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Automatic Markov Chain Monte Carlo Procedures
for Sampling from Multivariate Distributions

ROMAN KARAWATZKI, JOSEF LEYDOLD, AND KLAUS PÖTZELBERGER

Department of Statistics and Mathematics

Vienna University of Economics and Business Administration

Generating samples from multivariate distributions efficiently is an important task in Monte Carlo

integration and many other stochastic simulation problems. Markov chain Monte Carlo has been

shown to be very efficient compared to “conventional methods”, especially when many dimensions
are involved. In this article we propose a Hit-and-Run sampler in combination with the Ratio-

of-Uniforms method. We show that it is well suited for an algorithm to generate points from

quite arbitrary distributions, which include all log-concave distributions. The algorithm works
automatically in the sense that only the mode (or an approximation of it) and an oracle is required,

i.e., a subroutine that returns the value of the density function at any point x. We show that the

number of evaluations of the density increases slowly with dimension.

Categories and Subject Descriptors: G.3 [Probability and Statistics]: Random number gener-
ation

General Terms: Algorithms

Additional Key Words and Phrases: hit-and-run sampling, Markov chain Monte Carlo, multivari-
ate random variate generation, ratio-of-uniforms method, log-concave distributions

1. INTRODUCTION

Sampling random vectors is an important part of many stochastic simulations and
randomized algorithms. When many dimensions are involved this becomes a very
challenging task. Conventional methods that have been developed for the case of
univariate random numbers like rejection or composition do not work efficiently
for distributions with moderately many (8 or more) dimensions (see e.g. Hörmann
et al. [2004]). Markov chain Monte Carlo methods have proven to be more efficient
for higher dimensions. The algorithms generate correlated sequences of random
points that converge to the target distribution.

In this article we propose the Hit-and-Run sampler in combination with the
Ratio-of-Uniforms method. It is well suited for an algorithm to generate points
from quite arbitrary distributions, which include all log-concave distributions. This
algorithm works automatically in the sense that only the mode (or an approxima-
tion of it) and an oracle is required, i.e., a subroutine that returns the value of
the density function at any point x. We use the number of calls to the oracle as
a measure of the performance of the algorithm. Some theoretical results and our
computational experiences show that this method is fast and its performance de-
creases only slowly with increasing dimension such that samples from distributions
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with 100 or more variables can be generated. One should notice, however, that the
costs for evaluating the density itself depends on the dimension, e.g., it increases
quadratically for a multinormal distribution.

The article is organized as follows: First we shortly describe the Hit-and-Run
sampler (Sect. 2) and state the main facts about the Ratio-of-Uniforms method
(Sect. 3). In Section 4 we propose new algorithms based on these two principles.
Our computational experiences are summarized in Sect. 5.

2. THE HIT-AND-RUN SAMPLER

For the problem of sampling random points uniformly distributed in some fixed
but arbitrary bounded open set S ∈ Rn Smith [1984] introduced the so called
Hit-and-Run samplers that are based on the following principle.

0. Choose a starting point X0 ∈ S and set k = 0.
1. Generate a random direction dk with distribution ν.
2. Generate λk uniformly distributed in Λk = {λ: xk + λdk ∈ S}.
3. Set Xk+1 = Xk + λkdk and k = k + 1.
4. Goto 1.

Boneh and Golan [1979] and independently Smith [1980] first considered such an
algorithm with ν being the uniform distribution over a hypersphere (hypersphere
direction sampling). It has been shown that this Markov chain is mixing fast [Smith
1984; Chen and Schmeiser 1993], that is, the distribution of the generated point
set converges to the uniform distribution with increasing sample size; in particular
when the set S is convex [Lovász 1999; Lovász and Vempala 2004]. Kaufman
and Smith [1998] improved the convergence of the Hit-and-Run sampler by non-
uniform direction choice and give a (worst case) optimal distribution ν. We restate
the convergence result by Smith [1984].

Theorem 2.1 [Smith 1984]. Let X0,X1,X2, . . . be the Markov chain generated
by the Hit-and-Run Algorithm over an open bounded region S ∈ Rn. Then for any
measurable set A ⊆ S,

|P(Xm ∈ A|X0 = x)− µ(A)| <
(
1− (γ/n2n−1)

)m−1

where µ(·) denotes the n-dimensional content of A and γ is the ratio of the n-
dimensional content of S to the n-dimensional content of the smallest sphere con-
taining S.

Another variant suggested by Telgen (see Smith [1980]) is to use random coordi-
nate directions (coordinate direction sampling) which can be seen as Gibbs sampling
with randomized directions. This algorithm has considerable computational advan-
tages over random direction sampling on a per iteration basis. However, it is harder
to show convergence results [Berbee et al. 1987; Smith 1980] and it does not always
converge at a geometric rate [Bélisle et al. 1998].

