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Stefan Theußl Ingo Feinerer Kurt Hornik
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Abstract

R has recently gained explicit text mining support with the tm package enabling statis-
ticians to answer many interesting research questions via statistical analysis or modeling of
(text) corpora. However, we typically face two challenges when analyzing large corpora: (1)
the amount of data to be processed in a single machine is usually limited by the available
main memory (i.e., RAM), and (2) an increase of the amount of data to be analyzed leads
to increasing computational workload. Fortunately, adequate parallel programming models
like MapReduce and the corresponding open source implementation called Hadoop allow for
processing data sets beyond what would fit into memory. In this paper we present the package
tm.plugin.dc offering a seamless integration between tm and Hadoop. We show on the basis
of an application in culturomics that we can efficiently handle data sets of significant size.

Keywords: text mining, MapReduce, distributed computing, Hadoop

1 Introduction

R, an environment for statistical computing and graphics (R Development Core Team, 2011), has
gained explicit text mining support via the tm package (Feinerer, 2011) originally presented in
Feinerer et al. (2008). This infrastructure package provides sophisticated methods for document
handling, transformations, filters, and data export (e.g., document-term matrices). With a focus
on extensibility based on generic functions and object-oriented inheritance, tm makes it possible
to apply a multitude of existing methods in the R world to text data structures as well.

In the information age as statisticians we are confronted with an ever increasing amount of
data stored electronically (F.Gantz et al., 2008). This is in particular true for the most natural
form of storing information, namely text. Given appropriate tools to handle huge text corpora will
enable us to answer many interesting research questions via statistical analysis or modeling. E.g.,
suppose one wants to check daily sentiment in newspaper articles in order to measure interactions
between the media and the stock market (Tetlock, 2007), then one might be interested to use data
published by news agencies like Reuters which allow to access their news database containing text
automatically being annotated with rich semantic metadata. Or, on documents acquired from
repositories such as http://arXiv.org/ or the CiteSeerX project (http://citeseerx.ist.psu.
edu/) which allow for harvesting metadata and open access to the corresponding content (i.e.,
download of full text articles), statisticians may apply a variety of bibliometric and scientometric
approaches in order to find patterns like the formation or development of author or topic (Blei
and Lafferty, 2007; Griffiths and Steyvers, 2004) networks. Furthermore, access to documents
written in several centuries, such as the books made available in project Gutenberg (http://
www.gutenberg.org/), allows to study how linguistic patterns develop over time. In a recent
publication in Science Michel et al. (2011) use 15% of the digitized Google books content (4% of
all books ever printed) to study the diffusion of regular English verbs and to probe the impact of
censorship on a person’s cultural influence over time. This led to the advent of a new research field
called Culturomics, the application of high-throughput data collection and analysis to the study
of human culture.
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However, the motivation to analyze huge text corpora is the source of two challenges: (1)
the amount of data to be processed in a single machine is usually limited by the available main
memory (i.e., RAM), and (2) an increase of the amount of data to be analyzed leads to increasing
computational workload. Thus, it is highly imperative to find a solution which overcomes the
memory limitation (e.g., by splitting the data into several pieces) and to markedly reduce the
runtime by distributing the workload across available computing resources (e.g., CPU cores or
cloud instances). Typically, we consider distributed memory platforms (DMPs) like clusters of
workstations for such applications since they are scalable in terms of CPUs and memory (disk
space and RAM) employed. Additionally, many different programming models and libraries like
the message passing interface (MPI) are available that facilitate working with these kind of high
performance computing (HPC) systems. Many of those libraries can directly be employed in R
(see Schmidberger et al., 2009, for further references). Still, one open question remains: is there
an efficient way to handle large data sets in parallel, i.e., distributing the data, applying functions
on the subsetted data in parallel, and gathering results on DMPs?

Fortunately, Google developed a distributed programming model and a corresponding imple-
mentation called MapReduce (Dean and Ghemawat, 2004) which allows for efficient parallel pro-
cessing of data in a functional programming style (Lämmel, 2007). MapReduce—typically used in
combination with another important building block: the distributed file system (DFS, Ghemawat
et al., 2003)—readily enables and takes care of data distribution as well as load balancing, network
performance and fault tolerance.

In this paper we show the huge potential of making a text mining infrastructure like tm recog-
nize such a distributed programming model. Typical tasks in text mining like preprocessing can
be easily run as parallel distributed tasks without knowing details about the underlying infrastruc-
ture. The corresponding extensions to tm are encapsulated in a separate plug-in package called
tm.plugin.dc (Theußl and Feinerer, 2011b) offering a seamless integration building on functionality
provided by interfaces to MapReduce environments.

The remainder of this paper is organized as follows. In Section 2 we review the important
building blocks in the MapReduce paradigm. The integration of this programming model into
tm is discussed in Section 3. Additionally, we show how distributed storage can be utilized to
facilitate parallel processing of corpora. In Section 4 we present the results of a benchmarking
experiment of typical tasks in text mining showing the actual impact on performance in terms of
execution time. In an application in culturomics we analyze in Section 5 a corpus of several GB of
newspaper articles showing how word usage in a prominent newspaper has changed over 20 years.
The hard- and software employed is summarized in Section 6. Finally we conclude this paper in
Section 7, pointing out directions for future research.

2 The MapReduce paradigm

In this section we describe the programming model and the corresponding implementation (i.e.,
the underlying software framework) we employed to achieve parallel text mining in a distributed
context. MapReduce is a programming model originally proposed by Google for large scale pro-
cessing of data sets. It consists of two important primitives related to concepts from functional
programming, namely a map function and a reduce function. Basically, the map function processes
a given set of input data (e.g., collections of text files, log files, web sites, etc.) to generate a set of
intermediate data which may/is to be aggregated by the reduce function. We can express many
tasks in text mining in this model, e.g., preprocessing tasks like stemming of raw text files.

