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Abstract

In this paper we head for a fully Bayesian analysis of the latent class model with a priori unknown
number of classes. Estimation is carried out by means of Markov Chain Monte Carlo (MCMC) methods.
We deal explicitely with the consequences the unidentifiability of this type of model has on MCMC esti-
mation. Joint Bayesian estimation of all latent variables, model parameters, and parameters determining
the probability law of the latent process is carried out by a new MCMC method called permutation sam-
pling. In a first run we use the random permutation sampler to sample from the unconstrained posterior.
We will demonstrate that a lot of important information, such as e.g. estimates of the subject-specific
regression coefficients, is available from such an unidentified model. The MCMC output of the random
permutation sampler is explored in order to find suitable identifiability constraints. In a second run we use
the permutation sampler to sample from the constrained posterior by imposing identifiablity constraints.

The unknown number of classes is determined by formal Bayesian model comparison through exact
model likelihoods. We apply a new method of computing model likelihoods for latent class models which
is based on the method of bridge sampling.

The approach is applied to simulated data and to data from a metric conjoint analysis in the Austrian
mineral water market.

Keywords. Bayesian analysis, conjoint analysis, latent class models, MCMC methods, model selection

1 Introduction

In the present paper we will address the problem of accounting for unobserved heterogeneity among re-
peated measurements of various subjects. We assume that the dependent data arise from a multivariate
normal distribution where the mean depends on design variables through a multivariate regression model.
A common way of including unobserved heterogeneity into such a model is the finite mixture or latent
class model, where the unknown distribution of subject-specific regression coefficients is approximated by
a discrete distribution with unknown support vectors and unknown group probabilities. This leads to a
multivariate mixture of normals as marginal distribution for the data. Our interest for this model class has
been motivated by work on accounting for unobserved heterogeneity among consumers within conjoint
analysis. This issue has received considerable attention during the past years in the marketing community
(Allenby and Ginter, 1995; DeSarlbal., 1992; Elrod and Haubl, 1997; Hagerty, 1985; Kamakura, 1988;
Kamakureet al., 1994; Lenket al., 1996; Wedel and Steenkamp, 1991).

The area, however, is also of greatest interest from a statistical point of view. Involving highly multivariate
mixtures with an unknown number of components, it provides an excellent testing ground for statistical as
well as computational advances made in these fields.

In this paper we head for a fully Bayesian analysis of the latent class model. Estimation is carried out
by means of Markov Chain Monte Carlo (MCMC) methods (see e.g. Dieboldt and Robert, 1994 and
Frihwirth-Schnatter, 1999a for a general discussion of MCMC estimation of mixture models). The un-
known number of classes is determined by formal Bayesian model comparison through exact model likeli-
hoods.
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Such a fully Bayesian analysis of the latent class model has — at least in principle — been tried before, as
it could be viewed as a special case of the finite mixture of generalized linear models with random effects
discussed in Lenk and DeSarbo (1999) and Allesbgl. (1998). However, our approach differs from
these in various respects. We deal in a different way with the unidentifiability of the latent class model and
we use an alternative method for computing the model likelihood.

It is well known, that the latent class model, like any model including discrete latent variables, is only
identified up to permutations of the labelling of the groups. The full unconstrained posterior of the latent
class model withK classes is multimodal with at mokt! modes. When applying MCMC methods to such

a posterior, we have to be aware of the problem of label switching which might render estimation of group
specific quantities meaningless. Allendiyal. (1998) and Lenk and DeSarbo (1999) apply a standard order
constraint on the weights of the mixture to circumvent the problem. The influence of constraints on the
shape of the full constrained posterior has been investigated only recently (Frihwirth-Schnatter, 1999a). It
turns out that only a constraint which respects the geometry of the posterior will restrict the posterior to a
subspace with unique labelling.

Because of these problems with constrained estimation we start with MCMC estimation of the uncon-
strained latent class model using the random permutation sampler suggested in Friihwirth-Schnatter (1999a).
We will demonstrate that a lot of important information, such as e.g. estimates of the subject-specific re-
gression coefficients, is available from such an unidentified model. Furthermore, the MCMC output of the
random permutation sampler is used to estimate the marginal model likelihood in order to compare models,
differing e.g. in the number of classes. We apply a new method of computing model likelihoods for latent
class models which is based on the method of bridge sampling (Meng and Wong, 1996). In Frihwirth-
Schnatter (1999b) this method has been applied to computing the model likelihood for a general mixture
and switching model and clearly outperformed alternative methods such as the candidate’s formula (Chib,
1995) or reciprocal importance sampling (Gelfand and Dey, 1994). Only for the ,best” model we start
to think about identification. We explore the output of the random permutation sampler in order to find
identifiability constraints which respect the geometry of the posterior. These constraints are then included
into the permutation sampler in order to obtain information on group specific parameters and weights.

The outline of the paper is as follows. In Section 2 we discuss the Bayesian estimation of the latent class
model and the impact of the unidentifiability problem. Section 3 presents MCMC estimation both of the
unconstrained and the constrained latent class model. Model selection for latent class models and a new
method of computing model likelihoods is outlined in Section 4. In Section 5 and Section 6, respectively,
the suggested approach is applied to simulated data and data from a metric conjoint analysis in the Austrian
mineral water market.

2 Bayesian Analysisof the Multivariate Latent Class M odel

2.1 Notation and Specification

We start by defining the latent class model in a way that is well known from linear mixed modelling:
yi = Zia + Wifi + i, i ~N(0, R;) (1)

wherey; is a vector ofl; repeated measurements for subjeet arefixed effects which are constant for
all subjects ang; arerandom effects which due to heterogeneity are different for each subjgctand

W; are the design matrices for the fixed effeetand the random effects;, respectively. Within latent
class models the unknown distributiafig3;) of heterogeneity is approximated by a discrete distribution
with unknown support vectors{’, ... , 3% and unknown group probabilities= (1, .. ,nx). Such a
distribution could be written as:

BY, if S =1,
Bi=1q - 2
B, if S; =K,
if we introduce a discrete latent group indicafyrtaking values in{1, . .. , K'} with unknown probability

distributionPr(S; = k) =, k=1,... K.



In what follows we will assume that the model is identified up to relabelling the number of the group
indicator. The general model appearingin (1) is not necessarely identified in this sense for arbitrary choices
of Z; andW;. To give an example, the model is not identified, if some columris; @ndiV; are identical.

