
Model Uncertainty and
Aggregated Default
Probabilities: New Evidence
from Austria
Paul Hofmarcher, Stefan Kerbl, Bettina Grün,
Michael Sigmund, Kurt Hornik

Research Report Series Institute for Statistics and Mathematics
Report 116, December 2011 http://statmath.wu.ac.at/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/11007854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Model Uncertainty and Aggregated Default

Probabilities: New Evidence from Austria

Paul Hofmarchera, Stefan Kerblb, Bettina Grünc,
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Abstract

Understanding the determinants of aggregated default proba-

bilities (PDs) has attracted substantial research over the past

decades. This study addresses two major difficulties in un-

derstanding the determinants of aggregate PDs: Model uncer-

tainty and multicollinearity among the regressors. We present

Bayesian Model Averaging (BMA) as a powerful tool that over-

comes model uncertainty. Furthermore, we supplement BMA

with ridge regression to mitigate multicollinearity. We apply

our approach to an Austrian dataset. Our findings suggest that

factor prices like short term interest rates and energy prices

constitute major drivers of default rates, while firms’ profits re-

duce the expected number of failures. Finally, we show that the

results of our baseline model are fairly robust to the choice of

the prior model size.

JEL Classification: E44, C52, E37.
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1 Introduction

Understanding the driving factors of aggregated probabilities of corpo-

rate defaults is an important topic both for financial institutions and

supervisors. For example, conducting meaningful stress tests requires

the translation of macroeconomic scenarios into portfolio losses. The

same applies when financial institutions and supervisors are interested

in forecasting the credit quality of portfolios on an aggregated level.

Both in the field of macro prudential supervision and strategic risk

management a knowledge of the determinants of aggregated defaults

is crucial.

Consequently, estimating the link between macroeconomic vari-

ables and probabilities of defaults has been a long-standing topic in re-

search, as numerous papers testify (see below). However, the classical

approach of regression faces a major challenge: Due to the sparse the-

oretical framework of how firm defaults are linked to specific macroe-

conomic variables, researchers are compelled to draw on their intuition

which macro variables to include or not. Such a procedure neglects

the uncertainty in the model choice and might end up with wrong con-

clusions. This challenge, commonly known as model uncertainty, is a

problem shared with many other empirical fields of research. In what

follows we present a state-of-the-art statistical approach of dealing

with model uncertainty, a combination of Bayesian Model Averaging

and ridge regression which we then apply to Austrian data.

Motivated by the high interest in the topic from industry and su-

pervisors, there is a growing body of literature examining the relation-

ship between firm defaults and economic conditions. Altman (1983)

uses augmented distributed lags to demonstrate the effect of GNP,

money supply and corporate profits on firms’ ability to survive. Alt-

man (1984) presents a survey discussing different business failure mod-

els that have been tested and developed outside the United States. Liu

and Wilson (2002) use a time-series model to construct measures show-

ing that interest rate and insolvency legislation are important variables

in explaining firm bankruptcy. Similarly, Virolainen (2004) regresses

Finnish sector-specific default rates on macroeconomic indicators like
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GDP, interest rates and levels of corporate indebtedness. Liu (2004)

uses an error-correction model to investigate the macroeconomic deter-

minants of UK corporate failure rates. Liu (2009) extends this research

by implementing a vector error-correction model specifically account-

ing for policy-induced changes in the macroeconomy, concluding that

macro variables like the interest rate and inflation impact firm failures.

Simons and Rolwes (2009) use macroeconomic-based models for esti-

mating default probabilities using a Dutch dataset. Additionally, they

compare their results with Austrian data. They conclude that for both

countries their model delivers different results, deducing that their pro-

vided model is country specific. Further contributions are Koopman

and Lucas (2005) who analyse the co-movement of credit and macro

cycles in the US and Foglia et al. (2009) who examine Italian default

frequencies per sector.

