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Forecasting with Optimized Moving Local
Regression

by

Valery V. Fedorov !
Peter Hackl 2
Werner G. Miller 2

Abstract:

This paper empirically demonst{ates the relative merits of the optimal choice of the
weight function in a moving local regression as suggested by Fedorov et al., (1993) over
traditional weight functions which ignore the form of the local model. The discussion
is based on a task that is imbedded into the smoothing methodology, namely the
forecasting of business time series data with the help of a one-sided moving local

regression model.

1 Introduction

In the moving local regression approach parameters are estimated by weighting down
the observations so that the weights reflect the “distance” of the observations from the
forecast point. This gives the flexibility to parametrize the model depending on local
conditions. Given that the true model is locally approximated and a certain form of
the approximation error (such as the remainder term of a local series expansion) is

suspected to be relevant at times, it is possible to choose the weights such that optimal
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forecasting power is achieved. Such models are particularly useful for describing or

forecasting time series that are generated by time-varying processes.

In the literature several suggestions for the choice of the weight function in mov-
ing local regression models can be found [e.g. McLain, (1971), Cleveland, (1979)]. A
common feature of these weighting schemes is that they are chosen taking no regard of
the model specification. The approach presented here aims at maximizing the forecast

accuracy and takes a possible model misspecification into account.

In Section 2 the model and the estimation method are introduced. Section 3 presents
three weight functions that are to be compared in Section 4. This comparison is based
on a time series from bank business that is a typical candidate for nonparametric

analysis,

2 The Method

Let {z,,...,2z7} be a given set of supporting points, i.e., points where observations
{v1,...,yr} are available, and let d, = Try1 — 2, t=1,...,T, be the “distances”

from the point of interest z7,;. Then
ytzeTf(dt)‘f‘étp(dt)'f‘fg, t=1,...,T (2.1)

will be called a one-sided regression model. It consists of a main term 67 f(d.) describ-
ing the model, that locally approximates the true model, a “nuisance term” &yp(d,)
describing the approximation error, and an error term ¢, following the usual assump-
tions Ele,] = 0 and E[e,ev] = 02. The number of components of the parameter vector
6 is determined by the structure of the approximating model. For ¢, an appropriate

function has to be specified; the “nuisance parameter” § is unknown.

Setting t = T+ 1 in (2.1) allows us to calculate a forecast for Yyr+1- If we make the

reasonable

Assumption: fi(d) =1, f;(d) — 0ford — 0 and j > 2, and all components
of ¢(d) also vanish [usually faster than fi(d)] for d — 0,
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the forecast
jre1 = 6, (2.2)

is the first component of the (weighted least squares) estimator
6=MY,

with M = ¥, Md:)f(d)fT(de} and Y = T, Mde) F(de)ye.

The mean squared error matrix of the estimator 4 is
R=E{(6-8)(6 - 6T} = M M58 MM~ + > M ' MM, (2.3)

where My, = T, Md.)f(d)pT(d:) and M = 5T, 2%(d,) f(d:) fT(d;). The choice of
the weight function A(d;) which reflects the reliability of the local approximation is

discussed in the subsequent section.

f is generally biased:
E{0} = 6+ M~ M6, (24)

A detailed treatment of the estimation properties is given in the nonparametric regres-

sion literature such as Cleveland & Devlin, (1988) or Buja et al., (1989).

Models of type (2.1) used in local fitting are particularly helpful for time series
whose characteristics change over time. For cases where higher order terms reflected
by 8¢(d,) are suspected to have some effect, Fedorov et al., (1993) suggest choosing the
weight function A(d,) so that a suitably chosen scalar function of the m.s.e. matrix R
is minimized. Adapted to the forecasting problem, this means direct minimization of
the mean square error of the forecast 6,. It is performed under the restriction A(d;) > 0
for all d; and 3, A(d;) = 1. The weight function depends on the nuisance parameter
6. Therefore, in its derivation in a particular situation, § has to be estimated in a
preliminary step. The weight function is entirely determined by the model specification

and the data.

In a forecasting context this method will be sequentially applied, i.e., forecasts
are calculated for time points 7'+ 1,T + 2,..., each estimate being based on the

currently available amount of information. This implies that the weight function 1s




derived in each forecast point anew. This generalization of the estimation process is

straightforward and so we do not record the corresponding formulae.

Example 1 As an illustration, the optimal weight function is derived for the model
Ye = 0 + 8d% + ¢, i.e. the moving average specification with a quadratic “nuisance”
term. We consider a collection of 2n+1 equally spaced points in the interval [—1,1] and

derive the value of the weight function for the central point. For the average quadratic

. . . . 2 — . .
distance d* and its variance we obtain ﬁaﬂ"l—l and Qﬁﬂ%ﬁﬁ_@ respectively. The optimal

weights are:

1 Sl -

Mdi) = =~ ——5 :
() n 1+ n%var(d?)

cf Fedorov et al., (1993). Note that they are linear in d?.