2.1 Programming model

Usually, in this model we consider a set of workstations (nodes) connected by a communication
network. Given a set of input data we want to employ these nodes for parallel processing of
suitable subsets of this data. Therefore, we distribute the data in such a way that parts of the
data can be efficiently processed locally on the nodes by individual map operations, and aggregated
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Figure 1: Conceptual Flow

by reduce operations. Figure 1 shows this conceptual flow of map/reduce operations on a given
data set.

The map function usually transforms its input, i.e., the corresponding subset of the data located
on each node (local data) into a list of key/value pairs (intermediate data). After the map function
has been applied we have three choices to handle intermediate data. First, we can write the data
to disk. Second, we can apply another map function to the data and/or third, we can apply the
reduce function which takes the resulting list of key/value pairs and typically aggregates this list
based on the keys. This aggregation results in a single key/value pair for each key. All of these
operations can be parallelized over the nodes, i.e., every node applies the same function on its
local set of data. The major advantage of this so-called data parallelism is that if implemented
well this approach theoretically scales over any number of nodes. Furthermore, assigning more
than one map task to each node advances load balancing and eventually increases efficiency.

To apply the MapReduce programming model in a distributed text mining context we rely on
the open source implementation Hadoop (The Apache Software Foundation, 2010).

2.2 Distributed file system

Implementations of MapReduce are typically coupled to a DFS which assists in data distribution
and enables fault tolerance. E.g., Google offers the Google File System (GFS) to store data as well
as intermediate and final results in a distributed manner. Such a file system assists in exploiting
data locality which makes parallel execution of tasks faster as additional communication overhead
is avoided. Only pieces of data local to each node are considered for processing which improves
overall I/O bandwidth. Furthermore, data is replicated on multiple nodes so that failures like
crashed nodes or network routing problems will not affect computation. This enables automatic
recovery of data in case of system failures. Such a fault tolerant environment is well suited for
large clusters of commodity machines—the prime platform for many scientific institutions and
companies because of its cost-effectiveness (Barroso et al., 2003).

Similar to GFS the Hadoop Distributed File System (HDFS, Borthakur, 2010) provides such
a scalable and fault tolerant architecture. Copying data to the HDFS implies that the given input
data is split into parts (physical blocks or separate files). These parts are distributed over the
system and replicated over a predefined number of machines. Files are organized hierarchically in
directories and identified by path names.
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2.3 Hadoop streaming

In addition to the MapReduce implementation for distributed manipulation of large data sets and
the HDFS, the Hadoop framework also includes a utility called Hadoop Streaming implementing
a simple interface to Hadoop allowing for the usage of MapReduce with any executable or script
as the mapper and the reducer. It transforms input data stored on the HDFS and aggregates
the results based on the provided scripts. In order to use this tool directly within R we designed
a simple interface (the R package hive, Theußl and Feinerer, 2011a) which basically creates ex-
ecutable R scripts (Rscript, R Development Core Team, 2011) from provided R functions and
automatically runs them on the Hadoop cluster. This approach offers high level access to the
Hadoop MapReduce functionality.

3 Integration

3.1 Classical layout and process flow

The tm text mining framework offers functionality for managing text documents, abstracts the
process of document manipulation and eases the usage of heterogeneous text formats (Feinerer
et al., 2008). The main data structure is a corpus, an entity similar to a database holding and
managing text documents in a generic way. It can be seen as a container to store a collection
of text documents including a set of additional metadata annotations. Conceptually we want
a corpus to support a set of intuitive operations, like accessing each document in a direct way,
displaying and pretty printing the corpus and each individual document, obtaining information
about basic properties (e.g., the number of documents in the corpus), or applying some operation
on a range of documents. These requirements are formalized via a set of interfaces which must be
implemented by a concrete corpus class:

Subset The [[ operator must be implemented so that individual documents can be extracted
from a corpus.

Display The print and summary must convert documents to a format so that R can display them.
Additional meta information can be shown via summary.

Length The length function must return the numbers of documents in the corpus.

Iteration The tm_map function which can be conceptually seen as an lapply has to implement
functionality to iterate over a range of documents and applying a given function.

The implementation in R via the tm package was mainly driven by these conceptual requirements
and interface definitions, and is characterized by a virtual corpus class which defines the above set
of pre-defined interfaces which must be implemented by actual derived corpus classes to support
the full range of desired properties. The main advantage of using a virtual class with well-defined
interfaces is that instantiated subclasses work with any function aware of the abstract interface
definitions but the underlying implementation and representation of internal data structures is
completely abstracted.

So-called sources are used to abstract document acquisitions, e.g. files from a hard disk, over the
Internet, or by other connection mechanisms. Although we use different sophisticated mechanisms
for corpus construction like using database back ends it is conceptually appealing and possible
to allocate the storage in a distributed manner since communication is usually not limited by a
single bottleneck. We will use this fact for physically distributed allocation in order to reduce
communication costs for parallel computation.

E.g., for a non-distributed scenario assume we have our data set stored in a directory on a
local hard disk. Then we can simply use a predefined source like DirSource which delivers its
content. A reader function now specifies how to actually parse each item delivered by the source
(like XML or HTML documents). E.g., for some news stories from Reuters (see Section 4.1 for a
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detailed description) in XML format stored in the directory Data/reuters we can construct the
corpus in R via

> library("tm")

> corpus <- Corpus(DirSource("Data/reuters"), list(reader = readReut21578XML))

For illustration purposes the tm package includes a sample data set containing 50 documents
of the Reuters corpus on the topic “Acquisitions” (acq). We will use it for demonstration (in
particular the sixth document) as it provides easy reproducibility. It can be loaded via

> data(acq)

> acq[[6]]

A group of affiliated New York

investment firms said they lowered their stake in Cyclops Corp

to 260,500 shares, or 6.4 pct of the total outstanding common

stock, from 370,500 shares, or 9.2 pct.