Screening the literature reveals that authors have to rely on expert

knowledge when deciding upon the inclusion or non-inclusion of macro

variables. To the best of our knowledge, uncertainty about the cor-

rect model specification for aggregated probabilities of default has not

explicitly been addressed yet. The approach we present here refrains

from assuming that there is one“true”model but instead averages over

a huge number of potential models.

This approach is known as Bayesian Model Averaging (BMA) (see

Hoeting et al., 1999). Thereby, the researcher controls the model size

via a prior model inclusion probability for each variable1. Sampling

from the set of regressors BMA then computes a huge number of mod-

els, which are weighted by their marginal likelihood and subsequently

averaged. This simple procedure reveals important determinants of

the dependent variable and their respective coefficients.

As noted above, BMA is becoming a central tool applied in deal-

ing with model uncertainty, or in general settings with large numbers

of potential regressors and relatively limited numbers of observations

(see Ley and Steel, 2009). In the literature on growth determinants

1The approach we follow here attaches the same prior inclusion probability to

each variable (see Section 2). However, in general the researcher could attach a

higher probability to variables deemed to be of special relevance.
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Fernandez et al. (2001) and Sala-I-Martin et al. (2004) propose BMA

to identify robust drivers of countries’ average growth. Wright (2008)

and Avramov (2002) use BMA to forecast exchange rates and stock

returns respectively. Empirical results have shown that BMA might

outperform single model in prediction (see Hoeting et al., 1999).

However, at least in our case highly correlated candidate variables

(multicollinearity) constitute an issue to be accounted for. To some

extent this fact arises due to the inclusion of lagged explanatory vari-

ables, which display a particularly high correlation. To explicitly deal

with this correlation structure we supplement BMA with a shrinkage

method, ridge regression (Hoerl and Kennard, 1970a,b). Ridge re-

gression aims at avoiding the commonly observed characteristic upon

inclusion of highly correlated variables: coefficients display high abso-

lute magnitudes which are cancelled out by coefficients of correlated

cousins of comparable magnitude with reversed sign. By adding a

penalty term dependent on the size of coefficients ridge regression in-

deed overcomes this issue.

The remainder of the paper proceeds as follows. Section 2 presents

the methodological approach outlined above, i.e. BMA and ridge re-

gression. We then apply this approach in Section 3 and Section 4,

whereby the former presents the dataset and the latter the results. Fi-

nally, Section 5 concludes and provides discussion on further research.

2 Model Specification and Estimation

In the following subsections we give a brief overview of the methods we

apply. First, we highlight the advantage of ridge regression. Second,

we refine our methodology by introducing the spike and slab approach,

a specific BMA technique to account explicitly for model uncertainty.

In order to introduce the methodological approach presented in

this paper, we start with the familiar framework of linear regression.

Here, we assume that the relationship between the logit transformed

aggregated default rates, as response variable, y (N×1) and the design

matrix of the explanatory variables (here the macro variables) X (N×
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K) is given by the linear regression

y = Xβ + ε, (1)

where ε ∼ N(0, σ2IN ). The vector β denotes the parameter vector of

interest. Assuming that the explanatories X are highly correlated the

standard OLS estimator β̂ = (X′X)−1X′y might be ill-conditioned

(multicollinearity). In particular, at least one of the eigenvalues ηk
of X′X will move towards zero, inflating the variance of the OLS

estimator E((β̂ − β)′(β̂ − β)) = σ2
∑

K η−1k .

2.1 Ridge Regression and Bayesian Ridge Regres-
sion

Ridge regression (see Hoerl and Kennard, 1970a) belongs to the class of

shrinkage methods in the context of linear regression models. In con-

trast to well known subset selection algorithms (e.g. Forward Stepwise

Selection) it does not retain a subset of predictors and discard the rest

but shrinks the size of predictors proportionally in accordance with

their importance (Friedman et al. 2009). To see why this is so valu-

able imagine the usual setup of highly correlated variables in the design

matrix leading to large positive and negative coefficients and thus to

unreliable results. Indeed, multicollinearity may result in poorly de-

termined parameters. One way to deal with multicollinearity is the use

of ridge regression. From a frequentist point of view, ridge regression

solves the optimization problem

β̂ridge = argmin
β



(y −Xβ)′(y −Xβ) + λ

K∑

j=1

|βj |2


 . (2)

The Lagrangian parameter λ defines how much the classical OLS–

βs are shrunk. If λ moves towards 0 then the constraint is not binding

and one arrives at the OLS solution.

