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Université de Neuchâtel, Switzerland

by Johannes Fichtinger

Subject Production Management

Vienna, June 2010

iii



Author’s Declaration

I declare that:

(a) This dissertation is my own original work, except where oth-
erwise indicated. I furthermore declare not to have used any
unauthorized resources.

(b) I have not submitted this dissertation to any other examining
board, neither in my home country nor in any other foreign coun-
try, for the purpose of obtaining any other degree or diploma.

(c) This copy is identical to the reviewed work.

Date Signature

iv



Abstract

Inventory management and pricing decisions based on quantitative models both in
industrial practice and academic works often rely on minimizing expected cost or
maximizing expected revenues or profits, which refers to the concept of risk-neutrality
of the decision maker. Although many useful insights in operational problems can
be obtained by such an approach, it is well understood that incorporating attitudes
toward risk is an important lever for building new theories in other fields such as
economics and finance. The level of risk associated with an investment might be as
important as the expected gain from the investment. Hence, it is necessary to find
appropriate measures of risk and the appropriate objectives related to or including
these risk measures for inventory control & pricing problems.

After the axiomatic foundation of coherent risk measures the application of risk
measures to inventory models such as Conditional Value-at-Risk (CVaR) or convex
combinations of mean and CVaR became popular. In our work we apply spectral
risk measures to the single-period, single-item, linear cost inventory control & pricing
problem (also known as newsvendor problem) and derive optimal policies. By doing so,
we are able to unify results obtained so far in the literature under the common concept
of spectral risk measures for the case of zero and non-zero shortage penalty cost. In
particular, we show convexity results and structural properties for the inventory control
and, under some assumptions, unimodality results as well as structural properties for
the joint inventory & pricing problem. An extensive numerical analysis illustrates the
findings.
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Kurzfassung

Optimale Bestands- und Preisentscheidungen im Rahmen von quantitativen Modellen
basieren oftmals auf der Minimierung von erwarteten Kosten oder der Maximierung von
erwarteten Gewinnen, und zwar sowohl in der Praxis als auch in wissenschaftlichen Ar-
beiten. Dies beinhaltet die Annahme eines risikoneutralen Entscheiders. Obwohl mittels
eines solchen Ansatzes unterschiedlichste Erkenntnisse über Probleme im Operations
Management gewonnen werden können, ist die Berücksichtigung der Risikoeinstellung
eines Entscheidungsträgers in anderen Disziplinen wie etwa der Ökonomik oder der
Finanzwissenschaft eine wesentliche Grundlage für die Bildung neuer Theorien. Das
mit einer Investition verbundene Risiko kann einen ebenso hohen Stellenwert für die
Investitionsentscheidung einnehmen, wie der erwartete Erlös daraus. Daher erscheint
es notwendig, auch für Bestands- und Preisentscheidungen geeignete Risikomaße und
Zielsetzungen zu finden, die die Risikoeinstellung berücksichtigen.

Seit der axiomatischen Definition von kohärenten Risikomaßen werden diese auch
bei Bestandsproblemen eingesetzt. Beispiele dafür sind der Conditional-Value-at-
Risk (CVaR), oder konvexe Kombinationen des Erwartungswertes mit dem CVaR.
In dieser Arbeit werden spektrale Risikomaße bei einem einperiodigem, Einprodukt-
Bestandsproblem mit linearer Kostenstruktur, dem Newsvendor-Problem, angewandt,
um optimale Bestands- und Preispolitiken zu bestimmen. Dadurch können Resultate aus
der Literatur mit unterschiedlichen Risikofunktionen unter dem Konzept der spektralen
Risikomaße vereinheitlicht werden. Das Bestands- und Preisentscheidungsproblem wird
für die beiden Fälle ohne und mit Strafkosten für Fehlmengen betrachtet. Wir zeigen
Konvexitätseigenschaften und strukturelle Eigenschaften des Bestandsproblems, sowie
quasikonvexe und strukturelle Eigenschaften unter zusätzlichen Annahmen auch für
das kombinierte Bestands- und Preisentscheidungsproblem. Eine numerische Analyse
begleitet und illustriert die Resultate.
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gewesen wäre, dieses sehr spannende und relevante Dissertationsthema zu finden und
erfolgreich zu bearbeiten.

Professor Gerald Reiner schulde ich Dank für viele und interessante Diskussionen über
Produktions- und Supply-Chain-Management, sowie seine unermüdliche Unterstützung
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Chapter 1

Introduction and Foundations

Inventory management and pricing decisions based on quantitative models both in
industrial practice and academic works often rely on minimizing expected cost or
maximizing expected revenues or profits, which refers to the concept of risk-neutrality
of the decision maker. Although many useful insights in operational problems can
be obtained by such an approach, it is well understood that incorporating attitudes
toward risk is an important lever for building new theories in other fields, such as
economics and finance. To give an example, modern portfolio theory in finance relies
heavily on consideration of risk attitudes. The level of dispersion associated with an
investment might be as important as the expected gain from the investment. Hence, it
is necessary to find appropriate measures of risk and the appropriate objectives related
to or including these risk measures.

In operations management, inventory and pricing problems especially share common-
alities with the fields mentioned above. In particular, decisions have to be taken in
a stochastic environment and the policy affects the risk associated with the resulting
outcome. Inventory problems of their nature can be considered similar to investment
problems in finance. Hence, it is important to include risk preferences in such decision
problems. Moreover, this importance is supported by recent empirical findings.

In an experimental study, Schweitzer and Cachon (2000) show that for high-profit
products the ordering decisions reflect risk aversion. Similarly, through an experimental
newsvendor setting, Brown and Tang (2006) show that the subjects tend to order
less than the expected profit-maximizing quantity because they are concerned about
potential profit loss or probability of making an acceptable profit.

Besides the risk aversion of the decision makers, using expected profit as the objective
implies an analytical assumption. “In many cases, the use of the expected value as

1



Chapter 1. Introduction and Foundations 2

an objective can be justified by the law of large numbers: if the process is repeated,
the arithmetic average of the observed profits will approach the expectation.” (Collins,
2004). Specific to inventory problems, when the ordering decision is repeated many
times under the very same conditions, using expected profit as the objective function
can be justified. However, “if the decision is not frequently repeated or if the outcome
is large relative to wealth optimizing the expectation would not be the appropriate
objective for a risk-averse individual.” (Collins, 2004).

Following these arguments, research on risk-averse inventory models, in particular
the well-known newsvendor model with different objective functions to reflect risk
preferences, has become an important stream. For example, Eeckhoudt et al. (1995)
uses the concept of the expected utility framework by modifying profit realizations
with a concave increasing utility function and Lau (1980) maximizes the probability of
achieving a profit target.

After the axiomatic foundation of coherent risk measures by Artzner et al. (1999)
the application of risk measures to inventory models became popular. For example,
in an early draft, Chen et al. (2004) uses the conditional Value-at-Risk as objective
and Jammernegg and Kischka (2007) proposes a convex combination of low and high
profits, which can be interpreted as a mean-deviation rule. In these works results about
optimal policies and structural properties are described.

However, the different risk measures are special cases of the general class of spectral
risk measures introduced by Acerbi (2002). In our work we apply the spectral risk
measures to the inventory control and the inventory control & pricing problem and
derive optimal policies as well as structural properties. By doing so we are able to
unify the results obtained so far in the literature under the common concept of spectral
risk measures.

In the following section we introduce the newsvendor model and present the main
properties and results of the risk-neutral problem for both the inventory and inventory
& pricing problems.

1.1 The Newsvendor Model

The newsvendor model is a famous problem and building block of quantitative inventory
management. It is applicable for products with short life cycles which become obsolete
at the end of the period and cannot be stocked in order to satisfy any demand during
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the next periods. Fashion apparel retailers who must submit orders in advance of
a selling season with no further opportunity for replenishment, manufacturers who
have to choose the capacity before launch of a new product which will quickly become
obsolete, or managers who have to decide on a special one-time promotion typically
face the newsvendor problem. It also has wide applicability in service industries such
as airlines and hotels where the key decision is capacity which cannot be stored and
the product is generally perishable. The tendency towards short product life cycles
and the growing share of service industries implies/supports the continuing interest in
the newsvendor problem.

1.1.1 The inventory problem

The classical single-period, single-item, linear cost inventory control problem – the
well-known newsvendor problem – is to decide on the ordering quantity before market
demand is known, so that at the time of ordering demand is uncertain. The purchase
cost per unit is c, and the product is sold to customers at a unit price p, which is set
exogenously in the classical price-taking problem. Unsold copies be can returned to
the supplier at a price v. To avoid trivial problem instances, it is generally assumed
that 0 < c ≤ p and v < c holds.

If demand D, i. e. the quantity that the newsboy would be able to sell on a certain
day, turns out to be equal to or greater than the ordered quantity y, then he makes a
profit Π(y,D)1 of (p− c)y. In the case that D < y the newsvendor makes a profit of
pD + v(y −D)− cy.

So, for a given order quantity y, the newsvendor’s profit Π(y) can be written as

Π(y) = pmin(D, y)− cy + v(y −D)+ = (p− c)y − (p− v)(y −D)+. (1.1)

The objective in classical inventory models, i. e. models assuming a risk-neutral
decision maker, is to maximize expected profit EΠ(y), where we define E as the
expectation operator. If demand D were known at the time of ordering, it is easy to
see that the optimal decision for the newsvendor would be to order y∗ = D, since the
function Π(y) is a continuous piecewise linear function increasing up to y = D and
decreasing afterwards. However, since demand is not known at the time of ordering,

1In the following we will omit the second argument of profit and write Π(y) keeping in mind the
dependency of profit on demand.
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the problem becomes more difficult.
The demand D has to be understood as a random variable with a known demand

distribution. In fact, since for real problems the exact demand distribution cannot be
known either, it has to be well estimated based on collected random observations from
the past. Demand can then be described by its corresponding cumulative distribution
function (cdf) F (x) := P(D ≤ x) and probability density function (pdf) f(x). Since
demand cannot be negative, clearly F (x) = 0 for any x < 0.

Since the average profit tends to the expected profit if the newsvendor continues
his business for a long period of time, from a statistical point of view it makes sense
to optimize the expected value EΠ(y). Note that for simplicity y is considered as a
continuous rather than integer variable, which can be justified if the order quantity is
reasonably large. Hence, the optimization problem can be formulated as

max
y

EΠ(y), (1.2)

where
EΠ(y) =

∫ y

0
(px+ v(y − x)− cy) dF (x) +

∫ ∞
y

(p− c)y dF (x).

Using integration by parts it is possible to reformulate this as

EΠ(y) = (p− c)y − (p− v)
∫ y

0
F (x) dx. (1.3)

The function EΠ(y) is concave in y with a first derivative

d

dy
EΠ(y) = p− c− (p− v)F (y).

Now let F−1(ω) be the inverse function of cdf F , which is defined for ω ∈ [0, 1). Because
v < c < p it follows that 0 < (p− c)/(p− v) < 1 and the optimal solution to (1.2) is

y∗(p) = arg max
y∈R+

EΠ(y) = F−1
(
p− c
p− v

)
. (1.4)

A more general, alternative problem formulation to (1.3), which can be commonly
found in the literature, is defining marginal overage and underage cost of the order
quantity. Overage cost co is the realized cost of ordering one unit too much when
demand was lower than the order quantity, while underage cost cu reflects the realized
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cost of ordering one unit too few for the case demand was higher than the order
quantity (see e. g. Cachon and Terwiesch, 2006, for several examples).

In this work, however, we write the problem in terms of price p, cost c, salvage value
v, and a non-negative shortage penalty cost s, explicitly, and do not use the model
formulation based on underage and overage cost, mainly because of notational simplicity.
While the case where overage cost occur is fully equivalent with our formulation (let
v = c− co), the situation with shortages needs some additional consideration.

The formulation based on overage and underage cost is more general than our
model assumptions as it allows to consider lost-sales as well as backordering business
environments. Operating in a lost-sales business means that in a stockout situation
at least the full profit margin of the product is lost. As an example, we can think of
a customer entering a retailer where a certain product is out of stock. The customer
does not postpone his purchase until the product is replenished but buys the product
from a competitor or refrains from buying the product at all. The underage cost refers
to profit margin, possibly plus some additional shortage penalties, so cu ≥ p− c. This
case is fully considered by our model by letting s = cu − (p− c) ≥ 0.

The backordering case, however, refers to a business where the profit margin is
not (completely) lost in a stockout situation; the customer still buys the product.
However, the customer might ask for some discounts to accept late delivery, or the
retailer might face higher cost due to express deliveries, etc., so underage cost might
not be zero. In the backordering case the relation 0 ≤ cu < p− c holds, which implies
s = cu − (p− c) < 0. In the following analysis we are not considering this case as we
assume s ≥ 0.

Now we are ready to extend (1.1) by shortage penalty cost and define our objective
function for the risk-neutral decision maker. In the following, we also derive the optimal
order quantity.

Definition 1.1 (Profit function of a risk-neutral decision maker). Let p, c, v and s be
the retail price (marginal revenue), product cost, salvage value and shortage penalty
cost, where p > c > v and v, s ≥ 0. Random demand D has a known distribution with
cdf F and density f . The resulting profit Π(y) is

Π(y) = (p− c)D − (c− v)(y −D)+ − (p− c+ s)(D − y)+. (1.5)

A risk-neutral decision maker will maximize expected profit EΠ(y) by optimizing
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the order quantity y. This leads us to the following

Proposition 1.1 (Optimal order quantity for a risk-neutral decision maker). The
optimal order quantity y∗ for a risk-neutral decision maker is

y∗ = arg max
y∈R+

EΠ(y) = F−1
(
p− c+ s

p− v + s

)
. (1.6)

Proof. Using (1.5), the expected profit is

EΠ(y) = (p− c)ED − (c− v)
∫ y

0
(y − x)f(x) dx− (p− c+ s)

∫ ∞
y

(y − x)f(x) dx.

Taking the derivative, equating to zero and solving for y leads to the well-known critical
fractile solution

d

dy
EΠ(y) = −(c− v)

∫ y

0
f(x) dx+ (p− c+ s)

∫ ∞
y

f(x) dx by Leibnitz’ rule

d

dy
EΠ(y) = −(c− v)F (y) + (p− c+ s)

(
1− F (y)

)
. Hence,

F (y∗) = p− c+ s

p− v + s
and

y∗ = F−1
(
p− c+ s

p− v + s

)
.

Important performance measures for a newsvendor from a customer’s perspective
are service levels, in particular the cycle service level (CSL) and the fill rate (FR). The
CSL is defined as the probability that no stockout during the selling season occurs.
Sometimes called in-stock probability, it is the probability of having satisfied all demand,
so the firm had stock available for each customer (Cachon and Terwiesch, 2006). This
occurs if demand is not larger than the order quantity y, so

CSL = P(D ≤ y) = F (y). (1.7)

The fill rate defined as
FR = E

min(D, y)
D

(1.8)

is the expected fraction of demand satisfied. We note here that FR = Emin(D,y)
ED can
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be found commonly in the literature as approximation of the fill rate (see for example
in Tempelmeier, 2005).

While service levels imply customer (external) orientation as a performance measure,
the probability of missing a certain profit target level PLL is an internally oriented
performance measure for the inventory problem. It can be defined as the probability
that profit stays below a given level L. For example, in some managerial situations
it might be important to reach a certain target or budgeted profit level L, but any
overachievement does not significantly increase utility. The performance measure PLL
now expresses the probability that this profit target level could not be reached. We
can define the probability of missing a profit level L as

PLL := P(Π ≤ L) (1.9)

where in the special case L = 0 the probability of any negative profit realization is
considered (cf. Jammernegg and Kischka, 2007, Lau, 1980).

Further extensions to the model can be found for example in the review of Khouja
(1999), and a comprehensive presentation of the single period problem in general can
be found, for example, in Porteus (1990).

1.1.2 The inventory & pricing problem

When price is a decision variable2, single period models turn into extended newsvendor
problems. In addition to the ordering quantity, an optimal price is set to be charged
during the period. The resulting model is now more complex because of the optimization
of two variables.

The need to consider pricing and inventory problems simultaneously was first dis-
cussed by Whitin (1955). He provides a newsvendor model with pricing where a
stochastic price-dependent demand function is assumed. He derives an optimality
condition which equates the expected loss from not selling a marginal unit with the
expected profit from selling the marginal unit.

One of the most important issues in joint pricing and inventory models is how to
include uncertainty in the models. The common practice is to represent the demand

2Note that we will discuss the pricing related aspects from an inventory control point of view. This
generally means that we consider simplified price-demand response functions, while in the (empirical)
marketing literature more sophisticated response functions are used.
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function as a combination of a deterministic function and an error term. d(p) is a
deterministic decreasing function of price and E is a random variable with distribution
function FE(ε). Two typical approaches are to combine the two terms in an additive or
a multiplicative fashion. In additive models, demand is represented as the sum of the
deterministic price dependent function and the random term, i. e. D(p) = d(p) + E.
The corresponding expected profit is

Π(p, y) = (p− c)y − (p− v)
∫ y−d(p)

−∞

(
y − (d(p) + ε)

)
dFE(ε). (1.10)

In multiplicative models, demand is the product of the two terms, i. e. D(p) = d(p)E,
and expected profit is

Π(p, y) = (p− c)y − (p− v)
∫ y/d(p)

0

(
y − (d(p)ε)

)
dFE(ε). (1.11)

In the additive case, the mean value of the random term is generally assumed to
be zero, and in the multiplicative case it is assumed to be one. Thus, for both cases,
expected demand corresponds to the deterministic part, ED(p) = d(p). It is common
to assume d(p) = a − bp with a > 0, b > 0 in the additive models, and d(p) = ap−b

with a > 0, b > 1 in the multiplicative models (Petruzzi and Dada, 1999). It is also
possible to consider any general function as long as it is decreasing in p.

Mills (1959) was the first to write the demand function explicitly as an additive
demand model: D(p) = d(p) + E. The main consideration is to show the effect of
uncertainty on the optimal price. For the constant marginal cost case optimal price
under uncertainty is always smaller than that under certainty, but optimal ordering
quantity can move in either directions. When marginal cost is increasing or decreasing
optimal price may change in both directions depending on the shape of the demand
curve.

Karlin and Carr (1962) also study a single period model similar to Mills (1959).
However, they introduce the uncertainty in a multiplicative manner i. e. D(p) =
d(p)E. Under this condition, the result is opposite of that under additive uncertainty.
Under multiplicative uncertainty the optimal price is higher than the price under
the assumption of deterministic demand. The main difference between additive and
multiplicative models is the relation of price to the variance and coefficient of variation
of demand. Under the additive model, while the coefficient of variation increases in
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price, the demand variance is constant. Under the multiplicative demand model, the
coefficient of variation of demand equals that of the random term, which is independent
of price, but the variance of demand is decreasing in price.

Young (1978) defined the demand function in a manner that combines both addi-
tive and multiplicative models, i. e. D(p) = d1(p)E + d2(p). When d1(p) = 1, the
formulation corresponds to the additive case, and when d2(p) = 0, it corresponds to
the multiplicative case. Young (1978) verifies both results of Mills (1959) and Karlin
and Carr (1962), and generalizes their results by describing the optimality conditions
in terms of variance and coefficient of variation. However, she does not provide an
explanation about the contradicting results of additive and multiplicative cases.

Petruzzi and Dada (1999) try a more integrated framework in order to provide a
possible explanation of this conflict. The idea is that price is a measure to decrease the
variance and coefficient of variation of demand, but it works differently for additive
and multiplicative models. In the former case, “it is possible to decrease the demand
coefficient of variation without adversely affecting the demand variance by choosing a
lower price”; for the latter case, on the other hand, “it is possible to decrease demand
variance without adversely affecting the demand coefficient of variation by choosing a
higher price”. As a result, it is intuitive that the optimal price should be lower than
the deterministic price in the additive model and higher in the multiplicative model.

Throughout the analysis, they use a transformation of the profit function by defining
a safety factor z, and describe the optimal price as a function of z. For the additive
case z = y − d(p), and for the multiplicative case z = y/d(p). If the realization of the
random term, ε, turns out to be greater than u then shortages occur, where s is the
shortage cost per unit of unsatisfied demand. If ε is less than u, leftovers occur.

Using a sequential approach, they first write the optimum price p∗ as a function of
z, and solve the objective function for the optimal stocking factor z∗. They find the
corresponding optimal price p∗ and optimal ordering quantity as y∗ = d(p∗) + z∗ for
the additive case and y∗ = d(p∗)z∗ for the multiplicative case.

Yao et al. (2006) present the most general assumptions for the multiplicative and the
additive models. They employ two important concepts: the price elasticity of demand
and the generalized failure rate. They assume that the deterministic demand function
has increasing price elasticity and that the error term has strictly increasing failure rate.
Under these conditions they show that for both the additive and the multiplicative



Chapter 1. Introduction and Foundations 10

models the optimal policy is unique.
While the literature is dominated by the additive and the multiplicative uncertainty

models, there are a small number of papers in which different demand models are
analyzed under different approaches. Polatoglu (1991) studies a model without any
assumptions on the structure of the demand-price relation and the inclusion of uncer-
tainty. The distribution function of random demand D(p) is defined as a general price
dependent function F (p, x). Existence and uniqueness of the optimal policy constitute
the focus of the study. Kocabıyıkoğlu and Popescu (2009) study a general demand
model without any assumption of additive or multiplicative structure, but they still use
the classical definition, i. e. D(p) represents the demand as a combination of a determin-
istic and a random part. However, in addition to the additive and multiplicative forms,
their model is also applicable for more general structures such as D(p) = log(E − bp)
or D(p) = exp(E − bp). Their main assumption is the strict concavity of the revenue
function in price for any risk realization. This assumption allows them to easily show
the concavity of the profit function with respect to price and ordering quantity.

Yano and Gilbert (2004), Chan et al. (2004) and Elmaghraby and Keskinocak (2003)
provide comprehensive reviews on combined pricing and inventory models both in the
single-period and the multi-period settings.

1.2 Terminology, definitions used and conventions

We feel it is important to discuss and clarify the definitions of some technical terms
used in this work. In particular, the term “risk” needs some further discussion since
no unique definition exists in the literature. In finance literature risk generally refers
to a potential loss, while classical economic theory generally deals with gains, so that
risk describes a situation where gains are random variables associated with a known
distribution function (cf. Müller and Stoyan, 2002, p. 265). Hanisch (2006) defines as
risk of a decision alternative the possibility, that an undesired realization might occur,
for example a (negative) deviation of some expected outcome3.

Hence, as the term “risk” is concerned with undesired deviations from expectation,
it has to be distinguished from “dispersion”, which includes deviations in any direction.

3In German: ”Unter dem Risiko einer Handlungsalternative wird demgegenüber die Möglichkeit einer

’schlechten‘ Realisierung, sei es eine (negative) Abweichung von der erwarteten Entwicklung, sei es
ein mit einer Alternative verbundener Verlust, verstanden.“
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Clearly, a problem without stochasticity, i. e. without any dispersion, carries no risk;
however a reduction of risk does not necessarily imply a reduction of dispersion.

The risk preference, i. e. risk-averse, risk-neutral or risk-seeking behaviour, refers to
the attitude of the decision maker towards randomness. In Chapter 2 we will discuss
this in detail and provide a definition of these terms.

Note that the term “risk” is sometimes used in the context of decision making to
differentiate between a stochastic decision problem with full knowledge of the underlying
distribution functions, decision making under risk, in contrast to decision making under
uncertainty or robust decision making, where it is not assumed that the full distribution
function is known to the decision maker (cf. Schneeweiß, 1967, or Laux, 2005). With
respect to this classification our work falls into “decision making under risk” as we
assume the distribution function of random demand to be known to the decision maker.