In a filing with the Securities and Exchange Commission,

the group, led by Mutual Shares Corp, said it sold 110,000

Cyclops common shares on Feb 17 and 19 for 10.0 mln dlrs.

Reuter

Alongside the data infrastructure for text documents the framework provides tools and algo-
rithms to efficiently work with the documents, like whitespace removal, stemming or stopword
deletion. We denote such functions operating on corpora as transformations. Another important
concept is filtering which basically involves applying predicate functions on collections to extract
patterns of interest. Since we iterate over all documents in a corpus applying transformations
and filters these concepts provide a valuable instance for optimization efforts. Fortunately, both
concepts are highly amenable to parallelization by construction: each transformation or filter
operation needs to be applied to each document without side effects.

Typical computationally expensive preprocessing steps for raw text documents are: stemming
and stopword removal. Stemming denotes the process of deleting word suffixes to retrieve their
radicals. It typically reduces the complexity without any severe loss of information (especially for
bag-of-words). One of the best known stemming algorithm goes back to Porter (1980) describing
an algorithm that removes common morphological and inflectional endings from English words.
The tm function stemDocument() provides an interface to the Porter stemming algorithm, e.g.,
via

> stemmed <- tm_map(acq, stemDocument)

> stemmed[[6]]

A group of affili New York

invest firm said they lower their stake in Cyclop Corp

to 260,500 shares, or 6.4 pct of the total outstand common

stock, from 370,500 shares, or 9.2 pct.

In a file with the Secur and Exchang Commission,

th group, led by Mutual Share Corp, said it sold 110,000

Cyclop common share on Feb 17 and 19 for 10.0 mln dlrs.

Reuter

we can easily stem all documents from acq, i.e., we map (apply) the stemming function on all
documents.

Stopwords are words that are so common in a language that their information value is almost
zero, i.e., their entropy is very low. Therefore it is a common procedure to remove such stop-
words. Similarly to stemming, this functionality is already provided by tm via the removeWords()
function. A single call suffices to remove all English stopwords from a text corpus:
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> removed <- tm_map(acq, removeWords, stopwords("english"))

> removed[[6]]

A affiliated New York

investment firms lowered stake Cyclops Corp

260,500 shares, 6.4 pct total outstanding common

stock, 370,500 shares, 9.2 pct.

In filing Securities Exchange Commission,

, led Mutual Shares Corp, sold 110,000

Cyclops common shares Feb 17 19 10.0 mln dlrs.

Reuter

Removal of whitespace (blanks, tabulators, etc.) and removal of punctuation marks (dot,
comma, etc.) can be done via the stripWhitespace() and removePunctuation() functions.

A very common approach in text mining for actual computation on texts is to build a so-
called document-term matrix (DTM) holding frequencies of distinct terms, i.e., the term frequency
(TF) for each document. When using tm DTMs are stored using a simple sparse representation
implemented in package slam by Hornik et al. (2010). It provides several functions like col_sums(),
row_means(), or rollup() in order to operate on such matrices memory-efficiently. Thus, this
package has to be loaded additionally. DTM construction typically involves preprocessing and
counting TFs for each document. A parallel approach for both construction steps seems promising.
In a non-distributed environment a DTM can be easily constructed from a corpus via

> DocumentTermMatrix(acq, list(stemming = TRUE, removePunctuation = TRUE))

A document-term matrix (50 documents, 1395 terms)

Non-/sparse entries: 3544/66206

Sparsity : 95%

Maximal term length: 16

Weighting : term frequency (tf)

where the second argument specifies preprocessing steps which should be combined and executed
when counting TFs in each document and building the matrix (in this example stemming and
punctuation removal).

3.2 Integration between Hadoop and tm

The integration between the Hadoop software platform and the tm infrastructure is characterized
by two main design concepts: distributed storage and parallel computation. Both concepts are
implemented in the package tm.plugin.dc in a generic way (Theußl and Feinerer, 2011b). This
package is designed in such a way that it provides a corpus implementation of the abstract interfaces
as outlined in Section 3.1. Its classes and methods can be transparently used in combination with
the existing tm infrastructure. The package itself is constructed in such a modular way that
several implementations of the concepts distributed storage and parallel computation are possible.
We chose to primarily utilize the Hadoop distributed computing environment to provide these
capabilities.

Distributed storage

Typically, a corpus in tm is built by constructing an appropriate data structure holding a sequence
of single text documents enriched with metadata which further describes textual content and thus
offers valuable insights into the document structure. The content for each text document is
acquired via source access and copied into main memory. I.e., huge corpora occupy lots of RAM
which slows down computations significantly, and even worse there is a practical limit on the
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maximum corpus size (by the physical memory size minus overhead by the operating system and
other applications). With Hadoop we can circumvent this problem. First, we load the local files
delivered by a source instance into the HDFS. More specifically, we construct key/value pairs
with the document ID as the key and the corresponding content (a serialized R object) as the
value, respectively. Providing the resulting files, i.e., collections of key/value pairs referred to
as chunks subsequently, in the HDFS can be easily achieved via standard Hadoop functions or
via wrapper functions implemented in hive. Second, in R we just store unique pointers instead
of the actual document. These pointers identify the individual chunks containing the serialized
documents in the HDFS. We call such an instance a distributed corpus. This technique reduces the
main memory consumption drastically (e.g., even for millions of documents the pointers occupy
just a few megabytes). Technically, we created the class 'DistributedCorpus' which inherits
from a standard corpus. This allows to utilize this new corpus instance in all use cases of a
classical corpus. Since the tm infrastructure is designed in a very modular and generic way as
described above, we only needed to write methods for a few generic functions (e.g., access or subset
operators) encapsulating the different behavior necessary to abstract the underlying distributed
storage.

