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Abstract

Spatial dependency is commonly measured and tested with Moran’s I statistic. The
question to be answered is, whether far-off objects affect this statistic and influence the test.
Far-off objects are observations that are far apart from all other objects in the dataset, i.e.
they do not have spatial links to other design points. In the paper different possibilities of
treating such objects are discussed, and their influence on Moran’s I and the corresponding
spatial autocorrelation test is analysed.

Keywords: Moran’s I, far-off objects

1 Introduction

One of the most famous methods for measuring and testing spatial dependency is based on Moran’s
I statistic Moran (1950), which measures the intensity of spatial autocorrelation in a spatial
stochastic process. For a linear regression model I is given by

I =
ε̂′ 12 (V + V′)ε̂

ε̂′ε̂
(1)

where ε̂ = (ε̂1, ..., ε̂n)′ are the normally distributed regression residuals and V is a standardized
spatial weight matrix, see e.g., Tiefelsdorf (2000). For testing the null hypothesis of no spatial
autocorrelation against the alternative of positive or negative spatial autocorrelation, the expected
value and the variance of I under the null are needed. Both can be written in form of the projection
matrix M = In − X(X′X)−1X′ and K = M′ 1

2 (V + V′)M. The expected value under the null
hypothesis is:

E[I | H0] =
tr(K)
n− k

=
tr{M 1

2 (V + V′)M}
n− k

=
tr(MV)
n− k

. (2)

If the spatial dependency of a single variable is of interest, one simply uses a regression on only an
intercept and takes the corresponding residuals for calculating I, i.e. k = 1 and M = In− 1

n1n1′n.
Under the assumption that V has full rank, the expected value under the null hypothesis reduces
to E[I|H0] = − 1

n−1 , (cf. Cliff and Ord, 1981), which is independent of the design points, i.e. the
location of the observations is not relevant. The variance of I under the null is equally given by

Var[I | H0] =
tr(MVMV′) + tr(MV)2 + {tr(MV)}2

(n− k)(n− k + 2)
− {E[I | H0]}2

=
2{(n− k)tr(K2)− tr(K)2}

(n− k)2(n− k + 2)
. (3)

For k = 1 and rank(V) = n, this variance can be given in terms of the eigenvalues νi of matrix
K = M′ 1

2 (V + V′)M as Var[I|H0] = 2n
n2−1

∑n
i=1(νi − ν̄)2 = 2n

n2−1σ2
ν , (cf. Cliff and Ord, 1981).

The standardized Moran’s I is for normal distributed regression residuals and well-behaved spatial
link matrices under the assumption of spatial independence asymptotically N(0, 1)- distributed,
and is given by

z(I) =
I − E(I)√

Var(I)
. (4)
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Values z(I) are simply compared with the critical values of the N(0, 1) distribution to test the
null hypothesis of no spatial autocorrelation against the alternative of positive or negative spatial
autocorrelation, (cf. Tiefelsdorf, 2000).

2 Far-off objects

The treatment of far-off observations in spatial analysis is not really worked out in literature al-
though it is an interesting question. Far-off objects are observations that are far apart from all
other objects but still of interest in a certain point of view, i.e. they belong to the design but have
no spatial links to other design points. And even such objects are not spatially linked to others,
they have influence on spatial analysis. This can be seen e.g., when looking at the expected value
of I in an intercept only model, here E[I|H0] should be equal to − 1

n−1 but this relation holds only
if V has full rank, i.e. all observations are derived from different locations, and all of them are
somehow related to at least one other observation, and therefore no objects are completely sepa-
rated from all the others. The problem of far-off objects can easily occure if neighbourhood-based
spatial link matrices are used, and it might occur if the connectivity is based on distance matrices
and a sill, i.e. from a certain distance onwards the connectivity is assumed to be negligible and
therefore set to zero.

One of the first ideas that comes into thought, of how to treat such observations, might be to
simply ignore them insofar to run the standard procedures and do not care about the zero lines
in V and accept that E[I|H0] 6= − 1

n−1 . Another idea is to exclude them from the dataset and
use only an (n − r) points design, because no spatial connections to other objects should have
no influence on the spatial autocorrelation of all other observations. But there is a difference
whether far-off objects are excluded or not. Thus the treatment of far-off observations has influ-
ence on measuring and testing spatial autocorrelation. Another possibility to avoid zero-lines and
zero-columns in V is to add a very small value ν to all elements (except of the ones on the main
diagonal) of the unstandardized spatial weight matrix, then no element is completely separated,
and if ν is small enough it should have no influence on the general structure, but it prevents
getting zero-lines. So, there are three kinds of specifications:

(i) Include the separated observation and work with a spatial weight matrix which does
not have full rank, this case is denoted by (s) in the following.

(ii) Exclude the separated observations, i.e. work with (n − r) observations, notation for
this treatment will be (e).

