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Abstract

In this article, we look at a model with (independent) system operator who
faces stochastic but growing transmission demand and a penalty if frequency
is not balanced. In this set up, we derive an optimal grid expansion invest-
ment strategy and analyze its value and risk implications. It turns out that
the firm value is strictly concave in the level of transmission demand. Firm
value, however, increases with optimal investment for any level of demand.
Moreover, firm risk is decreasing in the level of demand and higher when the
firm has an investment option. The risk increase corresponds to the exercise
of the call option and is stronger, the closer the firm approaches its exercise
trigger.
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1 Introduction

The generation and transmission of electricity are fundamental inputs for firms in
growing economies and hence have recently, received a lot of attention. While the
generation of electricity is entirely determined by the employed technology (fos-
sil energy, renewable energy, etc.) transmission of energy is often independent of
the source of energy but depends heavily on the capacity of the grid. Prior to
deregulation, production, transmission and distribution of electric energy have been
controlled by a single, though regulated, public utility operating with a given grid.
In this case, the vertically integrated public utility produced and transmitted en-
ergy on the basis of maximizing economic surplus subject to regulatory constraints,
including service security for customers.
In a deregulated power system, electricity generation and transmission are separated.
System operators (SO) transport electricity to locations where it is demanded by
using existing grid capacity. Given technological constraints, however (the existence
of Ohm’s law and the necessity to balance the grid), any SO faces a delicate decision
problem once demand is stochastic. It does not only need to transmit electricity by
using the grid but also needs to balance the grid in order to guarantee the safety of
the power system.
Consequently, global demand fluctuations or local variation in demand or supply
may destroy this balance and have therefore to be avoided or balanced by the grid
operator.1 Since balanced grids are an important precondition for system security,
the regulator’s focus has moved towards providing a legal and economic environment
to ensure the targeted level of security. One of the possibilities to do so, is to create
a new additional market for balancing power or balancing reserves2 which is often
separated from the spot market, although, similar products are traded. The main
difference between these two markets rests in the action timing necessary when
balancing power. Hence, balancing power gives the buyer a certain flexibility that
also goes along with a price difference when compared to the rigid spot market.
In this paper we model a SO with a given transmission capacity who faces stochastic
demand that follows a Geometric Brownian Motion. The SO is required to balance
the grid at any time the demand turns out to deviate too much from existing capac-
ity. If demand is smaller or higher than a given percentage of existing capacity, the

1The grid operator in this context can be an independent system operator (ISO) or any other legal
type of firm operation, as the mentioned issue is due to a technical feature and hence, independent
from the legal aspects. For expository convenience of this article, we will denote the balancing
firm as ISO or system operator in the following.

2Readers not familiar with reserve market are referred to Rebours and Kirschen (2005) who com-
pare the definition and technical specification of reserve services in Great Britain, PJM (Pennsyl-
vania - New Jersey - Maryland), California, Spain, the Netherlands, Germany, France, Belgium,
and the UCTE as a whole. For instance, in the PJM-market, a comparable instrument is given
by spinning reserves (which serve as a primary reserve among the operating reserve instruments
available for tertiary control); for a detailed survey of the North American market, see e.g. Lusztig
et al (2006).
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SO has to step in and either buy or sell balancing power. Since these actions are
costly, it is in the interest of the SO to avoid any grid imbalance. This summarizes
the short run actions of the SO. In the long run as demand continuously grows and
capacity constraints are frequently binding it is in the interest of the SO to invest
into grid expansion. Therefore, we use a real option approach to analyze optimal
investment decisions in grid expansions and determine its implications for firm value
and firm risk. Additionally, we contrast the value and risk implications for the cases
of no investment and that of grid expansion. It turns out that the additional costs
of balancing the grid cause the firm value to be a concave function of stochastic
demand with the implication that firm risk is decreasing with increasing demand
levels. Firm value and risk are both higher when the firm faces a growth option to
expand capacity. Both are immediate consequences of the strictly positive option
value associated with grid expansions.
Transmission investments have been studied by Ramanathan and Varadan (2006).
They develop a real options model that is solved using binomial tree valuation and
points out all possible economic trade-offs, present in such a framework. The article
by Boyle, Guthrie and Meade (2006) uses a real options framework to evaluate the
investment test proposed by the regulator in New Zealand. The paper by Saphores,
Gravel and Bernard (2004) analyzes a real options investment decision under the
assumption that the firm must undergo a costly and time-consuming regulatory
process prior to making an investment. These constraints severely influence the
timing decision when to invest and might lead in some cases to earlier investment.
The paper by Borenstein, Bushnell and Stoft (2000) studies the competitive effects of
transmission capacity. Their model predicts, that the level of transmission capacity
does neither have an impact on competition nor on the actual electricity that flows
on the transmission line in equilibrium. While many of these papers use a real
options approach to derive optimal investment decisions for transmission capacity
neither looks at the value and/or risk consequences of these investments. Therefore,
we concentrate on these questions and derive a set of new insights in grid expansion
investments.
Our paper is organized as follows. In Section 2, we present our model. Section 3
studies value and risk consequences of balancing the grid in case of a growth option.
Section 4 derives the value and risk implications of optimal grid investment. Using
numerical techniques we derive the optimal value function, the dynamic firm betas
and comparative statics results. Finally, Section 5 draws together the main findings
and concludes the paper.