1.3 Structure of the work

In Chapter 2 we discuss the foundations of decision making under risk considering risk
preferences of the decision maker for the case of general profit distributions. Since
the main contributions to the field of risk management have been done in the field of
finance and economics, most of the relevant and reviewed literature will come from that
side. However, we will keep the later application to inventory control models in mind
and discuss the literature in this light. As an example, while the finance literature deals
mainly with loss distributions, we discuss the content based on profit distributions. A
large part of this chapter will be dedicated to the conditional Value-at-Risk and its
optimization, as well as the generalization of this measure to spectral risk measures.

The subsequent chapter discusses the single-period inventory control problem under
consideration of risk preferences. We generalize results described in the literature so far
by using the concept of spectral measures of risk for a newsvendor without incurring
shortage penalty cost, as well as for the case of positive shortage penalty cost. A brief
discussion on the application of risk-averse newsvendor models in the supply chain
context finishes this chapter.

Chapter 4 analyzes the combined inventory & pricing problem with risk preferences.
We derive optimality conditions and structural properties for the problem with zero
shortage penalty cost and conduct a numerical study for the inventory & pricing
problem with shortage penalty costs. The finally, Chapter 5 concludes the work.



Chapter 2

Risk Measurement and Optimization

Different ways of considering and modeling risk preferences exist in inventory & pricing
problems. These include approaches like the expected utility framework, mean-deviation
criteria, maximizing the probability of reaching a certain target profit level, or the use
of explicit risk measures, e. g. the conditional Value-at-Risk as discussed later on in
this chapter. In the following we will briefly discuss different ways to consider risk
preferences and discuss some of their properties. We describe the use of particular
risk measures such as the Value-at-Risk and the conditional Value-at-Risk, and discuss
spectral risk measures for the specific purpose of modeling risk preferences within
inventory & pricing problems.

Since in our analysis we deal with profit distributions rather than with loss distribu-
tions, we consider the use of risk preferences on profit. Hence, undesirable deviations
from expectations come from the lower (i. e. left) tail of distributions. Note that this
is different than classical (financial) risk analysis where it is mainly loss distributions
that are are considered.

The main intention of this chapter is to clarify the notation and to describe theory
and results needed for the subsequent analysis of the inventory & pricing problem.
Clearly, we do not intend to give a complete introduction to the theory of decision
making under risk. For that purpose we refer the reader to Bamberg and Coenenberg
(2004), Hanisch (2006), Fischer (2004a), or Menges (1974).

2.1 Early approaches to risk measures

Early approaches of considering risk and risk preferences of the decision maker include
the expected utility framework, which dates back to the works of Bernoulli (1738)

12
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and got strong support by the famous work of von Neumann and Morgenstern (1944).
Shortly thereafter, Markowitz (1952) introduced an important approach to risk modeling
with the portfolio theory by considering the mean and standard deviations of assets
for decision making. However, using standard deviation or variance has some serious
flaws, as it is a symmetric measure to risk which implies that undesired downside
deviations of profit are treated the same way as desired but exceptional deviations to
higher profits.

2.1.1 Expected utility theory

“It is no exaggeration to consider expected utility theory the major paradigm in decision
making since the Second World War” (Schoemaker, 1982). The expected utility (EU)
framework has been used successfully so far in many prescriptive, i. e. normative and
descriptive, i. e. positive models in management science, and in inventory control in
particular. It is not the outcome of a risky prospect which is considered as basis for
decision making but a function of it transformed by a risk utility function.

To understand the main idea behind this, let us look at the well-known St. Petersburg
paradox discussed by Daniel Bernoulli as early as 1738. The issue in this game is
why people are willing to pay only a small amount of money for a game of infinite
expected outcome. The game goes as follows: A fair coin is flipped as many times as it
is necessary to produce a “head” for the first time. The payoff of the game doubles with
each toss it requires to see a head. So, if it takes n tosses to produce a head, the payoff
is 2, 4, 8, . . . , 2n with corresponding probabilities 1/2, 1/4, 1/8, . . . , (1/2)n. The expected
payoff of this game is infinite, since

∑∞
n=1(1/2)n2n =∞. However, most people are only

willing to pay a small amount of money to participate in such a game. By introducing a
logarithmic utility function implying diminishing increases in utility for equal increases
in wealth, Bernoulli was able to show that the expected utility of the game was finite
(see Schoemaker, 1982, for a proof).

While Bernoulli (1738) provides mainly a positive model to describe empirically
observable behavior, von Neumann and Morgenstern (1944) introduce an axiomatic
foundation for decision making under risk and, hence, are able to provide normative
models for decision theory. They present simple axioms (see Bamberg and Coenenberg,
2004, for a detailed discussion) which are sufficient to guarantee that the decision
maker’s preference about the ordering of alternatives in a decision problem fits with
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the ordering by their expected utility values. The expected utility in their setting
is calculated based on risk utility functions which can be empirically constructed
from questions like “Which certain amount is equally attractive to you as a lottery
with equal probabilities for e 10 and e 10,000?” By considering comparisons between
certain amounts and lotteries, not only the diminishing value in wealth under certainty
can be considered, but also the decision maker’s preference towards risk. Among
others, Fischer (2004b) points out very clearly the difference between value functions
constructed under certainty and risk utility functions under uncertainty.

Consequently, an important concept is that of risk aversion. If a decision maker
prefers any lottery less than the sure outcome of its expected value, he is said to
be risk-averse. On the contrary, if the decision maker prefers the lottery to the sure
outcome of its expected value, he is risk-seeking. In the special case that the decision
maker is indifferent between any lottery and its expected value, he is called risk-neutral.
Only in the final case can decision or optimization based directly on the expected
value of the outcomes be justified. This is also an important motivation for normative
risk-averse (and risk-seeking) models in the field of operations management, which will
be presented and discussed in the following chapters.

Any concave increasing utility function reflects risk-averse behavior, while a convex
increasing utility function reflects risk-seeking behavior. The concavity of the utility
function implies that the decrease in the utility from a decrease in wealth is higher
than the increase in the utility from an increase in wealth. Hence, the decision maker
is more sensitive to losses than to gains.

Formally, a risk utility function u(W ) maps a random variable of wealth, W , into
the real numbers. Arrow (1971) and Pratt (1964) propose the negative ratio of the
second to the first derivative of the utility function as a measure for the degree of risk
aversion, so

γ(W ) := −u
′′(W )
u′(W ) . (2.1)

Depending on the change in γ(W ) with respect to W the decision maker is said to
have decreasing, constant, or increasing absolute risk aversion (DARA, CARA, IARA).
Note that total or final wealth, W , includes the initial wealth, w0, and the profit from
operations, i. e. W = w0 +Π.

However, albeit its interesting properties and powerful theoretical results obtained
by the use of the EU framework, the main challenge in the application remains as
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the specification of the decision makers utility function. Remember that the utility
function represents two distinct attitudes of the decision maker: the degree of the
diminishing utility in wealth and the decision maker’s attitude toward risk, which are
inseparable from the utility function.

An approach to circumvent this problem is to find ways to measure the risk of
alternatives so that the decision maker can base his decision not only on the return of
an investment, but also has a way to directly address the riskiness of the alternatives.
So – as Levy (2006) points out – while the EU framework does not consider risk and
return separately but takes into account the whole distribution of returns, the use
of dedicated risk measures allows separation of these two aspects of decision making.
Hence, in the following we will discuss different ways of assessing risk by using different
explicit risk measures. The selection of an appropriate risk measure, however, is not
trivial, as in a normative framework any proposed risk measure needs to be based on
carefully selected axioms1.

2.1.2 Symmetric and downside risk measures

For stochastic problems, next to the mean as the measure of location, the variance
as a measure of statistical dispersion is the “classical” risk measure used to describe
probability distributions. The variance of a random variable Π is defined as

Var(Π) := E (Π − E(Π))2

and the standard deviation, SD(Π) :=
√

Var(Π), are used widely as risk measures,
e. g. as an important measure in finance for the portfolio theory by Markowitz (1952).
Though larger variance implies higher risk, i. e. the danger of an undesirable outcome
increases, at the same time the “chance” of higher than expected outcomes increases
too. Hence, being a symmetric risk measure variance not only penalizes downside
deviations, but also the desirable upside deviations2. Therefore, variance does not
provide a satisfying risk measure, except for the case where the outcome distribution is
close to a symmetric distribution, for example the normal distribution.

1See Acerbi (2004) for a motivation to use a deductive approach based on axioms of coherency which
leads to a clear and unambiguous quantitative definition of risk measures.

2Note that the terms “higher” and “upside deviation” are used here in the sense of “better”, not
necessarily larger. Hence, for the case of loss distributions, higher outcomes refer to lower loss.
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Ismail and Louderback (1979) analyze profit distributions for a firm facing stochastic
demand with several alternative objective functions. They show that especially for, but
not limited to, the case of positive shortage penalty cost the profit distribution can be
far away from being symmetric. In their paper they conclude that the shape of profit
distributions changes significantly depending on price, production cost, quantities,
holding costs, shortage penalty cost, demand variance, and so on, so that “the profit
variance cannot be a reasonable measure of relative risk.”

A common measure for symmetricity of a probability density function is the skewness
Skew(Π) defined as the third standardized moment

Skew(Π) := E(Π − E(Π))3

SD(Π)3 .

Symmetric distributions, e. g. the normal distribution, have a skewness of zero, positive
skewness refers to a fat tail on the right side, negative skewness refers to fat left tails.

As a consequence of the aforementioned drawbacks of symmetric measures, there have
been several risk measures introduced which explicitly consider downside risk. These
risk measures ignore positive deviations and consider only the one-sided, undesirable
downside deviation from an expected outcome. This definition of risk measures is
more in line with the human understanding of risk. In his empirical work, Mao
(1970) finds that the perception of “riskiness” by decision makers fits with downside
risk measures rather than symmetric risk measures. He concludes, “To accurately
portray this attitude toward risk, we need a measure of risk which not only summarizes
variability, but also distinguishes between positive and negative variations. In this
respect, semivariance3 is a better measure of risk than ordinary variance.”

This allows us to formulate the following:

Definition 2.1 (Risk). Let Π be any random variable, where the utility u(Π) is
monotone in the realization of Π. We define the term “risk” as a measure ρ(Π) on Π

of one-sided deviations from an arbitrarily chosen value m.
Furthermore, we say a decision maker is

(a) “risk-averse”, if his objective is the minimization of undesirable deviations from
m, and

3As a risk measure already discussed by Markowitz (1959). It is defined as the expected value of
squared negative deviations of possible outcomes from a certain point m, e. g. from zero or expected
value. So, SemVarm(Π) := E[(Π −m)−]2.
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(b) “risk-seeking”, if his objective is the maximization of desirable deviations from m.

2.1.3 Value-at-Risk (VaR)

An often-used concept for risk measurement which (implicitly) considers one sided
deviations from the expectation is the Value-at-Risk (VaRα). The concept of VaRα

as a measure of risk was introduced by JP Morgan in 19944 and became famous after
considering it as a risk measure in the 2001 proposal of the Basel Banking Supervisory
Committee. Quoting Szegö (2005), VaRα was designed and proposed to answer “the
following very relevant and precise questions:

• How much one can expect to lose in one day, week, year, . . . with a given
probability?

• What is the percentage of the value of the investment that is at risk?”

Before further discussion, let us define VaRα (see e. g. Rockafellar and Uryasev
2002).

Definition 2.2 (Value-at-Risk). The VaRα associated with a profit random variable
Π with distribution function FΠ is

VaRα(Π) = min{ψ|FΠ(ψ) ≥ α}. (2.2)

As long as FΠ is continuous and strictly increasing, there is a unique ψ satisfying
(2.2). Otherwise, if the inverse distribution F−1

Π (α) does not exist, FΠ has a jump such
that α is in an interval of confidence levels with lead to the same VaRα. If there exists
a whole range of solutions, FΠ is constant at α for a range of profit realizations π. In
this case the lower endpoint of the interval is defined as VaRα.

Statistically, VaRα is the α-quantile of the random variable’s distribution. So, VaRα

is simply the minimum outcome of a random variable within a certain confidence
interval 1 − α. Hence, using confidence intervals, it is very simple to estimate the
maximum loss or the minimum profit. Thereby, the width of the confidence intervals
reflects the level of risk aversion, i. e., the risk preference of the decision maker. A larger
confidence interval – implying a smaller α – refers to higher levels of risk aversion.

4See e. g. Holton (2002) for the history of VaRα with consideration of the developments in the banking
and securities firms in the 20th century.
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However, VaRα as a concept to measure risk has serious flaws. We will discuss this
in more detail after a short discussion on how risk can be measured in the following
section.

2.1.4 Artzner’s axioms of coherency: How to measure risk

In the financial context, Artzner et al. (1999) studies market risks and discuss the
measurement of those risks. In their paper, they introduce a set of four properties and
call each risk measure that satisfies these properties “coherent” measures of risk. In
this section we present the concept of coherent measures in the literature.

An explanation of the need for coherent risk measures is given by Szegö (2005) by
relating properties of risk measures to (intuitive) properties of a measure of distance
between two points:

“We recall the three conditions that any . . . [function] defining the distance between
two points . . . must satisfy:

• the distance between a point and itself is zero;

• the distance does not change by inverting the two points;

• given three points, the distance between any pair cannot be larger than the
sum of the distances between the other two pairs.”

While all of those three properties sound intuitive and any potential measure of
distance necessarily has to satisfy them, analogous conditions for risk measurement
are not satisfied by many of the existing approaches, such as the VaRα. Artzner et al.
(1999) propose a set of properties that any acceptable risk measure ρ(Π) must satisfy.

Definition 2.3 (Coherent measure of risk). Let Π be any random variable and ρ(Π)
a function defining the risk of Π. The risk measure ρ(·) is called coherent, if and only
if it satisfies the four properties

(a) Translation equivariance: ρ(Π+a) = ρ(Π)+a. Adding a sure outcome of amount
a to the random outcome of Π increases the risk measure by exactly this amount
a.

(b) Subadditivity: ρ(Π + Z) ≤ ρ(Π) + ρ(Z) for all random variables Π and Z. The
risk of joint operations cannot be higher than the risk of two independent, single
operations. This property implies that merely splitting up operations of a company
into different independent divisions cannot reduce the total operational risk.
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(c) Positive homogeneity: ρ(λΠ) = λρ(Π) for all random variables Π and all positive
real numbers λ ≥ 0.

(d) Monotonicity: Π ≺SD(1) Z ⇒ ρ(Π) ≥ ρ(Z) for all random variables Π and Z,
where ≺SD(1) denotes stochastic dominance of order 1 so that the cumulative
distribution functions (cdf) of Π and Z are ordered, FΠ(z) ≥ FZ(z) for all z.

Artzner et al. (1999) state that only those risk measures satisfying all of the above
properties can lead to conclusive results in risk measurement. For a broader review of
different risk measures with respect to Artzner’s axioms see e. g. Hanisch (2006), and
references therein. A discussion of VaRα follows in the next section.

As an example, we now illustrate that variance is not a coherent measure of risk. In
particular, variance does not satisfy any of the axioms stated above.

(a) Translation equivariance is violated since

Var(Π + a) = Var(Π) 6= Var(Π) + a.

(b) Subadditivity Var(·) is not subadditive for any correlated random variables, Π
and Z:

Var(Π + Z) = Var(Π) + Var(Z) + 2COV(Π,Z)

> Var(Π) + Var(Z) for COV(Π,Z) > 0.

(c) Positive homogeneity does not hold since

Var(λΠ) = λ2 Var(Π) 6= λVar(Π).

(d) And finally, the Monotonicity property does not necessarily hold, which can
be easily seen, for example, if we let Π ∼ Unif(0, 1) and Z ∼ Unif(0, 3), so
Π ≺SD(1) Z but Var(Π) < Var(Z).

2.1.5 VaR in view of Artzner’s axioms

After the work of Artzner et al. (1999) the ability of VaRα to measure risk in a valid
way was seriously questioned (for a strong criticism see Szegö, 2005).
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A major point is the definition of VaRα as a single point in the value distribution.
While its definition of the worst outcome within a certain confidence interval, e. g. 95%,
sounds intuitive and helpful, Acerbi et al. (2008) state that this implies at the same
time considering the best possible outcome for describing the risk associated with the
worst 5% cases of a distribution. “Once we have selected these cases”, Acerbi et al.
(2008) raise the question, “why should we be interested in the least loss irrespectively
of how serious all the other losses are?”

This issue raises problems for value distributions with fat (left) tails, which is
revealing for rare events with high losses. On the contrary, for the case when the value
distribution has a positive skewness, the problems mentioned above seem to be less
serious.

However, analyzing Artzner’s axioms, Pflug (2000) shows that VaRα is translation
equivariant, positively homogeneous and monotone, but does not necessarily satisfy the
subadditivity property. This might cause the problem that a risky operation could be
reduced in its risk by splitting it up into two distinct divisions. Further, risk assessment
for a whole company becomes problematic since optimizing single (risky) operations
with respect to the risk measure does not necessarily end up in a risk optimum for
the whole organization. As an example, it is not guaranteed that, despite compliance
with risk limits for each product group in a company, the total risk level is within the
desired levels.

Due to these problems, VaRα – although ostensibly easy and intuitive – does not
seem to be appropriate as a risk measure for inventory-related risk, and, moreover, is
particularly inappropriate once it is used as an objective function within an optimization
procedure of some profit (or cost). However, there are papers proposing VaRα for
inventory control (Tapiero, 2005, uses VaRα for inventory control, although in a slightly
different setting) and even for the capacity constrained multi-product setting (as an
example see Özler et al., 2009).

2.2 Conditional Value-at-Risk (CVaR)

A natural extension of VaRα is to not only consider the α-quantile itself, but to consider
the conditional expected value of this tail of the distribution, that is the mean of the
100α% worst realizations. The resulting measure is the so-called conditional Value-
at-Risk (CVaRα), or as some authors refer to it, expected shortfall. Introduced by
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Rockafellar and Uryasev (2000), the conditional Value-at-Risk can be seen as a response
to the serious conceptual problems of VaRα. An excellent review and introduction
to the concept of CVaRα can be found for example in the tutorial of Sarykalin et al.
(2008).

The conditional Value-at-Risk has several advantages over VaRα:

(a) It is coherent in the sense of Artzner’s axioms (see Pflug, 2000, for a proof). In
particular, CVaRα satisfies the subadditivity axiom, so that it can be used for
aggregating risk over several operations to a firm-wide risk measure.

(b) It also takes rare events below F−1
Π (α) into consideration. More important for

the application of the risk measure, however,

(c) CVaRα can be formulated as a maximization problem and allows for incorporation
into optimization problems on decisions y affecting the random variable of outcome
Π(y).

2.2.1 Definition of conditional Value-at-Risk

The conditional Value-at-Risk for a given confidence level α is defined as

CVaRα(Π) = 1
α

∫ α

0
F−1
Π (ω) dω. (2.3)

CVaRα as an objective function again implies sensitivity about the lower values of
profit. When α = 1, all possible values of profit are considered, so the problem is
identical to the risk-neutral problem. However, for any α < 1, only a lower fraction
of the sample space is considered. For example, α = 5% implies that the decision
maker only considers the 5% worst outcomes of the sample space and bases his decision
or optimization on these events. Consequently, his approach implies risk aversion by
optimizing outcome given that one of the 5% worst cases arose such that he cuts his
losses.

Note that for the special case where the random variable has a continuous, strictly
monotone increasing cdf, CVaRα equals the conditional expected value given the
outcome is below the Value-at-Risk, so

CVaRα(Π) = E(Π|Π ≤ VaRα(Π)).



Chapter 2. Risk Measurement and Optimization 22

π

FΠ(π)
bFΠ(VaRα)

α

VaRα π

FΠ(π)
bFΠ(VaRα)

α

VaRα

Figure 2.1: Distribution of Π where ψ such that FΠ(ψ) = α does not exist. The conditional
expectation given π ≤ VaRα(Π) in the left plot (shaded area divided by α) does not result in
the correct CVaRα, as can be seen by comparison with the correct area in the right plot.

However, in the newsvendor problem we need to consider discontinuous distribution
functions of profit. In particular, as will be shown later, there is a discontinuity in
the profit distribution FΠ(π) at a certain value π̄ such that FΠ(π) is continuous and
monotone increasing for all π < π̄ and 1 for all π ≥ π̄. The problem of a discontinuity
of the cdf is shown in Figure 2.1, where for a certain random variable Π, FΠ(π) = α

does not exist. In this case the shaded area in the left plot represents the conditional
expectation given π ≤ VaRα(Π), which does not correspond to the actual CVaRα,
which is indeed the shaded area in the right plot.

A common possibility to circumvent the problem is by rescaling the original variable
Π which has a jump at π̄ by α, so that we come up with a new random variable Π̄
which corresponds to the α-tail of Π. The distribution of Π̄, FΠ̄ can be defined as

FΠ̄(π) =


FΠ(π)
α for π < π̄

1 otherwise.
(2.4)

As a consequence, the conditional Value-at-Risk can easily be calculated by taking the
expected value of Π̄, so CVaRα(Π) = E(Π̄). The rescaling of Π to Π̄ is also illustrated
in Figure 2.2. As can be seen, this definition rescales the distribution by α so that
instead of the original distribution between the horizontal zero-line and α-line, it forms
a new distribution function between zero and one (see Rockafellar and Uryasev, 2002).

Another way to overcome the problem of the discontinuity in the cdf is to use the
generalized inverse distribution function defined as F−1(ω) := inf{u : u ≥ ω) as
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b1
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α

π̄

Figure 2.2: Distribution of Π where FΠ(π) = α does not exist (left). The rescaled distribution
FΠ̄(π) = FΠ(π)/α for π < π̄ is used for further CVaRα calculation (right).

discussed by Pflug and Ruszczyński (2004). Let α+ := F (F−1(α)), then CVaRα can
be represented by

CVaRα(Π) = 1
α

∫ α

0
F−1
Π (ω) dω

= E(Π|Π ≤ F−1
Π (α))−

(
α+ − α
α

)
F−1
Π (α). (2.5)

Graphically, this refers to taking the conditional expectation as in the left plot of
Figure 2.1 and subtracting the difference in the area between the left and the right
plot, i. e. (α+ − α)F−1

Π (α), rescaled by 1/α.
For the analysis of the inventory problem later on in Chapter 3 we will use both of

these approaches. For some problems, it will be convenient to rescale the demand dis-
tribution and consider this transformed distribution for the newsvendor problem. This
helps us to use results obtained already in the literature on the risk-neutral newsvendor,
which can then be applied to the newsvendor with a transformed distribution function.

2.2.2 Optimization of CVaR

As long as CVaRα is used as a performance indicator, applying (2.3) is perfectly fine
to calculate CVaRα for a given sample, e. g. for realizations of a newsvendor’s profit.
But once we want to maximize an objective function containing CVaRα by optimizing
some control, the problem becomes a little bit more tedious. Now we have to consider
two distinct cases, which we will describe in the following example.
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Assume there is a newsvendor making a random profit Π and the only control
available is the order quantity y. Furthermore, profit depends on random demand,
D. Now, we can distinguish two cases in the relation of Π and D. In the first case
the function between demand and profit is monotone, so that a higher realization of
demand results in higher profit and vice versa.5 An optimization of the order quantity
y based on the α%-worst profit realizations can be simply done by considering the
α%-worst demand cases only. In the second case, however, no monotone relation
between demand and profit exists anymore. This is the case, for example, if our
newsvendor considers penalty costs for unsatisfied demand in his objective function.
Now, low profits is a result of low and high demand due to low sales in the first case
and high penalties in the latter case. For the optimization on the order quantity it is no
longer possible to consider a subset of demand realizations, but for each quantity the
profit has to be sorted and the lowest α-fraction of it evaluated. Since the monotonicity
does not hold, the optimization requires repeated resorting of profit. Consequently,
for a practical application in numerical computation on a discrete set of scenarios,
standard minimization algorithms implemented in software products get into troubles
when trying to optimize (2.3) as an objective function due to the discrete reshuffling of
scenarios as pointed out by Acerbi (2004).

