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ABSTRACT 

Recently there has been a renewed interest in formative measurement and its role in properly 

specified models. Formative measurement models are difficult to identify, and hence to estimate 

and test. Existing solutions to the identification problem are shown to not adequately represent 

the formative constructs of interest. We propose a new two-step approach to operationalize a 

formatively measured construct that allows a closely-matched common factor equivalent to be 

included in any structural equation model. We provide an artificial example and an original 

empirical study of privacy to illustrate our approach. Detailed proofs are given in an appendix.  

 

Keywords: Formative Measurement, Identification, Structural Equation Modeling, Latent 

Variables, Canonical Correlation 
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INTRODUCTION 

Since the time of Spearman (1927) and Thurstone (1947), a common factor has been considered 

to be an unmeasured variable whose variation (1) generates variation in and (2) explains the 

correlations or covariances among two or more dependent variables that it predicts (e.g., Mulaik, 

2009). The best known examples are first-order factors that explain covariation among observed 

variables and second-order factors that explain covariation among first-order factors. The part of 

an observed variable not generated by common factors is a unique factor. From this viewpoint, 

“Latent variables (LVs) are simply common or unique factors” (Bentler, 1980, p. 423). More 

recently, proposals have been made to define a different class of LVs that are neither common 

nor unique factors (e.g., Bollen & Lennox, 1991). Such non-factor LVs are specified to be 

generated by observed variables rather than the other way around. We will refer to these non-

factor LVs as formative LVs. It is well known that formative LVs are hard to identify (e.g., 

Bagozzi, 2007; Edwards & Bagozzi, 2000; Howell, Breivik, & Wilcox, 2007ab; MacCallum & 

Browne, 1993) and hence difficult to use in modern multivariate modeling. The aim of this paper 

is to clarify this difficulty and to propose a new methodology to approximate a non-factor LV by 

an identified common factor that can be used in any structural equation model (SEM) in the 

standard way (Bentler, 2010; Iacobucci, 2009, 2010; Savalei & Bentler, 2006). 

Let F represent a formative LV and F represent a common factor LV. We follow 

MacCallum and Browne (1993) in clearly distinguishing between Fs and Fs, which they call 

“latent” and “composite” variables. We evaluate the extent to which these may be related and 

provide a new methodology for unambiguously implementing an F that will closely approximate 

an F. If V is an observed variable, “reflective” measurement models have defining F →V paths 

while “formative” measurement models have defining V →F paths. The Vs in the former case 
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may be called reflective indicators and in the latter case, formative or causal indicators, and the 

models, “reflective” and “formative” or “causal indicator” measurement models. Clearly, the 

defining equations of the two approaches reverse the roles of predictor and criterion variables. 

An important corollary of a well-defined F is that it generates a set of dependent Vs that are 

correlated, ideally highly correlated; while a set of Vs need not be correlated at all to define a 

formative F. 

An important distinction that is frequently glossed over in the literature is that a V →  F 

path is not a V →  F path. Although the LISREL model (Jöreskog, 1977) did not explicitly allow 

V →  F paths, these have been common in the SEM field since the Bentler-Weeks (1980) model 

made explicit provision for such paths. In SEM there is no assumption or requirement that 

predictor Vs determine the meaning of a consequent F. In contrast, in formative measurement the 

meaning of the F is presumed to be determined by the Vs: “the indicators determine the latent 

variable” (Bollen & Lennox, 1991, p. 306). 

Before proceeding with a more detailed summary of approaches to formative measure-

ment and a description of our methodology, we review some relevant issues.  

 

LATENT VARIABLES AND CONSTRUCTS 

There is no unanimity in the recent literature on the meaning of “latent variable” and 

“construct,” and whether, and to what extent, these may have the same meaning. Historically, 

constructs were equated with common factors, and hence are LVs. According to Cronbach and 

Meehl (1955, p. 283) “A construct is some postulated attribute of people, assumed to be reflected 

in test performance.” This viewpoint implies the use of a reflective measurement model, such as 

that of factor analysis or traditional SEM, where the LVs generate the observed variables. From 
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this viewpoint, an LV is the common factor that operationalizes a construct. Such LVs must 

increase the space of variables to larger than the space of observed variables; for p observed 

variables, there must be at least p+1 linearly independent variables in the model (Bentler, 1982).1  

Conceptually, unmeasured variables that operationalize a construct in a “formative” measure-

ment model also are LVs under appropriate conditions -- that is, they expand the space of 

variables. However, as we will see, providing an operationalization that does not confound Fs 

with Fs is quite a challenge. In our opinion, such confounding is standard practice in formative 

measurement.  

