
ePubWU Institutional Repository

Reinhard Dietl

A Reference Architecture for Providing Latent Semantic Analysis
Applications in Distributed Systems. Diploma Thesis

Working Paper (Published)

Original Citation:
Dietl, Reinhard (2010) A Reference Architecture for Providing Latent Semantic Analysis Applications
in Distributed Systems. Diploma Thesis. Theses / Institute for Statistics and Mathematics, 1. WU
Vienna University of Economics and Business, Vienna.

This version is available at: http://epub.wu.ac.at/3016/
Available in ePubWU: March 2011

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

This document is the publisher-created published version.

http://epub.wu.ac.at/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/11007674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epub.wu.ac.at/3016/
http://epub.wu.ac.at/

A Reference Architecture for

Providing Latent Semantic

Analysis Applications in

Distributed Systems

Reinhard Dietl

Diploma Thesis Institute for Statistics and Mathematics

Thesis 1, December 2010 http://statmath.wu.ac.at/

WIRTSCHAFTSUNIVERSITÄT WIEN

DIPLOMARBEIT

Titel der Diplomarbeit:

Eine Referenzarchitektur für das Anbieten von Anwendungen der latenten seman-

tischen Analyse in verteilten Systemen

Englischer Titel der Diplomarbeit:

A Reference Architecture for Providing Latent Semantic Analysis Applications in

Distributed Systems

Verfasser: Reinhard Dietl

Matrikel-Nr.: 0550627

Textsprache: Englisch

Betreuer: Univ. Prof. Dipl.-Ing. Dr. techn. Kurt Hornik

Universität / Institut: Department of Statistics and Mathematics

Wirtschaftsuniversität Wien

Augasse 2-6

A-1090 Wien

Jahr: 2010

Zusammenfassung

Mit zunehmender Verfügbarkeit von Speicherplatz und Rechenleistung hat latente

semantische Analyse (LSA) im letzten Jahrzehnt eine starke Zunahme an Bedeu-

tung in der Praxis erfahren. Diese Diplomarbeit strebt die Entwicklung einer

Referenzarchitektur an, die genutzt werden kann, um LSA-basierte Anwendun-

gen in verteilten Systemen zur Verfügung stellen zu können. Sie skizziert die zu

Grunde liegenden Probleme der Erzeugung, Verarbeitung und Speicherung von

großen Datenobjekten, die bei LSA Operationen entstehen, die Schwierigkeiten,

die durch das Einbringen von LSA in ein verteiltes System auftreten, schlägt eine

Architektur für die Softwarekomponenten, die für die Ausführung der Aufgaben

benötigt werden, vor, und evaluiert die Anwendbarkeit auf reale Szenarien, inklu-

sive der Implementierung einer Klassenraum-Anwendung als Proof-of-Concept.

Schlagworte

Latente Semantische Analyse, Service-orientierte Architektur, Framework, Verteiltes

System, R, PHP

Abstract

With the increasing availability of storage and computing power, Latent Semantic

Analysis (LSA) has gained more and more significance in practice over the last

decade. This diploma thesis aims to develop a reference architecture which can

be utilised to provide LSA based applications in a distributed system. It outlines

the underlying problems of generation, processing and storage of large data ob-

jects resulting from LSA operations, the problems arising from bringing LSA into

a distributed context, suggests an architecture for the software components neces-

sary to perform the tasks, and evaluates the applicability to real world scenarios,

including the implementation of a classroom scenario as a proof-of-concept.

Key Words

Latent Semantic Analysis, Service Oriented Architecture, Framework, Distributed

System, R, PHP

Acknowledgements

Thanks go to my supervisor, Prof. Kurt Hornik, who suggested the topic of this

diploma thesis, made a one semester internship at the Department of Statistics and

Mathematics at the Vienna University of Economics and Business Administration,

for intensive engagement in the subject matter, possible, and provided substantial

feedback throughout the composition process of this thesis.

Thanks go to Mag. Fridolin Wild, who not only provided substantial input at

the time we were colleagues at the Vienna University of Economics and Business

Administration, but also far beyond this time frame and even after he moved to a

different university.

Further thanks go to my colleagues from the Institute for Information Systems

and New Media, especially MMag. Bernhard Hoisl and Mag. Robert Koblischke,

as well as the colleagues from the LTfLL project, who contributed to this thesis

with their input and feedback.

Contents

1 Introduction 1

1.1 Research Question . 2

1.2 Definitions . 3

1.2.1 Web Service . 3

1.2.2 Distributed System . 3

1.2.3 Service Oriented Architecture 3

1.2.4 Framework . 4

2 Required Basics 5

2.1 A Short Introduction to Latent Semantic Analysis 5

2.1.1 Mathematical foundation . 5

2.1.2 The latent semantic space 6

2.2 Considerations for Distributed Systems 8

2.2.1 Advantages of Distributing 8

2.2.2 Challenges of Distributed Systems 9

2.3 Computers’ Roles in the Subprocesses of LSA 10

2.3.1 Collection of Text Data . 11

2.3.2 Stemming and Stopwords 11

2.3.3 Decomposition to Text Vectors and Matrix Composition . . 12

2.3.4 Weighting . 13

2.3.5 LSA Space Generation . 13

2.3.6 Performance of LSA Logic 14

3 LSA in a Distributed System 15

3.1 How LSA Can Take Advantage of Being Distributed 15

3.1.1 Performance and Scalability 15

3.1.2 Service and Client Location Independence 17

3.1.3 Maintainability and Deployment 17

3.1.4 Security . 18

3.2 Tackling the Challenges of Distributed Systems 18

3.2.1 Network Latency . 18

3.2.2 Predictability . 19

3.2.3 Concurrency . 19

3.2.4 Partial Failure . 20

3.3 Current Approaches to Providing LSA as a Service Component . . . 20

3.3.1 GTP and GUP . 21

3.3.2 Cooper . 21

3.3.3 LSA PHP Extension . 22

3.3.4 SOAP web service of TENCompetence Suite 23

4 A Pattern-Based Reference Architecture for LSA Services 24

4.1 Requirements for a Reference Architecture for LSA as a Service

Component . 25

4.1.1 Network Latency . 26

4.1.2 Security . 26

4.1.3 Service and Client Location Independence 27

4.1.4 Maintainability and Deployment 28

4.1.5 Concurrency . 28

4.1.6 Performance and Scalability 29

4.1.7 Stability and Handling of (Partial) Failure 30

4.2 Layer View . 31

4.2.1 Determining the Optimal Number of Layers 31

4.2.2 Fitting Common Components of LSA Processes into the

Client-Server Architecture 34

4.3 Data Flow View . 37

4.4 Component Interaction and Distribution View 38

4.5 Treating Prevalent Problems in Client-Server Architectures 40

4.5.1 Addressing a Resource and Its Functionality Consistently . . 41

4.5.2 Transfer of Object Data Over Networks 43

4.5.3 Maintaining State Between Accesses to the System 46

4.5.4 Security . 47

4.6 Requirements Met with This Architecture 50

4.6.1 Network latency . 51

4.6.2 Security . 51

4.6.3 Service and Client Location Independence 52

4.6.4 Maintainability and Deployment 53

4.6.5 Concurrency . 54

4.6.6 Performance and Scalability 55

4.6.7 Stability and Handling of (Partial) Failure 56

5 Evaluation of Architecture Applicability to Real World Applications 57

5.1 Improving the Architecture of the General Text Parser Usability

Prototype (GUP) . 57

5.2 The Cooper Architecture as a Distributed System 58

5.3 LSA PHP and the TENCompetence Suite 59

5.4 Positioning a Learner as Part of Accreditation of Prior Learning . . 60

5.5 Implicit Link Identification in the PolyCAFe Application 61

5.6 Creation of Conceptograms in CONSPECT 63

6 Proof of Concept: A Service-oriented Framework for LSA Applica-

tions based on R 66

6.1 Tools . 66

6.1.1 R . 66

6.1.2 RServe . 67

6.1.3 RApache . 67

6.1.4 GotoBLAS . 68

6.1.5 Hardware . 68

6.2 Implementation of the Four Layers of the LSA Client/Server Archi-

tecture . 69

6.2.1 Backends Layer . 69

6.2.2 Application Logic Layer . 78

6.2.3 Service Layer . 79

6.2.4 Presentation Layer . 80

6.3 Sample Application: The Placement Experiment 81

6.3.1 Tutor’s View . 81

6.3.2 Server Application: Space Maintainer 85

6.3.3 Student’s View: Essay Scoring 86

7 Conclusion and Outlook 90

8 Appendix 92

List of Figures . 94

Bibliography . 95

1 Introduction

The creation of this thesis was part of the author’s contribution to the “Lan-

guage Technology for Lifelong Learning” project (http://www.ltfll-project.org).

The goal was to create a reference architecture which enables implementers of La-

tent Semantic Analysis applications to make their programs usable as part of a

Service Oriented Architecture. As part of the thesis, the problems surrounding

the exchange, storage and processing of large text corpora should be analysed, an

infrastructure for hosting of LSA services on a server should be designed, and a

prototype implementation of a complete LSA application example should be im-

plemented. For this to work, the characteristics of distributed systems had to be

evaluated and the specifics of LSA had to be brought into a context with them.

After creating the reference model, a demo application should be implemented,

and in the process, all technology decisions should be documented.

Note that parts of this diploma thesis text may be found, without quote, in internal

and external documents used by the consortium of the “Language Technology for

Lifelong Learning” project. However, all text passages used in this document

have originated from the process of composition of this diploma thesis (unless

stated otherwise), and some have been posted in the mentioned project documents

unquoted, because at the time of creation of the documents this thesis was yet

unpublished.

This thesis is structured as follows: Chapter 2 will give a short introduction into

basics required to understand the concepts discussed in this thesis, chapter 3 shows

the actual motivation of the thesis – how LSA can be used in a distributed system

1

http://www.ltfll-project.org

and what the benefits are – and chapter 4 will then show a reference model to im-

plement LSA in a distributed system. Chapter 5 will then show how the reference

model can be used to solve the problem of distributing LSA services in scenarios

taken from actual contexts, leading to a proof-of-concept implementation outlined

in chapter 6. A summary of the achievements and outlook to further challenges

will be made in chapter 7.

1.1 Research Question

This thesis aims to give an answer to the question

“How does a framework for LSA web services have to be designed to

overcome the challenges of distributed systems?”

The following facets of the research question have to be investigated to reliably

answer it:

1. Which algorithms make up the core functionality of typical LSA processes?

2. What are the challenges of distributed systems?

3. Which aspects of LSA algorithms make it difficult to use LSA in distributed

systems, especially as part of web services?

4. Which best practices are utilised to solve similar problems in related appli-

cation scenarios?

5. Which requirements must be demanded from a solution architecture?

6. Is the solution architecture applicable to real-world scenarios?

2

1.2 Definitions

This thesis makes use of some notions that have varying definitions in the relevant

field of research. To ensure a correct understanding of the topics discussed, key

terms will be defined in this section to avoid confusion or suspicion of incorrectness

solely caused by different nomenclature.

1.2.1 Web Service

The Web Services Architecture Working Group (2004) defines that “A Web ser-

vice is a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-processable

format (specifically WSDL). Other systems interact with the Web service in a man-

ner prescribed by its description using SOAP messages, typically conveyed using

HTTP with an XML serialization in conjunction with other Web-related stan-

dards.” Although others exist, this definition will be adhered to throughout this

thesis, and notes will be placed if external works use a different understanding.

1.2.2 Distributed System

According to Coulouris et al. (2005), a distributed system is “one in which hard-

ware or software components located at networked computers communicate and

coordinate their actions only by passing messages.” This includes intranets, the

internet, and mobile and ubiquitous computing solutions. Distributed systems are

defined by their underlying fundamental and architectural models, one of which is

the client-server-model used extensively throughout this thesis.

1.2.3 Service Oriented Architecture

“Service Oriented Architecture (SOA) is a paradigm for organizing and utilizing

distributed capabilities that may be under the control of different ownership do-

3

mains.” (OASIS SOA Reference Model Technical Committee, 2006) So, the key

idea is to distribute properly encapsulated functionality for use in logically sep-

arated units or even geographically different locations. The benefit of such an

architecture is, among others, that each piece of functionality can be performed

utilizing service providers (e.g., servers) that are specialised in executing such

tasks.

“Though built on similar principles, SOA is not the same as Web services, which

is a collection of technologies, such as SOAP and XML. SOA is more than a set

of technologies and runs independent of any specific technologies.” (Hentrich and

Zdun, 2006) This means that the implementation of a service oriented architec-

ture does not need to be, but may be based on web services. Sections 4 and 6

will describe a set of web service facilities for usage in an SOA of a natural lan-

guage processing system using a reference architecture based on software patterns

as suggested in Avgeriou and Zdun (2005) by looking at the architecture of the

services and the logic behind them from different points of view.

1.2.4 Framework

A framework is a software library that provides basic functionality for a certain

purpose, and allows it to extend this functionality, yet encourages adherence to

an agreed upon structure. “When you use a framework, you reuse the main body

and write the code it calls. You’ll have to write operations with particular names

and calling conventions, but that reduces the design decisions you have to make”

(Gamma et al., 1994).

4

2 Required Basics

To fully comprehend the topics discussed in this thesis, basic knowledge of some

related fields of science have to be known in beforehand. This chapter aims to

give the reader a condensed introduction to these topics. To acquire a deeper

understanding of the concepts, please refer to the quoted literature for details.

2.1 A Short Introduction to Latent Semantic Analysis

The fact that the human brain stores information in a different way than machines

has led to significant shortages in the interaction between the former and the lat-

ter throughout the age of electronic data processing. Latent Semantic Analysis

(LSA) emerged from the need for a more content-aware indexing method in in-

formation retrieval (Landauer and Dumais, 1997), which led to the invention of

Latent Semantic Indexing (LSI) and later LSA.

2.1.1 Mathematical foundation

LSA is a mathematical model which tries to process textual data (which is the

common data format for communication between human and machine) and extract

from it what man perceives as a “meaning” of something stored in the mind.

Concepts are “learned” by simulating a human brain acquiring knowledge about

a language from experience. It relies on the basic assumption that “meaning”

can be derived from the frequency of terms occurring in a certain context (e.g.,

5

a text about a certain topic) and mathematically condenses these semantics into

orthogonal dimensions (Landauer, 2007).

The task of decomposition is tackled by counting the number of occurrences of

words, phrases or similar identifiers (in LSA referred to as “terms”) within a portion

of text, which may be a sentence, a paragraph or a whole text (“document”). A

“document-term-matrix” is generated, having a row for each term and a column

for each scanned document, with the term count at their intersections (Landauer

and Dumais, 1997).

2.1.2 The latent semantic space

Initially, the representation of the semantic information is one-dimensional: an

integer representing the word count of every document-term-combination. Af-

ter a process called “Singular Value Decomposition” (SVD, see Martin and Berry

(2007)), the LSA space is an object consisting of three matrices U , Σ and V , rep-

resenting the higher-dimensional abstraction of the document-term-matrix. U and

V are the term- and document-matrix, respectively, and Σ is a diagonal matrix

containing a set of dimensional coefficients, which can be used to locate elements

of U and V in the respective dimensions using multiplication.

A very simple example of an LSA space can be seen in Figure 2.1 on page 7. As

stated in Dietl (2009), the SVD has been generated from some paragraphs of text.

Still, the resulting data object has a notable size. The amount of data produced

from longer documents is much larger and requires adequate facilities for storage

and processing.

The processes of generation and storage described above are basic operations per-

formed with LSA spaces. Other such operations are, according to Berry et al.

(1995), the update of the term-matrix U , the document-matrix V , as well as the

weights used to normalise the occurrence counts of the terms in the documents. As

noted in the introductory section, a goal during development of the framework was

6

[
,
1
]

[
,
2
]

[
,
3
]

[
,
4
]

[
,
5
]