Rockafellar and Uryasev (2000, 2002) and Pflug (2000) propose an elegant way to
overcome the problem of sorting while optimizing. In their approach, CVaRα is defined
as the solution to a concave maximization problem over an auxiliary variable ψ.

Proposition 2.1 (Fundamental CVaRα maximization formula). Let y be the control
variable of random profit Π(y), e. g. the order quantity for a newsvendor.

(a) The following formulation is equivalent to the definition of CVaRα in (2.3),

CVaRα(Π(y)) = max
ψ∈R

Γ(y, ψ), (2.6)

where Γ(y, ψ) is defined as

Γ(y, ψ) := ψ + 1
α
E(Π(y)− ψ)−. (2.7)

5Note that the relation could be inverse as well, so that a higher realization of the state variable D
leads to a lower realization of profit. This still refers to case 1 as the relation is still monotone.
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(b) Maximizing CVaRα(Π) with respect to y is equivalent to maximizing Γ(y, ψ) over
all (y, ψ) in the sense that

max
y∈R+

CVaRα(Π(y)) = max
(y,ψ)∈R+×R

Γ(y, ψ) (2.8)

See Rockafellar and Uryasev (2002, Theorem 10, 14) for a proof. Note that as a side
effect of the optimization of CVaRα, the argument ψ that maximizes (2.6) corresponds
to VaRα (cf. Pflug, 2000). Hence, by solving the optimization problem, the optimal
control to maximize CVaRα and its corresponding VaRα are found.

An important additional result concerns the concavity of the optimization problem,
summarized in the following:

Corollary 2.1 (Concavity of CVaRα). If Π(y) is concave with respect to y, then
CVaRα(Π(y)) is concave with respect to y as well. Indeed, in this case Γ(y, ψ) is
jointly concave in (y, ψ).

See Rockafellar and Uryasev (2002, Corollary 11) for a proof. This result will turn
out to be very useful for proofs of concavity of the profit with respect to order quantity
in the following chapters.

2.3 Spectral measures of risk

The risk measures discussed in the previous sections are some special cases of a more
general class of risk measures, the so-called spectral measures of risk, introduced by
Acerbi (2002)6. To understand spectral measures, we can think of the CVaRα as a
weighted average of realizations of a random variable Π, where the weights are 1/α for
the worst 100α% outcomes and zero weights are assigned for the better outcomes.

2.3.1 Definition of spectral measures of risk

Clearly, it can be seen that this is a special case of a more general probability-weighted
average in the form of

M(Π) =
∫ 1

0
φ(ω)F−1

Π (ω) dω, (2.9)

6Note that similar definitions were made under the name of law-invariant co-monotone-additive
coherent measure of risk by Kusuoka (2001).
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where the function φ(ω) for ω ∈ [0, 1] allows us to specify, in general, a function of
weights over the probability range and hence, indirectly, over the inverse distribution
function F−1

Π . We will call φ the risk spectrum of the risk measure M(Π).
Acerbi (2002) defines three conditions on the risk spectrum and shows that M(Π) is

coherent if and only if φ satisfies these conditions:

(a) Positivity: The risk spectrum is non-negative in its domain,

φ(ω) ≥ 0 ∀ ω ∈ [0, 1]

(b) Normalization: The risk spectrum adds up to 1,

∫ 1

0
φ(ω) dω = 1

(c) Monotonicity: The risk spectrum is non-increasing in its domain,

φ(ω1) ≥ φ(ω2) ∀ 0 ≤ ω1 ≤ ω2 ≤ 1.

Note that these conditions imply that any risk measure which neglects the leftmost
end of the tail cannot be coherent, as is the case with VaRα. Furthermore note that
the risk spectrum being non-increasing makes a risk measure which puts more weight
on low rather than on high outcomes. This implies risk-averse behavior of the decision
maker. A risk-neutral decision maker would apply a constant risk spectrum and a
risk-seeking decision maker would apply a non-decreasing risk spectrum. Important
however is the fact that the risk spectrum is monotone in the probability.

In our work, we also allow the risk spectrum to be increasing (non-decreasing) in
its domain to model risk-seeking behavior of the decision maker, we only require
monotonicity. However, we need a forth, additional assumption, which is that the risk
spectrum be finite. So, let us summarize this in the following:

Definition 2.4 (Admissible risk spectrum). We call a risk spectrum φ(ω) with ω ∈ [0, 1]
admissible, if and only if it satisfies the positivity, normalization and monotonicity
criteria and, additionally, is finite for all ω.

In the next two examples it can be seen that both CVaRα and VaRα are special cases
of a general spectral risk measure with a particular risk spectrum. Furthermore, the
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risk spectrum of CVaRα satisfies the conditions of coherency while the risk spectrum
of VaRα does not.

Example 2.1 (CVaRα). From (2.9) it is easy to see that CVaRα is a special case of a
spectral risk measure with risk spectrum

φ(ω) =


1
α ω ≤ α

0 otherwise.
(2.10)

The risk spectrum is a piecewise constant function, with a decreasing single step in
ω = α. If we plug (2.10) in (2.9), we get (2.3) again. Note that the risk spectrum
satisfies the conditions of coherency, in particular the monotonicity condition.

Example 2.2 (Mean-CVaRα). A commonly used extension of the pure CVaRα for-
mulation is a convex combination of CVaRα and the expected value, which leads to a
mean-CVaRα formulation. This risk spectrum uses two parameters, α, λ ∈ [0, 1].

φ(ω) =


λ
α ω ≤ α
1−λ
1−α otherwise.

(2.11)

Again, α refers to the confidence interval of CVaRα, while λ defines the weight of
the CVaRα on the overall risk spectrum (hence 1 − λ is the weight of the expected
value). Unlike the pure CVaRα, this risk spectrum is able to represent risk-averse,
risk-neutral and risk-seeking decision making behavior. When λ > α, relatively more
weight is given to the lower realizations, which implies risk aversion; while for λ < α

the relative weight of the lower realizations is smaller than of the others, which is
risk-seeking behavior. For the special case λ = α the relative weights of lower and
higher realizations are the same, hence, the decision maker is risk-neutral.

Example 2.3 (VaRα). Also VaRα can be seen as a special case of (2.9). Since VaRα

considers one specific outcome only, in particular the best of the α% worst, the risk
spectrum is a positive single peak at point α. The risk spectrum is not finite and does
not satisfy the monotonicity condition here, since a single peak of infinite height is
the strongest possible violation of monotonicity. See Acerbi (2004) for a more formal
discussion of VaRα as a spectral measure.
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While measuring the level of a decision maker’s risk aversion is simple in the case of
the CVaRα (a smaller α implies a higher level of risk aversion), when using general
risk spectra it is no longer that easy to compare the level of risk aversion. However, to
be able to derive structural properties of the optimal solution with respect to the level
of risk aversion later on, we need an objective way to assess risk aversion. In order to
do so, we introduce the following:

Definition 2.5 (Order of risk aversion). Let DM1 and DM2 be two decision makers
with risk spectra φ1 and φ2, respectively. We call the aggregated risk spectra Φi(ω) =∫ ω

0 φi(t) dt risk transformation functions.

(a) DM1 is called more risk-averse than DM2 at probability ω if Φ1(ω) > Φ2(ω).

(b) Moreover, we call DM1 strictly more risk-averse than DM2, if (a) holds for at
least one specific ω and, additionally, if Φ1(ω) ≥ Φ2(ω) holds for every ω ∈ [0, 1].

Definition 2.5, concerning the ordering of risk aversion, implies that any risk-averse
decision maker has a risk transformation function Φ(ω) > ω for all ω. The task of the
risk transformation function is to transform the distribution function of the state into
a “virtual” distribution of a “virtual” state where implicitly the risk preference of the
decision maker is considered; see the discussion about the rescaling of the distribution
function in the specific case of a CVaRα decision maker in Section 2.2.1, in particular
Figure 2.2 (cf. Rockafellar and Uryasev, 2002). Since for any risk-averse decision maker
Φ−1(t) < t holds, the risk transformation is a downward transformation of the quantile,
so F (x) < Fφ(x) if F (x) denotes the distribution of the state and Fφ(x) := Φ (F (x))
the transformed distribution.

To illustrate the concept of ordering with an example, consider a risk-neutral decision
maker facing a newsvendor problem as presented in (1.2), where the optimal cycle
service level, i. e. the target quantile, was found to be p−c

p−v . Once the decision maker
becomes risk-averse, the distribution of the state will be transformed or rescaled such
that Fφ(x) > F (x) for any x, which implies that the optimal order quantity will be
smaller than the risk-neutral solution (for a detailed discussion of this point see the
analysis of the inventory problem in Chapter 3).

For the later analysis we need the following definition of a parameter measuring the
risk preference.
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Definition 2.6 (Parameter of risk preference). We define η as a generic, ordinal scaled,
monotone increasing parameter of the decision maker’s risk preference. Further, it is
normalized, such that η = 1 refers to risk neutrality, any η < 1 implies risk aversion
and η > 1 risk-seeking behavior.

Definition 2.6 based on Definition 2.5(b) introduces an ordinal scaled7 parameter
of the decision maker’s risk preference. We say that the risk preference increases in
η. As an example, decision maker 1 with η1 = 0.6 has a lower risk preference than
decision maker 2 with η2 = 0.8, although both are risk-averse. A decision maker 3 with
η3 = 1.2 has a higher risk preference than decision maker 1 and 2, and he is risk-seeking.
Note, however, that we cannot formulate a direct relation between a specific value of η
and the parameters of the underlying risk-spectrum. As an example, there exists no
function that maps α and λ for a mean-CVaRα risk spectrum into η. All we can say
for this example is that for any λ > α, the corresponding η < 1 (risk aversion), and for
any λ < α, η > 1 (risk-seeking), with the special case of risk neutrality for the equality
of both parameters.

This generic parameter of the risk spectrum is used later on to derive general results
with respect to the level of risk preference. It allows us, independent of the underlying
risk spectrum, to conduct sensitivity analysis on the problem. For example, we are able
to draw conclusions such as the objective function is increasing in the risk preference,
etc. When we perform numerical analysis, so when concrete risk spectra are used, we
specify the corresponding parameters of the risk spectra. As an example, in numerical
plots with a mean-CVaRα risk spectrum, we specify directly α and λ, and not η.

Note that it is not always possible to strictly order the risk preferences of the decision
maker. It is easy to imagine that the risk transformation functions can intersect. See
Figure 2.3 for an example of two decision makers where the first one applies a pure
CVaRα risk spectrum and the other a mean-CVaRα formulation. We will see later for
the inventory problem in Chapter 3 that the ordering of the optimal decision, i. e. the
optimal order quantity, for two risk-averse decision makers depends then on the target
cycle service level.

7There is the restriction that η only allows power transformations as we normalize the parameter so
that η = 1 refers to the risk-neutral preference.
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Φ(ω)

0 10.30

Figure 2.3: Two decision makers with different risk spec-
tra: Decision maker DM1 with CVaRα risk spectrum,
α = 0.5 (solid line) compared with decision maker
DM2 using a mean-CVaRα risk spectrum with α = 0.1,
λ = 0.5 (dashed line). While DM2 is more risk-averse
for lower probabilities (< 0.3), the pure CVaRα de-
cision maker DM1 becomes more risk-averse for the
higher probability ranges.

2.3.2 Discussion on how to model the risk spectrum

While a risk spectrum satisfying Definition 2.4 can be any finite, monotone, non-
negative, normalized function to guarantee coherence of the decision, little discussion
has been done so far in the literature about the concrete formulation of risk spectra.
Dowd et al. (2008) review some of the “natural” formulations of risk spectra, such
as decreasing exponential functions and power functions, which we will use later in
Chapters 3 and 4 to model the risk preferences of the decision maker for inventory and
pricing problems. Sriboonchitta et al. (2009) relate classical risk utility functions to
risk spectra.

Following Dowd et al. (2008), a common formulation used for risk utility functions
is the power utility function. Accordingly, we can formulate a weighting function on
the probabilities similar to the power utility function in the EU framework,

φ(ω) = 1
k

(1− ω)
1
k
−1, (2.12)

where the parameter k ∈ (0,∞) reflects the degree of risk-aversion of the decision maker
such that higher values of k refer to higher levels of risk-aversion. It can be easily seen
that for any finite k this function satisfies all properties in Definition 2.4. Moreover, for
k < 1 the risk spectrum reflects risk-averse behavior, k = 1 refers to the risk-neutral
case where φ is constant, and any k > 1 results in risk-seeking behavior. If 0.5 < k < 1
the risk spectrum is concave, which implies a progressive marginal sensitivity on the
probabilities, while for the case k < 0.5 the decision maker has a diminishing marginal
sensitivity and the risk spectrum is convex. The case k = 0.5 is a special case with a
linear risk spectrum. Hence, this proposed risk spectrum is quite flexible by choosing
the appropriate parameter. Note, however, that φ(1) = 0, which implies that the risk
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Figure 2.4: Two examples of risk spectra: Power risk spectrum φ(ω) = 1
k (1 − ω) 1

k −1 for k =
{0.33; 0.5; 0.67} (left). Note that for such power functions any 0.5 < k < 1 leads to a concave
risk spectrum, while k < 0.5 results in a convex risk spectrum. A linear risk spectrum is the
special case of k = 0.5. In the right plot, an exponential risk spectrum φ(ω) = ue−uω

1−e−u for
u = {1; 2; 4} is shown.

spectrum does not (implicitly) contain the expected value of profit. An example of a
power risk spectrum is shown in Figure 2.4 (left) for different parameter values.

Another possible risk spectrum based on the exponential risk utility function is the
exponential risk spectrum, defined as

φ(ω) = ue−uω

1− e−u , (2.13)

where u reflects the level of risk-aversion. For a strictly positive parameter u > 0, this
risk spectrum also satisfies all properties in Definition 2.4. It (implicitly) considers a
mean-risk formulation since φ(1) 6= 0. Hence, the risk spectrum can be decomposed
into a mean-risk formulation, where mean has a weight φ(1) and the risk part 1− φ(1).
Increasing values of the parameter u again increase the diminishing marginal sensitivity
in probability about profit.

2.3.3 Optimization of general spectral measures of risk

With the same arguments as in the optimization of CVaRα, the application of a spectral
risk measure as a performance indicator is easily possible by using (2.9) to describe
the riskiness in the desired form. Once the decision maker intends to optimize an
objective function based on spectral measures, the same problem that we faced for the
optimization of CVaRα in Section 2.2.2 will come up again: the problem of resorting.
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Acerbi and Simonetti (2002) extend the method of Pflug/Rockafellar/Uryasev to the
general spectral measure M.

Proposition 2.2 (Fundamental maximization formula). Let y be the control variable
of random profit Π(y), e. g. the order quantity for a newsvendor. Let us further define
a Γ(y, ψ) such that

Γ(y, ψ) := φ(1)EΠ(y)−
∫ 1

0

dφ

dω

{
ωψ(ω) + E(Π(y)− ψ(ω))−

}
dω. (2.14)

(a) If the decision maker is risk-averse, i. e. the risk spectrum φ is decreasing, the
following formulation is equivalent to the definition of the spectral risk measure
in (2.9),

M(Π(y)) = max
ψ

Γ(y, ψ). (2.15)

Further, maximizing M(Π(y)) with respect to y is equivalent to maximizing the
functional Γ(y, ψ) over y and the function ψ : (0, 1)→ R in the sense that

max
y

M(Π(y)) = max
(y,ψ)

Γ(y, ψ) (2.16)

(b) If the decision maker is risk-seeking, i. e. the risk spectrum φ is increasing, the
following formulation is equivalent to the definition of the spectral risk measure
in (2.9),

M(Π(y)) = min
ψ

Γ(y, ψ). (2.17)

See Acerbi and Simonetti (2002) for a proof.
From this formulation it is immediately clear that the sorting problem of the outcomes

cannot be replaced by separating them into two subsets with a single variable ψ, as
was the case with CVaRα. Now each possible realization has to be distinguished from
the others since it potentially carries a different weight with it. Hence, the single
auxiliary variable ψ in the case of CVaRα-optimization now turns into a continuous
function ψ(ω) defined for ω ∈ (0, 1) and the maximization has to be carried out on Γ
by optimizing the whole function ψ(ω).

An important additional result concerns the concavity of the optimization problem,
summarized in the following:
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∆φ2

∆φ3 Figure 2.5: Example of a discretized risk spectrum with
J = 3 jumps. The height of each jump j is ∆φj < 0.
Note that the case φ(1) > 0 is not considered a jump
anymore.

Corollary 2.2 (Concavity of M). If Π(y) is concave with respect to y, then M(Π(y))
is concave with respect to y as well. Indeed, in this case Γ(y, ψ) is jointly concave in
(y, ψ).

See Acerbi and Simonetti (2002) for a proof. Again, this result will turn out to be
very useful for proofs of concavity of the profit with respect to order quantity in the
following chapters.

Although formulations (2.15) and (2.17) allow for very general definitions of risk
spectra, the optimization becomes very difficult to solve in the truly continuous case.
Especially to ease numerical optimization, the risk spectrum can be discretized into a
piecewise constant function with a finite number of J jumps at α = α1, . . . , αJ < 1.
The height of each jump is ∆φj = φ(ω+)−φ(ω−) for j = 1, . . . , J , where φ(ω+) denotes
the risk spectrum at ω evaluated from the right and φ(ω−) is evaluated from the left.
See Figure 2.5 for an illustration of a discretized risk spectrum. Note that ∆φj < 0
for all j implies risk aversion while the case ∆φj > 0 for all j implies a risk-seeking
preference by the decision maker.

The discretization of the risk spectrum reduces the problem to an optimization
problem of J auxiliary variables ψj , so Γ(Π,ψ) can be written as

Γ(Π,ψ) = φ(1)E(Π)−
J∑
j=1

∆φj
{
ωjψj + E(Π − ψj)−

}
. (2.18)

The optimization of (2.18) over the vector ψ can be again carried out with high efficiency
by using standard optimization algorithms implemented in software tools.



Chapter 3

Inventory Problem with Risk Measures

While a lot of results have been obtained so far for the classical risk-neutral newsvendor
problem, fewer works have considered a risk-averse or risk-seeking decision maker
for the inventory problem. Early works generally cover risk preferences by applying
the expected utility theory framework. Profit or losses from operations are added
to the newsvendor’s final wealth. A transformation of final wealth by the utility
function allows a comparison of different order quantities in a relative sense, so that an
optimal order quantity can be found. Structural results of these works are not always
comparable because different models are considered.

A close approach to ours of considering risk-aversion is Choi and Ruszczyński (2008),
where law invariant measures of risk1 are used. The authors find structural properties
of the optimal order quantity for an inventory problem without shortage penalty cost.
Their work is extended in Choi et al. (2009) to the multi-product case.

The analysis of the inventory problem depends mainly on whether or not shortage
penalty cost have to be considered. It can be seen that the presence of such shortage
penalty cost might result in a major change in the optimal policy. As discussed earlier,
shortage penalty cost is the per-unit cost of having too few units available, which
exceeds the mere lost revenues, so s = cu− r > 0. To understand the impact of penalty
cost, we need to look at the relation between random demand and random profit,
specifically at the correspondence between the ordered random demand and ordered
profit in the sense that the n-lowest demand realization results in the n-lowest profit
realization for each n.

Lemma 3.1. Let D and Π be the random demand and profit, respectively, with
realizations x and π. Without shortage penalty cost, so s = 0, there exists a one-to-one

1Note that the concept of law invariant measures of risk is identical with spectral risk measures.

34
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correspondence of the order of demand realizations x and the order of resulting profit
realizations π.

Proof. To show that without shortage penalty cost random profit has the same ordering
as random demand, it is sufficient to see that in this case π is (weakly) monotone
increasing in x. Using (1.5) we can write

Π(y, x) =

(p− c)x− (c− v)(y − x) x ≤ y

(p− c)y x > y.
(3.1)

Hence, Π(y, x) is increasing in x up to x = y and then constant.

A main consequence of Lemma 3.1 is that in the case s = 0, the operation becomes
riskier the higher the order quantity is, and undesirable deviations from a certain
profit level can always be reduced by ordering less initially (and hence accepting a
lower expected profit). In the extreme case of not ordering at all, i. e. y = 0, both
expected value and profit variability reduce to zero. However, once the decision maker
considers shortage penalty cost, clearly this relation no longer holds. Minimizing risk
now becomes a trade-off between costs resulting from overstocking and, unlike the
previous case, costs from ordering too few due to shortage cost.

Hence, we will discuss the inventory problem with and without shortage penalty
cost separately. In this chapter we will discuss the inventory problem with explicit
consideration of risk preferences of the decision maker. While the focus is on the
analysis under risk measures, in Section 3.1 we will start with a review of the existing
literature on the problem, including approaches other than using risk measures, e. g.
using the expected utility framework. Sections 3.2 and 3.3 are dedicated to the detailed
analysis of the model with risk measures, without and with shortage penalty cost,
respectively. Applications in the field of supply chain coordination and contracting
under consideration of risk preferences will complete the chapter.

3.1 A review of inventory control with risk preferences

One of the early papers including risk aversion in the newsvendor context is Lau (1980),
who considers three different objectives for a risk-averse newsvendor: a mean-deviation
tradeoff, a utility function and the probability of achieving a minimum profit. Lau
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(1980) offers a formulation of the expected utility from profit with a utility function
approximated by a polynomial. He gives an implicit solution for the optimal order
quantity, but it can only be solved numerically and he cannot present properties of the
optimal solution.

Eeckhoudt et al. (1995) examine the newsvendor problem with more general utility
functions, but their setting is not the standard newsvendor setting: after demand
realization, emergency ordering is possible at a cost of e where c ≤ e ≤ p. They show
that risk aversion leads to lower order quantities.

Eeckhoudt et al. (1995) show:

(a) If the newsvendor has decreasing absolute risk aversion, he orders more when he
has larger initial wealth.

(b) y∗ increases in v and e similar to the risk-neutral case.

(c) Changes in the cost and selling price can affect the order quantity in both
directions. y∗ might decrease as p increases and c decreases, which never happens
in the risk-neutral case. The complication arises because of the two different
effects of these parameters: the effect on the marginal benefit of y and the effect
on the total wealth.

Wang et al. (2008) observed the last point shown by Eeckhoudt et al. (1995) in a
numerical study and this observation caused a criticism of the expected utility theory
for risk-averse newsvendor model. They observe that the newsvendor decreases his
order quantity as the selling price increases, and in some cases it can be decreased
almost to zero if the selling price is too high. A small degree of risk aversion for low to
intermediate levels of return implies an irrationally high degree of risk aversion at the
higher levels of return. While this problem was identified and treated in some fields of
economics, “there is a lack of critical evaluation of expected utility theory for more
complex settings such as the newsvendor problem” (Wang et al., 2008).

Keren and Pliskin (2006) solve the risk-averse newsvendor problem for a uniform
demand distribution and provide a simple closed-form solution. They show that even
with shortage penalty cost, a risk-averse newsvendor orders less than the risk-neutral.
However, it is questionable how valuable the insights derived from using uniform
distribution is since it might give counterintuitive results in case of risk aversion (see
Collins, 2004).
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Wang and Webster (2009) use a special form of utility functions: a piecewise linear
loss aversion utility. The newsvendor considers his initial wealth as a reference level
such that a final wealth below this level is considered as a loss and above it as a gain.
He is more sensitive to losses than gains but within each region the utility is linear in
wealth. They show that the risk aversion may lead to higher order quantities if the
shortage cost is high and the relative uncertainty of demand is low.

