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A Class of Problems where Dual Bounds Beat
Underestimation Bounds *

Mirjam Diir
Department of Statistics, Vienne University of Economics and Business
Adminsstration, A-1090 Vienna, Ausiria

October 24, 2000

Abstract. We investigate the problem of minimizing a nonconvex function with
respect to convex constraints, and we study different techniques to compute a lower
bound on the optimal value: The method of using convex envelope functions on
one hand, and the method of exploiting nonconvex duality on the other hand. We
investigate which technique gives the better bound and develop conditions under
which the dual bound is strictly better than the convex envelope bound. As a
byproduct, we derive some interesting results on nonconvex duality.

Keywords: Nonconvex duality, Dual bounds, Convex underestimation.

1. Introduction

In this paper, we consider the global optimization problem of minimiz-
ing a nonconvex function subject to convex constraints:

min f(z)
(P) s.t. hi(z) <0, i=1,...,m,
z € X,

where f : X — IR is a lower semicontinuous function, h; : X = R (i =
1,...,m) are convex functions, and X € IR™ is a convex compact set.
QOur aim is to study different methods to obtain lower bounds for the
optimal value of (P).

The first technique which has been used since many years is to
replace the objective function with some easier (i.e. convex or linear)
subfunctional and solve the resulting problem. Obviously, the quality
of a bound obtained by this means depends on the quality of the
underestimating function. The best possible result is achieved when
the so called convex envelope function is used.

DEFINITION 1. Let X C IR" be convez and compact, and let f : X —
IR be lower semicontinuous on X. A function pf : X — IR is called the
convez envelope of f on X if it satisfies

* Dedicated to Reiner Horst on the occasion of his 60th birthday.
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EXAMPLE 2. Consider the one dimensional problem

min {-z?:z% -z -2 <0}.
c€[-2,3]

The optimal value is min(P) = —4, attained at x = 2. The convezified

problem (P) takes the form
min {-z—-6:2> -z -2 <0}.
z€{-2,3]

Its optimal value is min(P) = —8, also attained at z = 2. The dual (D)
of (P) is

sup min {(A— 1)z — Az — 22},
Sup ze[_m}{( ) }

which takes the optimal value sup(D) = —4.2 at A = 6/5 and z = 3.
The poor lower bound provided by (P) is therefore improved consider-
ably.

In the remainder of the paper we develop conditions which guarantee
that the dual bound is strictly better than the convex envelope bound.

2. Some Results on Nonconvex Duality

It is well known that in convex programming, Slater’s constraint qual-
ification ensures strong duality for (P) and (D), see, e.g., Geoffrion
(1971). Since in nonconvex programming this condition turns out to
be very useful as well, recall that problem (P) is said to fulfill Slater’s
condition if there exists a point £ € X such that h;(£) < 0 for all
1=1,...,m.

In the sequel, we will use the notation

S:={ft€X:hi(¢)<O0foralli=1,...,m}
to denote the set of all Slater points,

h(z) := max h;(z)
i=1,...,m

to denote the pointwise maximum of the constraint functions,
m
L(z,)) == f(z) + Z Aihi(z)
i=1

to denote the Lagrangean function of (P), and
O(A) := mip L(z, )

class.tex; 24/10/2000; 14:17; p.3




A Class of Problems where Dual Bounds Beat Underestimation Bounds 5
Finally, using

sup(D) = sup ©(A) 2 ©(0) = min f(z),
AERT zeX

we obtain

.y _ sup(D) — f(2) _ mingex f(z) — f(£)
p(Z) = R @) < hE) :

Obviously, || M1 < p(£) for any Slater point £ € S. Hence we get the
desired upper bound for ||Al];:

mina:ex_f(l') - f(2)
h(Z) '

A < inf
IRYP _'%ES
O

This result seems interesting in its own right, but it may also prove
useful in a numerical context: Note that any Slater point Z gives the a
priory bound

I minge x f(z) — f(£)

NS T
which may be helpful when solving dual problems with bundle-type
methods. Of course, finding a Slater point is a difficult task in general,
but may be easy when the constraints are simple, e.g. box constraints.
This reasoning also applies to the so called standard quadratic problem
of maximizing an indefinite quadratic form on the standard simplex,
see Bomze (1998).