Not everyone has accepted Cronbach and Meehl’s definition of a construct. For example, 

there is discussion of whether given scientific constructs are “inherently” formative or reflective, 

that is, whether the substantive meaning of a given construct implies that a researcher has no 

option but to operationalize it as either an F or an F. This is a view taken, for example, by Bollen 

and Lennox (1991), Jarvis, MacKenzie, and Podsakoff (2003), and Podsakoff, MacKenzie, 

Podsakoff, and Lee (2003). Others propose that "constructs themselves, posited under a realist 

philosophy of science as existing apart from their measurement, are neither formative nor 

reflective" (Wilcox, Howell, & Breivik, 2008, p. 2). We lean to the latter viewpoint, but then, 

there is no need to take a stand on this. Any scientist who has an interest in formative constructs 

can implement our proposed methodology, regardless of their specific view of the nature of 

constructs. 

 

 

 

                                                           
1
 Other views of LVs are possible. Bollen (2002) provides an excellent overview. 
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FACTOR SCORE PREDICTORS AND CONSISTENCY AT LARGE 

It is tempting in both measurement models to substitute good estimates F̂ and F̂ for the 

actual LVs F and F, because then all subsequent structural regressions of interest can be simply 

carried out and interpretational confounding can be minimized (Burt, 1976). Skrondal and Laake 

(2001) provide the most sophisticated approach based on factor score estimates, but it is limited 

to three groups of factors and allows no higher-order factors. In the context of partial least 

squares (PLS) estimation of formative measurement models, such substitution of estimates for 

the true LV is routinely done but with the consequence that “in general, not all parameters will 

be estimated consistently” (Dijkstra, 2010, p. 37). Of course in both situations, consistent 

estimates of the LVs could be obtained as the number of observed indicators goes to infinity (a 

property known as “consistency at large” in the context of PLS), but this theoretical result does 

not help in practice. 

In the following, we do not take a stand on whether formative or reflective measurement 

models are the “right” way to approach measurement in any given content domain. Consistent 

with standard SEM practice, we certainly believe that it is appropriate at all times, when it is 

theoretically meaningful, to predict an F from a set of independent Vs, that is, to have V�F 

paths in a larger model. The literature has provided no mathematical or statistical criterion to 

decide when an F so predicted may be interpreted as an F, although substantial thought has gone 

into the logical and conceptual issues that would help to differentiate these two model types (see, 

e.g., Coltman, Devinney, Midgley, & Veniak, 2008; Edwards & Bagozzi, 2000; Hardin, Chang, 

& Fuller, 2008; Howell et al., 2007ab; Jarvis et al., 2003; Kim, Shin & Grover, 2010; 

MacKenzie, Podsakoff, & Jarvis, 2005; Petter, Straub, & Rai, 2007; Wilcox et al., 2008). For 

brevity, we assume that the important content and substantive issues have been appropriately 
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addressed, and the researcher has a good rationale for being interested in F and understands how 

to interpret it (e.g., Cenfetelli & Bassellier, 2009). This permits us to focus on the problem of 

identifying and obtaining F in practice, to which we now turn. 

 

FORMATIVE MEASUREMENT MODELS 

Formative measurement models, by themselves, are not identified. In particular, the 

unknown coefficients bi in an equation such as F = b1V1 + b2V2 + … + bkVk for k predictors of F 

cannot be determined, because F is unobserved. It is possible to define F =P, a principal 

component or any other linear combination of variables and to take P = b1V1 + b2V2 + … + bkVk, 

where now bi is the weight for a variable to generate the component. However, this choice is 

inadequate, since in this case P is not an LV. It can just be directly computed and put into the 

data file. This would not be possible with a true LV. For this reason, it is recognized that a 

formative construct operationalized as an LV also must have a disturbance or residual term.
2
 

Hence we require that F = P + D, where D is a random disturbance uncorrelated with P. 

Unfortunately, the random D is unknown, leading to the problem that the formative construct F = 

P + D is not uniquely defined. This is the well-known problem of identification. What, then, is a 

researcher to do to obtain a meaningful F? 

 

 

 

                                                           
2
 In early terminology, “formative” measurement did not require a disturbance term, while the phrase “causal 

indicator” is meant to permit but not require the disturbance. Issues regarding this disturbance term are summarized 

in Diamantopoulos (2006) and Wilcox et al. (2008). 
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PRIOR METHODS TO IDENTIFY FORMATIVE CONSTRUCTS 

Solutions to the identification problem proposed by prior writers require expanding the 

formative measurement model by adding reflective indicators to every formative construct in the 

model (e.g., Franke, Preacher, & Rigdon, 2008; MacCallum & Browne, 1993; Diamantopoulos 

&Winklhofer, 2001; Jarvis et al. 2003, p. 214-215; Petter et al. 2007, pp. 640-643). For a 

practical application, see e.g., Roberts and Thatcher (2009) or Kim, Shin, and Grover (2010). 

This can be done in several ways, as illustrated in Figure 1. In each case, F is taken to have 

reflective indicators (for simplicity, only two in each figure), whether factors (part A), observed 

variables (part B), or a combination of the two (part C). The figures are simplified to illustrate 

the main point; see Jarvis et al. (2003, p. 214 Figure 5, Panel 2), Diamantopoulos, Riefler, and 

Roth (2008), or Bollen and Davis (2009a) for additional details.
3
 In each case F is identified 

because it has two arrows emanating from it to different dependent variables (Bollen & Davis, 

2009ab). It is presumed that these paths are nonzero and the problem of two-indicator 

identification has been addressed. 

