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1 Introduction

Since Stigler’s well known article [Stigler, 1961, McQueen, 1960] a variety of
papers have been published on the economics of information. Important and
well known applications of this theory are consumer search for information in
price and quality of goods, search of unemployed workers for a job in the labor
market (see for example [Lippmann, 1980]) and the search of unwed individuals
searching for a marriage partner (see for example [Becker and Landes, 1977]).
In economics less well known is the application of search models in the design of
(randomized) algorithms [Janko, 1976] and online algorithms. In this applica-
tion, for example, an algorithm searches within a pre-specified set of algorithms
solving the same problem such that the total loss of the algorithm finally chosen
to solve the problem plus the search cost is minimized. Rather independently
of the majority of the literature on optimal search several articles have been
published analyzing the optimal policy of search if we assume that only ordi-
nal utility only can be assigned to the objects found. The early work usually
did not consider search costs [Chow et al., 1964, Chow et al., 1971] and concen-
trated on asymptotic considerations. The results were thus hardly to compare
with the results in the economics of information literature. Just recently in the
late nineties authors tried to use these models and compare it with the decision
makers behavior [Seale and Rapoport, 1997, Seale and Rapoport, 2000].
Parallel to these research investigations in computer sciences online and offline
search problems were investigated especially in their relation to trading, portfo-
lio selection and online-decision problems [Borodin and El-Yaniv, 1998]. There
is still an ongoing discussion on Money-Making-algorithms, portfolio selection
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algorithms and related online decision problems which is reinforced by the in-
creasing real-time nature of today’s decision making in business. Also recent
developments in some businesses like the increase of algorithmic trading and
the development of dark pools in finance increase the relevance of further such
research.
We shall in this paper try to compare the efficiency of search strategies. To com-
pare ordinal utility based cost measures with cardinal utility oriented methods
we have to violate some of the basic assumptions of ordinal utility theory in-
troducing search costs which are deductible from the ordinal utility indices.
Despite this effect which makes the interpretation of the results more difficult
these results yield some insight into the efficiency of drawing without and with
recall having linear utility functions and a limited number of observations of
discrete and uniformly distributed utility (loss) without being able to observe
the actual value of an observation.
For exploratory purposes we shall describe the search model in terms of a con-
sumer searching for the lowest cost of the alternative offered plus search costs.
In the description of the problem we follow closely the description given recently
in [Bearden et al., 2006].
Decision makers (DMs) must usually choose among alternatives. Alternatives
very often are presented sequentially, one at a time. Consequently, in many
situations, they must choose options without knowing the full choice set. Con-
sider the problem of deciding when to sell an asset on an open market. On
any given day, a trader observes a selling price and must decide whether to sell
without knowing what the price will be on the following day. Similarly, in tight
markets like real estate, stock, currency, job markets and internet offers - when
offers may disappear from the market soon after they appear, potential buyers
must quite often make irrevocable decisions without knowing what options will
appear on the horizon.
Sequential decision problems have been specified formally in a number of ways.
Problems in which the DM is assumed to have complete information about the
distribution from which the observations are sampled are referred to as full-
information problems. There are also partial-information problems in which the
DM is assumed to know certain features of the distribution from which the ob-
servations are drawn (e.g., that it is Gaussian or multinomial) but not others
(e.g., the mean and variance of the distribution). The class of problems requir-
ing the weakest assumptions about the DM’s state of knowledge regarding the
distribution from which the observations are drawn are known as no-information
problems. As models of real-world sequential decision problems, this latter class
seems to have a number of virtues. We will illustrate these by first noting the
drawbacks of the full- and partial-information problems.
Consider the full-information sequential search problems. It seems doubtful that
a DM trying to decide when to accept an asset has always perfect information
about the distribution of price changes for that asset. To model the asset-selling
decision problem as one involving full information is therefore often unrealistic.
One might argue that a partial-information formulation might be more defensi-
ble. One can assume that the DM is well informed and knows that the returns
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are lognormally distributed, for example, but that he or she does not know the
parameters of the distribution. This formulation may be realistic for the asset
selling problem. However, both the full- and partial-information formulations
become difficult when decision alternatives cannot be characterized by single at-
tributes like in multi-attribute decision making situations or decisions are made
very rarely or only once. Even it is apparent in multi-attribute situations that
we attribute some utility to the alternatives it is much easier to construct an or-
dinal utility index than a cardinal utility. An ordinal utility index requires only
a weak preference ordering between every pair in the set of alternatives and a or-
dinal utility index can be found which is invariant to monotone transformations.
(In the case of indifference we have to build quotient sets, which allow a strong
preference relation to be found on them [Ferschl, 1975]). Such it is considerably
easier to match them according to their “quality” In the no-information prob-
lems it is only necessary to be able to rank the alternatives according to their
quality and it is not necessary that the DM knows the (multivariate) distribu-
tions and eventually some properties of these. In investigating these problems
it is relative difficult to search “optimally”. This especially because search cost
has to be put into relation to the ranks of the alternatives , or in other words
some ordinal utility index has to be compared with actual search cost, which
are typical cardinal measures. Recent experiments [Zwick et al., 2003] did just
this. Therefore we have for reasons of comparison also introduced search cost
in rank models.
Rank models of search have been investigated since Gardner described the clas-
sical secretary problem (CSP) in his contribution to mathematical games in the
Scientific American 1960 [Gardner, 1960]. Since than many contributions inves-
tigated this problem with various scientific achievements and results. Especially
the case where not only the best solution was at least after some time considered
successful or the alternatives were appearing following some stochastic distribu-
tion in their time of appearance. Many of the problems considered the limiting
case when the number of choices goes to infinity. Most recently authors around
Rapoport [Bearden et al., 2006, Zwick et al., 2003, Seale and Rapoport, 1997,
Seale and Rapoport, 2000] investigated the behavior of DM in such varying con-
texts assuming a “secretary problem”-like environment. In these papers the
behavior of DMs is experimentally investigated. In the first paper the DM is
compared with the theoretical results of a generalized secretary problem where
single alternatives are presented in random order, one at a time, and only the
rank order of the current alternatives relative to the ones that already have been
observed can be ascertained. The DM may in each period accept an alterna-
tive or observe a new alternative at a fixed cost or recall an alternative already
observed. This alternative is assumed to be available with a known probability
which decreases with age. The DMs goal is to select the overall best alternative
from a fixed set. Experimentally the set size and the search cost were varied. On
account of the observed behavior of either searching not enough (for example
[Newmann, 1977, Dickson and Sawyer, 1990]) with no search costs or searching
too much under the cost conditions, they propose as immediate contribution
to investigate the result that consumers under certain circumstances search to
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much or too little. They propose further in their paper to investigate situations
where fixed cost per inspection, recall with a geometric decay function and an
objective of selecting nothing but the best should be altered to more realistic
everyday assumptions where only “satisfactory” results are searched for.
In the research of Bearden [Bearden et al., 2006] exactly this is done using the
analytical results of Yeo and Yeo [Yeo and Yeo, 1994].Starting from a general
discussion of different papers relaxing the usual CSP assumptions it is assumed
that the DM’s payoff increases monotonically in the quality of the selected appli-
cant so that the lower the rank the higher the payoff leaving out the case where
many ranks can eventually have equal value (like a problem given in Janko 1978
[Janko, 1978]). Bearden [Bearden et al., 2006] chose a multi-threshold rule with
monotone payoffs w1 ≥ w2 ≥ w3 ≥ ... ≥ wk assigned to the k best applicants.
Mucci showed that this rule is optimal when r1 ≤ r2 ≤ ... ≤ rn = n. If we
denote by r = (r1, r2, ..., rk) the multi threshold rule threshold values for any
monotone order k stopping rule. Yeo and Yeo (1994) showed that the choice
of an optimal stopping rule r* consists in finding the vector r which maximizes
Q(r) =

