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Leland's approach to option pricing: The evolution of a

discontinuity

Peter Grandits� and Werner Schachingery

Abstract

A claim of Leland (1985) states that in the presence of transaction costs a call option on a

stock S, described by geometric Brownian motion, can be perfectly hedged using Black-Scholes

delta hedging with a modi�ed volatility. Recently Kabanov and Safarian (1997) disproved this

claim, giving an explicit (up to an integral) expression of the limiting hedging error, which

appears to be strictly negative and depends on the path of the stock price only via the stock

price at expiry ST . We prove in this paper that the limiting hedging error, considered as

a function of ST , exhibits a removable discontinuity at the exercise price. Furthermore, we

provide a quantitative result describing the evolution of the discontinuity, which shows that its

precursors can very well be observed also in cases of reasonable length of revision intervals.

Key words: Transaction costs, Hedging

1 Introduction

The proof of the celebrated Black-Scholes formula for option pricing relies basically on two assump-

tions on the stock market. On the one hand the model for the discounted price process is geometric

Brownian motion, and on the other hand transaction costs are neglected. Therefore perfect hedging

is possible, and we obtain a unique price for a derivative security, say a European Call option.

In practice one has of course to take into account these \market frictions". A very interesting

approach to the problem in the literature is Leland's (1985) . He claims that the price of a call

option should be given by the Black-Scholes price with a modi�ed volatility, which depends on the

transaction costs, the original volatility and the time interval between successive adjustments of the

portfolio. He claimed also that the hedging error can be made arbitrarily small, if the length of

the revision intervals tends to zero, and if one uses Black-Scholes delta-hedging with the modi�ed

volatility.

In a remarkable recent paper Kabanov and Safarian (1997) showed that this claim is not true,

and they were able to compute the limiting hedging error (number of revision intervals tending to

in�nity). The resulting function is a rather involved integral, depending on the path of the stock

price only via its value ST at the expiration time T . Kabanov and Safarian also provided a plot

of the result, which insinuates that the limiting hedging error is a continuous function with respect

to ST . To see what happens for a �nite number of revision intervals, we have run a Monte Carlo

simulation of Leland's strategy, and the very surprising result is provided in Fig. 1. The plot shows
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Figure 1: The limiting hedging error J , and the outcomes of 100 Monte Carlo simulations of the

hedging error Jn for n = 1000, plotted over ST with parameters: T = 1; K = S0 = 150; � = 0; � =

0:02 and k = 0:05.

the value of the hedging error for a certain �xed number of revision intervals and the indicated set

of parameters. For the de�nition of these parameters we refer to Section 2.

The aim of the present paper is to �nd an explanation of the striking peak near ST = K, where

K is the exercise price. It will turn out that the limiting hedging error has a removable discontinuity

at ST = K. A plot of the limiting hedging error is also provided in Fig. 1. One could think that this

is a rather academic problem, because after all the set fST = Kg has probability zero. But a glance
on Fig. 1 reveals that this has certain impacts on the hedging result for a �xed (�nite) number of

revision intervals. Our second result will give an asymptotic estimate of the extent of this remarkable

peak, when the length of the revision intervals approaches zero. This will give us an idea in which

region of terminal values of the stock price the hedger will feel the in
uence of the discontinuity.

2 Main results

We start with a description of the model and our notation, which we have chosen close to the one of

Kabanov and Safarian. So the stock price movement is given by geometric Brownian motion on the

time interval [0; T ], and for convenience we set T = 1. Therefore St is given by

St = S0e
(���2

2
)t+�Wt ;(2.1)

where Wt is the standard Wiener process. As Kabanov and Safarian did, we also assume that the

bond price is constant, and we shall work with the risk neutral measure, i.e. � = 0. The derivative

security we want to hedge is a European Call option with terminal payo� H = (S1 � K)+. We

assume also that the transaction costs are a �xed fraction k of the trading volume. The trading

strategy suggested by Leland is the following. Denote by �nt the number of shares of the stock in the
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portfolio at time t, where n denotes the number of revision intervals. Then �nt is given by

