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Benchmarking Open-Source Tree Learners in

R/RWeka

Michael Schauerhuber Achim Zeileis David Meyer Kurt Hornik

Abstract

The two most popular classification tree algorithms in machine learning and statistics—
C4.5 and CART—are compared in a benchmark experiment together with two other more
recent constant-fit tree learners from the statistics literature (QUEST, conditional inference
trees). The study assesses both misclassification error and model complexity on bootstrap
replications of 18 different benchmark datasets. It is carried out in the R system for statistical
computing, made possible by means of the RWeka package which interfaces R to the open-
source machine learning toolbox Weka. Both algorithms are found to be competitive in terms
of misclassification error—with the performance difference clearly varying across data sets.
However, C4.5 tends to grow larger and thus more complex trees.

1 Introduction

Due to their intuitive interpret-ability, tree-based learners are a popular tool in data mining for
solving classification and regression problems. Traditionally, practitioners with a machine learn-
ing background use the C4.5 algorithm (Quinlan, 1992) while statisticians prefer CART (Breiman,
Friedman, Olshen and Stone, 1984). One important reason for this is that free reference imple-
mentations have not been easily available within an integrated computing environment. RPart,
an open-source implementation of CART, has been available for some time in the S/R package
rpart (Therneau and Atkinson, 1997) while the open-source implementation J4.8 for C4.5 be-
came available more recently in the Weka machine learning package (Witten and Frank, 2005)
and is now accessible from within R by means of the RWeka package (Hornik, Zeileis, Hothorn
and Buchta, 2007). With these software tools available, the algorithms can be easily compared
and bench-marked on the same computing platform: the R system for statistical computing (R
Development Core Team 2006). We carry out such a benchmark comparison, including different
strategies for hyper-parameter tuning as well as two further constant-fit tree models—QUEST
(Loh and Shih, 1997) and conditional inference trees (Hothorn, Hornik and Zeileis, 2006). The
learners are compared with respect to misclassification error and model complexity on each of
18 different benchmarking data sets by means of simultaneous confidence intervals (adjusted for
multiple testing). Across data sets, the performance is aggregated by consensus rankings. The
remainder of the paper is structured as follows: In Section 2, a general overview of the benchmark
design is provided before Section 3 presents the findings from our experiments. A discussion in
Section 4 concludes the paper.

2 Design of the Benchmark Experiment

The simulation study includes a total of six tree-based methods for classification. All learners
were trained and tested in the framework of Hothorn, Leisch, Zeileis and Hornik (2005) based
on 500 bootstrap samples for each of 18 data sets. All algorithms are trained on each bootstrap
sample and evaluated on the remaining out-of-bag observations. Misclassification rates are used
as predictive performance measures, while model complexity requirements of the algorithms under
study are measured by the number of estimated parameters (number of splits plus number of
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leafs). Performance and model complexity distributions are assessed for each algorithm on each
of the datasets. In our setting, this results in 108 performance distributions (6 algorithms on 18
data sets), each of size 500. For comparison on each individual data set, simultaneous pairwise
confidence intervals (Tukey all-pair comparisons confidence intervals which are set up by functions
from the R package multcomp (Hothorn, Bretz, and Westfall, 2007)) are used. For aggregating
the pairwise dominance relations across data sets, median linear order consensus rankings are
employed following Hornik and Meyer (2007). A brief description of the algorithms and their
corresponding implementation is given below.

CART/RPart: Classification and regression trees (CART, Breiman et al., 1984) is the classical
recursive partitioning algorithm which is still the most widely used in the statistics commu-
nity. Here, we employ the open-source reference implementation of Therneau and Atkinson
(1997) provided in the R package rpart. For determining the tree size, cost-complexity prun-
ing is typically adopted: either by using a 0- or 1-standard-errors rule. The former chooses
the complexity parameter associated with the smallest prediction error in cross-validation
(RPart0), whereas the latter chooses the highest complexity parameter which is within 1
standard error of the best solution (RPart1).

C4.5/J4.8: C4.5 (Quinlan, 1993) is the predominantly used decision tree algorithm in the machine
learning community. Although source code implementing C4.5 is available in Quinlan (1993),
it is not published under an open-source license. Therefore, the Java implementation of C4.5
(revision 8), called J4.8, in Weka is the de-facto open-source reference implementation. For
determining the tree size, a heuristic confidence threshold C is typically used which is by
default set to C = 0.25 (as recommended in Witten and Frank, 2005). To evaluate the
influence of this parameter, we compare the default J4.8 algorithm with a tuned version
where C and the minimal leaf size M (default: M = 2) are chosen by cross-validation
(J4.8(cv)). A full grid search for C = 0.01, 0.05, 0.1, . . . , 0.5 and M = 2, 3, . . . , 10, 15, 20 is
used in the cross-validation.