As for OLS, it is possible to give a closed solution of the ridge

regression problem, which is given by

β̂ridge = (X′X + λI)−1X′y. (3)
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The ridge regression solution is very similar to the OLS solution

(except for the term λI) and is linear in the response variable y. The

proportional shrinkage of the ridge parameters via the L2 norm in

Equation 2 provides the ability to cope with correlated variables as

large coefficients are penalized. Clearly, a precondition of ridge re-

gression is the standardisation of regressors in order to treat variables

measured on different scales equally. An analogous approach to ridge

regression is available in a Bayesian setting. Bayesian ridge regression

was first introduced by Hsiang (1975). Keeping the assumptions of

linear regression and setting λ = σ2/τ2 one implements the following

hierarchical Bayesian model:

y|β, σ2 ∼ N(Xβ, σ2In), (4)

where the prior specifications of the coefficients β

is given by

β|τ2 ∼
P∏

j=1

N(0, τ2), (5)

with proper priors2 for the variances σ2 and τ2.

The prior on β conditional on τ and the fact that y ∼ N(Xβ, σ2In)

allows for the use of Markov Chain Monte Carlo (MCMC) sampling

to estimate the posterior distribution of interest.

2.2 Model Uncertainty

As outlined in the introduction, an important task in statistical mod-

eling is the choice of an optimal model from the set of all possible

models. With K potential explanatory variables, one faces 2K pos-

sible combinations of regressors. Selecting the best model out of 2K

linear models is a challenging task. In addition, several models with

similar performance might arise which does not allow for an unambigu-

ous single best choice. Thus, the uncertainty associated with a selected

model is an important aspect, especially when it comes to forecasting

2Any inverted gamma prior for σ2 and τ2 would maintain conjugacy. Here we

use the limiting improper priors 1
σ2 , respectively 1

τ2 .
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(see Steel, 2011). One natural way to deal with model uncertainty is

to pool over the considered models — as BMA does. Thereby, weights

of the single models depend on how much the data support each model

via the posterior distribution. An excellent review of BMA is given

in Hoeting et al. (1999). Using BMA, one obtains the distribution of

some quantity of interest β, e.g., the effect of a macro-variable, by

averaging inference over all models Mk

P (β|Z) =
2K∑

l=1

P (β|Ml,Z)P (Ml|Z), (6)

where P (Mk|Z) is the posterior probability of model Mk given the

whole dataset Z (X and y combined) and is derived by

P (Mk|Z) =
P (Z|Mk)P (Mk)∑
l P (Z|Ml)P (Ml)

, (7)

where P (Mk) is the prior probability of model Mk and P (Z|Mk) is the

marginal or integrated likelihood of model Mk obtained by integrating

over the parameters (see Hoeting et al., 1999). Suitable choices of prior

inclusion probabilities P (Mk) allow to control the expected model size,

i.e., the number of included parameters. In order to sample different

models Mk of varying size and average across them, we make use

of spike and slab priors (Mitchell and Beauchamp, 1988; George and

McCulloch, 1993, 1997).

2.2.1 Model Uncertainty via the Spike and Slab Approach

The central point in using spike and slab priors is to assign each coeffi-

cient a prior which is a mixture of a point mass at zero and a specified

“slab” distribution. This allows to exclude variables from the regres-

sion. In this sense spike and slab constitutes an optimal supplement

to ridge regression which alone does not provide variable selection.