The Hit-and-Run sampler can easily be generalized to sample from non-uniform
distributions with density f [Belisle et al. 1993; Chen and Schmeiser 1996; Smith
1996; Bélisle et al. 1998]: Replace the uniform distribution on Λk in Step 2 of the
above algorithm by the conditional distribution of f :
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2’. Draw λk ∈ Λk = {λ: xk + λdk ∈ S} from the distribution with density

fk(λ) =
f(xk + λdk)∫

Λk
f(xk + θdk) dθ

, λ ∈ Λk . (1)

Notice that this generalized Hit-and-Run sampler can also be seen as a generalized
Gibbs sampler: In each step replace sampling from the full conditional distribution
along a coordinate direction by sampling from the full conditional distribution along
a randomly chosen direction.

Although it has been shown that this algorithm has fast mixing time as well
[Bélisle et al. 1998; Lovász and Vempala 2003], there are some drawbacks. Besides
the existence of distributions where it converges arbitrarily slow [Bélisle 2000], the
necessity of sampling from the conditional density (1) makes it difficult to apply for
user-defined distributions. Notice that only one random variate has to be drawn
from a particular conditional density. In the last decade automatic algorithms for
sampling from large classes of univariate distributions have been developed [Gilks
and Wild 1992; Hörmann et al. 2004]. However, these require some setup which can
be quite expensive both in time and memory compared to the marginal generation
time and thus they are often extremely slow when only one random variate should
be generated. Moreover, many of them require the knowledge of some parameters
of the (univariate) distributions (e.g. its mode).

3. THE RATIO-OF-UNIFORMS METHOD

The Ratio-of-Uniforms method has been introduced by Kinderman and Monahan
[1977] and generalized to the multivariate case by Vaduva [1984], Stefănescu and
Văduva [1987], and Wakefield et al. [1991]. It is based on the following theorem.

Theorem 3.1 [Wakefield et al. 1991]. Let f(x) be a positive integrable func-
tion on Rn. Let r > 0 and m ∈ Rn be constants. Suppose the point (U, V ) ∈ Rn+1

with U = (U1, . . . , Un) is uniformly distributed over the region

A(f) = Ar,m(f) =
{

(u, v): 0 < v < rn+1
√

f(u/vr + m)
}

, (2)

then X = U/V r + m has probability density function f(x)/
∫

Rn f(z) dz.

The proof of this theorem is based on the fact that the map

(u, v) 7→ (x, y) =
( u

vr
+ m, vrn+1

)
(3)

has constant Jacobian (equal to rn + 1). We can apply this theorem and get the
following algorithm. Notice that f need not be normalized, i.e., it can be any
positive multiple of a density function.

1. Generate a point (U, V ) uniformly in Ar,m(f).

2. Return X = U/V r + m.

An important observation is that the region A(f) is bounded for many distribu-
tions (at least for sufficiently large values of r). The originally proposed algorithm
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uses rejection from the minimal bounding rectangle Rr,m(f) which is given by

v+ = sup
x

(f(x))1/(rn+1) ,

u−i = inf
xi

(xi −mi) (f(x))r/(rn+1) ,

u+
i = sup

xi

(xi −mi) (f(x))r/(rn+1) .

(4)

Thus A(f) is bounded if and only if f(x) = O(||x||−n−1/r) for all x, or equivalently,
if and only if ||x||n+1/rf(x) is bounded.

Usually m is set to the mode of the density f as this results in an (almost) optimal
rejection constant. However, the acceptance rate decreases exponentially with the
dimension in this simple rejection algorithm (see e.g. Hörmann et al. [2004]) and
hence is impractical for dimensions larger than 10. For example, when A(f) is a ball
then the expected number of points that must be generated within R(f) to obtain
one within A(f) grows from 1.27 for dimension n = 1 to 400 for n = 10, 4× 107 for
n = 20, and 6× 1027 for n = 50. However, we can use the Hit-and-Run sampler to
generate a sequence of uniformly distributed points (u, v) in A(f) in Step 1 even in
high dimensions. As A(f) is bounded we can expect that the uniform Hit-and-Run
sampler is mixing faster than the corresponding Hit-and-Run sampler on the region

G(f) = {(x, y): 0 < y < f(x)} . (5)

Moreover, the set G(f) need not be bounded and thus convergence is not assured.
The parameter r can be used to control the shape of A(f). For increasing values

of r the family of distributions for which this set is bounded is growing. For the
special case r = 1 the region A(f) is convex in many cases and thus the Hit-and-
Run sampler converges fast. The following theorem generalizes a result for the
univariate case [Leydold 2000].

Theorem 3.2. For a density f and r = 1 the region A(f) ⊂ Rn+1 is convex if
and only if the transformed density T (f(x)) = −(f(x))−1/(n+1) is concave.

Following Hörmann [1995] we call such a density Tc-concave with c = −1/(n + 1).