i
n
f
o
r
m

-
1
.
5
e
-
0
2

-
2
.
9
e
-
0
3

1
.
9
e
-
0
2

9
.
6
e
-
0
2

4
.
6
e
-
0
2

l
s
a

-
2
.
3
e
-
0
1

-
4
.
4
e
-
0
2

1
.
2
e
-
0
1

3
.
4
e
-
0
1

1
.
2
e
-
0
1

r
e
t
r
i
e
v

-
1
.
5
e
-
0
2

-
2
.
9
e
-
0
3

1
.
9
e
-
0
2

9
.
6
e
-
0
2

4
.
6
e
-
0
2

c
i
t
e

-
1
.
7
e
-
0
1

-
2
.
6
e
-
0
1

-
1
.
6
e
-
0
2

-
3
.
6
e
-
0
2

-
1
.
4
e
-
0
2

d
i
m
e
n
s
i
o
n

-
2
.
5
e
-
0
2

-
4
.
2
e
-
0
2

-
5
.
2
e
-
0
3

-
2
.
1
e
-
0
2

-
9
.
8
e
-
0
3

m
o
d
e
l

-
1
.
5
e
-
0
1

-
2
.
4
e
-
0
1

-
1
.
5
e
-
0
2

-
3
.
6
e
-
0
2

-
1
.
4
e
-
0
2

m
a
t
c
h

-
2
.
8
e
-
0
1

2
.
0
e
-
0
1

-
2
.
2
e
-
0
1

-
2
.
5
e
-
0
2

1
.
2
e
-
0
2

s
e
n
t
e
n
c

-
9
.
2
e
-
0
2

7
.
2
e
-
0
2

-
4
.
2
e
-
0
1

7
.
9
e
-
0
2

-
2
.
1
e
-
0
2

s
e
t

-
9
.
2
e
-
0
2

7
.
2
e
-
0
2

-
4
.
2
e
-
0
1

7
.
9
e
-
0
2

-
2
.
1
e
-
0
2

s
t
r
i
n
g

-
9
.
2
e
-
0
2

7
.
2
e
-
0
2

-
4
.
2
e
-
0
1

7
.
9
e
-
0
2

-
2
.
1
e
-
0
2

s
t
r
u
c
t
u
r

-
9
.
2
e
-
0
2

7
.
2
e
-
0
2

-
4
.
2
e
-
0
1

7
.
9
e
-
0
2

-
2
.
1
e
-
0
2

w
o
r
d

-
2
.
8
e
-
0
1

2
.
0
e
-
0
1

-
2
.
2
e
-
0
1

-
2
.
5
e
-
0
2

1
.
2
e
-
0
2

c
o
m
b
i
n

-
1
.
3
e
-
0
2

-
2
.
5
e
-
0
3

1
.
4
e
-
0
2

5
.
8
e
-
0
2

2
.
4
e
-
0
2

c
o
n
t
e
x
t

-
2
.
4
e
-
0
1

1
.
5
e
-
0
1

1
.
8
e
-
0
1

2
.
2
e
-
0
1

-
2
.
2
e
-
0
1

e
x
p
e
c
t

-
2
.
6
e
-
0
1

1
.
8
e
-
0
1

1
.
4
e
-
0
1

-
1
.
1
e
-
0
1

3
.
6
e
-
0
2

i
n
p
u
t

-
2
.
6
e
-
0
1

1
.
8
e
-
0
1

1
.
4
e
-
0
1

-
1
.
1
e
-
0
1

3
.
6
e
-
0
2

r
e
l
e
v

-
2
.
6
e
-
0
1

1
.
8
e
-
0
1

1
.
4
e
-
0
1

-
1
.
1
e
-
0
1

3
.
6
e
-
0
2

s
e
l
e
c
t

-
2
.
6
e
-
0
1

1
.
8
e
-
0
1

1
.
4
e
-
0
1

-
1
.
1
e
-
0
1

3
.
6
e
-
0
2

t
e
x
t

-
2
.
6
e
-
0
1

1
.
8
e
-
0
1

1
.
4
e
-
0
1

-
1
.
1
e
-
0
1

3
.
6
e
-
0
2

u
s
e
r

-
2
.
6
e
-
0
1

1
.
8
e
-
0
1

1
.
4
e
-
0
1

-
1
.
1
e
-
0
1

3
.
6
e
-
0
2

c
o
n
c
e
p
t

-
9
.
2
e
-
1
9

-
8
.
1
e
-
1
7

7
.
7
e
-
1
7

-
9
.
7
e
-
1
7

-
2
.
7
e
-
1
6

s
t
a
t
e
m
e
n
t

-
9
.
2
e
-
1
9

-
8
.
1
e
-
1
7

7
.
7
e
-
1
7

-
9
.
7
e
-
1
7

-
2
.
7
e
-
1
6

c
l
a
s
s
i
c

-
1
.
8
e
-
0
1

-
2
.
8
e
-
0
1

-
1
.
4
e
-
0
2

-
2
.
6
e
-
0
2

-
8
.
1
e
-
0
3

e
v
a
l
u

-
1
.
8
e
-
0
1

-
2
.
8
e
-
0
1

-
1
.
4
e
-
0
2

-
2
.
6
e
-
0
2

-
8
.
1
e
-
0
3

h
o
f
m
a
n
n
0
1

-
1
.
8
e
-
0
1

-
2
.
8
e
-
0
1

-
1
.
4
e
-
0
2

-
2
.
6
e
-
0
2

-
8
.
1
e
-
0
3

p
e
r
f
o
r
m

-
1
.
8
e
-
0
1

-
2
.
8
e
-
0
1

-
1
.
4
e
-
0
2

-
2
.
6
e
-
0
2

-
8
.
1
e
-
0
3

p
l
s
a

-
1
.
8
e
-
0
1

-
2
.
8
e
-
0
1

-
1
.
4
e
-
0
2

-
2
.
6
e
-
0
2

-
8
.
1
e
-
0
3

p
o
l
y
s
e
m
i

-
1
.
8
e
-
0
1

-
2
.
8
e
-
0
1

-
1
.
4
e
-
0
2

-
2
.
6
e
-
0
2

-
8
.
1
e
-
0
3

r
e
f

-
1
.
8
e
-
0
1

-
2
.
8
e
-
0
1

-
1
.
4
e
-
0
2

-
2
.
6
e
-
0
2

-
8
.
1
e
-
0
3

a
b
l

-
1
.
7
e
-
0
2

-
3
.
5
e
-
0
3

2
.
9
e
-
0
2

2
.
9
e
-
0
1

4
.
5
e
-
0
1

h
u
m
a
n

-
1
.
7
e
-
0
2

-
3
.
5
e
-
0
3

2
.
9
e
-
0
2

2
.
9
e
-
0
1

4
.
5
e
-
0
1

l
a
n
d
a
u
e
r
9
7

-
1
.
7
e
-
0
2

-
3
.
5
e
-
0
3

2
.
9
e
-
0
2

2
.
9
e
-
0
1

4
.
5
e
-
0
1

a
p
p
r
o
a
c
h

-
1
.
5
e
-
0
2

-
2
.
9
e
-
0
3

1
.
9
e
-
0
2

9
.
6
e
-
0
2

4
.
6
e
-
0
2

s
h
o
r
t

-
1
.
5
e
-
0
2

-
2
.
9
e
-
0
3

1
.
9
e
-
0
2

9
.
6
e
-
0
2

4
.
6
e
-
0
2

m
a
t
r
i
x

-
3
.
5
e
-
0
2

1
.
4
e
-
0
2

7
.
5
e
-
0
2

3
.
8
e
-
0
1

-
3
.
3
e
-
0
1

s
v
d

-
4
.
7
e
-
0
2

1
.
8
e
-
0
2

8
.
7
e
-
0
2

3
.
8
e
-
0
1

-
3
.
1
e
-
0
1

t
y
p
e

-
4
.
7
e
-
0
2

1
.
8
e
-
0
2

8
.
7
e
-
0
2

3
.
8
e
-
0
1

-
3
.
1
e
-
0
1

o
r
i
g
i
n

-
3
.
1
e
-
0
3

1
.
2
e
-
0
3

1
.
3
e
-
0
2

1
.
0
e
-
0
1

-
1
.
1
e
-
0
1

s
p
a
c
e

-
2
.
1
e
-
0
3

-
3
.
7
e
-
0
3

-
9
.
2
e
-
0
4

-
5
.
9
e
-
0
3

-
3
.
3
e
-
0
3

1

1
0

1
1

1
2

1
3

1
4

1
5

2

3

4

5

6

7

8

9

[
1
,
]

-
0
.
0
4
3
5

-
0
.
0
8
5

-
0
.
2
7
4

-
0
.
0
3
7
9

-
0
.
7
7
5

-
1
.
4
e
-
1
7

-
0
.
5
3
8

-
0
.
0
5
1

-
0
.
0
4
3
5

-
0
.
0
3
4
0

-
0
.
1
3
8

-
0
.
0
0
8
1

-
0
.
0
0
9
1

-
0
.
0
0
0
5
5

-
0
.
0
0
7
2

[
2
,
]

-
0
.
0
0
8
5

-
0
.
1
4
0

0
.
2
0
7

-
0
.
0
0
7
4

0
.
5
0
7

1
.
1
e
-
1
6

-
0
.
8
2
1

-
0
.
0
1
0

-
0
.
0
0
8
5

-
0
.
0
5
5
6

0
.
0
5
1

0
.
0
0
3
2

0
.
0
0
3
6

-
0
.
0
0
1
0
3

-
0
.
0
1
2
6

[
3
,
]

0
.
0
4
1
3

-
0
.
0
1
2

-
0
.
9
2
7

0
.
0
3
0
6

0
.
3
0
6

9
.
0
e
-
1
7

-
0
.
0
3
2

0
.
0
6
4

0
.
0
4
1
3

-
0
.
0
0
4
6

0
.
1
9
1

0
.
0
2
3
0

0
.
0
2
9
0

-
0
.
0
0
0
3
3

-
0
.
0
0
2
2

[
4
,
]

0
.
1
7
9
4

-
0
.
0
3
7

0
.
1
4
7

0
.
1
0
7
5

-
0
.
2
0
6

-
1
.
4
e
-
1
6

-
0
.
0
4
8

0
.
5
4
1

0
.
1
7
9
4

-
0
.
0
1
2
9

0
.
7
1
3

0
.
1
3
6
4

0
.
1
9
1
0

-
0
.
0
0
2
5
0

-
0
.
0
1
1
3

[
5
,
]

0
.
0
8
1
7

-
0
.
0
1
6

-
0
.
0
3
7

0
.
0
4
3
1

0
.
0
6
4

-
2
.
8
e
-
1
6

-
0
.
0
1
4

0
.
7
9
1

0
.
0
8
1
7

-
0
.
0
0
5
2

-
0
.
5
4
9

-
0
.
1
2
7
0

-
0
.
1
8
7
1

-
0
.
0
0
1
5
1

-
0
.
0
0
5
9

[
,
1
]

[
,
2
]

[
,
3
]

[
,
4
]

[
,
5
]

[
1
,
]

1
4
.
6

0

0

0

0

[
2
,
]

0

1
4
.
2

0

0

0

[
3
,
]

0

0

1
0
.
8

0

0

[
4
,
]

0

0

0

9
.
2
0

0

[
5
,
]

0

0

0

0

8
.
7
0

U k

VT k
Σ k

Le
ge

nd

R>
 t

ex
tm

at
ri

x(
my

di
r=

'.
/'

,
mi
nD

oc
Fr

eq
=2

,
st
op

wo
rd
s=

st
op

wo
rd
s_

en
,

st
em

mi
ng
=T

RU
E)
 -
>

te
m

R>
 l

w_
bi

nt
f(

te
m)

 *
 g

w_
id

f(
te
m)

 -
>

te
m_
re

d
R>

 l
sa

(t
em

_r
ed

)

R
Co

de

Terms

Do
cu

m
en

ts

F
ig
ur
e
2.
1:

T
he

co
m
po

ne
nt
s
of

an
LS

A
sp
ac
e
ge
ne

ra
te
d
fr
om

a
ba

ch
el
or

th
es
is

te
xt

ex
tr
ac
t.

T
hi
s
fig

ur
e
is

ta
ke
n
fr
om

D
ie
tl

(2
00
9)
.

7

that it should enable execution of such operations in a timely manner by providing

a suitable infrastructure.

2.2 Considerations for Distributed Systems

This section aims to give an overview of the facets of distributed systems (for a

definition, see 1.2.2) that are required to understand the basic idea behind the

considerations and assumptions made in this thesis.

2.2.1 Advantages of Distributing

Adding distributed system capabilities to a computer system can add substantial

overhead, potentially decreasing performance. Still, there are reasons to take this

loss in favour of the advantages that can be gained. In Völter et al. (2005), the

advantages of distributed systems over monolithic architectures are outlined:

• Performance and Scalability

Often, a single system is not able to take the whole load of processing user

requests alone in a time-effective way. In this case, a technique called “load

balancing” can be employed to distribute workload between multiple ma-

chines.

• Fault Tolerance

Since hardware and software are not free of faults, it is possible that due to

such failure, a part of a process can not be executed, either on a particular

machine, or not at all. A distributed system can provide remedy by allowing

for redundancy of hardware and dynamic re-allocation of tasks in case of

failure.

• Service and Client Location Independence

Distributed systems allow for the planning of software systems without ever

having to know where the participants of the system are located physically.

8

Advanced architectures even allow system components to join and leave the

system arbitrarily.

• Maintainability and Deployment

Centralisation of business logic is a key method to reduce maintenance cost:

If clients are only used to gather input data and display results, changes to

a system only have to be deployed to a relatively small number of system

components.

• Security

Access privileges to a system’s services are data as well and therefore have

to be maintained. The knowledge about user credentials may be used by

different clients simultaneously, and may be required to be read or even ad-

ministered from different locations. Furthermore, often computer systems

contain sensible data or know-how, and therefore have to be locked down

physically. A distributed system allows for this to happen without requiring

a user to be physically present in the security zone, but still allow for usage

of the system.

• Business Integration

In a changing business world, interchange of data between companies is no

longer limited to transmission over surface mail or telephone: with the rise

of e-mail and the internet, a need for business systems to communicate with

each other in realtime emerges. It allows for business processes that depend

on information owned by different companies to be executed in real-time if

this external information is provided on demand by an electronic system.

2.2.2 Challenges of Distributed Systems

According to Völter et al. (2005), “compared to traditional, non-distributed sys-

tems, additional challenges arise when engineering distributed systems“. These

problems are a key consideration when choosing to make a system distributed as

9

their solution often “adds complexity, concurrency, inefficiency and other potential

problems to your application”.

• Network Latency:

A remote invocation in a distributed system takes considerably more time

than an invocation in a non-distributed system.

• Predictability:

The time it takes to invoke an operation differs from invocation to invocation,

because it depends on the network load and other parameters. These laten-

cies also appear in non-distributed systems, but only in the form of rather

constant and therefore predictable amounts.

• Concurrency:

Problems might arise from the fact that there is real concurrency in a dis-

tributed system. Orchestration of parallel execution of tasks can require

sophisticated solutions for things as simple as a common time reference.

• Scalability:

Since different parts of a system are more or less independent systems them-

selves, it is not always possible to know in advance how high the communi-

cation load is going to be at a certain time.

• Partial Failure:

In distributed systems, only a part of the overall system might fail, and the

rest of the system should still fulfil the overall system task.

2.3 Computers’ Roles in the Subprocesses of LSA

The algorithms involved in LSA processes are complex and require a lot of calcula-

tion, which, in most realistic scenarios, cannot be performed by humans. With the

increasing amount of computation power available with advancing microprocessor

development, computers are the tool of choice for calculation in LSA. This section

10

is going to outline the individual sub-processes of LSA and show the state-of-the-

art methods used in current computer-aided implementations.

2.3.1 Collection of Text Data

Text has been the form of knowledge storage for ages. With the rise of comput-

ers in the last decades, ways to store text in binary format have been developed,

and in recent years, digital text has become ubiquitous. For use of text in dis-

tributed systems, standards like the Hypertext Transfer Protocol (HTTP) have

been developed to allow for transport of hyptertext data over network.

To perform automatic processing of text, first, the data has to be collected. Com-

puters collect text data in digital storage formats from local or remote data sources.

For example, the tm R-package described in Feinerer (2008) has an abstract source

class which abstracts the import process of gathering text data from a directory,

CSV files, Gmane RSS feeds, PDF documents and test collections like the Reuters

21578. Depending on the input format, the text is preprocessed and converted to

a text database, preserving as much data as possible while fitting it into a common

format, which can in turn be stored as a text file.

2.3.2 Stemming and Stopwords

Many languages spoken throughout the world feature the characteristic of “inflec-

tion”, which means that words in their “basic” forms are modified to reflect the

context in which they are used. “Stemming” is a technique to reduce words mod-

ified in that way to a common basic form (which does not necessarily have to be

the initial “basic” form). Computers are well suited for word stemming as in most

cases, inflection is based on algorithmic rules which can be used to reconstruct

the word stem. If inflection has caused a word to be modified beyond algorith-

mic reconstruction (e.g. irregular verbs), dictionaries can be used to restore word

stems.

11

Stopwords are words that occur very frequently in a language. Compared to words

with high frequency in a specific domain (which LSA can identify and eliminate

if necessary), stopwords are numerous in all texts of a language. For this reason,

so-called “stopword lists” help to strip those common words from texts to isolate

terms that have potential do distinguish texts from each other. Stopword lists

for common languages are often provided with text mining frameworks (Feinerer,

2008).

2.3.3 Decomposition to Text Vectors and Matrix Composition

Foundation for the LSA process is the presence of a term-document-matrix (see

2.1), which is an association of text vectors. Each vector is a “bag of words”, mean-

ing that the number of words in the underlying document is calculated without

regards to order.

The text mining framework described in Feinerer (2008) provides a method that

takes a text database as input, and takes parameters about what level of granular-

ity should be parsed. For example, instead of words, the user might want phrases

or sentences as “terms” in the matrix. In that case, tm uses OpenNLP’s facilities

for tokenisation. The computer then uses sophisticated algorithms to detect gram-

mar and part-of-speech structures to determine the correct phrases (a task that,

despite complex mathematical demands, is still performed in a fraction of time a

human would need for extracting those elements manually).

After text vectors for each document have been collected, their vocabularies are

merged and they are coerced into a term-document-matrix. Note that the vast

amounts of data collected from text collections puts the computer at risk to run

out of memory during performance of the composition process. Mechanisms must

be implemented to handle such cases.

One approach to avoid this issue is to store matrices in “sparse” formats. Due to the

fact that many words do not occur in documents, document-term-matrices often

12

contain lots of zero values and are therefore called “sparse”. Instead of redundantly

storing lots of zeros in a tabular format, only non-zero values are stored together

with their positions within the matrix (e.g. as lists, keys or coordinates).

Another approach which many operating systems follow is to provide additional,

higher-latency storage (like so called “swap” space often located on partitions on

a hard disk) as a fallback medium if main memory is exceeded.

2.3.4 Weighting

As Martin and Berry (2007) outlines, importance of word occurrences is not a

linear function. On the one hand, terms which occur only once in a document

collection do not contribute to distinguishing concepts, and on the other hand,

terms present abundantly across documents don’t either. As a result, the term

counts in the document-term-matrix’s cells have to be transformed to represent

the actual “importance” or “weight” (hence the term “weighting”) of a term in a

document.

There are local and global weighting functions, the former transforming the value

based on a pre-defined function f(i, j) for term i in document j, the latter being

a function g(i) for term i across all documents. Computers are well suited for

performing this task, because they are able to calculate these values for large

matrices in a timely manner.

2.3.5 LSA Space Generation

After the underlying term-document-matrix has been generated and weighted (see

above), a process called Singular Value Decomposition (SVD, see Martin and Berry

(2007)) is performed to obtain matrices U , V and Σ. This mathematically complex

process is well suited to be performed by computers, and as LSA is not the only

field that SVD can be applied in, there are standard packages for many platforms

to perform SVD, some of which are:

13

• LAPACK (http://www.netlib.org/lapack/) is a library written in Fotran90,

licensed under BSD licence, which allows for a wide range of linear algebra

operations, one of which is SVD. LAPACK packages are available for many

programming languages and mathematical frameworks.

• GSL (http://www.gnu.org/software/gsl/) is a C library and part of the GNU

project (and therefore published under GPL). It provides functions for a wide

range of numerical calculations, one of which is SVD.

• SVDLIBC (http://tedlab.mit.edu/~dr/SVDLIBC/) is a C-rewrite of the For-

tran77 implementation SVDPACK. It is a library specialised in performing

SVD calculations, with support for sparse and dense matrices (see 2.3.3).

Resulting LSA spaces are often represented by objects or lists with entries for

the respective matrices. Sigma may be stored as a vector representation of the

diagonal matrix.

2.3.6 Performance of LSA Logic

After the foundations for LSA have been laid with the generation of a latent

semantic space, users can start to perform LSA logic with it. Different levels of

abstraction can be realised, either providing LSA as a library in a programming

language (see for example Wild (2009), which references the “lsa” package for the

scripting language R) for the user to write his own logic, or provide pre-defined

logic as part of an application. Both approaches are backed with a vast landscape

of programming facilities for computers and software development models to aid

developers give the user the desired usage experience.

14

http://www.netlib.org/lapack/
http://www.gnu.org/software/gsl/
http://tedlab.mit.edu/~dr/SVDLIBC/

3 LSA in a Distributed System

As already mentioned in the introduction, the goal of this thesis is to develop a

reference architecture to make LSA usable in a distributed system. In this chapter,

the context of distributed system aspects outlined in the previous chapter will

be brought into context with LSA, showing advantages, challenges, and current

approaches of providing LSA as a service component.