Formally, we modify the prior defined in Equation 5 and use for all

considered regressions discussed in this work a coefficient prior of the

form

P (βj |cj , τ, σ2) ∼ (1− cj)I0 + cjπ(τ), (8)
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where cj is a binary random variable with success probability γ =

P (cj = 1) (which we set to the same value for all candidate regressors

j). π(τ) is the prior distribution of βj defined by Equation 5.

The Posterior Inclusion Probability (P (cj = 1|Z) or PIP3) of each

variable j contains valuable insights about the importance of variable

j. In particular, the PIP is of high value as it displays the fraction of

models visited in which variable j was selected, P (cj = 1|Z).4 PIP can

thus be understood as a measure of “posterior importance” of a given

variable and is a widely used measure in Bayesian Model Averaging

(see Sala-I-Martin et al., 2004).

2.2.2 Model size

We have not yet discussed in detail the specification of the prior vari-

able inclusion probabilities used by the spike and slab approach in

Equation 8.

One possible approach would be to assign each variable βj an un-

informative inclusion probability of γ = 0.5, i.e. cj is drawn from a

Bernoulli distribution Be(0.5). This has the odd and troubling impli-

cation that we assume the number of included variables to be very large

(see Sala-I-Martin et al., 2004). In particular the expected model size,

E[Mj ], equals K × 0.5, where K is the number of candidate regressors.

In our case, as explained below, we have 160 candidate regressors to

choose from, K = 160, which would results in a very large prior model

size, E[Mj ] = 80. Models of this size are uncommon as researchers

and practitioners prefer smaller models. Therefore, instead of choos-

ing one value for the prior model size, we specify a range of values for

prior mean model sizes k̄, with each variable having a prior inclusion

probability of γ = k̄/K, independent of the inclusion of other vari-

ables. We estimated our models for 9 different expected prior model

sizes, k̄ ∈ {5, 7, 9, 11, 16, 22, 28, 40, 80} resulting in the prior inclusion

probabilities shown in Table 1.

We follow Sala-I-Martin et al. (2004) in assuming that most re-

searchers strongly prefer models containing a large number of vari-

3For convenience we omit subscripts to PIP throughout this paper.
4See Mitchell and Beauchamp (1988).
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k̄ 5 7 9 11 16 22 28 40 80

γ 0.031 0.044 0.056 0.069 0.1 0.14 0.18 0.25 0.5

Table 1: Prior model size and associated prior inclusion probabilities

for the single variables.

ables so we will concentrate on models with prior model sizes between

5 and 16 variables. This is also in line with the fact that most empirical

models on aggregated default rates (see Simons and Rolwes, 2009; Liu,

2009) use moderate numbers of explanatory variables. Our benchmark

model will have the prior model size of k̄ = 7. While we calculate re-

sults for large models as well, we will not focus our attention on these

cases when it comes to interpretation.

2.3 Estimation

In order to estimate our models we used Markov Chain Monte Carlo

(MCMC) methods. In particular, the Gibbs sampler ran for 200, 000

iterations, using a thinning of 10. The first 10, 000 draws were dis-

carded as burn-in period. This results in 19, 000 draws from the pos-

terior for each parameter of interest. All the computations are done

using JAGS (Just another Gibbs sampler) and its R (see R Develop-

ment Core Team, 2011) interface packages rjags (see Plummer, 2011).

MCMC diagnostic is done with the package coda (see Plummer et al.,

2010).

3 Data

We now apply the presented framework of BMA with ridge regres-

sion to analyse aggregate default probabilities in Austria. A common

approach taken in the literature (see e.g. Simons and Rolwes, 2009;

Foglia et al., 2009, among many others) is to use firm default frequen-

cies as proxy for default probabilities. We follow this line by basing

our analysis on quarterly corporate insolvency frequencies for the pe-
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riod between January 1987 and April 2011. These insolvency rates are

aggregated over all Austrian corporate sectors and are

calculated by dividing the number of quarterly defaults by the total

number of firms, which results in quarterly aggregated default rates,

pd. The number of firm defaults and the total number of firms were

obtained from the Austrian creditor association Kreditschutzverband

von 1870. As noted above, we transform default rates via the logit

function, i.e.,

y := logit(pd).