The three approaches to identification of F in Figure 1 are discussed in the literature (see 

e.g., Jarvis et al., 2003; MacCallum & Browne, 1993; MacKenzie et al., 2005; Petter et al., 

2007), while more complicated cases are also considered by Bollen and Davis (2009a). Since F 

in each part of the figure is meant to be a formative construct, it also must be predicted by one or 

more of the Vs that are intended to create F, with a disturbance, say D. That is, we also have F = 

b1V1 + b2V2 + … + bkVk + D.  

                                                           
3
 Figure 1 appears to show that F is an independent variable, but it is in fact a dependent variable via F = P + D. The 

notation with V, F, E, and D is that of EQS (Bentler, 2006). 
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Figure 1. Proposed Solutions for Construct Identification 

 

However, an oddly overlooked point is that while these proposed solutions provide a 

model that is identified, they also change the presumed formative F into a reflective F. To see 

why this is so, we use the Thurstonian view of a common factor. Consider case A. If F1 and F2 

are ordinary first-order factors with their own V indicators, then by covariance algebra or path 

tracing F is just the second-order factor that explains the correlation between F1 and F2. The 

meaning of this presumed F is entirely derived from the common variance shared by F1 and F2, 

i.e., the F in the figure should be replaced by an F. Clearly its meaning is not derived from the 

fact it is predicted by some Vs, since F would disappear if F1 and F2 were uncorrelated. Yet, the 

whole point of a formative LV like F is that its meaning should be determined by its predictors, 

not by its consequences.  
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The same problem occurs, and more obviously so, in case B. Here F is a standard first-

order factor F that simply reflects the common variance that Vk+1 and Vk+2 share. The fact that 

there may be V1…Vk that predict this standard reflective factor, which we would include in the 

model when believing F to be a formative factor, does not matter. Critically, if Vk+1 and Vk+2 

happen to be uncorrelated, F will disappear. Again, it makes no sense to consider the existence 

of a formative LV to depend on the extent to which its consequences correlate, since formative 

constructs are supposedly created by their observed precursor Vs. If instead of using Vk+1 and 

Vk+2 as indicators in Figure 1b we had used any pair of V1…Vk, F also would become a 

reflective factor in the classical sense. 

None of these critical issues is alleviated by using "mixed" indicators as in case C. Rather 

than being created by its indicators; F again simply reflects the shared variance between Vk+1 and 

F1. If Vk+1 and F1 were to correlate zero, F would not exist since its reflective paths simply 

reproduce the correlation of Vk+1 and F1. 

While our critique is formal, based on the matrix theory behind path tracing, this point 

has been recognized empirically. Howell et al. (2007a) illustrate to what extent the relation 

between the formative indicators and a hypothesized construct depends on the indicators of 

downstream constructs, i.e., those that are supposed to depend on the formative LV. They 

empirically show that "changing dependent constructs changes the formative construct" (p. 11)
4
. 

                                                           
4
 This problem also pertains to reflective measurement, but with less severity. As Howell et al. (2007a, p. 208) state 

"No, reflective measures are not immune from contamination and potential interpretational confounding when 

estimated in a larger structural equation model. However, reflective models have epistemic relationships that exist 

independently from structural relationships." See also Kim et. al. (2010). 
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Similarly, Kim et al. (2010, p. 353) note that “even when the construct and measures are 

correctly specified, their relationship changes depending on the choice of endogenous variables.” 

The consequences of this unacknowledged transformation of a priori Fs into research-

usable Fs are known. In their reply to Bagozzi (2007) and Bollen (2007), Howell et al. (2007b, p. 

245) summarize that "We do believe that there is one overriding message in this exchange. To 

paraphrase and extend Bagozzi's observation, for a formatively measured variable, the 

parameters relating the latent construct to its indicants, as well as the error term in the model, 

will always be a function of the observed relationships between the formative indicators and the 

outcome variables, whether interpretational confounding occurs or not." This observed relation-

ship is proportional, as noted by Franke et al. (2008). 

Our clear distinction between Fs and Fs is theoretical, not empirical, as a thought 

example can illustrate. Suppose that F = b1V1 + b2V2 + b3V3 + b4V4 + D is the intended 

formative construct. A meaningful construct in information science is given by Petter et al. 