Parallel computation

Once we have documents stored in the HDFS, Hadoop is able to perform computations (see map

and reduce steps in Section 2.1) on the data pieces local to each processing node. Such a com-
putation is highly parallel and scales with the amount of available workstations. As indicated in
Section 2.2 the distributed storage allows for low communication overhead as each node typically
accesses and computes only on the data physically located at its position. Thus, we rewrite tm
transformations on-the-fly to Hadoop map functions, i.e., executable R scripts, which are sent to
the Hadoop environment via the Hadoop Streaming utility. In detail, every node is assigned a par-
ticular chunk located in the HDFS. Each document in the corresponding chunk gets unserialized
and transformations are applied. The (again serialized) results are stored on the HDFS and we
only need to update the pointers in our corpus to match the corresponding chunks. Moreover, we
store a set of so-called revisions for each map call which allows extremely fast switching between
various snapshots of the same corpus (like a history with rollback feature known from database
systems)—we just need to keep track of the pointers and reroute them to the desired snapshot
physically located on the HDFS.

The construction of DTMs additionally needs a reduce function. In the map steps preprocessing
as described above is applied and the remaining terms are counted and stored as intermediate data.
In the reduce step DTMs are constructed from the individual term vectors and combined on the
master node.

3.3 Using the distributed corpus

The package tm.plugin.dc implements the above concepts and has to be loaded in order to make
use of the new class 'DistributedCorpus'.

> library("tm.plugin.dc")

Note that 'DistributedCorpus' allows for many implementations of the main design concepts
distributed storage and parallel computation. Typically, a specific parallel computing environment
(PE) is associated with a given kind of storage. By default tm.plugin.dc uses the temporary
directory (e.g., ‘/tmp’) on the local file system as “distributed” storage. We refer to this type of
storage as local_disk. Currently, no PE is used with this storage type. However, corpora not
fitting into main memory can be easily stored using this technology.

In order to take advantage of the parallel computing paradigm MapReduce for operations
on 'DistributedCorpus' we need to specify to use the HDFS storage type which has Hadoop
Streaming associated. In any way, this requires a working Hadoop installation and another R
package named hive to be loaded (see Appendix A for installing Hadoop and hive on a Linux
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system). This package offers an interface to file system accessors and high-level access to the PE
Hadoop Streaming.

> library("hive")

> hive()

HIVE: Hadoop Cluster

- Avail. datanodes: 1

'- Max. number Map tasks per datanode: 2

'- Configured Reducer tasks: 0

> storage <- dc_storage_create(type = "HDFS", base_dir = "/tmp/dc")

The function dc_storage_create() prepares a given directory base_dir on the specified type of
storage to be used for text mining tasks.

Similar to the standard process flow the data has to be retrieved from the specified source via

> dc <- DistributedCorpus( DirSource("Data/reuters"),

+ list(reader = readReut21578XML), storage )

or we can coerce a standard 'Corpus' to 'DistributedCorpus':

> dc <- as.DistributedCorpus(acq, storage)

> dc

A corpus with 50 text documents

Note that one needs to supply the desired storage object as argument to both functions since data
is read from the provided source and directly stored as chunks on the given (distributed) storage
(see Section 3.2). After that, appropriate methods ensure that 'DistributedCorpus' can be
handled as defined for 'Corpus'. This allows for a seamless integration of the HDFS or any other
storage type defined in tm.plugin.dc into tm without changing the user interface. E.g., calling
tm_map() has the same effects as shown in the example above but uses the Hadoop framework for
applying the provided map functions instead.

> dc <- tm_map(dc, stemDocument)

> all(sapply(seq_along(acq), function(x) identical(dc[[x]], stemmed[[x]])))

[1] TRUE

Note that the processed documents are still stored on the HDFS since by concept the return
value of tm_map() must be of the same class as the input value. They can easily be retrieved
with corresponding accessor methods. Furthermore, as the amount of usable memory is only
restricted by the disk space available in the HDFS when using 'DistributedCorpus', we decided
to store the original data and the results under different revisions, i.e., different directories on the
HDFS. Revisions are highly useful for switching between various snapshots of the same corpus.
This allows methods to work on different levels in a preprocessing chain, e.g., before and after
stemming. In addition revisions allow backtracking to earlier processing states, a concept similar
to rollbacks in database management systems. Revisions can be retrieved or set using the functions
getRevisions() and setRevision(), respectively.

> getRevisions(dc)

[[1]]

[1] "20110316181251-2-a"

[[2]]

[1] "20110316181251-1-o"
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> dc <- setRevision(dc, getRevisions(dc)[[1]])

> all(sapply(seq_along(acq), function(x) identical(dc[[x]], acq[[x]])))

[1] TRUE

Another method for 'DistributedCorpus' ensures that the DTM is constructed in parallel us-
ing MapReduce when calling DocumentTermMatrix(). Here, term vectors (intermediate data) are
generated per document in the map step and are aggregated to triplets of the form (term, ID, tf).
Finally, after applying reduce the resulting matrix is constructed from the aggregated data stored
in the HDFS on the master node. Note that the desired number of reducers has to be set via the
function hive_set_nreducer().

