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Sampling from Linear Multivariate Densities

Wolfgang Hörmann and Josef Leydold

Abstract It is well known that the generation of random vectors with non-
independent components is difficult. Nevertheless, we propose a new and very sim-
ple generation algorithm for multivariate linear densities over point-symmetric do-
mains. Among other applications it can be used to design a simple decomposition-
rejection algorithm for multivariate concave distributions.

1. Introduction

Exact sampling from (arbitrary) multivariate distributions over (subsets of)Rd is a
challenging task. Only sampling from a distribution with independent components
is simple. As we can generate each component independently,the sampling time for
such random vectors scales linearly with dimension; see Hörmann et al. (2004) or
Devroye (1986) for surveys of generation methods for univariate distributions. It is
thus also very easy to sample from a distribution with constant density over a hy-
perrectangular domain (i.e., sampling uniformly from a box). For distributions with
dependent components the situation is much more difficult. Only for the multinor-
mal and the multi-t distributions well known generation algorithms are available that
scale quadratically with the dimension. But even these distributions are not easily
generated when their domain is restricted to a subset ofR

d.
There exist two general approaches for generating random vectors with a given

probability density function (PDF) (see Hörmann et al. 2004): The rejection method
and the conditional distribution method. The latter is onlyapplicable in very simple
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situations as marginal distributions are required. Rejection on the other hand works
for arbitrary dimension but its applicability is limited bythe fact that the rejection
constant often grows exponentially with the dimension.

When designing new rejection algorithms for multivariate distributions we ex-
perimented with linear densities and were astonished to realize that they can be gen-
erated very easily. We were even more astonished by the fact that we did not find
any hints to such methods in the literature. We therefore present our new method for
generating random vectors with multivariate linear density over a bounded point-
symmetric domainD and some of its applications.

This paper is organized as follows: Section 2 describes the new idea to sample
from a multivariate linear density over point-symmetric domains. In Section 3 an im-
proved rejection algorithm for multivariate concave densities over point-symmetric
domains is introduced. Applications of the new algorithm are presented in Section 4.

2. Linear Densities over Point-symmetric Domains

A domain D ⊂ R
d is calledpoint-symmetric with centerc if x ∈ D implies that

x∗ = c− (x− c) ∈ D. The quantityx∗ is the reflection ofx in c. For our pur-
poses hyperrectangles[x1l ,x1r ]×·· ·× [xdl,xdr] are the most important case of point-
symmetric domains with centerc= 1

2

(

(x1l , . . . ,xdl)
′+(x1r , . . . ,xdr)

′
)

.
Letℓ : D⊂R

d→ [0,∞), x 7→ ℓ(x)= a′(x−c)+ fc be a linear PDF with parameter
a, some constantfc, and point-symmetric domainD. We denote the region below
the graph of densityℓ by F = {(x,u)∈Rd+1 : x∈D and 0≤ u≤ ℓ(x)}. Notice that
ℓ(c) = fc. For such distributions we can easily show the following property.

Theorem 1.Let x ∈ D and u∈ [0,2 fc]. Then u< ℓ(x) if and only if u∗ > ℓ(x∗),
where(x∗,u∗) = 2(c, fc)− (x,u), i.e.,(x,u) reflected in(c, fc).

Proof. Notice that(ℓ(x∗)− fc) = −(ℓ(x)− fc) and(u∗− fc) = −(u− fc). Hence
u− fc≤ ℓ(x)− fc if and only if u∗− fc≥ ℓ(x∗)− fc. Thus the statement follows.

Figure 1 sketches the situation for one dimension. As an immediate consequence
we find that Vold+1(F ) = fc ·Vold(D), where Vold(·) denotes thed-dimensional
volume. Moreover, the reflection(x,u) 7→ (x∗,u∗) is a volume-preserving transfor-
mation that mapsF \ (D× [0, fc]) one-to-one onto(D× [0, fc]) \F . Algorithm 1
(linearPDF-reflect) compiles the relevant steps to sample from a linear den-
sity ℓ(x) using this property. Notice that Steps 2, 5, and 6 (“squeeze”) reduce the
average number of evaluations of the density and can speed upthe algorithm in
higher dimensions. They can also be entirely omitted.