(2007, p. 637), namely the construct F of Declarative Knowledge (from Yi & Davis, 2003), 

predicted by ability to understand tasks in Excel, such as copying formulas (e.g., V1), copying 

contents of cells (V2), using menu shortcuts (V3), and using operators (V4). Now suppose V5 and 

V6 are criterion measures such as capability to set up a new spreadsheet and correctness in 

analyzing an old spreadsheet. No doubt V5 and V6 would be highly correlated, so they would be 

good indicators of a latent factor F. Furthermore, because of the content similarity of the 

formative definers V1-V4 of F with the outcomes V5 and V6, in a model with F in place of F we 

would expect the coefficients b1…b4 to be substantial in magnitude. We would congratulate 

ourselves for having a strong formative construct. But now suppose instead of the effect 

measures that relate to work with spreadsheets, we let V5 and V6 be measures of participants’ 
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physical height and weight. Again, we would expect V5 and V6 to be substantially correlated, and 

they would be good effect indicators of a latent construct F. But surely now the coefficients 

b1…b4 that presumably define F in a formative way would be essentially zero, since it is unlikely 

that understanding tasks in Excel is related to the height and weight of the respondents. Clearly, 

F has completely changed meaning, which it should not do if F really were the formative 

construct F whose meaning is determined by its antecedents V1-V4 rather than by its 

consequences V5 and V6. 

Recognizing the difficulties in current approaches to operationalizing an F, next we 

propose a new method for obtaining a formative LV. 

 

A TWO-STEP APPROACH TO FORMATIVE CONSTRUCT 

IDENTIFICATION 

  Consider again the formative construct equation F = b1V1 + b2V2 + … + bkVk + D. The 

proposed two-step approach to identifying this model involves, in the first step, partitioning P 

into two or more parts, such as with P=P1+ P2, and in the second step, defining a latent variable F 

based on P1 and P2 that is as close as possible to F. This is necessary, since F is inherently 

unpredictable. 

Proposition 1. F is linearly predictable from F, with a squared correlation 2

F
ρ
F

that depends on 

the inherent relation of F with F and the magnitudes of the disturbance variance in F and the 

error variance of its observed component. (For proof, see Appendix A.)  

The P to be split has to be defined. We accept any method that the researcher considers 

appropriate based on the formative literature. To illustrate, a principal component analysis (PCA) 
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may define the coefficients, so that P = b1V1 + b2V2 + … + bkVk, where P is the component 

associated with the largest eigenvalue of the predictor correlation or covariance matrix 

(depending on one’s theory). Alternative traditional choices for the weights bi are those that 

define the centroid of the predictor variables, or those from a completely a priori weighting 

scheme. The use of a priori weights based on meta-analysis for identifying optimum weights was 

recently proposed by Hardin et al. (in press). Unfortunately, even a correctly specified P is 

incomplete since it provides no rationale for choice of a disturbance term D. We will therefore 

find a way to proceed without D. 

 

Step 1: Create Multiple Composites 

Given that P has been defined, and if the Vs that compose P are not all mutually 

uncorrelated, we may split P into multiple composites in one of (at least) four different ways: an 

a priori method, split with original weights, split with replicated weights, and split with weights 

for maximal correlation. We illustrate with two parts, P1 and P2. These methods are simple 

suggestions for obtaining multiple indicators of a single latent variable, an issue that reflective 

measurement and LV SEM has dealt with successfully for decades. 

A priori split. Since P = b1V1 + b2V2 + … + bkVk we may partition P based on theory and 

experience into two sets. An example is odd and even sums P1 = b1V1 + b3V3 + … +biVi and P2 = 

b2V2+ b4V4 +…+bkVk. While formative measurement allows the parts P1 and P2 to be 



Formative Latent Variables        13 

uncorrelated, as will be seen below, for our purposes the best split would yield highly correlated 

parts. 5 

Split with original weights. The original variables defining P are split such that each original Vi= 

Vi1 +Vi2. This creates two sets V11, V21, …, Vk1 and V12, V22, …, Vk2 . This can be done easily if 

each Vi is a composite such as a test score. For example, a total test score could be decomposed 

into two components Vi1 and Vi2 by placing half the items into one set, and the other half into the 

other set by a random choice or by a systematic procedure such as odd vs. even items, and 

creating subtotal scores based on such a division. Then, using the original weights, P1 = b1V11 + 

b2V21 + … + bkVk1 and P2 = b1V12 + b2V22 + … + bkVk2. Use of identical weights presumably 

will lead to highly correlated parts. 

Split with replicated weights. The chosen weighting procedure (e.g., PCA) can be applied 

separately to the two sets of variables, yielding P1 = b11V11 + b21V21 + … + bk1Vk1 and P2 = 

b12V12 + b22V22 + … + bk2Vk2. This case allows instability of the weights to adjust the definition 

of P ≅ P*= P1+P2, and may yield parts that are less highly correlated. 

Split with weights for maximal correlation. In this approach, given Vi=Vi1+Vi2 as given above,  

weights are obtained such that P1 = b11V11 + b21V21 + … + bk1Vk1 and P2 = b12V12 + b22V22 + … 

+ bk2Vk2 are maximally correlated. This is a standard problem in canonical correlation analysis, a 

well-known technique (e.g., Raykov & Marcoulides, 2008). Again, P*= P1+P2 ≅ P. 