Lau (1980) considers a mean-deviation objective with the standard deviation of profit
as the deviation measure. When there is no shortage penalty, i. e. s = 0, he shows that
the risk-averse newsvendor orders less than the risk-neutral one, and he claims that
the same should hold when s > 0 without giving a proof because of the complexity
of the problem. However, Wu et al. (2009) state that they disprove the claim of Lau
(1980) for power distributed demand. They consider the case with positive shortage
cost and they use the variance of profit as the deviation measure. They show that
depending on the distribution parameter, the risk-averse newsvendor might order more
than the risk-neutral. Chen and Federgruen (2000) come to the same result when they
formulate the objective on cost parameters.

Chen and Federgruen (2000) model the risk-averse newsvendor problem in three
different ways under the mean-variance criterion. One main result of the work is: for a
risk-averse newsvendor, the two objectives, profit maximization and cost minimization,
might result in different decisions. They explain this difference by the dependence of
revenue and cost, which yields to: Var(Profit) 6= Var(Revenue)+Var(Cost). Moreover,
the decisions are different when the cost is formulated differently. They assume zero
shortage cost and write the profit function for demand, D, as: Π(y) = (p− c)y − (p−
v)(y−D)+, and additionally they write two different cost functions which are equivalent
when the newsvendor is risk-neutral: C1(y) = (c− v)(y −D)+ + (p− c)(y −D)− and
C2(y) = −v(y −D)+ + p(y −D)− + cy. When the mean-variance rule is applied for
the profit, they show that the risk aversion leads to lower order quantities if s = 0.
When the objective is defined as the minimization of expected cost and the variance of
cost the result is more interesting. Assuming a power demand distribution as in Wu
et al. (2009), they come up with the following result: depending on the distribution
parameter, risk aversion may lead to higher order quantities even without shortage
cost. Moreover, the size of overage and underage costs do not necessarily have an effect
on this result. Hence, the difference between risk-averse and risk-neutral decision y∗ is
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significantly affected by the specific demand distribution.
Collins (2004) shows similar results with numerical examples using the definition

of overage cost co and underage cost cu (recall the discussion in Section 1.1.1). He
uses the mean-variance rule for the cost but he does not specify the cost parameters
in detail. He uses co and cu without decomposing them into shortage cost, salvage
value, etc. For gamma, negative binomial, and normal demand distributions he shows
that if the cost of underage is larger than the cost of overage, cu ≥ co, the risk-averse
newsvendor orders more than the risk-neutral one. What defines the direction of the
difference between the risk-averse and risk-neutral order quantity is the relative size of
co and cu, but not if they include shortage cost or not. Even if there are no shortage
costs and no salvage value, if cu = p− c ≥ co = c, so the profit margin is more than
50%, the risk-averse newsvendor orders more than the risk-neutral one. However, such
a result is not possible when the objective is written on profit.

When the mean-variance rule is applied on cost or profit, different results come up
because of the variance factor. The means are optimized at the same level, which
is the solution to the risk-neutral newsvendor. However, the variance of profit and
the variance of cost shows different properties. When there is no shortage cost, the
distribution of profit has a bound where demand equals order quantity. For all D ≥ y
profit is the same, so the variance comes from the lower tail. In order to decrease this
variance, the tail should be decreased which means decreasing order quantity. At the
very extreme, when y = 0 there is no variance on profit. However, the distribution of
cost has both tails even if y = 0. When the problem is formulated on cost it is written
as co = c− v and cu = p− c, and each unit of demand above y costs cu, which, in fact,
is an opportunity cost. This term causes the distribution of cost to become unbounded.
For each y the variance of cost is proportional to co, which comes from the lower tail of
demand, and to cu from the upper tail, and the quantity that gives the lowest variance
depends on the relation of the two parameters, independent of their decomposition.

Collins (2004) points out an important issue: how critical it is to include risk aversion
in the models. He mentions that in some cases the risk-averse and the risk-neutral
solutions are so close that it might not be worth it to include risk aversion in the
analysis and so to deal with complicated models. Specifically, for symmetrical demand
distributions, if co = cu then the risk-averse and risk-neutral decisions are the same
and the closer the two cost parameters are, the closer the solutions. Moreover, for the
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uniform distribution the two solutions are always equal independent of the difference
between co and cu. Since a uniform distribution is commonly used for numerical
examples, this result is specifically important and one should be careful about deriving
general insights from these examples.

As a third approach, Lau (1980) studied the problem of maximizing the probability
of achieving a profit level L with and without shortage cost. When there is no shortage
cost the result is quite simple: the optimal order quantity is y∗ = L

p−c . Hence, the
solution does not depend on the demand distribution at all, since the profit has a
one-to-one correspondence with demand for all D < y∗, and for all D ≥ y∗ it stays in
the targeted level L. For any decrease in y∗ it becomes impossible to reach L, and for
any increase more demand is required to cover the cost c which means a decrease in
the probability.

When the shortage cost is positive, given y, two different demand values can give
the same profit level, so the distribution of profit is no longer a monotone function of
demand. Lau (1980) presents the general solution method and gives explicit solutions
for some demand distributions, such as normal and uniform distributions. Interestingly,
for the uniform distribution, the optimal order quantity does not depend on salvage
value at all.

From the discussion on mean-deviation objective, we know that when the problem is
formulated in terms of cost, the solution becomes more complicated. Independent of
shortage cost, the monotonic behaviour in demand ceases to exist and we expect that
a simple solution like the one presented by Lau (1980) cannot be valid anymore.

After the axiomatic foundation of coherent risk measures by Artzner et al. (1999), the
application of risk measures in inventory modeling became popular. CVaRα, specifically,
has become an important measure of risk in inventory modeling. Jammernegg and
Kischka (2007) study the CVaRα problem focusing on the effect of risk aversion on
performance measures. They formulate the objective function as a convex combination
of the expected profit and the CVaRα of profit, so that they can cover both risk-averse
and risk-seeking behaviour. Ahmed et al. (2007) solve the CVaR maximization problem
for the newsvendor model with shortage cost. They formulate the objective in terms
of cost, and the focus is on proving the existence of an optimal solution. Inclusion
of shortage cost and the different formulation does not allow a simple solution, but
they show that an optimum exists. Gotoh and Takano (2007) consider both the
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CVaRα and mean-CVaRα models with shortage cost. They use two different objectives,
one formulated on profit and one on cost. In the following sections, the CVaRα and
mean-CVaRα models are analyzed in more detail.

3.2 Basic inventory control problem

In the following section we will analyze the newsvendor’s inventory problem under
spectral risk measures and derive the optimality conditions. We will derive some
structural properties about the optimal solution, i. e. the optimal order quantity.
Further, we discuss the problem with respect to different performance measures such as
the cycle service level. After having discussed the inventory problem with general risk
spectra, we will look at special cases of risk spectra such as the CVaRα or mean-CVaRα

formulations as well as some continuous risk spectra such as the power and exponential
function, in Section 3.2.2. We will conclude this section with a numerical analysis of
the inventory problem for different formulations of the demand distribution and risk
spectrum.

3.2.1 Optimal policy and structural properties for the basic inventory problem

We are now ready to apply general risk spectra to the basic inventory control problem,
i. e. the newsvendor problem without shortage penalty cost.

Proposition 3.1 (Newsvendor with a general risk measure). Let the objective function
of a newsvendor using a spectral risk measure be

max
y∈R+

M(Π(y)), (3.2)

where
M(Π(y)) = (p− c)y − (p− v)

∫ y

0
(y − x)φ(F (x))f(x) dx. (3.3)

The risk measure is concave in the order quantity y, and the optimal order quantity y∗,
is

y∗ = F−1
(

Φ−1
(
p− c
p− v

))
, (3.4)

where Φ−1(ω) denotes the inverse risk transformation function.
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See Appendix A for a proof.
This result shows us that the optimal order quantity of a newsvendor optimizing a

measure using a general risk spectrum can be expressed in a very compact way. While
for a risk-neutral newsvendor the critical fractile p−c

p−v refers directly to the optimal
cycle service level, CSL∗, a risk-averse or risk-seeking newsvendor will deviate from
this solution.

Based on Proposition 3.1 we can obtain structural properties of the optimal solution
with respect to the cost parameters as with the risk-neutral problem. From the
monotonicity of F and Φ we can immediately derive the following

Corollary 3.1. The optimal cycle service level CSL∗ and the optimal order quantity
y∗ are increasing in the selling price p and salvage value v and decreasing in cost c.

Note that these results are in line with the results for the risk-neutral newsvendor.
In the following proposition we derive structural results about the optimal cycle service
level and the optimal order quantity with respect to the risk preference using (3.4).

Proposition 3.2. For a newsvendor without shortage penalty cost, the optimal cycle
service level CSL∗ and the order quantity y∗ increase in the risk preference η.

Proof. From Definition 2.5 we know that Φ decreases in η, and its inverse Φ−1 increases
in η. It follows immediately that y∗ increases in η.

This result generalizes results previously described in the literature. For a newsvendor
applying a CVaRα objective function, Chen et al. (2004) show that the optimal order
quantity for a risk-averse newsvendor will not exceed the risk-neutral optimal order
quantity. For different formulations of mean-deviation rules similar results were found.
Jammernegg and Kischka (2007) find that the optimal order quantity is increasing in
α (i. e. decreasing in the level of risk aversion) and decreasing in λ (higher values of λ
puts higher weights on the α-quantile and lower weights on the expected value and,
hence, imply a higher level of risk aversion).

The intuition behind this behaviour is clear: Since the newsvendor incurs no shortage
penalty cost other than lost profit p − c, the risk in profit comes only from unsold
leftover inventory. Hence, by reducing the order quantity, the newsvendor can always
reduce his risk by accepting the reduced expected profit. Later in Section 3.3 we will
see that in the case of positive shortage penalty cost this is no longer true.
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p1−v
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Figure 3.1: Two decision makers with different risk spec-
tra: DM1 with CVaRα risk spectrum, α = 0.5 (solid
line), DM2 with mean-CVaRα risk spectrum, α = 0.1,
λ = 0.5 (dashed line). Note that the optimal cycle
service level is the transformed critical fractile. For a
low price p1 DM1 orders more than DM2, while for a
high price p2 this relation changes.

Continuing the discussion about non-strict ordering of Φ from Section 2.3.1, where
we gave an example of two intersecting risk transformation functions in Figure 3.1, we
can see now that in this case the order of the optimal cycle service level and order
quantity depends on the critical fractile. For smaller ranges of the target cycle service
level, decision maker DM1 will order more than decision maker DM2 and act less
risk-averse; for larger ranges this relation will change. While for some ranges of the
critical fractile, e. g. for low selling prices, decision maker DM1 orders more than DM2,
but as the critical fractile increases this relation changes.

Proposition 3.3. The expected profit EΠ of a newsvendor using a spectral measure
of risk is maximized for the risk-neutral optimal order quantity. EΠ decreases the
more the newsvendor’s risk preference deviates from risk neutrality.

Proof. Recall that EΠ is concave in y, with its maximum in the risk-neutral optimal
order quantity. From Proposition 3.2 we know that y∗ increases in η. Hence, EΠ is
unimodal in the risk preference.

This result was already described by Jammernegg and Kischka (2007) for a newsven-
dor using a mean-CVaRα risk spectrum (see the discussion later in Example 3.3).

While the cycle service level can be seen as an external, i. e. customer oriented
performance measure, the probability of missing a profit target level as defined in (1.9)
is an internally oriented performance measure.

Lemma 3.2. Let L be a given profit target level. The probability of missing the profit
level L is the probability that profit is below the target. For a newsvendor without
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shortage penalty cost

PLL := P(Π ≤ L) =

F
(

(c−v)y+L
p−v

)
for L ≤ (p− c)y

1 for L > (p− c)y.
(3.5)

Hence, in the case of y ≥ L
p−c , PLL is monotone increasing in y.

See Appendix A for a proof.
Note that in the special case L = 0 the probability of any negative profit realization

is considered (cf. Jammernegg and Kischka, 2007).

Proposition 3.4. Let a newsvendor with a general admissible risk spectrum order y∗

such that it maximizes his risk measure M(y). PLL increases in the risk preference for
any L ≤ (p− c)y and is 1 otherwise.

Proof. Using Proposition 3.2, the optimal order quantity y∗ increases in η. From
Lemma 3.2, PLL increases in y for L ≤ (p − c)y and is 1 otherwise. Hence, PLL
increases in the risk preference for L ≤ (p− c)y and is 1 otherwise.

This result was already found by Jammernegg and Kischka (2007) for a mean-CVaRα

decision maker for the case L = 0. In this case the optimal probability of missing the
profit target is increasing in α and decreasing in λ. Very related to Proposition 3.4 is
Lau (1980), who describes a situation where a budgeted profit might be established
such that a manager may be interested primarily in maximizing the probability of
reaching this budget. In this case it might be less important if the limit is strongly
exceeded or just reached. Lau (1980) derives the optimal order quantity which we can
formulate in the following:

Corollary 3.2 (Maximizing the probability of reaching a profit target). The optimal
order quantity y∗, which maximizes the probability of reaching a certain profit target
level L, is

y∗ = L

p− c
(3.6)

On this result Lau (1980) comments “This result is somewhat strange: to maximize
the probability of attaining L, one sets the decision variable such that L is also the
largest possible profit attainable.” However, we think this result is quite intuitive:
since the profit distributions are ordered with respect to y up to (p − c)y, once the
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newsvendor already ordered y∗ = L
p−c there is no benefit from ordering a single unit

more, since the maximum potential profit increase is not considered, while the worst
profit outcome, −cy, is decreasing. If the newsvendor orders one unit less than (3.6),
he cannot reach the profit target level at all.

Let us state here that the primary use in this work of the probability of missing a
profit target level is as performance measure, not as objective function. Hence, the
result of Corollary 3.2 is mainly presented for the sake of completeness. Among the
recent works, Shi and Chen (2007) consider maximizing the probability of reaching
a profit target level in a supply chain context, and in Shi et al. (2010) a combined
inventory and pricing approach is taken.

3.2.2 Specific examples of risk spectra in the basic inventory problem

Using some examples, we will now show how the general spectral measure can be used
to solve the inventory problem for already-known formulations, such as the expected
value solution, the CVaRα objective function or a mean-deviation objective where
deviation is expressed by CVaRα. As all of these formulations are special cases of
spectral measures, the examples illustrate the flexibility of using general risk spectra in
the problem analysis.

Example 3.1 (Expected value). A first example is the expected value formulation
derived in (1.4). Using the expected value implies neutrality about the variability
of the outcome, hence the spectral function does not assess higher weights to lower
outcomes. The risk spectrum is

φ(ω) = 1. (3.7)

It can be easily seen that applying (3.7) to (3.4) results in the optimal order quantity
for a risk-neutral newsvendor

y∗ = F−1
(
p− c
p− v

)
as previously stated in (1.4).

Example 3.2 (CVaRα). As we discussed earlier in Section 2.3 when describing the
general spectral measure, CVaRα is another special case where the risk spectrum is a
constant function 1

α in the range 0 . . . α as in (2.10), so that the risk transformation
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function is

Φ(ω) =

ω
1
α ω ≤ α

1 otherwise.
(3.8)

Its inverse is then
Φ−1(t) = αt for t ∈ [0, 1] (3.9)

so that the optimal order quantity is

y∗ = F−1
(
α · p− c

p− v

)
. (3.10)

This result can be found for example in an early draft of Chen et al. (2004), who, in
their work, specifically used the CVaRα objective function to model risk-averse decision
making behaviour.

An observation we can make for a CVaRα spectrum is that the optimal cycle service
level is limited by α. If we consider DM1 in Figure 3.1 again (the solid line), then it is
easy to see that the maximum cycle service level CSLmax = α is reached for Φ = 1, so
for limp→∞

p−c
p−v . This implies that independent of the profitability of the product, the

optimal order quantity will not exceed a certain amount, F−1(α).
This implies, for the distribution of profit, that the optimal order quantity will be

such that VaRα(Π(y∗)) = (p − c)y∗ (see Gotoh and Takano, 2007, or Chen et al.,
2008b). The intuition behind this is that a CVaRα decision maker only considers profit
outcomes below VaRα; any realization above VaRα is not considered. Hence, using the
fact that the maximum possible profit realization under the “best” demand state is
(p− c)y, there is no benefit from ordering any quantity where the resulting VaRα(Π(y))
is smaller than (p− c)y.

Example 3.3 (Mean-CVaRα objective). The mean-CVaRα objective function is a
special case where the risk spectrum is a piecewise constant function with a single step
in α as in (2.11). Recall that this risk spectrum has two paramters. It is composed out
of a CVaRα part with parameter α and the expected value in a convex combination,
where the weighting factor is λ. Its risk transformation function is

Φ(ω) =


λ
αω ω ≤ α

λ+ 1−λ
1−α(ω − α) otherwise.

(3.11)
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The inverse risk transformation function in this case is

Φ−1(t) =


α
λ t t ≤ λ

α+ 1−α
1−λ (t− λ) otherwise.

(3.12)

Plugging (3.12) in (3.4) leads to the optimal order quantity

y∗ =

F
−1
(
α
λ
p−c
p−v

)
p−c
p−v ≤ λ

F−1
(
p−c
p−v + α−λ

1−λ
c−v
p−v

)
otherwise.

(3.13)

A mean-CVaRα objective of this type was already proposed and the optimal policy
found in Jammernegg and Kischka (2007) and Gotoh and Takano (2007). While the
latter are mainly interested in finding a linear programming formulation for solving
the capacity constraint multi-product case, Jammernegg and Kischka (2007) derive
structural properties for the risk-averse (α < λ) as well as for the risk-seeking (α > λ)
behaviour. They show that the optimal order quantity y∗ and the optimal cycle service
level CSL are increasing in α and decreasing in λ, hence decreasing in the level of risk
aversion.

Note that as long as the critical fractile p−c
p−v is smaller than λ, the solution of the

mean-CVaRα optimizer is not different from the pure CVaRα optimizer.
Further, Jammernegg and Kischka (2007) point out that expected profit decreases

the more risk-averse or risk-seeking the decision maker becomes. This result can be
obtained considering the fact that the optimal order quantity of a risk-neutral decision
maker results in the maximum expected profit, and by the monotonicity of the order
quantity in the risk preference.

3.2.3 Numerical study of the basic inventory control problem

In this section we will present a numerical study in order to illustrate the findings
introduced in the previous section and will discuss some of the structural properties of
the problem in more detail.

For numerical analysis of the basic inventory control problem we use the following
parameters: selling price p = 10, production cost c = 6, salvage value v = 3, no
shortage penalty costs are considered (see Section 3.3.3 for numerics of the inventory
problem with positive shortage penalty cost). Additionally, for the mean-CVaRα risk
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spectrum, whenever it is not stated otherwise, we set λ = 0.5.
To model demand uncertainty, in the following we assume two parametric distribu-

tions of demand.

(a) A Weibull distribution D ∼ Weib(2, 100) is used as a general rule, since it is
shown to be a “Newsvendor distribution” by Braden and Freimer (1991). The
expected demand, ED = 88.62 units, the optimal risk-neutral cycle service
level is CSL∗ = 0.5714 and the corresponding optimal order quantity is y∗ =
F−1(0.5714) = 92.05 units.

(b) A Gamma distribution D ∼ Gamma(µ, σ2) will be used for all cases where the
effect of demand variance is of interest, since the Gamma distribution allows for
changing variance while keeping the mean constant, which is not possible for the
Weibull distribution. Expected demand is again ED = µ = 88.62; CSL∗ and y∗

depend on the actual variance.

Note that both distributions have a positive support which fits with the assumption of
a non-negative demand D, unlike the commonly used normal distribution.

We use the following definitions of both distribution functions. We define the Weibull
distribution with two parameters, the shape γ and scale δ parameter, as

F (x) = 1− e−(xδ )γ , (3.14)

with corresponding density,

f(x) = γ

δ

(
x

δ

)γ−1
e−(xδ )γ . (3.15)

For the Gamma distribution we use as parameters mean µ and variance σ2 directly, so
that we can modify them independently. Hence, we define the cdf as

F (x) =
γ
(
µ2

σ , x
µ
σ

)
Γ
(
µ2

σ

) , (3.16)

where here Γ is defined as the complete Gamma function and γ is the lower incomplete
Gamma function2. All numerics are calculated using the R language and environment

2The Gamma function is defined as Γ(z) :=
∫∞

0 tz−1e−t dt. The lower incomplete gamma function is
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Figure 3.2: Optimal order quantity y∗ for a mean-CVaRα (left plot) and a power (right plot) risk
spectrum objective function. Note that the circles on the lines correspond to the risk-neutral y∗

and for each line separate between risk-averse (left) and risk-seeking (right) behaviour.

for statistical computing (R Development Core Team, 2010).

Results from the numerical study

As stated in Proposition 3.2, y∗ is monotone in the level of risk aversion for the inventory
problem without shortage penalty cost. Figure 3.2 shows the monotonicity of y∗ in the
level of risk aversion for a mean-CVaRα and a power risk spectrum. Note that in the
mean-CVaRα model, for a fixed α, y∗ is decreasing in λ, which can be seen from the
perfect ordering of the y∗ lines in the first plot of Figure 3.2.

In Figure 3.2 we can see that the risk preference can have a big impact on y∗. For
example, with the power risk spectrum, y∗ changes between 20 and 120. However, the
size of the difference depends on the parameters of the demand distribution. Figure 3.3
shows the effect of demand variance on y∗. The lines are ordered with respect to η and
they get more and more distant as variance increases. Clearly, risk preference is an
issue of uncertainty or randomness, and if we see variance as a measure of uncertainty,
it is obvious that large variance causes a more significant impact of the risk preference
on the decision.

defined on the same integrand, γ(z, r) :=
∫ r

0 t
z−1e−t dt. Note that there exist efficient numerical

approximations for the (incomplete) Gamma function as well as for the probability and density of
the Gamma distribution in the R environment for statistical computing.
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Figure 3.3: Optimal order quantity y∗ for a mean-CVaRα (left) and power (right) risk spectrum
as a function of demand variance σ2, where D ∼ Gamma(µ, σ2).
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Figure 3.4: Expected profit with corresponding y∗ for a mean-CVaRα (left plot) and a power
(right plot) risk spectrum with demand D ∼Weib(2,100). Note that the vertical line separates
risk-averse (α < λ and k < 1) from risk-seeking (α > λ and k > 1) behaviour.
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Figure 3.5: Expected profit with corresponding y∗ for a mean-CVaRα (left plot) and a power
(right plot) risk spectrum with a 90% confidence interval CI Π and maximum/minimum profit
πmax and πmin, respectively.

In Figure 3.4 we illustrate the expected profit evaluated at y∗ with respect to the
risk preference obtained by maximizing the risk-measure for a mean-CVaRα and a
power risk spectrum. Clearly, the expected profit is maximized in the risk-neutral
case and decreases when the decision maker deviates from risk neutrality, becoming
more risk-averse or more risk-seeking. Hence, there are some profit levels smaller than
the risk-neutral expected profit which can be reached by an order quantity which is
optimal for a specific risk-averse, as well as for a risk-seeking, decision maker.

Figure 3.5 considers a 90% confidence interval of profit, CIΠ, and the maximum
and minimum possible profits, πmax and πmin, respectively. For most of the α-levels
and all k the upper border of the confidence interval corresponds to πmax. Note that
the size of the confidence interval, as well as the range πmax − πmin, is increasing in η.