Proof. Since T (y) = −1/ n+1
√

y is strictly monotonically increasing, the transfor-
mation (x, y) 7→ (x, T (y)) maps G(f) one-to-one onto T (f) = {(x, y): y < T (f(x))},
i.e. the region below the transformed density. Hence by T (vn+1) = −1/v and
transformation (3)

Rn × (0,∞)→ Rn × (−∞, 0), (u, v) 7→ (x, y) = (u/v + m,−1/v) (6)

maps A(f) one-to-one onto T (f). Notice that f is T -concave if and only if T (f)
is convex. Thus it remains to show that A(f) is convex if and only if T (f) is
convex, and consequently if and only if hyperplanes remain hyperplanes under
transformation (6). Now let a′ x+ b y = d be a hyperplane in T (f). Then a′ (u/v +
m) − b/v = d or, equivalently, a′ u − d v = b − a′m, is a hyperplane in A(f).
Analogously we find for a hyperplane a′ u + b v = d in A(f) the hyperplane a′ x +
d y = −b + a′m in T (f).

The following result by Hörmann [1995] immediately holds for multivariate dis-
tributions.
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Fig. 1. Region A(f) for standard bivariate normal distribution (r = 1).

Theorem 3.3 [Hörmann 1995]. If a density f is Tc-concave for some c ∈ R
then f is Tc1-concave for all c1 ≤ c.

The family of transformations Tc contains the special case T0(y) = log(y). Thus we
have the following important corollary; see Fig. 1 for an example.

Corollary 3.4. For every log-concave density f and r = 1 the region A(f) is
convex.

For densities with higher tails values r > 1 might be necessary. However, we have
to note that an analogous (simple) condition for the convexity of Ar(f) for r 6= 1
is not known.

4. THE ALGORITHMS

Although we have presented all ingredients of the Hit-and-Run algorithms for sam-
pling from non-uniform multivariate distributions we have to make some consider-
ations about computational details.

4.1 Uniform Sampling

The demanding part of the Hit-and-Run sampler is to sample λk uniformly in the
interval (or union of intervals) Λk = {λ: xk + λdk ∈ A(f)} for a chosen direction
dk. It can be accomplished by the following procedure [Smith 1996]: First the
covering interval Lk = {λ: xk + λdk ∈ R(f)} ⊇ Λk is determined. Then a rejection
method is employed by generating points uniformly on the line segment Lk until
one falls within Λk. We denote the endpoints of the interval Lk by λk0 and λk1, i.e.,
Lk = (λk0, λk1). Since this subproblem is one-dimensional the rejection method is
typically very efficient for this task.

The acceptance probability in each step of the Hit-and-Run sampler is given
by the ratio ρ of the length of the line segment Λk (or the sum of all segments
constituting Λk), µ(Λk), and the length of the line segment Lk, µ(Lk), see Hörmann
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et al. [2004, §2.2]:

ρ =
µ(Λk)
µ(Lk)

. (7)

The expected number of calls to the oracle, i.e., the expected number of iterations
is given by its reciprocal 1/ρ.

4.2 Adaptive Uniform Sampling

Although the acceptance rate in a univariate rejection step is much better than
those for rejection from the bounding rectangle it can still be improved by the
following procedure when Λk is an open interval (this is always the case when A(f)
is convex):

Start with some covering interval Lk = (λk0, λk1) ⊃ Λk. In each iteration gener-
ate a point λk uniformly in Lk. If λk ∈ Λk accept this point and compute Xk+1.
Otherwise, we shrink (λk0, λk1) and try again. This is done by replacing λk0 or λk1

by the generated λk depending on the sign of λk. (Notice that (λk0, λk1) always
contains 0.)

This procedure can be equivalently described as follows: Let λ0 ≤ 0 < ρ ≤ λ1

with λ1 − λ0 = 1. We define Ik = [λk
0 , λk

1 ] and random variables Uk, distributed
uniformly on Ik, recursively. Start with λ1

0 = λ0, λ1
1 = λ1 and U1 ∼ U(I1). For given

Ik, let Xk ∼ U(Ik) and define Ik+1 = Ik if Uk ∈ [0, ρ], Ik+1 = [Uk, λk
1 ] if Uk < 0 and

Ik+1 = [λk
0 , Uk] if Uk > ρ. Define the stopping time T as T = min{k | Uk ∈ [0, ρ]}.

For the special case where λ0 = 0 (and thus λ1 = 1) this is a Poisson process. It
is then equivalent to generating i.i.d. uniform random numbers U1, U2, . . . ∈ (0, 1)
until the first time U1 · U2 · . . . · UT < ρ and return U = U1 · U2 · . . . · UT . The
stopping time T−1 of this sampling procedure is Poisson distributed with parameter
− log(ρ). Thus we find for the expectation of T , E[T ] = 1− log(ρ), see e.g. [Devroye
1986, §X.3.3].