All of the above methods can be implemented when it is desired to partition P into three 

or more parts, e.g., with canonical correlation (Kettenring, 1971). When it is literally impossible 

                                                           
5
A simple example from Bollen (2002, p. 616) may help. He suggests “time spent with friends, time spent with 

family, and time spent with coworkers as indicators of the [formative] latent variable of time spent in social 

interaction.” If the indicators are V1, V2, and V3, and P = V1+V2+V3, we could take P1 = V1+V2 and P2 = V3. 
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to partition P into any parts, we may use an estimate of the reliability of P to accomplish the 

same goal as given in Step 2 (see Discussion section). 

 

Step 2: Define F from P1 and P2 

Next, the composites P1 and P2 are treated as reflective indicators of an F; that is, P1 = 1β

F+E1 and P2 = 2β F+ E2. We assume that E1 is uncorrelated with E2. Clearly, F is the common 

part of P1 and P2 , i.e., it is a latent variable approximation to P, the determinate part of F. This F 

can now be incorporated into any larger substantive model. If only two composites P1 and P2 are 

used, standard cautions to identify two-indicator factors must be taken. 

Figure 2 summarizes the two steps. Grey shaded areas represent the first step, and the 

remainder the second step. 

 

Figure 2. Two-Step Identification with Composites 

 

When there are two Pi we might set β1=β2 if the items are split into two equivalent sets. 

The βs relate the observed composites to a latent reflective F, and the error terms allow the 
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observed composites to contain a random residual part. While F is the common factor underlying 

P1 and P2, the size of the correlation between F and F depends on the choice of method in Step1. 

 Proposition 2. In Step 2, the squared correlation 2

F
ρ
F

between F and F is maximized when 

1 2γ β β= + is maximal, and, for a given level of random error variance, the specific variances in 

P1 and P2 are minimized. For proof, see appendix. 

In other words, F is a better approximation to F as P1 and P2 are highly correlated and the factor 

loadings 1β and 2β are as large as possible. This favors any splitting method that allows P1 and P2 

to be highly similar in content and statistical properties. In practice, however, we will not know 

the exact value of 2

F
ρ
F

in any particular application, since the variance of the disturbance D is not 

estimated in our procedure. Once F is identified, it can be used in any structural model in the 

usual way. 

 

ILLUSTRATION OF A PRIORI AND CANONICAL FORMATIVE LVS 

We illustrate our approach by using a simple example that permits us to detail the 

computations needed for implementing our method.  

 

Table 1  

Correlations among Six Variables Grouped into Two Sets of Three Variables 

 V11 V21 V31 V12 V22 V32 

V11 1.0      

V21 0 1.0     
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V31 0 0 1.0    

V12 .8 0 0 1.0   

V22 0 .6 0 0 1.0  

V32 0 0 .4 0 0 1.0 

 

We use the correlation matrix given in Table 1, which shows the correlations among six 

variables that have been grouped into two sets of variables, each of which is intended to form an 

observed composite in step 1 of our method. Formally, the correlation structure in Table 1 can be 

shown as a block matrix in terms of  

 

We force the variables within a set to be uncorrelated, that is, Σ11 = I and similarly Σ22 = I. This 

not only simplifies the computations, but also accounts for a major point made in the formative 

measurement literature, namely, that the variables used to generate formative constructs need not 

be correlated at all. Uncorrelatedness precludes Σ11 or Σ22 from defining reflectively measured 

constructs. Additionally, we suppose that the cross-correlations between pairs of variables Vi1 

and Vi2 are not zero.  

First we consider defining an F to approximate a formative F using arbitrary a priori 

weights of .5, .6, and .7 for each of the composites (step one). Notice that if the within-set 

correlations were nonzero, such weights might be appropriate to generate a principal component 

or similar weighted sum. Now simple algebra of expectations will allow us to compute the 

variances and covariances of P1 = .5V11 + .6V21 + .7V31 and P2 = .5V12 + .6V22 + .7V32. It can 
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easily be determined that the variances of P1 and P2 are 1.1, and the covariance between P1 and 

P2 is .612. As a result, the correlation between P1 and P2 is approximately .5564. Thus if we add 

P1 and P2 to any data file destined for a larger model, the subpart associated with our new F 

computed using the model of Figure 2 in step 2 obtains factor loadings of β1 = β2 = .612  if we 

force the factor loadings to be equal, due to equivalent item splits. If we proceed similarly but 

first standardize P1 and P2 to unit variance, the loadings would equal β1 = β2 = .5564  ≈ .746. 

This would be a fairly well-defined F. However, we can do even better than that by calculating 

the canonical correlation, which can be computed at .8ρ = . This value is larger than the 

correlation of composites of .5564 that we obtained earlier. As a result, using our two-step 

methodology leads to standardized factor loadings of .894 for the F that best approximates the 

formative construct F. No other weighting scheme can achieve more accurate results.  

