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Abstract

Significance tests for the measure of raw agreement are proposed. First, it is shown
that the measure of raw agreement can be expressed as a proportionate reduction-in-error
measure, sharing this characteristic with Cohen’s κ and Brennan and Prediger’s κn . Second,
it is shown that the coefficient of raw agreement is linearly related to Brennan and Prediger’s
κn . Therefore, using the same base model for the estimation of expected cell frequencies as
Brennan and Prediger’s κn , one can devise significance tests for the measure of raw agreement.
Two tests are proposed. The first uses Stouffer’s Z , a probability pooler. The second test
is the binomial test. A data example analyzes the agreement between two psychiatrists’
diagnoses. The covariance structure of the agreement cells in a rater by rater table is described.
Simulation studies show the performance and power functions of the test statistics.

1 Introduction

Three approaches to assessing agreement among raters have been proposed [1]. The first approach
is the most popular one. It involves calculating simple coefficients of rater agreement such as
Cohen’s κ (kappa) [2], Brennan and Prediger’s κn [3], or the measure of raw agreement. κ is
an index of agreement beyond chance. κn is an index of agreement beyond what is predicted by
a null model for the agreement table. The measure of raw agreement indicates the number of
instances in which raters agree exactly, relative to the total number of judgements. The second
approach involves testing manifest variable models of rater agreement. These models represent
hypotheses concerning the structure of agreement tables, that is, cross-classifications of raters’
judgements. Examples of such models include Tanner and Young’s equal weight agreement model
[4] which proposes that the instances of agreement carry equal weight across all rating categories.
This model includes a parameter that can be interpreted as an index of strength of agreement.
The third approach involves specifying latent variable models. Examples of such models include
Uebersax and Grove’s [5] and Schuster‘s [6] latent variable and mixture models.
The models as well as the coefficients of rater agreement come with significance tests which allow
one to test null hypotheses that, for example, agreement is no better than chance. There is only one
exception, the coefficient of raw agreement. This coefficient is typically reported as a descriptive
measure only. Null hypotheses are not specified and significance tests are not reported. In this
article, a null hypothesis for the coefficient of raw agreement is proposed, two significance tests
are described, and their characteristics are examined.

2 The Coefficient of Raw Agreement

The coefficient of raw agreement, ra, is a measure of the proportion of instances of agreement.
Consider an I x I cross-classification of two raters’ judgements. Each rater uses an I -category
scale to evaluate N objects or events. The coefficient ra is defined as the proportion of exact
agreements. To specify ra, we first determine the sum θ1 =

∑I
i=1 pii, that is, the probability of all
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instances in which the two raters agree exactly, where pii is the probability of cases in agreement
cell ii . θ1 is estimated by θ̂1 = 1

N

∑
i nii, where nii is the observed frequency in cell ii. We define

the coefficient of raw agreement to be ra = θ1. The estimate of the coefficient of raw agreement,
r̂a, indicates the proportion of the total number of judgements that are made in full agreement. It
is r̂a = θ̂1. The coefficient r̂a is typically presented as a proportion or a percentage of agreement
cases. Generalizations to more than two raters are straightforward.

Data example: The following data example re-analyzes data presented by von Eye and Mun
[1], and von Eye and Schuster [7]. The data describe results from a study on the reliability of
psychiatric diagnoses. Two psychiatrists re-evaluated the files of N = 129 patients. The patients
had at intake been diagnosed as clinically depressed. The psychiatrists evaluated the severity of
the patients’ depression using the rating categories 1 = not depressed, 2 = mildly depressed, and 3
= clinically depressed. Table 2 presents the cross-classification of the two psychiatrists’ diagnoses.
In the following analysis, we ask what the proportion of diagnoses is that match exactly. In
addition, we calculate Cohen’s κ to also provide information of agreement beyond chance.

Psychiatrist 2:
Severity of Depression

1 2 3 Row Sums
1 11 2 19 32

2.98 3.22 25.80

Psychiatrist 1: 2 1 3 3 7

Severity of Depression 0.65 0.71 5.64

3 0 8 82 90
8.37 9.07 72.56

Column Sums 12 13 104 N=129

Table 1: Two psychiatrists’ depression diagnoses (estimated expected cell frequencies in italics)