3.1 How LSA Can Take Advantage of Being Distributed

The goal of this section is to outline reasons for introducing LSA into a distributed

architecture, possibly introducing overhead as a result. The examination will be

conducted with the advantages and challenges outlined in 2.2 as an orientation,

showing the relevance of each of the aspects for LSA.

3.1.1 Performance and Scalability

LSA is facing a significant obstacle: when problems grow beyond a certain size, the

memory consumed to calculate the SVD might exceed the memory available on the

calculating computer system. Regarding the mere reduction of memory consump-

tion during LSA calculation, Kontostathis et al. (2005) provides a methodology

that enables significant sparsification of Tk and SkDk matrices without significant

loss of retrieval performance.

15

However, if reduction of initial complexity does not remedy the problem, a way

must be found to split up calculations. In this context, Martin et al. (2007) suggest

two different concepts for calculation of LSA problems (especially the SVD):

1. In-core calculation: calculations are performed with the whole data (the

“core”, i.e. parameters as well as generated intermediate results) required

for the calculations held in a memory mechanism with every bit of data ran-

domly accessible by the calculating machine at any time (in most current

computer systems, RAM and swap space).

2. Out-of-core calculation: calculations are performed with only a pre-defined

subset of the core available to each calculating machine. The approach al-

lows for batch-processing of a large problem on a single machine, or, with

appropriate orchestration, even the distributed calculation of the result.

To enable distributed calculations, some modifications have to be made to the

monolithic LSA approach, especially in the process of SVD calculation. One such

modification is outlined in Martin et al. (2007): it is shown how the often utilised

Lanczos algorithm is modified to allow for out-of-core reorthogonalisation of each

vector with only a subset of data available.

In a different approach, Vigna (2008) describes a technique called “index interpo-

lation” and shows that this method enables calculation of problems with multiple

billions of non-zero entries in the document-term-matrix. This technique enables

the deconstruction of the problem into batches, which can then be stored in mem-

ory or secondary storage. Furthermore, the paper shows how these batches can

be processed in a distributed computing environment, and how, in this fashion,

problems of unprecedented size can be computed in finite time.

The modified algorithms mentioned above allow for LSA not only to be executed

even if the problem as a whole exceeds the available memory by splitting it into

batches, but also, given a suitably fast method of transfer of intermediate results

between computer systems, may be used in a distributed system to process batches

16

on multiply machines, and can therefore benefit from increased processing power

and available memory.

3.1.2 Service and Client Location Independence

As with most computationally intensive tasks to be introduced to a distributed

architecture, LSA can profit from the independence of physical location of partic-

ipants (clients and servers) in a (wide area) network. Given that the underlying

implementation is compatible with a wide range of platforms, computational power

can be consumed wherever it is available at any given time, allowing for profiting

from economies of scale and maximising degrees of utilisation.

3.1.3 Maintainability and Deployment

Running LSA in a distributed system normally requires an approach that endorses

well-encapsulated units of program code. A distributed architecture is less prone to

development of single-purpose solutions, and facilitates sustainable development.

In such an environment, experts on certain fields can be provided with “sandboxes”,

which are basic software packages that allow an expert to concentrate on the

desired task and not be distracted by outside logic required to make his work run

in a different context.

Distributed systems allow for centralised handling of data, enabling the use of

so-called “thin clients” which are only used to gather data and display results.

Software developed in such an environment is also normally suitable for auto-

mated testing mechanisms, which fosters quality assurance, resulting in increased

confidentiality and flexibility.

17

3.1.4 Security

Although the sensibility of data held in LSA processes is not always high, they may

still contain a lot of effort and know-how which must be protected from unwanted

access. Maintenance of credentials, roles and permissions from a centralised loca-

tion can therefore be advantageous for LSA too. Furthermore, the vast amount

of computational resources consumed upon invocation of some LSA-related pro-

cesses requires reliable control of execution permissions for users of a distributed

LSA system to avoid over-use of available resources, leading to failure of execution

for all participating parties.

3.2 Tackling the Challenges of Distributed Systems

As already outlined in the previous chapter (and further discussed in Völter et al.

(2005)), providing a software system as part of a distributed system introduces

overhead and has the developer face a set of completely new challenges. This

section is going to show what challenges LSA processes have to face when being

distributed, and will outline solution approaches.

3.2.1 Network Latency

One approach to reduce the impact of network latency is the use of “web caching”,

which “consists of temporarily storing resources in a fast access location, for later

retrieval. [. . .] if the cache is closer to the client than the origin server owning

the resource, the route that that the resource must traverse to reach the client is

shorter, which reduces bandwidth consumption and response time” (Ceri et al.,

2003) In the context of LSA, this is especially desirable for large data objects like

matrices resulting from calculation of spaces. An interesting approach would be the

setup of Content Delivery Networks (CDNs) if an LSA logic, used by servers around

the world, that always calculates its results based on the same, yet frequently

18

changing, space, would be able to receive the current version of the space from a

server located in the close vicinity.

Another way to reduce network latency is to simply reduce the amount of data sent

over the network. This can be done using compression algorithms. Compression is

a process to reduce the amount of data used by a data stream, among others, by

utilising the full numeric space provided by the underlying binary container, finding

recurring text passages and replacing them with (shorter) synonyms and making

use of arithmetic properties. The downside is that compressing and deflating data

consumes computation power and therefore takes time. The amount of time used

depends mostly on data size, complexity of the compression algorithm and data

handling overhead.

3.2.2 Predictability

One approach to overcome the issues of lacking predictability in distributed sys-

tems is to introduce Quality of Service capabilities to an LSA service. Serhani

(2008) suggests a broker (Völter et al., 2005) based QoS mechanism for distributed

systems, which could make decisions on who can perform actions on a service at

what time (and which credentials have to be present), and tell a requester whether

a request could, at any given time, be performed within the time frame requested.

3.2.3 Concurrency

Providing multiple users with processing power simultaneously might cause each

user’s actual task execution time to be prolonged beyond the acceptable duration

in a productive environment. One way to avoid this is to provide a server suitably

scaled to perform the desired amount of requests simultaneously in due time.

Unfortunately, on the one hand, single computers can not be scaled arbitrarily,

and on the other hand, the exact number of peak concurrent requests may not be

known in advance.

19

One way to solve this issue is to provide multiple machines able to perform the same

task, as concurrent service providers. According to Coulouris et al. (2005), with

a technique called “load balancing”, requests can be distributed among multiple

servers depending on their current degree of utilisation (i.e. the “load” on the

server is “balanced”). More sophisticated approaches suggest that after execution

of a process, the next step or even the whole processes themselves, may be moved

between servers if such procedure is possible.

Also, some application scenarios (e.g. classroom applications) produce a lot of

redundant processing if not treated correctly. Management of calculation time

and reuse of intermediate results may reduce the load on servers and enable a fast

user interaction desirable for both the client and the server.

3.2.4 Partial Failure

Since distributed computing architectures are often comprised of a number of

computers large enough that they can no longer be individually monitored by

humans, mechanisms must be provided that each machine on a distributed system

can be monitored automatically. In case of failure, routines must be present to

dynamically reallocate tasks designated for the failing component to a different

machine, restoring the state of the failing element e.g. from a backup and resuming

operation from the last known point of operation.

3.3 Current Approaches to Providing LSA as a Service

Component

There are lots of implementations for common LSA operations (including some

with support for providing these applications as a service over a network like the

internet). Anyway, most of these implementations lack standard procedures to

20

handle the challenges outlined in the sections above, as will be shown in the (not

necessarily comprehensive) following subsections about the implementations:

3.3.1 GTP and GUP

The “General Text Parser” (GTP) is a software package for Unix operating systems

developed by S. Howard, H. Tang, M. Berry, and D. Martin, which provides most

common LSA operations via command parameters. An extension of GTP is PGTP,

which allows for the distributed computation of SVDs.

A web-interface called the “GTP usability prototype” (GUP) is available at http://

sourceforge.net/projects/gup/. GUP is programmed in PHP (PHP Development

Team, 2010) and uses the file system to store serialised LSA objects, as well as a

MySQL database (MySQL Development Team, 2010) to manage the stored data.

The main problem about GUP is that is simply a PHP interface for the various

command line parameters of GTP, and not a service as defined in 1.2.3. It does not

provide any workflows to solve the problems outlined in 2.2.2. Rather, according

to the introduction section of the GUP documentation, it is considered to be a

web-based system to facilitate testing of and experimenting with GTP.

3.3.2 Cooper

In Giesbers et al. (2007), a service-oriented approach to providing LSA as a web

component has been described, which is shown in figure 3.1.

Sparse matrix handling is performed in a separate layer, and a separate SVD library

is called by the main calculation routines (the “LSA engine”). A presentation layer

is set on top of the engine, which acts as the interface to other components. A

coordination layer (“processing environment”) is set between the LSA engine and

the presentation layer, having a separate “output” converter which receives LSA

output and turns it into objects readable by the processing environment.

21

http://sourceforge.net/projects/gup/
http://sourceforge.net/projects/gup/

 
Figure 3.1: The service approach for LSA used in Cooper (Giesbers et al., 2007)

3.3.3 LSA PHP Extension

The PHPLSA software package is a function-level extension to PHP written in Ob-

ject Pascal and can be found at the project’s TRAC system at http://sourceforge.

net/apps/trac/phplsa/. It can be compiled as a PHP extension library to pro-

vide basic LSA functionality directly within PHP code. According to the TRAC,

SVD is done via AlgLib, SVDLIBC or wingtp, a decision that also depends on the

operating system of the server which will host the PHP code executing LSA.

PHPLSA is a software component for the PHP scripting language, and therefore

not a web service software at all. It can be considered a “processing environment”

as it has been referred to in Giesbers et al. (2007). The availability of LSA func-

tionality in a scripting language facilitates the development of web service logic,

but does not provide any pre-defined workflows for handling the issues discussed

in 2.2.2.

22

http://sourceforge.net/apps/trac/phplsa/
http://sourceforge.net/apps/trac/phplsa/

3.3.4 SOAP web service of TENCompetence Suite

A SOAP web service wrapper with similar architecture as Cooper (see 3.3.2) has

been described in Kalz et al. (2009), which was used to perform placement exper-

iments as part of the TENCompetence Suite (http://www.tencompetence.org/).

However, no details about the implementation have been published concerning the

criteria of decoupling and automation facilities provided by this web service im-

plementation, as well as the concurrency behaviour and failure tolerance. Anyway,

the document describes the SOAP web service as single-purpose implementation

that interfaces between the low-level PHPLSA and a high-level, single-function

SOAP-API, which hints that new API elements can be implemented by a web ser-

vice provider. Process outputs are stored in the local file system in an “output in

an easy readable non compressed format if the matrices are small enough”, which

hints that a serialisation process of some kind is employed to enable later retrieval

of intermediary results of the process chain.

23

http://www.tencompetence.org/

4 A Pattern-Based Reference Architecture

for LSA Services

This chapter aims to find a way of how to organize the individual components of

a potential LSA framework so the individual functionalities remain encapsulated

properly, and can be coupled easily where appropriate.

One way to find “good” approaches for software design problems is to refer to tried-

and-tested solutions called “patterns”. There are multiple subclasses of patterns,

depending on their level of granularity. In software design, design patterns are

often used, which are a “mechanism for expressing design structures [and] identify,

name, and abstract common themes in object-oriented design” (Gamma et al.,

1993). More general solutions can be found in architectural patterns, which “re-

fer to recurring solutions that solve problems at the architectural design level, and

provide a common vocabulary in order to facilitate communication” (Avgeriou and

Zdun, 2005). Architecture, in this context, means that after the definition of in-

dividual system components’ function, the placement of the components across a

network in search of “useful patterns for the distribution of data and workload” as

well as “the interrelationships between the components - that is, their functional

roles and the patterns of communication between them” are considered, according

to Coulouris et al. (2005). The distinction between a “design pattern” and an “ar-

chitectural pattern” is normally done utilizing the “size” of the patterns underlying

context. Still, it is difficult to define the thresholds for such distinction (Avgeriou

and Zdun, 2005).

24

A related method to look at the potential organisation of a software framework

is to group desired functionality into a set of viewpoints. “An Architectural View

is a representation of a system from the perspective of a related set of concerns”

(IEEE, 2000). These concerns may be how to allocate the physical hardware, how

to group services, or how interaction between components should be organised.

The fact that this pattern considers a very “large” scope suggests that it is an

“architectural” pattern (Avgeriou and Zdun, 2005). The following sections will

show how the framework will solve the encapsulation of different functionalities by

various concerns.

As a first step, a set of requirements will be derived that must be met for the

architecture to be considered complete. Then, an architecture will be outlined

utilising “patterns”. Finally, it will be evaluated whether the resulting architecture

satisfies all the requirements.

4.1 Requirements for a Reference Architecture for LSA as a

Service Component

Analysing requirements prior to implementation is an essential step to developing

software. “The output of the requirements specification activity is a user-oriented,

easy-to-understand, yet precise, specification, which is addressed both to the de-

signers, who use it to understand what the application must do, and to the stake-

holders, who use it to validate the adherence of the specifications to the business

requirements, before proceeding with development” (Ceri et al., 2003).

Based on the knowledge of distributed systems application and its challenges up

to this point, the following requirements are established for an architecture for a

distributed LSA system:

25

4.1.1 Network Latency

1. Caching

It must be possible to make use of caching technologies wherever the actual

processes allow to do so. Especially, it must be possible to distributedly make

large data objects available.

2. Compression

All data interchanges must be shaped in a way that compression algorithms

can be negotiated by the communication partners. Ideally, a message syntax

that allows for effective compression should be favoured.

4.1.2 Security

The authors of Web Services Architecture Working Group (2004) state that “At

this time, there are no broadly-adopted specifications for Web services security.”

This is not true any longer as there are standards like WS-Security which cover at

least some of the aspects outlined in this section. This thesis will not attempt to

create a new specification, but instead, will ensure that security-relevant aspects

are shown and concrete treatment for them is suggested or at least the architecture

does not pose an obstacle for implementing such.

According to Web Services Architecture Working Group (2004), the most impor-

tant security mechanisms and associated required capabilities are:

1. “Security policies”:

Policies are machine-readable documents about constraints concerning a re-

source. These constraints can be split into those that entitle a requester

to perform an action with the service (“permission policy”) and those that

require to perform an action in order to use the service (“obligatory policy”).

2. “Message Level Security”:

Protection of data against alteration and unwanted disclosure must be pro-

26

vided at all levels of abstraction necessary. If the communication channels

are point-to-point, transport level security might suffice, otherwise, the cho-

sen communication protocols must allow for a layered application of security

measures.

3. “Web Services Security”:

Security must be provided for data not only during transport, but also during

storage at a partner’s site. It must be possible to monitor usage levels of

clients and make them responsible for misconduct.

4. “Privacy”:

Involved parties must be able to trust that their counterparts are revealing

appropriate amounts of personal data for a trusting communication and ex-

ecution of the service. Partners must be able to trust their data is handled

only by those they actually intend to.

Remedy for the problems belonging to these areas must be found and applicable

in scenarios utilising the developed architecture.

4.1.3 Service and Client Location Independence

1. Cross-platform compatibility:

The architecture must not be designed in a way that certain hardware plat-

forms, operating systems or applicable intermediaries are excluded from act-

ing as part of a concrete implementation without at least providing for use of

a reasonable alternative. Switching from one platform to another must also

be possible with reasonable effort.

2. Communication standards:

Interfaces within the architecture must be able to utilise a range of current

messaging standards for transmission of data across wide area networks.

27

3. Internationalisation:

The architecture must provide the possibility to adapt components for use

by clients from different regions without engineering changes.

4.1.4 Maintainability and Deployment

1. Quality assurance:

It must be possible to encapsulate logic in a way that different approaches

of testing can be utilized for individual groups of functionalities, and that

components can be tested with as few dependencies on other components as

possible.

2. Collaborative development:

It must be possible for developers to alter functionalities they have expertise

with, with a minimum knowledge of the internals of other components of the

system.

3. Versioning:

The architecture must allow for usage of systems for version control in order

to allow for dependency management as well as the planning and automatic

execution of deployment plans.

4.1.5 Concurrency

1. Load balancing:

If operations that can be executed on a single machine are requested by mul-

tiple users simultaneously, it must be possible to distribute calculation load

of these operations between individual machines with only as few overhead

as necessary. Since excess of available (or acceptable) calculation time, which

may occur especially in multi-user environments, poses failure of system ex-

ecution, the architecture must provide for mechanisms of load balancing to

28

allow for assignment of calculation tasks to individual machines or sub-arrays

of clusters if such is available.

2. Support homogeneity:

If required processing time of multiple requested operations exceed the ca-

pacity of a single machine only on a certain stage of processing (i.e. are

homogenous regarding the infrastructure needed for execution), it must be

possible to assign only sub-processes of this particular stage to a distributed

architecture, allowing for a different level of distribution (if any is necessary)

on the other stages where possible.

3. Sharing of common objects:

Individual scenarios may require redundant execution of identical operations

in multi-user environments. To enable highest possible re-use of calculation

time spent, the architecture must provide for facilities that store intermediate

calculation results as objects which can be made available to other processes

to avoid recalculation.

4.1.6 Performance and Scalability

1. Execution time:

Processing requirements that originate from a single, computationally expen-

sive process must be executed in a timely manner. No concrete requirements

concerning the execution times shall be made on the architecture level as

these vary greatly between usage scenarios, available hardware and embodi-

ment of application logic to be performed, and often, execution times increase

proportionally with problem size (Martin and Berry, 2007). Just like excess

of calculation time due to a too high amount of parallel load is a failure of

execution, the exceeding of the time limit due to a single request taking too

long is failure as well, and possibilities for distribution should also be possible

on a sub-process level.

29

2. Memory usage:

It must be demanded that memory is not exhausted during processing, or

algorithms must provide for distribution of workload over multiple machines

if memory might be exceeded. Especially, the resulting architecture must

allow for utilisation of the approaches of tackling these problems discussed

in 3.1.1.

3. Utilisation of existing libraries:

It must be possible to effectively utilise the aid of computers in the processes

of LSA as outlined in 2.3. Therefore, utilisation of technologies of various

origins must be possible with minimum effort by encouraging a maximum

amount of encapsulation, which further supports the demand to distribute

LSA processes over physical machines.

4. Calculation time management:

To enable execution of complex LSA procedures in a (close to) realtime ex-

ecution context, workflows that allow for time-shifted execution of processes

(especially calculations in advance) must be supported by the resulting archi-

tecture. In the course of that, facilities must be offered that enable the effec-

tive re-use of intermediary calculation results as well as the pre-calculation of

data if the application scenario allows for such course of action (e.g. prepa-

ration of generic and domain spaces).