Unknown parameters which have to be estimated from the data are the fixed effélsts group spe-

cific parameterg¥, ... , 3%, the group probabiliteg = (y,...,7x) and unknown parameteésap-

pearing in the definition of the observation variarRe These parameters will be summarized day

¢ = (o, BY,..., 8%, n,6). Within a Bayesian approach the latent group indic&tSr= (S, ... ,Sy) is

viewed as missing data and is estimated along with the model paragndteis data augmentation is quite
common within Bayesian analysis (see e.g. Tanner, 1993). Bayesian estimation of the model is based on
the hierarchical structure of the model:

1. Conditional ong and S%, the complete data likelihoodl(y1, ... ,y~n|S™, #) factorizes into the
product of normal distributions where the distribution of eagldepends ors ¥ through the group
specific parameter, onlyf(yy, ... ,yn|S™, ¢) = Hfil fyila, g;,o).

2. Conditional onp the ,prior” of SV is given by the discrete probability distributi®®(S; = k) = ny,
and the assumption that and.S; are pairwise independent, thereforéS™ |¢) = H,{;l ek,
Ni, = #{S; = k}.

3. Finally,¢ has a prior distributionr (¢).

Note that the ,prior” onS" appearing in the second level is not a subjective prior, but part of the model.
Only the prior ong appearing on the third level has a subjective flavour. In this paper the focus lies on
Bayesian estimation in situations where we lack strong prior information. From a theoretical point of view,
being fully non-informative abous is possible only for the fixed effects and the variance parametgr

if 9 is class independent. Theoretically, being non-informative agut .. , 3%, n and class dependent
variance parameteéss not possible, as improper priors 61, . .. , 3% andn resultin improper posteriors
(Diebolt and Robert, 1994; Roeder and Wasserman, 1997).

For mixture models; is commonly assumed to be independent from the remaining parametgrsfof
Lhatural” prior distributions(n) for 1 is a Dirichlet priorD(eo1, - - . ,eox ), Which is the conjugate prior

in the complete data setting, whe$é" is assumed to be known. A common choicegs = 1 which

leads to a uniform prior on the unit simplex. We may selggtbigger thanl to exclude empty classes

a priori. For the fixed effectex we use a normal prioN (cq, Cp). Concerning the group specific pa-
rameterssy, ... , 3%, we assume that they are independemriori. In the context of mixture mod-
elling it is now common practice to use hierarchical priors for being weakly informative about group
specific parameters (see e.g. Richardson and Green, 1997; Roeder and Wasserman, 1997; Stephens, 1997):
m(B") o N(bo, Bo). This allows different parameters for the various groups, however with a slight re-
striction expressed by the prior. Furthermore this prior is invariant to relabelling the number of the groups.
The prior on the variance parametedepends on the model chosen for the observation varigncdf

R; = o2 - I with I being the identity matrix, then a “natural” prior for? is an inverted gamma prior

~ IG(v:,Ge:p), Which is the conjugate prior in the complete data setting, wiiéYes assumed to be
known.

2.2 Posterior Analysisand Label Switching

Using Bayes’ theorem we obtain from the hierarchical structure of the model that the non-normalized
posterior distributiorr (¢, S™ |y™) of the augmented vecter = (¢, S™V) is proportional to the following
product:

(6, SV IyN) o< FyNISY, ) (SN 9)(9), ®3)
N
i=1
wherey™ = (y1, ... ,y~). For models including a latent, discrete structure suc$i"ashe unconstrained

posterior has some characteristic properties (see Stephens, 1997; Celeux, 1998; Friihwirth-Schnatter, 1999a).
The unconstrained parameter space contAihsubspaces, each one corresponding to a different way of



labelling the groups. The ,complete data likelihogfyV|S™, ¢), and the ,prior'z(S~|¢) are invari-

ant to relabelling the groups. Therefore, if the pridg), is invariant, too, the unconstrained posterior
typically is multimodal and invariant to relabelling the groups. This special structure of the posterior has
important consequences for estimation. The unconstrained model is not identified in a strict sense. In
section 3 we use MCMC methods to obtain a sanii&, #)™V), ... , (SV, ¢)™) from the unconstrained
posterior. However, we do not know which of the labelling subspaces a sampled §4iug)("™ belongs

to, since label switching (jumping between the various labelling subspaces) might have occured. Thus we
are not allowed to estimate functionagléy) of ¢» = (S, ¢) which are not invariant to relabelling the
groups from MCMC simulations from the unconstrained posterior.

Note that a lot of information is available from MCMC simulations from the unconstrained posiéttier

out introducing a unique labelling, as we are allowed to estimate functigitalsof 1) = (S%, ¢) which

are invariantto relabelling ;. Straightforward examples are parameters which are common to all groups,
such as the fixed effectsor common variance parametérsFurther examples are moments of the distri-
bution of heterogeneity, e.g. the mean or the covariance matrix:

K K
ag=> B, Q= BYHBY) m — asay.
k=1 k=1

These moments may be estimated from the MCMC simulations by:

1 M K " R 1 M K " (m o
dp =22 Y BO™HM, Q=3 BN (B ™) n™ — dsdg.

m=1 k=1 m=1 k=1

Moreover, subject specific estimates of the random efféctghich may be written as:

K
k=1

wherel(S;) = 1iff S; = k, and obviously are invariant to relabelling can be derived from an unidentified
model. An estimate af; is obtained from the MCMC simulations by:

1« (m)
A.__E: G\ (m) — g(m
ﬁz— Mm:1(ﬂs) ’ S_Si -

Finally, it is possible to predict the behaviour of each subject under degigri’* different from the ones
used for estimation.

In order to estimate functionaf{v) of ¢ = (SV, ¢) which are not invariant to relabelling the groups such
asp, ..., 5%, n or the classification probabilitieBr(S; = k|y") we have to identify the model in the
sense that we allow for MCMC simulations from a unique labelling subspace, only. A common way of
dealing with the problem is to include an identifiability constraint. An arbitrary constraint, however, does
not necessarily induce a unique labelling, if it ignores the geometry of the unconstrained posterior dis-
tribution (see Frihwirth-Schnatter, 1999b). Only a carefully selected constraint will separate the labelling
subspaces and induce unique labelling. We will demonstrate in our case studies, how suitable identifiability
constraints may be found by exploring MCMC simulations from the unconstrained posterior distribution.

