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Abstract

We analyze the asymptotic behavior of autoregressive neural network
(AR-NN) processes using techniques from Markov chains and non-linear
time series analysis. It is shown that standard AR-NNs without shortcut
connections are asymptotically stationary. If linear shortcut connections
are allowed, only the shortcut weights determine whether the overall sys-
tem is stationary, hence standard conditions for linear AR processes can

be used.

1 Introduction

In this paper we consider the popular class of nonlinear autoregressive processes
driven by additive noise, which are defined by stochastic difference equations of
form

E=9E-1,.. ., &—p,0) + ¢ (1)

where ¢ is an iid. noise process. If g(---,6) is a feedforward neural network
with parameter (“weight”) vector 8, we call Equation 1 an autoregressive neural
network process of order p, short AR-NN(p) in the following.
AR-NNs are a natural generalization of the classic linear autoregressive
AR(p) process
=&+ apiop + 6 (2)

See, e.g., Brockwell & Davis (1987) for a comprehensive introduction into AR
and ARMA (autoregressive moving average) models.

One of the most central questions in linear time series theory is the stationar-
ity of the model, 1.e., whether the probabilistic structure of the series is constant
over time or at least asymptotically constant (when not started in equilibrium).
Surprisingly, this question has not gained much interest in the NN literature,
especially there are—up to our knowledge—mno results giving conditions for the
stationarity of AR-NN models. There are results on the stationarity of Hop-
field nets (Wang & Sheng, 1996), but these nets cannot be used to estimate
conditional expectations for time series prediction.



The rest of this paper is organized as follows: In Section 2 we recall some
results from time series analysis and Markov chain theory defining the relation-
ship between a time series and its associated Markov chain. In Section 3 we
use these results to establish that standard AR-NN models without shortcut
connections are stationary. We also give conditions for AR-NN models with
shortcut connections to be stationary. Section 4 examines the NN modeling of
an important class of non-stationary time series, namely integrated series. Fi-
nally we illustrate the results with examples in Section 5. All proofs are deferred
to the appendix.

2 Some Time Series and Markov Chain Theory

2.1 Stationarity

Let & denote a time series generated by a (possibly nonlinear) autoregressive
process as defined in (1). If IE €; = 0, then g equals the conditional expectation
IE(&)ée—1, ..., &—p) and g(&—1,...,&—p) is the best prediction for & in the
mean square sense.

If we are interested in the long term properties of the series, we may ask
whether certain features such as mean or variance change over time or re-
main constant. The time series is called weakly stationary if IE& = p and
cov(&s,&4n) = Yn, Vi, i.e., mean and covariances do not depend on the time
t. A stronger criterion is that the whole distribution (and not only mean and
covariance) of the process does not depend on the time, in this case the se-
ries 18 called strictly stationary. Strong stationarity implies weak stationarity
if the second moments of the series exist. For details see standard time series
textbooks such as Brockwell & Davis (1987).

If & is strictly stationary, then IP(&; € A) = n(A), Vt and n(-) is called the
stationary distribution of the series. Obviously the series can only be stationary
from the beginning if it is started with the stationary distribution such that
&y ~ m. If it is not started with m, e.g., because &; is a constant, then we call
the series asymptotically stationary if it converges to its stationary distribution:

tliglo IP(& € A) = m(A)

2.2 Time Series as Markov Chains

Using the notation

LTi—1 = (5t—1,~~~,5t—p)/ (3)
G(l‘t—1) = (g(l‘t—l),ft—l,~~~,5t—p+1)/ (4)
ee = (€,0,...,0) (5)

we can write scalar autoregressive models of order p such as (1) or (2) as a first
order vector model

2 = Gxeo1) + e (6)
with z;,e; € R? (e.g., Chan & Tong, 1985). If we write
e, A) = IP{wi4n € Alxe =z}
plz,A) = p'(z, A)



for the probability of going from point  to set A € B in n steps, then {x;} with
p(x, A) forms a Markov chain with state space (R?, B, A), where B are the Borel
sets on R? and X is the usual Lebesgue measure.
The Markov chain {«;} is called p-irreducible, if for some o-finite measure

pon (R B, A)

(o]

Yo € RP . Zp”(x,A) >0

n=1
whenever ¢(A) > 0. This means essentially, that all parts of the state space
can be reached by the Markov chain irrespective of the starting point. Another
important property of Markov chains is aperiodicity, which loosely speaking
means that there are no (infinitely often repeated) cycles. See, e.g., Tong (1990)
for details.