4.1.7 Stability and Handling of (Partial) Failure

1. Monitoring:

The architecture must allow for monitoring of individual components’ avail-

ability without requiring the unnecessary execution of computationally ex-

pensive overhead.

2. Handling of defects in components:

The architecture must allow for implementation of services running on re-

30

dundant hardware (components or whole machines) on each stage of the

execution process. This way, handling of hardware failure must be possible,

as well as handling of software failure if it is caused e.g. by deficient de-

ployment, by dynamic reallocation of (sub-)process execution to a different

component/machine.

3. Handling of ultimate failure:

In case of ultimate failure, e.g. due to a software bug promoted throughout

the system as part of deployment of a new (faulty) version, error messages

must be generated for both the developer and the user, offering each of them

different levels of verbosity.

4.2 Layer View

According to Avgeriou and Zdun (2005), this view aims to decompose the whole

framework into interacting parts, associated in the form of “layers”. The aim is to

find components that are well encapsulated, and have defined points where they

can be coupled. Layer models normally assume that each layer needs compatible

instances of the “lower” layers to operate, but not those that are “higher” in level

(Fowler, 2003).

4.2.1 Determining the Optimal Number of Layers

The decision of how many layers to use for a distributed system is often difficult:

• According to Reese (2000), a 2-tier architecture normally consists of a “fat-

client” directly addressing a data storage, causing all business logic to take

place in the client (hence the name “fat”), with only the security and valida-

tion routines in the database. Such practice has the downside that “Two-tier,

fat-client systems are notorious for their inability to adapt to changing envi-

ronments and scale with growing user and data volume”. It also discourages

31

reuse of the client, since it is single-purpose and depends on the database

layout.

• According to Fowler (2003), a 3-tier architecture is desirable because it sep-

arates tasks performed by processing units into more decoupled roles:

1. Presentation

“Provision of services, display of information”, often the human-machine

interface, but may also be a code interface which produces output to be

interpreted by another machine.

2. Domain logic

Also known as “business logic”, this layer contains the knowledge on how

to perform certain tasks.

3. Data Source

Logic within this layer is used to “[communicate] with other systems

that carry out tasks on behalf of the application”, which can be “trans-

action monitors, other applications, messaging systems” and others like

database management systems (DBMS) or storage facilities.

Reese (2000) uses the names “Client”, “Server” and “Data store” for these

layers, respectively.

This architecture decouples the logic used to present results from their actual

calculation, and at the same time, makes the business logic independent of

the mechanisms used to store data. This separation makes sense since the

business objects receive a separate space for the rules used to act with them,

and “the rules for how data should be processed rarely change” Reese (2000).

On the other hand, without changing a single data object, the presentation

layer is able to display the results of the process on various media.

• A modification of the 3-tier architecture is the “Network Application Archi-

tecture” Reese (2000), which inserts a service layer between clients and the

32

business logic, actually resulting in a 3-tier with sub-levels architecture

with intermediate tiers transparent to the top-level tiers.

• Evans (2003) suggests to use one more tier, separating most of the application

layer into a “domain” layer, turning the former into a thin layer used for

internal orchestration of the subcomponents of the latter. This results in a

4-tier architecture. A similar architecture is described in Ceri et al. (2003),

where 4 layers are derived containing client, web server, application server

and database server, respectively.

• If more granularity is needed, the system can be further split, resulting in

an n-tier architecture. However, it has to be noted that with increasing

numbers of tiers comes additional complexity and therefore workload during

development and maintenance of the system. For this reason, a compromise

between encapsulation on the one hand and complexity on the other hand

has to be found.

The above considerations lead to the derivation of the appropriate n following this

argumentation:

• Since most of the selection criteria of the 2-tier architecture mentioned in

Reese (2000) can be denied, this architecture is not to be chosen. Also, good

reasons have been mentioned above to choose n ≥ 3, introducing a separate

layer for business logic.

• A separate layer for LSA logic orchestration and result object serving should

be introduced in order to encapsulate logic and hide complexity, speaking

for the model suggested by Evans (2003), with n = 4, having the LSA logic

in a “domain” layer and the distributed system communication logic in an

“application” layer. This allows for the free reuse of LSA logic in different

environments, using different service technologies (e.g. SOAP, XML, RMI,

. . .) in the “application” layer.

• No need seems to arise for n ≥ 4 since the relevant granularity seems reached.

33

For these reasons, a 4-tier client-server architecture has been chosen.

4.2.2 Fitting Common Components of LSA Processes into the

Client-Server Architecture

Figure 4.1 shows how the components of a typical LSA system can be split into

layers.

Storage LayerPresentation Layer

Semantics
Provider

LSA User

Service Layer Application Logic Layer

Topics
Administration

Space Object
Storage

Essay Scoring
Service

Frontend

Space
Maintainer

Essay Scoring
Logic

Synonyms
Service

Frontend
Synonyms

Logic

. .
 .

. .
 .

. .

. .
 .

. .
 .

. .

User Data
Storage

Figure 4.1: Layer decomposition of a possible LSA system

The suggested 4-tier architecture comprises the layers of the 3-tier with sub-levels

architecture, but with the two separate parts of the “application” layer considered

as two individual tiers. Note that the evolution underlying the development of

this architecture has lead to a nomenclature more similar to that of Reese (2000)

than to that of Evans (2003), which is outlined in Table 4.2.

LTfLL 2-tier 3-tier 3-tier w/ sub 4-tier 4-tier

This thesis Reese (2000) Fowler (2003) Reese (2000) Evans (2003) Ceri et al. (2003)

Presentation Client Presentation Client User Interface Client

Service – – Web Services Application Web server

Application Logic – Domain Business Logic Domain Application server

Storage Data Store Data Source Data Storage Infrastructure Database

Figure 4.2: Comparison of nomenclature in distributed systems literature

Starting with the highest-level components on the left side, the presentation layer

contains all software used to interface with LSA services. This may be a full-fledged

34

application including a GUI, a web application opened in a browser, or another

server handling the succeeding processing and display tasks for the retrieved data

separately. In this context, a “semantics provider” is any client serving text data

or other semantic information to the system that is used to build reusable objects

like spaces; an “LSA user” is a client used to provide semantic data to the system

that is used to perform semantic calculations utilizing the reusable objects on the

server, using the LSA service.

The service layer exposes the key functionality of the system to the clients. It serves

as an indirection layer, as it can expose the functionality from the application logic

layer in a condensed form if necessary. The role of the service layer is also explained

in detail in Web Services Architecture Working Group (2004): “A service is an

abstract resource that represents a capability of performing tasks that represents

a coherent functionality from the point of view of provider entities and requester

entities. To be used, a service must be realized by a concrete provider agent.” The

same document also outlines the required capabilities of a service, which shall be

shown to be provided in this architecture below (optional attributes omitted):

• “a service is a resource”: an identifier is provided for each service functionality,

and each functionality is owned by a person or organisation.

• “a service performs one or more tasks”: 4.1 shows some examples of tasks

that may be performed in the application layer and addressed via the service

layer.

• “a service has a service description”, “a service has service semantics” and “a

service has a service interface”: service interfaces can be described e.g. using

WSDL

• “a service has an identifier”: the actual format of the identifier depends on

the chosen technique of addressing (see 4.5.1).

• “a service has one or more service roles in relation to the service’s owner”: 4.1

hints that functions that are homogenous in their functionality may have sim-

35

ilar component distribution in the architecture and may therefore be grouped

to roles.

• “a service is owned by a person or organization”: Due to the distinction

between the presentation layer and the other layers, the service itself can be

located and owned by anyone without harming the client.

• “a service is provided by a person or organization”: see above.

• “a service is realized by a provider agent”: the application layer and the

storage layer are“capable of and empowered to perform the actions associated

with a service”.

• “a service is used by a requester agent”: the requester agent is every entity

situated in on the presentation layer, accessing the service layer via defined

interfaces.

Note that the “topics administration” functionality is used to create, modify and

delete reusable objects that are stored on the server for later use (“topic” refers

to the context of LSA, where a semantic space represents a specific topic). It

is also responsible for handling any connection-related issues in the client-server

communication process. In Figure 4.1, the dotted line between the two frontends

implies that multiple LSA tasks can be wrapped this way, the essay scoring and

the synonym search being only examples.

The application logic layer holds any infrastructure responsible for the actual calcu-

lations. The space maintainer is a routine capable of creating, modifying (“fold-in”)

and dropping actual latent-semantic spaces, and therefore encapsulates the core

LSA logic. Furthermore, this layer comprises any task-specific logic used to serve

LSA user requests.

The storage layer represents a supporting sub-system, serving the application logic

layer. The space object storage is able to hold generated spaces in a highly accessi-

ble way. If transfer of spaces is chosen to be avoided in favour of a reference-driven

communication, the storage must be able to serve a space identification token

36

(“space ID”) for every space provided, and vice versa. The user data storage holds

parameter data provided by the user, possibly on a per-session or a per-account

basis.

The concerns of this view (Avgeriou and Zdun, 2005) have thus been solved:

• The parts of the framework have been defined.

• It has been shown which component interacts with which others.

• The adequate decoupling of the individual components, including their de-

pendencies, have been set.

4.3 Data Flow View

In Avgeriou and Zdun (2005), this view is described as a way to look at the

framework “as a number of subsequent transformations upon streams of input

data”. Again, the focus lies on the components being independent of each other,

only defining communication protocols and data formats for their connectors.

Figure 4.3 shows how data is moved within an LSA system during the two key pro-

cesses “space generation” and “task execution” as outlined in 2.3. It also shows the

key input and output data types at each stage, which is important for realisation

of a pipes-and-filters-architecture.

For the space generation, a text corpus is put into the process, where it is trans-

formed into a computable object and then transformed into a space (Figure 4.3

shows this process for an LSA-based computation). Note that this architecture sug-

gests that the actual space is not returned to the requester, but rather, a reference

to the space’s location. This is due to the fact that LSA spaces are large, complex,

and non-sparse objects that actually have to be available on a fast medium, which

suggests handling the actual space data internally and only exposing a “space ID”

to other functions.

37

Decomposition to
Vector

Stemming and
Stopwords Matrix Composition

Weighting Store

Text corpus Text vectors Text vectors

Text matrix

LSA
Text matrix Space Location reference ("Space ID")

Space generation

Parameter
Extraction Retrieve Space

Calculations

Space ID Space

Result Object

Typical LSA task

User request

(e.g. an essay)
Additional User Data Preprocess User

Data (e.g. textmatrix)
Processable Object

Figure 4.3: Data flow during a typical LSA process

During a typical LSA task, the service interface receives a user request holding

the execution parameters, one of which must be the space (again, space handling

via space locators is only a suggestion). After pre-processing the user parame-

ters and data, an internal LSA logic is invoked, returning a result object to the

communication controller.

Note that the typical LSA task allows a parallel execution of space retrieval and

user data pre-processing, while the space generation is a pipelined operation.

The concerns of this view (Avgeriou and Zdun, 2005) have thus been solved:

• A set of transformation elements has been defined

• The carriers and data formats for the data streams are clear

• Connection points and order of execution have been set

4.4 Component Interaction and Distribution View

This view augments the layered view by looking closer at the interface structure

as depicted in Figure 4.4.

38

Asynchronous
Explicit Invocation
(Result Callback)

Space Warehouse
(Shared Repository)

Synchronous
Explicit Invocation

(Blocking Call)

Space Generation Space Modification Space Retrieval

Topic Administration Logic

LSA Client

Synchronous
Explicit Invocation

(Blocking call)

Asynchronous
Explicit Invocation
(Fire and Forget)

Topic Administrator Client

Asynchronous
Implicit Invocation

(Store and Forward Messaging)

Storage

Services

Presentation

Spaces

Asynchronous
Explicit Invocation
(Fire and Forget)

LSA Task Logic

Figure 4.4: Component Interaction and Distribution View

Component interaction is depicted with the invocation types next to the interfaces.

Starting at the least-granular layer, the space warehouse holds objects, which

are essential for the execution of the accessing components’ logic and therefore,

retrieval of the space blocks the accessing component until completion.

Space generation and modification (the latter relying on the component of space

retrieval) are a time consuming task, and most likely no client will want to wait for

its completion. Therefore, together with the topic administration logic (addressed,

e.g., using a web service) a store-and-forward-messaging architecture is suggested.

The topic administrator client sends a request object (including parameters and

data) to a queue managed by the topic administrator logic, and receives nothing

but a confirmation of receipt at the queue. The topic administrator logic then

retrieves the topmost element in the queue as soon as processing capacity is avail-

able and forwards it to the space generation/modification logic, using a “fire and

forget” invocation. At any time of this process, the topic administrator client can

access information about the progress by accessing the space retrieval logic via the

39

modification logic.

Finally, the clients of the LSA tasks (depicted by a stack in Figure 4.4, as there

can be many different tasks, addressed by different specific clients) access their

underlying logic via their respective service interfaces, using arbitrary remote in-

vocation methods, most likely, (a)synchronous explicit invocations. The respective

logic components then access the space retrieval component using a blocking call,

as again, the spaces are vital for the calculations.

From the distribution view, Figure 4.4 shows the different remoting approaches

used for the topic administration on the one hand and the LSA task execution on

the other. The topic administration uses a message queuing remoting pattern, for

the reasons described in the component interaction view above. The invocation of

task logic is realised using the remote procedure calls remoting pattern.

The concerns of these views (Avgeriou and Zdun, 2005) have thus been solved:

• The components’ interaction has been shown

• The decoupling has been defined

4.5 Treating Prevalent Problems in Client-Server

Architectures

The previous sections have shown how a 4-tier client-server architecture can be

used to create the facilities to provide LSA as a service component and enabling

use of LSA as a distributed system. This section aims to provide solution for some

problems commonly observed in client-server architectures. It is not presumed

to be a complete list, but enumerates the most obvious problems met during

development of the model and evaluation of the requirements.

40

4.5.1 Addressing a Resource and Its Functionality Consistently

Often, while a service oriented architecture grows, developers face the problem

that a lot of functionality is available for a single type of object, and the question

arises how the functions should be addressed. There are multiple approaches to

solving this issue:

Simple Object Access Protocol (SOAP)

The Simple Object Access Protocol (SOAP) is a protocol which uses XML mes-

sages contained in the body of a HTTP message to provide an envelop for commu-

nication between machines with heterogeneous characteristics (operating system,

object model, . . .).

A SOAP message consists of an envelop containing a header and a body. To draw

an analogy to physical mail, the header contains the information put on a letter’s

envelop, like the the priority of the letter (QoS) or the stamp (billing information).

The body is equivalent to the actual letter and contains a list of “body-childs”. One

of these body-childs may contain information about what function to call at the

service interface.

The advantage of this approach is the versatility: arbitrary objects and functional-

ities can be exposed at a single web service URL, and responses by the server can

contain another arbitrary set of information. There is much more functionality

packed into SOAP than just the addressing of functionality at a service. For more

details on SOAP, see Papazoglou (2008).

Disadvantages of SOAP include the added complexity and payload size of SOAP

messages.

41

Representational State Transfer (REST) and CRUD

REST means “Representational State Transfer” and is a design guide for hyperme-

dia system architectures that “emphasizes scalability of component interactions,

generality of interfaces, independent deployment of components, and intermediary

components” (Fielding, 2000), with a focus on uniform handling of objects and as-

sociated operations in the context of the Hypertext Transfer Protocol (HTTP).

REST is actually an object-centred approach to addressing a resource: an object

available in a network has an identifier and a set of operations defined by the

REST-”standard” that can be performed on it. These operations are called by

passing the respective HTTP request method with the request, along with any

parameter data. Advanced usages allow for keeping state between more complex

operations in a REST context.

Web services supporting REST requests are called “RESTful”. An advantage of

RESTful web services it that they profit from a standardised way of addressing

objects over a network. Especially, REST allows for a standardised way of perform-

ing Create, Read, Update and Delete (CRUD) operations on an object. Notice,

however, the disadvantages of this approach outlined in Evdemon (2005):

• The operations performable with REST requests is very limited

• If a SOA is build solely upon REST, the developer might be tempt to ex-

pose too much internals about the contained object structure to the public

interface, which in turn is considered an anti-pattern.

• Usage of REST for implementation of a CRUD interface is least recommended

for usage in a service context because it violates the actual principles of

services: not the actual behaviour of a business logic is exposed, but rather,

a part of the internal data model.

• As soon as the object logic requires more advanced functionality (e.g. com-

mitting changes separately), CRUD is dangerous as it does not preserve state

42

and cannot perform actions as a transaction.

• If, however, the “service” is actually meant to be only an interface to a sim-

ple object, CRUDy REST implementations have a right for existence if the

manipulation service is justified in the scenario context and manipulations

do not require maintenance of state or transactions.

4.5.2 Transfer of Object Data Over Networks

To transport structured object data over networks (utilising unstructured data

streams) requires either a transportable binary format or some form of serialisation.

Various transfer data types shall be discussed in this section, providing an overview

of options. Note that only standardised formats with reasonable usage in practice

are mentioned here. Throughout this section, (S) shall be the sending machine,

(R) the receiving machine.

Binary Data

The simplest form of data transfer between is to create a binary stream from the

in-memory object held by (S) and directly sending a message to (R) holding the

stream in its payload.

The advantage of this approach is that no serialisation has to take place, which

reduces load on the processor of both machines.

The disadvantage is that both systems have to use the same internal data for-

mat and memory mechanisms, which is a requirement often unthinkable in the

heterogeneous environment of a distributed system (especially across company

borders).

43

Comma Separated Values (CSV)

Simple objects can often be represented by table data (i.e. 2-dimensional struc-

tured data consisting of “rows” and “columns”, having “cells” at the intersection of

these). Such data can be converted to Comma Separated Values (CSV) data. The

actual separator may be any symbol as long as escaping rules are defined if cells

may hold values containing the separator.

The advantage of this format is that maintenance of the structure requires com-

parably few overhead (one symbol per cell, one line break per row) and the easy

readability for humans.

The disadvantage is that, obviously, this format is only applicable to 2-dimensional

data, i.e. no hierarchy can be represented. It also has no means of specifying the

encoding standard used for the cells, so this has to be agreed on by both machines

over a different channel.

Javascript Object Notation (JSON)

JSON is a serialisation format described in RFC 4627 which uses a pre-defined

syntax of brackets, quotation marks and colons to store object data in a structured

format.

The advantage of this format is that data remains (somewhat) human-readable,

that overhead necessary to preserve object structure is comparably low, and that

the structure of JSON is somewhat similar to many common programming lan-

guages, which is why converter functions are often present in such languages.

The disadvantage is that JSON requires the original object to be serialised, which

consumes processing time. Another disadvantage is that JSON can not store object

references, leading to redundancy and loss of consistency in more complex object

structures.