The set of potential explanatory variables contain 32 different macroe-

conomic variables which are taken from the database of Oesterreichis-

che Nationalbank (OeNB).5 These macroeconomic variables are part of

the Austrian Quarterly Forecast Model (AQM) and are used for fore-

casting by the OeNB twice a year. As this dataset reflects the variable

set of a macroeconomic forecasting model, our results can be used

to integrate the time-series of credit defaults into the macro-model,

or implement a stress testing framework building on the respective

macroeconomic forecasts.

Another advantage of using this dataset is that the list of candi-

date regressors covers multiple aspects of the economic environment.

We consider financial regressors, like interest rates, the stock index

and credit amount outstanding, private sector indicators, e.g., private

consumption and disposable income, as well as general and external

trade related variables, like GDP, exports and investment. Addition-

ally, various price indicators, like the harmonized consumer price index

or the oil price are included.

This large set is even further increased by adding lags up to 4 quar-

ters of each candidate regressor, hence resulting in a design matrix X

containing 160 explanatory variables each with 97 quarterly observa-

tions. The variable names, the applied transformation as well as two

of their autocorrelation coefficients are illustrated in Table 2. The

variables included were transformed as indicated in column 2 in Ta-

ble 2 to ensure stationarity of the time-series. “YoY-Log-Difference”

5The only exception is the ATX, Austrian Traded Index, which was taken from

Datastream.
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equals a transformation of the original time-series, Xt, by logXt −
logXt−4, “YoY-Difference” by Xt−Xt−4 and “YoY-Rel-Difference” by

(Xt/Xt−4)− 1 where t is the time indicator in quarters.6

4 Results

In this section we present the results from the combined approach of

BMA with ridge regression described in Section 2 applied to the Aus-

trian dataset. To assess variable importance we calculate the posterior

inclusion probabilities (PIP). These are a central quantity within BMA

to measure a variable’s importance (see Sala-I-Martin et al., 2004). In

line with prior research (and intuition), we focus on variables with a

higher PIP than their prior inclusion probability, i.e,. variables that

are deemed more important after consideration of the data. Addition-

ally, means and standard deviations of the coefficients — conditional

on model inclusion — are displayed.

4.1 Macroeconomic predictors of firm failure rates:
Baseline estimation

We are now ready to present the baseline estimation results with a

prior model size7 of 7. We find a posterior mean of 10.12, which is

clearly above the prior model size and suggests that the posterior puts

more importance on models with more explanatories.8

Table 3 presents the results of our analysis: The first column re-

ports the PIP of the variables within the applied BMA framework. We

6Note that this transformation is followed by a standardisation (subtraction of

mean and division by standard deviation) within the ridge regression.
7Note that as described in Section 2.2.2 a prior model size of 7 does not mean

each model includes exactly 7 variables, but that each candidate regressor has a

probability of inclusion, which yields on average a model size of 7.
8For the sake of completeness we provide here posteriors related to the shrinkage

parameter (see Section 2.1). We find for the shrinkage parameter λ = σ2/τ2 a

posterior mean of 0.72012, whereby flat (uninformative) hyperpriors on τ2 and σ2

were assumed. The posterior means of the variances σ2 and τ2 are 0.11893 and

0.16516 respectively.
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sorted the variables in decreasing order of PIP and print only those

which have a PIP greater than the prior inclusion probability.

From Table 3 we infer that the 3-month interest rate lagged by four

quarters (STI L4) has the highest PIP. Its posterior mean coefficient

(P.MEAN) is positive and in line with standard economic theory that

higher costs of funding imply higher PDs. Similarly, higher interest

rates do not only increase the cost of funding but also prevent firms

from receiving further funding due to bank lending standards, thus

triggering firm failures. This finding is in line with previous litera-

ture. Vlieghe (2001), Liu and Wilson (2002) and Liu (2009) among

many others report this strong and positive dependence between firm

defaults and interest rates.