> hive_set_nreducer(2)

> DocumentTermMatrix(dc, list(stemming = TRUE, removePunctuation = TRUE))

A document-term matrix (50 documents, 1395 terms)

Non-/sparse entries: 3544/66206

Sparsity : 95%

Maximal term length: 16

Weighting : term frequency (tf)

4 Benchmark experiment

In our performance experiment, we studied the runtime behavior of distributed text mining tasks
using the integrated MapReduce framework presented in Section 3. Additionally, we compare
the results to another parallel programming paradigm—data parallelism via the Message Passing
Interface (MPI, Message Passing Interface Forum, 1994, 2003)—which is delivered with the tm
package.

Basically, the MPI approach seems to be promising since it is mainly motivated by the fact
that most operations on the documents are independent from the results of other operations. As
a consequence there is plenty of room for parallelization, i.e., parallel execution of code fragments
on multiple processors with relatively small overhead. This is especially of interest since hardware
performance gains during the last years mainly stem from multicore or multiprocessor systems
instead of faster (e.g., higher clock frequency) single core processors. However, on the master node
the whole data set stays in the main memory while parts of the data are being processed in parallel
on the worker nodes. Thus, in contrast to the MapReduce approach the R/MPI implementation
is limited by the main memory of the calling machine in terms of data set size. Even if we are
able to run several steps in parallel, the whole corpus has to be loaded into RAM initially.

4.1 Data

For our benchmark experiment we consider two corpora: the Reuters-21578 corpus and a col-
lection of Research Awards Abstracts from the National Science Foundation (NSF). Both can be
represented as standard tm corpora needed for running the MPI experiment and thus fit into main
memory of a typical workstation.

In subsequent applications we additionally investigate large corpora demanding for a data
parallel processing environment like Hadoop circumventing the memory restriction: the Reuters
Corpus Volume 1 (RCV1) and the New York Times (NYT) Annotated Corpus. For an overview
on the different corpora used in all of our experiments see Table 1. Pre-built data packages
(tm.corpus.<name>) for the freely redistributable Reuters-21578 and NSF corpora can be down-
loaded from the data repository of the Institute for Statistics and Mathematics of the WU Wien
(http://datacube.wu.ac.at). We only provide corpus packages for Reuters-21578 and NSF due
to license restrictions. Packages for the RCV1 and NYT corpora can be obtained from the first
author if the right to use the data can be verified.
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# documents mean # char. per document1 corpus size [MB]2

Reuters-21578 21578 736.39/834.42 87
NSF Abstracts (Part 1) 51760 2895.66 236
RCV1 806791 1426.01 3804
NYT Annotated Corpus 1855658 3303.68/3347.97 16160

Table 1: Number of included documents, average number of characters per document, and un-
compressed size on the file system for each corpus.

Reuters-21578 The Reuters-21578 data set (Lewis, 1997) contains stories collected by the
Reuters news agency. The data set is publicly available and has been widely used in text mining
research within the last decade. It contains 21578 short to medium length documents in XML for-
mat (obtainable e.g., from http://ronaldo.cs.tcd.ie/esslli07/data/) covering a broad range
of topics, like mergers and acquisitions, finance, or politics. To download the corpus use:

> install.packages("tm.corpus.Reuters21578", repos = "http://datacube.wu.ac.at",

+ type = "source")

> library("tm.corpus.Reuters21578")

> data("Reuters21578")

NSF Research Awards Abstracts This data set consists of 129000 plain text abstracts de-
scribing NSF awards for basic research submitted between 1990 and 2003. The data set can be
obtained from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/). The
corpus is divided into three parts. We used the largest part (Part 1 ) in our experiments.

Reuters Corpus Volume 1 Lewis et al. (2004) introduced the RCV1 consisting of about
800000 (XML format) documents as a test collection for text categorization research. The docu-
ments contained in this corpus were sent over the Reuters newswire (http://www2.reuters.com/
media/newswires/) during a 1-year period between 1996-08-20 and 1997-08-19. RCV1 covers a
wide range of international topics, including business & finance, lifestyle, politics, sports, etc. The
stories were manually categorized in three category sets: topic, industry and region.

NYT Annotated Corpus The largest data set in our experiment contains over 1.8 million
articles published by the New York Times between 1987-01-01 and 2007-06-19 (Sandhaus, 2008).
Documents and corresponding metadata are provided in an XML like format: News Industry Text
Format (NITF).

4.2 Procedure

The benchmark experiments consists of running several preprocessing steps and constructing
DTMs which usually constitute the major computation effort. All experiments were repeatedly
(three times) run for a selected number of CPUs using the Reuters-21578 corpus and the NSF
Research Awards Abstracts (Part 1). We compare the runtime behavior of the Hadoop- with the
MPI approach. In a second experiment we show that we can use the Hadoop approach to process
data sets of sizes beyond the size of the main memory. In particular we use the same approach as
described above but take the RCV1 and NYT annotated corpus as the basis for this experiment.

Parallelization via MapReduce

With the help of package tm.plugin.dc we can easily use the HDFS as “extended” memory to
store corpora. Parallelization of transformations (via tm_map()) and DTM construction (via

1with/without considering empty documents
2calculated with the Unix tool du
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DocumentTermMatrix()) is supported by appropriate methods using the Hadoop streaming utility
(see Section 3.2).

Parallelization via MPI

tm supports parallelization of transformations, filter operations, and DTM construction, which
constitute the most time-consuming operations in the tm infrastructure. Support can be easily
(de-)activated via tm_startCluster() and tm_stopCluster() calls which start up/stop an MPI
environment or use an existing instance if already running. Technically the high-level interface
snow (Rossini et al., 2003; Tierney et al., 2008) is used which in turn delegates the parallel execution
to the Rmpi package (Yu, 2002, 2010). This allows the code to stay relatively simple because mainly
parallel execution of lapply() operations needs to be implemented (e.g., via parLapply()) but
allows both the usage of multi-core systems (via multiple instances on individual cores running
on a single physical workstation) and of multiprocessor systems (via accessing multiple physically
distributed machines). MPI splits up the input corpus into a set of chunks of documents which
get processed by the individual participating nodes. Conducted experiments showed an impressive
performance gain, with an almost linear speed-up for each additional processing unit.