QUEST: Quick, unbiased and efficient statistical trees are a class of decision trees suggested
by Loh and Shih (1997) in the statistical literature. QUEST popularized the concept of
unbiased recursive partitioning, i.e., avoiding the variable selection bias of exhaustive search
algorithms (such as CART and C4.5). A binary implementation is available from http:
//www.stat.wisc.edu/~loh/quest.html and interfaced in the R package LohTools which
is available from the authors upon request.

CTree: Conditional inference trees (Hothorn et al., 2006) are a framework of unbiased recursive
partitioning based on permutation tests (i.e., conditional inference) and applicable to inputs
and outputs measured at arbitrary scale. An open-source implementation is provided in the
R package party.

Similar to Meyer et al. (2003) datasets from the popular UCI Repository of Machine Learning
Databases (Newman, Hettich, Blake and Merz, 1998) were used for benchmarking. The datasets
are also provided in the R package mlbench (Leisch and Dimitriadou, 2006). An overview is given
in Table 1.

3 Results of the Benchmark Experiment

3.1 Results on Individual Datasets: Pairwise Confidence Intervals

Here, we exemplify—using the well-known Pima Indians diabetes and breast cancer data sets—
how the tree algorithms are assessed on a single data set. Simultaneous confidence intervals are
computed for all 15 pairwise comparisons of the 6 learners. The resulting dominance relations are
used as the input for the aggregation analyses in Section 3.2.
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Table 1: Artificial [∗] and non artificial benchmarking data sets

Data set # of obs. # of cat. inputs # of num. inputs
breast cancer 699 9 -
chess 3196 36 -
circle ∗ 1000 - 2
credit 690 - 24
heart 303 8 5
hepatitis 155 13 6
house votes 84 435 16 -
ionosphere 351 1 32
liver 345 - 6
Pima Indians diabetes 768 - 8
promotergene 106 57 -
ringnorm ∗ 1000 - 20
sonar 208 - 60
spirals ∗ 1000 - 2
threenorm ∗ 1000 - 20
tictactoe 958 9 -
titanic 2201 3 -
twonorm ∗ 1000 - 20

As can be seen from the performance plots for Pima Indian diabetes in Figure 1, standard
J4.8 is outperformed (in terms of misclassification as well as model complexity) by the other
tree learners. All other algorithm comparisons indicate equal predictive performances, except for
the comparison of RPart0 and J4.8(cv), where the former learner performs slightly better than
the latter. On this particular dataset tuning enhances the predictive performance of J4.8, while
the misclassification rates of the differently tuned RPart versions are not subject to significant
changes. In terms of model complexity J4.8(cv) produces larger trees than the other (statistical)
learners. Looking at the breast cancer data yields a rather different picture: Both RPart versions
are outperformed by J4.8 or its tuned alternative in terms of predictive accuracy. Similar to Pima
Indians diabetes, J4.8 and J4.8(cv) tend to build significantly larger trees than RPart. On this
dataset, CTree has a slight advantage over all other algorithms except J4.8 in terms of predictive
accuracy. For J4.8 as well as RPart, tuning does not promise to increase predictive accuracy
significantly. A closer look at the differing behavior of J4.8(cv) under cross validation for both
data sets is provided in Figure 2 and further illustrates that the behavior of the algorithms heavily
depends on the type and structure of the data problems at hand. The multiple inference results
gained from all datasets considered in this simulation experiment (just like the results derived
from the two datasets above), form the basis on which further aggregation analyses of Section 3.2
are built upon.

3.2 Results Across Data Sets: Consensus Rankings

Having 18× 6 = 108 performance distributions of the 6 different learners applied to 18 bootstrap
data settings at hand, aggregation methods can do a great favor to allow for summarizing and
comparing algorithmic performance. The underlying dominance relations derived from the mul-
tiple testing are summarized by simple sums in Table 2 and by the corresponding median linear
order rankings in Table 3. In Table 2, rows refer to winners, while columns denote the losers. For
example J4.8 managed to outperform QUEST on 11 datasets and 4 times vice versa, i.e., on the
remaining 3 datasets, J4.8 and QUEST perform equally well.