2 The Model

We consider a system operator (SO) who’s business is to balance the network. The
SO operates with a given fixed capacity, K0. The existing capacity is irreversible
and cannot be employed in alternative uses. The system operator faces stochastic
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demand for transmission capacity. This demand level at time t is denoted by Xt. It
is further assumed that demand for transmission services follows a stochastic process
specified as Geometric Brownian Motion (GBM).

dXt = µXtdt + σXtdwt, (1)

where µ > 0 is the constant growth rate of demand, σ > 0 is the constant volatility
per unit of time, and dwt is a standard Wiener process. In principle, the growth
rate of demand can take positive or negative values. Nevertheless, in the existing
application, we restrict it to be positive µ > 0 and allow for µ = 0. With positive µ,
the expected demand for transmission services either grows exponentially over time
or fluctuates randomly around existing capacity levels.
In an environment with stochastic demand and fixed capacity the system operator
faces the following problem. In the short run, exogenous demand for transmission
can either go largely beyond or below the existing capacity limit. Both cases are
not desired outputs since an efficient balance of the network load requires actions
by the SO and generates additional costs. In the long run, when demand continues
to grow the SO faces the decision to extend his existing capacity. This requires
an investment in additional transmission capacity. Given the assumption that any
investment in transmission capacity is irreversible and given the flexibility of the
SO to decide when to invest, investment into grid capacity forms a real option. In
this paper we assume that the SO has a single growth option to expand capacity
from the level K0 to a new level K1 (with K0 < K1). The investment costs for this
expansion are denoted by IC.
Recall, from an SO’s point of view over- and underruns cannot directly be controlled
because of exogenous stochastic transmission demand but he can balance the system
by buying or selling balancing energy which is costly.
In this model we assume that the system operator receives a constant unit price for
transmission services, p, whenever network transmissions are balanced and demand
Xt is within the bounds (1−β)K0 ≤ Xt ≤ (1 + α)K0. If demand exceeds the upper
bound b0 ≡ (1 + α)K0, the SO has to buy balancing energy from an open market
at a premium price. We assume that this premium price is constant and given by
C1. Therefore, revenues for the SO in case of Xt > b are given by bp − (Xt − b)C1.
Symmetrically, in the case when demand is below the lower bound Xt < a0 ≡
(1−β)K0, the SO has to sell energy which incurs per unit costs equal to C2 so that
revenues become pXt− (a−Xt)C2.

3 Putting all these constraints together, the SO’s
revenue function is given by the following piecewise linear function

Π0(Xt) =











b0p − (Xt − b0)C1 if Xt ≥ (1 + α)K0

pXt if (1 − β)K0 < Xt < (1 + α)K0

pXt − (a0 − Xt)C2 if Xt ≤ (1 − β)K0.

(2)

3To be more specific, the system operator does not sell energy but has to buy negative quantities
at the price C2.
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This specification demonstrates that as long as demand for transmission services
lies in the interval a0 ≤ Xt ≤ b0, the SO will earn regular revenues equal to pXt. In
case if demand leads to an unbalanced grid the SO has to jump in and stabilize the
system by buying or selling energy at the extra costs specified.
As long as the SO operates with given capacity K0, the firm value corresponds to
the expected discounted present value of future revenues, i.e.,

V (X) = E

{
∫

∞

t

e−r(τ−t)Π0(Xτ )dτ | X = Xt

}

, (3)

where r > 0 is the constant discount rate that satisfies r > µ.
In the case that no growth option exists, the value of the firm is the sum of the values
of the assets in place. Therefore, any firm value has to satisfy a simple no arbitrage
condition. Herein, total return during a given period of time of an investment in
the firm’s assets must be equal to the dividend payments plus the expected capital
gains of the assets, i.e.,

rV (X) = Π0(X) + E {dV (X)} .

Applying Ito’s Lemma to this no arbitrage condition results in the traditional Bell-
man equation given by

1

2
σ2X2V

′′

(X) + µXV
′

(X) + Π(X) − rV (X) = 0. (4)

A general solution to this Bellman equation results in an explicit expression for
the firm value in case the SO needs to balance the network load, and hence, faces
revenue constraints if demand overruns the capacity limits. If there is no need to
balance the network load, the revenues are given by Π(X) = pX for any level of
X > 0, which corresponds to a firm value of

V (X) =
pX

r − µ
.