�nt =

nX
i=1

bCx(ti�1; Sti�1 ; b�)I]ti�1;ti](t)
with ti = i=n, bC(t; x; b�) = x�(bd)�K�(bd� b�p1� t)

and bd(x; b�) = ln( xK )b�p1� t
+
1

2
b�p1� t; b�2 = �2(1 +




�
); 
 = 2

r
2

�
k
p
n:

As usual � denotes the standard normal distribution function with density �. Since the initial

endowment is given by bC(0; S0; b�), we end up with the following value process

Vt(�
n) = bC(0; S0; b�) + Z t

0

�nudSu � k
X
ti�t

Sti j�nti � �nti�1 j:

Denoting Jn = V1(�
n)�H , by Theorem 2 of Kabanov and Safarian (1997) the limiting hedging

error J = limn!1 Jn is given by J = J1 � J2, where

J1(S1) = minfK;S1g;

J2(S1) =
1

4

Z 1

0

S1p
v
G(S1; v; k) exp

0@�v
2

 
ln(S1K )

v
+
1

2

!2
1A dv;

G(S1; v; k) =
1p
2�

Z 1

�1

�����x� 2k ln(S1K )p
2�v

+
kp
2�

����� e�x2

2 dx:

Our �rst theorem claims that the function J2(�) has a removable discontinuity at K.

Theorem 2.1

lim
s&K

J2(s) = lim
s%K

J2(s) = J2(K) + �;

where � is given by

� =
Kk

2
:

Proof: We restrict ourselves to the proof of lims&K J2(s) = J2(K)+�, since the other limit can be

calculated analogously. De�ning ln( sK ) = �, we �rst compute

lim
�!0

1

4

Z 1

p
�

sp
v
G(s; v; k) exp

 
�v
2

�
ln( sK )

v
+
1

2

�2
!
dv:

A simple application of the dominated convergence theorem yields J2(K) as limit. On the other

interval we get

1

4

Z p
�

0

sp
v
G(s; v; k) exp

 
�v
2

�
ln( sK )

v
+
1

2

�2
!
dv

=
1

4

Z p
�

0

e�Kp
v
G(e�K; v; k) exp

 
�v
2

�
�

v
+
1

2

�2
!
dv

=
K

4

Z ��
3
2

0

e�p
r
�G(e�K; r�2; k) exp

�
� 1

2r
� �

2
� r�2

8

�
dr
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by the substitution v = r�2. As �G(e�K; r�2; k) tends to
q

2
�
k
r for � ! 0, we get by dominated

convergence

Kk

4

r
2

�

Z 1

0

r�
3
2 e�

1
2r dr =

Kk

2

as limiting value for the integral, which concludes our proof. tu
In the sequel we will use the standard asymptotic notation, which we want to recall brie
y:

for two sequences (an)n�0 and (bn)n�0 we write an = O(bn) (resp. an = 
(bn)), if there exist

absolute constants c > 0; C > 0 and N 2 IN such that janj � cjbnj (resp. janj � Cjbnj) for

n � N . Moreover, we write an �
d
bn if an

bn
! 1 in distribution. For instance, a statement like

"Xn = Yn + O(an) holds with probability 1� e�
(bn)" means that there exist c; C > 0 and N 2 IN

such that IP [jXn � Ynj � can] � 1� e�Cbn for n � N .

Our second result clari�es the coming into being of the discontinuity of J2(s) at s = K. From

Kabanov and Safarian (1997), Appendix B, we know that J2 is the limit in probability of

�n := k
X
ti�1

Sti

����nti � �nti�1

��� :(2.2)

Clearly, this does not answer the question, if for any �xed s conditionally on fS1 = sg, we have

�n ! J2 in probability. In particular, let �J2(s) be the continuous function that coincides with J2(s)

everywhere but in s = K. Then �J2(S1) is also a limit in probability of �n. The following theorem

shows, that the whole story about the discontinuity is not just a story about choosing some peculiar

representative from some equivalence class of real functions.

Theorem 2.2 Denoting �n(s) := (�njS1 = s), we have

�n(sn) �d
J2(K) + kK

������
 
n

1
4

C
ln
�sn
K

�!
� 1

2

�����
as n!1, for any sequence (sn)n�0 satisfying sn = K +O

�
n�

1
4

�
.

Here C =

r
2
q

2
��k and � is the standard normal distribution function.