If the model has been identified, estimates of group specific parameters are simply the mean of the sim-
ulations, whereas the classification probabilitiesSPee k|y™N),k = 1,..., K may be estimated for all
subjects from the sampled valueggm),m =1,...,M by

. 1 m
Pr(S: = kly™) = S7#{51™ = k)

3 Estimation of the Latent Class Model via MCMC Methods

31 MCMC Methods

A common way to deal with complex posterior distributions such as the posterior (3) is to sample from the
posterior by some MCMC method (see e.g. Smith and Roberts, 1993, for a general introduction to MCMC



methods). Applications of MCMC methods to classical mixture models appear e.g. in Diebolt and Robert
(1994) and Richardson and Green (1997). MCMC techniques for sampling from a complicated posterior
density split the joint unknown parameter into blocks and sample then from the conditonal posterior densi-
ties of each block given the fixed values for the other blocks. Sampling from the posterior of a latent class
model is possible within the following four blocks:

(i) SampleS™ from#(SN|n,a, B¢, . .., 8%, 0,yN)

(i) Samplen fromz(n|S™N)
(iii) Sample the fixed and the group specific effects frota, 3¢, ... , 3%19, SN, y™)
(iv) Sample the variance parametérsom =(8|a, 3¢, . .. , 8%, SN, yN)

Details concerning the structure of these posteriors and the method for sampling from them will be given
in subsection 3.2. Most of this material is standard with the exception of step (iii), where the fixedeffects
and the group specific parametgfs, . .. , 3% are sampled jointly within one block. We do not recommend

to sample these parameters in two different blocks from the conditional postefidr’, . . . , 3%,6, SV, yV)
andr(B¢,...,B8%|a,0,SN,y"N), respectively, as suggested e.g. in McCulloch and Tsay (1994) for the
related MSAR-model. If there exist strong correlations between colum#s ahd columns ofV;, such
separate sampling will converge slowly. We will show in subsection 3.2 that joint sampling of all effects is
possible, as conditional oYY the latent class model may be rewritten as a classical regression model.

There exist various ways to run through this scheme and the suitable method for MCMC sampling depends
on what kind of inference is of interest. An unconstrained model may be estimatmddngtrained Gibbs

sampling running through step (i)—(iv) without any constraint on the group specific parameters. Uncon-
strained Gibbs sampling, however, does not explore the whole unrestricted parameter space, but tends to
stick at the current labelling subspace with occasionally switching to other labelling subspaces. Some of
the labelling subspaces will never be visited. An alternative method of estimating an unconstrained model
is random permutation sampling (Frihwirth-Schnatter, 1999a). This method is simply an unconstrained
Gibbs sampler concluded by a randomly selected permutatioh.. . , p(K) of the current labelling

1,..., K. After samplingy by an unconstrained Gibbs sampler, group dependent parameters are per-
muted in the following way:

(ﬁlGa 7ﬁ[cé) = (ﬁﬁl): 7ﬁ§iK))7 (4)
(7717"' 777K) = (np(l)"" ,np(K)),
(Slv"' 7SN) = (p(Sl)7 7P(SN))

Parameters which are group independent such aad# are not permuted. The permuted parameters

are the starting point for the next Gibbs step. This sampler is an appropriate method for exploring the
whole space of the unconstrained posterior as it delivers a sample from the unconstrained posterior where
balanced label switching occurs and all labelling subspaces are visited with the same probability.

To estimate a constrained model an identifiability constraint may be introduced into the sampling scheme.
One way of imposing the identifiability constraint is to introduce some truncation or rejection method
into step (iii) in order to obtain simulations which fulfill the constraint. Ttasstrained Gibbs sampling

is the standard method applied so far (Allerdyal., 1998; Lenk and DeSarbo, 1999). An alternative
method for constrained samplingpsrmutation sampling under an identifiability constraint (Friihwirth-
Schnatter, 1999a). Unconstrained Gibbs sampling is concluded by a permutation as in (4), but this time the
permutation is selected in such a way that the identifiability constraint is fulfilled. We mentioned already
that an arbitrary constraint does not necessarily induce a unique labelling and a bias toward the constraint
may be introduced. The poorness of the constraint may go undetected if we use constrained Gibbs sampling
and the sampler sticks at the current labelling subspace. The permutation sampler, however, will indicate
this fact and exhibit label switching. In this case a more suitable identifiability constraint may be derived
from the MCMC output of the random permutation sampler.

3.2 The Structure of the Conditional Posteriors

We now discuss the structure of the various conditional posterior densities and the sampling from these
posteriors in more detalil.



Step (i) is a standard step occuring in mixture models and can be carried out as discussed in Diebolt and
Robert (1994). From Bayes’ Theorem we obtain:

N
7(S, -, SnlyN, 0) o [ [ fwilew, BS., 6)(Siln).-
i=1

As Si,..., Sy are conditionally independent giverandy?, S; may be sampled from the discrete distri-
bUtiOﬂ’]T(Si = k‘|yl, ¢)), k=1,... K:

m(S; = klyi, @) o< f(yil B, . 6) - (5)
wheref (y;|35, «, 0) is the density of a normal distribution with men« + W; 3¢ and variance?; (6).

Step (i) is a standard Bayesian exercise. Given the Dirichlet Br{eg, - . . , eo ) the posteriorr(n|S™)
of pisD(eg1 + Ni,... ,eox + Nk), With Ny, = #{S; = k}.

In step (iii) we sample the fixed effeatsand the group specific parametgts, . .. , 35 jointly within one
block. Conditional or5™V the latent class model is a classical regression model:

Yi = Xioz* +ei, &€~ N(O, Ri),

with parameten* = (a, 8¢, ... , 5%) and

Xi=(z wp® .. wp" ),
where we used the codiriggk) =1iff S; = k,fork = 1,... , K. The posterior of* = (o, 37, ... , %)
is given bya*|y™, 8 ~ N(ay, Ay), where

N
Ay = XiR7 X+ 401, (6)

i=1

N
an = AN(Z X;Rflyi + Ay tao).

i=1

The joint normal priotV (aq, Ag) for a* is constructed in an obvious way from the normal pridi@,, Bo)
and N (co, C) of the group specific parametes$’, . .. , 3%, and the fixed effecta, respectively. The
information matrixAJ(,1 has a special structure which can be exploited for efficient sampling. If no fixed
effectsa are presem‘/,lj\,1 as well asA i are block diagional and we may sample all group specific effects
independently. If fixed effects are present, thed ' as well as4y contain a submatrix which is block-
diagonal. Therefore joint samplingaf = («, 37, ... , 8%) is possible by sampling the fixed effects from
the marginal posteriaV (cx, C'v ), where the group specific effects are integrated out, and by sampling the
group specific effects independently from the conditional distributié(y (o), By k), k= 1,..., K.

The moments of these densities are given by:

N
S WiR DM + By b

i=1

bnk(a) = By

)

—1
)

N
By = [Z W, R;'w;D® + B!

i=1

N
Z Z; Ry (y; — Wibn,s,(0)) + Cq ' co

CN = CN )
i=1
N —1
Cn = |Y_ Z;R7"(Ri —W;Bn,s,W; )R 'Z; + C5 ' |,
i=1

wherey; = y; — Z;a.