The proportion of raw agreement for the two psychiatrists’ diagnoses is r̂a = 96/129 = 0.74.
In words, we find that the two psychiatrists agree in almost three quarters of their diagnoses
exactly. Table 2 also displays the expected cell frequencies for Cohen’s κ. (The formula for κ
follows in section 3, below.) We calculate κ̂ = 0.38 and ŝeκ = 0.079 (z = 4.747; p < 0.01). These
values indicate that the proportion of raw agreement of 0.74 is better by 38% than what one would
expect based on chance alone. This difference to chance agreement is significant.
We now ask whether significance tests for ra can be formulated. To specify a significance test for
the coefficient of raw agreement, we need to answer the question as to what to test against. To
answer this question, we proceed in two steps. First, we express three measures of rater agreement
in terms of measures of proportionate reduction in error (Fleiss, [8]), Cohen’s κ [2], Brennan and
Prediger’s κn [3], and the measure of raw agreement. Second, we show that the measure of raw
agreement is a linear transformation of Brennan and Prediger’s κn , but not Cohen’s κ. Therefore,
we use the same base model as for Brennan and Prediger’s measure to estimate expected cell
frequencies. Using these frequencies, a null hypothesis for the measure of raw agreement can be
specified, and significance tests can be proposed.

3 Three Coefficients of Rater Agreement

The best known measure of rater agreement is Cohen’s κ. This coefficient uses a base model
that takes into account the rates with which raters use the rating categories. For two raters, the
coefficient is

κ =
∑

i pii −
∑

i pi. p.i

1 −
∑

i pi. p.i
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and it is estimated by

κ̂ =
N
∑

i mii −
∑

i mi. m.i

N2 −
∑

i mi. m.i

where pi. and p.i are the row and the column probabilities, and mi. and m.i are the row and the
column marginal frequencies, respectively. Obviously, the first term in the numerator of κ contains
the quantity θ1 which is also used for the coefficient of raw agreement. The second term, θ2 =
Σi pi.p.i, indicates the probability of cases in Cell ii that is expected based on the assumption of
independence of the two raters. It takes the rates into account with which the raters use the rating
categories. These rates are pi. and p.i. The first term in the denominator contains the maximum
probability of agreement cases and the second term in the denominator is, again, θ2. Using the
quantities θ1 and θ2, we can express κ as

κ =
θ1 − θ2

1 − θ2

The third coefficient of rater agreement that we use in the present article is Brennan and Prediger’s
(1981) κn [3]. This measure is defined as

κn =
θ1 − 1

I

1 − 1
I

where I is the number of rows and columns of the agreement table. The coefficient κn can be
derived from the hypothesis that pi. = p.i = 1/I . This topic will be taken up again below. κn

differs from κ in that it does not take into account the rates with which the raters use the I rating
categories. Discussions of κ and κn can be found in Hsu and Field [9], von Eye and Mun [1], and
von Eye and Sörensen [10].
To compare ra with κ and κn, we specify a general proportionate reduction-in-error measure of
rater agreement,

κg =
θ1 − c

1 − c

and we find that, for Cohen’s κ, c = θ2, for Brennan and Prediger’s κn , c = 1/I , and for ra, c
= 0. We thus conclude that the difference between these three measures lies in the selection of
a reference for θ1, the proportion of incidences of exact agreement. For Cohen’s κ, this reference
is θ2, the proportion of exact matches that is estimated under a log-linear main effect model,
that is, the model of rater independence. This model takes the rates into account with which the
raters use each of the I rating categories. For Brennan and Prediger’s κn , the reference is the
proportion of cells in which exact matches can be found. This proportion depends on the size of
the agreement table, but not on the marginal distributions of ratings. The choice of Brennan and
Prediger’s reference corresponds to estimating the proportion of expected exact matches based on
a log-linear null model. For the coefficient of raw agreement, the reference is zero. That is, the
coefficient of raw agreement provides information about how large the proportion of exact matches
is compared to no exact matches.
Looking at the three measures, κ, κn , and ra from this perspective, allows one to notice that, for
a given table size and θ1, Cohen’s κ can vary widely, depending on θ2 which typically is estimated
from the data. In contrast, for both κn and ra, c does not depend on the data. Indeed, a closer
comparison of κn and ra shows that the two measures are linear transformations of each other.
We find that

κn = − 1
I − 1

+ ra (
I

I − 1
)

where I is, as before, the number of rating categories.
To illustrate, consider Figure 1. This figure displays the relationship between the general measure
of agreement defined above and the quantities θ1 and θ2 for 0 ≤ θ1, θ2 ≤ 1. Figure 1 shows clearly
that κ varies depending on θ2. Setting θ2 constant, as is done for κn and ra, yields a straight-line
relationship between κg and θ1. Figure 2 shows this for c = 0.3. Figure 3 shows this for c = 0.
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Figure 1: Relationship between the general measure of agreement, κg, and the quantities θ1 and
θ2

Figure 2: κg for c = 0.3

The relationship between κn and ra is displayed in Figure 4. Figure 4 shows, that, for any
given I , the relationship between ra and κn is linear. Therefore, the magnitude of the constant
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Figure 3: κg for c = 0

Figure 4: Relationship between κn , ra and I

c is of no importance beyond scaling, as long as 0 ≤ c < 1. In addition, because of this linear
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relationship, any significance test that is valid for κn is also valid for ra and vice versa. This
does not apply to significance tests for Cohen’s κ because the relation between κ, κn , and ra is
nonlinear.