Theorem 2.2 shows in particular that we have �n(K) ! J2(K) in probability, (since all the �n(K)

live on the same probability space,) and �n(Ke�n
�
1
4 ) ! J2(K) + kK

��� � �C �� 1
2

�� in distribution.

The latter limit is a peak-shaped function of � turned upside down, with values close to J2(K)+ kK
2 ,

when � is large in absolute value. Moreover, J(K)� kK
��� � �C �� 1

2

�� is a good "approximation" of

the peak observable in the data points of simulations of the hedging error Jn, the better, the larger

n is, however valid only in domains that shrink like n�
1
4 . For the hedger this means that he will feel

the in
uence of the discontinuity on his hedging result for values of S1 ful�lling S1 �K = O(n� 1
4 ).

We will actually prove the following more precise result of which Theorem 2.2 is a corollary. To

facilitate reading, we have chosen to defer the more technical parts of the proof (i.e., the proofs of

Lemmas 2.1, 2.2 and 2.4,) to Appendix A.

Theorem 2.3 Let � > 0 and " 2]0; 1
10 ] be given, and denote  (�) = kK

��� � �C ���(0)
��. Then there

exists d = d(�; ") > 0 such that

IP

�
j�n � J2(K)�  (�)j > dn�

"
2

���S1 = Ke�n
�
1
4

�
� dn2"�

1
2 lnn;

holds for � 2 [��;�].
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Proof: We will see that in (2.2) only a small proportion of terms, corresponding to ti in the

neighborhood of 1, contributes essentially to the sum, and that in this neighborhood we can safely

replace Sti by S1. We choose � = 1
2 + " and split �n as follows

�n = k

n�1X
m=0

S1�m
n

����n1�m
n
� �n

1�m+1

n

���
= kS1

bn�cX
m=0

j�j+ k

bn�cX
m=0

�
S1�m

n
� S1

� j�j+ k

n�1X
m=bn�c+1

S1�m
n
j�j =: �n

1 +�n
2 +�n

3 ;

where �n1�m
n
= �(bdm), and bdm is given by

bdm�1 = ln(S1�m
n
=K)b�pm
n

+
1

2
b�rm

n
; 1 � m � n:(2.3)

Moreover b�2 = �2 + C2
p
n, thus b� = Cn

1
4 +O(n� 1

4 ):(2.4)

The next two lemmas are concerned with the estimation of the terms �n
2 and �n

3 . By IP�;n we

will denote probability, conditional on the event S1 = Ke�n
�
1
4 .

Lemma 2.1 Let 0 < � < 1��
2 . Then

IP�;n
�j�n

2 j > n���n
1

�
= e�
(n

1���2�);(2.5)

uniformly in � 2 [��;�].

Lemma 2.2

IP�;n

�
j�n

3 j > e�
C2

10
n��

1
2

�
= e�
(n

�� 1
2 );(2.6)

uniformly in � 2 [��;�], where C is the constant de�ned in Theorem 2.2.

Having shown that �n
2 and �n

3 contribute very little to �n, we split �n
1 even further, using the

following sets of indices, given as intersections of real intervals and the set IN of natural numbers:

In11 := [0; j�jn 1
4
�"[\ IN; In12 := [j�jn 1

4
�"; n

1
2
�2"[\ IN; In13 := [n

1
2
�2"; n�] \ IN:

�n
1 = kS1

bn�cX
m=0

����n1�m
n
� �n

1�m+1

n

���
= kS1

X
m2In

11

j�j+ kS1
X
m2In

12

j�j+ kS1
X
m2In

13

j�j =: �n
11 +�n

12 +�n
13:

These sums are dealt with in the following lemma:

Lemma 2.3 There exists � = �(�) > 0 such that the following hold uniformly in � 2 [��;�]:

IP�;n

h
j�n

11 �  (�)j > �(�
1
2n

"
2
� 1

8 +�n�
1
4 )
i

= e�
(n
");

IP�;n

h
j�n

12j > �(�
1
2n

"
2
� 1

8 + n�
"
2 )
i

= e�
(n
");

IP�;n

h
j�n

13 � J2(K)j > �(�n2"�
1
4 + n�")

i
= O

�
n2"�

1
2 lnn

�
:(2.7)
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Note that for �xed � the quantities �
1
2n

"
2
� 1

8 +�n�
1
4 ; �

1
2n

"
2
� 1

8 +n�
"
2 , and �n2"�

1
4 +n�", appearing

in the preceding lemma, are all of order O(n� "
2 ), if " 2]0; 1

10 ]. For the proof of Lemma 2.3 we make

use of the following lemma, where we list some properties of the sequence (bdm)n�1m=0.

