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Graphical Models: General

Graphical models (GM) allow multivariate analysis of complex
dependency structures

They are probability distributions over a multidimensional space
encoded by graphs (as a set of vertices/variables, V, and a set of
edges/relationships between variables, E)

Different types: undirected GM (e.g., Markov random fields),
directed GM (e.g., Bayesian Networks, DAG), Chain GM

GM represent multivariate dependencies by conditional
dependence and independence statements

Thus they can help in reducing overall complexity and allow
model formulation, identification and selection
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Graphical Models: Example

A simple graphical model (a Markov random field):

In GM the Markov property of graphs allows to factorize the
distribution FV into a set of conditional distributions, e.g., for
V = {A,B,C,D} by way of densities: fV = fA|B × fB|C × fC|D × fD

Thus the problem of fitting graphical models effectively reduces
to estimating a series of conditional distributions
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Chain Graph Models: General

Chain graph models (CGM) are a mixture of directed and
undirected graphical models

They are particularly interesting for social and behavioral
sciences (observational studies, complex multivariate
dependencies, existing substantive knowledge)

In CGM, all variables are assigned to boxes (disjoint variable
subsets Vt,V =

⋃
t Vt) by theory or substantive knowledge

Between boxes exist directed edges, within boxes the edges are
undirected
Two types of CGM:

Univariate recursive regression graph model (URRG; one variable
per block)
Joint response chain graph model (JRCG; more than one variable
per block)
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Chain Graph Models: Factorization

A joint response chain graph model:

In CGM factorization happens at least recursively between
blocks: fV = fVT |VT−1,...,V1

× fVT−1|VT−2,...,V1
× · · · × fV1 .

Possibly additional conditional independence by missing edges,
e.g., for the above graph
fV = fF|C,E,D,A,B × fC,E,D|A,B × fA,B = fF|C,E × fC,D|A,B × fE|B × fA,B
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Chain Graph Models: Estimation

For CGM there are no theoretical restrictions on the form of the
conditional distributions (though usually conditional Gaussian
distributions; Lauritzen & Wermuth, 1989)

In particular variable types can be of mixed type within and
between boxes (discrete and continuous components)

General algorithms for computing estimates in every CGM under
every possible variable type specification are not yet available

Fitting the conditional distributions of the factorization with a
series of multiple univariate conditional regressions is feasible
(Wermuth & Cox, 2001)

Cox & Wermuth (1996; see also Caputo et al., 1997) lay out ideas
for a data-driven, heuristic selection strategy to approximate the
CGM by univariate conditional regressions
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The coxwer Functionality in R

We implemented an algorithm based on the ideas of the Cox-Wermuth
heuristic in R for approximate fitting of JRCG and URRG models.

Currently, there are the following functions intended for the user:

cw-class S3 class for objects from a Cox-Wermuth fit
coxwer Fit a JRCG or a URRG via Cox-Wermuth

selection strategy
prep_coxwer Setup of variable frame, block membership and

variable type (interactive)
summary, print S3 methods for class cw
plot, predict
adjmatrix Extracts the adjacency matrix
write_cw Writes and saves the graph in igraph format

SLIDE 8 Psychoco 2013, 14-02-2013



Using the coxwer Function I

coxwer arguments are a variable frame and an observations ×
variables data frame.

The variable frame defines the block and type of a variable. It
must have the same row names as the data frame has column
names.

type block
age cont 5
wifeEdu ord 4
husbEdu ord 4
nrChild count 1
wifeRel bin 4
wifeWork bin 4
husbOcc categ 4
solIndex ord 3
mediaExp bin 2
contraceptive categ 1

The prep_coxwer function allows to define the variable frame
interactively.
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Using the coxwer Function II

Further arguments to coxwer are:

adjfile: Save the adjacency matrix to this file.
autodetect: Automatically assign the data type to the variables in
the data frame according to variable type in the variable frame.
pen, signif: Parameters for screening and model selection. pen is
the penalty for the information criterion used in stepAIC and
signif the significance level when screening for higher-order
effects and non-linearities.
contrasts: The contrasts to be used for categorical predictors.
Defaults to dummy coding for ordered and unordered factors.
silent: Flag for whether model fitting progress should be printed.
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The coxwer Selection Algorithm

Our algorithm is roughly the following (cf. Caputo et. al., 1997):

1 Start in the block with the lowest number
2 Take one variable from that block. Fit main effects model with all

the variables in the same block or higher block.
3 Screen for quadratic effects (metric variables) and two-way

interactions by adding of single terms. Retain the ones with an
associated p-value < signif.