∑k
a=1 waP (a|r) where P (a|r) is the probability of selecting the a−th

best applicant given policy r. Its value is given by [Yeo and Yeo, 1994]

P (a|r) =
1

n( n−1
a−1 )

k
∑

d=1

rd+1−1
∑

j=rd

d
∏

i=1

ri − 1

j − 1

min(d,a)
∑

s=1

( j−1
s−1 )(

n−j
a−s ) (1)

for a = 1, 2, ..., n− r1, where s denotes the relative rank of the j − th applicant.
Using n-dimensional lattices the policies can be calculated.
An example of an optimal policy is given for n = 50, k = 5 and payoffs
w1 = 16, w2 = 8, w3 = 4, w4 = 2 and w5 = 1 by the optimal threshold val-
ues r∗1 = 17, r∗2 = 36, r∗3 = 44, r∗4 = 47 and r∗5 = 49.
The probabilities of selecting the first, second, etc. best applicant under the
optimal rule are 0.351, 0.227, 0.128, 0.067 and 0.033. The probability of no se-
lection is 0.166 and the expected payoff with the optimal policy is 8.11. This
setting of the problems seems to include some pitfalls.
This latter policy implies that we assign “cardinal utility” to ranks as we calcu-
late average payoffs. It also implies that a DM, who assigns utilities to certain
ranks does have an idea of an herewith implied probability distribution. In the
case of the above example - assuming for simplicity sampling with replacement
- we get p(X = i) = 1/50 for i = 16, 8, 4, 2, 1 and p(X = 0) = 45/50. (We easily
can reformulate this for a policy without replacement using the multidimensional
hypergeometric distribution). The expected value of the outcome Y is than
observed in a sample of size m is E(Y ) = m

∑

ipi. Therefore for example the
expected value of a sample of size 14 is

∑

E(Y ) = 1
50 (16+8+4+2+1)∗14 % 8.6.

Thus a DM would be better off with such a sample than in the multi-threshold
policy assuming he is able to understand the correct distribution. Otherwise he
seems also not to be able to assign utilities.
In the following pages we want to compare alternative decision rules under the
no-information case and to discuss their relevance.
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2 Comparison of No-Information Search Strate-

gies

Using ordinal utility means that we assume the existence of a weak preference
ordering on the set of consequences of the alternatives only. After putting all
consequences to which we are indifferent in quotient classes we are able to intro-
duce an ordinal utility function on the quotient set. We assume here that the
quotient set consists of a finite number of elements only and the ordinal utility
index is constructed by sorting the equivalence classes. (This is possible in 0(n
log n) time with n equivalence classes.) We shall furthermore for reasons of clar-
ity and simplicity assume here that every equivalence class contains only one
element1. The resulting problem is then to draw with or without replacement
from a finite set of the first n natural numbers {1,2,...,n}, which represent the
ordinal indices. Drawing an offer means that we are able to determine the rank
of the utility of the offer within the offers we already got. We are not able to
determine the ordinal utility index of the utility of the offer in the quotient set
until we have drawn all offers. The efficiency of rank oriented search strategies
can be compared with distribution oriented search strategies only if we assume
search costs of zero or if we introduce search costs which are deductible from the
ordinal utility index. We shall choose this latter more realistic possibility and
assume fixed search costs c for every observation throughout. We shall compare
the results we get investigating these rank-oriented strategies without recall with
the results in a search with recall. For reasons of simplicity we shall assume a
linear cardinal utility function of the observer. For the consumer search exam-
ple chosen we assume whenever it is plausible – that the goods are described
by the characteristic, ‘price’. Sampling from this distribution is assumed to be
costly. The cost of observation is constant and equal to c. Once an observation
is drawn at cost c, the price can be observed without cost.