The form of the weight function and the number of supporting observations that
have nonzero weights (the “window width”), and consequently the degree of smoothing
crucially affects the estimate §. A weight function that is too concentrated around
the forecast point results in undue variation as it allows reaction to local time series

characteristics; a too flat weight function smoothes out local tendencies.

The use of moving averages, i.e., application of the model from Example 1, is suitable
for the description of the long wave changes in a time series but smoothes away short
term effects. Using a linear moving regression that includes the term 6d allows us to

identify changes which occur within the period covered by the weight function.

3 Comparison of weight functions

When applying moving regression to a set of time series that differ considerably with
respect to its characteristics, the smoothing interval has to be long enough to cover the

longest period of changes in these characteristics.

In the literature several recommendations for the choice of the weight function are

given. Out of practical considerations McLain, (1971) suggested
—|ld})*/dn’

A(d) = exp W,

(3.1)



where d,, is the average distance between neighbouring data points and the constant p=
10% — 1 prevents numerical accuracy problems. A computationally simpler function,

the so-called tricube,

Ay < 1= /P 0 < dl/jd, <1 62

0 else
with dg being the distance of the g.n nearest point to z, is used by Cleveland, (1979).
This function smoothly decreases from 1 to 0 with increasing ||d||. The weight functions
(3.1) and (3.2) have in common that they are chosen without regard of the local model,

and the possibility of a nuisance term is neglected.

Following the recommendations by Fedorov et al., (1993) the weight function can
be chosen such that the mean squared error matrix R [see (2.3)] is minimized in a
certain sense. In model (4.1) this approach should be clearly superior to techniques
that are based on weight functions such as (3.1) or (3.2). A demonstration of the
relative capabilities in applications will be given in the following section by means of

an example in which a forecast of bank account data is required.

Example 2 Let y,, ..., yr be observations from locations -1 <z, < ... <0< ... <
zr < 1 symmetrically arranged around 0. The aim is to get a prediction y at the
forecast point z. If a linear model with a quadratic nuisance term (cf. next section) is
assumed, the optimal weights A\ for T = 10 and z = 0, =5 and z = 1 are shouwn in

Figure 1.

4 Comparison of the Weight Functions: A Case
Study

For comparing various weight functions the model

yt=91+92dt+5dtz+€ty t:1,...,T (4.1)
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Figure 1: Weight functions for optimal forecasts at z = 0 (solid), z = 0.5 (dashed) and
z = 1 (short dashed)

was chosen. It implies that linearity is considered as a suitable description of the local

behaviour, and that a possible effect of a quadratic term is allowed to be corrected via

the weights of the local regression.

The comparison is based on a time series from the bank business, which is given in
Table 1. The data analyzed in the example are the fractions, to which the creditline of
a typical small Austrian enterprise is used, observed weekly over a period of 14 months,
a 100% exhausted creditline gives a value of 1 in the corresponding series. The bank

utilizes these fractions to decide whether the credit should be prolonged or not.

As a first step moving averages were constructed for all possible window lengths
(from 5 to 290 days) and all past time points. They can be interpreted as the simplest
one step ahead forecasts. The forecasts with the lowest average squared forecast error,
corresponding to a window length of 65 days, were used as a reference point for the
comparison, as well as for the preestimation of the residual variance 62, which gave

0.0172.

Next, minimal average squared forecast errors were found for weight functions
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1.092860
1.113694
1.092860
1.092860
1.092860
1.092860
0.821910
1.251459
0.914887
0.948220
0.914887
0.914887
0.914887
0.914887
0.914887
0.914887
0.935720
0.935720
1.131808
1.131808
1.131808
1.131808
1.256808
1.131808
1.131808
1.131808
1.131808
1.131808
1.131808
1.131808

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55.

56
57
58
59
60

1.131808
1.131808
1.131808
1.131808
1.131808
1.152641
1.055290
1.177804
1.136138
1.136138
1.136138
1.136138
1.136138
1.136138
1.261138
1.136138
1.146138
1.146138
1.146138
1.146192
1.149839
1.149839
1.149839
1.149839
1.174839
1.149839
1.174839
1.312339
1.174947
1.174947

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

1.174947
1.174947
1.205920
1.205920
1.205920
1.241076
1.207743
1.207743
1.207743
1.207410
1.207410
1.207410
1.207410
1.207410
1.207410
1.234076
1.234076
1.234076
1.171576
1.171576
1.197622
1.171631
1.171631
1.171631
1.171631
1.173454
1.173454
1.200121
1.173454
1.173454