In Figure 3.6 the probability of missing different profit targets is shown. As the left
plot shows, PLL is 1 for order quantities below (p− c)y and increasing in y for any
quantity larger than this threshold. It can be easily seen that PLL is ordered with
respect to the target level L in the sense that the higher the profit target level, the
larger PLL is. The right plot shows PLL at y∗ with respect to the level of risk aversion,
specifically with respect to k for a power risk spectrum. The structure shown in the
left plot is almost directly carried on to the right one because of the monotonicity of
y∗ in k.
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Figure 3.6: Probability of missing a profit target L, i. e. P(Π ≤ L) with different order quantities
(left) and with the degree of risk aversion k, where the corresponding optimal order quantity for
a power risk spectrum is used.

3.3 Inventory control with shortage penalty cost

We will now discuss the case where the newsvendor considers shortage penalty cost in
addition to lost revenues in case of a stockout situation for each unit short. Similar to
the basic inventory problem without shortage cost we will formulate the problem for a
general risk spectrum and illustrate properties for specific examples afterwards.

3.3.1 Optimal policy and structural properties for the inventory problem with
shortage penalty costs

Once the newsvendor considers shortage penalty cost for unsatisfied demand, the
ordering of profit is not the same as of demand anymore, as discussed in Lemma 3.1.
If we consider for now the maximum possible profit realization for a given quantity y
as the profit target, so ΠL = (p− c)y, then a deviation of this profit target can happen
now for a demand realization larger than y (i. e. profit loss due to understocking) in
addition to the realizations smaller than y (i. e. profit loss due to overstocking).

Recall that the newsvendor’s profit function with shortage penalty cost can be
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Figure 3.7: Cumulative distribution function of profit without considering (left), and while consid-
ering (right) shortage penalty cost with parameters p = 10, c = 6, v = 3; s = 0 (left) and s = 5
(right).

written as

Π(y) =

(p− c)D − (c− v)(y −D) D ≤ y

(p− c)y − s(D − y) D > y,
(3.17)

with cdf FΠ(π) = P(Π(y) ≤ π).
In Figure 3.7 the profit distribution for a newsvendor without and with shortage

penalty cost are shown. The cdf of profit without shortage penalty cost has a jump
in (p − c)y to 1, since there is a probability mass on this profit realization. For the
case with shortage penalty cost such a point does not exist, and therefore the profit
cdf is continuous. Further, without shortage penalty cost, the minimum possible
profit is −(c− v)y and the profit distribution has a limited support to the left. With
shortage penalty cost the minimum possible profit is −∞ with demand∞, so the profit
distribution has unlimited support on the left tail.

Figure 3.8 depicts profit with respect to demand for a given quantity, y. Note that
the maximum possible profit is πmax = (p − c)y. Let us for now consider any profit
π1 ∈ [−(c − v)y, (p − c)y). Each profit in this range will happen with exactly two
different demand realizations; with demand x1 < y and with a corresponding demand
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Figure 3.8: Profit Π as a function of random de-
mand D. Maximum profit πmax is reached for
D = y. If no shortage penalty cost are con-
sidered (s = 0), Π remains constant for any
D > y, while for the case with shortage penalty
cost (s > 0), Π decreases in D. Note that
in the latter case, each profit realization above
−(c− v)y can happen with exactly two different
demand levels.

x̄1 > y. Equating both cases of (3.17) for π(x, y), we can express x̄ in terms of x, so

x̄ = y + (y − x)p− v
s

. (3.18)

Note that the corresponding upper demand level x̄ for a given x depends on y. This
becomes immediately clear from Figure 3.8 if we keep x constant and increase y. In
this case πmax increases. Since the slopes of both parts of this piecewise linear function
stay the same (p− v for x ≤ y and −s for x > y), x̄ is necessarily increasing.

From Figure 3.8 we can see that the probability that profit is below π1 is composed
of two parts: (a) the probability that demand is below x, and (b) the probability that
demand is larger than x̄. From (3.18) we can express x̄ as a function of x, so we are
able to express the sum of the two probabilities in terms of x < y as long as we also
consider negative realizations of demand. Profit realizations below −(c− v)y can only
occur in the case where demand D > y

(
1 + p−v

s

)
, which would correspond to x < 0.

Hence, if we only consider the demands in the range (−∞, y] or alternatively, [y,∞),
we are able to cover all possible profit realizations. In the following analysis we will
use the range (−∞, y], which implies considering negative demand realizations x < 0,
although they happen with probability 0.

Lemma 3.3 (Profit distribution). Let Π be random profit with distribution FΠ(π) and
D random demand with distribution F (x). There exist two mutually exclusive demand
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levels, x ∈ (−∞, y] and x̄ ∈ (y,∞) where profit equals π. Hence,

FΠ(π) =

F
(
π+(c−v)y

p−v

)
+ 1− F

(
(p−c+s)y−π

s

)
for π ≤ (p− c)y

1 for π > (p− c)y,
(3.19)

with density

fΠ(π) =


1
p−vf

(
π+(c−v)y

p−v

)
+ 1

sf
(

(p−c+s)y−π
s

)
for π ≤ (p− c)y

0 for π > (p− c)y.
(3.20)

See Appendix A for a proof. Since we formulated the profit distribution for x < y in
Lemma 3.3, by (3.17) x is such that π(x, y) = (p− c)x− (c− v)(y − x). Plugging in
π(x, y) in (3.19),

FΠ
(
π(x, y)

)
= F (x) + 1− F

(
y + (y − x)p− v

s

)
.

Further, since we previously defined x̄ := y + (y − x)p−vs ,

FΠ
(
π(x, y)

)
= F (x) + 1− F (x̄). (3.21)

Note that (3.21) forms a new distribution function for any x ≤ y. Considering
(3.18), in the following we call the new distribution function G(x) := FΠ

(
π(x, y)

)
=

F (x) + 1 − F (x̄) with density g(x) := f(x) + f(x̄)p−vs . Note that even if we do not
write it explicitly, the order quantity y is a parameter of the distribution function G(x).

In light of the above discussion we are now ready to formulate the risk measure in
the following proposition.

Proposition 3.5 (Newsvendor with a general risk measure). Let the objective function
of a newsvendor using a spectral risk measure be

max
y∈R+

M(Π(y)), (3.22)

where
M(Π(y)) := (p− c)y − (p− v)

∫ y

−∞
Gφ(x) dx (3.23)



Chapter 3. Inventory Problem with Risk Measures 55

and
Gφ(x) := Φ(G(x)) = Φ

(
F (x) + 1− F (x̄)

)
.

The risk measure is concave in the order quantity y. Furthermore, we can write the
optimal order quantity y∗ as the solution to the first order condition,

M′(Π(y∗)) = dM(Π(y))
dy

∣∣∣∣∣
y=y∗

= 0, (3.24)

where the first derivative of the risk measure with respect to the order quantity y is

M′(y) =
∫ y

−∞
(−(c− v)g(x)φ

(
G(x)

)
dx

+
∫ y

−∞
π(x, y)dg(x)

dy
φ
(
G(x)

)
dx

+
∫ y

−∞
π(x, y)g(x)2φ′

(
G(x)

)
dx

+ (p− c)yf(y)φ(1)
(

1 + p− v
s

)
. (3.25)

See Appendix A for a proof.
The concavity result follows from the general results obtained by Acerbi (2002) stated

in Proposition 2.2(a). As mentioned earlier, G(x) forms a new distribution function
on demand for a specific order quantity, so that for each y a different G exists. For
a given y, one can think of G as cdf of the sum of two exclusive, conditional random
demands. Hence, when shortage penalty costs are considered, we can transform the
demand distribution F into a distribution G such that the same ordering of profit and
demand exists. Important, however, is that now we have to consider negative demand
realizations. Although having a probability of zero, each of them has a corresponding
positive demand realization x > y, where the newsvendor incurs shortage penalty costs.

Instead of explicitly formulating M(Π) for the case of a risk-averse decision maker,
one could also use the maximization formula by Acerbi (2002) directly. However, to
be able to solve (2.15) numerically, the risk spectrum has to be discretized into a
piecewise linear function with a resolution of J steps. This discretized φ can be used
for an optimization using (2.18). However, the complexity of the optimization problem
grows in the number of steps since the optimization has to be carried out over (y, ψJ),
or J + 1 variables. Additionally, for the case of a risk-seeking decision maker a joint
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optimization on (y, ψ) does not seem possible anyway.
Using (3.23) together with (3.25) allows for using highly efficient single dimensional

numerical optimization algorithms. The reason why we are able to reduce the (J + 1)-
dimensional optimization problem to a single dimensional one is that we are taking
advantage of the specific ordering of profit realizations, while Acerbi’s method does not
assume any knowledge on the ordering of profit3. A more detailed discussion about
the derivation can be found in the proof of Proposition 3.5 in Appendix A.

3.3.2 Specific examples of risk spectra in the inventory problem with shortage
penalty cost

As we did in the previous section for the basic inventory control problem, we can now
look at special cases of risk spectra already used in the literature and describe the
optimal policies and structural properties found so far. Note again, that for the risk-
neutral case, i. e. for the expected value optimization, φ(ω) = 1, the transformations
described in the previous section are not necessary. When all random realizations are
given the same weight, the different ordering of the demand realizations compared
to profit realizations is not relevant. It is easy to find the optimal order quantity y∗

for this case as y∗ = F−1
(
p−c+s
p−v+s

)
; see the discussion of the risk-neutral problem in

the introduction in Section 1.1.1. In the following, we will give as examples the pure
CVaRα optimizer and a mean-CVaRα optimizer.

Example 3.4 (CVaRα decision maker with shortage penalty cost). Unlike the general
formulation of the optimal order quantity in 3.25 the problem can be solved for the
optimal order quantity y∗ in closed form in the following

Lemma 3.4 (Optimal order quantity for a CVaRα optimizer with shortage penalty
cost).

y∗ = p− v
p− v + s

F−1
(
α
p− c+ s

p− v + s

)
+ s

p− v + s
F−1

(
1− α c− v

p− v + s

)
. (3.26)

See Appendix A for a proof.
While this explicit formulation specifically for the CVaRα decision maker of the

optimal policy was previously derived by Gotoh and Takano (2007), we present a
3Note that Acerbi (2002) calls the problem of not knowing the ordering of profit with respect to the

state variable “reshuffling” of profit.
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proof based on the optimization of (3.22). Their original proof is based on the CVaRα

optimization by Rockafellar and Uryasev (2000) and solves the problem for both y∗

and optimal Value-at-Risk ψ∗. Note that the case without shortage penalty cost is a
special case of (3.26); as for s = 0, the right term vanishes and the weighting factor
for the first term becomes 1, so that the whole equation reduces to the solution of the
CVaRα solution without shortage penalty cost in (3.10).

Example 3.5 (Mean-CVaRα decision maker with shortage penalty cost). Extending
the results of the CVaRα decision maker of the previous example leads to the result of
a mean-CVaRα decision maker.

Lemma 3.5 (Optimal order quantity for a mean-CVaRα optimizer with shortage
penalty cost). The optimal order quantity y∗ is that y which solves the following system
of equations

λ

α

(
(p− c+ s)(1− F (x̄o))− (c− v)F (xo)

)
+ 1− λ

1− α
(
(p− c+ s)F (x̄o) + (c− v)F (xo)− (p− v + s)F (y)

)
= 0 (3.27)

F (xo) + 1− F (x̄o) = α. (3.28)

The proof is omitted here and provided with Example 3.6 where a general piecewise
constant risk spectrum is considered.

It seems to be impossible to find an explicit formulation for y∗ for general demand
distributions, although for specific families of distributions an explicit solution can be
obtained by plugging in the distribution function. Solving both equations numerically
is highly efficient compared to applying numerical optimization algorithms on M(Π(y))
as defined in (3.23) directly, since no numerical integration has to be carried out.4

Example 3.6 (General piecewise constant risk spectrum with shortage penalty cost).
The results of the mean-CVaRα example can be further generalized by considering a
piecewise constant risk spectrum, e. g. to discretize a continuous risk spectrum in a
piecewise constant function with J jumps as shown and discussed in Section 2.3.3. The
risk spectrum in ω was already shown in Figure 2.5, while the corresponding inventory

4The computation of the distribution function might require numerical integration techniques, if no
closed-form expression exists. An example for such a cdf is the Gamma distribution. In those cases,
generally efficient approximations implemented in numerical software packages (e. g. R) exist.
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Figure 3.9: A discretized risk spectrum with J jumps in
the probability range, so that J + 1 levels of φ exist.
The profit levels at the borders of each range i are
Πi = −∞, π1, . . . , πJ , (p − c)y, with corresponding
demand levels below y of D = −∞, xo1, . . . , xoJ , y.

problem is illustrated in Figure 3.9. If J jumps exist, then there are J + 1 levels of φ,
so φ1 . . . φJ+1. The demands where the jumps occur are then x1 . . . xJ . Further, we
define xo0 := −∞ and xoJ+1 := y, i. e. the smallest and largest demand realization in the
demand range of interest. Recall from the discussion in Section 3.3.1 that considering
the demand range (−∞, y] is enough to cover all possible profit realizations.

Lemma 3.6 (Optimal order quantity of a newsvendor with piecewise constant risk
spectrum considering shortage penalty cost). Let xoi be the demand where

F (xoi ) + 1− F (x̄oi ) = ωi, (3.29)

so that xoi are the demands in the range (−∞, y] up to which point the profits are
weighted with φi. We can formulate M using a piecewise constant φ as

M(Π(y)) =
J+1∑
i=1

φi

∫ xoi

xoi−1

(
(p− c)x− (c− v)(y − x)

)
g(x) dx. (3.30)

The optimal order quantity y∗ satisfies the following system of equations (i. e. the first
order condition):

dM(Π(y))
dy

=
J+1∑
i=1

φi
(
(p− c+ s)(F (x̄oi−1)− F (x̄oi ))− (c− v)(F (xoi )− F (xoi−1))

)
= 0,

(3.31)

F (xoi ) + 1− F (x̄oi ) = ωi for all i = 1 . . . J. (3.32)

See Appendix A for a proof.
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Figure 3.10: Optimal order quantity y∗ for a mean-CVaRα (left plot) and a power (right plot)
risk spectrum objective function with shortage penalty cost. Note that the circles on the lines
correspond to the risk-neutral y∗ and for each line separate between risk-averse (left) and
risk-seeking (right) behaviour.

Note that for J jumps a system of J + 1 nonlinear equations has to be solved.

3.3.3 Numerical study of the inventory control problem with shortage penalty
cost

For the numerical analysis of the inventory control problem with shortage penalty
cost we use the same set of parameters as with the numerics for the basic inventory
problem in Section 3.2.3. Additionally, we assume a shortage penalty cost s = 5 unless
otherwise noted.

Figure 3.10 shows the optimal order quantity in the level of risk aversion. Unlike
the case of zero shortage penalty cost, now y∗ is no longer monotone in the level
of risk aversion. While the order quantity increases as the decision maker becomes
risk-seeking, the order quantity is not non-increasing as the decision maker becomes
more risk-averse. For some ranges of risk-aversion the quantity is reduced. However,
as the decision maker becomes very risk-averse (the risk preference is extremely low),
her focus turns towards reducing the impact of the very rare case where demand is
extremely high and high shortage penalty cost are realized. Hence, the order quantity
increases again.
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Figure 3.11: Optimal order quantity y∗ for a mean-CVaRα (left plot) and a power (right plot)
risk spectrum objective function with large shortage penalty cost, s = 30.

Note that y∗ goes to infinity as α or k gets closer to zero. In Figure 3.10 this property
is not very clear, but if we increase the penalty cost to s = 30 this effect becomes more
clear, as can be seen in Figure 3.11. Hence, we see that a risk-averse decision maker
might order more than a risk-neutral one.

The effect of demand variance on y∗ is shown in Figure 3.12. Similar to the case
without penalty cost (see Figure 3.3), the difference between y∗ with respect to risk
aversion gets larger as variance increases. Note that for a risk-averse newsvendor, i. e.
α = 0.2 or k = 0.5, if there is no shortage penalty cost, y∗ is decreasing in variance
(see Figure 3.3), while now, when s = 5, it is increasing. However, this is not a general
rule but depends on the cost parameters. For example, if the shortage penalty cost is
decreased to s = 3, y∗ is again decreasing in variance for α = 0.2 and k = 0.5 as in the
case of zero penalty cost.

In Figure 3.13 we illustrate the expected profit for a mean-CVaRα and a power risk
spectrum. The expected profit is maximized in the risk-neutral case and decreases
once the decision maker becomes more risk-seeking. For the case of risk aversion,
however, the expected profit is no longer monotone since the optimal order quantity is
not monotone in the level of risk aversion as shown in Figure 3.10.

Figure 3.14 shows the 90% confidence interval and the maximum possible profit
at y∗ with respect to the level of risk aversion. In any case, the minimum possible
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Figure 3.12: Optimal order quantity y∗ for a mean-CVaRα (left) and power (right) risk spectrum
as a function of demand variance σ2, where D ∼ Gamma(µ, σ2).
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Figure 3.13: Expected profit with corresponding y∗ for a mean-CVaRα (left plot) and a power
(right plot) risk spectrum with shortage penalty cost.
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Figure 3.14: Expected profit with corresponding y∗ for a mean-CVaRα (left plot) and a power
(right plot) risk spectrum with a 90% confidence interval CI Π and maximum profit πmax. Note
that minimum profit is −∞.

profit is −∞, and this causes the confidence interval to be larger compared to the zero
penalty cost case. Specifically, for small α and k, when s = 0 the newsvendor is able to
significantly decrease the difference between πmax and πmin by ordering very little and
consequently achieving quite a tight CI (see Figure 3.5). However, here when s > 0,
even when the newsvendor is very risk-averse, he is not able to reach such a small
confidence interval.

Figure 3.15 depicts the probability of missing different profit target levels. Note
that unlike the case without shortage penalty cost, PLL has no jump at (p − c)y
anymore but is a continuous function. When using the optimal order quantity, the
shape of PLL is influenced by the shape of the optimal order quantity in the level
of risk aversion as shown in Figure 3.10. The non-monotonicity of y∗ causes the
increasing-decreasing-increasing shape of PLL, e. g. for L = 150.
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Figure 3.15: Probability of missing a profit target L, i. e. P(Π ≤ L) with different order quantities
(left) and with the degree of risk aversion k, where the corresponding optimal order quantity for
a power risk spectrum is used.

3.4 Applications in supply chain management

So far in this chapter, we have discussed the inventory control problem from the view
of a single decision maker, as when the newsvendor is a single entity or an agent in a
supply chain. The problem can also be viewed from a supply chain perspective. When
risk sensitivity is included in supply chain coordination issues, the complications are
twofold: the optimal policies and coordinating contracts become more complicated,
and the objective of the whole chain gets more difficult to describe. “When each of the
agents maximizes his expected profit, the objective of the supply chain considered as a
single entity is unambiguously to maximize its total expected profit (. . . ). Regardless
of the measure used, when one or more agents in the supply chain are risk-averse, it is
no longer obvious as to what the objective function of the supply chain entity should
be.” (Gan et al., 2004).

Lau and Lau (1999) and Tsay (2002) focus on return policies concerning a single
manufacturer and a single retailer who are both risk-averse. Lau and Lau (1999) assume
both parties have mean-variance objective functions and all of the leftover inventory on
the retailer’s side can be returned to the manufacturer, so the policy parameter is just
the salvage value and not the proportion of leftovers that can be returned. They obtain
the optimal wholesale price and salvage value for normally distributed demand, but
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the optimality refers to maximizing the manufacturer’s objective function. They show
that as the manufacturer becomes more risk-averse, he sets both the salvage value and
the wholesale price lower, which basically means that he tries to put more of the risk
on retailers’ shoulders. Since the problem is modeled from the side of the manufacturer
the supply chain performance is not taken into account.

Tsay (2002) assumes a single manufacturer, single retailer setting, both maximizing
their mean-standard deviation objective. The manufacturer sets the return policy and
then the retailer sets his selling price after the uncertain demand is revealed. The
demand distribution is modeled as a two-point distribution, i. e. low with probability ρ,
high with 1− ρ. The policy is either a no-returns policy or a full-return for full-credit
policy, so not a continuum as in Lau and Lau (1999). They find the equilibrium under
each policy. In case there are no returns the manufacturer’s risk sensitivity has no effect
since there is no uncertainty on his side. When the retailer orders too few because of
his risk aversion, the manufacturer lowers the wholesale price to increase the retailer’s
order. As a result, depending on the demand parameters, the retailer’s risk aversion
might cause his expected profit to increase because of the decreasing wholesale price.
In case of full-return for full-credit, a retailer’s risk sensitivity has no effect on the
policy parameters, while depending on the degree of his risk aversion the manufacturer
may lower the wholesale price when he accepts returns.

When the manufacturer is risk-neutral he increases the wholesale price if he accepts
returns. However, returns make his profit more variable and one way to decrease
variability is by decreasing the variability on sales. Hence, if he is risk-averse he lowers
the wholesale price, which induces lower retail prices and smaller variability in profit.
Hence, all else equal, the retailer should search for a risk-averse supplier.

Agrawal and Seshadri (2000) assume a risk-neutral manufacturer selling items to
a number of newsvendors who differ in their risk sensitivity, which is measured by
a mean-variance rule. Newsvendors operate in identical and independent markets
and the selling price of the product is the same in each market. The manufacturer
does not know the degree of risk aversion of each single newsvendor, but he knows
the distribution of risk aversion among them. Under this setting they design a menu
of contracts which should be offered by a risk-neutral intermediary who bares the
risk of the newsvendors in different proportions depending on the contract that the
newsvendor selects from the menu. Each contract in the menu includes a risky part
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which comes from the uncertain profit and a fixed side-payment from the intermediary
to the newsvendor. The more risk-averse newsvendors select one of the contracts with
a large side-payment. Chen and Seshadri (2006) prove the optimality of Agrawal and
Seshadri’s menu of contracts in the sense that it maximizes the intermediary’s return,
which means designing a setting that increases the order quantities to the optimal
level in the risk-neutral case. However, as mentioned by the authors, if pricing is also
considered, the existence of an intermediary might cause higher retail prices and lower
consumption.

While Lau and Lau (1999) and Tsay (2002) do not mention coordination at all,
Agrawal and Seshadri (2000) consider the total order quantity in the channel but none
of them considers Pareto optimality.

Gan et al. (2004) are the first to examine coordinating contracts based on Pareto
optimality with risk-averse agents. Their definition of supply chain coordination
assumes “no agent’s payoff can be improved without impairing someone else’s payoff
and each agent receives at least his reservation payoff.” They differentiate between
the channel’s external and internal problem as the order/production quantities, and
the allocation of profit. When there is at least one risk-neutral agent within the
supply chain, as a Pareto optimal sharing rule, he can take all the risky profit and
give side-payments to the other agents when the external decision is set to maximize
the chain’s expected profit. This statement is in line with the results of Agrawal and
Seshadri (2000).

In order to develop coordinating contracts Gan et al. (2004) consider a supply chain
with a single retailer and a single manufacturer. When both agents maximize their
mean-variance tradeoffs, or an exponential utility function, the revenue-sharing contract
and the buy-back contract can coordinate the chain if a side-payment to the retailer is
included. If the manufacturer is risk-neutral it is Pareto optimal if he bears all the risk
and just gives a fixed payment to the retailer. This result is extended by Chen et al.
(2008a).

However, the results cannot be generalized to a concave utility function. They give
an example where the manufacturer is risk-averse at low returns and risk-neutral at
higher levels. For this specific example they show that neither the buy-back nor the
revenue sharing contract can coordinate the channel since it is not possible to develop
a proportional sharing rule. They mention that for general cases new contract forms
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should be designed.
Gan et al. (2005) study a supply chain with a risk-neutral manufacturer and a retailer

who has a constraint on the probability of reaching a certain profit. The standard
revenue-sharing and buy-back contracts do not coordinate the channel anymore. They
construct a coordinating contract which is quite complicated compared to the contracts
for expected profit maximizing agents.