 

EXAMPLE: PRIVACY 

"The right to be let alone" (Warren & Brandeis, 1890), or privacy, is an issue that 

concerns consumers, especially in this interconnected age (see e.g., Lee, Im, & Taylor, 2008). 

Various reflective scales have been developed to measure privacy. For example, Smith, Milberg, 

and Burke (1996) focused on individuals' concerns about organizational practices and developed 

a 15-item instrument with four subscales (collection, error, secondary use, improper access), and 

Malhotra, Sung, and Agarwal (2004) developed a scale with three first order dimensions 

(collection, control and awareness) to measure Internet users' information privacy concerns. We 

use formative indicators (see Appendix B for rationale) intended to assess various aspects of 

privacy related to perceived disadvantages of personalized communication. 
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Content validity was insured by consulting experts for gathering the first set of indicators 

measuring potential disadvantages of individualized communication. Qualitative Interviews were 

conducted in which experts (e.g. consumer advocates, consultants and producers of CRM 

software) talked about their perspectives on individualization. We taped, transcribed and 

paraphrased passages that contained relevant statements and generalized the paraphrases. Finally, 

these new statements were combined into an abstraction system and checked against the original 

transcripts. Following the principles of qualitative content analysis, the goal was to identify as 

many different opinions as possible rather than to ensure the representativeness of individual 

statements. The items (see Table 2) were used in an online survey with a convenience sample of 

405 Internet users. In order to assess their level of agreement or disagreement with the 

statements, the respondents used a slider bar ranging from 1 to 100, thus creating metric scales.  

 

Table 2  

Items and Response Format 

Perceived Disadvantages of Personalized Communication 

Item # Wording Measurement/Scale Level 

V11 On the Internet, data about me is permanently collected, which I 

cannot control. 

Slider Bar/Metric (1-100) 

Do not Agree – Fully Agree 

V21 I am poorly informed about the use of my data. Slider Bar/Metric (1-100) 

Do not Agree – Fully Agree 

V12 If I divulge personal data, I lose control over how companies use 

my data. 

Slider Bar/Metric (1-100) 

Do not Agree – Fully Agree 

V22 Personalization leads to an increase in unsolicited advertising 

messages, since companies know what I am interested in. 

Slider Bar/Metric (1-100) 

Do not Agree – Fully Agree 
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The first step of our two-step approach is performed in R using the package CCA 

(Gonzales et al., 2008) for canonical correlation analysis. Appendix C gives a few syntax lines 

on how CCA can be performed in R and SPSS. The factor analytical second step is computed in 

EQS. The interrelation of EQS and R can be simplified with the REQS package (Mair, Wu, & 

Bentler, 2010). 

For CCA we specify V11 and V21 as the first set and V12 and V22 as the second set (see 

Table 3). The canonical correlation coefficients between P1 and P2 are .464 and .084; only the 

first correlation coefficient is of interest. The corresponding canonical coefficients (weights) are 

.0197 (V11) and .0220 (V21) for the first set, and .0292 (V12) and .0176 (V22) for the second set. 

In CCA, the canonical coefficients are typically not used; the correlations between the variables 

and the new canonical variates are interpreted instead. These are commonly referred to as 

loadings and can be interpreted as ordinary factor or component loadings (e.g., Raykov & 

Marcoulides, 2008). The respective values are .786 (V11), .800 (V21) for P1 and .851 (V12), .703 

(V22) for P2. By means of the canonical coefficients, the scores P1 and P2 can be computed and 

the first step of our approach is completed. Based on these linear composite scores, we compute 

the reflective part of the model in the second step. Since a CFA with only two indicators is not 

identified, we restrict the factor loadings to be equal and get standardized loadings of .681. 

Subsequently, after calculating the loadings, the privacy construct is now ready to be placed into 

any larger nomological network in order to test the relationships postulated by theory. 

 

Table 3 

Results of CCA and Formative Loadings 

  Canonical 

Correlation 

Canonical 

Coefficients 

Loadings Standardized 

Loadings 
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Coefficient 

P1 

V11 

.464 

.0197 .786 

.681 

V21 .0220 .800 

P2 

V12 

.464 

.0292 .851 

.681 

V22 .0176 .703 

 

 

DISCUSSION 

Structural equation models routinely use ordinary common factors as latent variables, but 

it has been argued that non-common factor formative LVs would be more appropriate in many 

contexts. For example, Jarvis et al. (2003) illustrate that most empirical papers in leading 

marketing journals (Journal of Consumer Research, Journal of Marketing Research, Journal of 

Marketing, Marketing Science) used common factors when formative LVs might have been a 

more appropriate choice. Unfortunately, as has long been recognized, this cannot easily be done 

due to the fundamental problem of identification (MacCallum & Browne, 1993). The only 

known solution has been to expand the formative measurement model by adding reflective 

indicators. An unforeseen consequence is that the formative F is changed into a standard 

common factor F that accounts for the covariances of its consequent indicators, i.e., it destroys 

the intended meaning of the formative LV as one whose meaning derives from its antecedents. It 

simply transforms a model containing formative LVs into a Bentler-Weeks type SEM model that 

contains V →  F paths. For example, MacCallum and Browne’s (1993, p. 540) identified 

formative model should contain an F, but instead it contains an F that simply is a second-order 

factor that is predicted by some observed variables. If the first-order factors were to be 
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uncorrelated, the second-order factor and hence the presumed formative LV would disappear. 