This last equation highlights an interesting relationship. The firm value corresponds
to the present value of future revenues discounted with a risk adjusted rate of return.
Hence, it is identical to what the simple Gordon growth model would predict.
In the case that the SO holds a growth option, management needs to decide when
to expand capacity from K0 to K1 at investment cost of IC. The corresponding
decision problem is a classical real options problem with single investment option
and constant investment costs equal to IC. Hence, the decision problem of the
operator becomes

max
τ∗

{

V (X) ≡

∫ τ∗

0

e−rtΠ0(X)dt +

∫

∞

τ∗

e−r(t−τ∗)Π1(X)dt− e−rτ∗

IC

}

,
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where the profit function Π1(X) is related to the new capacity level K1 and therefore
is defined as

Π1(Xt) =











b1p − (Xt − b1)C1 if Xt ≥ (1 + α)K1

pXt if (1 − β)K0 < Xt < (1 + α)K1

pXt − (a1 − Xt)C2 if Xt ≤ (1 − β)K1,

(5)

with b1 ≡ (1 + α)K1 and a1 ≡ (1 − β)K1.
In the next Section we will derive the value and risk characteristics of the SO in case
of no growth option (no capacity expansion). Given the piecewise linear revenue
function, the valuation of firm’s assets needs to take into account the cash flow
reductions associated with unbalanced demand. Hence, firm value consists of the
value of the assets in place and a non-linear adjustment necessary to account for
changes in the revenue function.

3 Value and Risk Implications Without Invest-

ment Option

The firm value V (X) defined in (3) can be derived using the Bellman equation (4).
The value function is a smooth function that consist of two parts: (i) the value of the
assets in place, and (ii) the value adjustment necessary to account for the revenue
constraint. Applying standard techniques and given the piecewise linearity of the
revenue function given in equation (2) allows us to derive explicit formulas for the
firm value.

Proposition 1. In case the system operator has no growth option to adjust capacity
levels, the value of the firm is given by

V (X) =



















VU(X) = A0
UXλ1 −

(

C1

r−µ

)

X + b0(p+C1)
r

if Xt ≥ b0

VM(X) = A0
MXλ1 + B0

MXλ2 +
(

p

r−µ

)

X if a0 < Xt < b0

VL(X) = B0
LXλ2 +

(

p+C2

r−µ

)

X − a0C2

r
if Xt ≤ a0,

(6)

where the constant parameters are given by

A0
M =

a1−λ1
0 C2(µλ2 − r)

(λ2 − λ1)(r − µ)r
< 0,

B0
M =

b1−λ2
0 (p + C1)(µλ1 − r)

(λ2 − λ1)(r − µ)r
< 0,

A0
U =

(a0b0)
1−λ1 [aλ1−1

0 (p + C1) + bλ1−1
0 C2](µλ2 − r)

(λ2 − λ1)(r − µ)r
< 0,
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B0
L =

(a0b0)
1−λ2 [aλ2−1

0 (p + C1) + bλ2−1
0 C2](µλ1 − r)

(λ2 − λ1)(r − µ)r
< 0.

λ1, λ2 correspond to the two roots of the characteristic equation of the Bellman equa-
tion and are given by

λ1 =
1

2
−

µ

σ2
−

√

(

µ

σ2
−

1

2

)2

+
2r

σ2
< 0

λ2 =
1

2
−

µ

σ2
+

√

(

µ

σ2
−

1

2

)2

+
2r

σ2
> 1.

Proof: See Appendix 1.
As already pointed out firm value consists of the value of the assets in place as well
as a value adjustment necessary to account for the negative impact of balancing
costs on revenues. All the nonlinear adjustments decrease firm value as extra costs
are triggered when exogenous demand violates either the lower or upper constraints.
The valuation equation clearly points out that not balancing the system can be very
costly to the system operator and can even result in a negative firm value.

Corollary 1. The firm value V (X) given in (6) is strictly concave in X.

Proof: Follows immediately by differentiating (6) with respect to X. �

While many of the existing papers that evaluate grid investments have looked at
the value implications of regulatory and economic constraints, none has ever looked
at the risk an operator faces. We are the first to explicitly derive the firm risk.
Characterizing firm risk requires a risk measure that eventually can be quantified.
Here, we follow standard finance theory and identify firm risk as the systematic risk
arising from a systematic risk factor. Based on our partial equilibrium model we
identify demand uncertainties as the systematic risk factor. Since the value of the
firm changes as the risk factor X changes, we can apply standard arguments to show
(see Berk, Green and Naik [2004]) that the firm’s beta is given by

βi(X) =
∂Vi(X)

∂X
X

Vi(X)
, i = U, M, L. (7)

Using this concept of firm risk, we are able to derive the firm’s systematic risk.