For the general case with λ0 < 0 < ρ < λ1 the convergence is a little bit slower.

Theorem 4.1. The stopping time T of the above sampling procedure has expec-
tation

E[T ] ≤ 1− log(ρ)
e

1− log 2
. (8)

Proof. In each step the interval, on which Uk is uniformly distributed, is shrunk
by a factor Sk. The distribution of Sk depends on ρ, m1 = |λk

0 | and m2 = λk
1−ρ. For

fixed ρ, m1 = m2 is the worst case in the sense that the shrinkage Sk is stochastically
greater than for m1 6= m2. Thus we consider the following modification which gives
an even worse shrink factor. In each step the length of the interval is shrunk by a
factor S∗k which is uniform on [0, ρ] with probability ρ, and uniform on [(1+ρ)/2, 1]
with probability 1− ρ. Denote the corresponding stopping time, the first instance
when Uk ∈ [0, ρ] is reached, by T ∗. Notice that E[T ] ≤ E[T ∗].

We have to show that (8) holds for the expectation of T ∗ which is given by

E[T ∗] = 1 +
∞∑

t=1

πt
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with

πt = P(Ut S∗1 · · · S∗t−1 > ρ) .

Let s = − log(ρ) > 0. Ut S∗1 · · · S∗t−1 > ρ implies S∗i > ρ for i = 1, . . . , t− 1. Since
S∗t | {S∗t > ρ} ∼ U[(ρ + 1)/2, 1] Markov’s inequality, see Billingsley [1986], implies

πt = (1− ρ)t−1 P(Ut S∗1 · · · S∗t−1 > ρ | S∗1 > ρ, . . . , S∗t−1 > ρ)

≤ (1− ρ)t−1

ρs
E[(Ut S∗1 · · · S∗t−1)

s | S∗1 > ρ, . . . , S∗t−1 > ρ]

Now E[Us
t ] = 1/(1 + s) and

E[S∗i
s | S∗i > ρ] =

2
1− ρ

∫ 1

(1+ρ)/2

xs dx =
2

1− ρ

1
1 + s

(
1−

(
1 + ρ

2

)s+1
)

together with the independence of Ut and the shrink factors S∗i gives

πt ≤
1
ρs

2t−1

(1 + s)t

(
1−

(
1 + ρ

2

)s+1
)t−1

.

Hence by the summation formula of geometric series we have

E[T ∗] ≤ 1 +
1
ρs
· 1
1 + s

· 1
1− 2(1− ((1 + ρ)/2)s+1)/(1 + s)

= 1 +
1
ρs
· 1
s− 1 + 2((1 + ρ)/2)s+1

.

Using a convexity argument we get

2
(

1 + ρ

2

)s+1

≥
(

1 + ρ

2

)s

≥ 1 + s log((1 + ρ)/2)

and thus we find

E[T ∗] ≤ 1 +
1

ρss
· 1
1 + log((1 + ρ)/2)

= 1 + log(1/ρ)
e

1 + log((1 + ρ)/2)
,

which is bounded by (8).

4.3 Direction Sampling

Hypersphere sampling, i.e. choosing directions dk uniformly distributed on the
sphere, seems to be a good choice as it is simple and easy to implement (see e.g.
Hörmann et al. [2004, §11.2.1]). The improved method by Kaufman and Smith
[1998] is another possible algorithm.

4.4 Bounded “Plate”

Computational experience shows that computing the bounding rectangle R(f) nu-
merically is the most time consuming step in higher dimensions. A possible solu-
tion is to replace the bounding rectangle R(f) by the unbounded “plate” given by
{(u, v): 0 < v < n+1

√
f(m)}. Notice that the line Lk becomes infinitely long when

and only when the v-coordinate of the random direction is 0. Thus for a direction
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drawn uniformly from the hypersphere (or any other absolutely continuous distri-
bution) Lk has finite length almost surely. However, it can become very long and
thus we have to use the adaptive sampling discussed above. Otherwise the number
of iterations becomes prohibitively large.

To get a first impression about the expected number of iterations E(I) when we
use the unbounded “plate” we assume that r = 1, f(m) = 1, and A(f) is a ball
of radius 1. This is the case when we look at the multivariate Cauchy distribution
with density proportional to f(x) = (2+ ||x||2)−(n+1). The length of a line segment
Lk is then given by 2

√
1 + tan(θ)2 where θ is the angle between the direction d

and the v-axis. For a point Xk and a direction d with angle θ the expected number
of iterations is given by 1 + log(2

√
1 + tan(θ)2/`) e/(1 + log 2) by Thm. 4.1 where

` denotes the length of Λk. When the direction d is uniformly distributed on the
hypersphere, θ follows a distribution with density proportional to the area of the
(n−1)-sphere with radius sin(θ), i.e. with density sin(θ)n−1 Sn−1/Sn for 0 ≤ θ ≤ π
where Sn−1 = 2πn/2/Γ(n/2) denotes the area of the surface of the unit (n−1)-sphere
(i.e. in Rn) and Γ(·) denotes the gamma function. Now assume that Xk is uniformly
distributed in the ball A(f). Then for a given θ the length ` of Λk depends on the
distance δ of Xk from the straight line spanned by d through the center of the ball,
i.e., ` = 2