This is contrary to the idea that formative LVs are created by their antecedent Vs.  

The solution that we propose for this quandary is first, to acknowledge this problem, and 

then, to devise a way around it. We propose to substitute the hypothesized F with an F that is as 

close to it as possible in a well-defined sense. This idea is implemented with a two-step approach 

that splits the determinate part of the formative construct into two or more composites and then 

models these composites as a common factor that can be placed into any desired larger SEM 

model. To illustrate how this can be done in practice, we report an artificial example and an 

original empirical study. Canonical correlation analysis is used to calculate the composites.  

Step I of our method amounts to creating multiple indicators of a common factor. If there 

is absolutely no way to create two or more indicators in the first place, or if any two composites 

that might be created correlate approximately zero, this method cannot be used. Of course, the 

situation is not hopeless. When all Vs that define P are mutually uncorrelated, we may simply 

use P by itself along with an estimate of its reliability (obtainable, e.g., by a test-retest method). 

With a reliability coefficient, the variance of P can be partitioned into that of factor and error. 

Such a procedure to handle single indicators has been used in latent variable structural modeling 

for decades and is still considered to be a viable option in recent literature (e.g., Coffman & 

MacCallum, 2005, p. 240; Kline, 2005, pp. 229-31; MacKinnon, 2008, p. 189). 

The proposed methodology, based on linear structural models, can be easily extended to 

allow for nonlinear measurement models such as nonlinear canonical correlation analysis for 

ordinal variables. More generally, our methodology can be extended to allow general nonlinear 

functions such as P1= f(X) and P2= f(Z) in the first step, followed by a standard factor model in 

the second step. 
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Although technical properties of our approach are described in the two propositions and 

their proofs, given in Appendix A, further mathematical and statistical results remain to be 

developed. For example, research will have to determine the actual degree of correspondence 

between F and F that is achievable in practice, perhaps based on several alternative splitting 

methods applied under a variety of simulated conditions. The propositions are based on standard 

classical test theory and factor analytic assumptions (Bentler, 2009), and hence the effect of 

violating these assumptions is another topic for further research. It also would be useful to 

determine the extent to which the factors used in traditional methods for formative identification, 

such as given in Figure 1, agree with the factors obtained in our new approach.  

Our approach allows – but certainly does not require -- the formative indicators to contain 

errors of measurement. Our propositions hold for perfectly reliable formative indicators as well 

as those that may be error-prone. It is well known that the standard formative measurement 

model "does not include error terms for the causal indicators" (MacCallum & Browne, 1993, p. 

534). This does not imply that all Vs that generate F in fact contain no measurement error. Such 

error is just not modeled, although it could be, as shown in Edwards and Bagozzi (2000, Fig. 5B) 

and Diamantopoulos et al. (2008, Fig. 3). As noted by Kline (2005, p. 229) "scores from a single 

indicator are quite unlikely to have no measurement error." 

Our equations are based on population quantities. In practice, any method is applied in 

samples, as it was in our example. Step 1 of our method is simply another data preparation step, 

similar to those routinely used for preprocessing and data reduction, while Step 2 is a standard 

structural modeling analysis. Hence, currently available statistical theory (e.g., Yuan & Bentler, 

2007) can be used to evaluate the statistical properties of our estimates and tests. 
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This paper proposes a compromise in the formative/reflective controversy. We accept 

that, conceptually speaking, a formative construct can be scientifically meaningful, but 

practically and operationally, a thoughtfully developed reflective measurement approach is the 

most appropriate way to implement it. 
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APPENDIX A 

Let F be a formatively measured construct and F be a latent factor or any other variable.  

Proposition 1. F is linearly predictable from F, with a squared correlation 2

F
ρ
F

that depends on 

the inherent relation of F with F and the magnitudes of the disturbance variance in F and the 

error variance of its observed component.  

Proof. Let the formatively measured construct be F = P+D, with P=b1V1+b2V2+…+ bpVp and 

where V1 … Vp are observed variables and D is a random disturbance uncorrelated with P. The 

extent of linear predictability of F is given by F Fγ ε= + where γ is a coefficient describing the 

inherent relation of F with F and ε is a residual uncorrelated with F. The squared correlation 

between F and F is 2 2 2 2/
F F

ρ γ σ σ=
F F

. To allow that P may not be perfectly reliable, we assume 

that it has a classical test theory decomposition P=T+E, where T (true component) and E 

(random error, if any) are uncorrelated. Then 2 2 2

P T E
σ σ σ= + , with the possibility that 2 0

E
σ = . It is 

natural to assume that E is uncorrelated with D, so that 2 2 2 2

T E D
σ σ σ σ= + +
F

. Hence

2 2 2 2 2 2/ ( )
F F T E D

ρ γ σ σ σ σ= + +
F

, and the squared correlation is increased as the variances of E and 

D decrease. Under formative measurement, 2 0
D

σ > , and maximal predictability is reached when 

2 0Eσ = . Otherwise, maximal predictability occurs when both the disturbance variance 2

D
σ and 

error variance 2

E
σ  vanish. 