(iii) Include all n observations in the analysis, and use a modified unstandardized spatial
weight matrix with elements uij + ν for all i 6= j to avoid zero-lines and zero-columns,
denoted by (ν).

Whichever specification is used, it influences I, E(I) and Var(I) and therefore z(I) and potentially
the decision whether to reject the null hypothesis or not.

2.1 Definitions

For reasons of simplicity it is assumed that only one object (the first one) is completely separated
from all others. For the three different treatments of the far-off observation the spatial weight
matrices are slightly different.

For treatment (i) the unstandardized spatial link matrix is a symmetric n by n matrix U(s),
the row-standardized weight matrix V(s) is nonsymmetric:
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U(s) =


0 0 0 0 · · · 0
0 0 u23 u24 · · · u2n

0 u32 0 u34 · · · u3n

...
...

0 un2 un3 un4 · · · 0

 ,V(s) =



0 0 0 · · · 0
0 0 u23∑n

j=2 u2j
· · · u2n∑n

j=2 u2j

0 u32∑n
j=2 u3j

0 · · · u3n∑n
j=2 u3j

...
...

0 un2∑n
j=2 unj

un3∑n
j=2 unj

· · · 0

 .

If the first observation is excluded, i.e. treatment (ii) is used, the unstandardized spatial weight
matrix is a symmetric (n− 1) by (n− 1) matrix U(e):

U(e) =


0 u23 u24 · · · u2n

u32 0 u34 · · · u3n

...
...

un2 un3 un4 · · · 0

 ,V(e) =


0 u23∑n

j=2 u2j
· · · u2n∑n

j=2 u2j

u32∑n
j=2 u3j

0 · · · u3n∑n
j=2 u3j

...
...

un2∑n
j=2 unj

un3∑n
j=2 unj

· · · 0

 .

For treatment (iii), if a small value ν is added, U(ν) is again a symmetric n× n matrix:

U(ν) =


0 0 + ν 0 + ν · · · 0 + ν

0 + ν 0 u23 + ν · · · u2n + ν
0 + ν u32 + ν 0 · · · u3n + ν

...
...

0 + ν un2 + ν un3 + ν · · · 0

 ,

and the corresponding row-standardized weight matrix V(ν)∗ goes to V(ν) if ν → 0

V(ν)∗ =



0 ν
(n−1)ν · · · ν

(n−1)ν
ν

(n−1)ν+
∑n

j=2 u2j
0 · · · u2n+ν

(n−1)ν+
∑n

j=2 u2j

ν
(n−1)ν+

∑n
j=2 u2j

u32+ν
(n−1)ν+

∑n
j=2 u3j

· · · u3n+ν
(n−1)ν+

∑n
j=2 u3j

...
...

ν
(n−1)ν+

∑n
j=2 u2j

un2+ν
(n−1)ν+

∑n
j=2 unj

· · · 0


,

V(ν) =



0 1
(n−1)

1
(n−1) · · · 1

(n−1)

0 0 u23∑n
j=2 u2j

· · · u2n∑n
j=2 u2j

0 u32∑n
j=2 u3j

0 · · · u3n∑n
j=2 u3j

...
...

0 un2∑n
j=2 unj

un3∑n
j=2 unj

· · · 0


.

In the calculation of Moran’s I, E[I|H0] and Var[I|H0] the following terms are used: a symmetric
spatial weight matrix G = 1

2 (V+V′), the projection matrix for an intercept model M = In− 1
n11′

and K = M′GM. For the three different specification (i), (ii) and (iii), these matrices have dif-
ferent forms, and all of them can be written in the structure of block matrices. Specification (i)
gives:

G(s)
n×n =


0 0 0 · · · 0
0 0 g23 · · · g2n

0 g32 0 · · · g3n

...
...

0 gn2 gn3 · · · 0

 =

 A1×1 : B1×(n−1)

.. ..
B′

(n−1)×1 : C(n−1)×(n−1)

 ,
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M(s)
n×n =


1− 1

n − 1
n · · · − 1

n
− 1

n 1− 1
n · · · − 1

n
...

...
− 1

n − 1
n · · · 1− 1

n

 =

 M(s1)
1×1 : M(s2)

1×(n−1)

.. ..

M(s2)′
(n−1)×1 : M(s3)

(n−1)×(n−1)

 .

In case (ii) the dimension reduces to (n− 1)

G(e)
(n−1)×(n−1) =


0 g23 · · · g2n

g32 0 · · · g3n

...
...

gn2 gn3 · · · 0

 = C(n−1)×(n−1),

M(e)
(n−1)×(n−1) =


1− 1

(n−1) − 1
(n−1) · · · − 1

(n−1)

− 1
(n−1) 1− 1

(n−1) · · · − 1
(n−1)

...
...

− 1
(n−1) − 1

(n−1) · · · 1− 1
(n−1)

 .