√
1− δ2. The density of the distribution of δ for uniformly distributed

Xk is proportional the area of the n-dimensional cylindrical surface given by all
points of distance δ, i.e., the density is given by 2 δn−1

√
1− δ2 (n + 1)Sn−1/Sn for

0 ≤ δ ≤ 1. Consequently we obtain for the expected number of iterations,

E(I) ≤
∫ π

0

∫ 1

0

(
1 + log

(
2
√

1 + tan(θ)2/2
√

1− δ2
))

e/(1 + log 2) ·

2 δn−1
√

1− δ2 (n + 1)
Sn−1

Sn
sin(θ)n−1 Sn−1

Sn
dδ dθ

=
e

1 + log(2)

(
1 +

∫ π

0

1
2

log(1 + tan(θ)2) sin(θ)n−1 Sn−1

Sn
dθ

−
∫ 1

0

1
2

log(1− δ2) 2δn−1
√

1− δ2 (n + 1)
Sn−1

Sn
dδ

)
Using the inequality sin(θ)n−1 ≤ 1 (0 ≤ θ ≤ π) for the first integrand and 0 ≤
−x log(x) ≤ 1/e (0 < x ≤ 1) for the second integrand we get by a straightforward
computation

E(I) ≤ e

1 + log(2)

(
1 + log(2)π

Sn−1

Sn
+

2
e

n + 1
n

Sn−1

Sn

)
i.e., the expected number of iterations is finite for every dimension n. Stirling’s
formula gives Γ(n+1

2 )/Γ(n
2 ) = n1/2 π1/2 + o(n1/2) and Sn−1/Sn =

√
n + o(

√
n).

Hence

E(I) ≤ 4.7
√

n + o(
√

n) .

4.5 Floating Point Arithmetic

When stating the theoretical background of our method we have assumed that we
have real numbers, R. However, the algorithms are designed to be implemented
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in real world computers which work with floating point numbers that have only a
limited precision; see Overton [2001] for an introduction to floating point arithmetic.
Thus expressions like n+1

√
f or vn+1 may result in a reduction of significant digits,

overflow, or underflow when the number n of dimensions is large. As a consequence
the generated distribution deviates too much from the target distribution or the
algorithm even may fail too work. Therefore we need two strategies to reduce these
problems:

(1) The density f is rescaled such that f(m) = 1 for the mode m.

(2) The oracle should return log(f(x)).

The latter point is quite convenient as the logarithms of many densities (or of
multiples of densities) are often easier to compute.

4.6 HITRO

We have compiled two algorithms1 (HITRO-box and HITRO-plate). The first one
uses a bounding hyper-rectangle for the rejection steps, the second one uses the
unbounded “plate”.

There are a few remarks concerning these Algorithms:

—The set A(f) should be convex. This is, e.g., the case for r = 1 when the
density f is log-concave. Otherwise the conditions for the convergence theorems
in [Smith 1984] are not satisfied, i.e., whenever Λk is disconnected and Step 11
in Algorithm HITRO-box is used then
1. points sampled from Λk are not uniformly distributed, and
2. the Markov chain is not time reversible, i.e., the transition probability func-

tion is not symmetric.
Thus when A(f) is not convex, then the adaptive Step 11 in Algorithm HITRO-
box should be skipped. (Algorithm HITRO-plate becomes very slow without
Step 11.) Nevertheless, in our computational experiments it seemed that the
Markov chain still converges to the target distribution with adaptive uniform
sampling even if A(f) is not convex.

—We can replace the mode m by any other point c. This is in particular useful
when f is multimodal. Then c could represent the “center” of the distribution.
Notice, however, that fm should be set to a value close to max f(x) (for compu-
tational reasons) in Step 1. Furthermore, the starting point (U0, V0) must be set
accordingly.

—R(f) need not necessarily be the minimal bounding rectangle as defined in (4).
It can be larger.

4.7 Convergence

Because the ratio-of-uniforms transformation has constant Jacobian we can imme-
diately derive convergence results for a Markov chain X0,X1,X2, . . . generated by
a HITRO algorithm.

1Hitro is the Slovenian word for fast.
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Algorithm 1 HITRO-box
Input: Density function f in Rn, mode m; parameter r, sample size N .
Output: Sequence Xk of random vectors with asymptotic distribution f .

[ Setup ]

1: Compute fm ← f(m) and bounding rectangle Rr,m(f/fm) = (Rl,Ru).
2: Set (U0, V0)← (0, 1

2 ) and k ← 0.
[ Generate chain ]

3: repeat
4: Generate a random direction dk uniformly on (n + 1)-sphere.