Proposition 2. In Step 2, the squared correlation 2

F
ρ
F

between F and F is maximized when 

1 2γ β β= + is maximal, and, for a given level of random error variance, the specific variances in 

P1 and P2 are minimized. 
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Proof. Since P1 = 1β F+E1 and P2 = 2β F+E2, F =P1+P2 +D Fγ ε= + where 1 2γ β β= + and ε = 

(E1+ E2+D). The squared correlation is 
1 2

2 2 2 2 2 2 2/ ( )
F F F E E D

ρ γ σ σ σ σ σ= + + +
F

. For a given 

denominator, this is maximal when 1 2γ β β= + is maximal. Also, according to standard factor 

analytic theory (see Bentler, 2009), the unique variances have decompositions
1 1 1

2 2 2

E S δσ σ σ= + and 

2 2 2

2 2 2

E S δσ σ σ= + where
1

2

Sσ and 
2

2

Sσ represent reliable specific variance not shared between P1 and 

P2, and 
1

2

δσ and 
2

2

δσ are random error variances. When γ , 
1

2

δσ and 
2

2

δσ are fixed, 2

F
ρ
F

is maximized 

when the specific variances
1 2

2 2( ) 0S Sσ σ+ → . 
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APPENDIX B 

Following the recommendations from Jarvis et al. (2003), we provide a rationale as to why the 

items can be classified as being indicators of a formative construct. 

Perceived Disadvantages of Personalized Communication 

Decision Rules for Construct Identification 

Decision Rule Rationale 

Direction of causality is from items 

to construct 

The indicators of perceived disadvantages of personalized communication are 

defining characteristics of the construct; i.e. the construct is made up of the sum 

total of those cases where an individual perceives a disadvantage. If one indicator 

changes (e.g. better information about data usage), the whole construct changes.  

Indicators need not to be 

interchangeable 

The indicators capture different dimensions of disadvantages, i.e. the loss of 

control of data collection, the lack of information about data usage, the loss of 

control of data usage and the increase of unsolicited advertising. 

Not necessary for indicators to 

covary with each other 

There are various situations conceivable, where one indicator changes and leaves 

the rest unchanged. A spam filter might lead to a reduction in unsolicited 

advertising messages, while leaving the other disadvantages unchanged. 

Nomological net for the indicators 

may differ 

The antecedents and consequences for the indicators vary. Legislation, for 

example, might force companies to inform customers better about data usage 

practices without changing their marketing strategies. Unsolicited advertising may 

lead to "information overflow", while poor information about data usage might 

reduce trust. 
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APPENDIX C 

The CCA package in R written by Gonzales et al. (2008) provides a flexible tool for performing 

canonical correlation analysis and various extensions. A prototype R syntax could look as 

follows (comments are quoted after the "#"-sign): 

install.packages("CCA")    #install package 
library("CCA")      #load package 
set1 <- cbind(item1, item3)    #set 1: items 1 and 3 
set2 <- cbind(item2, item4)    #set 2: items 2 and 4 
res.cca <- cc(set1, set2)    #CCA  
#vector with canonical coefficients  
coefvec <- c(res.cca$xcoef[,1],resc.cca$ycoef[,1]) 
 
#vector with loadings 
loadvec <- c(res.cca$scores$corr.X.xscores[,1], 

res.cca$scores$corr.Y.yscores[,1])  
 
#extract scores 
xscores <- res.cca$scores$xscores[,1]  #first score vector 
yscores <- res.cca$scores$yscores[,1]  #second score vector 
score.mat <- cbind(xscores, yscores)  #produce score matrix 
 
# write score matrix on hard disk.  
write.table(score.mat, file = "scoresEQS.dat", row.names = FALSE, 
col.names = FALSE) 
 

The file "scoresEQS.dat" can be imported directly in EQS for the factor analytical computations. 

Note that "set1" and "set2" are the responses for the first and second set of items and 

consequently stored as matrices.  

Unfortunately SPSS (PASW) in its current version, does not provide a possibility for CCA 

computation in the graphical user interface. However, using the "manova" command with the 

"discrim" option, canonical correlation analysis can be performed.  

manova item1 item3 with item2 item4 

/ discrim all alpha(1)  

/ print=sig(eigen dim) . 

 

Again, the item 1 and 3 form the first set, item 2 and 4 the second set.  

 