Finally for case (iii), the projection matrix M(ν)
n×n = M(s)

n×n, and

G(ν)
n×n =


0 1

2(n−1)
1

2(n−1) · · · 1
2(n−1)

1
2(n−1) 0 g23 · · · g2n

1
2(n−1) g32 0 · · · g3n

...
...

1
2(n−1) gn2 gn3 · · · 0

 =

 A1×1 : B(ν)
1×(n−1)

.. ..

B(ν)′
(n−1)×1 : C(n−1)×(n−1)

 .

These matrices are used in the next sections to quantify and compare the values of I, E[I|H0],
Var[I|H0] and z(I) to find out if the choice of the treatment of a far-off object has influence on
the Moran’s test.

2.2 Moran’s I
Formulas for Moran’s I, E[I|H0] and Var[I|H0] are given in (1), (2) and (3). I contains G and
the vector of the residuals ε̂n×1 = [ε̂1, ε̂2, . . . , ε̂n]′ = [a′ : b′], where a is simply the residuum ε̂1 of
the far-off object and b is a (n−1)×1 vector of the residuals ε̂i (i = 2, ..., n) of the ’well-behaved’
objects. Using the block structure helps to see the difference between the three specifications.

I =
ε̂′ 12 (V + V′)ε̂

ε̂′ε̂
=

ε̂′Gε̂

ε̂′ε̂
=

[a′ : b′]
(

A : B
B̈′ : C̈

) [
a

b̈

]
[a′ : b′]

[
a

b̈

] =
a′Aa + b′B′a + a′Bb + b′Cb

a′a + b′b
(5)

For the different treatments of the separated observation the blocks of the corresponding matrix
G are inserted in (5). This gives for case (i), where the first element is separated and therefore
A = 0 and B is a vector of zeros

I(s) =
b′Cb

a′a + b′b
=

∑n
i=2

∑n
j=2 ε̂iε̂jgij∑n

i=1 ε̂2
i

. (6)
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In case (ii) the separated element is excluded, I(e) is given by

I(e) =
b′Cb
b′b

=

∑n
i=2

∑n
j=2 ε̂iε̂jgij∑n

i=2 ε̂2
i

. (7)

For case (iii) A = 0 but now B =
[

1
2(n−1) , . . . ,

1
2(n−1)

]
.

I(ν) =
b′B′a + a′Bb + b′Cb

a′a + b′b
=

∑n
i=2

∑n
j=2 ε̂iε̂jgij − ε̂2

1
n−1∑n

i=1 ε̂2
i

. (8)

This follows from the fact that b′B′a = a′Bb = 1
2(n−1)

∑n
i=2 ε̂iε̂1, as

∑n
i=2 ε̂i = −ε̂1, these terms

can be written as −ε̂2
1

2(n−1) , thus b′B′a + a′Bb = −ε̂2
1

(n−1) .

Comparing (6) and (7) shows that I(e) ≥ I(s) because the nominator is the same but the de-
nominator of I(e) is smaller or equal to the one of I(s), equality holds only if ε̂1 = 0, i.e.

I(e) = I(s) +
a′ab′Cb

b′b(a′a + b′b)
= I(s) +

ε̂2
1

∑n
i=2

∑n
j=2 ε̂iε̂jgij∑n

i=2

∑n
j=2 ε̂iε̂j

(
ε̂2
1 +

∑n
i=2

∑n
j=2 ε̂iε̂j

) .

Furthermore I(s) ≥ I(ν) because here the denominators are the same but the nominator of I(ν)

is smaller or equal than the one of I(s), see (6) and (8). Again, equality holds only for ε̂1 = 0.

I(s) = I(ν) +
ε̂2
1

(n− 1)
∑n

i=1 ε̂2
i

.

Comparing all three treatments of a separated observation gives the following relationship of the
Moran’s I values:

I(ν) ≤ I(s) ≤ I(e). (9)

This result is quite plausible. If the far-off observation is completely excluded it has no influence
at all, the Moran’s I measures only the connectivity between all other (n − 1) objects and is
therefore greater than in case of including the far-off object, the observation that lies far apart is
not taken into account. On the other hand if the far-off object is included but zero-weighted it
effects the Moran’s I only insofar as the corresponding residuum is included in the denominator,
whereas if the far-off object is weighted with 1

2(n−1) this object increases the denominator and at
the same time decreases the overall connectivity (i.e. the nominator).

2.3 Expected value of I
The expected value of I under the null hypothesis is E[I | H0] = tr(K)

n−k , see (2). Using the
same block-structure for M and G as before, helps to find the difference between the three dif-
ferent treatments of the separated object. For E[I|H0] only the trace of K is relevant, tr(K) =
tr(M′GM) = tr(MM′G) = tr(MG). Block-structure notation gives:

tr(K) = tr
[(

M(1) : M(2)

¨M(2)′ : M̈(3)

) (
A : B
B̈′ : C̈

)]
=

(
M(1)A + M(2)B′ : M(1)B + M(2)C

¨M(2)′A + M(3)B′ : ¨M(2)′B + M(3)C

)
.