[ Generate a point uniformly in Λk ]

5: Compute Lk = (λk0, λk1) = {λ: xk + λdk ∈ (Rl,Ru)}.
6: loop
7: Generate λk uniformly distributed in (λk0, λk1).
8: Set (Uk+1, Vk+1)← (Uk, Vk) + λkdk.
9: Set Xk+1 ← Uk+1/(Vk+1)r + m.

10: if (rn + 1) log(Vk+1) ≥ log(f(Xk+1)/fm) then
11: Set λk0 ← λk (if λk < 0) or λk1 ← λk (otherwise). [ Shrink Lk ]

12: else
13: Stop loop.

[ Append to chain ]

14: Set k ← k + 1.
15: until k = N .

Algorithm 2 HITRO-plate
Input: Density function f in Rn, mode m; parameter r, sample size N .
Output: Sequence Xk of random vectors with asymptotic distribution f .

[ Setup ]

1: Compute fm ← f(m).
2: Set (U0, V0)← (0, 1

2 ) and k ← 0.
[ Generate chain ]

3: repeat
4: Generate a random direction dk = (du, dv) uniformly on (n + 1)-sphere.
5: Set λk0 ← −|v/dv| and λk1 ← |(1− v)/dv|.
6: loop
7: Generate λk uniformly distributed in (λk0, λk1).
8: Set (Uk+1, Vk+1)← (Uk, Vk) + λkdk.
9: Set Xk+1 ← Uk+1/(Vk+1)r + m.

10: if (rn + 1) log(Vk+1) ≥ log(f(Xk+1)/fm) then
11: Set λk0 ← λk (if λk < 0) or λk1 ← λk (otherwise). [ Shrink Lk ]

12: else
13: Stop loop.
14: Set k ← k + 1.
15: until k = N .
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If f is log-concave (and thus A(f) is convex) then for any measurable set A ⊆ Rn

there exist constants M <∞ and κ < 1 such that for any m

|P(Xm ∈ A|X0 = x)− µ(A)| < Mκm

where µ(·) denotes the n-dimensional content of A. That is, the HITRO algorithms
are uniformly ergodic [Bélisle et al. 1998].

This result also holds for the HITRO-box algorithm without adaptive uniform
sampling (Step 11) whenever ||x||n+1/rf(x) (and thus A(f)) is bounded [Bélisle
et al. 1998].

If f is log-concave we also can give bounds on the mixing times. However, we
need more information on the shape of A(f). Let γ denote the ratio of the diameter
of A(f) to the radius of the largest ball contained in A(f). Let 0 < ε < 1 and

N =
⌈
4 · 108 n2γ2

ε2
log(2/ε)

⌉
.

Then by a bound of Lovász [1999] for every A ∈ Rn,

|P(XN ∈ A)− µ(A)| ≤ ε .

4.8 Other Variants

There are several obvious variants of the two presented HITRO algorithms.

—Gibbs Sampling (Step 4): The random directions dk can be replaced by coordi-
nate directions that are chosen in an given order. This can be seen as “tradi-
tional” Gibbs sampling from the density proportional to the indicator function
of the set A(f) in Rn+1. Our computational experiments show that this variant
often results in a better performance compared to random directions (when the
correlations between the components of the random vector are not very high).
Notice, however, that this requires the computation of a bounding rectangleR(f).

—Slice Sampler (Steps 1 and 5): The respective computation of the bounding plate
and the bounding rectangle can be replaced by a procedure similar to the first
part of the slice sampler proposed by Neal [2003]. For a chosen (random or co-
ordinate) direction dk start from some interval (λk0, λk1) and test whether the
corresponding end points of line segment are inside A(f). If not then enlarge
the interval by some appropriate factor and test again. Otherwise start (adap-
tive) uniform sampling from the line segment. Notice, that this procedure only
works reliably if the region A(f) is convex (hypersphere sampling) or unimodal
(coordinate directions), or at least some information about the shape of A(f) is
available (see also the discussion on multimodal densities in [Neal 2003]).
It is useful to use some rectangle or plate to store the information about A(f).
Each time when the starting interval (λk0, λk1) has to be enlarged, the rectangle
is enlarged analogously. Notice that the price for this procedure (compared to a
precomputed bounded rectangle/plate) is that we need two additional evaluations
of the density to test whether the starting interval covers Λk.

—Stochastic Optimization (Step 1): The computation of the mode (and of the
entire bounding rectangle) can be seen as equivalent to the burn-in phase of
other Markov chain samplers. Indeed, one could use the algorithm to find the
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mode of the density f by starting with some guess for the upper bound of f ,
generate a chain and adapt this guess whenever a larger value for f was found
(see Zabinsky [1998] for a survey on stochastic optimization).