Lemma 2.4 Let " 2]0; 1
10 ] be given. Then the following hold simultaneously with IP�;n-probability

1� e�
(n
") and uniformly in � 2 [��;�].

i) (bdm) is monotonically increasing resp. decreasing in m in the range 0 � m < j�jn 1
4
�" according

to the sign of �.

ii)
����bdm�1��� � �n

1
4b�m 3
2

+ b�
m

1
2 n

1
2
�
"
2

in the range 1 � m < n
1
2
�2".

iii) bdm�1 = b�
2m

1
2n�

1
2 +O

�
�n2"�

1
4

�
in the range n

1
2
�2" � m � n

1
2
+".

iv) �bdm�1 = b�
4m

1
2 n

1
2

+ �n
1
4

Cm
1
2

�
W1�m

n
�W1�m+1

n

�
+O

�
�n4"�

3
4

�
in the range n

1
2
�2" � m � n

1
2
+".

We are now ready to supply the proof of Lemma 2.3.

Proof of Lemma 2.3: By Lemma 2.4 i), with probability 1�e�
(n"), the sequence
�
�(bdm)�

m2In
11

is monotone. Telescoping yields

�n
11 = kS1

X
m2In

11

����(bdm)��(bdm+1)
��� = kS1

����(bd0)��(bddj�jn 1
4
�"e)

���
= kK

�����( �C )��(0)

����+O
�
�

1
2n

"
2
� 1

8 +�n�
1
4

�
;

since bd0 = �
C +O

�
n�

1
4 +�n�

3
4

�
, bddj�jn 1

4
�"e = O

�
�

1
2n

"
2
� 1

8

�
and S1 = K +O

�
�n�

1
4

�
.

We turn to �n
12, where we employ Lemma 2.4 ii), and the simple inequality j�(x) � �(y)j �

1p
2�
jx� yj. With probability 1� e�
(n

") we have

�n
12 = kS1

X
m2In

12

����(bdm)��(bdm+1)
��� � kS1p

2�

X
m2In

12

��� bdm � bdm+1

���
� kS1p

2�

X
m2In

12

 
�n

1
4b�m 3
2

+
b�

m
1
2 n

1
2
� "

2

!
= O

�
�

1
2n

"
2
� 1

8 + n�
"
2

�
:

Using Lemma 2.4 iii) and iv), we can evaluate �n
13 on a set of probability 1 � e�
(n

"). We

abbreviate Y n
m =W1�m

n
�W1�m+1

n
.

�n
13 = kS1

X
m2In

13

�

�b�
2

r
m

n

� ����� C

4m
1
2n

1
4

+
�n

1
4

Cm
1
2

Y n
m

����� �1 +O
�
�n2"�

1
4

��

= kK
�

C
n�

1
4

X
m2In

13

�
�b�
2

p
m
n

�
p
m

����C2

4�
+
p
nY n

m

����+O
�
�n2"�

1
4

�
(2.8)

Denoting now Un
m = C2

4� +
p
nY n

m, we are going to show





n� 1
4

X
m2In

13

�
�b�
2

p
m
n

�
p
m

jUn
mj � n�

1
4

X
m2In

13

�
�b�
2

p
m
n

�
p
m

IE jUn
mj







2

L2(IP�;n)

= O
�
lnnp
n

�
:(2.9)
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In the sequel expectations, (co-)variances and correlations are always computed w.r.t. IP�;n, we omit

subscripts �; n.