44

eXtensible Markup Language (XML)

XML is a serialisation format defined in the XML 1.0 Specification and multiple

other open standards primarily published by the W3C. It uses a notation for

structure characterised by strings delimited by inequality symbols (so-called “tags”)

holding attributes and values to represent objects. Despite the basic rules for XML

notation, various standards allow for specialised structure definitions, and XML

documents can even be used to describe other XML documents.

The advantage of this format is that data remains human-readable, that rules

about the structure can be defined to aid deserialisation and validation, that XML

is currently very widely used as data communication format and has support in

most common programming languages, and that references between objects can

be set (e.g. using xPath).

The disadvantage is that XML produces a lot of string data for even simple data

structures, that it does not have a specific notation to distinguish data types, and

that it requires (S) to serialise and (R) to deserialise the data stream, often also

requiring a schema definition to make the XML data machine processable.

YAML

YAML is a serialisation format which relies on indentation of strings as well as

delimiting object collections with brackets to represent the structure of an object.

The advantage of this format is that, again, data remains human-readable, that it

is less verbose than XML but easier to read than JSON, and that object references

can be stored to reduce redundancy.

The disadvantage is that YAML can in some cases require a lot of whitespace to

represent objects (especially deeply nested structures), that it is prone to errors as

whitespaces (which are not visible for humans) are a crucial element of maintaining

structure, and that (de-)serialisation has to be performed on the respective ends.

45

Also, YAML converters are not as widely spread among programming languages

as they are for e.g. JSON and XML.

4.5.3 Maintaining State Between Accesses to the System

User interaction often involves production of parameter data the user defines dur-

ing his interactive experience. In many processes involving LSA, this parameter

data can include large objects that are the by-product of computationally expen-

sive calculations. Avoiding repeated calculation of this parameter data throws up

a problem often observed in the context of distributed systems: “client-dependent

state must be maintained in the distributed object middleware between individual

accesses of the same client” (Völter et al., 2005). A potential solution for this

problem is the “Sessions” pattern (Sørensen, 2002): the user himself is given a

session ID, and all data passed to the server (or produced there) is kept in the

server’s storage. This way, transfer of data between client and server has to be

done at most once (except if the user loses his session ID). As a result, the user

can re-use his parameter data (hence must not be bothered with entering it re-

peatedly), and the server has to do calculations less often if re-use of generated

objects is supported by the application logic.

These considerations require a augmentation of Figure 4.1: another potential com-

ponent to be contained in the service layer is the Session Retrieval Service, which

is responsible for restoring the session object in the relevant invocation context

(Völter et al., 2005); see the revised architecture in Figure 4.5. The application

logic layer may contain an associated Session Object Restore Logic, which obtains

all relevant variables from the Session Data Storage, which may be located on the

storage layer. After the stored session data has been restored by the Session Object

Restore Logic, it may use any space IDs found to retrieve the actual space objects

from the space warehouse if the implementation scenario favours this approach,

or might simply return the space IDs for the actual service’ application logic to

perform space retrieval.

46

Storage LayerPresentation Layer

Semantics
Provider

LSA User

Service Layer Application Logic Layer

Topics
Administration

Space Object
Storage

Essay Scoring
Service

Frontend

Space
Maintainer

Essay Scoring
Logic

Synonyms
Service

Frontend
Synonyms

Logic

. .
 .

. .
 .

. .

. .
 .

. .
 .

. .

Session Data
Storage

Session Object
Restore Logic

Session Retrieval
Service

User Data
Storage

Figure 4.5: Layer decomposition of a possible LSA system featuring a session storage

Note that there is a difference between “session data” and “user data”: the former’s

existence is limited to the duration of the session. The latter’s is limited to the

lifetime of the user. This means that, if there is data that must outlive the session

(e.g. essays a user has written), this data must be stored in the user data storage

(which is why it has not been removed in the revised architecture). Also note that

session IDs are stored on a machine locally and are typically not easy to transfer

(or transfer is barred by definition), meaning that all data that should be available

after the user has changed the physical machine he uses to access the system must

also be stored in the user data storage.

The introduction of the session mechanism shows an essential reason for a distinc-

tion between the presentation layer and the service layer: if the client is the GUI

of a user frontend of an application, the developer of that GUI does not want to

be bothered with restoring previous navigation parameters; he will happily accept

if they are simply adhered to during calculation of user reports, as long as there

is an interface to alter them if needed.

4.5.4 Security

As client-server architectures are systems open for anyone with a physical connec-

tion to the server (which, in case of the internet, is a lot of people), the maintainer

47

of a service will have to consider restricting access to the server for various rea-

sons:

• The service provides information not suitable for anyone to get.

• The service runs on scarce resources and must only be provided to people

who are entitled to consume those resources (e.g. because they belong to the

interest group hosting the service, or because they paid for its usage).

• Usage of the service allows for performing operations that might have con-

sequences for other users and therefore, every such operation must be at-

tributable to its initiator

• Users of the service are entitled to perform different tasks depending on e. g.

credentials given to them as part of a information security strategy.

All these aspects require some way to restrict access to a system. With the rise

of the internet age, the identity of a person in the web has become a matter of

registering with a service by choosing a username and a password, which is then

used to assign an account to a user. As the query of a service for the login data for

the purpose of identity verification itself causes the user to disclose his credentials

to the service. This causes multiple issues, most importantly:

• The risk of eavesdroppers intercepting the credentials and impersonating the

client (“steal” his identity). As eavesdropping has been a problem on the in-

ternet since the inception of telecommunication, secure communication chan-

nels have been developed. Currently, network communications can easily be

encrypted and made very difficult to decrypt, but providing a service with

encryption facilities costs computing power, which is the reason why espe-

cially free services often don’t provide such. Users who are not aware of this

are at risk to lose their identities to other users of the network.

• In the case of re-use of the same login data for multiple services, the risk

that the provider of the service himself takes the data to impersonate the

48

client at a different service. This can easily be avoided by using different

passwords for every service, but this makes the login credentials difficult to

maintain and remember. A potential solution to this problem is to lock away

all credentials in a single “vault” which is the secured by a master password

which makes the login data easier to manage.

The OpenID logo 1

One approach to provide a solution that eliminates these

issues is OpenID, which is described at OpenID Foun-

dation (2010): “OpenID is a decentralized authentica-

tion protocol that makes it easy for people to sign up

and access web accounts.” An end-user (i.e. a person

which wants to own an identity in the internet) claims a

document somewhere in the internet (e.g. his personal

website) and relays, within that document, the infor-

mation needed to verify the identity of the document’s

owner. This requires the end user to create one single account with an identity

provider – that is a service that has the task to store the login credentials of the

identity and hold it available. The provider does not actually check if the user is

actually known under the name he pretends to be, but creates a “virtual person”

that can then go on and register for services (“relying party”) that provide openID

authentication. To authenticate, the user provides to URL of the document he

has claimed, and is then asked for authentication with his providing party, and to

grant usage permission to the relying party. The relying party simply stores the

address of the claimed document (the virtual representation of the person) with

the account. This way, the following access control issues have been solved:

• The end-user only needs a single set of login credentials: the data to authen-

ticate with his provider.

• The end-user can choose any identity provider that he finds to be trustwor-

thy, preferably, one which supports encrypted verification communication,

1Source: http://openid.net/images/logo/openid-icon-500x500.png

49

http://openid.net/images/logo/openid-icon-500x500.png

and may swiftly change his provider by simply changing the verification in-

formation stored in his personal document.

• The relying party does not have to worry about password theft or storage of

confidential data stored on its servers: it waits for the end-user to provide

evidence that he has verified with his provider, which can be checked with

the provider to ensure authenticity.

• Once the user is authenticated, he can be treated like any other user holding

an account on the server, including access control, role management and

usage quotas.

Identity management by OpenID should be the initial step performed on the service

layer. This way, no resources other than the verification request are consumed

by unauthenticated users, which provides less fertile grounds for denial-of-service

attacks. In Figure 4.6, this modification has been made to the architecture outlined

previously.

Storage LayerPresentation Layer

Semantics
Provider

LSA User

Service Layer Application Logic Layer

Topics
Administration

Space Object
Storage

Essay Scoring
Service

Frontend

Space
Maintainer

Essay Scoring
Logic

Synonyms
Service

Frontend
Synonyms

Logic

. .
 .

. .
 .

. .

. .
 .

. .
 .

. .

Session Data
Storage

Session Object
Restore Logic

Session Retrieval
Service

User Data
Storage

Figure 4.6: Layer decomposition of a possible LSA system augmented with OpenID

4.6 Requirements Met with This Architecture

Some requirements outlined in the previous section are met per se when a solution

implementation adheres to the architecture specified above. This section is going

to show for which requirements this is true, and why.

50

4.6.1 Network latency

1. Caching

The separation of the application logic from the data used for processing

(with the separation of application logic layer and storage layer) allows for

data warehouses to be shaped as CDNs, and the separation from the clients

requests from the actual logic (by having an intermediate service layer) allows

for proxy servers and server accelerators to provide cached information if it

is requested multiple times (e.g. in a search engine scenario).

2. Compression

Many common data interchange formats are verbose and therefore do not

have a good information/storage ratio (see 4.5.2). Compression algorithms

allow for making a data representation of an object more dense. Separa-

tion of the most important layers allow for communication channels that are

frequently seen in web service architectures and therefore, chances are that

a compression algorithm is present for a particular communication channel

implementation. Especially, XML technologies (especially SOAP) allow for

excellent compression of messages (Augeri et al., 2007).

4.6.2 Security

When using OpenID with communication utilising an encryption mechanism that

also uses digital certification mechanisms (e.g. SSL) on all channels, the following

security requirements (see 4.1.2) are met:

1. Policies:

Trust policies and cross-domain identities can be be met as SSL allows for

identification of the communication partners by the certificates (service iden-

tification with service provider’s certificate, client identification with identity

provider’s certificate), as long as a web of trust is established, defining which

certificate issuers are trusted.

51

2. Message Level Security:

Secure messaging is established as SSL allows for encryption of messages sent

between the communication partners. This ensures confidentiality of the in-

formation and protection from alteration. Partners holding digital certificates

can avoid man-in-the-middle and replay attacks and spoofing.

3. Web Services Security:

OpenID provides for reliable authentication mechanisms, and an established

identity of a user allows for authorisation mechanisms to be established on

both the client and server side, as well as audit trails to identify users vi-

olating e.g. the terms of use. Integrity and confidentiality are ensured by

the encryption mechanisms of SSL, even across the insecure channel of an

internet connection.

4. Privacy:

Message encryption ensures that information communicated between iden-

tified parties can be kept confident during transfer, and determination of

identities after authentication ensures non-disclosure of stored information

between accesses of the system.

Since SSL is a transport layer security mechanism, it does not allow for end-to-

end security. If this is needed (e.g. because security intermediaries are necessary),

a different approach for encryption must be chosen, which will probably feature

encryption mechanisms anyway.

4.6.3 Service and Client Location Independence

1. Cross-platform compatibility:

The proposed architecture does not obstruct implementation of the compo-

nents in a portable language, and does not impose platform-specific con-

straints neither to the communication between nor to the implementation of

the components themselves, hence the requirement is met.

52

2. Communication standards:

The layer composition has been designed to have the points of interfacing

located within the process so that data can be transferred using most stan-

dard communication protocols, including transfer using HTTP over TCP/IP,

message management using SOAP and service discovery using UDDI.

3. Internationalisation:

The presentation layer proposed in the architecture can be used to hold trans-

lation information for pre-defined messages provided by the service layer. If a

thin client is desired, translation must take place in the service layer, allowing

the client to send the desired response language with the request messages

(e.g. with a HTTP accept-language header field).

4.6.4 Maintainability and Deployment

1. Quality assurance:

Splitting the service architecture into layers allows for application of different

test techniques for different demands. For example, client software can reg-

ularly be tested by human users, as it may be required to be tested not only

for functional operation, but also, e.g. for acceptance after changes. Services

can be tested for regression and integration using the techniques described in

Baresi and Di Nitto (2007) as they have to perform correctly in conjunction

with other services. Application logic can be developed and maintained using

techniques like test driven development to make use of the various advantages

of this technique outlined in Beck (2003). The storage layer may be tested

for performance using benchmark utilities. Continuous integration can be

used as an accompanying measure to ensure constant quality even in agile

development environments.

2. Collaborative development:

Other than the encapsulation fostered by the layered structure, the archi-

tecture does not provide facilities that make collaborative development more

53

attractive than it is for any other architecture. However, use of collaborative

development techniques is not hindered either, hence the requirement is met.

3. Versioning:

As with collaborative development, use of versioning systems is neither nec-

essary nor hindered. The structure, which focuses on versatile components,

however, allows for effective dependency management and enables planning

and automatic execution of deployment.

4.6.5 Concurrency

1. Load balancing:

The separation of application logic from the service layer enables for effec-

tive load balancing upon request by components of the presentation layer.

Since the distribution of load is performed in the service layer, this process

is transparent for the LSA programmer who acts on the application layer.

2. Support homogeneity:

The 4-tier architecture splits the execution of LSA operations in a service

context into the sub-elements which are most probable to be homogenous.

Permanent loads on a layer can be supported by specialized hardware, varying

loads between layers in a constantly changing application scenario can be

supported by multi-purpose configurations hosting many or all components

at once, changing their active roles depending on the current demands.

3. Sharing of common objects:

Maintaining a separate storage layer allows for application logic to store

intermediate results for re-use by other processes effectively. Determination

of re-usable parts of calculation must be performed as part of the application

logic, possibly depending on load information from the service layer.

54

4.6.6 Performance and Scalability

Adhering to the 4-tier architecture outlined in the previous section, the following

performance and scalability requirements (see 4.1.2) are met:

1. Execution time:

The approaches outlined in 3.1.1 turn out to be deeply embedded in the

logic of LSA itself and therefore seem best situated on the application layer

as part of the LSA libraries utilised to perform the application logic. Still,

the suggested architecture does not hamper the inclusion of such advanced

approaches (see next requirement).

2. Memory usage:

Arguments outlined in the requirement above also apply to the use of dis-

tributed memory management approaches as outlined in 3.1.1.

3. Utilisation of existing libraries

The suggested distribution of system components facilitates encapsulation

and independent development of interchangeable solutions based on different

libraries, but embedded in the same service context. Communication mid-

dleware can be exchanged without requiring adjustments to application logic

(which is often beyond the scope of a service engineer).

4. Calculation time management:

With the presence of the storage layer, holding components tailored specifi-

cally towards the goals of re-use and portability of data objects in an intertem-

poral context (specifically, by allowing fast retrieval and effective memory

management), expectable calculations can be performed in advance, and in-

termediate results can be accessed in a timely manner for further processing.

Utilisation of asynchronous request mechanisms between presentation and

service layer allow for invocation of LSA procedures as non-blocking calls,

facilitating usage of LSA in a support role running in parallel with other

processes (e.g. writing a text and providing feedback as the user types).

55

4.6.7 Stability and Handling of (Partial) Failure

1. Monitoring:

As the 4 layers offer interfaces appropriate for each respective purpose, at-

taching a monitoring software to there interfaces is easily possible. For exam-

ple, availability of the service or storage layer can be monitored using check

scripts triggered by CRON or Nagios.

2. Handling of defects in components:

The suggested partitioning of the components into layers allow for specific

redundancy solutions on each layer if specialized hardware is affordable,

but does not hinder use of general-purpose redundant hardware. This way,

backup solutions and reallocation procedures can be scaled for the individual

application scenario.

3. Handling of ultimate failure:

Although ultimate failure should be prevented quite effectively by the mech-

anisms outlined in 1, ultimate failure and resulting notification and fixing

demands can be met if adequate error messages and exception handling are

performed throughout the system. Problems may arise if error descriptions

are contained in different message formats between layers, as conversion of

these messages may no longer be possible upon failure of certain subroutines.

56

5 Evaluation of Architecture Applicability

to Real World Applications

In order to support the design decisions made in 4, this chapter is going to show

how the 4-tier client-server architecture can be applied to real-world examples. For

this purpose, the general workflows of these examples outlined in the referenced

literature will be taken as a basis for developing a solution concept that features the

suggested component distribution among the layers, and details will be explicated

where necessary.

First, this chapter shows how the various implementations outlined in 3.3 can

be extended to fit into the architecture outlined in 4 to profit from meeting the

distributed system requirements outlined in 4.1. Then, real world applications

are taken from various sources to show benefits of implementing the suggested

architecture.

5.1 Improving the Architecture of the General Text Parser

Usability Prototype (GUP)

Figure 5.1 shows how the General Text Parser Usability Prototype (see 3.3.1) can

be augmented to better utilise best practices. Instead of directly accessing GTP

logic via proxy actions, GTP could implement a Model-View-Controller pattern

(?), providing views for various application workflows executable with GTP, which

are coordinated by controller implementations that utilise GTP to perform the

57

required LSA operations. Storage of user data is performed using a separate model,

which can be a MySQL model as suggested in GUP. The GUP MVC elements have

access to session data retrieved by PHP’s built-in session functionality. Using a

controller independent of GTP library allows for parallel execution of LSA tasks

if the application logic allows for such behaviour.

General Text Parser Usability Interface Web Service
Storage LayerPresentation Layer

Web Browser

Service Layer Application Logic Layer

Web Server
(e.g. Apache)

Serialised
Object Model

Controller

GTP Usability
View

Session Data
Storage

Session Object
Restore Logic

Session Retrieval
Service

General Text
Parser (GTP)PHP

MySQL Data
Model

Figure 5.1: Layer decomposition of GUP Interface Service utilizing 4-tier architecture

5.2 The Cooper Architecture as a Distributed System

The LSA module implementation of Cooper (see 3.3.2) is quite similar to the

architecture outlined in 4. Figure 5.2 shows how the initial structure (see Figure

3.1) is fit into the 4-tier architecture, preserving nomenclature where possible. The

“layer of integration with environment” is now replaced with the “controller”, which

handles coordination of processing and assignment of result data to a result view,

and a “format converter”, which is used to perform conversion of data structures

for the “very sensitive tools” (Giesbers et al., 2007). Support functions of SVM,

WinGtp and SvdLibC have been omitted in the Figure, it is assumed that they are

part of the LSA engine. In the backend, the “Sparse Matrix Library” is embedded

into the storage layer, as well as the session storage and a model for user data

storage.

58

Cooper Question Answering Web Service
Storage LayerPresentation Layer

Initiation &
Presentation

Service Layer Application Logic Layer

Processing
Environment

Sparse Matrix
Library

Controller

Session Data
Storage

Session Object
Restore Logic

Session Retrieval
Service

LSA Engine

User Data
Model

Format
ConverterView

Figure 5.2: Layer decomposition of Cooper Question Answering Tool utilizing 4-tier ar-

chitecture

5.3 LSA PHP and the TENCompetence Suite

Figure 5.3 shows how the TENCompetence Suite LSA SOAP service can be fit

into the architecture outlined in 4. As already mentioned in 3.3.4, the architecture

of the TENCompetence Suite’s web service is quite similar to that of Cooper. The

usage of LSAPHP, which has an integrated format converter interface, allows for

removing the separate format converter from the architecture. Each functionality

wrapped by the SOAP specification can be considered a view. Should the count

of functions available from the web service outgrow the single-purpose API of

the current implementation in the future, a controller will be necessary to assign

processing facilities to the application logics executed with LSAPHP. Again, a

session mechanism is added to the concept to allow for keeping state between user

interactions.