Chen et al. (2008a) study a decentralized supply chain with multiple risk-neutral
or risk-averse agents. They introduce the concept of rational contracts and analyze a
supply chain with multiple risk-averse suppliers and a single risk-averse retailer. For
the second case, the authors identify conditions of coordinating contracts and propose
specific contracts based on the level of risk aversion among the suppliers and the retailer.
Chen et al.’s contract includes fixed side-payments as mentioned by Gan et al. (2004)
and also the concept of intermediaries mentioned by Agrawal and Seshadri (2000).
They show that if the level of risk aversion is the same between all the players in the
supply chain, any contract that coordinates the risk-neutral case coordinates this case
as well. If the retailer and the manufacturers have different levels of risk aversion the
type of the coordinating contract changes depending on who the least risk-averse player
is.

Wang and Webster (2007) study supply chain coordination contracts between a single
risk-neutral supplier and a single risk-averse retailer using a piecewise linear utility
function as already discussed in Wang and Webster (2009). Their results indicate
that coordinating contracts based on the assumption of risk neutrality may result
in markedly lower supply chain profit when retailers are loss-averse; hence, suppliers
should consider the impact of loss aversion in contract design, in particular when
dealing with small retailers for whom the assumption of risk neutrality is less likely to
hold.

Lastly, two papers on newsvendor networks by Tomlin and Wang (2005) and van
Mieghem (2007) include risk aversion in the network design problem. Tomlin and
Wang (2005) consider unreliable resources and uncertain demand. They show that
for a risk-averse decision maker, dedicated sourcing may be more preferable than the
flexible one. The only uncertainty in van Mieghem (2007) is the demand uncertainty
and he shows that the risk-averse newsvendor may increase network capacity more
than the risk-neutral one.
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The main conclusions of the papers presented in this section are: when the agents with
different degrees of risk aversion require different contracts, some of the coordinating
contracts assuming risk neutrality do not work under risk aversion, and one way of
dealing with this problem is introducing risk-neutral intermediaries into the channel.
In the end, when risk aversion is considered, the contracts and/or the design of the
supply chain become more complicated.



Chapter 4

Inventory & Pricing Problem with Risk Measures

While the inventory control problem with risk preferences has been intensively analyzed
by different authors in different settings, this variety of models, approaches and results
cannot be found for the combined inventory and pricing problem. Basically, only two
important works have been published so far. Agrawal and Seshadri (2000) study a
newsvendor problem with pricing within the expected utility framework, while Chen
et al. (2009) analyze the problem under a CVaRα objective function.

Agrawal and Seshadri (2000) consider general demand distributions for both additive
and multiplicative uncertainties, using a concave utility function as objective. They
show that the risk aversion affects the pricing decision differently depending on the
relation of price and demand. Consequently, the ordering decision is also affected
differently. Under multiplicative uncertainty, increase in risk aversion leads to an
increase in price and decrease in quantity. Under additive uncertainty, risk aversion
results in a decrease in price and the effect on quantity depends on the relation of
the degree of risk aversion and the price elasticity of demand. Indeed, the opposite
effect of risk aversion on price is not surprising. Independent of risk attitude, the
demand variability is controlled by changing the price in different directions for different
uncertainty models. The risk-averse newsvendor uses price as a hedge against demand
uncertainty, but in opposite ways under the two uncertainty models. We will see that
under some assumptions this effect also holds true for the case when spectral risk
measures are used as objective functions.

In the following we discuss the properties of the inventory & pricing problem again
under a spectral risk measure. While some of the properties of this problem can
be found for any combination of the deterministic demand d(p) and the stochastic
error term E, for most of the analysis we need to specify this relation. Hence, in

68
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the following, we use the two most common combinations: the additive and the
multiplicative demand models. Recall from introductory Section 1.1.2 that in the
additive case, D(p) = d(p)+E, and in the multiplicative demand model, D(p) = d(p)E,
where d(p) denotes the deterministic price-dependent demand function, and E denote
a price-independent demand error.

For the following analysis it is of great advantage if we do not consider the ordering
decision y directly, but use a stocking factor z instead: in the additive model y = d(p)+z
and in the multiplicative model y = d(p)z. The transformation of the order quantity
to a stocking factor was already used by Petruzzi and Dada (1999) for the analysis of
the joint inventory & pricing problem under risk neutrality. If we define in this chapter
F as the distribution function of demand error and f its density, then we can write
the risk measure of profit from the stocking factor as

M(Πε(p, z)) = (p− c)z − (p− v)
∫ z

−∞
Φ
(
F (ε)

)
dε. (4.1)

Recall from Definition 2.3 that translation equivariance of the risk measure implies
M(X + a) = a + M(X). Hence, using (1.10), for the risk measure of the additive
demand model, we can write

M(Π(p, y)) = ΠDet(p) + M(Πε(p, z)), (4.2)

where ΠDet(p) denotes a deterministic profit (a “sure” income) and M(Πε(p, z)) denotes
the risk measure of stochastic profit arising from demand error uncertainty. Note that
ΠDet(p) is a function of price p only, as in the deterministic case the order quantity
always equals demand, so y = d(p) and ΠDet(p) = (p− c)d(p).

For the multiplicative demand model we take advantage of the positive homogeneity
of the risk measure, M(λX) = λM(X). By reformulating (1.11) we can write

M(Π(p, y)) = d(p)×M(Πε(p, z)). (4.3)

Hence, the risk measure of the complete operation, i. e. the risk measure of Π(p, y),
can be decomposed into the factor d(p), and the risk measure of stochastic profit made
with the demand error Πε(p, z).

For the joint optimization problem it does not make any difference if (p, y) or (p, z) is
optimized as both formulations lead to the same p∗, and the optimal quantity depending



Chapter 4. Inventory & Pricing Problem with Risk Measures 70

on the demand model used, y∗ = d(p) + z∗ in the additive and y∗ = d(p)z∗. In the
following analysis we use both ways of formulating the problem, we write the model
based on y or z depending on whichever formulation is more convenient. Note, however,
that structural properties of price differ if the optimal price for a constant y or for a
constant z is analyzed. As far as possible, we try to formulate and analyze both cases.

4.1 The basic inventory & pricing problem

For the case that an explicit risk measure is used, we extend the results obtained
in the literature so far by transforming the risk-averse or risk-seeking inventory &
pricing problem into a risk-neutral problem. The idea behind this is that the applica-
tion of any spectral risk measure can be seen as a transformation of the underlying
demand distribution (see the discussion about rescaling the distribution function in
Section 2.3.1). Once risk transformation functions Φ preserve certain properties of the
demand distribution to the transformed distribution, any results found in the literature
about the risk-neutral problem using those properties on the demand distribution also
apply for the transformed problem under risk measures. In the following section we will
describe these properties in more detail and show which risk transformation functions
preserve them.

4.1.1 Necessary properties of the demand (error) distribution and risk spectra
preserving them

An important property of distribution functions is the failure rate. Lariviere (2006)
defines the failure rate (or hazard rate) of a random variable as follows:

Definition 4.1 (Failure rate). Let X be a random variable with distribution function
F and density f . Its failure rate is defined as

h(x) = f(x)
1− F (x) . (4.4)

Moreover, we say the random variable has increasing failure rate (IFR) if h′(x) ≥ 0 for
all x.

Definition 4.2 (Generalized Failure rate). Let X be a random variable with distribution
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function F and density f . Its generalized failure rate is defined as

hg(x) = xf(x)
1− F (x) . (4.5)

Moreover, we say the random variable has increasing generalized failure rate (IGFR) if
hg′(x) ≥ 0 for all x.

Barlow and Proschan (1996) list distribution functions satisfying the IFR and IGFR
property, respectively. Among them are the exponential, uniform, normal, truncated
normal and subsets of Weibull or gamma distributions.

We can transform the problem under the risk measure to a standard risk-neutral
problem by transforming the demand (error) distribution function with the risk transfor-
mation function. Recall from Section 1.1.1 that the expected value inventory problem
can be written as

EΠ(y) = (p− c)y − (p− v)
∫ y

0
F (x) dx, (4.6)

which we reformulated later on in Section 3.2 for using risk measures as

M(Π(y)) = (p− c)y − (p− v)
∫ y

0
Φ(F (x)) dx.

Note that instead of integrating the demand distribution directly, a risk-transformed
distribution Fφ(x) := Φ(F (x)) with density fφ(x) = φ(F (x))f(x) is used. If we write

M(Π(y)) = (p− c)y − (p− v)
∫ y

0
Fφ(x) dx, (4.7)

it can be seen easily that the objective is identical with (4.6) and, hence, properties
of the first problem hold as long as the necessary properties of F are preserved to Fφ.
In particular, we need Fφ to have increasing failure rate for the later analysis of the
inventory & pricing problem. Because of this reason, we analyze the common risk
transformation functions, i. e. CVaRα, mean-CVaRα, power and exponential functions,
and summarize the results in the following paragraphs.

Definition 4.3 (Risk transformation functions preserving IFR and IGFR). Let the
failure rate h(x) and generalized failure rate hg(x) of the distribution F be increasing
in x, and let Fφ be the risk-transformed distribution with density fφ. We say a risk
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spectrum is failure rate preserving if the transformed failure rate

hφ(x) = fφ(x)
1− Fφ(x) = f(x)φ(F (x))

1− Φ(F (x)) (4.8)

and the transformed generalized failure rate

hgφ(x) = xfφ(x)
1− Fφ(x) = xf(x)φ(F (x))

1− Φ(F (x)) (4.9)

are increasing in x.

Lemma 4.1 (Examples of failure rate preserving risk spectra). The CVaRα risk
spectrum as defined in (2.10) and the power risk spectrum as defined in (2.12) are
failure rate preserving.

Proof.

(a) CVaRα risk spectrum: The transformed distribution is Fφ(x) = 1
αF (x) for any

F (x) < α. Plugging in for the failure rate results in

hφ(x) = f(x)
α− F (x) ,

such that
hφ(x) = h(x)× 1− F (x)

α− F (x) .

Since the second term is increasing in x for any α < 1 and the failure rate h(x)
is increasing in x by definition, hφ(x) is increasing in x for x < F−1(α). For any
x ≥ F−1(α), the distribution Fφ(x) = 1.

(b) Power risk spectrum: For φ(ω) = 1
k (1 − ω)

1
k
−1 and Φ(ω) = 1 − (1 − ω)

1
k the

failure rate of the risk-transformed distribution is

hφ(x) = h(x)× 1
k
.

Hence hφ(x) is increasing in x if h(x) is increasing in x.
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Figure 4.1: Failure rate h(x) and risk-transformed failure rate hφ(x) for a mean-CVaRα (left) and
exponential (right) risk spectrum. It can be seen that the risk-transformed distribution Fφ does
not show the IFR property anymore, although the distribution F has IFR.

Note that the two other commonly used risk spectra, the mean-CVaRα and the
exponential risk spectrum, do not preserve IFR as can be seen from Figure 4.1.
Especially for the case of a mean-CVaRα risk spectrum the transformed failure rate
hφ(x) has a downward jump at ω = F−1(α), exactly where the risk spectrum φ(ω)
changes its level from λ

α to 1−λ
1−α .

4.1.2 Results for the joint optimal inventory & pricing problem

Here we present properties of the inventory & pricing problem for both additive and
multiplicative demand models based on the IFR preserving property as discussed
above. An important result concerns the joint-unimodality in price and order quantity.
After deriving this we present structural properties of the joint-optimal controls in
certain parameters, such as level of risk aversion, cost and salvage value parameters.
In Section 4.1.3 we will analyze the pricing-only problem for either a given order
quantity or a given stocking factor. Clearly, structural results for the single-dimensional
optimization will differ from the joint-optimization problem. To clearly distinguish
between the two cases, in the following we will denote by p∗, y∗, and z∗ the joint
optimal controls, while the optimal price for a given quantity or stocking factor will be
denoted by p∗(y) and p∗(z), respectively. Note that we do not analyze the behaviour
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of y∗(p) and z∗(p) in detail, as this refers to the inventory-only problem which was
discussed already in Chapter 3.

An important result of the (risk-neutral) price-setting newsvendor problem was
obtained by Yao et al. (2006). They show that for a certain class of demand functions,
the expected profit is unimodal (quasi-concave) in both price and quantity. In particular,
if the deterministic demand has increasing price elasticity (IPE) and the random term
has increasing failure rate (IFR), then the expected profit is unimodal.

Let ε(p) denote the price elasticity of demand d(p), then ε(p) = −pd′(p)
d(p) . Note that

the price elasticity is the relative change of demand for a relative change in price. We
can state the following:

Definition 4.4 (IPE). A deterministic demand function d(p) has increasing price
elasticity (IPE), if

dε

dp
≥ 0 for all p. (4.10)

Yao et al. (2006) give an intuitive explanation: “As the price increases by a certain
percentage, the demand decreases by a larger percentage, which makes it less desirable
to raise the price further.” They further show that for a wide range of important
demand functions such as

(a) linear d(p) = a(pmax − p);

(b) power d(p) = (1 + p)−a for a > 1;

(c) exponential d(p) = p−ae−λp for a > 0, λ > 0; or

(d) iso-elastic d(p) = p−a for a > 1

functions, among others, the IPE property holds.
Combining the result of Yao et al. (2006) with spectral risk measures leads to the

following proposition about the unimodality of the risk measure in price and quantity,
(p, y). Note, however, that as discussed in the introduction of this chapter, we will
decompose the demand into its deterministic part and the stochastic demand error.
We assume the distribution of the error term, F (ε), is continuous with density f(ε)
and invertible, so F−1(F (ε)) = ε.

Proposition 4.1 (Unimodality of the risk measure with respect to price and quantity).
Let φ(ω) be an admissible risk spectrum. The corresponding risk measure M(Π(p, y))
is jointly unimodal (quasi-concave) in (p, y) if
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(a) the demand error has an increasing failure rate (IFR), or the demand error is a
positive random variable and has an increasing generalized failure rate (IGFR),
and

(b) mean demand ED(p) has increasing price elasticity (IPE), and

(c) the risk transformation function Φ(ω) preserves IFR or IGFR, respectively.

Proof. Part (a) and (b) of Proposition 4.1 were shown by Yao et al. (2006), so as long
as (c) holds, the problem can be transformed into a risk-neutral problem and properties
already found in the literature of the risk-neutral solution can be used.

It is common to assume, without loss of generality, that the mean demand error is 0
for the additive model and 1 for the multiplicative model. Any mean different from
these values can be easily captured by a transformation of the deterministic demand
function. Hence, we assume that the demand error distribution of an additive model
has negative and positive support, while the distribution for the multiplicative model
has only a positive support. For the rest of this section we assume that the demand
error distribution and the risk transformation function satisfy the conditions stated in
Proposition 4.1, unless otherwise stated.

Note that unlike the optimal order quantity in the inventory problem, no explicit
formulation of optimal price p∗ for a general distribution and general risk spectrum can
be found. For the joint price-quantity optimization in the case of an additive demand
model, a single-dimensional numerical search of the maximum risk measure on price is
indeed possible on

M(Π(p)) = (p− c)d(p) + (p− c)z∗(p)− (p− v)
∫ z∗(p)

−d(p)
Fφ(ε) dε. (4.11)

When the demand model is of multiplicative form, the search must be carried out on

M(Π(p)) = d(p)
[
(p− c)z∗(p)− (p− v)

∫ z∗(p)

0
Fφ(ε) dε

]
. (4.12)

where the optimal stocking factor for both formulations is

z∗(p) = Φ−1
(
F

(
p− c
p− v

))
.
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Since the problems in (4.11) and (4.12) are unimodal in their arguments and have
a lower bound on price, i. e. p∗ > c, a numerical optimization using standard single
dimensional optimization techniques is still very efficient.

An immediately following results concerns the monotonicity of optimal price p∗ with
respect to cost c.

Proposition 4.2 (Monotonicity of the optimal controls p∗ and y∗ with respect to c).
If the mean demand ED has IPE, the distribution of demand error, F , has IFR, and
the risk spectrum is failure rate preserving,

(a) then the risk measure of profit, M(Π(p, y)) is strictly supermodular1 in (p∗, c), so
that the optimal price p∗ is increasing in cost c;

(b) the optimal critical fractile CSL∗ is decreasing in c, i. e. dCSL∗

dc ≤ 0, where the
equality holds for iso-elastic d(p);

(c) the optimal order quantity y∗ is strictly decreasing in c.

Proof. Yao et al. (2006) showed that the IPE and IFR properties are sufficient for
the risk-neutral problem. If, in addition, the risk spectrum is failure rate preserving,
the problem can be transformed into a risk-neutral problem such that the sufficient
properties still hold.

With respect to salvage value we are not able to derive general structural results for
both demand formulations. While p∗ and y∗ are monotone in the salvage value for the
additive model, this no longer holds for the multiplicative demand formulation. The
reason why the behaviour is not necessarily monotone is that while both price and
quantity tend to increase in salvage value, the increase of each of the two controls has
the opposite effect on the other. The increasing price due to the increase in salvage
value leads to a decrease of d(p), which causes the order quantity to decrease. This
is in contradiction to the direct effect of the salvage value on quantity for a given
price, hence the resulting behaviour depends on whichever effect dominates. We can
summarize these findings in the following:

1A continuous, differentiable function f(x, y) is supermodular, if and only if its cross derivative is
positive, ∂

2f(x,y)
∂x∂y

≥ 0. Topkis (1998) showed that a positive cross partial derivative implies that the
optimal x∗(y) is increasing in y. If ∂2f(x,y)

∂x∂y
≤ 0, f(x, y) is submodular and x∗(y) decreases in y.
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Proposition 4.3 (Monotonicity of p∗ with respect to v). If, for an additive demand
model, the mean demand, ED, has IPE, the distribution of demand error, F , has IFR,
and the risk spectrum is failure rate preserving,

(a) the risk measure of profit, M(Π(p, y)) is strictly supermodular in (p∗, v), so that
the optimal price p∗ is increasing in v;

(b) the optimal critical fractile CSL∗ and the optimal stocking factor z∗ are increasing
in v.

See Appendix A for a proof. Chen et al. (2009) previously derived the results for
the specific case of the CVaRα risk spectrum, where for the multiplicative demand
model a monotonicity result can also be found if salvage value is sufficiently small.
Unfortunately, we are not able to find monotonicity results about the behaviour of y∗

with respect to v in the additive model for a general risk spectrum. For a CVaRα risk
spectrum, Chen et al. (2009) are able to show that y∗ is strictly increasing in v.

Proposition 4.4 (Monotonicity of p∗ with respect to the level of risk aversion, η). Let
η denote the risk preference according to Definition 2.6.

(a) For an additive demand model, the risk measure of profit is supermodular in
(p∗, η), hence, p∗ is increasing in η.

(b) For a multiplicative demand model, if H(ε) := xfφ(ε)
∂
∂η
Fφ(ε,η) is increasing in ε, then

p∗ is increasing in η, and if H(ε) is decreasing in ε, then p∗ is decreasing in η.

See Appendix A for a proof. Note that this additional technical assumption for the
specific case of a CVaRα decision maker reduces to

(
F (ε)
εf(ε)

)′
> 0, which was found by

Chen et al. (2009) as an additional assumption for p∗ being increasing in η for the
multiplicative demand model.

Based on the monotonicity result of the optimal price we can immediately derive
monotonicity results for the optimal cycle service level and the optimal stocking factor
in the following:

Corollary 4.1 (Monotonicity of CSL∗ and z∗ in η). The optimal cycle service level

CSL∗ = Φ−1
(
p∗ − c
p∗ − v

)
(4.13)
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is increasing in η, if the optimal price p∗ is increasing in η. This also implies that the
optimal stocking factor z∗ = F−1(CSL∗) is increasing in η.

Proof. Recall from Definition 2.5(b) that Φ decreases in η and Φ−1 increases in η. By
p∗ increasing in η, CSL∗ = Φ−1

(
p∗−c
p∗−v

)
increases in η since v < c by definition, and

consequently z∗ = F−1(CSL∗) increases in η.

Note that this monotonicity result of p∗, CSL∗ and z∗ specifically for the CVaRα

risk spectrum was found previously by Chen et al. (2009).
If we want to understand the behaviour of the optimal order quantity y∗, we need to

consider two opposite effects induced by the change of the level of risk aversion. On
the one hand, the decreasing deterministic demand d(p) due to higher optimal prices
in η suggests a lower order quantity; on the other hand there is the opposite effect
of the increasing optimal stocking factor z(p∗). Hence, a monotonicity result of y∗

with respect to η cannot be stated, as the optimal policy depends on whichever effect
dominates. In the following numerical analysis in Section 4.1.4, Figure 4.3 shows an
example of such a non-monotone behavior of the order quantity in the level of risk
aversion.

4.1.3 Results for the pricing-only problem

After having discussed the behaviour of the problem in the joint-optimum price and
quantity, we can derive additional structural properties of optimal price for a given
quantity or a given stocking factor.

Proposition 4.5 (Monotonicity of optimal price p∗(y)). If the distribution of demand
error F has IFR and the risk spectrum is failure-rate preserving, the optimal price
p∗(y) is decreasing in the order quantity y.

See Appendix A for a proof. Note that this result is in line with the findings of the
risk-neutral model as found, for example, in Kocabıyıkoğlu and Popescu (2009) and
Arıkan and Jammernegg (2009). The optimal price with respect to the stocking factor
can be derived in the following:

Corollary 4.2. The optimal price p∗(z) is increasing in the stocking factor z.

See Appendix A for a proof.
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Corollary 4.3. The optimal price p∗(z, η) for a given stocking factor z is

(a) increasing in η for the additive demand model, and

(b) decreasing in η for the multiplicative demand model.

See Appendix A for a proof.
This is a particularly interesting result. Two common ways of assessing the variability

of a random variable, in particular when assessing demand, are the variance, Var(D(p)),
and the coefficient of variation, CV(D(p)) = SD(D(p))

ED(p) . Petruzzi and Dada (1999)
already describe that the impact on demand variability of a price change for the risk-
neutral setting has an opposite direction for the additive and the multiplicative models.
In the additive model, demand variance Var(D(p)) = Var(E) does not depend on price
and CV(D(p)) = SD(E)

d(p)+EE increases in p. The variability for the multiplicative model
has the opposite behavior: demand variance Var(D(p)) = d(p) Var(E) is decreasing in
p, while the coefficient of variation CV(D(p)) = d(p) SD(E)

d(p)EE is constant in price.
Mills (1959) shows for the additive model that the optimal price of a deterministic

demand situation is always larger than the optimal price under demand uncertainty,
while Karlin and Carr (1962) show the opposite behaviour for a newsvendor with
multiplicative demand model. Therefore, the optimal price of a deterministic demand
situation is always smaller than under demand uncertainty. Hence, in both models,
the newsvendor uses price to reduce demand variability. We can observe a similar
behaviour for risk-averse newsvendors with respect to the degree of risk aversion. From
Corollary 4.3 we see that for a fixed stocking factor in the additive demand model,
the optimal price decreases the more risk-averse a newsvendor becomes, and for the
multiplicative model the optimal price increases the more risk-averse a newsvendor
becomes. Hence, when getting more risk-averse, both use price to reduce demand
variability (either the variance or the coefficient of variation).

4.1.4 Numerical study of the basic inventory & pricing problem

In this section we present a numerical study of the inventory & pricing problem in
order to illustrate the findings introduced in the previous section and we discuss some
of the structural properties of the problem in more detail. Furthermore, we can look at
properties where no explicit analytic solution or structural properties could be found.
In the following we present interesting aspects and properties of the problems analyzed.
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Figure 4.2: Optimal order quantity as a function of price, y∗(p). Additive (left) and multiplicative
demand model (right).

In this section we only consider IFR and IGFR preserving risk spectra, respectively,
in particular the power risk spectrum. Additionally, in Section 4.1.5, we pay special
attention to the mean-CVaRα risk spectrum.