2.1 The Optimal Strategy for a Finite Sets of Offers with-
out Recall

Rank oriented stopping strategies have been studied extensively in literature.
Only recently search costs c were included into the considerations [Seale and Rapoport, 1997,
Seale and Rapoport, 2000, Zwick et al., 2003, Bearden et al., 2006].
Suppose now that a consumer is offered n price quotations. The consumer can
observe the offers only one at a time as he has no prior information on their true
rank in sorting order (according to their negative utility !(i)). (With sorting
order we mean that !(1) ≤ !(2) ≤ ... ≤ !(i) ≤ !(i + 1) ≤ ... ≤ !(n) is valid.)
The only information the searcher can rely on, is the information about the rel-
ative rank of the latest offer observed by the searcher within the offers already
observed before. We assume in the following considerations that the searcher

1We such avoid the necessity to consider the problem of drawing from multi-sets of ordinal
indexes (with and without replacement).
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will not be able to observe – whether intentionally or unintentionally – an offer
already observed previously. We will furthermore in the derivation assume that
the searcher, once he has decided not to accept a particular object, can never
go back and select it at a later stage2. Now let us assume that Ym denotes the
random variable of the relative rank of the m − th observed offer within the
observations already drawn. The random variables

Y1, Y2, ..., Yn (2)

are independently distributed and we get for the probability

W (Ym = j) = 1/m for j=1,2,...,m. (3)

Now let R denote the true rank of the offer observed and let Rm be the random
variable “true” rank when we assume that the m − th element drawn has the
relative rank j within the offers observed so far. Let E(Rm|Ym = j) be the ex-
pected true rank assuming Ym = j. Now obviously the following relation is valid:

E(Rm|Ym = j) =
n−m+j
∑

b=j

!(b)W (Rm = b|Ym = j) (4)

where !(b) is the loss function.
For the unconditional expectation E(Rm) we get therefore:

E(Rm) =
m
∑

i=1

E(Rm|Ym = i)W (Ym = i) (5)

Assuming that the true rank is equal to the loss index, that means l(i) = i, we
get

E(Rm|Ym = j) =
n−m+j
∑

r=j

W (Rm = r|Ym = j)r. (6)

An offer with true rank r has the relative rank j iff the j − 1 offers are drawn
out of r − 1 offers with the true ranks 1, 2, ...r − 1 and m− j offers were drawn
out of the n− r offers with the true rank r + 1, r + 2, ..., n.
Therefore we get

W (Rm = r|Ym = j) =
( r−1
j−1 )(

n−r
m−j )

( n
m )

(7)

and from the definition above

E(Rm|Ym = j) =
n−m+j
∑

r=j

r( r−1
j−1 )(

n−r
m−j )

( n
m )

=
(n+ 1)

m+ 1
j (8)

2This is usually called “searching without recall.”
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Using this result we get for the expected true rank of the m− th offer observed

E(Rm) = E(
n+ 1

m+ 1
Ym) =

n+ 1

m+ 1
E(Ym) (9)

Using the principle of backward induction (see for example [Chow et al., 1971])
we get for the expected rank when only one offer is left:

E(Rn) = E(
n+ 1

n+ 1
j) =

1

n

n
∑

i=1

j =
n+ 1

2
(10)

Assuming now that we have drawn n − 1 observations we should only observe
the n− th observations if the expected rank plus the search cost, which must in
our derivation be expressable in units of ranks is lower than the expected rank
at the (n− 1)− th step; we get therefore

vn−1 = E(min(
n+ 1

n
Yn−1, vn + c)) =

1

n− 1

n−1
∑

j=1

min(
n+ 1

n
j, vn + c) (11)

where vk denotes the expected loss (expressed in rank units) at the k − th ob-
servation and vn = E(Rn) =

n+1
2 .

Similarly we get for the expected loss at the i− th observation:

vi = E(min(
n+ 1

i+ 1
Yi, vi+1 + c)) =

1

i

i
∑

j=1

min(
n+ 1

i+ 1
j, vi+1 + c) (12)

Computing successively the values of vn−1, vn−2, ..., v1, we get the expected
value of the strategy v1.
This can be simplified if we use the for practical purposes indeed necessary reser-
vation index si for stopping with a relative rank ≤ si at the i− th observation.
We get the reservation index vector, which is an integer valued function of the
number of observations drawn by the following considerations: Stopping with
the i− th observation implies

n+ 1

i+ 1
Yi ≤ vi + 1 + c (13)

or in terms of the implicit relative rank which implies stopping at the i − th
observation

si = [
i+ 1

n+ 1
(vi+1 + c)] for i=n-1,...,2,1. (14)

Using si and the fact that the relation

vi =
n+ 1

i+ 1
E(Yi|Yi ≤ si) +W (Yi > si)(vi+1 + c) (15)

is valid we get:

vi =
1

i
(
n+ 1

i+ 1
(1 + 2 + ...+ si) + (i− si)(vi+1 + c)) = (16)
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=
1

i
(
n+ 1

i+ 1

si(si + 1)

2
+ (i− si)(vi+1 + c)) (17)

Using vn = n+1
2 we can easily calculate the reservation rank vector and the

expected value of this strategy v1.
For the following calculation we used search costs of c = 1 rank units and price
offers for goods of identical utility assuming that the price represents the loss.

The matrix ( 1 2 3 4 5 10
2 5 7 8 9 10 ) expresses the decision rule that until a sample size

of 2 you should stop with relative rank 1, with the sample sizes 3, 4, 5 you
should stop with a relative rank equal to or better than 2, and so on. If you do
this your expected cost for searching and purchasing would be 5.5 rank units
assuming search costs of c = 1 (rank units).