TENCompetence SOAP Web Service
Storage LayerPresentation Layer

Semantics
Provider

Service Layer Application Logic Layer

Web Server

Sparse Matrix
Library

Controller

Session Data
Storage

Session Object
Restore Logic

Session Retrieval
Service

LSA PHPSOAP

MySQL Data
Model

Figure 5.3: Layer decomposition of TENCompetence Suite LSA functions utilizing 4-tier

architecture

59

5.4 Positioning a Learner as Part of Accreditation of Prior

Learning

LTfLL deliverable 4.1 (Burek et al., 2008) outlines a pre-pilot scenario for a web

service that assists assessment tasks that are part of Accreditation of Prior Learn-

ing (APL). Often, previous education and experience of a lifelong learner is not

officially recorded by exams or certificates. To asses the prior learning experience

of a learner, he can choose a collection of documents that represent his personal

knowledge profile in an electronic medium – called an “ePortfolio”, “holding items

such as: courses completed; readings by the learner; products of the learners (here

mostly written stuff).” From the documents provided, the learner is positioned

within the space of relevant domain knowledge and courses or fields of proficiency

that are already known by him are determined using LSA.

Learner Positioning Web Service
Storage LayerPresentation Layer

Semantics
Provider

Learner

Service Layer Application Logic Layer

Space
Administration

Space Object
Storage

ePortfolio
Receiver

Space
Maintainer

Positioning
Logic

Input
Preprocessor

Figure 5.4: Layer decomposition of Learner Positioning Web Service utilizing 4-tier ar-

chitecture

Figure 5.4 shows how the described tasks can be fit into the 4-tier architecture

suggested in 4.2, using exactly the space maintenance logic suggested there.

The ePortfolio receiver might handle ePortfolio documents, or URLs to such, which

might then be retrieved by the input preprocessor. Management of spaces is per-

formed through a graphical interface, which acts as a proxy for semantic data

provided by the user, hence, acts as a “semantics provider”, and therefore, is part

of the presentation layer.

This scenario, in a slightly altered version concerning the involved parties, is used

60

for an implementation example in 6: assisted summary writing. This is outlined as

a sample scenario in LTfLL deliverable 3.2 (Hensgens et al., 2009). In this scenario,

too, a space is defined containing general language corpus data for filtering out

“standard” language, as well as a set of domain specific documents. A student

who decides to write a summary can quickly obtain feedback on whether the text

produced (now, this is not an ePortfolio, but instead, a summary text of the chosen

domain) fits into the target knowledge space.

5.5 Implicit Link Identification in the PolyCAFe Application

In LTfLL deliverable 5.3 (Trausan-Matu et al., 2010), a web application called

PolyCAFe is outlined. The purpose of the application is to enable participants

of courses aided by interactive text communication systems (namely, forums and

chats, hence the name) to asses contribution behaviour of themselves and others.

In the course of this task, “threads” (chains of interconnected utterances) have

to be identified within the logs of such communications. A vital input for the

“Thread Identification” component of PolyCAFe is the provided by the “Implicit

Links Identification” logic. Although the GUI and the log format allow for explicit

linking of utterances by the users, in many cases such interconnections are not

made explicit (and are therefore “implicit”), and have to mined out of the text.

Implicit Links Identification Web Service
Storage LayerPresentation Layer

Web Service
Invocator

Service Layer Application Logic Layer

XML Chat Log
Receiver

Space Object
Storage

Cue Phrase
Identification

Service

LSA Implicit
Link DetectorXML Validator

From
 NLP Pipe

To Threads Identification

Cue Phrase
Service Invoker

Input
Preprocessor

Figure 5.5: Layer decomposition of PolyCAFe Implicit Links Identification Web Service

utilizing 4-tier architecture

61

Figure 5.5 shows how the Implicit Links Identification logic can be embedded

into the 4-tier architecture suggested in 4.2 1. It assumes that the “Implicit Link

Identification” is a self-contained web service rather than a component that is part

of a broader application as outlined in the deliverable, as otherwise, the service

architecture would not be applicable.

The suggested decomposition shows a great advantage of the 4-tier system over a

3-tier system: the person that implements the LSA logic may conduct this task

without having to know anything about XMl validation. If desired, the XML data

can be converted to other processable formats (e.g. an array of text strings) in the

“Input preprocessor” component. In that case, the LSA logic implementer would

not have to know anything about XML at all.

A “client” in this scenario is a web service invoker, most probably part of an

orchestration process that is part of PolyCAFe. It feeds the previously obtained

stemmed version of the XML into the web service through a logic defined during

the implementation process and receives the result object (in the current PolyCAFe

implementation, this is a text representation of the similarity vector obtained from

a system call to LSA) from the service for further processing (or error handling).

In most cases, this invoker will be a component of a web service orchestration

middleware framework. Still, the decision about what specific client to use has to

be made, which makes mentioning the presentation layer essential.

Note that LTfLL deliverable 5.2 suggests that “Cue Phrase Identification” is also

a part of the Implicit Links Identification process. This logic is not based on

LSA and may therefore be performed during a nested (web-) service call, which

has been illustrated in the figure by positioning the logic outside the actual web

service. Still, the invocation of the logic may be done on the same machine, and

even within the same thread, if performance demands of the web service allow for

this.
1A similar approach has been proposed in Trausan-Matu et al. (2009) already, based on the publication

of the suggested 4-tier architecture during my participation in the LTfLL project. The approach

outlined here tries to expand the idea and optimize the encapsulation.

62

5.6 Creation of Conceptograms in CONSPECT

LTfLL deliverable 4.2 (Burek et al., 2010) describes an application for visualisation

of and interaction with so called “conceptograms” which are graphics produced as

part of Meaningful Interaction Analysis (MIA), a process based on LSA combined

with Social Network Analysis (SNA). The goal of the application scenario is to help

the user discover the relative perceptional “position” of terms to others, and enables

comparison of these “positions” with other concept spaces in a graphical process.

Exploration can lead to discovery of new, yet related, fields of knowledge for the

student, feedback on the factual correctness of assumed closeness, or visualisation

of a learner’s progress over time, to name only some scenarios.

Deliverable 4.2 outlines a demonstration process, during which a space is created

that contains knowledge of “actual” (i.e. domain-specified) closeness of terms.

Then, a user’s knowledge represented by a text source (e.g. a blog of his) is

folded into that space to show the deviation of the user’s conceptual model of the

contained terms from those calculated in the space.

CONSPECT Conceptual Development Monitoring Web Service
Storage LayerPresentation Layer

Semantics
Provider

Service Layer Application Logic Layer

Topics
Administration

Space Object
Storage

Evidence
Management

Service

Space
Maintainer

Feed
CRUD Logic

Session Data
Storage

User

Representation
Management

Service
Representation

CRUD Logic

Conceptogram
Storage

Graph
Comparison

Service
Comparison

calculation Logic

Sharing LogicSharing Service

Session Object
Restore Logic

Session Retrieval
Service

Feed Storage

Figure 5.6: Layer decomposition of CONSPECT Conceptual Development Monitoring

Web Service utilizing 4-tier architecture

Figure 5.6 shows how all applications outlined in the SUM diagram displayed in

63

Figure 3.9 of LTfLL deliverable 4.2 are fit into the 4-tier architecture. The task

of defining, altering, computing and managing an LSA space has been outlined

in 4.2. Note that, according to the deliverable, spaces are maintained through a

graphical user interface, which itself becomes a “semantics provider” as it passes on

the semantic information obtained from the user through the GUI to the service.

Management of identity has been chosen to be performed utilising OpenID technol-

ogy (see 4.5.4) by the deliverable authors. A concrete implementation of identity

checks with openID must be implemented for each process at the service layer.

This, again, highlights the importance of distinguishing between the service layer

and the application logic layer: a scientist implementing the conceptogram logic

and the foundation LSA routines will probably have no idea of how to perform

identity checks using openID – with two separate layers, however, integration of

logic and security management can be done independently.

Managing feeds may be done through a typical REST-style web service interface

for create, read, update and delete (CRUD) operations. See 4.5.1 on the poten-

tial disadvantages of that approach; the simplicity of the service in this context,

however, justifies this solution. The web service (which may actually be as sim-

ple as an Apache module configured to call PHP files depending on the request

method) may instruct the feed storage to perform CRUD operations via a simple

object-relational mapping software situated in the application logic layer.

CRUD operations for space representations are conducted almost exactly the same

way, with the exception that creation and update of the graph triggers a graph

computation process, which itself requires the underlying LSA space from the

storage layer. Calculation of the conceptogram involves, among others, the very

time-consuming task of calculating term-to-term-similarities. Recalculation of the

resulting matrix for every individual access of the term-specific detail view of a

conceptogram would be too costly in terms of computation time. Therefore, the

implementation of a user data storage system as outlined in 4.5.3 is necessary.

It can be seen that the “Representation CRUD Logic” has connections to all the

64

elements of the backends layer: the space object storage for obtaining LSA infor-

mation of the domain, the user data service interface (which restores the relevant

conceptogram objects as part of the user object according to the session ID) and

the conceptogram storage (which holds the conceptograms and, if the process of

adjusting a conceptogram requires it, the term-to-term-matrix).

Comparison of graphs needs some parameter validation in the web service logic,

as invocation of the graph comparison logic is only necessary if the parameters

are sane (especially, that the user does not try to compare the same two concep-

tograms). Also, the comparison calculation logic needs access to the user data

(holding the list of and metadata about conceptograms) and the conceptogram

storage. The latter is external to the LSA web service, but may of course be

located on the same physical system for ease of communication.

Sharing may be implemented similarly to the CRUD logic outlined above, with the

“read”-action being a list of available sharing modes, “create” actually sharing the

graph, “update” providing facilities to alter comments or tags associated with the

shared graph, and “delete” to revoke public sharing of a graph. Again, the graph

storage (for the actual graphs) and the user data storage (e.g. for preferences

regarding public sharing on social media sites) are required.

65

6 Proof of Concept: A Service-oriented

Framework for LSA Applications based

on R

Evaluation of the architecture applicability has been done in the previous chapter.

To prove the practical feasibility of the approaches described, this chapter aims

to convey concrete techniques to realise the concepts proposed in this thesis with

the help of a real-world example. First, the software products used as part of the

example framework implementation, as well as the hardware used for testing, are

shown. Then the implementation itself is outlined. Finally, a frontend applica-

tion scenario chosen to utilize the backend infrastructure is shown: the placement

experiment, which has coarsely been outlined in 5.4.

6.1 Tools

This section outlines the tools used to realize the example implementation. All

chosen software components are open source projects and are compatible with

most common operating systems.

6.1.1 R

“R is a free software environment for statistical computing and graphics.” (R

Development Core Team, 2010). It is a scripting language, which means that the

66

source code is parsed at runtime, just before execution. Syntax and interpreter

are optimised for handling of vector- and matrix-type data objects. To date, the

core application is supplemented with over 2200 task-specific add-on packages.

R has been chosen as the core programming language of the project for a full-

fledged LSA package being already available, as well as substantial capabilities in

the area of natural language processing (Wild, 2009). Also, it is obvious that the

enormous size of the objects handled in LSA would require the number of cross-

application data conversion operations to be kept at a minimum, so ideally, the

chosen framework should be able to handle all tasks from the lowest (i.e., matrix

operations) to the highest (web service) level of processing.

6.1.2 RServe

The key idea behind RServe is to be able to instantiate an R session with its own

workspace and directory from inside a different program, without having to link

against R (Urbanek, 2009). It also provides the facilities to create a persistent

R session, which exists in memory independent of the application that created it,

and waits for a connection. Such connection utilizes the TCP/IP protocol for data

transmission and allows for asynchronous execution of R processes. This allows

for one R session being present all the time, with other instances connecting to it,

initiating an operation, and retrieving the results later.

6.1.3 RApache

RApache (Horner, 2009) is a loadable module for the Apache HTTP server (The

Apache Software Foundation, 2010a). The purpose of the module is to enable the

invocation of an R instance whenever an associated script is called by the Apache

server. The created instance contains references to the request parameters (e.g.,

the GET and POST parameters), which enables the dynamic handling of data

provided by the user.

67

6.1.4 GotoBLAS

“Basic Linear Algebra Subroutines” (BLAS) are a set of software routines intended

to perform vector and matrix operations. It is optimised to utilize low-level oper-

ations of the hardware architecture it is compiled for to allow for high processing

speeds during such operations. Kazushige Goto implemented a version of a BLAS

which he claims to be “currently the fastest implementations” (Goto, 2010) avail-

able. The BLAS is made available in R by referencing libGoto at compile time of

R.

6.1.5 Hardware

All benchmarks in this thesis have been conducted on a development server which

had two virtual machines installed, sharing the following hardware specification:

• Hardware

– 2x Quad-Core Xeon 2.8GHz: 1 Quad-Core for each VM

– 32 GB RAM (8x4GB dual rank DIMMs): 16 GB for each VM

– 1.8 TB HD (6x300 GB)

• Software

– Operating system: Debian Lenny (64 bit)

– Apache httpd 2.2.10

– MySQL Community Server 5.0.51a-17 (Debian) (MySQL Development

Team, 2010)

– PHP 5.2.6 featuring Zend Engine v2.2.0 (PHP Development Team, 2010)

– R 2.8.1 with GotoBLAS 1.26

The large memory of this system left plenty of room to store spaces of 1GB and

more in size.

68

6.2 Implementation of the Four Layers of the LSA

Client/Server Architecture

As outlined and thoroughly discussed in section 4, the web service architecture

should be composed of four layers. Following the previous considerations, this

section is going to outline an R-based LSA framework for web services, which is

composed of these four layers. The implementation of the backends layer as well

as the aspects to consider when implementing components for the other layers will

be shown, giving example approaches where applicable. As a reference, the final

architecture is displayed in advance of the actual technical description in Figure

6.1 below.

Storage LayerPresentation Layer

Tutor GUI
corpus_manager.php

Student GUI
essay_manager.php

Service Layer Application Logic Layer
Topic Manager Service

corpus_list.rws
corpus_get.rws

corpus_upload.rws

Space Object Storage
Monolithic

Interinstance
Serialisation
Bigmemory

Essay Manager Service
essay_list.rws

essay_read.rws
essay_upload.rws

Space CRUD Logic
space_crud.R

Essay CRUD Logic
essay_crud.R

Placement Service
placement_test.rws

Placement Logic
placement_logic.R

User Data Storage
Hard Disk Drive

PHP
file_get_contents()

YUI
AJAX

YUI
AJAX

R
source()

R
source()

R
source()

R
Rserve/Bigmemory

R
Rserve/Bigmemory

R
file()

R
textmatrix()

Figure 6.1: Layer decomposition of the proof of concept implementation

6.2.1 Backends Layer

This layer comprises the core functionality of the framework. It handles the gen-

eration, storage, retrieval, and processing of LSA spaces. Its input is data that is

to be processed into a space object, as well as identification tokens used to locate

spaces in the storage. Its output is process monitoring data as well as the space

objects themselves.

69

Infrastructure for LSA Logic: The Space Warehouse

R is a script language and therefore allows for handling of application logic in a

different way than most languages requiring the code to be compiled to binary

instructions. This allows for logic being defined as “function”-object, which may

be treated like a variable, but may also be executed. So instead of extending a

basic LSA object with concrete implementations, the logic is passed to the ware-

house as a such a “function”-object, which is defined in the application layer. This

mechanism resembles the principle of a framework as defined in section 1.2.4.

Decoupling the LSA logic from the service layer framework has the following ad-

vantages:

• The logic can be performed within the warehouse as outlined in section 6.2.1.

This can be advantageous in some cases (see section 6.2.1).

• A dedicated LSA logic developer can implement the logic function with nei-

ther knowing, nor caring about the actual implementation of the space ware-

house on the one hand and the service layer on the other hand.

• The implementation of the logic might be sub-optimal in means of variable

copying. The availability of the logic (which is a language-object in R) to the

abstraction layer allows for adjustment the actual implementation on-the-fly

using R’s language manipulation. For example, Oehlschlägel et al. (2008)

show how R.ff is able to make such modifications to to program logic on the

fly to make it compatible with a more efficient storage mechanism.

Implementers of LSA logics may face several problems concerning the retrieval of

the space objects:

• Storage requirements for spaces: Depending on the application scenario of

the LSA logic, spaces can be very large and might not fit into the main

memory of the computer.

70

• Transfer bottlenecks: Depending on the storage medium, retrieval of a space

from that medium may be slow.

• Retrieval overheads: storage mechanisms like compression or serialisation

create a computational overhead when retrieving a space.

• Simultaneous access: Some applications scenarios (like web services) may

require instant access to space objects for multiple clients at the same time.

The considerations above lead to the development of three types of space storage

mechanisms, which shall be outlined now.

Monolithic Approach (“Mainframe-like Warehouse”)

The monolithic warehouse approach keeps a central R instance permanently open,

holding all space objects previously calculated in main memory. LSA application

logic is passed into this R instance and executed there, locally. This approach

eliminates all overhead created by copying large space objects between storage

media as they are accessed directly from memory. It has to be kept in mind that

the central R instance holding the spaces is unavailable to other requests until the

LSA logic has finished.

This mechanism is especially useful when instructions are performed in a short

period of time, but on very large corpora, because in this case the lock-up of the

warehouse might be shorter than in inter-instance mode if the LSA logic can be

performed in less time than creating a copy in memory would take, and deserial-

isation of the space from hard disk might be outperformed by both RAM-based

approaches.

In case of multiple instances trying to access the warehouse, all but one will get a

“temporarily unavailable”-signal, instructing them to try again. This mechanism

is called “polling” (Papazoglou, 2008).

71

Application
Logic Layer

Warehouse
Interface

SpaceID

get_space_by_id(SpaceID)

Space

Parameters

Instructions do.call(Instructions, Parameters, Space)

Result
Result

Figure 6.2: Sequence diagram of monolithic logic performance

Inter-Instance Copy (“RAM Storage”)

The inter-instance copy approach keeps — like the monolithic approach — all

spaces in main memory. Application logic is - in contrast - not executed in the

storage R instance, but rather, a copy of the original object is passed to the

RApache instance, freeing the central R instance’s access interface again as soon

as the copy has been generated.