Step (iv) depends on the model chosen for the observation varignde R; = o2 - I with o2 being group
independent, then:

2|Oé 517"', K, NIG(VSN,GS,N),

N
VenN =Veg+ N - (Z T))/2, Gen =Gep+1/20)_llyi — Zic = WiBg|13)-

i=1 i=1

4 |ssuesin Mode Selection

Model selectionis based on the Bayesian model discrimination procedure where variousmedels , M g
are compared through the posterior probability of each model (Bernardo and Smith, 1994):

P(Mily™) o< f(y1, ... ,yn| M) P(M). (7)

The factorL(y™ |M;) := f(y1,-.. ,y~|M,) is called model likelihood and quantifies evidence in favour
of a model given the data. For a latent class model the model likelihood is given by the following integral
of the marginal likelihood(y, . .. ,yn|¢) with respect to the prior(¢):

L") = [ L. unlo)m(@)ds, ®)
where an explicit formula for the marginal likelihoddy, . .. ,yn|¢) is available:
N
L(yi,-.ynlg) =[] (Zf (ilBF, e, 0) - > ©)
i=1 \k=1

The computation of the model likelihood has proven to be challenging for models with latent processes
such as the latent class model. Model likelihoods have been estimated from the MCMC output using meth-
ods such as the candidate’s formula (Chib, 1995), importance sampling based on mixture approximations
(Fruhwirth-Schnatter, 1995), combining MCMC simulations and asymptotic approximations (Gelfand and
Dey, 1994; DiCiccicet al., 1997) and bridge sampling (Meng and Wong, 1996). The application of these
methods to compute the model likelihood from the MCMC output for switching and mixture models has
been discussed in detail in Frihwirth-Schnatter (1999b) with the following main results: first, estimation
of the model likelihood turns out to be sensitive to the problem of label switching. Especially the candi-
date’s formula (Chib, 1995) should not be applied, if label switching is present, and is a suitable estimation
method only for identified models. Second, it is not necessary to identify the model in order to compute
the model likelihood. This is very convenient, if we want to compare a wide range of valdés Bhird,

the best result with the lowest standard error is obtained by using the method of bridge sampling where
the MCMC sample obtained by random permutation sampling is combined with an iid sample from an
importance density(¢). The importance density(¢) is constructed in an unsupervised manner from

the MCMC output(¢("), ... , (™)) of the random permutation sampler using a mixture of complete data
posteriors:

=1/M;, Z (o] (SN) ™) plm) Ny, (10)

The bridge sampling estimator outperforms other methods such as importance sampling or reciprocal im-
portance sampling for the following reason: whereas importance sampling as well as reciprocal importance
sampling are known to be sensitive to the tail behaviour of the importance defs)tythe bridge sam-

pling estimator turns out to be much more robust in this concern. In the present paper we will apply this
method to latent class models. For further details the reader is referred to Frihwirth-Schnatter (1999b).

Within the latent class model the Bayesian approach could be applied to various issues arising in model
selection, the most important one being the selection of the the number of classes. Note that this testing
situation may result in a non-regular problem. Selecting the number of groups is not possible within the
classical framework of maximum likelihood. Although a mixture model witltlasses could be viewed



as that special case of a mixture model wifh+ 1 classes, the regularity conditions for justifying th&-
approximation to the likelihood ratio statistic do not hold, as the group specific parameters are unidentified
under the hypothesis that there are reallygroups.

In one of our case studies the Bayesian approach will be applied to further issues arising in model selection
such as testing for heterogeneity of selected components. If the marginal densities of a certain component
50 of the group specific parametes§’, ... , 3% overlap for all groups such as in figure 13, we could
formulate the hypothesis that the compon,éﬁ,t is fixed rather than randomg¢ = = ﬂKr This
hypothesis is tested against the hypothesis of a random component by comparing the model likelihoods. In
order to obtain the model likelihood of the new hypothesis, we have to rerun MCMC estimation under the
assumption tha@f’r is fixed (the corresponding column in model (1) has to be deleted figrand added

to Z;). Hypotheses involving more than one component sugkas= ... = 8 ., 37, = ... = 8% , are

tested in a similar way.

A final application will be variable selection. If the marginal density of a certain compangnf the

fixed effects cover 0, we could formulate the hypothesis that this effect is not significant and should be
deleted from the modekys; = 0. Again, this hypothesis is tested against the hypothesisathahould

be kept in the model by comparing the model likelihoods. In order to obtain the model likelihood of the
new hypothesis, we have to rerun MCMC estimation subjeetsto= 0 (the corresponding column in
model (1) has to be deleted frai). Similarily, if all marginal densities of a certain componﬁﬁj. of the

group specific parametes’, . .. , 3% cover 0 such as in figure 13, we could test the hypothesis that all
componentg{’,, ... , 3%, should be deleted from the model.

5 Application to Simulated Data

, 0 <
~ o o 2o Z,
T g E
= ° N
i e
Figure 1: Simulated Data Figure 2: Marginal densities(o2|y", K) esti-
mated from a random permutation sampler
5.1 TheData
For illustration, we apply the methods of the previous sections to 100 bivariate observations simulated from
the model
1wy,
Yi = { 1 1’1, Bg + €5, g; ~N(0,0.25-1I),
U2,

whereu, ; ~ U(0.6,0.8), uz; ~ U(0.8,1), S; = 1 with probabilityn, = 0.45, 3¢ = (0.25,—-0.7)" and
BS = (0.3,0.7)". Figure 1 shows a scatter plot of the data.

5.2 Selecting the number of classes

We used the bridge sampling estimator based on a random permutation sampler (see section 4) with the
priorsby = 0 and B;' = 0.04 - I on the group specific parameters and D(1,, 1) on the group
probabilities to compute the model likelihoods for models with one to three classes (the nufybar
mixtures in the construction of the importance density is selected to be 500). The results reported in table 1



clearly reject a homogeneous model with just one group. The model likelihood points towards a model with
two classes. For completeness, we also report the estimates obtained from reciprocal importance sampling
and importance sampling which serve as a starting value for the bridge sampling estimator. The standard
errors clearly indicate that the bridge sampling estimator leads to a more precise estimate than the other
methods.

Estimator K=1 K=2 K=3

log Lps(y™) | -204.59| -178.90 (0.0064)| -186.02 (0.064)
log E,S(yN) -204.59| -178.89(0.011) | -181.55(0.822)
log ERI(yN) -204.59| -178.94 (0.037) | -185.38 (0.131)

Table 1: Various estimates of the model likelihabg ™V | K') for various values of{
(relative standard errors are given in parenthedig); (y”) ... bridge sampling estimatof,;s(y")...
importance sampling estimatdiz;(y") ... reciprocal importance sampling estimator

An exploratory cross-check for the number of classes selected by the formal Bayesian procedure is plotting
the posterior densities of the variangg of the error terme; for various numbers o. Being a group
independent parameter? may be estimated from the MCMC simulations without caring about identifi-
ability and label switching. The posterior densitigg?|y”, K) estimated from the random permutation
sampler show a significant decreaserdfonly up to two classes (see figure 2). The addition of the third
class does not help to reduce the unexplained variaidedicating that the number of classes is too big.
Figure 2 could be regarded as a kind of a Bayesian scree plot.