IE

24n� 1
4

X
m2In

13

�
�b�
2

p
m
n

�
p
m

(jUn
mj � IE jUn

mj)
352

= n�
1
2

X
m

�2
�b�
2

p
m
n

�
m

Var jUn
mj+ n�

1
2

X
m6=`

�
�b�
2

p
m
n

�
�

�b�
2

q
`
n

�
p
m`

Cov (jUn
mj ; jUn

` j) :(2.10)

Using the fact that the random variables Y n
m are increments over intervals of length 1

n of a Brownian

Bridge from 0 to w�;n := 1
�

�
ln K

S0
+ �2

2 + �n�
1
4

�
of length 1, we see that

p
nY n

m is Gaussian with

mean
w�;np

n
and variance VarUn

m = nVarY n
m = 1� 1

n , which implies

Var jUn
mj = O(1);(2.11)

uniformly inm. We can form 6= ` also compute Cov (Un
m; U

n
` ) = nCov (Y n

m; Y
n
` ) = � 1

n . This implies

that the correlation � = corr (Un
m; U

n
` ) satis�es j�j = O � 1n�. Now corr (jUn

mj ; jUn
` j) depends on �

analytically (we �x the marginal distributions of the Gaussian vector (Un
m; U

n
` ), but let � vary) and

equals 0 for � = 0 (jUn
mj and jUn

` j are independent for � = 0). Therefore corr (jUn
mj ; jUn

` j) = O � 1n�
and by (2.11) also

Cov (jUn
mj ; jUn

` j) = O
�
1

n

�
;

uniformly inm; `. The Var{sum in (2.10) is bounded by O(1)p
n

Pn
m=1

1
m = O

�
lnnp
n

�
, and the Cov{sum

in (2.10) is bounded by 1p
n
O � 1n�Pn

m;`=1
1p
m`

= O
�

1p
n

�
. This proves (2.9). Knowing that

p
nY n

m

is distributed N
�
w�;np

n
; 1� 1

n

�
enables us to derive

IE

����C2

4�
+
p
nY n

m

���� = IE

����C2

4�
+ Z

����+O
�

1p
n

�
;

where Z is distributed N (0; 1). Next we return to (2.8) computing n�
1
4

P
m2In

13

�

�b�
2

p
m
n

�
p
m

. (Finite-

ness of this term justi�es the error term in (2.8).) We replace this term by

n�
1
4

1X
m=1

�
�b�
2

p
m
n

�
p
m

and �nally by n�
1
4

Z 1

1

�
�b�
2

p
m
n

�
p
m

dm;

thus trading in error terms of order O (n�") and O
�
n�

1
4

�
. Change of variables v = b�2mn leads to

n
1
4b�
Z 1

b�2=n v� 1
2�

�p
v

2

�
dv =

1

C
p
2�

Z 1

0

v�
1
2 exp

�
�v
8

�
dv +O

�
n�

1
4

�
:

After �nal simpli�cations, using the de�nition of C given in Theorem 2.2, and application of Cheby-

shev's inequality to (2.9), we obtain

IP�;n

������n
13 �

K

4
IE
h��� kp

2�
+ Z

���i Z 1

0

v�
1
2 exp

�
�v
8

�
dv

���� > n�"
�
= O

�
n2"�

1
2 lnn

�
;

which implies (2.7). The proof of Lemma 2.3 is �nished. tu
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Figure 2: Averages of 5000 Monte Carlo simulations of the hedging error Jn; n = 128, conditioned

on each of 51 values of S1, with parameters: K = S0 = 150; � = 0; � = 0:2 and k = 0:01.

Putting together the results of Lemmas 2.1, 2.2 and 2.3, choosing � � "
2 in Lemma 2.1, completes

the proof of Theorem 2.3. tu
Remarks: 1. A close inspection of the proof of Theorem 2.3 shows that the weaker statement

8" > 0 : IP

�
j�n � J2(K)�  (�)j > "

���S1 = Ke�n
�
1
4

�
! 0; for n!1; uniformly in � 2 [��;�]

holds even in the case where we let � depend on n, as long as � = �n = O
�
n

1
4
�

�
for some 
 > 0.

2. Since � enters into  (�) as ��
1
2 , halving � has roughly the same e�ect on the hedging error

Jn in the case that S1 = K +O(n� 1
4 ), as using 4 times as many revision intervals.

3. In order to see the e�ect of the removable discontinuity more clearly, we have chosen slightly

unrealistic parameters for the simulations depicted in Fig. 1. However, also in more realistic cases the

peak is present (not to say overwhelming), as can be seen in Fig. 2: For the indicated parameters and

each of the values S1 = 100 + 2k; k = 0; : : : ; 50, we ran 5000 simulations and plotted the averages.