Proposition 2. The system operator’s dynamic beta is given by

β(X) =



















βU(X) = 1 +
A0

UXλ1

VU (X)
(λ1 − 1) −

b(p+C1)
r

VU (X)
if X ≥ b0

βM(X) = 1 +
A0

M
Xλ1

VM (X)
(λ1 − 1) + BMXλ2

VM (X)
(λ2 − 1) if a0 < X < b0

βL(X) = 1 +
B0

L
Xλ2

VL(X)
(λ2 − 1) +

aC2
r

VL(x)
if X ≤ a0.

(8)
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Proof: The proof follows immediately by differentiating (6) with respect to X and
applying the definition of beta. �

The system operator’s beta is the sum of the asset beta, normalized to 1, and the
risk adjustment arising from the cash flow changes associated with the boundaries
of the balanced network load. These adjustments can either be risk increasing or
decreasing. As an example let us look at βU(X). The fact that X exceeds the upper
bound b0 and, hence, firm value is reduced results in an increase in risk (relative

to the asset beta) given by
A0

U
Xλ1

VU (X)
(λ1 − 1) > 0. While constant payments equal to

b(p+C1)
r

result in a reduction of risk equal to −
b(p+C1)

r

VU (X)
< 0.

To evaluate the change in firm beta associated with an increase in transmission
demand X, let us refer to definition (7) and differentiate it with respect to X. This
implies

β ′(X) =
(V ′′X + V ′) V − (V ′)2X

V 2

Defining the demand elasticity of marginal firm value (the percentage change of the
marginal firm value associated with a one percent change in demand X) as

ǫ ≡
V ′′X

V ′

yields the following expression for the change in beta resulting from an increase in
X.

β ′(X) =
V ′

V
[ǫ + 1 − β] . (9)

The relationship of changes in a firm’s beta holds independent of its risk structure.
Moreover, it can be shown that

β ′(X)X

β(X)
= 1 + ǫ − β

holds. This implies that the demand elasticity of beta (the changes in firm beta
arising from a one percent change in demand X) is equal to 1 minus beta plus
demand elasticity of marginal firm value. Hence, for our model with a concave value
function V (X) it is to be expected that risk is decreasing with an increase in demand
X.

Corollary 2. Firm risk is decreasing [increasing] with an increase in demand X if
and only if

1 < β − ǫ [1 > β − ǫ].

Proof: Follows immediately from the definition of the demand elasticity of beta
and the fact that β > 0. �

The concave value function, resulting from the penalty structure of non-balanced
transmissions implies that firm risk decreases with an increase in demand. The
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economic intuition of this result is as follows. From the firm’s point of view, it is
optimal to have a balanced network load since revenues are highest in this case. If
demand turns out to be out of bounds, the corresponding penalty structure implies
that revenues do not change too much. This implies reduced risk.
Its sign, however, depends on the curvature of the value function. With a concave
value function, the following property holds, sign(ǫ) = −sign(V ′), i.e., demand
elasticity of marginal firm value increases with a decrease in the value of the firm
and decreases with an increase in firm value. Hence, dynamic beta over the entire
range of X (values) can take different shapes, depending on the specification of the
parameters.

4 Value and Risk Implications With Investment

Option

The specification of transmission demand as a geometric Brownian motion implies
that expected demand increases exponentially. This makes an investment in addi-
tional capacity attractive for the SO as it either reduces or avoids the costs arising
from demand overruns given low levels of capacity. We assume that the investment
problem to install additional capacity corresponds to a real option in which the op-
erator decides when to exercise the growth option. With demand being stochastic,
it is optimal to exercise the growth option only if demand for transmission services
exceeds a certain threshold level, X∗. Therefore, this section analyzes the structure
and the characteristics of the optimal investment trigger level.
In order to determine this optimal trigger level, (and hence the optimal timing of
the investment) three cases need to be distinguished depending on the actual value
of demand for capacity. It is obvious that in case actual demand is lower than the
boundary a0, the firm does not have an incentive to invest in additional capacity
since it amplifies the scenario in which penalties have to be paid. On the contrary,
if actual demand is higher than the upper bound b0, there is a strong incentive for
the firm to invest in additional capacity. Hence, we can conclude that the demand
level X∗ that triggers an investment must be above the lower bound a0, which is a
necessary condition. It might be the case, however, that it is optimal for the firm
to already invest if the trigger level is in the interval [a0, b0]. This can only happen
in extreme cases with specific parameter settings. Here we rule out those cases such
that we only concentrate on the case in which X∗ > b0.
After the investment takes place the firm faces new boundaries that are relevant
for network load balancing. These boundaries are [a1, b1]. In terms of this new
boundaries we can distinguish three possible cases for the relative sizes of X∗, a1

and b1: (i) X∗ < a1, (ii) a1 < X∗ < b1, and (iii) X∗ > b1. In any case, the value
function of the firm prior to investment in new capacity will consist of the value of
the assets in place, the value adjustment for penalties in case demand turns out to
be unbalanced and the option value to invest in new capacity. After the investment,
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the value function is identical to (6) but the boundaries a0, b0 have to be replaced
by a1, b1 with corresponding adjustments in the integration constants, A1

U , A1
M , B1

M

and B1
L.