2.2 The “Classical Secretary Problem” as Decision Rule

As we can see by the numerical examples given the unlimited acceptance of
offers of any relative rank using their true rank as a representation of their
(cardinal) utility involves for a large number of offers some calculation and per-
manent sorting and memorizing of offers already observed, although these offers
are not valid anymore. The other extreme would be to accept only offers with
the possible true rank 1. These offers must naturally also have the relative
rank of 1. As DeGroot’[DeGroot, 1970] shows, this is the other extreme to the
strategy considered above. The problem of decision rules given for example in
[Bearden et al., 2006, Zwick et al., 2003] is that many variations are possible.
Therefore we consider here only the extreme cases of rank based decision rules
without recall. The strategy considered below is equivalent to a strategy which
maximizes the probability to find the offer with true rank 1. If search costs are
0 it is well known that asymptotically the observer should initially observe n/e
offers and then stop with an offer which is relatively better than the best of these
n/e offers already observed in a learning phase. If we introduce search costs of c
the behavior of this strategy has to be reconsidered. The problem is formulated
as a rank maximizing problem for decreasing sorting order !(n), !(n−1), ..., !(1).

Lemma: The probability, that the true rank of the offer chosen is v and the num-
ber of the initially drawn subset of the total sample (learning set) is k, is equal to

W (N = v, L = !) =
k

!− 1

(v − 1)!(n− !)!

(v − !)!n!
(18)

There is a probability that the offer with true rank one was already observed
within the first k offers.
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3
5
7
5
9
6
1
6
2
6
4
6
5
6
6
6
7
6
8
6
9
7
0
)

75
18

.7
5

(
1

2
3

4
5

6
7

8
9

1
0
1
1
1
2
1
3
1
4
1
6
1
7
2
0
2
3
2
8
3
8
7
5

5
1
1
1
7
2
4
3
1
3
7
4
4
5
0
5
5
6
0
6
3
6
5
6
6
6
8
6
9
7
0
7
1
7
2
7
3
7
4
7
5
)

80
19

.4
8

(
1

2
3

4
5

6
7

8
9

1
0
1
1
1
2
1
3
1
4
1
5
1
7
1
9
2
1
2
5
3
0
4
0
8
0

5
1
1
1
8
2
5
3
2
3
8
4
5
5
2
5
8
6
2
6
6
6
8
7
0
7
2
7
3
7
4
7
5
7
6
7
7
7
8
7
9
8
0
)

85
20

.2
0

(
1

2
3

4
5

6
7

8
9

1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
8
2
0
2
2
2
6
3
2
4
3
8
5

5
1
2
1
8
2
5
3
2
3
9
4
6
5
3
6
0
6
5
6
9
7
2
7
4
7
6
7
7
7
8
7
9
8
0
8
1
8
2
8
3
8
4
8
5
)

90
20

.8
3

(
1

2
3

4
5

6
7

8
9

1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
9
2
1
2
4
2
8
3
4
4
5
9
0

5
1
2
1
9
2
6
3
3
4
0
4
8
5
5
6
2
6
7
7
2
7
5
7
8
8
0
8
1
8
2
8
3
8
4
8
5
8
6
8
7
8
8
8
9
9
0
)

95
21

.4
4

(
1

2
3

4
5

6
7

8
9

1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
2
0
2
2
2
5
2
9
3
6
4
8
9
5

5
1
2
1
9
2
7
3
4
4
1
4
9
5
6
6
3
7
0
7
5
7
9
8
2
8
4
8
5
8
6
8
7
8
8
8
9
9
0
9
1
9
2
9
3
9
4
9
5
)

10
0

22
.0
6

(
1

2
3

4
5

6
7

8
9

1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
8
1
9
2
1
2
3
2
6
3
1
3
8
5
0
1
0
0

5
1
2
2
0
2
7
3
5
4
2
5
0
5
8
6
5
7
2
7
8
8
2
8
5
8
7
8
9
9
0
9
2
9
3
9
4
9
5
9
6
9
7
9
8
9
9
1
0
0
)
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The sum
n
∑

!=k+1

n
∑

v=!

(v − 1)!k(n− !)!

(v − !)!(!− 1)n!

therefore is equal to 1 − k
n . It is important to recognize that this strategy will

be formulated as a rank maximizing strategy. Using a different sorting order
this does not cause a problem. If we denote the event, that the best offer is
not observed within the sample of the first k offers with T , we get the following
theorem.

Theorem 13: The conditional expectation E(R|T ) of the true rank of the offer
accepted by the classical policy assuming that the best offer is not within the first
k offers observed is given by:

E(R|T ) =
1

2
(
(2k + 1)(n+ 1)

(k + 1)
−

(2n+ 1)k

n
)

n

n− k
(19)

The variance of this mean value σ2
(R|T ) is equal to

σ2
(R|T ) = (

2n+ 1

3
)E(R|T )− E2(R|T ) +

n(n+ 1)k

3(k + 2)
(20)

The expected number of offers observed such is

E(L|T ) =
nk

(n− k)

n−1
∑

!=k

1

!
(21)

and the variance of this mean value is

σ2
(L|T ) = nk + E(L|T )(1− E(L|T )) (22)

If we can assume that the relation k << n is valid we can use the approximation

E(L|T ) =
nk

n− k

n−1
∑

!=k

1

!
%

nk

(n− k)
log

n

k
+ 0.5 (23)

As the reader can easily verify the unconditional expectation of Ek(R) can be
interpreted as a continuous, differentiable and concave function of k and we get
for the maximum

kmax % [(
n2 + n

2n+ 1
)0.5] for k << n and 0 ≤ k ≤ n using the equation

dEk(R)

dk
= 0.

The search process considered has two phases:

3The proof of this theorem is lengthy and can be found in Appendix A.
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• the learning phase, which consists of drawing k observations initially and
memorizing the best observation o∗;

• the actual search phase, which leads to stopping as soon as an observation
is made which is better than o∗.