4 Fit the model with main and retained effects.
5 Use backward selection to reduce the model.
6 Re-enter interactions for the terms that remain in the model.
7 Use backward selection.
8 Re-enter quadratic terms for remaining effects.
9 Use backward selection.
10 If other variables in the same block: Repeat for them. Else: jump

to next block and repeat.
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Univariate Models used by coxwer

For binary targets: binomial logistic models
stats::glm(...,family=binomial,link=logit)

For unrestricted continuous targets: OLS/Gaussian linear models
stats::glm(...,family=gaussian,link=identity)

For positive continuous targets: gamma or inverse Gaussian GLM
stats::glm(...,family=Gamma,link=inverse)
stats::glm(...,family=inverse.gaussian,link=1/mu2)

For count targets: Poisson/negative binomial loglinear models
MASS::glm.nb(...,link=log)

For categorical targets: multinomial logistic models
nnet::multinom(...,link=logit)

For ordinal targets: proportional odds logistic models
MASS::polr(...,link=logit)
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CMC: Data

For illustration we fit a JRCGM for contraceptive methods choice
(CMC) in a subset of the 1987 National Indonesia Contraceptive
Prevalence Survey (Lim et. al., 1999)
Overall we have 1473 observations of married women on 10
variables.

Age (age; continuous)
Education (wifeEdu; ordinal 1=low, 2, 3, 4=high)
Husband’s education (husbEdu; ordinal 1=low, 2, 3, 4=high)
Number of children ever born (nrChild; count)
Religion (wifeRel; binary; 0=Non-Islam 1=Islam)
Wife’s now working? (wifeWork; binary 0=Yes, 1=No)
Husband’s occupation (husbOcc; categorical 1, 2, 3, 4)
Standard-of-living index (soliNdex; ordinal 1=low, 2, 3, 4=high)
Media exposure (mediaExp; binary 0=Good, 1=Not good)
Contraceptive method used (contraceptive; categorical 1=No-use
2=Long-term 3=Short-term)

SLIDE 13 Psychoco 2013, 14-02-2013



CMC: Blocks

Blocks

Block 1 - Dependent variables: contraceptive, nrChild
Block 2 - Intermediate variable: mediaExp
Block 3 - Intermediate variable: solIndex
Block 4 - Intermediate variables: wifeEdu, husbEdu, wifeRel,
wifeWork, husbOcc
Block 5 - Purely explanatory variable: age
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CMC: coxwer Results

> cmc_prep <- prep_coxwer(cmc)
> res.cmc <- coxwer(cmc_prep, cmc)

TARGET: nrChild (poisson loglinear model)
TARGET: contraceptive (multinomial logit model)
TARGET: mediaExp (binomial logit model)
TARGET: solIndex (proportional odds logit model)
TARGET: wifeEdu (proportional odds logit model)
TARGET: husbEdu (proportional odds logit model)
TARGET: wifeRel (binomial logit model)
TARGET: wifeWork (binomial logit model)
TARGET: husbOcc (multinomial logit model)

> print(res.cmc)

Adjacency Matrix:

1 2 3 4 5 6 7 8 9 10
1 age 0 1 1 1 1 0 1 1 1 1
2 wifeEdu 0 0 1 1 1 0 1 1 1 1
3 husbEdu 0 1 0 0 0 0 1 1 0 0
4 nrChild 0 0 0 0 0 0 0 0 0 1
5 wifeRel 0 1 1 1 0 0 1 1 0 0
6 wifeWork 0 1 0 1 0 0 0 0 0 0
7 husbOcc 0 1 1 0 1 0 0 1 0 0
8 solIndex 0 0 0 0 0 0 0 0 1 0
9 mediaExp 0 0 0 0 0 0 0 0 0 0