Serialisation (“Hard Disk Storage”)

The serialisation approach keeps all space objects in a binary file on the server’s

hard disk. This has the advantage that on most servers, HDD space will by far

exceed main memory, and for that reason, storage should be less a problem. On

the downside, (de-)serialisation of space objects may be - depending on the hard

ware used - a time consuming task which may slow the LSA process. Note that,

if the amount of data to be stored is not too large, and it turns out that the other

warehouse types are superior in a given scenario only because of the slow transfer

72

Application
Logic Layer

Warehouse
Interface

getSpaceByID(SpaceID)
do.call(Instructions, Parameters, Space)

Result

SpaceID

Space

transferSpace()

transferFinished()

Figure 6.3: Sequence diagram of inter-instance copying space acquisition

rate of HDDs to main memory, a RAM-disc (virtual hard disc storing data in a

partition of the main memory) would be an option.

Choosing the Appropriate Warehouse Type

Table 6.5 gives an overview of the available warehouse modes considering the issues

of space object retrieval outlined in section 6.2.1

Alternative Implementation: bigmemory

Bigmemory (Kane and Emerson, 2010) is an attempt to bypass the limitations of

classic in-memory handling of matrices in R, and the tiresome process of either

(de-)serializing data repeatedly or using non-standard mechanisms to keep it in

memory. Bigmemory allows for R to save so-called descriptor-files to disk which

represent links to data stored in memory, and backing-files which are filled with

overflow data if the RAM of a machine is exceeded.

73

Application
Logic Layer

Hard Disk
Interface

SpaceID
getRDSByID(SpaceID)

RDS FileRDS File

unserialize(RDS)

Space

do.call(Instructions, Parameters)

Result

getSpaceByID(SpaceID)

Space

Figure 6.4: Sequence diagram of serialisation-based space acquisition

Monolithic Inter-Instance Copy Serialisation

Storage Limit RAM HDD

Retrieval overhead None RAM-RAM-Copying (De-)serialisation

Warehouse unavailable Until logic performed Until space copied Until file retrieved

Access mode Polling Independent

Figure 6.5: Comparison of space warehouse modes

The advantage of the shared memory mechanics is that multiple processes can

operate with data contained in the same matrix object held in memory. This allows

for a reduction in redundancy as well as improved performance in space retrieval.

Bigmemory’s sister-package “synchronicity” even allows for parallel execution of

“mutex” (mutually exclusive) matrix modification operations, which means that a

single matrix can be modified by multiple processes as long as each process only

works on a “section” of the matrix that no other process has access to. This is

ensured using sophisticated locking mechanisms provided by the package.

Using a current version of bigmemory, which still lacks basic matrix operations,

74

the package can actually just be used as a space storage that does not have a

deserialisation-overhead: the space is stored as-is in shared memory and can be

retrieved (and copied to memory) comparably fast. This process is outlined in

Figure 6.6. The matrices contained in the initial LSA space (Uk, Vk and Σk,

see 2.1.2) are each extracted from the space and stored in shared memory as

bigmemory objects, the references to the matrices in the space are replaced with

null values. Then, the space is stored as RDS. During retrieval, the RDS file is

read back, the bigmemory-objects are read from shared memory (i.e. copied to

the active process), converted back to R-matrices to enable matrix calculus, and

references to them restored in the LSA space object.

Application
Logic Layer

bigmemory

getSpaceByID(SpaceID)
do.call(Instructions, Parameters, Space)

Result

Filenames of matrix descriptors

Reconstruct space

transfer matrices

transferFinished()

Memory
(RAM)

Get matrices (memory-address)

transfer matrices

transferFinished()

Space

Figure 6.6: Sequence diagram of bigmemory space acquisition

Performance

On page 76, the performance of the warehouse modes is compared for various usage

scenarios:

1. “Storage” is the duration it takes to store a space of given size to the respective

storage medium.

75

C
om

pa
ris

on
 o

f w
al

l t
im

es
 fo

r
st

or
ag

e
pr

oc
es

s

Processing time in seconds

M
on

ol
ith

ic
In

te
rin

st
an

ce
S

er
ia

lis
at

io
n

B
ig

m
em

or
y

0100200300400

S
m

al
l s

pa
ce

M
ed

iu
m

 s
pa

ce
La

rg
e

sp
ac

e

C
om

pa
ris

on
 o

f w
al

l t
im

es
 fo

r
re

tr
ie

va
l p

ro
ce

ss

Processing time in seconds

M
on

ol
ith

ic
In

te
rin

st
an

ce
S

er
ia

lis
at

io
n

B
ig

m
em

or
y

0510152025

S
m

al
l s

pa
ce

M
ed

iu
m

 s
pa

ce
La

rg
e

sp
ac

e

C
om

pa
ris

on
 o

f w
al

l t
im

es
 fo

r
co

si
ne

 p
ro

ce
ss

Processing time in seconds

M
on

ol
ith

ic
In

te
rin

st
an

ce
S

er
ia

lis
at

io
n

B
ig

m
em

or
y

0510152025

S
m

al
l s

pa
ce

M
ed

iu
m

 s
pa

ce
La

rg
e

sp
ac

e

C
om

pa
ris

on
 o

f w
al

l t
im

es
 fo

r
fo

ld
−i

n
pr

oc
es

s

Processing time in seconds
M

on
ol

ith
ic

In
te

rin
st

an
ce

S
er

ia
lis

at
io

n
B

ig
m

em
or

y
051015202530

S
m

al
l s

pa
ce

M
ed

iu
m

 s
pa

ce
La

rg
e

sp
ac

e

F
ig
ur
e
6.
7:

C
om

pa
ri
so
n
of

w
ar
eh

ou
se

pe
rf
or
m
an

ce
on

th
e
ba

si
s
of

va
ri
ou

s
us
ag

e
sc
en

ar
io
s.

76

2. “Retrieval” is the duration it takes for the space to be retrieved from the

storage medium.

3. “Cosine” is the wall time of performance of a simple cosine calculation between

two terms (“car” and “list”).

4. “Fold-in” is the wall time of folding a small text into a space.

The sizes of the spaces have been determined using the R function object.size:

1. “Small space”: 4.092.144 Byte

2. “Medium space”: 101.259.936 Byte

3. “Large space”: 627.039.944 Byte

Note that LSA logic is only performed, but no result is returned during this bench-

mark. Therefore, if the result objects are large in size, another level of overhead

may arise from the fact that “monolithic” and “interinstance” warehouses have to

copy the result objects from the R warehouse instance to the calling R client.

Connection overhead in “serialisation” mode consists solely of accessing the ref-

erence to the RDS file on the hard disk, which is in the area of milliseconds on

the hardware of the test server. Retrieval overhead in monolithic mode consists

solely of accessing the memory reference to the object, which is almost instant.

“Bigmemory” currently lacks capabilities to perform basic linear algebra calcula-

tions – for this reasons, a severe overhead is created by the process of conversion

from bigmatrix to R-matrix objects after a bigmatrix has been retrieved. This

additional overhead is displayed in Figure 6.7 by the dotted boxes above the big-

matrix execution times. This is still quite inefficient compared to the abilities a

space warehouse would provide that allows computation on shared-memory ob-

jects on a by-reference basis. Luckily, the authors of bigmemory have announced

that the sister-package “bigalgebra” will be able to include all mathematical opera-

tors necessary for processing LSA objects containing bigmatrix-matrices (namely,

vector- and matrix-calculus and SVDs powered by BLAS and LAPACK). At the

77

current development stage, however, these operations are not handled transpar-

ently, which means that the code of the LSA package would have to be adjusted

to make the correct calls if the input objects contain bigmatrix-matrices. The au-

thors have, however, also announced more userfriendly wrappers for the functions,

which might mean that one day a “generic” for R’s matrix multiplication function

%*% will be implemented which is able to handle the bigmatrix objects.

Still, a direct comparison shows that the bigmemory approach is in every way

superior to all RServe implementations except the “monolithic” mode, which does

not have a retrieval overhead at all since the logic is transferred to the space,

not the space to the logic. Therefore, if “monolithic” mode is not an option (e.g.

due to severe multi-user parallel access requirements for the space warehouse),

“bigmemory” is the correct choice. The R community has put significant efforts

into areas of high-performance computing during the period of creation of this

thesis. Bigmemory is better suited for the purpose or holding large objects in

RAM than RServe is, as the communication between shared memory and the R

instance does not require the overhead of a communication protocol between two

R instances in the case of the former, which it does for the latter.

6.2.2 Application Logic Layer

This layer contains the functions tailored towards the specific applications of LSA

as a service provider. Its input is a set of execution parameters passed by the

service layer, and the spaces provided by the backends layer. Its output is an R

object that represents the result of the LSA process.

During the setup of the LSA framework, a set of functions must be implemented.

They must be able to perform the LSA logic with only the parameter list passed

by the service layer, which is the gateway for client applications to access this

functionality. Functions may serve utility purposes, such as the maintenance logic

(including generation, deletion and modification of spaces), or task-specific logic

such as the folding-in of a text into a pre-defined space for relevance checks. They

78

can utilize the backends layer to retrieve the spaces needed to perform the algo-

rithm, independent of the actual warehouse implementation in use.

The joint environment of functionality and spaces is created by the backends layer

using dependency injection (Fowler, 2004). In such environment, spaces can be

accessed by the applications layer using a common interface. This interface simply

consists of two methods:

1. get_space_by_id(space_id): Function to retrieve the space with identifi-

cation (ID) space_id.

2. set_space_by_id(space_id, space): Function to store a space passed as a

parameter into the space warehouse. Depending on whether a space with the

ID space_id is already present, a new item in the warehouse will be created,

or an existing one will be overwritten.

These functions have different implementations depending on the chosen warehouse

type, but their outside interface remains the same, enabling implementation of the

LSA logic completely decoupled from the actual backend behaviour.

The LSA application logic then returns a result object, which may be any R object,

including lists, arrays or even binary image data which may be generated by a

graphics implementation, depending on the task. This data is then passed to the

service layer for transformation and communication to the presentation layer.

6.2.3 Service Layer

This layer contains routines to handle user requests and responses to them. Its

input is a set of user request parameters passed by the presentation layer. Its

output is text, formatted in a way that the contained data is interchangeable with

the client - normally, some form of XML string.

The service framework relies on code written in R which is used to transform,

validate, and then communicate the parameters to the application logic layer.

79

Invocation of the underlying R-scripts is handled by an Apache server, which

is equipped with the “RApache” module. On arrival of a request for an R web

service at the Apache server, RApache invokes an instance of the R shared library,

executes the required R web-service script and enables the R framework to access

all information that has been passed to the Apache server by the client (via the

HTTP protocol).

After computation of the application logic — successful or not — the service

layer returns a custom XML structure representing the result object. The actual

structure to be used can be freely chosen by the web service implementer. This

individual choice is given to developers as it enables quick development of XML

interactions for simple tasks.

Still, a more sophisticated communication solution is easily achievable by replacing

the service layer with a toolkit capable of more comprehensive interaction. A

possible solution would be a full-fledged communication architecture based on a

standard XML protocol (e.g., SOAP), which would be the case if e.g., XML-RPC

is chosen as the standard protocol. Another promising approach is the Biocep-R

project (Biocep-R Team, 2010), which acts as an intermediate layer between R

and a Java Virtual Machine. Such JVM could then be embedded in an Apache

Tomcat server (The Apache Software Foundation, 2010b) to utilize its web service

abilities.

6.2.4 Presentation Layer

This layer is used to create requests to the LSA system. It interacts with the

application layer by creating request strings and sending them to the LSA server.

Most of the implementation effort is put into this layer when using the LSA web

service framework. Due to the various applications of LSA, the client can be

anything from a forum plug-in (Landauer, 2007) to a web-based learning tool (see

80

section 6.3). The client may use the result data by displaying it as a graphical

component in a UI, or process the data further in a service chain.

Regardless of the actual implementation scenario, clients can use any HTTP based

communication mechanism to access web services via RESTful requests (see 4.5.1).

The server hosting the service framework handles the request by invoking the

applications on the service layer and passes on any parameters that have been

sent to the server.

A concrete implementation of a web-based learning software utilizing the LSA web

service framework is outlined in the following section.

6.3 Sample Application: The Placement Experiment

The following scenario has been created as a prototype, with the aim of discovering

a first set of technologies that may be used to realise the service architecture

concept of section 6.2. Essay scoring is a process in which a topic is defined by a

tutor using text corpora specific to this topic, and essays written by students can

then be rated using a scoring mechanism. This prototype uses LSA to generate a

space for the topic and to fold in a student’s essay, finding the score using Pearson

correlation as a proximity measure. On the server machine, an Apache server is

listening for REST-style requests for *.rws scripts, which are R scripts that can be

executed by the RApache Apache module. These scripts execute the request and

return custom XML data as a result.

6.3.1 Tutor’s View

Corpus and topic administration is realised using a frontend based on PHP (PHP

Development Team, 2010) to generate the requests. Using a PHP command as

shown in Figure 6.8, PHP generates a request like in Figure 6.9 at runtime. The

server will return a list of existing corpora as in Figure 6.10.

81

$requestURL = ’http://host.com/webservice/corpus_list.rws’;

$xml_response = file_get_contents($requestURL);

Figure 6.8: PHP instructions used to generate a request

GET /web-service/corpus_list.rws HTTP/1.1

User-Agent: PHP/5.2.4-pl2-gentoo

Host: host.com

Accept: */*

Figure 6.9: HTTP request for a list of existing corpora

This XML data is then processed using PHP to generate a graphical user interface

(GUI) for topic administration. Upload of a corpus is done using HTTP POST

utilising the RFC 1867, which is commonly used by browser-based forms. The

form itself has been generated by the PHP script and is then utilised by the client

browser.

Using these technologies (REST-style requests for a small set of parameters, RFC

1867 style POST-upload for corpora), all functionality from the tutor’s view is

implemented, providing a GUI for the topic management.

Space generation jobs are passed to the server using the message queuing mecha-

nism outlined earlier. A GET request states the IDs of the corpora to be put into

the space, and an R script on the server generates the space as soon as computation

capacity is available, utilising the package “lsa”. The spaces are then stored in a

persistent R instance (using Rserve) that acts as the space object storage outlined

in section 6.2.1. Therefore, the spaces are held in RAM and are highly available.

The status of generation can be monitored using the GUI (see the bottom of Figure

6.13).

82

HTTP/1.1 200 OK

Date: Wed, 29 Oct 2008 12:55:27 GMT

Server: Apache

Transfer-Encoding: chunked

Content-Type: text/xml

358

<WSR:webServiceResponse

xmlns:WSR="http://www.w3c.org/2002/ws/"

xmlns:ltfll="http://www.ltfll-project.org/">

<ltfll:corpus id="1">

<ltfll:title>Medical Texts</ltfll:title>

<ltfll:original_filename>med.all</ltfll:original_filename>

<ltfll:textsize>1114373</ltfll:textsize>

</ltfll:corpus>

<ltfll:corpus id="2">

<ltfll:title>CISI Test Texts</ltfll:title>

<ltfll:original_filename>cisi.all</ltfll:original_filename>

<ltfll:textsize>2561998</ltfll:textsize>

</ltfll:corpus>

</WSR:webServiceResponse>

Figure 6.10: XML response from the server

83

POST /web-service/corpus_upload.rws HTTP/1.1

Host: host.com

Content-Type: multipart/form-data; boundary=---------------------cc1b3257ba

Content-Length: 309

-----------------------cc1b3257ba

Content-Disposition: form-data; name="corpus[1]"; filename="test.txt"

Content-Type: text/plain

This is a simple text corpus.

-----------------------cc1b3257ba

Content-Disposition: form-data; name="title[1]"

Title of the test

-----------------------cc1b3257ba--

Figure 6.11: HTTP request for upload of a new corpus

84

HTTP/1.1 200 OK

Date: Wed, 29 Oct 2008 13:10:22 GMT

Server: Apache

Transfer-Encoding: chunked

Content-Type: text/xml

9a

<webServiceResponse xmlns="WSR" xmlns:ltfll="LTfLL">

<ltfll:success>

The file test.txt has successfully been saved.

</ltfll:success>

</webServiceResponse>

Figure 6.12: XML response upon upload

6.3.2 Server Application: Space Maintainer

As already outlined in section 2.1 and thoroughly discussed in Dietl (2009), the

generation of a space from a text corpus can be a lengthy operation. Still, the

Service must be available, even if, during peak times in a university environment,

the generation of multiple spaces at once is triggered. Therefore, a solution has to

be found that ensures that space warehouse maintenance tasks are not blocking

calls, but can be performed simultaneously.

Figure 6.14 on page 87 shows an approach to the asynchronous generation of mul-

tiple spaces by utilizing multiple CPUs on a server. What happens is that multiple

clients send text corpora and associated metadata to the space creation web service

gateway via a carrier, e.g., the internet. The space maintenance logic stores the

corpus data in a file on the file system, and parameters into a MySQL database

(MySQL Development Team, 2010), including metadata that enables the list of

jobs to be handled as a queue. Simultaneously, a CRON job (a process triggered

for execution every minute on the server) is executed, checking whether the queue

85

Figure 6.13: Screenshot of the PHP-based tutor GUI

manager contains new jobs to be performed and, if true, executing the topmost

entry in the queue. This results in a separate R session being created, which is

contained in an RServe instance. The job manager disconnects from the RServe

session, making the space generation process asynchronous. The reference to the

running process is stored in a instance monitor database. As soon as the space

generation finishes, it notifies the instance monitor of the successful completion of

the job. Furthermore, CRON regularly triggers the execution of the space ware-

house maintainer script, which polls the instance monitor for finished processes.

If one is found, the process attaches to the RServe instance that holds the — now

finished — space, and to the space warehouse, so the space can be moved from

the former to the latter.

6.3.3 Student’s View: Essay Scoring

For the student’s side, an “asynchronous JavaScript and XML” (AJAX) based GUI

has been developed. It utilises the same technologies as the tutor’s side. Creation

86

St
or

ag
e

La
ye

r

Ap
pl

ica
tio

n
Lo

gi
c

La
ye

r

Se
rv

ice
 L

ay
er

Pr
es

en
ta

tio
n

La
ye

r

RA
pa

ch
e

sp
ac

e_
cr

ea
te

.rw
s

Q
ue

ue
 M

an
ag

er

Co
rp

us

Co
rp

us

Co
rp

us

RS
er

ve
Sp

ac
e

ge
ne

ra
to

r
CP

U-
1

CR
O

N-
Jo

b

RS
er

ve
Sp

ac
e

ge
ne

ra
to

r
CP

U-
2

RS
er

ve
Sp

ac
e

ge
ne

ra
to

r
CP

U-
N

ge
t jo

b i
nfo

. . .

ch
ec

k_
fo

r_
ne

w_
jo

bs
.R

RS
er

ve
Sp

ac
e

ge
ne

ra
to

r
Fi

ni
sh

ed
/Id

le

Sp
ac

e

st
or

e_
fin

ish
ed

_s
pa

ce
s.