4.3 Results

Figure 2 shows the runtime improvements in an example where tm uses parallelization via MPI
(black) and Hadoop (red). As test set we used the complete Reuters-21578 data set (above)
and part 1 of the NSF data set (below), and performed stemming (left) and stopword removal
(middle) for each document in the corpus. We set the number of processor cores available to a
range from one to 32. The figure depicts the averaged runtime (three runs per setting) necessary to
complete all operations, showing a clear indication how tm profits from multi-core or distributed
parallelization of typical preprocessing steps on a realistic data set. Both approaches scale almost
linearly with the amount of processing cores. Interestingly, MPI scales superlinearly in a few
cases, e.g., for stopword removal on the Reuters-21578 data set. One possible explanation is that
gsub(), which is internally used to replace stopwords with an empty string, takes significantly
more time on longer strings (i.e., its asymptotic runtime behavior is bigger than O(n) where n
denotes the input string length).

We can also see that there is an overhead when using Hadoop as it takes notable time to start
the framework. This is especially relevant for smaller data sets and for computationally cheap
operations. In such cases MPI easily outperforms Hadoop. For large data sets and computationally
expensive operations the Hadoop overhead is negligible which makes Hadoop the natural choice
for large data sets. In addition a main bottleneck in typical setups are network transfers and we
are physically limited by the main memory. These problems are only addressed by the Hadoop
high performance computing environment by using a distributed file system which makes it the
only choice (compared to MPI) for huge data sets.

Results for constructing DTMs are shown in Figure 2 on the right for Reuters-21578 and NSF,
respectively. Interestingly, MPI outperforms Hadoop in this case since communication costs are
lower when term vectors are transferred. Furthermore, in contrast to Hadoop where data is almost
always kept on disk, MPI holds data in memory. However, for large data set throughput increase
significantly using the Hadoop framework as seen in Table 2. Here, throughput is measured as
the number of 1000 characters per second ([k char/s]) on the one hand and megabytes per second
([MB/s]) on the other hand. From this table we see some interesting behavior compared to Table 1.
Corpora containing documents with more content (in terms of the average number of characters)
are processed faster and corpus size (in terms of physical storage) does not necessarily affect
runtime. One possible explanation for the former behavior is that fewer I/O operations have to
be performed compared to the total corpus size since we iterate over the documents in the corpus
and not over equal sized text chunks. Furthermore, this might also influence the latter behavior
as only for the largest data set we observed a significant gain in throughput where load balancing
of Hadoop is leveraged and becomes effective for the given number of nodes.

11



●

●

●

●

●

●

0 5 10 15 20 25 30

5
10

15

Stemming

#CPU

S
pe

ed
up

●

●

●

●

●
●

●

●

●

●

0 5 10 15 20 25 30

0
10

20
30

40
50

Stopwords

#CPU

S
pe

ed
up

●

●

●

●

●

●

●

●

●

5 10 15

0
2

4
6

8

DTM Construction

#CPU

S
pe

ed
up

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

0
10

20
30

40

Stemming

#CPU

S
pe

ed
up

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

5
10

15
20

Stopwords

#CPU

S
pe

ed
up

●

●

●

●

●

●

●

●

●

5 10 15

0
2

4
6

DTM Construction

#CPU
S

pe
ed

up

●

●

●

Figure 2: Runtime in seconds for stemming, stopword removal, and DTM construction on the full
Reuters-21578 data set (above) and on part 1 of the NSF data set (below) utilizing either Hadoop
(red) or MPI (black) with up to 16 processing cores.

To sum up, apart from RAM as a limiting factor Hadoop is the technology of choice for (1)
corpora containing documents with lots of text and/or (2) corpora which are large in terms of disk
space required.

runtime [s] throughput [k char/s] throughput [MB/s]
Reuters-21578 93 193.6 0.94

NSF Abstracts (Part 1) 291 515.0 0.81
RCV1 5805 198.2 0.66

NYT Annotated Corpus 8330 745.8 1.94

Table 2: Corpus processing statistics. Constructing DTMs with 32 Hadoop nodes on Cluster@WU.

5 Application

It is well known (Francis and Kučera, 1982) that if one knows the words with the highest frequency,
he or she will quickly know most of the terms in a given English text. With the ability to process
large data sets like the NYT Annotated corpus we can answer many interesting questions from
linguistics and other disciplines by using appropriate statistical methods. E.g., Michel et al. (2011)
analyzed about 4% of all books ever printed in order to investigate cultural trends quantitatively.
This even led to the advent of a new research field called Culturomics. In this section we add
to this discussion how the active vocabulary in newspaper articles of the NYT has changed over
time.

The NYT corpus consists of 1855658 documents (docs) published by the New York Times
between 1987-01-01 and 2007-06-19. It contains short- to medium-length articles (on average
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552 terms per document) from various genres. There are in sum 1023484418 terms in the whole
corpus from which we can derive our vocabulary of 547400 words by identifying all unique terms.
Typical for English text we observed on average 5.99 bytes per term.

First, we compare the text coverage given a fixed vocabulary size for the NYT corpus with
the results of Francis and Kučera (1982) (see also http://en.wikipedia.org/wiki/Vocabulary.
Table 3 shows that by knowing the 2000 English words with the highest frequency, one would
know on average 80% of the terms in English texts or 84% of the terms in NYT articles.

size coverage coverage NYT
1000 0.72 0.75
2000 0.80 0.84
3000 0.84 0.88
4000 0.87 0.91
5000 0.89 0.92
6000 0.90 0.93
15851 0.98 0.97

Table 3: Vocabulary coverage in the NYT Corpus compared to standard English text coverage.