Since only the main diagonal elements enter the trace, it follows that

tr(K) = M(1)A + M(2)B′ + M(2)′B + M(3)C.

Now the three different treatments can be evaluated.

Case (i), the far-off object is included and zero-weighted, A = 0 and B = [0, . . . , 0]

tr(K(s)) = tr(M(s3)C) = − 1
n

n∑
i=2

n∑
j=2

gij = − 1
n

(n− 1). (10)
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∑n
i=2

∑n
j=2 gij = n − 1 follows directly from the construction of G and C respectively. The

expected value for the intercept model (k = 1) is therefore

E[I(s)|H0] = − 1
n

. (11)

Case (ii), the far-off observation is deleted, the corresponding matrix K(e) has to be used

tr(K(e)) = tr
[
M(e)C

]
= − 1

n− 1

n∑
i=2

n∑
j=2

gij = − 1
n− 1

(n− 1) = −1. (12)

Here, the number of objects taken into account is (n − 1) and as k = 1 for the intercept model,
the denominator of the expected value is (n− 1)− k = n− 2. Thus

E[I(e)|H0] = − 1
n− 2

. (13)

Case(iii), K(ν) is used, now B(ν) is not a vector of zeros like in case (i), and therefore

tr(K(ν)) = tr(M(s1)A) + tr(M(s2)B(ν)′) + tr(M(s2)′B(ν)) + tr(M(s3)C))

= 0− 1
2n

− 1
2n

− n− 1
n

= −1. (14)

This leads to
E[I(ν)|H0] = − 1

n− 1
. (15)

Comparing the expected values of I(s), I(e) and I(ν) under the null, see (11), (13) and (15),
gives the following order:

E[I(e)] < E[I(ν)] < E[I(s)]. (16)

and the absolute values of the expected values have the reverse order, i.e. |E[I(s)]| < |E[I(ν))] <
|E[I(e)]|. The expected value of I for an intercept model does neither depend on the locations nor
on the attribute values of the design points, it just depends on the number of the objects.

2.4 Variance of I
The variance of I under the null hypothesis is Var[I | H0] = 2{(n−k)tr(K2)−tr(K)2}

(n−k)2(n−k+2) , already given
in (3), with tr(K2) = tr(KK) = tr(MGMG). In block-notation this trace is:

tr(KK) = tr(MGMG) = tr
[(

M(1) : M(2)

¨M(2)′ : M̈(3)

) (
A : B
B̈′ : C̈

) (
M(1) : M(2)

¨M(2)′ : M̈(3)

) (
A : B
B̈′ : C̈

)]
Matrix multiplication gives a matrix which can be written in the form of 4 blocks, for the trace
only the elements of the main diagonal are crucial, they are denoted D(1) which is an 1 × 1
matrix and D(2) which is an (n − 1) × (n − 1) matrix. tr(KK) = tr(D(1)) + tr(D(2)). The
matrices D are composed of 8 other matrices D(1)

1 , . . . ,D(1)
8 and D(2)

1 , . . . ,D(2)
8 respectively, and

tr(KK) =
∑2

i=1

∑8
j=1 tr(D(i)

j ) (the trace of a sum of matrices is equal to the sum of the traces).
The 16 different traces of matrix-blocks are:

tr(D(1)
1 ) = tr(M(1)AM(1)A) tr(D(1)

2 ) = tr(M(2)′AM(1)B)
tr(D(2)

1 ) = tr(M(2)B′M(1)A) tr(D(2)
2 ) = tr(M(3)B′M(1)B)

tr(D(3)
1 ) = tr(M(1)BM(2)′A) tr(D(3)

2 ) = tr(M(2)′BM(2)′B)
tr(D(4)

1 ) = tr(M(2)CM(2)′A) tr(D(4)
2 ) = tr(M(3)CM(2)′B)

tr(D(5)
1 ) = tr(M(1)AM(2)B′) tr(D(5)

2 ) = tr(M(2)′AM(2)C)
tr(D(6)

1 ) = tr(M(2)B′M(2)B′) tr(D(6)
2 ) = tr(M(3)B′M(2)C)

tr(D(7)
1 ) = tr(M(1)BM(3)B′) tr(D(7)

2 ) = tr(M(2)′BM(3)C)
tr(D(8)

1 ) = tr(M(2)CM(3)B′) tr(D(8)
2 ) = tr(M(3)CM(3)C)
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For the different treatments of the separated object the corresponding matrices M and G are
used. Since A is always 0, the traces of all matrices that include A are zero, and traces which
include matrix B are zero in case (i) and (ii). The last term tr(D(8)

2 ) is relevant for all three cases,
it can be further simplified.

tr(D(8)
2 ) = tr(M(3)CM(3)C)

= tr([I− 1
n
11′]C[I− 1

n
11′]C)

= tr(CC− 1
n
11′CC− 1

n
C11′C +

1
n2

11′C11′C)