5.3 Explorative Bayesian Analysis of the Unconstrained Model

Explorative Bayesian analysis is based on the following special structure of the posterior density of the
unconstrained model. Due to invariance of the posterior to relabelling the classes, the marginal posterior
of all group specific parameters is identical(3" |y"¥) = =(8{|y") forall k = 2,..., K. Therefore

for a sampler with balanced label switching, the simulations for all groups contain the same information.

This property could be used to check convergence of the random permutation sampler by comparing the
marginal posterior densities estimated from the MCMC output for each component (see figure 3).

P
ok
B

Figure 3: Checking convergence of the random permutation sampler

If convergence has occured, it is possible to consider the MCMC simulatigfig ér any k£ as coming

from one densityr(3%|y™). As we are sampling from the unconstrained posterior, the simulations will
switch between all possible labelling subspaces and might belong to any of the groups. By exploring
the MCMC simulations we may learn a lot about differences between the groups. We found this kind of
visualization of the unconstrained posterior extremely helpful with respect to selecting useful identifiability
constraints.

Figure 4 and figure 5, for instance, show a scatter plot of the first component versus the second compo-
nent of all simulated vaIue(st’l, ﬁ%)(m) for a two- and three class model. These figures contain further
evidence in favour of a model with two groups. For the model Wfith= 3, where we allowed for three
classes, the unconstrained marginal posterior distributiari@f |y practically shows the correct num-

ber of classes, but is less informative due to the superfluent parameters introduced for the additional class.
Furthermore, from the figures 4 and 5, we may learn a lot about differences between the classes. The first
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Figure 4: Posterior simulations obtained from theFigure 5: Posterior simulations obtained from the
random permutation sampler féf = 2 random permutation sampler féf = 3

componemﬁ’f1 does not differ between the groups, whereas the second compiffgetdéarly differenti-
ates the two groups. This information will be helpful to identify the model.

5.4 ldentifying the Selected M odel
1 ?x N1 \
R N ~,
N
m—1 4\, u’l

Figure 6: Influence of various identifiability constraints on the MCMC simulations simulatioriféieft
column) and3§’ (right column); first row:5¢, < g5, (permutation sampling), second ro@{’; < 5,
(permutation sampling), third rovyﬁlcf1 < ﬂgl (constrained Gibbs sampling)

If we want to estimate group specific parameters such(as3$’, andn,, we have to identify the model.
Data-driven identifiability constraints, which respect the geometry of the posterior, are obtained from ex-
plorative Bayesian analysis of the MCMC output of the random permutation sampler. From figure 4 we
found that the second components clearly differs between the groups, suggesting the cqﬁ%trainﬁgz.
Permutation sampling under this constraint no longer showed any signs of label switching (see the first row
of figure 6). Estimates of group specific parameters from the MCMC output of the identified model are
reported in column three of table 2.

Table 2: Estimates of the group specific parameters under various constraints

Parameter true constrained estimation
7y < BT o < BT
ﬁlGl 0.25| 0.221(0.177)| 0.181 (0.150)
¢, | -0.7|-0.519 (0.237)| —0.110 (0.579)
?1 0.3 | 0.363(0.160) | 0.403(0.140)
7, 0.7 | 0.623(0.201)| 0.213(0.601)
m 0.45| 0.502 (0.059)| 0.502 (0.059)

Note that the constraint is a device for defining a unique labelling subspace by describing geometrically
the difference between the groups we made visible by allowing for balanced label switching in the sampled
parameters. An alternative constraint would be the composite cons’i’fginit 632 < ﬂgl + 6§2.
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In order to demonstrate how an identifiability constraint which does not respect the geometry of the poste-
rior density affects Bayesian analysis, we impose a constraint on the first component of the group specific
parameter;ﬂlcf1 < ﬂgl. The constrainﬁf1 < ﬁgfl ignores the geometry of this posterior insofar, as sam-
ples fromboth labelling subspaces will contain values for which this constraint is validoattdlabelling
subspaces will contain values for which this constraint is violated (see figure 4); the constraint does not
separate the labelling subspaces. For such a constraint a well-mixing constrained sampéeessitily

exhibit label switching rendering estimation of group specific parameter from the MCMC output mean-
ingless. If permutation sampling is combined with this "poor” identifiability constrafft < 5, label
switching is actually still present in the MCMC output (see the second row of figure 6). Like label switch-
ing occuring during MCMC estimation of the unconstrained model, this failure to identify the model must
not be viewed as a weakness of the sampler, but as a property of the constrained posterior density itself.
Label switching occuring during constrained sampling should always be viewed as a hint that the constraint
selected for identification actually fails to separate the labelling subspaces. Label switching under a "poor”
constraint will not occur for a constrained sampler which sticks at the current labelling subspace. This
property, however, is not necessarily an advantage over a well-mixing sampler like permutation sampling.
As such a constrained sampler will deliver a sample only from that region of the labelling subspace, where
the constraint is fulfilled, we obtain an identified model with unique labelling where a bias toward the
constraint might be introduced. The bias may affect the constrained components as well as all parameters
correlated with the constrained components.

This actually happens for the present case study, if a truncation sampling method is included into the Gibbs
sampler for the con:strairﬁ]f1 < 5531. The third row of figure 6 demonstrates that no label switching
occured, whereas table 2 demonstrates that a bias is introduced for both components of the group specific
parameter, when estimating these parameters from the output of the constrained sampler. Whereas permu-
tation sampling indicates the failure to separate the labelling subspaces by this constraint (see the second
row of figure 6), the bias introduced will go undetected if the sticky constrained sampler is employed
instead.

6 Application to Metric Conjoint Analysis— A Case Study from the
Austrian Mineral Water Market

6.1 Introduction

Previous research investigating the problem of efficiently modelling consumer heterogeneity in a conjoint
setting went into two directions. One based on the assumption that heterogeneous consumer preferences are
best described by an arbitrary discrete distribution with possibly very few mass points (e.g. Det$érbo

1992). The other building on the notion that the distribution of consumer preferences is unimodal and can
be approximated by a parametric continuous distribution (e.g. Allenby and Ginter, 199%tlatnk 996).

Recently Allenbyet al. (1998) as well as Lenk and DeSarbo (1999) indicated that the combination of the

two approaches allowing for continuous heterogeneity within discrete latent classes even more adequately
portrays preference heterogeneity.

In light of the available evidence that models assuming a continuous parametric distribution of consumer
preferences outperform the latent class approach with respect to internal validity (Allenby and Ginter, 1995;
Natter and Feuerstein, 1999; Moaateal., 1998) it should be stressed that we do not argue in favour of the
latent class approach. However, applied researchers continue to use the model and need to know about the
opportunities and intricacies of its fully Bayesian analysis.