The Markov chain {a;} is called geometrically ergodic, if there exists a prob-
ability measure 7(A4) on (R?, 5, A) and a p > 1 such that

Ve € R lim p"||p" (z,-) = 7()[] = 0
where || - || denotes the total variation. Then & satisfies the invariance equation
(A) = /p(x,A)Tr(dl‘), VA€ B

There is a close relationship between a time series and its associated Markov
chain. If the Markov chain is geometrically ergodic, then its distribution will
converge to m and the time series i1s asymptotically stationary. If the time
series is started with distribution =, i.e., &g ~ &, then the series {&} is strictly
stationary.

3 Stationarity of AR-NN Models

We now apply the concepts defined in Section 2 to the case where g is defined by
a neural network. Let # denote a p-dimensional input vector, then we consider
the following standard network architectures:

Single hidden layer perceptrons:
9(x) =0+ Y Pio(ai +dlz) (7)
i
where «;, 8; and vy are scalar weights, a; are p-dimensional weight vectors,

and o(-) is a bounded sigmoid function such as tanh(-).

Single hidden layer perceptrons with shortcut connections:
g(x) :Pyo—l—c’x—i—ZﬁiU(ai—l—a;x) (8)

where ¢ 1s an additional weight vector for shortcut connections between
inputs and output. In this case we define the characteristic polynomial
¢(z) associated with the linear shortcuts as

c(z)=1—clz—caz2— ... =P, zeC.
)



Radial basis function networks:

g(x) Z’YO+Z@¢(%|1‘—W|) (9)

where m; are center vectors and ¢(- - -) is one of the usual bounded radial
basis functions such as ¢(z) = exp(—2?).

Lemma 1 Let {x:} be defined by (6), let IE |e;| < oo and let the PDF of ¢
be positive everywhere in R. Then if g is defined by any of (7), (8) or (9), the

Markov chain {a} is ¢-irreducible and aperiodic.

Lemma 1 basically says that the state space of the Markov chain, i.e., the
points that can be reached, cannot be reduced depending on the starting point.
An example for a reducible Markov chain would be a series that is always positive
if only #g > 0 (and negative otherwise). This cannot happen in the AR-NN(p)
case due to the unbounded additive noise term.

Theorem 1 Let {&:} be defined by (1), {x:} by (6), further let IE |e;| < oo and
the PDF of ¢; be positive everywhere in R. Then

1. If g is a network without linear shortcuts as defined in (7) and (9), then
{@} is geomelrically ergodic and {&} is asymplotically stationary.

2. If g is a network with linear shortcuts as defined in (8) and additionally
c(z) #0,Vz € C: |z| < 1, then {x:} is geometrically ergodic and {&:} is
asymptotically stationary.

The time series {£; } remains stationary if we allow for more than one hidden
layer (— multi layer perceptron, MLP) or non-linear output units, as long as
the overall mapping has bounded range. An MLP with shortcut connections
combines a (possibly non-stationary) linear AR(p) process with a non-linear
stationary NN part. Thus, the NN part can be used to model non-linear fluc-
tuations around a linear process like a random walk.

The only part of the network that controls whether the overall process is
stationary are the linear shortcut connections (if present). If there are no short-
cuts, then the process is always stationary. With shortcuts, the usual test for
stability of a linear system applies.

4 Integrated Models

An important method in classic time series analysis is to first transform a non-
stationary series into a stationary one and then model the remainder by a sta-
tionary process. The probably most popular models of this kind are autoregres-
sive integrated moving average (ARIMA) models, which can be transformed
into stationary ARMA processes by simple differencing.

Let A* denote the k-th order difference operator

A = &G =& (10)
A% = A6 — &) =& — 261+ & (11)
st = a@@e) =3 (e (12)

n=0



with Al = A. E.g., a standard random walk & = &_; + ¢ is non-stationary
because of the growing variance, but can be transformed into the iid (and hence
stationary) noise process €; by taking first differences.