Interestingly, the second most important variable is the unlagged

short term interest rate, STI, which has a negative posterior mean.

The fact that the unlagged short term interest rate is negatively re-

lated to firm defaults is to the authors’ knowledge a common puzzle

in empirical works on aggregate credit risk (see e.g. Ali and Daly 2010

or Divino et al. 2008). However, there is an economic interpretation

for this result. STI are usually highly correlated with central bank

fund rates and these tend to be raised in economic boom phases to

avoid overheating. Thus, higher short term interest rates are a timely

measure for economic activity. Clearly, in economic good times PDs

tend to decline.

On the third rank we find energy prices with a lag of one year,

HEG L4. Energy prices constitute an essential determinant of factor

prices and thus obviously pose a very relevant risk factor from the

perspective of firms. Its posterior mean of 0.084 indicates a positive

relationship between defaults and rising energy prices. This finding

illustrates the power of BMA. While numerous papers have identified

inflation as a determinant of aggregated default rates (see e.g. Foglia

et al., 2009; Virolainen, 2004), we find a component of inflation, energy

price rises, as one major factor. Owing to the application of BMA one

is able to include components of indicators instead of the aggregates

such as inflation or GDP yielding more precise conclusions.

The fourth most important variable according to its PIP is nominal
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import growth (MTN). To find imports among the top ranks is surpris-

ing as respective literature usually refrains to include it. However, the

positive sign of the coefficient can be supported by several arguments.

Firstly, imports by corporates are expenses. Ceteris paribus higher

expenses increase the default probability. Secondly, more imports by

private households could substitute domestic products which decrease

the average revenue of domestic corporates. Thirdly, the time-series

of imports might also catch exchange rate fluctuations to some ex-

tent, which in turn appear in papers as in Foglia et al. (2009) and

Bhattacharjee et al. (2009).

The fifth (and tenth) highest PIPs can be observed for PRO L1

(PRO), the log differences of the average labour productivity. While

the interpretation is less straight forward, it might be that an increase

in labor productivity drives those firms out of the market which can

not adopt such a productivity shock in their business strategy.

Furthermore, on the following ranks we find GON, gross operating

surplus, and WIN, total compensation to employees. Both variables

have the expected sign of the posterior mean. GON measures profits

of firms which intuitionally lower firm defaults and is also reported

in previous findings (see e.g. Liu, 2004; Liu and Wilson, 2002). WIN

is the aggregate sum of wages paid out and according to our findings

reduces the probability of a firm’s default. It is important here to

stress the difference to the variable WURYD, real compensation per

employee, which appears on rank 13 with a lag of one year and a posi-

tive coefficient. While WURYD measures compensation per employee,

WIN is the total sum across the economy. While seemingly related,

there are important distinctions which also come apparent when re-

garding their opposite signs of posterior means. First, WURYD is

measured per employee making it inversely related to the general em-

ployment level — or put differently, WIN is positively related to the

general employment level, which constitutes another important vari-

able at rank 19, LNN. Also, the finding of a positive coefficient on real

compensation per employee confirms the results presented in Vlieghe

(2001). Another difference is the time index with which both variables

enter. While WIN enters without lag, thus reflecting more contempo-
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rary conditions, WURYD enters with a lag of 4.

On the ranks 8 to 9 we find government interest payments (GEI)

and investment (ION). Both variables were selected in approximately

30% of the visited models. As the negative sign of ION indicates,

investments reduce the number of defaults in the economy as also

reported by e.g. Boss et al. (2007). Two channels may be responsible

for this fact. First, investments reduce the number of firm defaults

as they are a proxy for fresh equity induced into corporates. Second,

it may also be that in times few firms default, managers decide to

invest more, which results in a mutual dependance of both variables.