4 Two Significance Tests for the Coefficient of Raw Agree-
ment

In this section, we propose two significance tests for the coefficient of raw agreement. The first
test uses Stouffer’s Z [11], a well known probability pooler. The second test is the exact binomial
test.

4.1 Stouffer’s Z as a Significance Test for the Coefficient of Raw Agree-
ment

For the following considerations, let mii be the expected frequency in Cell ii , that is, in an
agreement cell, and m̂ii the estimated expected frequency for Cell ii . Furthermore, let m̂ii be
estimated under the log-frequency model log m = λ0 + e, where λ0 is the constant and e is the
residual vector. This model is used as the base model for Brennan and Prediger’s coefficient, κn .
It implies a uniform frequency distribution. The residual in Cell ii is estimated as

zii =
mii − N/I2√

N/I2

The sum of these zii-scores can be used as the test statistic for raw agreement. The test statistic

Z =
1√
I

∑
i

zii

with i = 1, ..., I , is known as Stouffer’s Z . This statistic is approximately N (0; 1) distributed
(see also Darlington & Hayes [12] and Strube [13]). Z can be used to test the hypothesis that
the portion of exact agreement is greater than 1/I , that is, H1: θ1 > 1/I . The term 1/I results
from the assumption that we have a uniformly distributed probability distribution. Thus, under
this model the probability for a cell count is 1/I2. Since the raw agreement is the sum of the
probabilities of the main diagonal θ̂1 = I (1 / I2) = 1 / I , a feasible formulation of the null
hypothesis (“agreement no better than chance”) is H0: θ1 = 1/I .

4.2 The Binomial Test for the Coefficient of Raw Agreement

The binomial test described in this section is of use when an exact test is desired. This occurs
when the number of observations is small and the asymptotic result of a normally distributed Z
is not trusted. The test is based on just one parameter, the probability of the event under study,
p. In the present context, this is the overall probability of perfect matches in raters’ judgements.
Here, in the discussion of significance tests for the coefficient of raw agreement, we estimate p
using the same log-frequency model as for Stouffer’s Z [11] or Brennan and Prediger’s κn [3], that
is, log m = λ0 + e. We obtain the estimator p̂ = 1/I. This results again from the assumption
that we have a uniform probability distribution under H0 (cf. θ̂1 in the previous section). The
one-sided tail probability for the observed total number of perfect matches is

P =
N∑

j=
P

mii

(
N

j

)
pjpN−j

This is a one-tailed test that is based on the assumption that the observed total sum of perfect
matches is greater than the expected total sum.
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As was indicated above, this test is exact. However, it can be conservative if the parameter p
is estimated from the data in terms of relative frequencies. In this case, it can occur that the
estimate of p reflects data characteristics that deviate from the characteristics of the population,
and the test becomes conservative or biased.
The variance of the binomial distribution is S2(P) = Npq with q = 1 - p. The mean is E(P) =
Np. Using these terms, one can approximate the normal distribution when N is large enough.
One obtains the test statistic

ZBin =
∑

i mii − Np√
Npq

ZBin is equivalent to P for large N . It is also interesting to note that Zbin is equivalent to Z for
large numbers of rating categories. This is shown in the appendix.

4.3 A Note on the Covariance Structure resulting from the Multinomial
Distribution

In rater agreement, the usual sampling scheme is multinomial. That is, only the total number of
responses is fixed. From this sampling scheme, a certain covariance structure between the cells
results (see, e.g., Agresti, pp. 579 - 580 [14]). This issue is important because the test statistics
discussed in this article require independence of the main diagonal cells in the table.
Let the observation k of the N cross-classified data in the L = (I × I)-table be denoted by
Y k = (Yk1, ..., YkL), where Ykl = 1 if the observation k falls in cell l , and Ykl = 0 otherwise. Since
each observation falls in just one cell, it follows that

L∑
l=1

Ykl = 1,

and
YklYkm = 0,

if l 6= m (Remark: m is used here as an index variable for the cells). As a consequence, the
expected values are

E(Ykl) = P (Ykl = 1) = πl = E(Y 2
kl),

and
E(YklYkm) = 0

if l 6= m. In matrix notation: E(Y k) = π and cov(Y k) = Σ, k = 1, . . . , N . What is left at
this point is the determination of the variance-covariance matrix Σ. From the preceding results
it follows that the elements on the main diagonal are

σll = var(Ykl) = E(Y 2
kl)− E(Ykl)2 = πl(1− πl).