= tr(CC)− 2
n

tr(11′CC) +
1
n2

tr(11′C11′C)

From construction of G and C respectively, it follows that G = G′ and C = C′.
tr(CC) =

∑n
i=2

∑n
j=2 g2

ij

tr(11′CC) = tr(1′C′C1) =
∑n

i=2

(∑n
j=2 gij

)2

tr(11′C11′C) = tr(1′C11′C1) =
(∑n

i=2

∑n
j=2 gij

) (∑n
i=2

∑n
j=2 gij

)
= (n− 1)2

Thus,

tr(MCMC) =
n∑

i=2

n∑
j=2

g2
ij −

2
n

n∑
i=2

 n∑
j=2

gij

2

+
1
n2

(n− 1)2 (17)

Note that for case (ii), where only the (n− 1) objects which are spatially connected are included,
(17) is slightly different because the number the design points is (n − 1), it is tr(MCMC) =∑n

i=2

∑n
j=2 g2

ij − 2
(n−1)

∑n
i=2

(∑n
j=2 gij

)2

+ 1
(n−1)2 (n − 1)2. In general the following relationship

holds: tr(CC) ≤ tr(11′CC) ≤ tr(11′C11′C), equality holds only if all elements of C except for
one are zero, this case is not relevant here, it would mean that all objects but two are far apart
from each other.

For case (i) B = [0, . . . , 0], therefore only tr(D2
8) = tr(M(s3)CM(s3)C) plays a role. This leads to

a variance of

Var[I(s) | H0] =
2{(n− k)tr(M(s3)CM(s3)C)− tr(Ks)2}

(n− k)2(n− k + 2)
(18)

where tr(K(s))2 =
(
− (n−1)

n

)2

, tr(K(s)) is given in (10), and tr(M(s3)CM(s3)C) is given in (17).

For case (iii) G(ν) is used, A = [0], B(ν) = [ 1
2(n−1) , . . . ,

1
2(n−1) ], and considerably more terms

are unequal zero and therefore relevant for the variance.
tr(D(6)

1 ) = tr(M(s2)B(ν)′M(s2)B(ν)′) = 1
4n2

tr(D(7)
1 ) = tr(M(s1)B(ν)M(s3)B(ν)′) = 1

4n2

tr(D(8)
1 ) = tr(M(s2)CM(s3)B(ν)′) = − 1

2n2

thus tr(D1) = 0.
tr(D(2)

2 ) = tr(M(s3)B(ν)′M(s1)B(ν)) = tr(M(s1)BM(s3)B(ν)′) = tr(D7
1) = 1

4n2

tr(D(3)
2 ) = tr(M(2)′B(ν)M(2)′B(ν)) = tr(M(2)B(ν)′M(2)B(ν)′) = tr(D(6)

1 ) = 1
4n2

tr(D(4)
2 ) = tr(M(s3)CM(s2)′B(ν)) = − 1

2n2

tr(D(6)
2 ) = tr(M(3)B(ν)′M(2)C) = tr(M(s2)CM(s3)B(ν)′) = tr(D(8)

1 ) = − 1
2n2

tr(D(7)
2 ) = tr(M(s2)′B(ν)M(s3)C) = tr(D(4)

2 ) = − 1
2n2

tr(D(8)
2 ) = tr(M(s3)CM(s3)C)

thus tr(K2) =
∑n

j=1 = tr(D(j)
2 ) = − 1

n2 + tr(M(s3)CM(s3)C). The variance is given by

Var[I(ν) | H0] =
2{(n− k)

[
− 1

n2 + tr(M(s3)CM(s3)C)
]
− tr(K(ν))2}

(n− k)2(n− k + 2)
(19)
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with tr(K(ν))2 = (−1)2, see (14) and tr(M(s3)CM(s3)C) is again the one given in (17).

In case (ii) where the separated observation is completely excluded from the dataset, tr(K(e)K(e)) =
tr(M(e)CM(e)C), and

Var[I(e) | H0] =
2{(n− 1− k)tr(M(e)CM(e)C)− tr(K(e))2}

(n− 1− k)2(n− 1− k + 2)
(20)

with tr(K(e))2 = (−1)2, see (12).

tr(M(e)CM(e)C) =
∑n

i=2

∑n
j=2 g2

ij − 2
n−1

∑n
i=2

(∑n
j=2 gij

)2

+ 1
(n−1)2 (n− 1)2, the number of de-

sign points is (n− 1) instead of n.