Of course it is also possible to combine the Ratio-of-Uniforms method with other
Markov chain samplers, in particular we have implemented the Metropolis Random
Walk sampler (with a multinormal proposal density) and the ball sampler (i.e., with
a uniform distribution on a ball), see e.g. [Robert and Casella 2004].

Remark. When we finished this paper we became aware of a recent talk by Tier-
ney [2005] who also pointed out the usefulness of the Ratio-of-Uniforms method
for Markov chain Monte Carlo. In his talk he also discusses some other aspects of
using the Ratio-of-Uniforms transformation in the framework of MCMC.

5. COMPUTATIONAL EXPERIENCES

We have implemented the proposed algorithms in our library UNU.RAN (Univer-
sal Non-Uniform RANdom number generators, [Leydold et al. 2005]) and ran many
experiments with multinormal, multi-t, and multi-Cauchy distributions. We used
many dimensions and different variance-covariance matrices to test the performance
of the proposed algorithms. Figure 2 shows a typical example for the number of
calls to the (logarithm of the) density function (oracle). It shows that the perfor-
mance gain by adaptive uniform sampling from line segments is very large in higher
dimensions. Moreover, the ratio between the average number of calls needed when
using an unbounded plate instead of a bounding box is less than 2 and decreases
with increasing dimension. The expected number of oracle-calls stays well below
7 even for dimensions as high as 100. For “conventional” rejection from bounding
rectangle the expected number of oracle calls would be 5.06× 1070.

We compared our results with those of the Gibbs sampler as its “obvious” com-
petitor. As we are mainly interested in black-box methods we used transformed
density rejection [Gilks and Wild 1992] (which can be applied for all log-concave
p.d.f.s) for drawing points from the full conditional distributions. Notice, however,
that these results contains both calls to the logarithm of the log-density function
and calls to its derivative. Figure 2 shows that the proposed algorithm requires
fewer calls to the oracle for dimensions up to 100.

In a second experiment we have measured the marginal generation times for our
algorithms and compared it to our implementation of the Gibbs sampler. The
results are shown in Figure 3. It shows that the proposed algorithm are much
faster in smaller dimensions. However, these numbers deserve some explanations.
We have implemented all our algorithms such that only respective function pointers
to the (log-) density of the joint distribution and its gradient (or all its first partial
derivatives) have to be provided by the user. Moreover, we have tried to make the
library robust against numerical under-/overflow. The evaluation of the log-density
of the multinormal distribution requires the computation of some quadratic form
and UNU.RAN only uses a näıve implementation with computational complexity
O(n2) (which is sufficient for a small number of dimensions). Thus Figure 3 can be
interpreted in the following way:

—The marginal generation time consists of the time for the actual algorithm and
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Fig. 2. Average number of p.d.f. calls for the multinormal distribution with variance-covariance
matrix Σ where Σik = 0.9|i−k|, i.e., the correlation matrix of an AR(1) process with ρ = 0.9.

(“HITRO-box, simple” uses simple rejection for sampling uniformly from the line segment instead

of adaptive sampling.)

for the time to evaluate the given log-density.
—The time complexity of the actual algorithm is constant (Gibbs sampler, HITRO-

plate) or increases slowly (linear) in dimension. It is much smaller for the HITRO
algorithms compared to the Gibbs sampler.

—For higher dimensions computing the log-density is the most expensive part. Thus
the number of oracle calls becomes important (Fig. 2). However, about half of the
calls for the Gibbs sampler are calls to the partial derivatives of the log-density
which are much cheaper than calls to the log-density itself. Hence the Gibbs
sampler outperforms the HITRO method in higher dimensions in the case of the
multinormal distribution. The situation changes when computing the derivatives
are not cheaper than the log-density itself, e.g. for multi-t distributions.

We also made experiments to check the quality of the generated sequence of ran-
dom points. It shows that the HITRO algorithms have a similar performance as
the Gibbs sampler. Running χ2 goodness-of-fit tests HITRO showed slightly bet-
ter statistical properties. We have estimated mean square errors in Monte Carlo
computations of moments of marginal distributions (an important task in Bayesian
inference). Here the results for the Gibbs sampler are better as long as the corre-
lations ρ are not too high. However, when we used the Gibbs sampling version of
the HITRO-box algorithm (instead of random direction; see §4.8) the performance
is similar and depends from the particular distribution, see Fig. 4 for an example.

We also compared our results to Random Walk Metropolis samplers with multi-
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Fig. 3. Marginal generation times for the multinormal distribution with variance-covariance matrix
Σ where Σik = 0.9|i−k|, i.e., the correlation matrix of an AR(1) process with ρ = 0.9.
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Fig. 4. Mean square error for Monte Carlo estimation of variance of multinormal (l.h.s.) and

multi-t distribution with 8 degrees of freedom (r.h.s.). Gibbs sampling using transformed density
rejection and HITRO-box using coordinate direction sampling; sample size = 104.

normal proposal distributions and those that are uniform on balls (sometimes called
ball sampler). Here the performance in Monte Carlo computations for our test dis-
tributions is much worse.