4. As it is mentioned in Kabanov and Safarian (1997), the limiting hedging error has always

negative sign. Observe however that Fig. 2 shows that the average (conditioned on S1) of the

hedging error for �nite n is positive in a neighborhood of S1 = K (at least for this special choice

of parameters. However, also in Fig. 1 outcomes near K tend to lead to positive hedging errors.)

This observation makes Leland's strategy more reasonable than one would have guessed not knowing

about the discontinuity in the limiting hedging error and the in
uence it has on cases of reasonable

length of revision intervals.
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Appendix A

Proof of Lemma 2.1: We are going to prove

IP�;n

"
sup

0�m�bn�c

��S1�m
n
� S1

��
S1

> n��
#
= e�
(n

1���2�);

which at once implies (2.5). From (2.1) we obtain

jS1�t � S1j
S1

=
���e�22 t��(W1�W1�t) � 1

��� ;
and since jex � 1j > y implies jxj > y

2 , for y 2 [0; 1], we derive

IP�;n

"
sup

0�m�bn�c

��S1�m
n
� S1

��
S1

> n��
#
� IP

"
sup

0�t�n��1
jW1 �W1�tj > xn

����W1 = w�;n

#
;(A.1)

where

w�;n =
1

�

�
ln
K

S0
+
�2

2
+ �n�

1
4

�
and xn =

1

2�
n�� � �

2
n��1:

There is need for some calculations involving Brownian Bridge: We deduce from Karatzas and Shreve

(1991), p256, eq3.40, that

IP0!a
T

�
sup

0�t�T
jWtj � x

�
� 2e�2

(x�jaj)2
T(A.2)

holds for T; x > 0 and jaj � x, where by IP0!a
T we denote the measure, under which (Wt)t2[0;T ] is a

Brownian Bridge from 0 to a of length T . For 0 < s < 1, we also want to recall the following fact,

which is a special case of Karatzas and Shreve (1991), p359, eq6.28:

IP0!w
1 [Ws 2 da] = 1p

2�s(1�s)e
� (a�sw)2

2s(1�s) :(A.3)

Equations (A.2) and (A.3) enable us to derive

IP0!w
1

�
sup

0�t�s
jWtj � x

�
�
Z
jaj<x

2e�2
(x�jaj)2

s IP0!w
1 [Ws 2 da] +

Z
jaj�x

IP0!w
1 [Ws 2 da] :(A.4)

If jswj � x, the second term in (A.4) is dominated by e
� (x�jswj)2

2s(1�s) , by the elementary estimate

1��(x) � 1
2e
�x2

2 ; x � 0. Under the further assumption s � 3
4 , the �rst term in (A.4) is dominated

by

2p
2�s(1�s)

Z
jaj<x

e
� (x�jaj)2

2s(1�s) � (a�sw)2
2s(1�s) da

� 4p
2�s(1�s)

Z 1

�1
e
� (x�a)2

2s(1�s) � (a�jswj)2
2s(1�s) da = 2

p
2e
� (x�jswj)2

4s(1�s) :

Therefore

IP0!w
1

�
sup

0�t�s
jWtj � x

�
� (1 + 2

p
2)e
� (x�jswj)2

4s(1�s) 1Ifx�jswjg + 1Ifx<jswjg(A.5)
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holds for 0 < s � 3
4 .

We continue estimating the right hand side of (A.1), observing that for large enough n we have

n��1 � 3
4 and (xn � n��1 jw�;nj)2 � x2n

2 � 1
3

�
n��

2�

�2
, uniformly in � 2 [��;�], and therefore,

employing (A.5) with s = n��1; x = xn and w = w�;n, we obtain

IP
0!w�;n
1

"
sup

0�t�n��1
jW1 �W1�tj > xn

#
= IP

0!w�;n
1

"
sup

0�t�n��1
jWtj > xn

#
� (1+2

p
2)e�

1

48�2
n1�2��� :

(Here we used that, if (Bt)t2[0;1] is a Brownian Bridge from 0 to a, then (B1 �B1�t)t2[0;1] is also a
Brownian Bridge from 0 to a.) This completes the proof. tu

Proof of Lemma 2.2: We just use the following two estimates, which are simple applications

of (A.2),

IP�;n

"
sup
t2[0;1]