6.2 Thedata

The data come from a brand-price trade-off study in the mineral-water category conducted as part of an
ongoing research project on brand equity (Schweiger, 1996; Streldinge1998). Each of 213 Austrian
consumers stated their likelihood of purchasing 15 different product-profiles offering five brands of mineral
water (Rémerquelle, Vdslauer, Juvina, Waldquelle, and one brand not available in Austria, Kronsteiner) at
3 different prices (2.80, 4.80, and 6.80 [all prices in ATS]) on 20 point rating scales (higher values indicate
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K IOg LBS(yN) K IOgLBS(yN) K IOg LBS(yN)

2 | -9892.88(0.022) | 5 | -9636.50(0.294) | 8 | -9589.53(0.722)
3 | -9756.02 (0.049) | 6 | -9620.82(0.393) | 9 | -9582.66 (1.254)
4 | -9701.54 (0.144) | 7 | -9610.11(0.396) | 10 | -9582.89 (1.105)

Table 3: Estimates of the model likelihoddy ™ | K) for various values of¢
(relative standard errors are given in parenthesis)

greater likelihood of purchasing). In an attempt to make the full brand by price factorial less obvious to
consumers, the price levels varied in the range @.1 ATS around the respective design levels such that
mean prices of brands in the design were not affected (Eirad, 1992).

The data come from a brand-price trade-off study in the mineral-water category conducted as part of an
ongoing research project on brand equity (Schweiger, 1996; Strelsingef998).

We used a fully parameterized matiiX; with 15 columns corresponding to the constant, four brand
contrasts, a linear and a quadratic price effect, four brand by linear price and four brand by quadratic price
interaction effects, respectively. We used dummy-coding for the brands. The unknown brand Kronsteiner
was chosen as baseline. We subtracted the smallest price from the linear price column ifimzerixl
computed the quadratic price contrast from the centred linear contrast. Therefore the constant corresponds
to the purchase likelihood of Kronsteiner at the lowest price level, if quadratic price effects are not present.
Theory did not suggest excluding any effect for all consumers.

At the level of an individual consumer the model would be saturated since only 15 data points are available
to estimate 15 parameters leaving zero degrees of freedom. In Frihwirth-Schnatter and Otter (1999) a
random-effects model was fitted to the data. Here, we discuss modelling of heterogeneity by a latent class
model with a priori unknown numbers of groups.

6.3 Selecting the number of classes

Selection of the number of classes is based on the same tools as discussed in section 5.2 for the simulated
data. First, we used the bridge sampling estimator based on a random permutation sampler with proper
priors to compute the model likelihoods for models from two to ten classes (the ndifybef mixture in

the construction of the importance density is selected to be 200). The priorimeéthe group specific
parameters is taken to be equal to the mean of the normal prior of the random effects estimated within the
random-effects model reported in Friihwirth-Schnatter and Otter (1999). If such results were not available,
we could have used the parameters estimated from a model with one class as a prior mean. The information
matrix of the prior is equal toB; ' = 0.02- I. The prior ony is D(1,. .. ,1). The prior ono2 is IG(0,0).

The estimated model likelihoods together with relative standard errors are reported in table 3. The model
likelihood clearly points towards a model with nine classes. This result is supported by the Bayesian scree
plot in figure 7: the posterior densities of estimated from the random permutation sampler showed a
significant reduction of2 only up to nine classes.

6.4 Estimation within Unidentified M odels

In section 2.2 it was demonstrated that subject specific parameter estimates may be obtained from an
unidentified model. Here we illustrate how the latent class model captures consumer heterogeneity for
different numbers of classes. We take advantage of our Bayesian approach and investigate the posterior
densities of implied choice probabilities for different offers. Throughout this section it is assumed that
choice probabilities may be derived from preferences directly using a multinomial logit model. The fol-
lowing is based on a choice set offering the two major brands Rémerquelle and Vdslauer at a price of 5.9,
their competitors Juvina and Waldquelle at a price of 3.9 and finally the dummy brand Kronsteiner at a the
price of 3.2 (all prices in ATS).

The columns of Figure 8 contain the marginal choice probabilities for the R6merquelle, the Juvina and
the Kronsteiner offer, respectively. The rows correspond to different numbers of classes. Comparing the
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Figure 7: Marginal densities-(o2|y™,K) esti- Figure 8: Choice probabilities from a logit model
mated from a random permutation sampler (design: (RO, VO, 5.9), (JU,WA, 3.9), (KR, 3.2))

distributions of choice probabilities for the Rémerquelle offer in the first column, the detrimental effect of
choosing too low a number of classes becomes obvious. The marginal density obtained from the model
with two classes suggests that the major part of the sample has a near zero choice probability for the
Roémerquelle offer. On the other hand substantial mass of the distribution is in the region with a choice
probability greater than 0.6. The optimal choice of nine classes, in contrast, reveals that only little mass of
the distribution can be found in the region of high choice probability for the Rémerquelle offer. Similar but
less extreme differences between the different solutions arise for the Juvina and the Kronsteiner offer.

K=2 K=3

a posteriori density
P(vOld)
+

05
pvoly Lt PRQId) pvoly 1 P(RQId)

Figure 9: Choice probabilities from a logit model - bivariate representations

Figure 9 contains bivariate marginal densities for the choice probabilities of the Romerquelle and the Vs-
lauer offer. Notice the 45 degree frontier due to the fact that we are dealing with choice probabilities from
a multinomial logit model. Moreover, the scaling of the density axis is adapted to the number of classes
assumed in the three dimensional plots. Again it is obvious, possibly even more than from the univariate
density plots that too low a number of classes will lead to very different conclusions than the optimal choice.
The solution with two classes suggests that most of the mass is concentrated at the point of near zero choice
probabilities for the Romerquelle and the Vdslauer offer. Moreover, there seems to be some mass in the
area of high choice probabilities for the Romerquelle offer accompanied by low choice probabilities of the
Voslauer offer. Increasing the number of classes to three changes the picture dramatically. Again most
of the distributional mass is concentrated at the zero/zero point. However, the distribution indicates some
support for the combination of high choice probability for the V&slauer offer accompanied by lower choice
probabilities for the Romerquelle offer. Moreover, there also is some support for the combination of small
choice probabilities for the Romerquelle offer and a near zero probability for the Vdslauer offer. Naturally,
the optimal solution with nine classes offers the most detailed picture. Notice that now some support for
the combination of choice probabilities near one for the Véslauer offer accompanied by such near zero for

the Romerquelle offer can be found. This feature of the distribution is not present in the solution relying
on five classes only.