Proposition 3. Under the assumption that the optimal investment trigger level
satisfies b0 < X∗ < a1 the optimal value function of the SO is given by

V (X) =









































































V 0
L (X) = B0

LXλ2 +
(

p+C2

r−µ

)

X − a0C2

r
+ KXλ2 if Xt ≤ a0

V 0
M(X) = A0

MXλ1 + B0
MXλ2 +

(

p

r−µ

)

X + KXλ2 if a0 < Xt < b0

V 0
U (X) = A0

UXλ1 −
(

C1

r−µ

)

X + b0(p+C1)
r

+ KXλ2 if b0 < X ≤ X∗



















V 1
L (X) = B1

LXλ2 +
(

p+C2

r−µ

)

X − a1C2

r
if X∗ ≤ X ≤ a1

V 1
M(X) = A1

MXλ1 + B1
MXλ2 +

(

p

r−µ

)

X if a1 < X < b1

V 1
U (X) = A1

UXλ1 −
(

C1

r−µ

)

X + b1(p+C1)
r

if X ≥ b1,

(10)
where the constants K (form the option value KXλ2) and the trigger level X∗ are
positive and determined by corresponding value matching and smooth pasting con-
ditions. The constants A1

U , A1
M , B1

M and B1
L are entirely determined by the new

boundaries a1 and b1.

Proof: See Appendix 2. �

It is important to point out again that the assumption X∗ < a1 need not hold and
the two other cases (i) a1 < X∗ < b1, and (ii) X∗ > b1 might occur. In the proof of
Proposition 3, we demonstrate how the trigger level and the option constant change
if any of the other two cases holds.

Proposition 4. Under the assumption that the optimal investment trigger level
satisfies b0 < X∗ < a1, the dynamic beta of the SO is given by

β(X) =









































































β0
L(X) = 1 +

(B0
L+K)Xλ2

V 0
L

(X)
(λ2 − 1) +

a0C2
r

V 0
L

(x)
if Xt ≤ a0

β0
M(X) = 1 +

A0
M

Xλ1

V 0
M

(X)
(λ1 − 1) +

(B0
M

+K)Xλ2

V 0
M

(X)
(λ2 − 1) if a0 < Xt < b0

β0
U(X) = 1 +

A0
UXλ1

V 0
U

(X)
(λ1 − 1) + KXλ2

V 0
U

(X)
(λ2 − 1) −

b0(p+C1)
r

V 0
U

(X)
if b0 < X ≤ X∗



















β1
L(X) = 1 +

B1
L

Xλ2

V 1
L

(X)
(λ2 − 1) +

a1C2
r

V 1
L

(X)
if X∗ ≤ X ≤ a1

β1
M(X) = 1 +

A1
MXλ1

V 1
M

(X)
(λ1 − 1) +

B1
M Xλ2

V 1
M

(X)
(λ2 − 1) if a1 < X < b1

β1
U(X) = 1 +

A1
U

Xλ1

V 1
U

(X)
(λ1 − 1) −

b1(p+C1)
r

V 1
U

(X)
if X ≥ b1.

(11)

Proof: The proof follows immediately from differentiating the value function in
Proposition 3 with respect to X and applying the definition of beta. �
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4.1 Numerical Simulations for Optimal Capacity Investment

While the case of no investment allows for a complete analytical solution, the optimal
investment problem in new capacity requires a numerical analysis. Our numerical
procedure is divided up in four parts. In the first part we explore the characteristics
of the value function. In particular we are interested if the concavity property found
in the case of no investment carries over to the investment case. In the second part
we determine dynamic beta risks in case of grid expansion investments. In the third
part we conduct a general comparative statics analysis and in the fourth part we
finish our analysis with the derivation of optimal trigger levels and explore the role
of parameter values on the optimal time to invest. Here we make use of Broyden’s
method (see e.g.: Press et al. (1986)). For the numerical simulations, we refer to
the benchmark values of the paramters included as highlighte in table (1).