The choice the searcher has to make is the choice of the number of observations
k he wants to draw in the learning phase. To choose an optimal value k+ of k
with respect to fixed search costs c he has to act such that an increase of k+ by
one observation increases the expected rank of the observation stopped with by
less than c per unit of search cost. We get the increased search costs implied by
an increase of the learning phase (with k observations) by one observation (to a
total of k + 1 observations) by considering the difference Ek+1(L|T )−Ek(L|T )
= ∆Ek(L/T ). The gain in ranks is equal to

Ek+1(R|T )− Ek(R|T ) = ∆kE(R|T ) (24)

conditional on the event T that the best offer is not observed within the learning
phase. So we have to consider the case of the complimentary event T̄ . T̄ denotes
the event that the best offer was already observed in the learning phase. We
assume that we continue in this case until we have observed all offers realizing
then that the best offer in the learning phase must have been the best offer of
all offers. We get therefore the expected rank of our rank maximizing strategy
using a learning phase of k observations by

Ek(R|Pol) = Ek(R|T ) + n
k

n
(25)

Similar considerations hold for the value of the total expected search costs of
our policy:

Ek(L|Pol) = cEk(L|T ) + cn
k

n
(26)

We denote the differences of expected search cost

Ek+1(L|Pol)− Ek(L|Pol) (27)

by ∆Ek+1(L|Pol) and the difference of expected rank

Ek+1(R|pol)− Ek(R|Pol) (28)

by ∆Ek+1(R|Pol).
Therefore we should choose an optimal value k+ such that

∆Ek + (R|Pol)

∆Ek + (L|Pol)
≤ c ≤

∆Ek+1 + (R|Pol)

∆Ek+1 + (L|Pol)
(29)

is valid. (It should be remembered that for k% 1, 2, ..., [(n
2+n

2n+1 )
0.5] the value

of Ek(R) is increasing monotonically; for larger k these values decrease. Fur-
thermore Ek(L|T ) and Ek(R|T ) are increasing monotonically for all values of

11



k(k = 1, 2, ..., n− 1)). Our strategy was formulated as a rank maximizing strat-
egy; it suffices now to think of a decreasing sorting order

!(n), !(n− 1), ..., !(1) (30)

of the prices for the different offers. We thus get the ranks for ascending sorting
order E(PR|Pol) from E(R|Pol) simply through

E(PR|Pol) = n+ 1− E(R|Pol). (31)

Obviously it suffices to use ∆E(R|Pol) as the relation

|∆E(R|Pol)| =|∆(PR|Pol)| (32)

is valid.
Now let us assume c = 1. Using this value and using above considerations to
get optimal values of k for various values of n we get:

k+ for n between 3 and 1000
1 3-25
2 25-56
3 57-103
4 104-167
5 168-248
6 249-348
7 349-468
8 469-607
9 608-767
10 768-948
11 948-

Using these values of k+ and calculating the expected search costs and the ex-
pected rank of the price we get for selected values of n and c = 1:

n E(PR|Pol) + k cE(L|Pol) + ck
20 6.5 4.734
30 7.5 8.346
40 9.167 8.85
50 10.83 9.248
60 11 12.989
70 12.25 13.401
80 13.5 13.763
90 14.75 14.084
100 16 14.373
200 22.167 24.454
500 36.278 42.13
1000 53.167 61.668

12



These results are obviously valid for the case that we assume that we are search-
ing from the finite set {0,1,2,... ,n-1} of price offers without visiting one offer
twice4 and without recall if we reduce the value of E(PR|Pol) + k by one. The
effect of not allowing recall in this case is not the only difference. In the. strate-
gies described here we made the following assumptions:

1. The number of offers which will ultimately become available is known
precisely.

2. There is no recall of offers once they have been passed over.

3. There is no possibility to evaluate any offers on a priori grounds apart
from ranking it relative to other offers already observed.

The difference between the first strategy given and the latter one is that in the
latter one we simply maximize the probability of selecting the best alternative
or, to put it into other words, the second best is not more acceptable than
the worst. The difference between these strategies and the strategies so far
described primarily in the economics of search literature lies in the abilities
we require from our searcher. In our case we only require that he is able to
sort the alternatives observed. Besides we require however for the calculation
of the optimal policy that search costs c can be expressed in true rank units
or in other words and that the difference in utility between two alternatives is
proportional (at least in the average) to the difference in true rank. But we are
not restricted in the application of these models to those situations where we
observe a random variables value, with a distribution with known or unknown
parameters. Even the true rank is in this policies not supposed to be a directly
observable quantity. We only assume sortability of the observed alternatives.

2.3 The Strategy with Several Improvements of Offers

The formula for the probability of finding the best solution Ln of n potential
solutions is applicable to the case of drawing not more than m < n solutions
with regard to these m solutions (L1 < L2 < ... < Lm). Li < Lk means here
that Lk is “better than” Li with regard to some sorting criterion. Using the
arguments given we can analyze the case where we find exactly i solutions dur-
ing the continuation of random sampling which improve each other successively;
the first one improves the best solution found in the sample of ko.

Theorem 2: The probability W (i|ko,m) of having found the best solution Lm in
the set of possible solutions α = {Li|i = 1, 2, ...,m;L1 < L2 < ... < Lm} and an
initial sample of ko is given by:

4Sampling without replacement.
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W (i|ko,m) =
1

m

m
∑

ki=ki−1+1

1

ki − 1

ki−1
∑

ki−1=ki−2+1

1

ki−1 − 1
...

k2−1
∑

k1=ko+1

ko
k1 − 1

; (33)

m ≥ ki > ki−1 > ki−2 > ... > k1 > ko; ki ≥ ko + 1. (34)

Proof:
Drawing randomly from a finite set without replacement can be considered as
taking the elements from a specified permutation of the set in the order given by
the permutation. Drawing randomly means that each permutation is initially
equally likely to appear. Let us assume that the random sample initially drawn
is equal to

{Lj1 , Lj2 , ..., Lko
} (35)

Let the best solution found in the set be Lo. Let us denote by Lkq
(q = 1, 2, ..., i)

the i solution of α found in the continuation of random sampling, which are each
better than all solutions found so far:

Lo < Lk1
< Lk2

< ... < Lki
; (36)

kq(q = 1, 2, ..., i) denotes the kq − th solution randomly drawn. The probability
that the solution out of the first k2− 1 solutions drawn is the solution Lk1