13
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Figure 10: Scatter plots of the MCMC simulations f6r= 3

6.5 Modd Identification

So far the models are identified only up to permutations of the labels of the groups. In order to identify
group specific parameters, we need to introduce identifiability constraints that guarantee unique labelling.
In what follows we use the following notation for the group specific parameters: ;coefgrs to the
constant, RQ, VO, JU,, and WA, refer to the main effects for the various brands apdo the linear

price effect for groupk. We carefully searched for data-driven identification constraints using plots of
the marginal parameter densities as well as two- and three-dimensional scatterplots of MCMC simulations
from the unidentified model. As one might expect, simple constraints will only suffice to identify models
with few classes. For instance in the case of a model with three classes, we found from the scatter plots in
figure 10 that the linear price effect differentiates one class from the remaining two and that the constant
is useful to tell these aparp; < min(p2,p3), consg < consg. Sensible identifiability constraints are

not necessarily unique. For the model with three classes, an equivalent set of constraints turned out to be
p1 < min(pz, p3), VOy < VOs3.

»»»»»

Figure 11: Scatter plots of the MCMC simulations fér= 9

Estimation of the model likelihoods pointed to a model with nine classes (see table 3). Due to the rel-
atively high number of classes we proceed in a stepwise manner to identify this model. The constraint
maxg=1, . 5(4-consk+RQy) < ming—, .. 9(4-consj+RQ,) divides the nine classes into two subgroups

of five and four classes, respectively (see figure 11a). These two subgroups are treated separately now, the
one with the five classes first. In figure 11b we see that the constiaigl—; .. 4(10 - pr — 2 - RQ,) <

10 - ps — 2 - RQ; splits off the first group and0 - p; + RQ; < ming—234(10 - p; + RQ,) splits off the
second group. In figure 11c the third group is separated ByY; — 5-WA; < ming—, 5(3-JUy —5-WAy)

and finally, the fourth and the fifth group are identified by, JJ JU5. To split off one group from the sub-

group with the four classes we use the constraint dUming—r 5 9 JU;, (see figure 11d). The restriction

5 - price, + const < 5 - price, + const < 5 - price, + consy separates the three classes that are still left.
These constraints were imposed to obtain the group specific estimates reported in table 4. They will be
interpreted from a marketing point of view in subsection 6.7.

Next we discuss alternative identifiability constraints. Lenk and DeSarbo (1999) and Adiealby1998)
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E(3%]y") (Standard deviation in parenthesis)
Effect k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9
const 9.32 7.31 491 5.34 8.41 15.8 17.4 16.4 16.4
w2 | @7 | @4 | @1 | @8 | (@1 | (0.64) | (0.89) | (0.89)

RQ 50 | 126 | 143 | 146 | —4.92 | 353 | 415 | 328 | 3.10
8) | () 22) | @5 | @7 | @6 | 087 | @2 | @2
VO 561 | 118 | 150 | 135 | 615 | 3.12 | 430 | 0.68 | -0.38
@an | @1 | @2 | @5 | @7 | @6 | (085 | 1.3 | (1.3
Ju 155 | -1.94 | 0.10 | 104 | 3.25 | -105 | 1.86 | -0.27 | 2.30
18) | 24) | 23) | @6) | 26) | @6) | (0.89) | (1.4 | (1.4
WA 244 | 108 | -092 | 462 | 423 | -5.08 | 1.42 | 0.016 | 1.80
@n | @o | @2 | @7 | @8 | 20 | (0.88) | (1.3) | (1.3)
P —2.70 | —0.97 | —0.35 | —0.91 | —0.55 | —-0.93 | —3.19 | -1.79 | —0.51
(0.35) | (0.45) | (0.45) | (0.30) | (0.56) | (0.35) | (0.16) | (0.32) | (0.32)
P2 0.75 | 0.048 | -0.22 | 0.092 | -0.089 | -0.062 | -0.14 | 0.11 | -0.17

(0.27) | (0.28) | (0.36) | (0.25) | (0.44) | (0.25) | (0.13) | (0.20) | (0.20)
RQp | -1.25 | -0.75 | —2.47 | -0.41 | 0.10 | 0.13 | -0.54 | 0.014 | 0.12
(0.49) | (0.57) | (0.67) | (0.46) | (0.81) | (0.46) | (0.24) | (0.35) | (0.35)
VO-p | -153 | -1.05 | —2.67 | -0.20 | 0.69 | 0.24 | —0.59 | —0.009 | 0.51
(0.48) | (0.6) | (0.69) | (0.47) | (0.81) | (0.47) | (0.24) | (0.36) | (0.36)
JUp | -063| 014 | -059 | -0.027| 1.10 | 0.36 | —0.53 | —0.021 | 0.084
(0.48) | (0.55) | (0.66) | (0.45) | (0.82) | (0.46) | (0.24) | (0.36) | (0.36)
WAp | -0.72 | -1.30 | -0.11 | -0.51 | —-0.56 | —-0.066 | —0.50 | 0.061 | 0.23
(0.48) | (0.53) | (0.62) | (0.47) | (0.81) | (0.44) | (0.24) | (0.35) | (0.35)
RQp® | 025 | —0.24 | 0.048 | —0.43 | —0.022 | -0.11 | -0.39 | -0.25 | -0.11
(0.40) | (0.43) | (0.54) | (0.36) | (0.68) | (0.36) | (0.19) | (0.28) | (0.28)
VOp? | 037 | -0.062| 0.26 | -0.032| 0.49 | -0.02 | -0.47 | -0.24 | 0.05
(0.41) | (0.42) | (0.59) | (0.37) | (0.67) | (0.38) | (0.19) | (0.30) | (0.30)
Jup? | 0.37 | 0094 | 039 | -0.31 | -0.20 | -0.038 | —0.28 | —0.056 | —0.034
(0.40) | (0.41) | (0.53) | (0.37) | (0.68) | (0.39) | (0.19) | (0.30) | (0.30)
WAp? | 020 | -0.15 | 041 | 022 | —0.26 | 0.044 | —0.19 | -0.091 | 0.0068
(0.38) | (0.42) | (0.51) | (0.37) | (0.68) | (0.37) | (0.19) | (0.28) | (0.28)

E(n|y"™) (Standard deviations in parenthesis)
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

0.086 | 0.078 | 0.046 | 0.091 | 0.027 | 0.089 | 0.33 0.15 0.10

(0.022) | (0.022) | (0.015) | (0.021) | (0.011) | (0.024) | (0.037) | (0.030) | (0.026)

Table 4: Estimates of group specific parametergfor- 9 (RQ, VO, etc are the various brangsandp?
denote the linear and the quadratic price effect;-R@tc are interaction effects)

apply the standard constraint < ... < ngx within their MCMC procedure to identify group specific
parameters. The marginal posterior densitieg;0kstimated from the MCMC output of our identified
model show that there are three groups of practically the same size (see the upper part of figure 12). Thus
the constraint is not supported by the data. We will now discuss the consequence of including this constraint
in comparison to the model identified above. Constrained Gibbs sampling produces a substantially different
posterior for the weightg,, ... ,n9 compared to the model identified above (compare the lower and the
upper part of figure 12), with an obvious bias toward the constraint for those groups which are of about the
same size. Interestingly, there is little to no effect on estimation of the group specific parameters (estimation
results not reported here). This may be explained by the rather low correlations between the various weights
nx and the group specific parametg#s which range between —-0.28 fgs andp, and 0.31 for WA and

n¢. We did find differences in the classification probabilities for some consumers.