The region A(f) should be convex when adaptive uniform sampling is used.
Otherwise, the ergodicity of the proposed Hit-and-Run sampler has not been shown,
yet. Nevertheless, we ran experiments on normal mixtures. Figure 5 shows graphs,
regions A(f), and chains of length 1000 produced by our algorithm with adaptive
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Fig. 5. Graph of mixture density function (9), the surfaces of the RoU-shapes and N = 1000

random sample points for µ = 0, µ = 2 and µ = 4 respectively.

uniform sampling for bivariate distributions with densities

f(x, y) =
1
4π

(e−((x−µ)2+(y−µ)2)/2 + e−((x+µ)2+(y+µ)2)/2) . (9)

Notice that A(f) is not convex in all cases. Moreover, for large values of µ neither
the Gibbs sampler nor a random walk Metropolis sampler would work efficiently.
Nevertheless, the Hit-and-Run algorithm seems to mix fast even for this difficult
distribution.

6. CONCLUSION

We have proposed algorithms based on the Hit-and-Run Sampler and the Ratio-of-
Uniforms. These HITRO algorithms are very simple, easy to implement, relatively
fast, and work for many distributions out of the box. Compared to the Gibbs
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sampler they have similar performance in Monte Carlo integration but there is no
necessity for a special generator for sampling from the full conditional distribution.
Compared to a black box version of the Gibbs sampler (which uses transformed
density rejection) the HITRO algorithms do not need the derivative of the log-
density, are much simpler to implement and up to dimension 100 they require fewer
evaluations of the density function.

Adaptive uniform sampling with an unbounded plate (Algorithm HITRO-plate)
is the best suited practical algorithm among our proposed methods. The compu-
tation of the mode can be seen as equivalent to the burn-in phase of other Markov
chain samplers.

The slice sampler [Neal 2003] has been proposed to sample points uniformly in
the region below the graph of f , G(f). There points are sampled uniformly in slices
{x: f(x) = y}. However, this requires a search algorithm to get a cover for such a
slice each time. The sampler proposed by Chen and Schmeiser [1998] also generates
a Markov chain with uniform stationary distribution in G(f). However, it requires
to fix two parameters which are crucial for the performance of the algorithms.

An important feature of the new algorithm is its simplicity. No proposal distribu-
tion has to be adjusted for the target distribution. (The influence of the parameter
r is rather small). Of course rescaling can improve the convergence of the sampler.
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Günter Tirler. We thank Sylvia Früwirth-Schnatter for calling our attention to
the talk of Luke Tierney. This work was supported by the Austrian Fonds zur
Förderung der Wissenschaftlichen Forschung, Proj.No. P16767-N12.

REFERENCES

Bélisle, C. 2000. Slow hit-and-run sampling. Stat. Probab. Lett. 47, 1, 33–43.

Bélisle, C., Boneh, A., and Caron, R. J. 1998. Convergence properties of hit-and-run samplers.

Commun. Stat., Stochastic Models 14, 4, 767–800.

Belisle, C. J. P., Romeijn, H. E., and Smith, R. L. 1993. Hit-and-run algorithms for generating

multivariate distributions. Mathematics of Operations Research 18, 255–266.

Berbee, H. C. P., Boender, C. G. E., Rinnooy Kan, A., Scheffer, C. L., Smith, R. L.,

and Telgen, J. 1987. Hit-and-run algorithms for the identification of nonredundant linear

inequalities. Math. Program. 37, 184–207.

Billingsley, P. 1986. Probability and Measure. Wiley & Sons, New York.

Boneh, A. and Golan, A. 1979. Constraints’ redundancy and feasible region boundedness by

random feasible point generator (rfpg). In Third European Congress on Operations Research,

EURO III. Amsterdam.

Chen, M.-H. and Schmeiser, B. 1993. Performance of the Gibbs, Hit-and-run, and Metropolis

samplers. Journal of Computational and Graphical Statistics 2, 251–272.

Chen, M.-H. and Schmeiser, B. 1998. Toward black-box sampling: a random-direction interior-
point Markov chain approach. Journal of Computational and Graphical Statistics 7, 1–22.

Chen, M.-H. and Schmeiser, B. W. 1996. General hit-and-run Monte Carlo sampling for eval-

uating multidimensional integrals. Oper. Res. Lett. 19, 4, 161–169.

Devroye, L. 1986. Non-Uniform Random Variate Generation. Springer-Verlag, New-York.

Gilks, W. R. and Wild, P. 1992. Adaptive rejection sampling for Gibbs sampling. Applied
Statistics 41, 2, 337–348.



Automatic MCMC Procedures for Sampling from Multivariate Distributions · 17
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