St > eL

#
� IP

0!w�;n
1

"
sup
t2[0;1]

Wt >
1

�
(L� lnS0)

#
= e�
(L

2); as L!1;

IP�;n

"
sup

m2[n�;n]

���� bdm�1 � 1

2
b�rm

n

���� > 1

#
= IP�;n

"
sup

m2[n�;n]

����� ln(S1�m
n
=K)b�pm
n

����� > 1

#

� IP�;n

"
sup

m2[n�;n]

��lnS1�m
n

�� > b�n ��1

2 � jlnKj
#
= e

�

�
n��

1
2

�
:(A.6)

Since
��� bdm � bdm�1��� � ��� bdm�1 � 1

2b�pm
n

��� + ��� 12b�pm
n � 1

2b�qm+1
n

��� + ��� bdm � 1
2b�qm+1

n

���, equation (A.6)

implies

IP�;n

"
sup

m2[n�;n�1]

��� bdm � bdm�1��� > 3

#
= e

�

�
n��

1
2

�
:

We now turn to �n
3 , majorizing S1�m

n
by eL and applying the mean value theorem to the terms����(bdm)��(bdm+1)

���, noting that b� > Cn
1
4 ,

�n
3 = k

n�1X
m=bn�c+1

S1�m
n

����(bdm)��(bdm+1)
��� � keL

n�1X
m=bn�c+1

�

�
1

2
b�rm

n
� 1

���� bdm � bdm+1

���
� 3keL

n�1X
m=bn�c+1

�

�
C

2
m

1
2n�

1
4 � 1

�
= O

�
eL�

C2

9
n��

1
2

�
;

with probability at least 1 � e�
(L
2) � e�
(n

�� 1
2 ), and taking L = n

�

2
� 1

4 yields (2.6) and thus

completes the proof. tu
The following lemma will be applied to increments of Brownian Bridge in the proof of Lemma 2.4.

Lemma 2.5 Let s; x 2 IR and n 2 IN satisfy x > jsj
n and let (Xi)i�1 be an i.i.d. sequence of zero

mean Gaussian random variables with variance 1
n . Then

IP

"
sup

1�i�n
jXij > x

��� nX
i=1

Xi = s

#
� 2n exp

 
�n
2

�
x� jsj

n

�2
!
:

Proof: First we note that, by the independence of the Xi, we have for x � 0

IP

�
sup

1�i�n
Xi � x

�
=
�
�
�
x
p
n
��n � �1� 1

2
e�

nx2

2

�n
� 1� n

2
e�

nx2

2 :
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Moreover

IP

"
sup

1�i�n
jXij > x

��� nX
i=1

Xi = s

#
� IP

"
sup

1�i�n
Xi > x

��� nX
i=1

Xi = s

#
+ IP

"
sup

1�i�n
�Xi > x

��� nX
i=1

Xi = s

#

� 2IP

"
sup

1�i�n
Xi > x

��� nX
i=1

Xi = jsj
#
= 2IP

"
sup

1�i�n
Xi > x� jsj

n

��� nX
i=1

Xi = 0

#

� 2IP

"
sup

1�i�n
Xi > x� jsj

n

��� nX
i=1

Xi � 0

#
+ 2IP

"
sup

1�i�n
Xi > x� jsj

n

��� nX
i=1

Xi < 0

#

= 4IP

�
sup

1�i�n
Xi > x� jsj

n

�
� 2n exp

 
�n
2

�
x� jsj

n

�2
!
:

At several places we made use of the fact that

�
(Xi)

n
i=1

�� nP
i=1

Xi = a

�
,

�
(Xi +

a
n )

n
i=1

�� nP
i=1

Xi = 0

�
and

�
(�Xi)

n
i=1

��Pn
i=1Xi = �a	 are equal in law, for i.i.d. Gaussian random variables Xi; i � 1 and

a 2 IR. tu
Proof of Lemma 2.4: Assuming S1 = Ke�n

�
1
4 , we derive from (2.3)

bdm�1 = �n�
1
4b�pm
n

+
ln
�
S1�m

n

S1

�
b�pm

n

+
b�
2

r
m

n
:(A.7)