However, the fact that investment enters with a lag of 2 (compare

Table 3) speaks in favor of the first channel. The appearance of GEI is

less anticipated. The positive sign of its posterior mean (together with

a relatively small posterior standard deviation) tells us that in times of

high interest payment from the side of the government defaults tend

to increase. Potentially, this finding reflects the increased economic

uncertainty when sovereign spreads rise. Koopman and Lucas (2005)

report a positive dependence of default rates with aggregated corporate

spreads. As such a variable is missing in our dataset GEI potentially

acts as a proxy.

Beyond the “top 10”, variables already discussed like other nominal

investment, ION, and total employment, LNN, appear. In the major-

ity of cases variables as well as posterior means are plausible from an

economic perspective. However, private consumption, PCN, lagged by

4 quarters enters in most models with a positive sign. This puzzling

finding may be explained by the fact that its unlagged cousin, private

real consumption, PCR, enters with a negative sign at rank 16 (and

further on rank 21 and 22). High private consumption one year ago

might cause too optimistic turnover predictions on the side of firms,

which begin to falter once stock levels do not sell. Such an interpre-

tation is supported by the fact that contemporaneous (real) private

consumption enters with the expected negative sign.

At the same time it is not only interesting to look at variables that

were selected frequently, but also at variables that were not selected.

Among those we find for example ATX, the Austrian Traded (stock
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market) Index. As the majority of firms are small enterprises, little (or

no) dependence on stock market returns is plausible. Less anticipated

is the fact that classical macroeconomic variables, especially GDP, or

disposable income, play also a minor role. In our model setting the

data do not support their inclusion, which confirms the findings of

Simons and Rolwes (2009). However, this underlines the existence of

model uncertainty and therefore the need for averaging over sets of

possible models. Indeed, as noted above, by applying BMA we find

components of general indicators, like investment of GDP and energy

prices of inflation, as major risk drivers. BMA thus allows for a deeper

insight into the matter of firm default determinants.

4.2 Model size robustness

So far, we presented the results of our baseline estimation with a prior

model size of k̄ = 7. Although, we believe that models with 7 expected

variables are reasonable, this choice is somewhat arbitrary and the

effects of using different prior model sizes need to be explored. For the

30 most substantial variables in the baseline model, Tables 4 and 5

present the PIP and posterior means given inclusion of different prior

model sizes. The prior inclusion probabilities are simply given by the

choice of k̄ divided by the number of possible variables, K = 160.

For each prior model size, variables which appear within the 10 most

substantial variables are printed in bold. Variables that are substantial

in the baseline model but not when other priors are in use are printed

in italics.

In total we find three variables which appear within the 10 most

substantial variables for all considered model sizes. These are STI

L4, WIN and GEI. From Table 5 we can infer that the signs of the

variables are consistent across the different model sizes. Solely for

two variables, PCR L4 and WURYD we find for the prior model size

k̄ = 80 controversial signs compared to the other considered models9.

A summary of Table 4 is also displayed in Figure 1 where we show

9These variables are ranked 52 respectively 35 in the baseline model and appear

therefore not in Tables 4 and 5.
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prior model size

P
IP

5 7 9 11 16 22 28 40 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

STI L4
LNN

WURYD L4

prior

STI

Figure 1: PIPs for top variables in the benchmark model (in black)

and less important variables (in grey) across varying prior model sizes.

The dotted line illustrates the prior inclusion probabilities γ. For the

x-axis a logarithmic scale is used.

PIPs of the top variables in the benchmark model across the range of

prior model sizes.

Variables tending to lose importance when increasing prior

model size. Four variables tend to lose importance — by dropping

out of the “top 10” — when increasing the prior model size. These

are STI, MTN, PRO L1 and GON. Moreover, PRO L1 even becomes

unsubstantial for prior model sizes above 40. This suggests that such

variables could be acting as “catching-all” for various other effects (see

Sala-I-Martin et al., 2004). That means in smaller models these vari-

ables capture several effects and mechanisms in a combined form, while

in larger models, these effects are broken up as more regressors are

added. As a matter of fact, this in turn implies that when interpret-

ing coefficients one has to focus even more on the partial character of

the coefficient, i.e., measuring the effect given the inclusion of other
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regressors.

