e

<
P
u
b
l
i
c
a
t
i
o
n
>

:
:
=

U
M
L
:
:
S
i
g
n
a
l
.
n
a
m
e

|

<
S
i
g
n
a
l
>

<
S
i
g
n
a
l
>

:
:
=

U
M
L
:
:
S
i
g
n
a
l
.
n
a
m
e

’
{
’

U
M
L
:
:
S
i
g
n
a
l
.
a
t
t
r
i
b
u
t
e
.
n
a
m
e

[
’
,
’

U
M
L
:
:
S
i
g
n
a
l
.
a
t
t
r
i
b
u
t
e
.
n
a
m
e
]
*

’
}
’

<
A
u
d
i
t
R
u
l
e
>

:
:
=

’
<
A
R
>
’

U
M
L
:
:
A
u
d
i
t
R
u
l
e
.
n
a
m
e

(

’
-
>
’

<
S
u
b
s
c
r
i
p
t
i
o
n
>

’
:

{
’

<
A
c
t
i
o
n
>

[
’
,
’

<
A
c
t
i
o
n
>
]
*

’
}
’

<
C
o
n
d
i
t
i
o
n
>
+

)
?

<
S
u
b
s
c
r
i
p
t
i
o
n
>

:
:
=

<
P
u
b
l
i
c
a
t
i
o
n
>

<
A
c
t
i
o
n
>

:
:
=

U
M
L
:
:
B
e
h
a
v
i
o
r
a
l
F
e
a
t
u
r
e
.
n
a
m
e

<
C
o
n
d
i
t
i
o
n
>

:
:
=

’
<
C
>
’

(

U
M
L
:
:
C
o
n
d
i
t
i
o
n
.
n
a
m
e

|

’
[
’

<
O
p
e
r
a
n
d
>

’
,
’

<
O
p
e
r
a
t
o
r
>

’
,
’

<
O
p
e
r
a
n
d
>

’
]
’

)

<
O
p
e
r
a
n
d
>

:
:
=

<
P
r
o
p
e
r
t
y
>

|

<
C
o
n
s
t
a
n
t
>

<
P
r
o
p
e
r
t
y
>

:
:
=

U
M
L
:
:
P
r
o
p
e
r
t
y
.
n
a
m
e

<
C
o
n
s
t
a
n
t
>

:
:
=

U
M
L
:
:
L
i
t
e
r
a
l
S
p
e
c
i
f
i
c
a
t
i
o
n

<
O
p
e
r
a
t
o
r
>

:
:
=

U
M
L
:
:
O
p
e
r
a
t
o
r
K
i
n
d
:
:
E
n
u
m
e
r
a
t
i
o
n
L
i
t
e
r
a
l

	A UML Extension for the Model-driven Specification of Audit Rules
	Bernhard Hoisl and Mark Strembeck
	Introduction
	Motivation and Approach Synopsis
	UML Audit Extension
	Metamodel Overview
	Metamodel Elements' Syntax and Semantics

	Audit Modeling Perspectives
	Related Work
	Conclusion
	References
	Textual Syntax for the SecurityAudit Package

