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Abstract. Perfect Gibbs sampling is a method to turn Markov Chain Monte Carlo
(MCMC) samplers into exact generators for independent random vectors. We show
that a perfect Gibbs sampling algorithm suggested in the literature is not always
generating from the correct distribution.
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1. Introduction

Markov Chain Monte Carlo (MCMC) samplers are very powerful meth-
ods for drawing random samples from quite arbitrary distributions. In
particular they are used in the case of simulations that invoke high
dimensional integrals. However, as they produce dependent random
variables (vectors) they require a convergence assessment. To over-
come this problem Propp and Wilson (1996) suggested so called perfect

sampling algorithms that allow to decide exactly, when convergence is
reached. Although first developed for discrete state spaces perfect sam-
pling also can be applied to Markov chains with state space R

d albeit
this is not easy, see (Green and Murdoch, 2000; Wilson, 2000; Murdoch,
2000; Murdoch and Meng, 2001).

Coupling from the past (CFTP) suggested by Propp and Wilson
(1996) is probably the most popular of these perfect sampling algo-
rithms. The main building block of all CFTP algorithms is the ran-

domizing operation. It is a deterministic function φ taking as input the
state Xt of the chain X at time t and some intrinsic randomness Ut.
The randomizing operation returns the new output state

Xt+1 = φ(Xt, Ut) .

∗ This work was supported by the Austrian Science Foundation (FWF), project
no. P16767-N12.
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Roughly spoken CFTP starts Markov chains from all possible points
of the state space at some time −T in the past. Using the randomizing
operation with the same intrinsic randomness these chains develop in
parallel or coalesce. If at time 0 all have coalesced in a single state this
state is returned. Otherwise the chains are restarted at some earlier
time −T ′ < −T ; see e.g. Wilson (2000) for a short tutorial.

Corcoran and Schneider (2003) suggest a new randomizing operation
and call it folding coupler. They use it to realize simple perfect Gibbs
sampling algorithms for different examples. However, it turns out that
these algorithms are not always sampling from the desired distribution
as the claimed monotonicity property of the folding coupler is not
fulfilled.

The paper is organized as following: Section 2 describes the folding
coupler and its monotonicity property. In Section 3 the folding coupler
is used to compile a Gibbs sampler and it is shown that there are
small deviations from the target distribution. Section 4 discusses the
difficulties to detect this problem in the design of that sampler.

2. The Folding Coupler and its Monotonicity

The folding coupler can be used as a building block for perfect sampling
algorithms. Assume we want to generate numbers uniformly in the
interval (c, d) that is contained in (a, b). Then for a step of the Markov
chain the folding coupler draws a trial U uniformly distributed in (a, b).
It is accepted if it is falls into the desired interval (c, d), otherwise U is
“folded” into the desired interval from the left and from the right. In
detail the folding coupler is defined by the function:

f(u, a, b, c, d) =











u−a

c−a+b−d
(d − c) + c for u ∈ (a, c)
u for u ∈ (c, d)

d − b−u

c−a+b−d
(d − c) for u ∈ (d, b)

The folding coupler is a generalization of the multishift and the multi-
scale couplers introduced by Wilson (2000). Its advantage lies in the fact
that it can cope with the multiscale-multishift case; one disadvantage
of it is that it does not lead to maximal coalescence probabilities, and
thus chains need longer time till coalescence than necessary.

Much more important is the fact that the folding coupler is not
always monotone in its last two arguments. This is of greatest practi-
cal importance as the monotonicity of a coupler allows that only the
maximal and the minimal chain must be generated and stored in a
perfect sampling algorithm. The problem can be seen quite easily. For
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Figure 1. Folding couplers for d = 5 and d = 7 as a function of u ∈ [0, 10] (l.h.s.);
and folding coupler for a fixed value u = 7.5 as a function of d ∈ [0, 10] (r.h.s.).
For both sides a = 0, b = 10, and c = 0.

example, fix (a, b) = (0, 10) and c = 0. Then f(u, 0, 10, 0, 7) is larger
than f(u, 0, 10, 0, 5) for values of u between 7 and 8. For these values
no direct acceptance is possible and thus they are transformed into
values close to 0. Figure 1 (l.h.s.) shows the graphs of these two folding
couplers for all possible values u between 0 and 10. It already indicates
that the folding coupler is not always monotone in its last argument.
This becomes even clearer when we look at the r.h.s. of Figure 1. It
shows the result of the folding coupler with a = 0, b = 10 and c = 0
for a fixed value of u = 7.5 and d taking all values between 0 and 10.
Clearly this function and thus the folding coupler is not monotone in
d.

Remark. There seems to be no simple way to “repair” this problem
of the folding coupler. As we need the uniform distribution there must
be values that are transformed into 0 if u is larger than c and this
destroys the monotonicity.

It must also be noted that there are parameter that lead to a mono-
tone folding coupler. Figure 2 shows such an example. For a = 0 and
b = 10 the folding coupler for (c, d) = (2, 7) is below or equal to the
folding coupler for (c, d) = (2, 8). Nevertheless, it is obvious from the
Figure 1 that the general monotonicity of the folding coupler in its last
two arguments is not fulfilled.