Finding the relationship between the variances is not that simple as in case of the Is and their
expected values. The ordering of Var[I(ν)] and Var[I(s)] is quite obvious, Var[I(ν)] < Var[I(s)],
which follows directly from (18) and (19), the denominators are the same, and the nominator of
Var[I(ν)] is smaller. The relationships between Var[I(e)] and Var[I(s)] is more complex, nominators
as well as denominators are different, see (18) and (20). To find the difference tr(M(e)CM(e)C)
is expressed in terms of tr(M(s3)CM(s3)C):

tr(M(e)CM(e)C) = tr(M(s3)CM(s3)C) +
2n2−3n−2n

∑n
i=2(

∑n
j=2 gij)2−1

(n−1)n2 .
Hence,

Var[I(e)|H0] =
2

{
(n− 1− k)

[
tr(M(s3)CM(s3)C) +

2n2−3n−2n
∑n

i=2(
∑n

j=2 gij)2−1

(n−1)n2

]
− tr(K(e))2

}
(n− 1− k)2(n− 1− k + 2)

= Var[I(s)|H0]

+
2

{
(n− 1− k)

[
tr(M(s3)CM(s3)C) + 2n2−3n−2n(tr(1′CC1))+1

(n−1)n2

]
− 1

}
(n− 1− k)2(n− k)

−
2(n− k)tr(M(s3)CM(s3)C)− (n−1)2

n2

(n− k)2(n− k + 2)
.

The magnitude of the difference depends on the concrete values of the spatial link matrix via
tr(MCMC) and tr(11′CC) which appear in the formula. To show the difference, two extreme
cases are examined:

(1) All objects (except for the first, which is far-off) are neighbours of all others, this can
happen if e.g. a critical distance dc is defined and within this distance each object is
regarded as neighbour, if dc is large enough and the observations are near each other,
each object is a neighbour of every other object; unstandardized- and row-standardized
spatial link matrices are given by:

U(1)
n×n =


0 0 0 · · · 0
0 0 1 · · · 1
0 1 0 · · · 1
...

...
0 1 1 · · · 0

 ,V(1)
n×n =


0 0 0 · · · 0
0 0 1

n−2 · · · 1
n−2

0 1
n−2 0 · · · 1

n−2
...

...
0 1

n−2
1

n−2 · · · 0

 ,

and matrix G = 1
2 (V + V′) is:

G(1)
n×n =


0 0 0 · · · 0
0 0 1

n−2 · · · 1
n−2

0 1
n−2 0 · · · 1

n−2
...

...
0 1

n−2
1

n−2 · · · 0

 =

 A1×1 : B1×(n−1)

.. ..

B′
(n−1)×1 : C(1)

(n−1)×(n−1)

 .
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(2) Each object has only one neighbour (except of the first far-off one), i.e. there are only
separated pairs of neighbourships (further assumption needed: n − 1 is even). The
corresponding spatial link matrices are:

U(2)
n×n =



0 0 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
0 1 0 0 0 · · · 0 0
0 0 0 0 1 · · · 0 0
0 0 0 1 0 · · · 0 0
...

...
0 0 0 0 0 · · · 1 0


= V(2)

n×n = G(2)
n×n =

 A1×1 : B1×(n−1)

.. ..

B′
(n−1)×1 : C(2)

(n−1)×(n−1)



These matrices correspond to case (i) where the far-off object is included in the analysis. If the
far-off observation is excluded, case (ii), the corresponding matrices are slightly different. The
dimension reduces to (n− 1)× (n− 1) by simply deleting the first line and the first column. For
these extreme cases the variances of I(s) and I(e) can be explicitly specified and in the following
the standardized Moran’s I values can be compared. For the variances (3), of case (i) and (iii), the
corresponding matrices K(s) = M(s3)CM(s3)C and K(e) = M(e)CM(e)C are needed, projection
matrix M depends on the treatment of the far-off object (separation or exclusion), spatial weight
matrix C depends on the extreme case (all objects are neighbours, or only pairs of neighbours).

Under treatment (i) and extreme case (1)

tr(K(s1)K(s1)) = tr(M(s3)C(1)M(s3)C(1))

= tr(C(1)C(1))− 2
n

tr(11′C(1)C(1)) +
2
n2

tr(11′C(1)11′C(1))

=
n∑

i=2

n∑
j=2

g2
ij −

2
n

n∑
i=2

 n∑
j=2

gij

2

+
2
n2

 n∑
i=2

n∑
j=2

gij

2

=
(n− 1)
(n− 2)

− 2
n

(n− 1) +
2
n2

(n− 1)2

for tr(K(s1))2, see (10), it does not depend on the concrete values of the spatial link matrix. The
variance of I(s1) under the null can be written as:

Var[I(s1)|H0] =
2

{
(n− k)

[
n−1
n−2 −

2
n (n− 1) + 2

n2 (n− 1)2
]
− (n−1)2

n2

}
(n− k)2(n− k + 2)

=
2n2 − 3n + 6

n2(n2 − n− 2)
. (21)

By contrast, excluding the far-off object needs

tr(K(e1)K(e1)) = tr(M(e)C(1)M(e)C(1)

= tr(C(1)C(1))− 2
n− 1

tr(11′C(1)C(1)) +
2

(n− 1)2
tr(11′C(1)11′C(1))

=
n∑

i=2

n∑
j=2

g2
ij −

2
n− 1

n∑
i=2

 n∑
j=2

gij

2

+
2

(n− 1)2

 n∑
i=2

n∑
j=2

gij

2

=
(n− 1)
(n− 2)

− 2
n− 1

(n− 1) +
2

(n− 1)2
(n− 1)2 =

n− 1
n− 2

.