Table 1: Benchmark values

Parameter Benchmark value
Discount rate, r 5%
Demand growth rate, µ 2%
Instantaneous standard deviation, σ 10%
Allowed upper deviation, α 10%
Allowed lower deviation, β 10%
Installed capacity level, K0 10,000
Expanded capacity level, K1 13,000
Price for transmission, P 5
Penalty for exceeding upper boundary, C1 5
Penalty for demand below lower boundary, C2 15
Unit investment cost for capacity increase, IC 100

4.2 Value function

The optimal investment strategy and the corresponding value function presented
in Proposition 3 are derived under the assumption that an investment changes the
bounds [a0, b0] to the new interval [a1, b1] with a0 = (1 − β)K0, b0 = (1 + α)K0

and a1 = (1 − β)K1, b1 = (1 + α)K1. Alternatively, a capacity constraint could
be modeled in such a way that it only increases b0 to b1 and leaves a0 unchanged.
In such a case, the interval in which the SO does not need to jump in and balance
the transmission becomes larger. The theoretical analysis carried out at beginning
of this section can directly be applied to this case as well and does not change the
results. What does change, however, is that the trigger level at which investment
occurs either satisfies X∗ < b1 or X∗ > b1. In some of the numerical analysis we use
the version of the model in which the grid investment only changes b0 to b1.
In order to numerically derive the value function, we set the demand growth rate (µ)
equal to zero, i.e. we let demand fluctuate around the installed capacity level (the
rest of the parameters in the benchmark parametrization is kept unchanged). The
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value function as a function of demand levels is shown in figure 1. The two value
functions correspond to the cases without and with capacity investments. Both value
functions are strictly concave with a maximum within the boundaries [ai, bi]. The
concave shape of the optimal investment value function is surprising since the option
to expand corresponds to a call option with strictly convex and increasing shape. Its
concave curvature seems to be an immediate consequence of the boundaries and the
penalties associated with unbalanced network load. What we can additionally infer
from the figure is the value increase associated with the investment. More capacity
increases the firm value for any level of demand.

Figure 1: Value function
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This figure shows the value functions for the original and the expanded capacity level and its

boundaries. The black value function belongs to the capacity level K0 and the dashed lines are its

lower and upper boundaries. The red curve is the value function for expanded capacity level K1.

The lower boundary for this capacity level is identical with the lower boundary for the original

level.

The dominance of the optimal investment value function relative to the original
one is driven by the boundaries. While the lower boundaries for both capacity
levels K0 and K1 coincide, the upper boundary of the expanded capacity level lies
above the upper boundary of the original capacity level. Therefore, when demand
is smaller than the lower boundaries, the operator has to pay identical penalties in
both cases. With larger bounds in case of capacity investment the firm benefits from
a larger range of demand levels for which no penalty needs to be paid resulting in
a higher firm value. Note, however, that the lower the demand, the closer the two
value functions are. This is, because the probability to reach higher demand levels
becomes lower, i.e. the additional value from the no penalty operation becomes
lower.
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4.3 Dynamic beta

Figure 2 sheds light on the evolution of the firm’s systematic risk for both cases, the
one with investment and the one without it. As pointed out in Proposition 3, three
areas have to be distinguished which are in line with the three partial solutions to
the system operator’s dynamic beta. We see that both beta-values are decreasing
with increasing demand, but risk in case of the investment option is systematically
larger than without the expansion option. This is an immediate consequence of the
call option. Risk associated with the call option is highest when the option is close
to being exercised.
Decreasing systematic firm risk with increasing levels of demand is the immedi-
ate consequence of the concave value functions. As the level of demand increases,
changes in firm values become smaller and hence firm risk decreases.

Figure 2: Dynamic beta for the case without investment
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This figure shows the evolution of the dynamic beta for both cases, when the firm has no investment

option with installed capacity level K0 and when it has an expansion option. The demand growth

rate is chosen at µ = 0, the rest of the parameters are at benchmark parametrization level.

4.4 Comparative Statics

The model presented in this paper suggests that uncertainty arising from the under-
lying demand process has an effect on the value function, optimal investment timing
and firm risk. Moreover, a change in the transmission price or a change in demand
growth rate should also have significant value and risk implications. This section
carries out an illustrative sensitivity analysis based on the benchmark parametriza-
tion introduced in table 1. Clearly, this analysis can only highlight a limited amount
of possible parameter values and their consequences.

Both benchmark levels that determine the transmission boundaries, α and β, are set
at 10%, however a range up to 20% is examined. Both penalty levels for violations
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Figure 3: Change of the demand volatility
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Figure 4: Change of the boundaries
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Figure 5: Change of the price
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Figure 6: Change of the penalties

of the lower or the upper boundaries, C1 and C2 are set at a numerical value equal
5 with a range from 3 to 10. The benchmark transmission price level, P equals 15,
but the range between 5 and 15 is examined. The volatility of the demand, σ is set
at the level of 10%, while a range of 5-20% is studied; the unit value for investment
expansion is at 100, with a range from 50 to 150.
In figures 3-6 the implications of parameter variations for the value function at K0

capacity level is demonstrated. As expected, the uncertainty parameter and the de-
mand growth rate have the biggest impact on the value function. With a decreasing
volatility of demand, the value function shifts up and vice versa. As in the case
of different demand levels, going further from the boundaries the value functions
converge to each other, since the probability to reach the no penalty area decreases.
With the increasing demand growth rate the value function shifts down, but also the
peak of the value function changes; it shifts to the left. The reason for this change is
again the additional value coming from the no penalty area. The higher the demand
growth rate, the more probable it is to reach the no penalty area with increasing
demand when we start out at low demand levels. The contrary holds for demand
levels above the upper boundary. The sensitivity of the value function with respect
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Figure 7: Change of the risk discount rate
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Figure 8: Change of the demand drift

to changes of remaining parameter values also works in the expected direction. An
increase in the allowed deviation levels, an increase in price level and a decrease in
penalty level causes an upward movement of the value function.