We prove i) by �rst observing that j�jn
�
1
4b�pm
n

is decreasing in m. Employing the mean value theorem,

there are numbers ~m 2]m� 1;m[, such that the sequence of di�erences can be expressed as

�bdm�1 = bdm � bdm�1 = � �n
1
4

2b� ~m 3
2

�
ln

�
S
1�

m+1

n

S1

�
2b� ~m 3

2 n�
1
2

+

ln

�
S
1�

m+1

n

S1�m
n

�
b�m 1

2n�
1
2

+
b�

4 ~m
1
2n

1
2

:(A.8)

We are now going to show that in the range 1 � m < j�jn 1
4
�" the �rst term on the r.h.s. of (A.8),

which is � �n
1
4

2b� ~m
3
2

, dominates in absolute value the other terms with probability 1� e�
(n2"). Indeed,

IP�;n

24 sup
m2In

11

0@������
ln
�
S1�m+1

n

�
S1

�
2b� ~m 3

2n�
1
2

������� 1

3

j�jn 1
4

2b� ~m 3
2

1A � 0

35
� IP�;n

"
sup
m2In

11

���W1 �W1�m+1

n

��� � j�j
�

 
n�

1
4

3
� �2

2
n�

3
4
�"
!#

= e�
(j�jn
1
4
+") = e�
(n

2")

follows from (A.5) with s = j�jn� 3
4
�", x = j�j

� n
� 1

4 and w = w�;n, and

IP�;n

24 sup
m2In

11

0@������
ln
�
S1�m+1

n

�
S1�m

n

�
b�m 1

2n�
1
2

������� 1

3

j�jn 1
4

2b� ~m 3
2

1A � 0

35
� IP�;n

"
sup
m2In

11

m
���W1�m

n
�W1�m+1

n

��� � j�j
�

 
n�

1
4

6
� �2

2
n�

3
4
�"
!#

� IP�;n

"
sup
m2In

11

���W1�m
n
�W1�m+1

n

��� � n�
1
2
+"

6�
� �

2n

#
= e�
(n

2");

follows from Lemma 2.5. Finally, 1
3
j�jn 1

4

2b� ~m
3
2

� b�
4 ~m

1
2 n

1
2

is the same as ~m � 2j�jn 3
4

3b�2 , and this is, by (2.4),

true for all large enough n and all m in the range 1 � m < j�jn 1
4
�".
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The proof of ii) is similar: Here the �rst and the second term (resp. the third and fourth term)

on the r.h.s. of (A.8) are dominated by �n
1
4

2b�m 3
2

(resp. b�
2m

1
2 n

1
2
�
"
2

) with probability 1 � e�
(n
"). This

is obvious for the �rst and the fourth term. The second term is settled by another application of

(A.5), now with s = n�
1
2
�2" and x = �

2�n
� 1

4 :

IP�;n

24 sup
1�m<n

1
2
�2"

���W1 �W1�m+1

n

��� � �

�
n�

1
4 � �

2
n�

1
2
�2"

35 = e�
(�
2n2"):

The third term uses again Lemma 2.5:

IP�;n

24 sup
1�m<n

1
2
�2"

���W1�m
n
�W1�m+1

n

��� � b�2n�1+ "
2

2�
� �

2n

35 = e�
(n
"):

To prove iii), we have to show, that the �rst and second term on the r.h.s. of (A.7) are of order

O
�
�n2"�

1
4

�
. This is obvious for the �rst term. The second term once more uses (A.5), with

s = n�
1
2
+" and x = �

� n
"� 1

4 :

IP�;n

"
sup
m2In

13

��W1 �W1�m
n

��
m

1
2

� �

�
n2"�

1
2

#
� IP�;n

"
sup
m2In

13

��W1 �W1�m
n

�� � �

�
n"�

1
4

#
= e�
(�

2n"):

To prove iv), we have to show, that the �rst and second term on the r.h.s. of (A.8) are of order

O
�
�n4"�

3
4

�
. This is obvious for the �rst term. The second term once more uses (A.5):

IP�;n

"
sup
m2In

13

��W1 �W1�m
n

��
m

3
2

� �

�
n4"�1

#
� IP�;n

"
sup
m2In

13

��W1 �W1�m
n

�� � �

�
n"�

1
4

#
= e�
(�

2n"):

The proof of Lemma 2.4 is now complete. tu
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