3. When are dual bounds better?
In this section we return to the question which of the bounds min(P)
and sup(D) is better. Theorem 4 states under which assumptions on
objective and constraint functions the dual bound beats the convex
envelope bound.
But first observe that it may happen that min(P) = min(P). In this
case, it follows from (1) and weak duality that

sup(D) = min(P) = min(P),

in other words, the duality gap is zero and both bounds are equal. For
this reason, the mentioned case is excluded in the theorem.
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< fl@)+ Y Mhi(z) + D Ahilz) (3)
iel(z) 12 1(E)
= L{z,A).

Inequality (3) holds because for z # Z we have h;(z) < (z— %, Vhi(T)),
as all h; are strictly convex.

Since p#(Z) < f(Z) (recall that min(P) < min(P) by assumption),
we obviously have L(Z,\) < L(%,)) for every A € IR™?, and hence

L(z,\) < L(z,)) VzeX, VAcA).
Therefore, we get for the dual objective function ©(}) of (P)
(1) = gél)!(lL(:r, A) < gél)l(lL(x, A) =06()) VA € A(Z).

Next we show that max ©()) is attained at some \ € A(Z):
+

Let ) denote a solution of (D) i.e. suij ©(X), and recall that
Z is the optimal solution of (P) Since (P) is a convex problem, the
optimal primal dual pair (Z, )\) fulfills the complementary slackness
condition (see Geoffrion (1971))

Y M(E-2,Vh(2) + D hihi(Z

iel(z) igI(z)

It follows that A; = 0 for all i ¢ I(Z).

But from the assumptions of the theorem it follows that A £ 0
Assume that A = 0. Then, since (Z,A) is a saddle point of L(z, ), it
follows that L(Z,0) < L(,0) for all z € X, in other words, ¢;(Z) <
p¢(z) for all z € X, and therefore

¢f(Z) = minps(z).

As minge x ¢f(z) = mingex f(z), we have ¢f(Z) = mingex f(z). Since
f is a concave function, the minimum of f over X is attained at some
extremal point of X. Therefore, either Z is an extreme point. Then
¢¢(Z) = (%) and T would solve both (P) and (P), a contradiction.

Or there exist k¥ < n + 1 extremal points v!,...,v* of X, such that
Z is a convex combination of these extremal points and f(vJ) w5 (Z).
But then (¢ would be constant on the convex hull of {v?,...,v*}, which
contradicts the assumptions as well.

Therefore, we conclude that A € A(Z).

To sum up, let 5 denote the maximum of the {|\||;~bounds obtained
via Theorem 3 for problems (P) and (P), respectively, and get

sup(D) = max{6()) : A€ RY, |\l < 7 A € A®)}

class.tex; 24/10/2000; 14:17; p.7




A Class of Problems where Dual Bounds Beat Underestimation Bounds 9

Proof. Let Z denote the minimizer of problem (5). Clearly, the feasible
set of problem (4) is contained in that of problem (5), hence

@(Z) > (%)

Now assume that (Z) > ¢(Z). Since Z is optimal for problem (4), there
does not exist a feasible descent direction of ¢ at Z, i.e. there does not
exist a direction d with

(d, Vhi(Z)) <0 and ¢y(F) <0, (6)

where ¢}, denotes the directional derivative of ¢ in direction d.

Because of the strict convexity of all constraint functions and be-
cause of Slater’s condition, we can assume that there exists a point
feasible for (5) such that

(£ -z,Vhi(Z)) <0 forall ie€lI(ZF),

and ¢(£) < ¢(Z). But then d := £ — Z is a feasible descent direction of
¢ at T, since it fulfills conditions (6). This contradicts the optimality
assumption on Z. a
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