Overall the different solutions obtained were practically identical in terms of predicting holdout data. The
holdout design consisted of all five brands at prices meant to create a pareto optimal set after integrat-
ing over consumers. The two major brands Rémerquelle and Vodslauer were offered at 5.9, Juvina and
Waldquelle were offered at 3.9 and finally the dummy brand Kronsteiner at 3.2 (all prices in ATS). Again
consumers rated their purchase likelihood on the same 20 point scale. The mean squared errors for the

15



50

401

L L L T L )
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Nk
50
40t
30t

20+

)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Nk

Figure 12: Posterior densities of the weights. .. ,no (upper row: identified model, lower row: order
constraint on the weights)

unidentified model and the model with order constraintg pmere 25.48 and 25.25, respectively. When
every consumer is assigned a parameter vector according to the class with the highest a posteriori classifi-
cation probability mean squared errors for the models with data driven constraints and with order contraints
onmny, were 26.99 and 26.79, respectively. Finally, the first choice hit rates for the unidentified apd the
constrained model did not differ and amounted to 51.64%.

6.6 Testing for Heterogeneity and Variable Selection

Figure 13: Marginal denities of all quadratic interaction effects

From all results reported above heterogeneity in consumer preferences is present without doubt. It is,
however, not cleaapriori that heterogeneity affects all components of the group specific parameters. As
the marginal densities the quadratic interaction effects plotted in figure 13 overlap for all groups to a
high degree, we formulate the hypothesis that the quadratic interaction effegi$, RQ-p?, JU-p?, and

WA -p? are fixed rather than random. As the marginal density of the quadratic interaction effects in figure 13
not only overlap for all groups, but most of them also cover 0, we further hypothesize that the quadratic
interaction affects are not significant and should be deleted from the modet? RQVO-p?= JU-p? =

WA p? =0.

All hypotheses are tested against the full model by comparing the model likelihoods. The log of the model
likelihood for a model with fixed quadratic interaction effects is equal to —9309.4 with an standard error of
0.714, whereas the log of the model likelihood for a model without quadratic interaction effects is equal to -
9399.9 with an standard error of 1.182. In comparison to the full model (see table 3) excluding the quadratic
interaction effects decreases the model likelihood, whereas assuming fixed rather than random quadratic
interaction effects increases the model likelihood substantially. It turned out that the same identifiability
constraints that were formulated for the full model, where all components were heterogeneous, applied to
this mixed effects latent model.
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6.7 Interpretation of the nine classes model from a marketing point of view

An obvious starting point for the interpretation of the classes would be the class specific parameter estimates
reported in table 4. However, due to the dimensionality of the designmatrix and the presence of quadratic
price and interaction effects it is not an easy task to derive a coherent interpretation. Therefore, we settled
for the following procedure: Given the class specific parameters we formulated three designs. The three
designs offered all five brands at a low price (ATS 2.7), a medium price (ATS 4.8) and a high price (ATS
6.9), respectively. Then we computed the purchase likelihood ratings to be expected in the 9 classes for all
three designs. Figure 14 illustrates the result.

Class 7 with the highest a posteriori size of all classes (approximately 33%) and class 1 are very price
sensitive with only minor brand differentiation. Whereas class 7 would still accept a medium price class
1 shows a strong tendency to avoid all offers but the cheapest. Interestingly there is some differentiation
between brands offered at the lowest price in class 1. The dummy brand Kronsteiner is evaluated less
favourably. Classes 2, 4 and 8 are moderately price sensitive. Again, there is little brand differentiation in
class 8 with a slight advantage of Rémerquelle over its competitors. Class 2 clearly dislikes the Juvina brand
and prefers Rémerquelle, Voslauer and Waldquelle to the dummy brand Kronsteiner. A price increase
seems to affect Rémerquelle to a lesser extent than Voslauer and Waldquelle in this class. Class 4 prefers
Ro&merquelle and Vdslauer to the other brands and clearly disapproves of the Kronsteiner brand. Class 3
again favours Romerquelle and V6slauer over the other brands. Interestingly the advantage of Rémerquelle
and Voslauer diminishes substantively at higher price levels. Classes 5, 6 and 9 reveal only little sensitivity
to price. In the case of the very small class 5 the Juvina brand even is evaluated more favourably at the
higher price levels. Moreover this class is the only one to clearly reject the Romerquelle brand. Finally,
class 6 again favours Romerquelle and Vdslauer and clearly disapproves of Juvina. Also, the dummy brand
Kronsteiner is preferred to the established brand Waldquelle in this class.
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Figure 14: Class specific purchase likelihoods for three designs: all brands 2.7, 4.8 and 6.9 ATS

Overall, a major portion of consumers seems to be very price sensitive with only little brand differentiation.
Despite intensive marketing activity especially by Romerquelle and Véslauer these consumers behave like
in a commodity market. Even an up to the interview unknown dummy brand would be readily accepted.
Roémerquelle and Voslauer seem to be generally accepted (with the exception of Rémerquelle in one very
small class). Juvina and Waldquelle did not succeed in establishing classes that favoured their brand over
the competitors.

7 Discussion

We discussed a fully Bayesian analysis of the latent class model using a new approach towards MCMC
estimation in the context of mixture models. This approach starts with estimating unidentified models
for various numbers of classes. We compute exact Bayes' factors by the bridge sampling estimator and
developed a Bayesian scree plot to compare different models and select the number of classes. Estimation
of the unidentified model is carried out using the random permutation sampler. From the unidentified model
we estimate model parameters that are not class specific such as fixed effects, the mean and the covariance
of the random effects, consumer specific effects (with the obvious exception of class membership), and
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the model likelihood. We explored the MCMC output from the unconstrained model in order to find
identifiability constraints. The constrained version of the permutation sampler was used to identify group
specific parameters. We discussed the problems associated with identifiability constraints which ignore the
geometry of the posterior distribution.

The suggested approach was applied to simulated data and to data from a brand-price trade off conjoint
study. Within the conjoint study we did not compare the latent class solution to the parametric random
coefficients model in this paper. However, we would like to add that the random coefficients model outper-
formed even the latent class solution with nine classes in terms of the model likelihood. Nevertheless, the
latent class approach could be used in a similar way as nonparametric maximum likelihood estimation to
parsimoniously account for multimodal preference distributions. The characteristics of such a distribution
can be sensibly describagosteriori without the need to identify a unique labelling. Furthermore, this pa-

per should be useful in the context of Bayesian estimation of general finite mixtures that in a way combine
the latent class approach and parametric models for consumer heterogeneity (&tlahp$998; Lenk

and DeSarbo, 1999).
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