(k1 >
ko) is 1/(k2 − 1). The probability, that the best solution of the first k1 − 1
solutions is the best solution of the ko solutions initially drawn, is equal to
ko/(k1 − 1); summing up the product of these probabilities over the possible
values ko + 1, ko + 2, ..., k2 − 1 of k1 we get the probability W (1|ko, k2 − 1) that
the first improvement is the best solution within k2 − 1 solutions:

W (1|ko, k2 − 1) =
1

k2 − 1

k2−1
∑

k1=ko+1

ko
k1 − 1

. (37)

The probability W (2|ko, k3 − 1), that the second improvement of the best solu-
tion found so far is the best solution within the first k3 − 1 solutions is equal to
the product

1

k3 − 1
W (1|ko, k2 − 1) (38)

summed up over the possible values of k2 which are given by the sequence
k1 + 1, k1 + 2, ..., k3 − 1:

W (2|ko, k3 − 1) =
1

k3 − 1

k3−1
∑

k2=k1+1

W (1|ko, k2 − 1) . (39)
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We apply this argument repeatedly and get finally:

W (i|ko,m) =
1

m

m
∑

ki=ki−1+1

W (i− 1|ko, ki − 1) (40)

For i+ 1 ≥ j ≥ 1 and ki+1 − 1 = m the following relation is valid:

W (j − 1|ko, kj − 1) =
1

kj − 1

kj−1
∑

kj−1=kj−2+1

W (j − 2|ko, kj−1 − 1) (41)

with

W (0|ko, k1 − 1) =
ko

k1 − 1
(ko < k1 <, ..., ki ≤ m) . (42)

Q.E.D.
Let us apply theorem 2 using a simple example.
For m = 5, ko = 1, i = 2 we get

W (2|1, 5) =
1

5

5
∑

k2=3

1

k2 − 1

k2−1
∑

k1=2

1

k1 − 1
=

35

120
= 0, 292 . (43)

The 35 permutations where after two improvements and starting with the best
solution out of a random sample of size ko = 1 the optimal solution is the best
solution found are given:

12534 14532 23154 24315 32415
12543 14352 23541 21354 34512
13524 14325 24513 31245 34152
13254 14235 24153 31452 34125
13542 21453 24135 31425 34521
14523 21435 24531 32145 34251
14253 23514 24351 32451 34215

Another example where we can simply check the result using the 24 permuta-
tions of the numbers 1234 is given by b = 4 and i = 2. For ko = 1, 2 we get
W (2|1, 4) = 1/4 and W (2|2, 4) = 1/12.
From the theorem given above we can deduce the following result.

Theorem 3:The probability W (i|ko,m) is approximately equal to the probability
given by the Poisson distribution function with mode &λ' 5, mean λ and vari-
ance λ with the parameter λ = log(m

ko
) for i = 0, 1, ...(ko >> i,m >> ko):

W (i|ko,m) % W ′(i|ko,m) =
e−λλi

i!
. (44)

5!λ" stands here for the rounded lower integer in case λ is not an integer. !λ" is λ− 1 if λ
is an integer.
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Proof:
The proof can be given by applying Euler’s summation formula and simplifying
the results. Obviously

W ′(i|ko,m) =
ko log

i(m/ko)

i! m
. (45)

We have to show that W ′(i|ko,m) can be derived from W (i|ko,m):

W (i|ko,m) =
1

m

m
∑

ki=ko+1

...
1

k3 − 1

k3−1
∑

k2=ko+2

ko
k2 − 1

k2−1
∑

k1=ko+1

1

k1 − 1
% (46)

%
1

m

m
∑

ki=ko+i

...
1

k3 − 1

k3−1
∑

k2=ko+2

ko
k2

log(
k2
ko

) . (47)

We get

1

kj+1

kj+1−1
∑

kj=kj−1+1

(
ko
kj

)
logj−1( kj

ko
)

(j − 1)!
% (48)

%
1

kj+1

∫ kj+1−1

ko+j

1

(j − 1)!
(
ko
kj

) logj−1(
kj
ko

)dkj % (49)

%
ko

kj+1(j − 1)!

∫ kj+1/ko

1

logj−1 u

u
du %

ko
j! kj+1

logj(
kj+1

ko
); (50)

W (2|1, 6) =
1

6

6
∑

k2=3

1

k2 − 1

k2−1
∑

k1=2

ko
k1 − 1

= 0, 3125. (51)

(The probability W ′(2|1, 6) is far from being a good approximation in this case
as m is only 6).

2.4 The Secretary Problem with an Unknown Number of
Applicants

A drawback in applications of the secretary problem is the necessity to know the
number of applicants in advance. To avoid this we can assume that the number
of applicants is a random variable N with a known distribution W (N = k),
k = 1, 2, ... [Presman and Sonin, 1973].
The results in this case are more complicated and this policy gives relatively
low optimal win probabilities compared with the CSP. For applications very
interesting is the later result of Bruss [Bruss, 1984] called the unified approach.
In this case it is assumed that an applicant must be selected on some time in-
terval [0, T ] from an unknown number N of rankable applicants. If all arrival
permutations are equally likely, suppose that all applicants have the same ar-
rival density f on [0, T ] and F (t) is the corresponding arrival time d.f. Let τ be
such that F (τ) = 1

e . Than consider a strategy where you wait and observe all
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applicants up to the time τ and then select the first candidate which is better
than the preceding candidates - if possible. This strategy is called the 1

e -strategy
and has the following properties:

a) yields for all N a success probability of at least 1
e

b) guarantees a lower success probability bound 1
e and the bound is optimal

c) selects, if there is at least an applicant, none with probability 1
e [Bruss, 1984].