Remark 1.Step 3 in Algorithm 1 is crucial and can be difficult for point-symmetric
but irregular shaped domains1. Nevertheless, for a hyperrectangle[x1l ,x1r ]× ·· ·×

1 In fact,everynon-uniform generation problem can be reduced to sampling uniformly from some
domain inRd+1.
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Fig. 1 Linear density on point-symmetric setD with centerc (in one dimension).

Algorithm 1 linearPDF-reflect
Input: Linear densityℓ(x) on point-symmetric domainD with centerc

(ℓ(x) ≥ 0 for all x ∈ D).
Output: Random vectorX with densityℓ.

/∗ Setup ∗/
1: Computefc← ℓ(c). /∗ squeeze ∗/
2: Computefm←minx∈D ℓ(x).

/∗ Generator ∗/
3: GenerateX uniformly in D.
4: GenerateU uniformly in [0, fc].
5: if U ≤ fm then /∗ below squeeze ∗/
6: returnX.
7: else ifU ≤ ℓ(X) then /∗ below density ∗/
8: returnX.
9: else/∗ reflect point on center ∗/

10: returnX∗ = 2c−X.

[xdl,xdr] this is quite simple:X =
(

U1x1l +(1−U1)x1r , . . . ,Udxdl +(1−Ud)xdr
)

,
whereU1, . . . ,Ud are i.i.d.(0,1) uniform random numbers.

Let us look at the performance gain of this approach comparedto Algorithm 2,
which describes the simplest method, rejection from a constant hat. Both the setup
and one iteration of the acceptance/rejection loop requirethe same number of den-
sity evaluations and uniform random numbers as Algorithm 1.However, the ex-
pected number of repetitions of this loop isfM/ fc = 2 fM/( fM + fm) ≤ 2, where
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Algorithm 2 rejection
Input: Linear densityℓ(x) on domainD.
Output: Random vectorX with densityℓ.

/∗ Setup ∗/
1: ComputefM ←maxx∈D ℓ(x).
2: Computefm←minx∈D ℓ(x).

/∗ Generator ∗/
3: loop
4: GenerateX uniformly in D.
5: GenerateU uniformly in [0, fM].
6: if U ≤ fm then /∗ below squeeze ∗/
7: returnX.
8: else ifU ≤ ℓ(X) then /∗ below density ∗/
9: returnX.

fM and fm denote the maximum and minimum of the densityℓ on D, respectively.
Hence, on average we save at most one iteration. In the best case the new approach
saves 50% of the marginal generation time; in the worst case it is not slower than
simple rejection with squeeze. Note that the new algorithm scales linearly with di-
mension.

2.1 An Extension

Algorithm 1 also works whenc /∈D as long asℓ(X) can be extended to a linear func-
tion ℓ′ on some point-symmetric supersetD′ ⊃ D with centerc. A simple example
for this situation is a linear density on a ball restricted toits boundary (a sphere).
PointsX are still sampled uniformly inD in Step 4 (and not in the supersetD′).

3. Improved Rejection

Algorithm 2 (rejection) also works for distributions where the density is some
linear functionℓ(x) restricted to its nonnegative part, i.e., max(0, ℓ(x)). Algorithm 1
is not directly applicable for such densities but it can be easily adapted. We only have
to add a rejection step to eliminate points with negativeU-coordinates. Algorithm 3
(linearPDF-general) shows the details. Notice that there is no squeeze when
minx∈D ℓ(x)≤ 0.

This algorithm is based on the following modification of Theorem 1.

Theorem 2.Letx∈D and u∈ [ fm, fM ] = [minx∈D ℓ(x),maxx∈D ℓ(x)]. Then u<ℓ(x)
if and only if u∗ > ℓ(x∗), where(x∗,u∗) = 2(c, fc)− (x,u).

It is easy to see that the rejection constant of Algorithm 3 issmaller than that
of Algorithm 2 (rejection) if and only if fc = ℓ(c) > 0. The performance gain
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Algorithm 3 linearPDF-general
Input: Linear functionℓ(x) on point-symmetric domainD with centerc.
Output: Random vectorX with density max(0, ℓ(x)).

/∗ Setup ∗/
1: Computefc← ℓ(c).
2: Computefm←minx∈D ℓ(x) and f ′m←min(0, fm).