A good example is STI, unlagged short term interest rates, which

becomes less substantial as we increase the model size (see Figure 1).

For prior model sizes k̄ = 40 respectively k̄ = 80, STI appears on the

34th respectively 44th rank, while for our benchmark model it appears

on the 2nd rank. On the other hand, variables like PCN (nominal

private consumption, lagged 4 quarters), PCR (real private consump-

tion), ION (nominal investment) and LNN (total employment) become

more important for larger prior model sizes. This nourishes the hy-

pothesis that short term interest rates might be a“catch all substitute”

for private consumption and investment. The fact that PCR, ION and

LNN enter without lag, i.e., in their contemporaneous form, also sup-

ports the interpretation mentioned before – that STI is a proxy of

economic activity in smaller models.

Variables becoming “top 10” when increasing prior model

size. Within the most substantial variables we find some variables

which do not appear within the “top 10” set of the baseline model,

but seem to become “top 10” when changing the prior model size.

Nevertheless, all these variables are substantial in the baseline model

(that is, show a higher PIP than prior inclusion probability) and are

mostly ranked between the 11th and 20th rank in the baseline model

k̄ = 7. These are nominal private consumption (PCN L4), real com-

pensation per employee (WURYD L4), both lagged by one year, total

employment (LNN), total compensation to employees (WIN L3) lagged

by 3 quarters, private consumption rate (PCR) and nominal invest-

ment (ION). Additionally, we find the variables real domestic demand

(DDR), its one year lagged values10 (DDR L4) and nominal total com-

pensation to employees (WIN L4), lagged by one year, appearing as

“top 10” variable for some considered prior model sizes.

10DDR L4 is ranked 39 for our baseline model and ranked 10 for the model

k̄ = 80 with a PIP of 0.6193.
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5 Conclusion and Discussion

In this paper we propose a fully Bayesian approach combining ridge

regression and BMA to determine which macroeconomic variables are

substantially related to aggregated probabilities of default. Compared

to the literature, which mainly focuses on one single model, our ap-

proach addresses the problem of model uncertainty. Additionally, we

propose ridge regression to deal with multicollinearity, an immanent

problem in case lagged variables are included. In our benchmark model

the most frequently selected candidate regressors indicate that firms’

factor prices play a key role in determining defaults. Energy prices

and interest rates lagged by one year are positively related to defaults.

On the other hand, indicators of economic activity like investment and

contemporaneous short term interest rates are associated with fewer

firm defaults. As expected, firms’ profits reduce the expected num-

ber of failures. Interestingly, classical macroeconomic variables, like

GDP or disposable income are less frequently selected. This finding

underlines the need for an approach capable of dealing with model

uncertainty, a feature BMA perfectly provides.

Finally, we show that the results of our baseline model are fairly

robust to the choice of the prior model size. More precisely, when in-

creasing the prior model size, variables do not change the sign of their

posterior mean (with only 2 exceptions in 54 substantial variables con-

sidered). Moreover, most of the“top 10”variables remain within the 20

most important variables for other estimated prior model sizes. How-

ever, the relative importance of some regressors does change. This

finding suggests that some variables being of high relevance in smaller

models act as proxy for multiple effects combined which can be suc-

cessively split into its components when considering models of larger

size.

Further research is needed to better understand the dynamics of

firm failures, a highly relevant time-series for regulators and banks

alike. On one hand, the application of statistical approaches robust

to model uncertainty should be applied on a dataset of wider geo-

graphical coverage. In line with the findings of Simons and Rolwes

18



(2009) country specific circumstances need to be analysed. Also, our

methodological framework allows for the considerations of (even) more

candidate regressors. On the other hand, form a methodological per-

spective our approach could be revamped in a way that allows the

examination of common sets of variables. This would allow to analyze

substitutional and complementary effects between the explanatories.

That is, asking not only which variables were selected, but also which

variables were selected together.
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