10 contraceptive 0 0 0 1 0 0 0 0 0 0
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CMC: Joint Response Chain Graph

> plot(res.cmc)
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CMC: Target “nrChild”

> plot(res.cmc)
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CMC: Model for “nrChild”

> summary(res.cmc,target=c("nrChild","contraceptive"))
---------- Summary for dependent variable: nrChild ----------

Call:
stats::glm(formula = y ~ age + wifeEdu + wifeRel + wifeWork +

contraceptive + I(poly(age, 2)[, 2]), family = curr.family,
data = dat)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.3620 -0.6483 -0.1031 0.5343 3.5907

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.228343 0.110211 -11.145 < 2e-16 ***
age 0.058168 0.002117 27.480 < 2e-16 ***
wifeEdu2 0.012220 0.050068 0.244 0.807
wifeEdu3 -0.075736 0.049643 -1.526 0.127
wifeEdu4 -0.351352 0.049615 -7.082 1.42e-12 ***
wifeRel1 0.263919 0.044373 5.948 2.72e-09 ***
wifeWork1 0.171091 0.035053 4.881 1.06e-06 ***
contraceptive2 0.334047 0.039516 8.454 < 2e-16 ***
contraceptive3 0.348241 0.035753 9.740 < 2e-16 ***
I(poly(age, 2)[, 2]) -5.163229 0.622035 -8.301 < 2e-16 ***
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2529.0 on 1472 degrees of freedom
Residual deviance: 1452.1 on 1463 degrees of freedom
AIC: 5529.9

Number of Fisher Scoring iterations: 5
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CMC: Target “contraceptive”

> plot(res.cmc)
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CMC: Model for “contraceptive”

> summary(res.cmc,target=c("nrChild","contraceptive"))
---------- Summary for dependent variable: contraceptive ----------
Call:
nnet::multinom(formula = y ~ age + wifeEdu + nrChild + I(poly(nrChild,

2)[, 2]), data = dat, Hess = TRUE, trace = FALSE, MaxNWts = 5000)

Coefficients:
(Intercept) age wifeEdu2 wifeEdu3 wifeEdu4 nrChild

2 -2.292873 -0.04835992 0.8820847 1.8373202 3.096257 0.3578242
3 1.745353 -0.11908511 0.2365778 0.6442521 1.337352 0.3558117
I(poly(nrChild, 2)[, 2])

2 -25.60374
3 -26.44224

Std. Errors:
(Intercept) age wifeEdu2 wifeEdu3 wifeEdu4 nrChild

2 0.5138863 0.01211590 0.4047368 0.3869659 0.3816910 0.04444398
3 0.3756312 0.01136707 0.2482052 0.2452609 0.2461524 0.04057962
I(poly(nrChild, 2)[, 2])

2 3.570454
3 3.223996

Residual Deviance: 2708.166
AIC: 2736.166
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Conclusion

Applicability
The procedure allows to explore multivariate dependencies and
approximate the real CGM
Neglects some information in the multivariate structure (loss of
efficiency)
Validity of equivalence of Markovian properties for the whole
graph is not ensured

Program
Intended to further broaden the availability and applicability of
algorithms for graphical models in R.
Provides a unified, user-friendly way of approximately fitting CGM
with mixed variable types.
Implementation can be used as a building block in even more
complicated computational tasks, e.g., Wurzer & Hatzinger (2013).
The coxwer procedure is not very fast and computing time
increases massively for a large number of variables.
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Outlook

Current future plans

Release it (look for gRchain or chaingraphs on R-Forge)

Extend support to other variable types

Formula interface, normalizing of inputs and standardized effects

New screening option that does not rely on p values

New model selection option by L1-regularization

New way of treating within-block association

Unified model summary

Add support for model diagnostics and interpretation

Leverage/use/embed functionality offered in packages such as
ggraph, gRBase, igraph,...

Incorporate measurement models/latent variables
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