/∗ Generator ∗/
3: loop
4: GenerateX uniformly in D.
5: GenerateU uniformly in [ f ′m, fc].
6: if U > ℓ(X) then /∗ above ℓ→ reflect point on center ∗/
7: X← X∗ = 2c−X, U ←U∗ = 2 fc−U .
8: if U ≥ 0 then /∗ density must be nonnegative ∗/
9: returnX.

is again limited by a factor of 2. We have to note here that the rejection constants
of both algorithms can be arbitrarily large. Even when we restrict the domain of
the density to its smallest bounding hyperrectangle, the rejection constant grows
exponentially with dimensiond if f is not linear on its entire domain.

3.1 Concave Densities

Let us look at a concave differentiable densityf over a point-symmetric domainD
with centerc. We can then construct a linear hat functionℓ overD by means of a
tangent at some construction pointp. Thus we find

ℓ(x) = ∇ f (p)(x− c)+
(

∇ f (p)(c−p)+ f (p)
)

.

By the concavity off , ℓ(x)≥ 0 and we can apply Algorithm 1 (linearPDF-re-
flect) for sampling from the majorizing density, Algorithm 4 (concavePDF).
The acceptance probability of the rejection step is maximized if the area below the
hat is minimized, i.e., whenℓ(c) is minimized. Such a construction pointp can be
easily found.

Theorem 3.Let D be a point-symmetric domain with centerc and let f be a density
that is the restriction of some concave function to D. Then the rejection constant of
a rejection algorithm based on the linear hatℓ(x) is minimized if we choose center
c as the construction point ofℓ.

Proof. By Theorem 1 the volume ofF = {(x,u) ∈Rd+1 : x ∈D and 0≤ u≤ ℓ(x)}
is given by Vold+1(F ) = ℓ(c) ·Vold(D). Thus the rejection constant is minimized
if ℓ(c) is minimized. By the concavity off , ℓ(c) ≥ f (c) where equality holds for
p = c. Thus the statement follows.



6 Wolfgang Hörmann and Josef Leydold

Algorithm 4 concavePDF
Input: Concave densityf (x) on point-symmetric domainD with centerc.
Output: Random vectorX with density f .

/∗ Setup ∗/
1: Computea← ∇ f (c) and fc← f (c).
2: Computefm←minx∈D f (x). /∗ use concavity of f ∗/

/∗ Generator ∗/
3: loop
4: GenerateX uniformly in D.
5: GenerateU uniformly in [0, fc].
6: if U ≤ fm then /∗ below squeeze ∗/
7: returnX.
8: if U > a· (X−c)+ fc then /∗ above ℓ→ reflect point on center ∗/
9: X← X∗ = 2c−X, U ←U∗ = 2 fc−U .

10: if U ≤ f (X) then /∗ accept ∗/
11: returnX.

3.2 General Densities

The concavity property off above is only necessary to guarantee a simple set-up,
which is even simpler and faster than the set-up of the Ahrensalgorithm (see next
paragraph) as no minimization procedure is required. The concept of Algorithm 4
also works for arbitrary densities. To use it in practice it is necessary to construct a
linear upper bound to the density that is nonnegative for every point of the domain
D. For example, secants can be used as hat functions for a convex density in one
dimension.

4. Applications

4.1 Concave Densities and Ahrens Method

The simplest method for sampling from arbitrary multivariate distributions with
given density are multigrid methods, which we call “multivariate Ahrens methods”
as they generalize a method for univariate distributions proposed by Ahrens (1993).
For this approach the domain of the distribution is partitioned into hyperrectangles.
(If necessary the domain has to be extended to a union of proper hyperrectangles.)
On each of these the maximum of the given density is estimatedand a piecewise
constant hat is computed. Thus the region below the density is covered by a union
of bars and hence it is extremely simple to draw a random sample by rejection us-
ing Algorithm 2 for each of the hyperrectangles. This simplemethod has again and
again attracted the interest of researchers who had to solvemultivariate generation
problems; see Jadach (2003) and Karawatzki (2006) for two recent examples. How-
ever, there are significant drawbacks associated with this approach. First, finding
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the maximum in each hyperrectangle requires either strong constraints on the given
target distribution (e.g., uniorthomodal in Karawatzki 2006) or it is very time con-
suming when arbitrary densities are assumed (e.g., Jadach 2003).