If a time series is non-stationary, but can be transformed into a stationary
series by taking k-th differences; we call the series integrated of order k. Standard
MLPs or RBFs without shortcuts are asymptotically stationary. It i1s therefore
important to take care that these networks are only used to model stationary
processes. Of course the network can be trained to mimic a non-stationary
process on a finite time interval, but the out-of-sample or prediction performance
will be poor, because the network inherently cannot capture some important
features of the process (see the example in Section 5.1). One way to overcome
this problem is to first transform the process into a stationary series (e.g., by
differencing an integrated series) and train the network on the transformed series
(Chng et al., 1996).

As differencing is a linear operation, this transformation can also be easily
incorporated into the network by choosing the shortcut connections and weights
from input to hidden units accordingly. Assume we want to model an integrated
series of integration order k&, such that

ARg = H(Akft—l, Sy Akft—p) + €&
where A*¢; is stationary. By (12) this is equivalent to

k

& = Z(_l)n_l (i) St-n + g(Akgt—la e Akgt—p) + €
n;1 i
= Z:(—l)”_1 (n) Etmn + 91, &pi) F €
n=1

which (for p > k) can be modeled by an MLP with shortcut connections as
defined by (8) where the shortcut weight vector ¢ is fized to

(e () Qe

and § is such that §(&—1,...,&—p—k) = g(AF2;_1). This is always possible and
can basically be obtained by adding ¢ to all weights between input and first
hidden layer of g.

An AR-NN(p) can model integrated series up to integration order p. If
the order of integration is known, the shortcut weights can either be fixed, or
the differenced series is used as input. If the order is unknown, we can also
train the complete network including the shortcut connections and implicitly
estimate the order of integration. After training the final model can be checked
for stationarity by looking at the characteristic roots of the polynomial defined
by the shortcut connections.

4.1 Fractional Integration

Up to now we have only considered integrated series with positive integer order
of integration, i.e., k € N. In the last years models with fractional integration
order became very popular (again). Series with integration order of 0.5 < k < 1



can be shown to exhibit self-similar or fractal behavior, and have long memory.
These type of processes were introduced by Mandelbrot in a series of paper
modeling river flows, e.g., see Mandelbrot & Ness (1968). More recently, self-
similar processes were used to model Ethernet traffic by Leland et al. (1994).
Also some financial time series such as foreign exchange data series exhibit long
memory and self-similarity.

The fractional differencing operator A* k € [~1,1] is defined by the series
expansion
k — _ D(=k+n)
A L TR "

n=0

which is obtained from the Taylor series of (1 — 2z)¥. For k > 1 we first use
Equation (12) and then the above series for the fractional remainder. For prac-
tical computation, the series (13) is of course truncated at some term n = N.
An AR-NN(p) model with shortcut connections can approximate the series up
to the first p terms.

5 Examples
5.1 Random Walk

-02 00 02 04 06

Figure 1: Training set for a simple random walk (top) and residuals of a standard
1-2-1 MLP without shortcuts (bottom).

Figures 1 and 2 show a simple random walk

& =& 1+
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Figure 2: Test set for a simple random walk (top) and residuals of a standard
1-2-1 MLP without shortcuts (bottom).
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Figure 3: h(z) (solid) and = + h(z) (dashed)

with ¢ iid. normal. We trained an MLP with input &_;, 2 hidden nodes,
output & and no shortcuts (the size of the hidden layer does not matter for
the example). Obviously the best prediction for & at time ¢ — 1 is &_1, i.e.,
the network should simply learn the identity function. However, due to the
bounded range of the network, this function cannot be learned as seen on the
test set (Figure 2). Note that the deficiency of the model cannot be detected on
the first half of the test set, i.e., even an independent test set would fail in that
case. Training the network on the increments, i.e., the differenced series would

be fine.