Again, tr(K(e1))2 does not depend on the design points, it is the one given in (12). The variance
of I(e1) under the null is given by:

Var[I(e1)|H0] =
2

{
(n− 1− k)n−1

n−2 − 1
}

(n− 1− k)2(n− 1− k + 2)
=

2
{

(n− 2)n−1
n−2 − 1

}
(n− 2)2n

=
2

n(n− 2)
. (22)
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Comparing the variances of I for extreme case (1) shows that Var[I(e1)|H0] ≥ Var[I(s1)|H0], see
(22) and (21). The difference is 5n−6

n2(n2−n−2) , equality holds for n = 6
5 , for n = −1, n = 0, n = 2

the denominator is zero and the difference is not defined, for n → ∞ the difference between the
variances goes to zero. Thus, the bigger the design, the less important is the treatment of the
far-off object.

For treatment (i) and extreme case (2), tr(K(s2)K(s2)) and tr(K(s2))2 are used.

tr(K(s2)K(s2)) = tr(M(s3)C(2)M(s3)C(2))

= tr(C(2)C(2))− 2
n

tr(11′C(2)C(2)) +
2
n2

tr(11′C(2)11′C(2))

=
n∑

i=2

n∑
j=2

g2
ij −

2
n

n∑
i=2

 n∑
j=2

gij

2

+
2
n2

 n∑
i=2

n∑
j=2

gij

2

= (n− 1)− 2
n

(n− 1) +
2
n2

(n− 1)2

tr(K(s2))2 is given in (10).

Var[I(s2)|H0] =
2{(n− k)[n− 1 + 2

n2 − 2
n ]− (n−1)2

n2 }
(n− k)2(n− k + 2)

=
2(n2 − 3)
n2(n + 1)

. (23)

Excluding the first observation, case (ii), gives for extreme case (2)

tr(K(e2)K(e2)) = tr(M(e)C(2)M(e)C(2))

= tr(C(2)C(2))− 2
n

tr(11′C(2)C(2)) +
2
n2

tr(11′C(2)11′C(2))

=
n∑

i=2

n∑
j=2

g2
ij −

2
n

n∑
i=2

 n∑
j=2

gij

2

+
2
n2

 n∑
i=2

n∑
j=2

gij

2

= (n− 1)− 2
(n− 1)

(n− 1) +
2

(n− 1)2
(n− 1)2 = (n− 1)

and tr(K(e1))2 = (−1)2, see (12), this leads to

Var[I(e2)|H0] =
2n(n− 2) + 2k(1− n)
(n− 1− k)2(n− k + 1)

=
2(n2 − 3n + 1)

n(n− 2)2
. (24)

Comparing the variances of I for the second extreme case shows the same relationship as for
extreme case (1): Var[I(e2)|H0] ≥ Var[I(s2)|H0], see (24) and (23), taking the far-off object into
account leads to a smaller variance. The difference is 6n2−26n+24

(n−2)2(n−1)n2 , equality holds for n = 4
3 and

n = 3, for n = 0, n = 1, n = 2 the denominator is zero and the difference is not defined, and as in
extreme case (1): the greater n, the smaller the difference, for n →∞ the difference between the
variances goes to zero.

For both extreme cases of the spatial link matrix the variance of I is smaller if the far-off observa-
tion is included and zero weighted. Under the assumptions given above, the order of the variances
for the three different treatments of a far-off object is:

Var[I(ν)|H0] < Var[I(s)|H0] < Var[I(e)|H0]. (25)

2.5 Standardized Moran’s I
The test statistic for the Moran’s test z(I) is given in (4). To find the difference between the three
treatments of a far-off observation, the corresponding values of I, E[I|H0] and Var[I|H0] are used.
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The difference between z(I(ν)) and z(I(s)) depends on the value of ε̂1 as I(ν) includes this residuum
whereas is does not appear in I(s). For reasons of simplicity ε̂1 = 0 is assumed. Then I(ν) = I(s),
and the nominator I(ν)−E[I(ν)] of z[I(ν)] is greater than the one of z[I(s)], as Var[I(ν)] < Var[I(ν)]
it follows that

z[I(ν)] > z[I(s)].

The same relation holds if ε̂1 is positive, if ε̂1 is negative the order of the z-values might change.
Thus, adding a small value ν to all elements of the spatial link matrix has an influence on the
Moran’s test. If the residuum of the far-off object is zero, the Moran’s test is more likely to reject
the null if ν is added to U than in case of putting zero weight to the observation which is far apart.
Whereas if ε̂1 6= 0 the difference of the nominators depends on the magnitude of this residuum
and a general ordering can not be given.