We use the following parameters for the analysis unless otherwise noted: production
cost c = 2, salvage value v = 1, and no shortage penalty costs are considered (see
Section 4.2 for numerics with positive shortage penalty cost). As demand model we
use for the

• multiplicative model: D(p) = 1000p−2ε with E ∼ Gamma(1, 0.8), and for the

• additive demand model the linear function d(p) = 100− 10p with E ∼ N(0, 20).

Note that the criterion H(ε), as defined in Proposition 4.4(b), for the Gamma dis-
tribution in the multiplicative model is increasing for Var(E) < 1 and decreasing for
Var(E) > 1 and EE = 1.

Non-monotonicity of y∗(p) for additive and multiplicative models

In Figure 4.2 we see that for both the additive and the multiplicative models the
optimal order quantity is non-monotone in price, so y∗(p) is first increasing and then
decreasing in p. This non-monotonicity comes from two opposing effects of the increase
in price as described in Arıkan et al. (2007). On the one hand, a larger price increases
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the profitability of the product, meaning that the critical fractile p−c
p−v increases such

that the quantity tends to increase. On the other hand, the increase in price leads to a
decrease of expected demand, which naturally should have a decreasing effect on the
order quantity. As a consequence, for small prices the order quantity increases as the
first effect dominates, and decreases for higher prices, since the second effect dominates
for larger prices.

By numerically comparing different parameter sets it seems that the price up to
which y∗(p) is increasing is not very sensitive to the level of risk aversion, specifically
for the multiplicative demand model. The optimal quantity for a given price changes
dramatically with η.

Note that high prices in the additive model lead to unexpected behaviour. If we
define the reservation price of a product pr such that the deterministic demand at
this price d(pr) = 0, we see that the order quantity at pr, depending on the level of
risk aversion, is still clearly different from zero. The reason is that demand variance
is independent of price, so also for any p ≥ pr the newsvendor orders a positive, and
in fact constant, quantity, just to take advantage of the demand error. This response
is somewhat unsatisfactory on a practical level, since it implies a completely price-
independent probabilistic demand. As a consequence, the additive model should only
be applied when prices are small such that the corresponding demand is sufficiently
large. To model the demand behaviour with high prices and low demand levels the
multiplicative model is generally a better choice.

Behaviour of y∗ in η for additive and multiplicative model

In the discussion following Corollary 4.1 we described that the behaviour of the joint
optimal order quantity y∗ in η is non-monotone since it depends on whether the effect
of the decreasing demand in price or the increasing quantity due to a less risk-averse
preference dominates. In general, the numerical analysis shows that for an extremely
risk-averse newsvendor (η → 0), the order quantity decreases to zero (y∗ → 0), as this
allows her to reduce the risk to its minimum. Hence, y∗ is necessarily increasing in η

for small η. Depending on the demand model, the increase can be monotone, or up to
a certain level of η. An analysis of different parameters suggests that for an additive
linear demand model, y∗ is increasing in η; the same result could be found for any
multiplicative demand model. Only for an additive power demand model were we able
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Figure 4.3: Joint optimal order quantity y∗ for two additive (left) and multiplicative (right)
demand models. The additive models differ in the deterministic demand function: linear demand,
d(p) = 100− 10p (left up) and power demand, d(p) = 1000p−2 (left bottom).

to find non-monotone y∗ behaviour as illustrated in Figure 4.3.
We need to comment further on the additive power demand model. As we showed

in Proposition 4.4(a), p∗ is increasing in η. At some level of η price is large enough
such that the demand effect of the deterministic demand part vanishes and the price-
independent demand error contributes most to profit. In this case, y∗ is increasing in
η.

For the multiplicative demand model we can distinguish two cases depending on
the criterion H(ε): If H is increasing in its argument, from Proposition 4.4(b) p∗ is
increasing in η, which causes mean demand to decrease and the profitability of the
product to increase. However, as we see in the Figure 4.4, η has a very small effect on
p∗. As we know from the inventory-only problem, y∗(p) for a given p increases in η.
By the numerical study we can observe that the latter effect dominates because the
pricing effect is very small so that y∗ is increasing in η.

When H(ε) decreases, p∗ decreases in η, so that mean demand increases and the
profitability decreases. Changes in η do have stronger impact on p∗ in this case. The
increase in mean demand and the increase in y∗(p) for a given p clearly dominate the
loss of profitability of the product such that y∗ is again increasing in η, even at a larger
rate than in the case of increasing H(ε).
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Figure 4.4: Joint optimal price p∗ (left) for multiplicative demand models and the correspondig
H(ε) (right) from Proposition 4.4(b) for different variances of demand error.

Monotonicity of p∗ for the multiplicative model

While p∗ is monotonically increasing in η for the additive model as shown in Proposi-
tion 4.4(a), the behaviour for the multiplicative model is not that clear. In part (b)
of the same proposition we found a criterion H(ε) defined on the risk-transformed
distribution function such that p∗ is increasing in η if H(ε) increases in its argument,
and vice versa. Figure 4.4 illustrates this relationship: for high demand variance the
criterion is strictly decreasing, so that p∗ is decreasing in η; for low values of demand
error variance the criterion increases and, hence, p∗(y) also increases. For the special
case that the criterion is constant (dashed plot), p∗ does not change with η.

The reason for this behavior is similar to the discussion on Corollary 4.3. The
variance of demand in the multiplicative demand model depends on price, since
Var(D(p)) = Var(d(p)ε) = d(p)2 Var(E). Hence, it is possible to decrease demand
variance by increasing price. Whenever error variance is large, and therefore has
a significant impact on the overall performance, as the newsvendor becomes more
risk-averse he uses price to reduce demand variance compared to the risk-neutral case.
Recall that in contrast to this, the demand variance in the additive model is constant
in price, but the coefficient of variation cv = SD(D(p))

ED(p) increases in price. Hence, the
risk-averse newsvendor with an additive demand model decreases price, again to reduce
demand variability.
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Figure 4.5: Expected profit (left) and 80% confidence interval with maximum/minimum profit
realizations (right) for multiplicative demand model.

Analyzing the effect of different values of k specifically for the power risk spectrum,
we see that only the scaling but not the shape of H(ε) changes with k, so whether or
not H(ε) for this formulation is increasing or decreasing does not depend on k.

Expected profit and confidence intervals

We illustrate in Figure 4.5 the expected profit of a newsvendor with multiplicative
demand model and power risk spectrum for different risk aversion levels. Clearly the
maximum expected profit is obtained for the risk-neutral parameters. The level of
η has a considerable effect on the confidence interval of profit: while the expected
profit decreases compared to the risk-neutral case as the decision maker becomes more
risk-averse, the confidence interval gets tighter. In the case where the decision maker
is risk-seeking, the opposite effect becomes true: the expected profit is decreasing
compared to the risk-neutral case, and the confidence interval gets broader, which
implies higher possible profit realizations for the risk-seeking newsvendor. A similar
behaviour can be found if the underlying demand model has an additive structure.

Customer service levels with respect to η

As we discussed earlier, customer service levels are important externally-oriented
(customer-oriented) performance measures. In Figure 4.6 both the cycle service level
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Figure 4.6: CSL and FR in η for joint optimal (p∗, y∗) for multiplicative (left) with Var(E) = 2
such that H(ε) is decreasing and additive (right) demand model. Under each plot the difference
∆SL = FR− CSL is shown.

(CSL) and the fill rate (FR) are shown in the level of risk preference η. As we already
know from Corollary 4.1, for the additive demand model and multiplicative with
increasing H(ε), CSL is increasing in η. If, for the latter, H(ε) is decreasing, i. e. p∗

is decreasing in η, then the effect of increasing demand dominates the decrease in
profitability so that CSL remains increasing in η.

Overall, our numerical analysis shows that, independent of the demand model
formulation, both the cycle service level and the fill rate are increasing in η, although
we are not able to find an analytical proof for this behaviour. Hence, a newsvendor
might not only consider behaving in a risk-seeking way because of the chance for higher
profit realizations, but also to increase his service levels. According to this analysis
we can further comment that the differences between CSL and FR are larger for the
risk-averse than for the risk-seeking newsvendor.

Probability of missing a profit target with respect to η

Similar to the discussion of the inventory-only problem in Chapter 3 we can now also
consider the probability of missing a profit target PLL at level L as an internally,
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Figure 4.7: Probability of missing a profit target, PLL(η) for joint optimal (p∗, y∗) for multiplicative
(left) and additive (right) demand models.

cost-oriented performance measure. In Figure 4.7 we show the behavior for both
demand models. As in the case without pricing, the minimal PLL is found for (p, y)
such that these controls lead to the the maximum possible profit. For both demand
models, PL0 is strictly increasing in η with PL0 = 0 in the limit of η → 0. In this case,
the optimal quantity q∗ → 0, so that the resulting profit is zero without any variability.
For any L > 0, a very risk-averse newsvendor might find (p∗, z∗) such that L cannot
be reached at all, even if ε = z.

4.1.5 Analysis of the mean-CVaR risk spectrum

In this section we are specifically interested in the mean-CVaRα risk spectrum. The
reason for this is twofold. On the one hand, mean-CVaRα formulations are the most
common extensions of the basic CVaRα problem in the literature. On the other
hand, some problematic issues arise when a mean-CVaRα risk spectrum is applied to
an inventory & pricing optimization due to its lack of the IFR or IGFR preserving
property. Since this condition, as specified in Proposition 4.1, is no longer satisfied, the
unimodality of the risk measure of profit is not guaranteed, as illustrated in Figure 4.8.

As can be seen from Figure 4.8, the risk measure of profit for a mean-CVaRα risk
spectrum is not necessarily unimodal in price, due to the non-increasing transformed
failure rate. As the plots show, there can be a local maximum in the range of prices,
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Figure 4.10: Optimal quantity y∗(p), multiplicative demand model, d(p) = 1000p−2, demand error
∼ Gamma(1, 0.8) for α = 0.1 and with different λ parameters (left) and λ = 0.8 and different α
parameters (right).

where the correspondig CSL < α, so the level of risk spectrum in the optimal price is
λ
α . Another local maximum can be for higher price ranges with correspondig CSL > α,
where φ = 1−λ

1−α . Whichever local maximum is the global depends on the parameters
of the risk spectra (compare solid and dashed/dotted plot). So, not only is the
optimization problem no longer unimodal, but there is no relationship where one of
the modes always dominates. However, our numerical analysis suggests that there
are at most two modes in the optimization problem. If we order the optimal quantity
y∗(p) for each price, the optimization problem is still not unimodal as illustrated in
Figure 4.9.

As Figure 4.10 shows, the optimal order quantity for the mean-CVaRα risk spectrum
reacts in a very special way to price. While the optimal quantity is first increasing and
then decreasing in price for the CVaRα and power risk spectra (Sec. 4.1.4), now y∗(p)
is increasing and decreasing twice because of the sharp jump at α in the risk spectrum.
Recall from (3.13) that

y∗(p) =

F
−1
(
α
λ
p−c
p−v

)
p−c
p−v ≤ λ

F−1
(
p−c
p−v + α−λ

1−λ
c−v
p−v

)
otherwise.
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Hence, in the range of p such that p−c
p−v ≤ λ, we observe the increasing and decreasing

shape of y∗(p), as we discussed in the previous section for Figure 4.2. At p−c
p−v = λ, the

risk spectrum changes from λ
α to the lower level 1−λ

1−α . As a consequence, for prices
larger than, but still in the neighborhood of, this limit, the first effect again dominates.
Due to the lower level of the risk spectrum the increase in profitability is now valued
or considered more than before, so that optimal quantity is again increasing in price.
Clearly, at some high price levels the first effect diminishes and the second effect
dominates so that, ultimately, the order quantity is decreasing in price.

4.2 The inventory & pricing problem with shortage penalty cost

The joint inventory & pricing problem with positive shortage penalty and with con-
sideration of the risk preferences is the most challenging problem, technically. To
our knowledge, no analytical results exist in the literature yet. Unfortunately, we are
also unable to derive analytical results. Hence, we need to rely on a comprehensive
numerical study in order to gain insights into this problem. As we did for the previous
sections, we will use standard parameters unless otherwise noted in the respective plots.
In particular, we will use the same set of parameters, distribution functions and risk
spectra as in Section 4.1.4, except that we will now assume shortage penalty cost s = 5.

Taking advantage of the translation equivariance of the spectral risk measure, we
are able to formulate the additive problem as

M(Π(p, y)) = (p− c)d(p) + (p− c)z − (p− v)
∫ z

−∞
Gφ(ε) dε, (4.14)

where Gφ(ε) = Φ(G(ε)) = Φ
(
F (ε) + 1−F (ε̄)

)
and ε̄ = z + (z− ε)p−vs similar to (3.18)

and Proposition 3.5. Due to positive homogeneity we can write the multiplicative
problem as

M(Π(p, y)) = d(p)
[
(p− c)z − (p− v)

∫ z

0
Gφ(ε) dε

]
. (4.15)

In the following, we first analyze the unimodality of the problem with respect to
price. Afterwards, we analyze structural properties of the optimal controls (p∗, y∗)
with respect to η, considering different parameter sets. An analysis of performance
indicators such as expected profit, confidence intervals of profit, service level measures
and the probability of missing a profit target conclude the section on the inventory &
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Figure 4.11: Failure rate (left) for the additive model and generalized failure rate (right) for the
multiplicative model of the transformed distribution with a power risk spectrum for different
values of risk preference parameter k. See (2.12) for the definition of the risk spectrum.

pricing problem with shortage penalty costs.

4.2.1 Joint optimality and unimodality

As with the problem without shortage penalty costs, we look at the failure rate and
generalized failure rate of Fφ for the additive and multiplicative models, respectively.
The corresponding plots are shown in Figure 4.11. However, it is important to notice
that neither rate is purely dependent on the demand distribution anymore, but they also
depend on the parameters of the problem, since we model the effect of shortage penalty
costs by a transformation of the demand distribution function. So, in particular for each
price, the failure rate or generalized failure rate is different. Due to this dependency
on price, IFR or IGFR is not necessarily sufficient for a unimodal behaviour in price,
meaning it is no longer sufficient for having a single optimal price. Hence, we need
to look at the risk measure of profit with respect to price specifically. Nonetheless,
our numerical analysis shows that when applying admissible risk spectra (according to
Definition 2.4) for different paramter sets, the IFR and IGFR properties preserve.

The optimal pricing problem, when numerically analyzed with various distribution
functions for admissible risk spectra such as power or CVaRα risk spectra, results in a
unimodal optimization problem as in Figure 4.12. We were not able to find a single
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Figure 4.12: Risk measure of profit in price for additive (left) and multiplicative (right) demand
models with a power risk spectrum. The dots mark the optimal prices.

instance of a non-unimodal problem. Hence, although not being able to prove the
unimodality of the optimization problem, we have strong numerical support that using
an admissible risk spectrum is sufficient for the unimodality of the joint inventory &
pricing problem with shortage penalty costs.

4.2.2 Joint optimal controls

Again, it is interesting to observe the structural properties of the optimal controls
(p∗, y∗) in the joint optimization problem. Looking at the optimal quantity y∗ we can
observe that for all problem instances a high order quantity can be caused by two
reasons. First we observe high order quantities for extreme risk aversion (low values of
η). Here the newsvendor is mainly concered with shortage penalty costs, which causes
her to place higher orders to avoid them. In the other extreme, when the newsvendor
becomes more and more risk-seeking (large η), she increases the order quantity to
increase the possibility for high random profit realizations.

In Figure 4.13 we see the optimal quantity y∗ for different demand error variabilities,
where for this specific set of cost parameters the order quantity is increasing in demand
variability. For high ordering cost c the critical ratio p∗−c+s

p∗−v+s decreases so that optimal
order quantity can become decreasing in demand variability.

Figure 4.14 illustrates the behaviour of y∗ for different shortage penalty costs. While
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Figure 4.13: Joint optimal y∗ for different levels of demand variability with additive (left) and
multiplicative (right) demand model with a power risk spectrum.
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Figure 4.14: Joint optimal y∗ for different levels of shortage cost s with additive (left) and
multiplicative (right) demand models with a power risk spectrum.
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Figure 4.15: Joint optimal p∗ for different levels of shortage cost s with additive (left) and
multiplicative (right) demand models, power risk spectrum.

in the additive problem the optimal quantities are ordered with respect to s such that
a higher s leads to higher y∗, this relation does not hold for the multiplicative model.
The reason behind this is that although the optimal price in the additive model as
shown in Figure 4.15 increases in s, the increase is typically very small compared to
the multiplicative model. If price stays almost constant, the effect of s is mainly on
the quantity, where we know from the inventory-only problem that y∗ is increasing in
s. For the multiplicative model, however, we see s significantly affecting both quantity
and price. For higher levels of η the relative increase in price “overcompensates” the
increase in s such that mean demand and optimal order quantity decrease.

Figure 4.16 shows the joint optimal price p∗ for different levels of demand variability.
A main initial observation is that in the additive model p∗ is increasing in η, while for
the multiplicative model the opposite behaviour can be true. We can find the same
explanation, as we did for the problem without shortage penalty cost. In the additive
model the coefficient of variation is increasing in price, hence a risk-averse newsvendor
can reduce risk by increasing price. For the multiplicative model, variance is decreasing
in price, so the newsvendor will increase price the more risk-averse he is.

Note that for the additive model there are two ranges of η with respect to the
ordering of p∗ to demand error variability. In the low range an increase in the standard
deviation results in a decrease of p∗, while for the high range p∗ increases. This is
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Figure 4.16: Joint optimal p∗ for different levels of demand variability with additive (left) and
multiplicative (right) demand models, power risk spectrum.

an interesting observation as it shows that for any η the newsvendor, to some extent
always considers both risk and prospect of the operation. Depending on the parameters,
either of the two might dominate and determine the structural behaviour of p∗ with
respect to variability.

With the same argument as before we can say that if the risk consideration dominates,
the newsvendor will decrease price if demand is more variable, as we can see in the
example with k = 0.5. The newsvendor uses price to compensate for the higher
demand variability. If we consider k = 1.5, we can see clearly that now the prospect
consideration dominates the behaviour. The price is increased to over-proportionally
take advantage of variability. We can also say that in the case of small demand error
variability, the newsvendor uses price mainly as a tool to optimize the deterministic
part of demand, hence the influence of η is rather small. For the case where demand
error variability is high enough, price can be more effectively used as a tool to adjust
profit variability, and the effect of a change in η on p∗ gets stronger. In this case the
newsvendor can give up some of the deterministic profit in order to increase the profit
made due to the stochastic demand error.
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Figure 4.17: Expected profit (left) and confidence intervals of profit (right) for multiplicative
demand model, power risk spectrum.

4.2.3 Joint optimal performance measures

Finally, we can analyze the different performance measures as we did in the previous
sections. It is obvious that the maximum expected profit is realized for the risk-neutral
newsvendor as illustrated in Figure 4.17. However, due to the non-monotonicity of the
optimal controls, in particular y∗ in η, expected profit for the extremely risk-averse
case does not behave monotone in η but increases again as the newsvendor becomes
more risk-averse. The decision maker is so obsessed with avoiding shortage penalties
that he orders more and as a “by-product” his expected profit increases. We believe
that this is an interesting result, that increasing risk aversion might lead to increasing
expected profit.

A similar effect can be observed if we look at the service levels in Figure 4.18. Both
service levels are increasing in η for wide ranges of η, except for the very risk-averse case.
The increasing order quantity for very risk-averse newsvendors also leads to higher
service levels. For the internally-oriented probability of missing a profit target we can
observe non-monotone behaviour as illustrated in Figure 4.19. In the risk-seeking case,
the more risk-seeking the newsvendor becomes the higher the probability of missing
a profit target is, since he is willing to accept more risk in order to have the chance
of higher profit realizations. As the newsvendor becomes more risk-averse, PLL is
decreasing up to a certain level and increasing again for the very risk-averse cases.
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demand models.



Chapter 5

Conclusion

In this work we studied the stochastic single-period, single-item inventory control &
pricing problem under spectral measures of risk. The class of spectral risk measures is
general in the sense that it can express risk-averse, risk-neutral and risk-seeking risk
preferences. It can cover the well-known CVaRα, as well as mean-deviation criteria
or continuous risk functions; the power and exponential risk spectra are special cases
of spectral risk measures. Using this class of risk measures allows us to generalize
structural results obtained so far in the literature.

We divided the problem analysis into two main parts: first we derived optimality
conditions and structural results for the inventory-only problem, and in the second
part we added price as a decision variable such that we anaylzed a combined inventory
& pricing problem. In both parts we considered the situation without and with
positive shortage penalty cost separately, as the latter case causes additional technical
difficulties.

In the first part of the work, where price is assumed not to affect the demand
distribution with zero shortage penalty cost, we were able to prove the concavity of
the optimization problem and we could derive simple, closed-form expressions for the
optimal order quantity based on a transformation of the demand distribution according
to the risk preferences. We were able to show that both the optimal cycle service level
and the order quantity increase in the risk preference, meaning that they decrease as
the decision maker becomes more risk-averse. This behaviour can be explained by
saying that increasing order quantity increases the chance of higher profit realizations,
but comes with a higher risk of more leftover inventory. This classical trade-off of
the newsvendor model results in different optimal policies since, as risk preferences
increase, the decision maker values the chance of higher realizations more than the risk
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of leftover inventory. An analysis of performance indicators such as expected profit,
cycle service level and fill rate as two common service levels and the probability of loss
as an internal indicator concluded the inventory problem with zero shortage penalty
costs.

The inventory problem with positive shortage penalty costs is technically more
demanding. The reason for this is that now random demand and profit realizations are
no longer ordered in the same way, since the same low profit realization can be caused
either by high leftovers with low demand, or, alternatively, by high shortages with high
demand. Because of this the risk measure of profit cannot be written directly in terms
of the demand distribution. To overcome this problem either an optimization approach
can be used, as proposed by Rockafellar and Uryasev (2002), or in our very specific
situation we can take advantage of additional knowledge about profit realizations. As
leftovers and shortages are two mutually exclusive events, we were able to sum up
their probabilities after some rescaling and rewrite the problem as if there was no
shortage penalty cost. Then we were again able to write the problem in terms of
the demand distribution and show concavity results for the optimization. Although,
in general, an explicit formulation for the optimal order quantity can no longer be
found, the problem is reduced to a single-dimensional concave optimization problem
for general risk spectra, while the general formulation by Acerbi (2002) results in an
optimization problem with an infinite number of degrees of freedom. In the specific
case of a piecewise constant risk spectrum we were able to formulate the problem as a
system of non-linear equations which can be solved efficiently.

Using a numerical study we were able to conclude that the optimal order quantity
is no longer monotone in the risk preference when positive shortage penalty costs
must be considered. The explanation for this is that for high risk preferences the
newsvendor will order more because he wants to increase the chance for higher profit
realizations. On the other hand, as the newsvendor becomes very risk-averse, he is
mainly concerned with shortage penalties, as these are generally not bounded from
above. As a consequence, he will again increase his order quantity to hedge against the
rare high demand events which cause extreme losses.

The second main part of the work was concerned with the combined inventory &
pricing problem. Mean demand now depends on price. As is common in the related
literature, we used the additive and the multiplicative demand models to combine the
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deterministic demand with the stochastic error. To ensure unimodality of the joint
optimization problem we needed to restrict the risk spectra used to a subset which
perserve certain properties. We can show by an example that the mean-CVaRα risk
spectrum does not preserve these properties and may result in multiple local price
optima. Instead, the power risk spectrum satisfies all required conditions and turns
out to be a flexible model as it can cover risk-averse, risk-neutral and risk-seeking
preferences, and is implicitly a mean-deviation formulation already .