The most prohibitive downside however is the slow convergence of the rejection
constant. For a distribution ind dimensions with a bounded gradient, the rejection
constant tends to 1 with rate 1+O(N−1/d) for increasing numberN of hyperrect-
angles. Thus this leads to a large numberN, and consequently large memory re-
quirements and slow setup times even when computing the maximum is fast. Nev-
ertheless, acceptance probabilities usually remain very small even for a moderate
number of dimensions; see Karawatzki (2006). For distributions with concave den-
sity functionsf we can formulate an alternative to the Ahrens method. It avoids the
computation of the maximum in each hyperrectangle by using tangents in lieu of a
constant hat and applies Algorithm 4 on each of the hyperrectangles. Then we find
that the convergence rate is 1+O(N−2/d). The following theorem summarizes this
observation.

Theorem 4 (Hörmann et al. 2004).Let f be a bounded two times differentiable
concave density f with bounded domain D⊂ R

d.

(i) Construct a hat function h1 using constant hats on N subintervals of equal size
and shape. Then the volume between the hat and density tends to 0 with rate
O(N−1/d), i.e., we find for the rejection constant1+O(N−1/d).

(ii) Likewise, when we construct a hat function h2 using tangents in the center
of each of N subintervals of equal size and shape, we find for the rejection
constant1+O(N−2/d).

Proof. (ii) As h2 and f are both two times differentiable functions with the same
first-order Taylor expansion at the centerc, we have|h2(x)− f (x)|= O(r2) around
eachc, wherer = ‖x− c‖ is the distance from the center. Since we haveN design
points on a regular grid, the average radius isr = O(N−1/d), which implies that
the average distance|h2(x)− f (x)| = O(N−2/d). As we have assumed a bounded
domainD, we get

∫

D |h2(x)− f (x)|dx = O(N−2/d).
(i) For constant hats we analogously find|h1(x)− f (x)|= O(r) = O(N−1/d).

The performance gain of using Algorithm 4 compared to the Ahrens method (i.e.,
rejection from a piecewise constant hat) is twofold:

(1) There is no need to estimate the maximum off in each of the (many) rectangles,
except those in the boundary region ofD.

(2) The rejection constant is reduced by some factor that is 1in the worst case and
1/2 in the best.

Of course, the latter is of practical relevance only if the rejection constant is not
too large (at least below 100). In particular, for a rejection constant close to 1 the
benefits become obvious. However, the faster (asymptotic) convergence of the new
method is not of great help here. Unfortunately, to achieve rejection constants below
10 requires many hyperrectangles even in a moderate number (6–10) of dimensions;
see Karawatzki (2006) for some computational experiences with the Ahrens method.
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Remark 2.The improvement by a factor of at most 2 is rather disappointing. Nev-
ertheless, if we try to accomplish the same improvement by refining the partition
of the Ahrens method instead of using linear non-constant hats in lieu of constant
ones, we need about 2d times more rectangles.

4.2 Computational Experience

We implemented and tested our algorithms. For generating from linear densities we
were astonished to see that the speed-up was even higher thanthe reduction of the
expected number of repetitions reached by the reflection principle. Depending on
the value offm, Algorithm 1 was up to three times faster than Algorithm 2. Inone
dimension Algorithm 1 is also faster than the inversion method so we can call it the
fastest method to generate from linear densities.

For concave densities the speed-up is less spectacular. Depending mainly on the
reduction of the expected number of repetitions we observedspeed-ups in the range
of 10 to 20 percent.

4.3 Importance Sampling

It has been shown that in the computation of expectations of functions of random
variates by Monte Carlo methods it is often more efficient to replace the rejection
algorithm by importance sampling (IS) with the hat functionas the importance den-
sity; see e.g., Hörmann and Leydold (2005). This is in particular the case when the
evaluation of the densityf (x) is expensive compared to the integrand, as by us-
ing IS we keep all information about our densityf . This is even more inevitable
when the rejection constant is high (which becomes very likely when the dimension
increases).

Some methods like VEGAS (Lepage 1978) approximate the integrand in ques-
tion by a piecewise constant function. Again using tangentsdecreases the approxi-
mation error. The rejection constant can be seen as a rough measure for the deviation
from the target distribution. Notice that in the case of IS the hat function need not
be a majorizing function as for the rejection algorithm. Thus we can safely drop the
concavity assumption.

5. Conclusion

We have introduced a simple and fast algorithm for efficient sampling from linear
multivariate densities with point-symmetric domains. It was demonstrated that the
new idea can be utilized to considerably simplify and speed up both the set-up and
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the sampling of table methods to generate from multivariateconcave distributions.
The new idea may also be applied to importance sampling and for generating non-
uniform distributions on the sphere.
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