The basic idea of the theorem can be easily described. Instead of using permu-
tations a change of time is used:

x = F (t), tε[0, T ] . (52)

Such each distribution function describing the frequency of arrivals F (t) (uni-
modal, multimodal, etc.) is transformed to x which is uniformly distributed
in [0, 1]. If N is the number of arrivals the probability of being optimal is for
N = 1 equal to 1 and the optimal x is given by x = 0. For N ≥ 2 the strategy
yields a success if the best candidate arrives in ]x, 1] before all other candidates
arrive in ]x, 1] which are better than the best of those which arrive in [0, x].
Now lets consider the best k + 1 candidates. According to the assumptions the
(k+1)st arrives in [0, x] and the k best ones in ]x, 1] with probability x(1−x)k.
As the best arrives before the second, third, ..., kth best with probability 1

k we
get

pn(x) = P (
success of the x-strategy

N = n
) (53)

= x
n−1
∑

k=1

1

k
(1− x)k +

(1− x)n

n
for n=2,3,... (54)

As we know the taylor series expansion of log x is −(x−1)+ 1
2 (x−1)2− 1

3 (x−1)3+
1
4 (x−1)4− 1

5 (x−1)5+0((x−1)6) we get limn→∞ pn(x) = −x log x. This function
has its unique maximum for xε[0, 1] at x = e−1. Instead of combinatorial
arguments probability proportions of a rather arbitrary distribution of arrival
were used.(For further discussions of the properties of this policy the reader is
refered to Bruss [Bruss, 1984]).

2.5 Rank Oriented Search with Recall

The models presented so far only constitute two extreme examples of a pattern of
strategies. In several papers given by Rapaport with coauthors and others (see
[Bearden et al., 2006] and the literature cited there) various decision making
situations were investigated and empirically compared. To see the efficiency
of no-information decision rules we confined ourself to extreme cases without
recall. In the following we investigate a simple policy with recall. The models
given above concentrate on observations without recall. At least limited recall
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is in many practical cases available. So we should compare the results derived
in a search without recall with the strategies selecting alternatives according to
their rank with unlimited6 recall. A non-sequential rule is investigated. In a
sequential policy we would indeed be able to determine a reservation rank but
we would not be able to determine in general whether or whether not an offer
observed has a true rank lower or equal to this reservation rank. Therefore we
shall consider here only a non-sequential strategy. This strategy shall: simply
consist in drawing a sample of a priori fixed size and determining the best
alternative drawn. This is the alternative to be chosen. To reduce the side
effects we have to determine the optimal number of observations, in observations
without replacement We assume again that the n alternatives will be sorted in
decreasing order of the price of the offers:

l(n) ≥ l(n− 1) ≥ ... ≥ l(1) (55)

Our aim is to maximize the rank in this sorting order; that means !(n) has rank
1, !(n− i) rank 2 and so on.

Lemma: Xk = max{y1, y2, ..., yk} and the set {y1, y2, ..., yk} is a random sam-
ple of offers drawn without replacement from {1, 2, ..., n}. The probability for
drawing an offer with rank x is

P (Xk = x) =
( x−1
k−1 )

( nk )
, k ≤ x ≤ n (56)

The expected rank observed in a sample of k alternatives is

E(Xk) =
(n+ 1)k

k + 1
(57)

and its variance σ2
Xk

is equal to

σ2
Xk

= E(Xk)(u− E(Xk)) (58)

with u = (n+2)(k+1)
k+2 − 1

Using now the difference E(Xk+1) − E(Xk) we get for the optimal value of k
the equation:

0 = c(k2 + 3k)− (n− 1) (59)

or

k1,2 =
−3c∓

√

c2− 4c(n− 1)

2c
(60)

6Limited recall is to the author’s knowledge rarely considered in the literature so far.
Exceptions are Young, M.C.K. and Ewick, R., et al.
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For the special case c = 1 we get for the optimal value k+

k+ = [−1.5 +
√

5/4 + n] (61)

which for large n is approximately equal to
√
n.

The expected true rank will then be

E(n+ 1−Xk) =
n+ 1

k+ + 1
(62)

For larger values of
√
n this will not deviate much from

√
n giving a total cost

of approximately 2
√
n for larger n and c = 1. Using our numerical calculations

it can be seen that this is less than the policies assuming no recall. This is not
only true for the expected cost of the offer plus the search cost but also for the
variance of the distribution of cost of the alternative stopped with.

2.6 Conclusions

Several classes of search strategies with and without cost were discussed, which
basically do not assume knowledge of the distribution of the observations value
or cardinal utility. Rather we assumed in this class of strategies that we are
able to sort the offers observed. We are able to distinguish a pattern of different
search strategies between these two extreme versions and even with sampling
with recall (see for example [Yeo and Yeo, 1994, Yang, 1974]). From these pos-
sible strategies, we considered from the CSP only two extreme strategies, one
with nothing but the best and the other one with multiple thresholds. All
strategies deduced here from the CSP do not allow recall. One observation was
allowed per offer and the number n of offers available was assumed to be known
in advance. This last assumption at least could be dropped if we follow an
alternate approach. It was shown that if we drop the assumption of no recall
using the simple fixed sample size strategy, we get a strategy which seems to
has less costs. This proposition is however based only on numerical calculations.

Basically the rank oriented strategies without recall, seem to be less efficient
than strategies where we assume that the distribution is known and the offers
utility (or loss) can be recognized. What we can easily see from our investiga-
tion that using search cost (expression in ranks) the success of search is worst
(expressed in ranks minus cost) in the CSP.
If we use an optimal decision rule with a finite number of offers and using back-
ward induction we get better results.
In both cases we do not allow recall. When we allow unlimited recall we do
not consider decay. In this case the simplest decision rule is to sample from a
uniform distribution of ranks and to take the best offer. With a search cost of
one we get an expected value of 2

√
n. This policy seems to be superior to the

optimal policy with backward induction using search cost.
If we attribute cardinal utility values to ranks like it is proposed in Bearden et
al. [Bearden et al., 2006] we need not to use rank oriented models. In this case
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we can use multinomial or multidimensional hypergeometric models (sampling
with or without recall). If again for example we use a cardinal utility value
which is equal to the rank ( based on a monotone function of the ranks, which
we can recognize) we are much better off using a sequential policy based on
optimal stopping. With a search cost of c = 1 we get for example ∼

√
2n.If

we cannot observe the value of the offer in advance we can eventually use cor-
related attributes to get more information by testing these, if this is feasible
[Janko and Hartmann, 1985] . This shall be discussed in a further discussion
paper. Two policies based on ranks were further described here allowing in one
case for several improvements and in the other case for an unknown number of
applicants. No cost comparisons were made in these cases.
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Appendix A

First we show that the probability that the true rank N finally chosen is v when
the size of the learning set is k and the number L of observed alternatives ! is
equal to:

W (N = v, L = !) =
k

!− 1

(v − 1)!(n− !)!