Table 2 gives the consequences of varying parameters of the model on the optimal
investment timing. The table shows that the optimal investment timing is increasing
with decreasing penalty level for violating the upper boundary and with decreasing
transmission price. The penalty for violating the lower boundary has no effect on
investment timing. The reason is the identical lower boundaries for the original and
the expanded capacity levels. Since the identical boundaries, the firm has to pay the
same penalty in both cases, therefore its level pays no role in investment decision.
For the same reason, the allowed lower deviation from the capacity level has also no
effect on investment timing. The allowed upper deviation influences the investment
decision in the opposite way as the transmission price, i.e. the investment is post-
poned with the increasing level of transmission price.

The optimal investment timing reacts in the same way on penalty level for violating
the upper boundary and on the transmission price level. The two effects can extinct
each other when they are introduced in the opposite way. This can be seen in the
last two rows of table 2, when the penalty for violating the upper level is increased
with the same amount as the transmission price is decreased, and vice versa. The
optimal timing of the investment is the same as for the basic parametrization case.
This result is the key when a regulator plans to preserve the timing of the grid
expansion. When a new, cheaper source of balancing power is introduced, the regu-
lator has to increase the transmission price one to one to the change in the balancing
power market.

As expected, the demand uncertainty and the investment cost remarkably influence
the optimal timing of the investment. A decrease in demand uncertainty makes it
profitable to do the investment earlier. Uncertainty of electricity demand can be
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Table 2: Comparative Statics

α β C1 C2 P σ Unit IC Calculated threshold
0.1 0.1 5 5 15 0.1 100 13223.7955

0.1 0.1 3 5 15 0.1 100 13370.9664
0.1 0.1 10 5 15 0.1 100 12945.4636
0.1 0.1 5 3 15 0.1 100 13223.7955
0.1 0.1 5 10 15 0.1 100 13223.7955
0.1 0.1 5 5 10 0.1 100 13653.1774
0.1 0.1 5 5 20 0.1 100 12945.4636
0.05 0.1 5 5 10 0.1 100 12683.4611
0.15 0.1 5 5 10 0.1 100 13763.2881
0.1 0.05 5 5 10 0.1 100 13223.7955
0.1 0.15 5 5 10 0.1 100 13223.7955
0.1 0.1 5 5 10 0.1 50 12479.3540
0.1 0.1 5 5 10 0.1 150 13856.3468
0.1 0.1 5 5 10 0.05 100 12342.1606
0.1 0.1 5 5 10 0.15 100 14054.3559
0.1 0.1 5 5 10 0.20 100 14915.0265
0.1 0.1 3 5 17 0.1 100 13223.7955
0.1 0.1 10 5 10 0.1 100 13223.7955

* Benchmark parametrization

The values are calculated for capacity increase from K0 to K1 level, for parameters specified in

benchmark parametrization.

reduced with investments into storage capacity. Therefore, the regulator, who’s ob-
jective is to assure the security of the power system intends to give incentives for
electricity storage investment or to its future research.

5 Conclusion

In this paper we analyze optimal investment in grid expansion of a SO and char-
acterize its value and risk implications. We use a simple real option framework to
derive optimal timing of grid investment and its consequences for firm value. Our
model builds on the assumption that the main objectives of the SO is to balance the
grid. This is a formidable task when demand is stochastic and exogenous. Given
installed capacity determines an interval of demand at which no balancing of the
SO is necessary. If demand, however, is either larger or smaller than the boundaries
of this interval, the SO needs to jump in and balance the energy. This results in
extra costs for the SO and hence has both value and risk implications. We study
those for the case without grid expansion and with grid expansion. We find that
the existence of an expansion option increases both, the value of the firm and its
systematic risk.
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6 Appendix

Proof of Proposition 1. Due to the piecewise linear profit function, we can distin-
guish 3 different cases. First, suppose the demand for capacity exceeds the installed
capacity level. Substituting the upper case in (2) into (4) yields to the following
second-order differential equation

1

2
σ2X2V

′′

U (X) + µXV
′

U(X) − rVU(X) − C1X + b(p + C1) = 0. (12)

Solution to this equation can be stated as a sum of the solutions to the homogenous
equation and the particular solution. The solution of the homogenous part can be
written as