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

1.173454
1.173454
1.173454
1.190121
1.200121
1.200121
1.172621
1.172621
1.171991
1.171991
1.171991
1.297045
1.172045
1.072271
1.172153
1.173977
1.173977
1.173977
1.173977
1.173977
1.173977
1.173977
1.270315
1.174031
1.174031
1.174031
1.174031
1.174031
1.260698
1.210698

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

1.210698
1.199281
1.174031
1.325726
1.212815
1.212815
1.214639
1.214639
1.131306
1.131468
1.131468
1.131468
1.131468
1.131522
1.131522
0.881794
1.131522
1.131522
1.131522
1.131522
1.131522
1.131522
1.131522
1.131522
1.168189
1.168189
1.168189
1.131522
1.133346
0.885651

Table 1: Analyzed data-set t and y - part |
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151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

1.133346
1.133346
1.133346
0.805013
0.805013
0.805013
0.805013
0.843346
0.805013
0.841679
0.841679
0.841679
0.805013
0.905013
0.805013
0.805013
0.805013
0.805013
0.805013
0.805013
0.806836
0.806836
0.806836
0.806836
0.806836
0.870484
0.806836
0.862669
0.834751
0.834751

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

0.709575
0.801418
0.859931
0.859931
0.826418
0.801418
0.801418
0.837006
0.921416
0.834855
0.836679
0.836679
0.837929
0.837929
0.837929
0.837929
0.837929
0.895419
0.883762
0.837929
0.754596
0.754596
0.754596
0.754596
0.775429
0.754596
0.754596
0.754596
0.754596
0.754596

211
212
213
214
215
216
217
218
219
220
221

222

223
224
225
226
227

228

229
230
231
232
233
234
235
236
237
238
239
240

0.789596
0.756419
0.847993
0.768086
0.756419
0.824753
0.824753
0.758086
0.758086
0.658086
0.685583
0.699753
0.711774
0.658086
0.658086
0.658086
0.658086
0.658086
0.658086
0.658086
0.658086
0.741419
0.658086
0.659909
0.659909
0.659909
0.659909
0.659909
0.659909
0.659909

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

0.659909
0.659909
0.659909
0.659909
0.659909
0.659909
0.659909
0.660623
0.661669
0.661669
0.686790
0.686790
0.688613
0.688613
0.688613
0.688613
0.688613
0.563613
0.563613
-0.06570
0.416113
0.415400
0.415400
0.415400
0.415400
0.415400
0.415400
0.415983
0.445566
0.445566

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

0.435733
0.414900
0.414900
0.417909
0.419733
0.419733
0.419733
0.419733
0.466630
0.468936
0.481679
0.481679
0.481679
0.511262
0.444596
0.444596
0.444596
0.444596
0.450180
0.450180
0.450180

Table 2: Analyzed data-set t and y - part II
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Figure 2: dashed - bank account data, solid - one step ahead forecasts (daily scale)

(3.1) and (3.2). In applying the numerical algorithm for weight optimization from
Fedorov et al., (1993), for simplification of the calculation process we firstly assumed
that 4 is constant over time. For comparison of the results from the three weighting
regimes one has to define a common measure of smoothness. Simple to calculate is
the sum of squared second differences as an estimate of the local curvature, which 1s

commonly used for penalizing in spline regression.

The data and optimal forecasts are displayed in Figure 2. Figure 3 presents the

average squared forecast error for the alternative weighting procedures.

The proposed method with the “optimal” weight function is clearly superior to
alternative weighting schemes. The average squared forecast error over all time points
lies uniformly below the respective errors for the forecasts using weight functions (3.1)
or (3.2) for comparable smoothness levels greater than 0.1. Moreover, its minimum
value is 0.0151, which is considerably below (around 6%) the minimum values of 0.0160
and 0.0165 for (3.1) [with §A(d)] and (3.2), respectively.

Alternatively, to avoid the assumption of constancy in §,we applied a two step
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Figure 3: Average forecast error vs. smoothing level: dashed - Clevelands, dot-dashed

- McLains, solid - Fedorovs weight function

procedure. In the first step a moving quadratic regression was performed to preestimate
8§ for each forecast point. Using those estimates in the weight optimizing procedure

result in an average squared forecast error of 0.01440, another improvement of around

5%.

5 Conclusions

The comparison of forecast errors obtained by the optimized moving local regression
approach and two traditional weighting schemes indicates a clear superiority of the
former technique. This superiority strongly supports the choice of this technique in
this and similar applications. Of course it has to be noted that for cases where the
assumed model does not hold the different weighting schemes compete on the same

level and one might then perform accidentally better than another.

In addition to the forecasts a lot of valuable information can be gained from the
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estimators. A continuously performed discriminant analysis for instance allows various
enterprises to be distinguished by their economic status. A related example utilitizing

such an approach is presented by Miiller, (1992).
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