To clarify the difference between excluding and including but zero-weighting the far-off obser-
vation the two extreme cases from the previous section have to be considered. The difference of
I(e) and I(s) is again dependent on the value of ε̂1. To get rid of this difference ε̂1 is again assumed
to be zero, now I(e) = I(s) holds. For extreme case (1) the two different treatments (i) and (ii)
give:

z[I(e1)] =
I(1) + 1

n−1√
2

n(n−2)

and z[I(s1)] =
I(1) + 1

n√
2n2−3n+6

n2(n2−n−2)

.

For extreme case (2), where each object, except of the far-off one, has only one neighbour, stan-
dardized Moran’s Is for case (i) and (ii) are:

z[I(e2)] =
I(2) + 1

n−1√
n(2n2−6n+3)

(n−2)2

and z[I(s2)] =
I(2) + 1

n√
2(n2−3)
n2(n+1)

.

The relationships between the variances depend on the number of design objects, see Figure 1. For
both extreme cases the difference between treatment (i) and (ii) is positive, but becomes negligible
if n increases. For extreme case (1) the difference between the variances goes faster to zero than for
extreme case (2). From n approximately greater than 30 the difference is nearly zero, i.e. it does
not play a role which treatment is used. Note that z(I) is only approximately N(0, 1)-distributed,
therefore it should not be used for smaller n anyway. For small designs an exact test should be
used. The exact distribution of Moran’s I can be found in Tiefelsdorf and Boots (1995).

The relationships of the standardized Moran’s I values depend on the number of objects and
additionally on the value of I - this dependency can not be factored out by the zero-assumption
on ε̂1, because even if I is the same for both treatments, the size of I still plays a role for the
nominator of z[I]. The relationships for the two extreme cases and the two different treatments
of the far-off observation for some different values of I can be seen in Figures 2, 3, 4, 5, 6, 7 and
8. The first plot always shows the standardized Moran’s I depending on n, the second one shows
the difference of the z-values between treatment (i) and (ii) under the assumption that ε̂1 = 0. In
the plots on the left hand side it can be seen that for all examined values of I, z(I) of extreme
case (1) is always bigger than of case (2) - at least for designs with more than 5 points, for small
designs the approximation of the N(0, 1) distribution should not be used anyway. The difference
between treatment (i) and (ii) do not converge to zero for all values of I. It depends much on the
assumed level of autocorrelation. A positive difference means that treatment (ii) leads to a more
conservative test, i.e. the test based on treatment (i) rejects the null hypothesis earlier. If the
difference is negative, the test based on treatment (ii) rejects the null earlier. For both extreme
cases the differences have the same sign for designs which are large enough to use the normal
approximation. For very small values of I, e.g., I = 0.01 treatment (i) rejects the null earlier in
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small designs, see Figure 2, the difference becomes negative if n increases. For medium and high
values of I treatment (ii) rejects the null earlier, see Figure 4, 5, 6, 7, 8.

For large designs the following ordering of the standardized values of I, under assumption ε̂1 = 0,
can be given:

z[I(e)] ≤ z[I(s)] ≤ z[I(ν)]. (26)

Figure 1: Variances of I and differences between the variances within the extreme cases

Figure 2: z(I) with I = 0.01 and differences between the z(I) within the extreme cases
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Figure 3: z(I) with I = 0.10 and differences between the z(I) within the extreme cases

Figure 4: z(I) with I = 0.25 and differences between the z(I) within the extreme cases

Figure 5: z(I) with I = 0.50 and differences between the z(I) within the extreme cases
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Figure 6: z(I) with I = 0.75 and differences between the z(I) within the extreme cases

Figure 7: z(I) with I = 0.90 and differences between the z(I) within the extreme cases

Figure 8: z(I) with I = 0.99 and differences between the z(I) within the extreme cases
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3 Conclusion

The standardized Moran’s I depends on the values of I, the residuals of the far-off objects and
the concrete form of the spatial link matrix. Therefore, the relationships between the values of
I, Var[I|H0] and z[I] from the different methods of treating far-off objects given in (9), (25) and
(26) do not hold in general as the assumptions that were made are very restrictive. Only the
behavior the expected values E[I|H0] holds without such assumptions, see (16). Nevertheless,
the influence of far-off observations on the behavior of Moran’s I and the corresponding spatial
autocorrelation test is better understood now. The problem of far-off objects arose during the
work on a paper about optimal designs for spatial data Gumprecht et al. (2007). For a given set
of spatial objects the task is to find the optimal design to detect spatial dependence that might be
in the data. The best design is found by an algorithm which evaluates a lot of different possible
designs concerning a special design criterion, if these designs are subsets of all n objects, it can
easily happen that they include far-off objects. If the number of the design points is large, it does
not make a difference which treatment is used for the far-off object. Due to practical reasons,
treatment (ii) is not recommended, because even if an observation is not connected to others it
might be important in the design.
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