A main structural result for the combined problem concerned the price in the risk
preference. For the additive model we were able to show that optimal price is increasing
in the risk preference, while for the multiplicative model numerical analysis shows
that the optimal price is decreasing in the risk preference, under the condition that
demand error variability is large enough. This result is particularily interesting as it
shows the different strategies used by the newsvendor to hedge against or deal with
demand uncertainty, since in the additive model the coefficient of variation of demand
increases in price (with constant variance), while the variance decreases in price for
the multiplicative model (with constant coefficient of variation).

Considering also shortage penalty costs for the joint problem resulted clearly in the
technically most challenging model. In contrast to the previous models, here we were
no longer able to derive results analytically; instead, we conducted a numerical study
in order to gain insights into this problem. For unimodality of the problem we can
numerically identify the same conditions on the distribution functions and risk spectra
as for the problem with zero shortage penalty costs. The optimum price in the risk
preference is again increasing for the additive and decreasing for the multiplicative
demand model, while optimal quantities are non-monotone for both cases. Positive
shortage penalty costs also affect the service levels because in the extremely risk-averse
case, both measures approach one.

There are plenty of opportunities for further extension of the work. One extension
could be with respect to the estimation of the underlying demand model. Typically,
linear or log-linear regression is used to estimate the response of demand on price.
The commonly used least-squares minimization treats all observations equally so that
the regression model might be good on average but for the rather rare outcomes with
bad consequences the regression model might not explain demand very well. Hence,
similar to applying spectral risk measures, it could be interesting to apply weighted
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regression for the demand modeling to be able to specifically estimate the lower tails
of the demand distribution.

While the current work is strongly based on a normative foundation, a positive study
about how good different risk spectra might reflect empirically observeable decision
making behaviour could be very helpful. Based on these results the model could be
used for supply chain contracting issues, for example where a single manufacturer
delivers to multiple risk-averse retailers, where the manufacturer needs to anticipate
the response of the retailers on the pricing decision. Furthermore, additional research
on technical properties of risk spectra could be done in order to find risk spectra other
than CVaRα and power risk spectrum, where the necessary conditions for the pricing
problem are fulfilled.

A challenging task could be the extension of the model to a multi-product setting.
Choi and Ruszczyński (2008) and Choi et al. (2009) analyze approximation techniques
for quantity optimization when a product portfolio is considered under general law-
invariant coherent risk measures. A main conclusion of their work is that the whole
product portfolio has to be considered in the optimization when risk measures are
applied. To our knowledge, work with respect to the pricing problem in such a setting
has not yet been done.

A natural further extension of this work concerns dynamic multi-period models. It
would be very interesting to see if, for the inventory-only problem, a basestock policy,
or in the inventory & pricing problem, a basestock listprice policy, turns out to be
optimal.
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Appendix A

Proofs

Lemma A.1. (See Jammernegg and Kischka, 2007, appendix B) Let F be the contin-
uous, strictly increasing distribution function of demand D. The distribution function
of profit, FΠ is

FΠ(π) =

F
(
π+y(c−v)

p−v

)
for π < (p− c)y

1 otherwise,
(A.1)

so that FΠ is continuous and strictly increasing for π < (p−c)y. The generalized inverse
distribution function of profit, F−1

Π (ω), is then strictly increasing for ω ∈ [0, F (y)) and
(p− c)y for ω ∈ [F (y), 1].

Proof. Using the profit formulation as in (1.1), Π(y) = pmin(D, y)− cy + v(y −D)+,
one can easily see that with a given order quantity y when D = y, a maximum possible
profit of (p− c)y can be achieved.

Case 1: π > (p− c)y. For any D > y, no further profit improvements can be made.
Hence,

FΠ(π) = 1 for D > y.

Case 2: π ≤ (p− c)y. For the case D ≤ y, random profit can be written as

Π = pD − cy + (y −D)v.

109



Appendix A. Proofs 110

Exchanging variables,

FΠ(π) = P(Π ≤ π)

= P(pD − cy + (y −D)v ≤ π)

= P
(
D ≤ π + y(c− v)

p− v

)
= F

(
π + y(c− v)

p− v

)
.

Proof of Proposition 3.1

Since for the problem without penalty cost an ordered relation between demand
realizations and profit realizations exists (i. e. the 100α% lowest demand result in the
100α% lowest profit for any α), we can use the definition of the risk measure as in (2.9)
directly for the optimization. Hence, we can write the objective function, M(Π(y)), as

M(Π(y)) =
∫ F (y)

0
φ(ω)F−1

Π (ω) dω + (p− c)y
∫ 1

F (y)
φ(ω) dω.

Let Φ(ω) :=
∫ ω

0 φ(u) du, then

M(Π(y)) =
∫ F (y)

0
φ(ω)F−1

Π (ω) dω + (p− c)y (1− Φ(F (y))) ,

where F−1
Π (ω) for ω ∈ [0, F (y)) using Lemma A.1 is a continuous, monotone increasing

function. Hence, we can change the direction of integration and write

M(Π(y)) =
∫ (p−c)y

−(c−v)y
πφ(FΠ(π)) dFΠ(π) + (p− c)y (1− Φ(F (y))) .

Replacing profit distribution FΠ with demand distribution F using Lemma A.1 leads
to the formulation of the risk measure for the newsvendor problem,

M(Π(y)) =
∫ y

0
[xp− cy + (y − x)v]φ(F (x)) dF (x) + (p− c)y [1− Φ(F (y))] .

We are now ready to derive the first order condition to explicitly formulate the
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optimal order quantity, y∗. Using Leibnitz’ rule,

dM
dy

= −(c+ v)
∫ y

0
φ(F (x)) dF (x) + (p− c)[1− Φ(F (y))] = 0,

Solving for Φ(F (y)),
Φ(F (y)) = p− c

p− v
.

Note that Φ−1(ω) exists for every ω ∈ [0, 1] since φ(ω) is finite by definition.
Finally, we derive the second order condition to show that the optimization problem

is concave in y, so

d2 M
dy2 = −(c− v)φ(F (y))f(y)− (p− c)φ(F (y))f(y) < 0,

since v < c < p and φ(·) ≥ 0, f(·) ≥ 0 by definition. Hence, the problem is a concave
maximization problem in y.

Proof of Lemma 3.2

Using (1.9) and (1.1) the probability of profit being smaller than a target level L is

PLL = P(Π ≤ L) = P((p− c)y − (p− v)(y −D)+ ≤ L)

= P
(

max(y −D; 0) ≥ (p− c)y − L
p− v

)

=

P
(
D ≤ (c−v)y+L

p−v

)
for (p− c)y − L ≥ 0

1 for (p− c)y − L < 0

=

F
(

(c−v)y+L
p−v

)
for (p− c)y − L ≥ 0

1 for (p− c)y − L < 0.

It can be easily seen that for any y ≥ L
p−c , PLL is monotonically increasing in y since

F−1 is increasing in its argument.

Proof of Lemma 3.3

The probability of profit being smaller a certain level, P(Π ≤ π) is composed of two
parts: the event where D ≤ y and a second event where D > y. Note that these two
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events are mutually exclusive, therefore for the joint probability we can simply add up
the probabilities of the two events. Recall from (3.17),

Π(y) =

(p− c)D − (c− v)(y −D) D ≤ y

(p− c)y − s(D − y) D > y.

Now we can plug in the profit in the distribution function of profit, FΠ(π) := P(Π ≤ π),
and add up the probabilities of the two exclusive demand events, so that we can express
the profit distribution FΠ as a function of the demand distribution F .

FΠ(π) = P
(
Π(y) ≤ π, D ≤ y

)
+ P

(
Π(y) ≤ π, D > y

)
= P

(
(p− c)D − (c− v)(y −D) ≤ π, D ≤ y

)
+ P

(
(p− c)y − s(D − y) ≤ π, D > y

)
= P

(
D ≤ π + (c− v)y

p− v

)
+ P

(
D >

(p− c+ s)y − π
s

)
= F

(
π + (c− v)y

p− v

)
+ 1− F

((p− c+ s)y − π
s

)
.

Proof of Proposition 3.5

Using Acerbi’s method easily helps us to show the concavity of M(Π(y)) with respect
to y. We can formulate the risk measure as in Proposition 2.2, so

M(Π(y)) = max
ψ

Γ(y, ψ),

where Γ is defined in (2.14). Since random profit Π(y) is concave in y, immediately
from Corollary 2.2 it follows that M(Π(y)) is concave in the order quantity.

It remains to derive the risk measure in terms of demand. Since (p − c)y is the
maximum possible profit realization for a given y, we can write the risk measure in
terms of the profit distribution as

M(Π(y)) =
∫ (p−c)y

−∞
t dΦ(FΠ(t)).
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Exchanging the variable of integration t over profits by demand x, it follows that

M(Π(y)) =
∫ y

−∞
π(x, y) dΦ(G(x))

=
∫ y

−∞
((p− v)x− (c− v)y)

(
f(x) + f(x̄)p− v

s

)
φ
(
F (x) + 1− F (x̄)

)
dx.

Using integration by parts,

M(Π(y)) = (p− c)y − (p− v)
∫ y

−∞
Φ
(
F (x) + 1− F (x̄)

)
dx.

Proof of Lemma 3.4

Recall that for a CVaRα decision maker φ = 1
α for 0 ≤ ω ≤ α and 0 otherwise. Now,

let xo < y be the demand up to which the corresponding profits are considered by
having positive weights, so where φ(FΠ) = 1

α . The corresponding demand level larger
y, i. e. x̄o, can be derived as shown in (3.18), so

x̄o = y + (y − xo)p− v
s

.

Hence, xo should satisfy

G(xo) = F (xo) + 1− F (x̄o) = α. (A.2)

Since x̄o depends on y, when y changes also xo should change so that (A.2) is satisfied
again. Thus xo is implicitly a function of y. Now we can define xo′ = dxo

dy and x̄o′ = dx̄o

dy ,
taking the derivative of (A.2) with respect to y leads to

xo′f(xo)− x̄o′f(x̄o) = 0. (A.3)

Based on the general formulation of M(Π) in (3.23) we can write

M(Π(y)) = 1
α

∫ xo

−∞
((p− c)x− (c− v)(y − x))f(x̄)p− v

s
dx

+ 1
α

∫ xo

−∞
((p− c)x− (c− v)(y − x))f(x) dx.
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Substituting x̄ for x in the first integral leads to

M(Π(y)) = 1
α

∫ ∞
x̄o

((p− c)y − s(x̄− y))f(x̄) dx̄

+ 1
α

∫ xo

−∞
((p− c)x− (c− v)(y − x))f(x) dx,

taking the derivative with respect to y using (A.3),

M′(Π(y)) = 1
α

(
(p− c+ s)(1− F (x̄o))− (c− v)F (xo)

)
.

Using (A.2) we can solve this for

F (xo∗) = α
p− c+ s

p− v + s
, F (x̄o∗) = 1− α c− v

p− v + s
,

and

y∗ = p− v
p− v + s

F−1
(
α
p− c+ s

p− v + s

)
+ s

p− v + s
F−1

(
1− α c− v

p− v + s

)
.

Proof of Lemma 3.6

Following the same line of argument as in the proof of Corollary 3.4, we now define J
demand levels as

x̄oi = y + (y − xoi )
p− v
s

for all i = 1 . . . J,

and xo0 := −∞ and xoJ+1 := y, so x̄o0 =∞ and xoJ+1 = y which satisfy

F (xoi ) + 1− F (x̄oi ) = ωi for all i = 1 . . . J.

The risk measure can be formulated as

M(Π(y)) =
J+1∑
i=1

φi

[ ∫ x̄oi−1

x̄oi

((p− c)y − s(x̄− y))f(x̄) dx̄

+
∫ xoi

xoi−1

((p− c)x− (c− v)(y − x))f(x) dx
]
.
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Taking derivatives leads to the first order condition as the system of equations

dM(Π(y))
dy

=
J+1∑
i=1

φi

[
(p− c+ s)

(
F (x̄oi−1)− F (x̄oi )

)
− (c− v)

(
F (xoi )− F (xoi−1)

)]
= 0,

F (xoi ) + 1− F (x̄oi ) = ωi for all i.

Proof of Proposition 4.3

For the additive model, we write the objective function as

M(Π(p, z∗(p))) = M(Π(p)) = (p− c)d(p) + (p− c)z∗(p)− (p− v)
∫ z∗(p)

−∞
Fφ(ε) dε,

with cross derivative

∂2 M(Π(p))
∂v∂p

= dz∗(p)
dv

(
1− p− c

p− v

)
> 0.

The second term is positive by definition since p ≥ c ≥ v. To see that z∗(p) is increasing
in v, we take the derivative with respect to v from Fφ(z∗(p)) = p−c

p−v ,

dz∗(p)
dv

= 1
fφ(z∗(p))

p− c
(p− v)2 > 0.

Hence, the risk measure of profit is supermodular in (p∗, v), so p∗ is increasing in v.

Proof of Proposition 4.4

We write the objective function in terms of the degree of risk aversion, η using the
optimal stocking factor z∗(p). Note that the risk-transformed distribution function
Fφ(ε) changes with η. Let us first show part (a) for the additive model.

M(Π(p, z∗(p))) = M(Π(p)) = (p− c)(d(p) + z∗(p))− (p− v)
∫ z∗(p)

−∞
Fφ(ε) dε.
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The cross derivative is

∂2 M(Π(p))
∂η∂p

= ∂z∗(p)
∂η

(1− Fφ(z∗(p)))−
∫ z∗(p)

−∞

∂Fφ(ε)
∂η

dε, (A.4)

where Fφ(z∗(p)) = p−c
p−v . By Definition 2.5(b), Φ(ω) decreases in η, hence also Fφ(ε) =

Φ(F (ε)) decreases in η. Furthermore, the optimal z∗(p) = F−1
φ

(
p−c
p−v

)
for a given p

increases in η. Hence, since 0 ≤ Fφ(z∗(p)) ≤ 1 the first term in (A.4) is positive, while
the second term is negative so that the whole expression is positive. This is sufficient
for M(Π(p)) being supermodular in (p∗, η) and p∗ being increasing in η.

Now we can show part (b) for the multiplicative model. The first derivative with
respect to price is

∂M(Π(p))
∂p

∣∣∣∣∣
p=p∗

=d′(p∗)
[
p∗
∫ z∗(p∗)

0
(1− Fφ(ε)) dε− cz∗(p∗)

]

+ d(p∗)
∫ z∗(p∗)

0
(1− Fφ(ε)) dε = 0,

hence

d′(p∗) = − d(p∗)
∫ z∗(p∗)
0 (1− Fφ(ε)) dε

p∗
∫ z∗(p∗)

0 (1− Fφ(ε)) dε− cz∗(p∗)
.

Recall that ε(p) denotes the price elasticity,

ε(p∗) = −p
∗d′(p)
d(p∗) = p∗

∫ z∗(p∗)
0 (1− Fφ(ε)) dε

p∗
∫ z∗(p∗)
0 (1− Fφ(ε)) dε− cz∗(p∗)

, and

1− ε(p∗) = d(p∗)− p∗d′(p∗)
d(p∗) = −cz∗(p∗)

p∗
∫ z∗(p∗)

0 (1− Fφ(ε)) dε− cz∗(p∗)
. (A.5)

Using integration by parts, we can rewrite the denominator as

1− ε(p∗) = −cz∗(p∗)
p∗
∫ z∗(p∗)

0 εfφ(ε) dε
. (A.6)
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The cross derivative is

∂2 M(Π(p))
∂η∂p

=d′(p)
[
−p

∫ z∗(p)

0

∂Fφ(ε)
∂η

dε+ p
∂z∗(p)
∂η

(1− Fφ(z∗(p)))− cz∗(p)
]

+ d(p)
[
−
∫ z∗(p)

0

∂Fφ(ε)
∂η

(ε) dε+ ∂z∗(p)
∂η

(1− Fφ(z∗(p)))
]
,

where Fφ(z∗(p)) = p−c
p , so

∂2 M(Π(p))
∂η∂p

= −
∫ z∗(p)

0

∂Fφ(ε)
∂η

dε ·
(
d(p) + pd′(p)

)
+ d(p)∂z

∗(p)
∂η

c

p

Since d(p∗) + p∗d′(p∗) = d(p∗)(1− ε(p∗)) from (A.5), we can write

∂2 M(Π(p))
∂η∂p

∣∣∣∣∣
p=p∗

= d(p∗)

−(1− ε(p∗))
∫ z∗(p∗)

0

∂Fφ(ε)
∂η

dε+ ∂z∗(p)
∂η

∣∣∣∣∣
p∗

· c
p∗

 .
Plugging in (A.6),

∂2 M(Π(p))
∂η∂p

∣∣∣∣∣
p=p∗

= d(p∗)

 cp∗
z∗(p∗)

∫ z∗(p∗)

0

∂Fφ(ε)
∂η

dε∫ z∗(p∗)

0
εfφ(ε) dε

+ ∂z∗(p)
∂η

∣∣∣∣∣
p∗

· c
p∗



= d(p∗) c
p∗


z∗(p∗)

∫ z∗(p∗)

0

∂Fφ(ε)
∂η

dε+ ∂z∗(p)
∂η

∣∣∣∣∣
p∗

·
∫ z∗(p∗)

0
εfφ(ε) dε

∫ z∗(p∗)

0
εfφ(ε) dε

 .

Since
∂z∗(p)
∂η

= −∂Fφ(ε)
∂η

∣∣∣∣∣
ε=z∗(p)

× 1
fφ(z∗(p)) ,
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we can write

∂2 M(Π(p))
∂η∂p

∣∣∣∣∣
p=p∗

=d(p∗) c
p∗

(∫ z∗(p∗)

0
εfφ(ε) dε

)−1 1
fφ(z∗(p∗))

×
[
z∗(p∗)fφ(z∗(p∗))

∫ z∗(p∗)

0

∂Fφ(ε)
∂η

dε− ∂G(z∗(p∗))
∂η

∫ z∗(p∗)

0
εfφ(ε) dε

]
,

where the first terms are all positive and the expression in
[
·
]

can be written as

∫ z∗(p∗)

0

∂Fφ(ε)
∂η

∂Fφ(z∗(p∗))
∂η

z∗(p∗)fφ(z∗(p∗))
∂Fφ(z∗(p∗))

∂η

− εfφ(ε)
∂Fφ(ε)
∂η

 dε. (A.7)

This expression is positive if

d

dx

(
xfφ(x)
∂
∂ηFφ(x)

)
> 0,

so if the second fraction in (A.7) is increasing in ε.

Proof of Proposition 4.5

Let us first show the monotonicity of p∗(y) for an additive demand model. Note that
for ease of expression we show the derivations without considering salvage value, so
v = 0. It can be easily extended to v > 0. We can write

M(Π(p, y)) =
∫ y−d(p)

−d(p)
p(d(p) + ε)fφ(ε) dε+

∫ ∞
y−d(p)

pyfφ(ε) dε− cy.

Using y = d(p) + z,

M(Π(p, y)) = (p− c)y − p
∫ y−d(p)

−d(p)
(z − ε)fφ(ε) dε.

Using integration by parts,

M(Π(p, y)) = (p− c)y − p
∫ y−d(p)

−d(p)
Fφ(ε) dε.
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The first order condition for optimal p∗(y) is then

∂M(Π(p, y))
∂p

∣∣∣∣∣
p=p∗(y)

=
∫ y−d(p)

−d(p)

[
1− Fφ(ε) + pd′(p)fφ(ε)

]
dε
∣∣∣
p=p∗(y)

= 0. (A.8)

Note that Fφ(−d(p)) = 0. Using the implicit function theorem,

dp∗(y)
dy

= −∂
2 M(Π(p, y))

∂y∂p

(
∂2 M(Π(p, y))

∂p2

)−1 ∣∣∣∣∣
p=p∗(y)

,

where the second term is negative because of the second order condition for optimality
of p∗(y). For a decreasing p∗(y) it remains to show that the first term is negative. It
can be written as

∂2 M(Π(p, y))
∂y∂p

= 1− Fφ(y − d(p)) + pd′(p)fφ(y − d(p)) (A.9)

Now, let R(p, ε) := −pd′(p) fφ(ε)
1−Fφ(ε) so that

1− Fφ(ε) + pd′(p)fφ(ε) = (1− Fφ(ε))(1−R(p, ε)).

Now we show that for p = p∗(y), (A.9) is negative by contradiction. Assume

(1− Fφ(ε))(1−R(p, ε))
∣∣
ε=y−d(p) ≥ 0.

Because (1− Fφ(·)) ≥ 0 it follows that 1−R(p, ε)
∣∣
ε=y−d(p) ≥ 0. R(p, ε) is increasing in

ε, since F has IFR and the risk spectrum preserves the IFR property, which implies
that fφ(ε)

1−Fφ(ε) is increasing in ε. Hence, 1−R(p, ε) > 0 for any ε ∈ (−d(p), y − d(p)). It
follows that ∫ y−d(p)

−d(p)
(1− Fφ(p, ε))(1−R(p, ε)) dε

∣∣∣∣∣
p=p∗(y)

> 0,

which is a contradiction to (A.8).
The proof for the multiplicative demand function is very similar. The cross derivative

is
∂2 M(Π(p, y))

∂y∂p
= 1− Fφ

(
y

d(p)

)
+ pd′(p)

d(p)
y

d(p)fφ
(

y

d(p)

)
. (A.10)
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We can define R(p, ε) := pd′(p)
d(p)

εfφ(ε)
1−Fφ(ε) which is increasing in ε. Using the same argument

by contradiction as before, (1−Fφ(ε))(1−R(p, ε))
∣∣
ε= y

d(p)
< 0, which implies that (A.10)

is negative for p = p∗(y) and p∗(y) is decreasing in y.

Proof of Corollary 4.2

It is easy to see that the risk measure of the profit from the demand error,

M(Πε(p, z)) = (p− c)z − (p− v)
∫ z

−∞
Fφ(ε) dε,

is supermodular in (p, z), since

∂2 M(Πε(p, z))
∂z∂p

= 1− Fφ(z) > 0.

Hence, independent of the underlying demand model p∗ is increasing in z.

Proof of Corollary 4.3

Let us first show the behaviour for the additive demand model. We write the risk
measure of profit as a function of p and η,

M(Π(p, z)) = (p− c)(d(p) + z)− (p− v)
∫ z

−∞
Fφ(ε) dε,

with cross derivative,

∂2 M(Π(p, z))
∂p∂η

= −
∫ z

−∞

∂

∂η
Fφ(ε) dε > 0.

This holds since by Definition 2.5(b) Fφ is decreasing in η. Hence, the risk measure is
supermodular in (p∗, η) for a given z and p∗(z) is increasing in η.

Now we can show the behavior for the multiplicative demand model. Here the risk
measure of profit is

M(Π(p, z)) = d(p)
[
(p− c)z − (p− v)

∫ z

0
Fφ(ε) dε

]
,
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with cross derivative

∂2 M(Π(p, z))
∂p∂η

= −
(
d′(p)(p− v) + d(p)

) ∫ z

0

∂

∂η
Fφ(ε) dε. (A.11)

The integral is with negative the same reasoning as before in the additive model.
What remains, is to show that the first term is negative. The first order condition for
optimality of price is

∂M(Π(p, z))
∂p

= −
(
d′(p)(p−v)+d(p)

) ∫ z

0
Fφ(ε) dε+z

(
d′(p)(p−c)+d(p)

)∣∣∣∣∣
p=p∗(z)

= 0.

Since p− c < p− v, we can write

(
d′(p)(p− v) + d(p)

)(
z −

∫ z

0
Fφ(ε) dε

)
< 0.

Since Fφ(·) ≤ 1, the integral is smaller than z and the right term is positive. Hence,
the first term is negative, so that also (A.11) is negative. The problem is submodular
in (p∗, η), so p∗(z) is decreasing in η.