3. Using the Folding Coupler for Perfect Gibbs Sampling

The folding coupler samples from the uniform distribution. It can there-
fore easily be used to obtain a perfect Gibbs sampler for distributions
with uniform full conditional distributions. As example let us consider
the two-dimensional uniform distribution on the area between density
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Figure 2. Comparing the folding couplers for d = 7 and d = 8 for a = 0, b = 10,
c = 2 and u = (0, 10).

and the x1-axis for the standard exponential distribution cut off at 20.
That area is is the set

S = {(x1, x2)|0 ≤ x1 ≤ 20 and 0 ≤ x2 ≤ exp(−x1)}.

The Gibbs sampler for this uniform distribution and a given starting
value 0 ≤ x2 ≤ 1 draws a random variate X1 uniformly distributed on
(0,min(20,− log(x2)), X1 ∼ U(0,min(20,− log(x2)), and then samples
X2 ∼ U(0, exp(−X1)). The next steps repeat this pattern and update
the previous values of X1 and X2.

To turn this very simple Gibbs sampler into a perfect sampling
algorithm it is in theory necessary to run all chains (from all possible
starting values) in parallel, i.e. using the same randomness for all of
them. Then the CFTP algorithms start farer and farer in the past of
the chains till all chains have coalesced to a single value at time 0.
Therefore CFTP algorithms need a coupler that allows for coalescence.
In other words it must be possible to obtain – when using the same piece
of randomness – the same uniform random number for two uniform
U(α, β) distributions with different parameter β. This is the case for
the folding coupler defined above but not the case if we just generate
the uniform distribution with the standard approach.

The density of the exponential distribution is monotone decreasing.
Thus the Gibbs sampler has the property, that large values of x1 lead
to small values of X2 and large values of x2 lead to small values of X1

(and vice versa). This property is useful if we can find a coupler that
is monotone for the upper border of the interval. (The lower border is
always 0 so no monotonicity is required for the lower border for this
special example.) Then, for a fixed piece of randomness, the generated
variate of U(0, a) is smaller or equal to the variate of U(0, b) as long as
a ≤ b. Such a monotonicity is important as we know that all possible
chains (with arbitrary starting value x2) will always be between the
chains starting with x2 = 0 and starting with x2 = 1. It is therefore
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Figure 3. Relative difference between the values generated by the folding coupler
and the exact values for the marginal distribution of X1

enough to run only these two chains as we know that coalescence of all
chains is reached when these two chains have coalesced.

Unfortunately the folding coupler is monotone for a large subset of
possible parameters, but not for all, as we have seen in Sect. 2. What
happens if we use it for Gibbs sampling as if it were a monotone coupler?
We tried this for the uniform distribution over the set S defined above.
We ran a CFTP algorithm using the folding coupler and made a chi-
square test for the marginal distribution of X1 which should follow
a standard exponential distribution truncated at 20. The chi-square
test indicates clear problems for n = 106 but no problems for n =
104. Figure 3 displays the relative difference between the histogram of
the marginal distribution of x1 coordinate of the points generated by
the Gibbs sampler using the folding coupler and the exact (truncated
exponential) distribution. As expected the differences are not large but
it clearly indicates that the algorithm does not produce enough values
very close to 0 and above 1.

The fact that there are only small deviations from the correct dis-
tribution needs some explanations. The reason is simply that the algo-
rithm is a correct MCMC algorithm converging to the given distribu-
tion. It is the monotonicity assumption that is not satisfied and thus
the “perfect” algorithm sometimes returns wrong values as coalescence
was only achieved for the two observed chains, but not for all possible
chains. For illustration purposes we ran the naive Gibbs sampler on S

with a fixed number of 16 updates and with both a uniform starting
distribution and a fixed starting point x1 = 10. For this approximate al-
gorithm the generated distribution is so close to the desired distribution
that the chi-square test did not indicate any problems for n = 106.

4. Application to the Autoexponential Distribution

Corcoran and Schneider (2003) explain how the folding coupler can be
used to implement the Gibbs sampler for non-uniform full conditional
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distributions. Following Wilson (2000) they use the slice sampling idea
for this task.

To check if the problem with the folding coupler is also visible for
their example we coded the “folding backward coupling algorithm” on
p. 285 of (Corcoran and Schneider, 2003). We only changed the coa-
lescence condition as coalescence in one variable automatically implies
that the second variable coalesces in the next step for a two variable
Gibbs sampler. We tested the resulting algorithm – as in the paper
– for the two dimensional autoexponential distribution with density
proportional to

π(x1, x2) = exp(−β1 x1 − β2 x2 − β12 x1 x2)

with the parameter values β1 = 2, β2 = 3 and β12 = −1.
For the marginal distribution of the first variable we conducted chi-

square tests for sample sizes n = 106, 107 and 108 and the number of
classes close to

√
n. We used a high-quality multiple-recursive uniform

random number generator. In this setting problems were only clearly
visible for n = 108.

We can therefore conclude that the difference between the generated
and the exact distribution is so small for this example that the extensive
empirical tests in (Corcoran and Schneider, 2003) did not indicate any
problem. Thus the fact that the folding coupler is not monotone was
overlooked.

To control our test set-up we applied the same tests to autoexponen-
tial random variates generated by naive two-dimensional rejection from
a constant hat. The resulting chi-square values were in the expected
interval even for sample size 108.

5. Conclusion

We have shown that the folding coupler does not always fulfill the
monotonicity property that is required for the CFTP algorithm pro-
posed by Corcoran and Schneider (2003). We demonstrated that this
problem leads to small deviations from the target distribution. Al-
though these deviations are sometimes very small we do not think
that the folding coupler algorithm is suitable for practical purposes
as it is not clear how close generated distributions are to the desired
distributions for new applications.
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