However, text coverage using a given vocabulary is not necessarily stable over time since
language use may change (see e.g., Hogg and Denison, 2008). In order to investigate how the
active vocabulary changes e.g., if the text becomes simpler in the sense that coverage of texts
by the most frequent terms increases, we needed to analyze the term frequencies in this very
large corpus, which was conveniently achieved by reading it into a 'DistributedCorpus' and
subsequently deriving the DTM (which contained 547400 unique terms for 1855658 documents,
with a sparsity of 99%). Using metadata like date of publication contained in the corpus object we
can very easily derive a time series of text coverage for a given vocabulary by suitably aggregating
the DTM. We know that language texts could simultaneously get “more complicated” in the sense
that far tails of the term frequency distribution get heavier, i.e., that increasingly more terms are
needed to cover the remaining words. However, we do not pursue the latter issue here as it requires
much more extensive Natural Language Processing (NLP) such as named entity recognition and
morphological standardization.

Figure 3 shows that text coverage is decreasing almost linearly by roughly 1% over 20 years
considering the 1000 and 4000 most often used terms in the whole corpus, respectively. Considering
this scenario we might conclude that texts are not getting simpler over time.

However, if we consider only stopwords, i.e., words with a low entropy, the picture changes.
Over the whole NYT corpus we found 332 different stopwords. The average text coverage using
only stopwords is 0.54. Figure 4 reveals that text coverage driven by stopwords dictionary increases
by more than 1% in the first decade until 1997 and remains stable over the second (we do not have
a reasonable explanation for this structural break). This suggests that while texts were getting
“more specialized”, the amount of low entropy content also increased.

6 Computational Details

All the runtime experiments and applications presented in this paper were performed on WU’s
HPC cluster environment (cluster@WU ). Each node of the cluster consists of an Intel Core 2 Duo
CPU 2.4 GHz, 110 GB of local (SATA) hard disk storage reserved for the HDFS, and 4 GB of
main memory. All nodes are connected by standard Gigabit Ethernet network in a flat network
topology. Parallel jobs have been submitted with the Sun Grid Engine version 6.2 update 3. On
cluster@WU the parallel environments Hadoop (MapReduce) and OpenMPI (MPI) are available
in versions 0.20.1 and 1.3.3, respectively. All R code has been executed via version 2.12.0 of R.
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Figure 3: Monthly text coverage using top 1000 (top) and 4000 (bottom) terms in the NYT corpus.
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Figure 4: Monthly text coverage using stopwords in the NYT corpus.
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7 Conclusion and Outlook

This paper has introduced an approach applying the distributed programming paradigm MapRe-
duce to advance performance of suitable text mining tasks in R. We showed that distributed
memory systems can be effectively employed within this model to preprocess large data sets by
adding layers to existing text mining infrastructure. We also indicated that data parallelism can
very easily be achieved using such an integrated framework without altering the handling of current
text mining software available in R (i.e., the tm package). This is done via the class 'Distribut-
edCorpus' implemented in package tm.plugin.dc. Appropriate methods make use of a distributed
storage (HDFS) and a corresponding distributed computing framework (MapReduce). A bench-
mark experiment showed that applying MapReduce in combination with R on text mining tasks
is a very promising approach. The results presented in this paper show a significant performance
gain over the sequential code as well as very good scalability when employing the distributed
memory model and thus avoiding data transfers. Such an approach allows to process large data
sets like the NYT corpus and to use R’s rich statistical functionalty for large scale text mining
applications. We show this in a culturomics application scenario.

Open issues for further investigations are as follows. Extensions to tm in terms of parallel
programming models employed are desirable since in particular multi-core systems are now very
common, and the number of processors per chip is growing. Thus, it seems natural to provide
appropriate tm methods which support parallel computation on machines with multiple cores or
CPUs, e.g., via the multicore package (Urbanek, 2009).

Furthermore, it needs to be investigated which programming models are promising to be em-
ployed given a certain text mining application. Criteria for choosing an execution plan are: corpus
size, available RAM on main workstation, overhead of available frameworks, and access to dis-
tributed computing facilities (number of computing nodes, RAM, network topology, etc.). Ideally,
tm would implement suitable heuristics for choosing such a execution plan given a set of criteria
automatically.
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A Installing Hadoop

In this section we describe how to set up the Hadoop framework in (pseudo) distributed operation.
This description is based on http://hadoop.apache.org/common/docs/r0.20.2/quickstart.

html and focuses on the Linux operating system as this platform is suggested on the website for
production use. For a more detailed installation instruction and for other platforms than Linux
we refer to the above website.

Basic Hadoop environment

Since Java and the command line utility ssh are needed for operation both programs have to
be installed on all involved machines (on our test platform we used Java version 1.6 update 16
and OpenSSH 5.3). In order to install Hadoop we first downloaded the compressed archive of
the framework following the instructions on the release website (http://hadoop.apache.org/
common/releases.html) and then uncompressed the contents to a directory on a file system
which is accessible by all machines running Hadoop (subsequently referred to as HADOOP_HOME).
E.g., on a single workstation this directory is usually located somewhere on the corresponding
local disk. In case of a cluster of workstation, this directory is usually located on a network
file system (e.g., NFS). Several components of the Hadoop framework need to know the path
to the installation directory, thus it is specified on each machine via the environment variable
HADOOP_HOME (this variable has to be added to the user’s environment on each machine if it is not
done automatically).