5.2 Random Walk with Nonlinearity

As another example we consider the process defined by

& = &—1+D500h(E-1/5) + & (14)
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Figure 4: Sample path for Equation 14
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Figure 5: The conditional expectation [FE (£:|&—1) as modeled by an MLP with-
out shortcut connection (solid line) and with shortcut connection (dashed line).
Both models capture the nonlinearity (enlarged in the upper left and lower
right corner) very well. Of course only the MLP with shortcut can model the
Brownian motion part (straight line), because a standard MLP has bounded
range.

hiz) = o(@)*x(1l—0o(x))* (1 —-2*0(x)) (15)
o(x) = (I+e )7} (16)

where o(-) is the usual sigmoid function, h(-) is the second derivative of o(-)
and ¢; 1s 1id. standard normal. The non-linearity was chosen such that it can
be learned without too much difficulty by an MLP, yet is strongly non-linear
(local minimum and maximum). Without &, this example would be a standard
random walk.

The non-linearity h (see Figure 3) adds fluctuations around zero, i.e., small
positive values are transformed into negative values and vice versa. Figure 2
shows a typical sample path for this process. For larger values (|&]| > 50)
the series looks like a Brownian motion, for smaller values it exhibits strong
non-linear fluctuations due to the influence of h.

We trained an MLP (with and without shortcut) using one input (&-1), 6
hidden nodes and one output node (&) on this training sample of size 10000.
Obviously an example with only one input is rather small, but it has the ad-
vantage that the estimate of the conditional expectation IE(&|€;—1) can easily
be plotted, hence the example is 1deal for demonstration purposes.

Figure 5 shows the outputs of the two trained networks. Both capture the
non-linearity quite well, of course only the model with shortcut connections
captures the Brownian motion part (f(z) = #). The weight of the shortcut



connection after training was 0.9985, which is quite close to the true value of 1.

6 Summary

We have shown that AR-NN models using standard NN architectures with-
out shortcuts are asymptotically stationary. If linear shortcuts between inputs
and outputs are included—which many popular software packages have already
implemented—then only the weights of the shortcut connections determine if
the overall system 1s stationary. It is also possible to model many integrated
time series by this kind of networks.

The asymptotic behavior of AR-NNs is especially important for predictions
over larger intervals of time or when using the network to generate artificial time
series. E.g., one might train the network on an available sample and then use
the trained network afterwards—driven by artificial noise from a random num-
ber generator—to generate new data with similar properties than the training
sample. The asymptotic stationarity guarantees that the AR-NN model cannot
show “explosive” behavior or growing variance with time.
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Appendix: Mathematical Proofs

Proof of Lemma 1

It can easily be shown that {«;} is ¢-irreducible if the support of the probability
density function (PDF) of ¢ is the whole real line, i.e., the PDF is positive
everywhere in R (Chan & Tong, 1985). In this case every non-null p-dimensional
hypercube is reached in p steps with positive probability (and hence every non-
null Borel set A).

A necessary and sufficient condition for {a;} to be aperiodic is that there
exists a set A and positive integer n such that p™(x, A) > 0 and p"T1(z, A) > 0
for all z € A (Tong, 1990, p. 455). In our case this is true for all n due to the
unbounded additive noise.

Proof of Theorem 1

We use the following result from nonlinear time series theory:

Theorem 2 (Chan & Tong 1985) Let {x} be defined by (1), (6) and let G
be compact, 1.e. preserve compact sets. If G can be decomposed as G = Gy + Gy
and

1. G4(*) is of bounded range

2. Gp(°) is continuous and homogeneous, i.e., Gp(axr) = aGp(x)



3. the origin 1s a fired point of Gy, and G}, is uniform asymptotically stable
4. IE |e| < 0o and the PDF of €, is positive everywhere in R

then {2} is geometrically ergodic.

The noise process ¢ fulfills condition 4 by assumption (e.g., Gaussian noise).
Clearly all networks are continuous compact functions. Standard MLPs without
shortcut connections and RBFs have a bounded range, hence G, =0 and G =
G4, and the series {&} is asymptotically stationary.

If we allow for linear shortcut connections between the input and the outputs,
we get

G, = (d=z

Ga Yo+ Y Bio(ai + djxr)

i.e., Gy is the linear shortcut part of the network, and G is a standard MLP
without shortcut connections. Clearly, (G, is continuous, homogeneous and has
the origin as a fixed point. Hence, the series {{;} is asymptotically stationary
if Gy, 1s asymptotically stable, i.e.; when all characteristic roots of G, have a
magnitude less than unity. Obviously the same is true for RBFs with shortcut
connections.

Note that the model reduces to a standard linear AR(p) model if G4 = 0.
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