The median linear order for misclassification reported in Table 3 suggests that tuning of J4.8
instead of using the heuristic approach is worth the effort. A similar conclusion can be made for
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Figure 1: Simultaneous confidence intervals of pairwise performance differences (left: misclassifi-
cation, right: complexity) for Pima Indians diabetes (top) and breast cancer (bottom) data.

Figure 2: Distribution of J4.8(cv) parameters obtained through cross validation on Pima Indians
diabetes and breast cancer data sets.
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Table 2: Summary of predictive performance dominance relations across all 18 datasets based on
misclassification rates and model complexity.

Misclassification J4.8 J4.8(cv) RPart0 RPart1 QUEST CTree
∑

J4.8 0 2 9 9 11 8 39
J4.8(cv) 4 0 8 9 11 9 41
RPart0 5 6 0 7 10 7 35
RPart1 6 4 1 0 8 6 25
QUEST 4 2 2 5 0 7 20

CTree 7 6 7 8 9 0 37∑
26 20 27 38 49 37

Complexity J4.8 J4.8(cv) RPart0 RPart1 QUEST CTree
∑

J4.8 0 1 0 0 2 0 3
J4.8(cv) 17 0 0 0 5 3 25
RPart0 18 18 0 0 13 15 64
RPart1 18 18 16 0 14 15 81
QUEST 15 13 5 4 0 10 47

CTree 18 14 3 2 8 0 45∑
86 64 24 6 42 43

the RPart versions. Here, the median linear order suggests that the common one standard error
rule performs worse. For both cases, the underlying dominance relation figures of Table 2 catch
our attention. Regarding the first case, J4.8(cv) only dominates J4.8 in four of six data settings,
in which a significant test decision for performance differences could be made. In addition the
remaining 12 data settings yield equivalent performances. Therefore superiority of J4.8(cv) above
J4.8 is questionable. In contrast the superiority of RPart0 vs. RPart1 seems to be more reliable
but still the number of data settings producing tied results is high. A comparison of the figures of
CTree and the RPart versions confirms previous findings (Hothorn et al., 2006) that CTree and
RPart often perform equally well. The question concerning the dominance relation between J4.8
and RPart cannot be answered easily: Overall, the median linear order suggests that the J4.8
decision tree versions are superior to the RPart tree learners in terms of predictive performance.
But still, looking at the underlying relations of the best performing versions of both algorithms
(J4.8(cv) and RPart0) reveals that a confident decision concerning predictive superiority cannot be
made. The number of differences in favor of J4.8(cv) is only two and no significant differences are
reported on four data settings. A brief look at the complexity ranking (Table 3) and the underlying
complexity dominance relations (Table 2, bottom) shows that J4.8 and its tuned version produce
more complex trees than the RPart algorithms. While analogous analyses of comparing J4.8
versions to CTree do not indicate confident predictive performance differences, superiority of the
J4.8 versions versus QUEST in terms of predictive accuracy is evident.

To aggregate the tuning results from J4.8(cv), Figure 3 depicts the median C and M parameters

Table 3: Median linear order consensus rankings for algorithm performance
Misclassification Complexity

1 J4.8(cv) RPart1
2 J4.8 RPart0
3 RPart0 QUEST
4 CTree CTree
5 RPart1 J4.8(cv)
6 QUEST J4.8
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Figure 3: Medians of the J4.8(cv) tuning parameter distributions for C and M

chosen for each of the 18 parameter distributions. It confirms the finding from the individual
breast cancer and Pima Indians diabetes results (see Figure 2) that the parameter chosen by
cross-validation can be far off the default values for C and M .

4 Discussion and Further Work

In this paper we present results of a medium scale benchmark experiment with a focus on popular
open source tree-based learners available in R. The main objective of our simulation experiment
is to compare performances of popular tree algorithms suggested in the statistical and machine
learning literature. Our main result is that no clear statement of superiority between J4.8 and
RPart can be made in terms of predictive accuracy: depending on the particular data set one
algorithm might perform slightly better than the other. However, our results show that J4.8
tends to build more complex trees than RPart. In addition to delivering information on overall
algorithmic performance only, we also present some results on tuning behavior for J4.8 which could
give rise to further discussion on calibration issues (e.g., revision of parameter default settings)
of various tree learning methods. Since tree-based learners are one of the most prominent tools
in data mining for solving classification and regression problems, a comprehensive performance
benchmark experiment could provide interesting results for practitioners as well as researchers.
Therefore our next steps will be to include additional datasets as well as additional learning
methods for classification as well as regression tasks.
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