Subsequently, few to several changes have to be made in configuration files located in the
$HADOOP_HOME/conf directory depending on the desired operating mode. First, the path to a
working Java environment has to be specified in ‘hadoop-env.sh’. Second, since we want to
operate the framework in pseudo distributed (i.e., use the HDFS facilities on a single workstation)
or fully distributed mode, one needs to setup the configuration files ‘core-site.xml’, ‘mapred-
site.xml’, ‘masters’, and ‘slaves’. An example configuration of a pseudo distributed system
can be found in Appendix B.

Alternatively, on Debian GNU/Linux systems the Hadoop distribution can be installed from
the unstable repository very easily using the package manager aptitude.

aptitude install hadoop-namenoded hadoop-datanoded hadoop-tasktrackerd \

hadoop-jobtrackerd hadoop-secondarynamenoded

This completely installs Hadoop and corresponding tools without further interaction needed. Nev-
ertheless, the HDFS has to be configured as described below. Pre-configured packages for other
Linux distributions can be obtained e.g., from http://www.cloudera.com.

To verify the installation one can execute hadoop version on the command line which returns
the version number of the installed software package.
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Hadoop distributed file system

The final step before running Hadoop jobs in a pseudo distributed environment involves formatting
the HDFS (the default system path on Debian is ‘/var/lib/hadoop/cache’). The command
hadoop namenode -format serves for this purpose.

The configured Hadoop cluster can be started via two alternative approaches. In the first ap-
proach one can use the command $HADOOP_HOME/bin/start-all.sh on the command line (non-
Debian) or via daemon startup scripts in ‘/etc/init.d’ (Debian). This is especially useful if an
integration to cluster grid engines is desired in order to automate the startup process. In the
second approach the Hadoop cluster can be started directly within R using the hive_create()

and hive_start() functions in hive. The resulting 'hive' object, representing the informa-
tion about the configured cluster is stored for further use with the help of the function hive().
Usually, this is done automatically when the package loads given that the Hadoop framework is
referenced to via the HADOOP_HOME environment variable or if the executables are in the PATH
and configurations are put in ‘/etc/hadoop’ (as is with the Debian packages). However, there is a
known issue with IPv6 (see http://wiki.apache.org/hadoop/HadoopIPv6). Thus, if the Hadoop
framework does not start correctly setting the configuration option net.ipv6.bindv6only to 0 in
‘/etc/sysctl.d/bindv6only.conf’ will help.

> library("hive")

> hive()

[1] NA

> hadoop_home <- "~/lib/hadoop-0.20.2"

> hive(hive_create(hadoop_home))

> hive()

HIVE: Hadoop Cluster

- Avail. datanodes: 1

'- Max. number Map tasks per datanode: 2

'- Configured Reducer tasks: 0

> summary(hive())

HIVE: Hadoop Cluster

- Avail. datanodes: 1

'- Max. number Map tasks per datanode: 2

'- Configured Reducer tasks: 0

---

- Hadoop version: 0.20.2

- Hadoop home/conf directory: /home/theussl/lib/hadoop-0.20.2

- Namenode: localhost

- Datanodes:

'- localhost

> hive_is_available()

[1] FALSE

> hive_start()

> hive_is_available()

[1] TRUE

When the Hadoop cluster is up and running one can retrieve Hadoop status and job information
by visiting specific websites provided by the built-in web front end, two of them are of higher
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interest. Assuming that Hadoop is configured to run on localhost the websites can be accessed via
a standard web browser opening http://localhost:50030 (JobTracker) and http://localhost:

50070 (NameNode), respectively. From the former one can retrieve information about running,
completed or failed jobs. We found the log files showing the error output for the distributed batch
jobs very useful as they helped us debugging the R scripts generated by the hive package for each
mapper and reducer. In the latter website one can inspect the configuration of the HDFS and
browse through the file system.

The HDFS can be accessed directly in R with DFS_*() functions.

> DFS_list("/")

[1] "home" "tmp"

> DFS_dir_create("/tmp/test")

> DFS_write_lines(c("Hello HDFS", "Bye Bye HDFS"), "/tmp/test/hdfs.txt")

> DFS_list("/tmp/test")

[1] "hdfs.txt"

> DFS_read_lines("/tmp/test/hdfs.txt")

[1] "Hello HDFS" "Bye Bye HDFS"

For a complete reference to implemented DFS_*() functions see the hive help pages.

B Hadoop configuration

We recommend to set the following parameters in the corresponding configuration files in order to
setup pseudo distributed mode on a single machine. In case of a Debian installation only the files
‘masters’ and ‘slaves’ have to be created in the ‘/etc/hadoop/conf’ directory (each containing
localhost).

‘core-site.xml’ contains:

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://localhost:9000</value>

</property>

<property>

<name>hadoop.tmp.dir</name>

<value>/home/${user.name}/tmp/hadoop-${user.name}</value>

</property>

</configuration>

‘mapred-site.xml’ contains:

<configuration>

<property>

<name>mapred.job.tracker</name>

<value>hdfs://localhost:9001</value>

</property>

<property>
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<name>mapred.tasktracker.map.tasks.maximum</name>

<value>2</value>

<description>The maximum number of map tasks that will be run

simultaneously by a task tracker.

</description>

</property>

<property>

<name>mapred.tasktracker.reduce.tasks.maximum</name>

<value>2</value>

<description>The maximum number of reduce tasks that will be run

simultaneously by a task tracker.

</description>

</property>

</configuration>

‘hdfs-site.xml’ contains:

<configuration>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

</configuration>

‘masters’ contains the IP address of the master servers (or localhost) to this file.

‘slaves’ contains the IP address of all data nodes (or localhost) to this file.
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