R
RS

er
ve

P
er
si
st
an

t
Va

ria
bl

e
W

ar
eh

ou
se

RS
er

ve
Sp

ac
e

ge
ne

ra
to

r
Fi

ni
sh

ed
/Id

le

Sp
ac

e

Sp
ac

e
1

Sp
ac

e
n.

<-- Time
.

Jo
b

Jo
b

Jo
b

Jo
b

M
et

ad
at

a:
 M

yS
Q

L
Co

rp
or

a:
 F

ile
sy

st
em

Ca
rri

er
e.

g.
 In

te
rn

et

In
st

an
ce

 M
on

ito
r

no
tif

y
wh

en
 fi

ni
sh

ed

G
et

 fi
ni

sh
ed

 In
st

an
ce

s

St
or

e
re

fe
re

nc
e

ge
t j

ob
 in

fo

ge
t jo

b i
nfo

F
ig
ur
e
6.
14

:A
n
ar
ch
it
ec
tu
re

w
hi
ch

en
ab

le
s
th
e
si
m
ul
ta
ne

ou
s
pr
oc
es
si
ng

of
te
xt

co
rp
or
a
to

LS
A

sp
ac
es

87

of GET and POST requests is handled using the “Yahoo! User Interface” (YUI)

library (Yahoo! Developer Network, 2009) module “connection”, which allows for

asynchronous invocation of the R services.

The R service itself first retrieves the text of the essay (which is kept in a database)

and stores it in a text file. Afterwards, the code shown in Figure 6.15 is executed

to retrieve the correlations of the essay file to the chosen topic space.

space_id <- as.integer(GET$space_id);

parameters<-list(essay_file=essay_file, space_id=space_id);

logic<-function(essay_file, space_id){

space = get_space_by_id(space_id);

trm_red = as.textmatrix(space);

tem = textmatrix(essay_file, vocabulary = rownames(trm_red));

tem = lw_bintf(tem) * gw_idf(trm_red);

tem_red = fold_in(tem, space);

cors = cor(tem_red[,basename(essay_file)], trm_red);

cors;

}

cors<-lsa_perform_logic(logic, parameters);

Figure 6.15: Declaration of an R function holding the application logic for a placement

experiment

Afterwards, on the service layer, the result object is converted into an XML re-

sponse, which is then returned to the client. The client (here: the browser) then

displays the result by creating visual indicators using JavaScript and the slider

component of the YUI library, which is depicted in Figure 6.16.

88

Figure 6.16: Screenshot of student’s GUI based on the Yahoo! User Interface library

89

7 Conclusion and Outlook

This thesis attempt to find a way to overcome the challenges of distributed systems

when using LSA in a service oriented architecture. In the course of this, reasons

for distributing LSA procedures have been found, and requirements for a reference

architecture have been set up.

As a result, a 4-tier client-server architecture has been suggested. This architecture

allows for decoupling of homogenous system components with interfaces that allow

for distribution of sub-procedures. The introduction of a separate service layer

aids the use of the LSA components in a service oriented architecture as a black-

box application on the one hand, without bothering the implementers of LSA

application logic with web service specifics on the other hand.

The suggested reference architecture successfully fulfills all requirements set up

before. It utilises best-practice approaches that have been tried and tested for

decades in distributed system contexts, and solutions to common problems re-

sulting from these practices have been suggested. Furthermore, it provides the

facilities to make use of advanced LSA algorithms which can operate in clustered

environments.

The solution was compared to currently existing approaches to provide LSA as a

web service, and the applicability of the reference architecture to scenarios from

practical contexts has been shown. A demonstration implementation (a classroom

demonstration of the “placement experiment”) has been developed to prove the

feasibility of an application utilising the reference architecture outlined in this

thesis.

90

The suggested reference architecture, however, is no more than what its name says:

a reference, aimed to determine a beneficial way of decoupling components. Al-

though a set of possible middleware frameworks and open source components that

can act as parts of the respective layers has been shown, this list is not compre-

hensive, and such a list would be beyond the scope of this thesis. Further studies

must be conducted on the optimal embodiment of the components on each layer.

The future might bring even better mechanisms for shared use of in-memory space

objects and intermediate results, LSA implementations in different programming

languages may rise demand for cross-platform interfaces to the storage layer, and

the rapid development of SOAP and its competitors may open up completely new

contexts and approaches to providing LSA as a component in a service oriented

architecture.

Also, research concerning possibilities of distributing LSA calculation has only been

conducted with consideration of existing technologies. Development of algorithms

that enable distributed calculation of SVDs, techniques for efficient execution of

linear algebra operations on large matrices (which may be distributable as well),

and even the reduction of bottlenecks on the hardware level (e.g. access times of

hard disks), are fields of research that shall remain potential subject matters for

future works.

91

8 Appendix

92

List of Figures

2.1 The components of an LSA space generated from a bachelor thesis

text extract. This figure is taken from Dietl (2009). 7

3.1 The service approach for LSA used in Cooper (Giesbers et al., 2007) 22

4.1 Layer decomposition of a possible LSA system 34

4.2 Comparison of nomenclature in distributed systems literature . . . 34

4.3 Data flow during a typical LSA process 38

4.4 Component Interaction and Distribution View 39

4.5 Layer decomposition of a possible LSA system featuring a session

storage . 47

4.6 Layer decomposition of a possible LSA system augmented with

OpenID . 50

5.1 Layer decomposition of GUP Interface Service utilizing 4-tier archi-

tecture . 58

5.2 Layer decomposition of Cooper Question Answering Tool utilizing

4-tier architecture . 59

5.3 Layer decomposition of TENCompetence Suite LSA functions uti-

lizing 4-tier architecture . 59

5.4 Layer decomposition of Learner Positioning Web Service utilizing

4-tier architecture . 60

5.5 Layer decomposition of PolyCAFe Implicit Links Identification Web

Service utilizing 4-tier architecture 61

93

5.6 Layer decomposition of CONSPECT Conceptual Development Mon-

itoring Web Service utilizing 4-tier architecture 63

6.1 Layer decomposition of the proof of concept implementation 69

6.2 Sequence diagram of monolithic logic performance 72

6.3 Sequence diagram of inter-instance copying space acquisition 73

6.4 Sequence diagram of serialisation-based space acquisition 74

6.5 Comparison of space warehouse modes 74

6.6 Sequence diagram of bigmemory space acquisition 75

6.7 Comparison of warehouse performance on the basis of various usage

scenarios. 76

6.8 PHP instructions used to generate a request 82

6.9 HTTP request for a list of existing corpora 82

6.10 XML response from the server . 83

6.11 HTTP request for upload of a new corpus 84

6.12 XML response upon upload . 85

6.13 Screenshot of the PHP-based tutor GUI 86

6.14 An architecture which enables the simultaneous processing of text

corpora to LSA spaces . 87

6.15 Declaration of an R function holding the application logic for a

placement experiment . 88

6.16 Screenshot of student’s GUI based on the Yahoo! User Interface

library . 89

94

Bibliography

Augeri, C. J., Bulutoglu, D. A., Mullins, B. E., Baldwin, R. O., and Baird, L. C.

(2007). An analysis of XML compression efficiency. In ExpCS ’07: Proceedings

of the 2007 workshop on Experimental computer science, New York, NY, USA.

ACM.

Avgeriou, P. and Zdun, U. (2005). Architectural Patterns Revisited - A Pattern

Language. In Proceedings of 10th European Conference on Pattern Languages

of Programs (EuroPloP 2005), Irsee, Germany.

Baresi, L. and Di Nitto, E., editors (2007). Test and Analysis of Web Services.

Springer.

Beck, K. (2003). Test-Driven Development: By Example. The Addison-Wesley

Signature Series. Addison-Wesley.

Berry, M. W., Dumais, S. T., and O’Brien, G. W. (1995). Using Linear Algebra

for intelligent information retrieval. SIAM Review, 37:573–595.

Biocep-R Team (2010). Biocep-R. http://biocep-distrib.r-forge.r-project.org/ (last

checked on 2010-02-16).

Burek, G., Berlanga, A. J., Kalz, M., Braidman, I., Smithies, A., Wild, F.,

Osenova, P., Simov, K., Hoisl, B., Lemnitzer, L., Stoyanov, S., van Rosmalen,

P., Hensgens, J., Regan, M., Bruggen, J. V., and Armitt, G. (2008). Lan-

guage Technologies for Lifelong Learning: Project Deliverable Report D4.1.

http://hdl.handle.net/1820/1761 (last checked 2010-09-09).

95

http://biocep-distrib.r-forge.r-project.org/
http://hdl.handle.net/1820/1761

Burek, G., Gerdemann, D., Hoisl, B., Koblischke, R., Braidman, I., Smithies, A.,

Haley, D., Wild, F., Osenova, P., Simov, K., Berlanga, A., and Mauerhofer,

C. (2010). Language Technologies for Lifelong Learning: Project Deliverable

Report D4.2. http://hdl.handle.net/1820/2301 (last checked 2010-09-08).

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., and Matera, M.

(2003). Designing Data-Intensive Web Applications. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA.

Coulouris, G., Dollimore, J., and Kindberg, T. (2005). Distributed Systems: Con-

cepts and Design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 4th edition.

Dietl, R. (2009). Latent semantic analysis: Overview and applications. BSc thesis

at the Vienna University of Economics and Business Administration. Available

online at http://epub2.wu-wien.ac.at/dyn/openURL?id=oai:epub2.wu-wien.ac.

at:epub-wu-01_10c2.

Evans, E. (2003). Domain-Driven Design: Tacking Complexity In the Heart of

Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Evdemon, J. (2005). Principles of service design: Service patterns and

anti-patterns. http://msdn.microsoft.com/en-us/library/ms954638.aspx (last

checked 2010-09-20).

Feinerer, I. (2008). A Text Mining Framework in R and Its Applications. PhD the-

sis, Department of Statistics and Mathematics, Vienna University of Economics

and Business Administration.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Soft-

ware Architectures. PhD thesis, University of California, Irvine.

Fowler, M. (2003). Patterns of enterprise application architecture. Pearson Edu-

cation, Boston, MA, USA.

96

http://hdl.handle.net/1820/2301
http://epub2.wu-wien.ac.at/dyn/openURL?id=oai:epub2.wu-wien.ac.at:epub-wu-01_10c2
http://epub2.wu-wien.ac.at/dyn/openURL?id=oai:epub2.wu-wien.ac.at:epub-wu-01_10c2
http://msdn.microsoft.com/en-us/library/ms954638.aspx

Fowler, M. (2004). Inversion of Control Containers and the Dependency Injection

pattern. http://martinfowler.com/articles/injection.html#InversionOfControl

(last checked 2010-02-18).

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1993). Design patterns:

Abstraction and reuse of object-oriented design. In Proceedings of the ECOOP’93

Conference, Kaiserslautern, Germany.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley professional

computing series, Reading, MA, USA.

Giesbers, B., Taddeo, A., van der Vegt, W., van Bruggen, J., and Koper, R.

(2007). A Question Answering service for information retrieval in Cooper. Paper

presented at the Cooper workshop, Crete, Greece.

Goto, K. (2010). GotoBLAS FAQ. http://www.tacc.utexas.edu/resources/

software/gotoblasfaq/ (last checked 2010-02-11).

Hensgens, J., Rusman, E., Bruggen, J. V., Armitt, G., Osenova, P., and Simov,

K. (2009). Language Technologies for Lifelong Learning: Project Deliverable

Report D3.2. http://dspace.ou.nl/handle/1820/2038 (last checked 2010-09-13).

Hentrich, C. and Zdun, U. (2006). Patterns for Process-Oriented Integration in

Service-Oriented Architectures. In Proceedings of 11th European Conference on

Pattern Languages of Programs (EuroPloP 2006), pages 1–45, Irsee, Germany.

Horner, J. (2009). rapache: Web application development with R and Apache.

http://biostat.mc.vanderbilt.edu/rapache/ (last checked 2010-01-21).

IEEE (2000). Recommended Practice for Architectural Description of Software

Intensive Systems. Technical Report IEEE-std-1471-2000.

Kalz, M., Drachsler, H., van der Vegt, W., van Bruggen, J., Glahn, C., and Koper,

R. (2009). A placement web-service for lifelong learners. In Tochtermann, K. and

97

http://martinfowler.com/articles/injection.html#InversionOfControl
http://www.tacc.utexas.edu/resources/software/gotoblasfaq/
http://www.tacc.utexas.edu/resources/software/gotoblasfaq/
http://dspace.ou.nl/handle/1820/2038
http://biostat.mc.vanderbilt.edu/rapache/

Maurer, H., editors, Proceedings of the 9th International Conference on Knowl-

edge Management and Knowledge Technologies, pages 289–298, Graz, Austria.

Verlag der Technischen Universität Graz.

Kane, M. J. and Emerson, J. W. (2010). Documentation - The bigmemory

Project. Yale University, http://sites.google.com/site/bigmemoryorg/research/

documentation.

Kontostathis, A., Pottenger, W. M., and Davison, B. D. (2005). Identification of

critical values in latent semantic indexing. In Foundations of Data Mining and

Knowledge Discovery, pages 333–346. Springer Verlag.

Landauer, T. K. (2007). LSA as a Theroy of Meaning. In Landauer, T. K., McNa-

mara, D. S., Dennis, S., and Kintsch, W., editors, Handbook of Latent Semantic

Analysis, chapter 1, pages 3–34. Lawrence Erlbaum Associates, Philadelphia,

PA, USA.

Landauer, T. K. and Dumais, S. T. (1997). A Solution to Plato’s Problem: The

Latent Semantic Analysis Theory of Acquisition, Induction, and Representation

of Knowledge. Psychological Review, 104(2):211–240.

Martin, D. I. and Berry, M. W. (2007). Mathematical Foundations Behind Latent

Semantic Analysis. In Landauer, T. K., McNamara, D. S., Dennis, S., and

Kintsch, W., editors, Handbook of Latent Semantic Analysis, chapter 2, pages

35–56. Lawrence Erlbaum Associates, Philadelphia, PA, USA.

Martin, D. I., Martin, J. C., Berry, M. W., and Browne, M. (2007). Out-of-

core SVD performance for document indexing. Applied Numerical Mathematics,

57(11-12):1230–1239.

MySQL Development Team (2010). MySQL :: The world’s most popular open

source database. The Oracle Corporation, http://www.mysql.com (last checked

2010-07-03).

98

http://sites.google.com/site/bigmemoryorg/research/documentation
http://sites.google.com/site/bigmemoryorg/research/documentation
http://www.mysql.com

OASIS SOA Reference Model Technical Committee (2006). Reference Model for

Service Oriented Architecture 1.0.

Oehlschlägel, J., Adler, D., Nenadic, O., and Zucchini, W. (2008). A

first glimpse into ’R.ff’, a package that virtually removes R’s memory

limit. http://www.statistik.uni-dortmund.de/useR-2008/slides/Oehlschlaegel+

Adler+Nenadic+Zucchini.pdf (last checked 2010-02-12).

OpenID Foundation (2010). OpenID Foundation Website. http://openid.net/ (last

checked 2010-09-08).

Papazoglou, M. P. (2008). Web Services: Principles and Technology. Pearson,

Prentice Hall.

PHP Development Team (2010). PHP: Hypertext Preprocessor. The PHP Group,

http://www.php.net/ (last checked 2010-01-17).

R Development Core Team (2010). R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-

900051-07-0.

Reese, G. (2000). Database Programming with JDBC and Java, Second Edition.

O’Reilly & Associates, Inc., Sebastopol, CA, USA.

Serhani, M. A. (2008). A Framework and Methodology for Managing Quality of

Web Services. VDM Verlag, Saarbrücken, Germany.

Sørensen, K. E. (2002). Sessions. In Proceedings of the 7th European Conference

on Pattern Languages of Programs (EuropPLoP 2002), Irsee, Germany.

The Apache Software Foundation (2010a). Apache HTTP Server Project. http:

//httpd.apache.org/ (last checked 2010-02-18).

The Apache Software Foundation (2010b). Apache Tomcat. http://tomcat.apache.

org/ (last checked 2010-02-18).

99

http://www.statistik.uni-dortmund.de/useR-2008/slides/Oehlschlaegel+Adler+Nenadic+Zucchini.pdf
http://www.statistik.uni-dortmund.de/useR-2008/slides/Oehlschlaegel+Adler+Nenadic+Zucchini.pdf
http://openid.net/
http://www.php.net/
http://httpd.apache.org/
http://httpd.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/

Trausan-Matu, S., Dessus, P., Rebedea, T., Loiseau, M., Dascalu, M., Mihaila,

D., Braidman, I., Armitt, G., Smithies, A., Regan, M., Lemaire, B., Stahl, J.,

Villiot-Leclercq, E., Zampa, V., Chiru, C., Pasov, I., and Dulceanu, A. (2010).

Language Technologies for Lifelong Learning: Project Deliverable Report D5.3.

http://dspace.ou.nl/handle/1820/2802 (last checked 2010-10-16).

Trausan-Matu, S., Dessus, P., Rebedea, T., Mandin, S., Villiot-Leclercq, E., Das-

calu, M., Gartner, A., Chiru, C., Banica, D., Mihaila, D., Lemaire, B., Zampa,

V., and Graziani, E. (2009). Language Technologies for Lifelong Learning:

Project Deliverable Report D5.2. http://hdl.handle.net/1820/2251 (last checked

2010-09-08).

Urbanek, S. (2009). Rserve - Binary R server. http://www.rforge.net/Rserve/

index.html (last checked 2010-02-18).

Vigna, S. (2008). Distributed, large-scale latent semantic analysis by index inter-

polation. In InfoScale ’08: Proceedings of the 3rd international conference on

Scalable information systems, pages 1–10, ICST, Brussels, Belgium.

Völter, M., Kircher, M., and Zdun, U. (2005). Remoting patterns: foundations of

enterprise, internet and realtime distributed object middleware. Wiley and sons,

Chichester, UK, 34. edition.

Web Services Architecture Working Group (2004). Web Services Architecture.

W3C. http://www.w3.org/TR/wsa-reqs/.

Wild, F. (2009). CRAN Task View: Natural Language Processing. http://cran.at.

r-project.org/web/views/NaturalLanguageProcessing.html (last checked 2010-

02-15).

Yahoo! Developer Network (2009). The Yahoo! User Interface Library (YUI).

http://developer.yahoo.com/yui/ (last checked 2010-02-10).

100

http://dspace.ou.nl/handle/1820/2802
http://hdl.handle.net/1820/2251
http://www.rforge.net/Rserve/index.html
http://www.rforge.net/Rserve/index.html
http://www.w3.org/TR/wsa-reqs/
http://cran.at.r-project.org/web/views/NaturalLanguageProcessing.html
http://cran.at.r-project.org/web/views/NaturalLanguageProcessing.html
http://developer.yahoo.com/yui/