V h
U (X) = A0

UXλ1 + B0
UXλ2,

where λ1 and λ2 are the negative and the positive root of the fundamental quadratic
equation4, respectively. One can simply show that VU(X) = −C1X

r−µ
+ b(p+C1)

r
satisfies

equation (12) as particular solution. Therefore, the general solution becomes

VU(X) = V h
U (X) + V

p
U (x) = A0

UXλ1 + B0
UXλ2 −

C1X

r − µ
+

b(p + C1)

r
. (13)

A similar procedure is used to determine the medium case VM(X) and the case of
hitting the lower boundary VL(X).
In order to determine the parameter values, we follow Dixit (1993). The no bubbles
condition requires that the term BUXλ2 must be set equal to zero, or the solution
explodes. A similar line of reasoning implies that when demand is below the lower
limit, the term ALXλ1 has to equal zero. To determine the remaining constants, we
impose the value matching and smooth pasting conditions5

VL[(1 − β)K0] = V [(1 − β)K0]

V [(1 + α)K0] = VU [(1 + α)K0]

V
′

L[(1 − β)K0] = V
′

[(1 − β)K0]

4The roots are defined as

λ1 =
1

2
−

µ

σ2
−

√

(

µ

σ2
−

1

2

)2

+
2r

σ2
< 0

λ2 =
1

2
−

µ

σ2
+

√

(

µ

σ2
−

1

2

)2

+
2r

σ2
> 1

5see Dixit (1993)
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V
′

[(1 + α)K0] = V
′

U [(1 + α)K0].

Substituting the above determined value functions we obtain the following system
of equations

A0
Maλ1 + (B0

M − B0
L)aλ2 +

aC2

r
−

aC2

r − µ
= 0 (14)

(A0
M − A0

U)bλ1 + B0
Mbλ2 +

b(p + C1)

r − µ
−

b(p + C1)

r
= 0 (15)

A=
Mλ1a

λ1−1 + (B0
M − B0

L)λ2a
λ2−1 −

C2

r − µ
= 0 (16)

(A0
M − A0

U )λ1b
λ1−1 + B0

Mλ2b
λ2−1 +

p + C1

r − µ
= 0. (17)

The solution set to this system (14) - (17) can be described by the following equa-
tions, which finishes the proof

A0
M =

a1−λ1C2(µλ2 − r)

(λ2 − λ1)(r − µ)r

B0
M =

b1−λ2(p + C1)(µλ1 − r)

(λ2 − λ1)(r − µ)r

A0
U =

(ab)1−λ1 [aλ1−1(p + C1) + bλ1−1C2](µλ2 − r)

(λ2 − λ1)(r − µ)r

B0
L =

(ab)1−λ2 [aλ2−1(p + C1) + bλ2−1C2](µλ1 − r)

(λ2 − λ1)(r − µ)r

Proof of Proposition 3. Under the assumption that X∗ > b0 the trigger level and the
option value of the firm can be determined in the following way. The continuation
value prior to the investment is given by the value function VU from equation (6).
Now, one of the following three cases might occur.
Case 1: X∗ < a1

The trigger value of demand and the option value to invest can be determined by
setting the continuation value equal to the stopping value, i.e. by applying the value
matching and smooth pasting conditions.

V K0
U (X∗) + K(X∗)λ2 = V K1

L (X∗) − IC,

(V K0
U )

′

(X∗) + Kλ2(X
∗)λ2−1 = V

K ′

1
L (X∗).

Applying these conditions to the case X∗ < a1 results in

A0
UXλ1 −

(

C1

r − µ

)

X +
b0(p + C1)

r
+ KXλ2 = B1

LXλ2 +

(

p + C2

r − µ

)

X −
a1C2

r
− IC

(18)
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A0
Uλ1X

λ1−1 −
C1

r − µ
+ Kλ2X

λ2−1 = B1
Lλ2X

λ2−1 +
p + C2

r − µ
. (19)

These two conditions can only be solved numerically but they result in the trigger
level and the option value constant K.
Case 2:a1 < X∗ < b1

In case if the trigger demand lies in between the new boundaries, the value of the
trigger demand and the option value to invest have to satisfy the following conditions

A0
UXλ1 −

(

C1

r − µ

)

X +
b0(p + C1)

r
+ KXλ2 = A1Xλ1 + B1Xλ2 +

(

p

r − µ

)

X − IC

A0
Uλ1X

λ1−1 −
C1

r − µ
+ Kλ2X

λ2−1 = A1λ1X
λ1−1 + B1λ2X

λ2−1 +
p

r − µ
.

Case 3:X∗ > b1

Finally, the case when the trigger value is above the new upper boundary it has to
hold

A0
UXλ1 +

b0(p + C1)

r
+ KXλ2 = A1

UXλ1 +
b1(p + C1)

r
− IC (20)

A0
Uλ1X

λ1−1 + Kλ2X
λ2−1 = A1

Uλ1X
λ1−1. (21)
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