(v − !)!n!
(63)

If the !−th alternative observed has a rank of v and we stop with this alternative
implies that !− 1 alternatives observed before were of a rank lower than v. As
there are v−1 such alternatives we have (v−1)!/(v−!)! ordered subsets of (!−1)
alternatives drawn from (v − 1) alternatives. Now the second best alternative
was within the first k alternatives observed. As this alternative is observed with
equal probability as first, second, ..., k − th alternative, the probability for the
second best to be within the first k observations is such k/(!− 1). Recognizing
that there are exactly n!/(n− !)! possibilities of drawing ! alternatives (sorted)
out of n alternatives we get the lemma. We show now that the relation

n
∑

!=k+1

n
∑

v=!

(v − 1)!k(n− !)!

(v − !)!(!− 1)n!
= 1−

k

n
(64)

is correct.
We show the correctness by calculation:

n
∑

!=k+1

n
∑

v=!

(v − 1)!k(n− !)!

v(v − !)!(!− 1)
=

n
∑

!=k+1

k(n− !)!(!− 1)!

(!− 1)n!

n
∑

v=!

( v−1
!−1 ) =

n
∑

!=k+1

k

(!− 1)n
( n−1
!−1 )

−1( n! ) =
n
∑

!=k+1

k

(!− 1)!
=

k
n
∑

!=k+1

(
1

!− 1
−

1

!
) = k(

1

k
−

1

n
) = 1−

k

n

We now show the correctness of the formulas in our theorem 1.

E(R|T ) = b
n
∑

!=k+1

n
∑

v=!

v
(v − 1)!k(n− !)!

(v − !)!(!− 1)n!
=

bk

n!

n
∑

!=k+1

(n− !)!

(!− 1)

n
∑

v=!

v!

(v − !)!
=

bk

n!

n
∑

!=k+1

(n− !)!!!

(!− 1)

n
∑

v=!

( v! ) = b
k

n!

n
∑

!=k+1

(n− !)!!!(n+ 1)!

(!− 1)(!+ 1)!(n− !)!
=

bk(n+ 1)
n
∑

!=k+1

1

(!− 1)(!+ 1)
=

k(n+ 1)

2
b

n
∑

!=k+1

(
1

!− 1
−

1

(!+ 1
) =

b
k(n+ 1)

2
(
1

k
+

1

k + 1
+ ...+

1

n− 1
−

1

(k + 2)
−

1

(k + 3)
− ...−

1

(n+ 1)
)
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b
1

2
((n+ 1) +

k(n+ 1)

k − 1
−

k(n− 1)

n
− k) =

(
(2k + 1)(n+ 1)

k + 1
−

(2n+ 1)k

n
)(

n

2(n− k)
)

E(L|T ) = b
n
∑

!=k+1

n
∑

v=!

!
(v − 1)!k(n− !)!

(v − !)!(!− 1)n!
=

k

n!
b

n
∑

!=k+1

!(n− !)!

(!− 1)

n
∑

v=!

(v − 1)!

(v − !)!
=

k

n!
b

n
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!=k+1

!(n− !)!(!− 1)!

(!− 1)

n
∑

v=!

(v − 1)!

(v − !)!(!− 1)!
=

k
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b

n
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!=k+1

!(n− !)!(!− 1)!

(!− 1)

n
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( v−1
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kb
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(n− k)

n−1
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!=k

!−1

We have to show

E(R2|T ) =
k

n!
b

n
∑

!=k+1

(n− !)!!!

(!− 1)

n
∑

v=!

( v! )v.

The following relation is valid:

n
∑

v=!

v( v! ) =
n
∑

v=k

((v + 1)( v! )− ( v! )) =
n
∑

v=k

((!+ 1)( v+1
!+1 )− ( v! )) =

(!+ 1)
n
∑

v=!

( v+1
!+1 )−

n
∑

v=!

( v! ) = (!+ 1)( n+2
!+2 )− ( n+1

!+1 ) =

(
!+ (!+ 1)n

(!+ 2)
( n+1
!+1 ).

Using this relation we get:

E(R2|T ) =
k

n!
b

n
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!=k+1

(n− !)!!!(n+ 1)!
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(!+ 1)n+ !
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or
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= (n+ 1)(n+ 2)kb
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From this we get

E(R|T ) = b
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2
(
1

k
+

1

(k + 1)
−

1

(n+ 1)
−

1
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We get

E(R2|T ) =
2(n+ 2)

3
(E(R|T ) +

b(n+ 1)k

2(k + 2)
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3
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and using the lemma

E((R− E(R|T ))2|T ) = E(R2|T )− E2(R|T )

we get finally:

σ2(R|T ) = (
2n+ 1

3
)E(R|T )− E2(R|T ) +

n(n+ 1)k

3(k + 2)
.

Similarly we get the variance E(L|T ).

E(L2|T ) =
n
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!=k+1

n
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v=!

!2
(v − 1)!k(n− !)!

(v − !)!(!− 1)n!
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!
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=
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(1 +
1

!
) = nk + E(L|T ).

Using the lemma above we get

σ2
L = nk + E(L|T )− E2(L|T ).
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