The covariances on the off-diagonal l 6= m are given by

σkl = cov(Ykl, Ykm) = E(YklYkm)− E(Ykl)E(Ykm) = −πlπm.

Finally, the matrix Σ has the form

Σ = diag(π)− ππ′.

These results suggest that the frequencies cells in the rater contingency table are not independent
of each other. Therefore, the frequencies mii in the main diagonal (i = 1, . . . , I) are correlated.
Both test statistics require independent components: In the binomial test, the mii terms have
to be independent. In Stouffer’s approach, the independence condition applies to the zii terms,
which in turn are determined by the mii. As a consequence, the required assumptions for using
the test do not completely hold. Therefore, in the next section, simulation studies are performed
to show the influence of this covariance structure on the performance of the tests.

7



5 Simulation Studies

In this section, we present a simulation study of Stouffer’s Z and the binomial test. The objec-
tive of the simulation study is to investigate type I and type II error behavior of the proposed
test statistics for common rating situations. For this purpose, contingency tables varying in size,
agreement structure, and sample size had to be generated. The number of simulation runs per-
formed under each combinatorial setting of the parameters is fixed to NSim=2000. In addition
to Stouffer’s Z and the binomial test, two Likelihood Ratio tests (LR) for the well known quasi
independence model (QI),

log(mij) = λ + λA
i + λB

j + δiI(i = j)

which is commonly used in the context of agreement modeling (see for example [4] or [14]) are
given. I(i = j) is an indicator function with

I(i = j) =
{

1 i = j
0 i 6= j

The λ- parameters specify intercept and main effects, whereas δi permit the diagonal agreement
cells of the contingency tables to deviate from independence. The null hypothesis under the first
LR test assumes, that all δi parameters equal zero. Thus, this LR(1) test statistic is determined
by the difference in deviances between the more parsimonious log-linear main effect model (ME),
log(mij) = λ+λA

i +λB
j , and the more complex QI model. As usual, LR(1) is χ2- distributed with

df = dfME − dfQI . A second LR(2) test is performed which compares the intercept-only model
log(mij) = λ with QI. The corresponding Type I error rates are studied in the following section.

5.1 Type I Error Behavior

Analyzing type I error behavior of the proposed test statistics is carried out by determining the
failure rates of accepting H0 (H0 stating random agreement) if given data really stems from ran-
dom agreement.
To test type I error rates and to obtain rejection rates for the statistics of interest, numerous
random-agreement contingency tables must be created by simulation. One way to obtain these
contingency tables is to take draws from a multinomial distribution with fixed homogeneous proba-
bility structure. Performing the proposed tests (LR(1), LR(2), Z, ZBin) on the artificially generated
random-agreement data yields the following results for different sizes I of the contingency tables
and different sample sizes, N :

N LR(1) LR(2) Z ZBin ZBin H0, ZBin H0, ZBin H1, ZBin H1,
Z H0 Z H1 Z H0 Z H1

100 0.0620 0.0565 0.0275 0.0405 0.9595 0.000 0.0130 0.0275
300 0.0410 0.0470 0.0200 0.0485 0.9515 0.000 0.0285 0.0200
500 0.0540 0.0475 0.0290 0.0495 0.9505 0.000 0.0205 0.0290

1.000 0.0550 0.0605 0.0215 0.0520 0.9480 0.000 0.0305 0.0215
5.000 0.0515 0.0465 0.0265 0.0555 0.9445 0.000 0.0290 0.0265
10.000 0.0590 0.0565 0.0205 0.0450 0.9550 0.000 0.0245 0.0205
50.000 0.0480 0.0525 0.0235 0.0500 0.9500 0.000 0.0265 0.0235
500.000 0.0445 0.0440 0.0270 0.0555 0.9445 0.000 0.0285 0.0270

Table 2: Type I errors for test statistics, and cross classification rates - table size I = 3

The values in Tables 5.1 to 5.1 suggest the following interpretation: For almost all table sizes,
I, and sample sizes, N , the statistics Z, ZBin, LR(1) and LR(2) hold the α- level of .05. As can
be seen, Z is conservative compared to the other test statistics as its rejection rate is always lower
than the corresponding rate for ZBin (and the LR tests also). This can also bee seen in the four
right-most columns of the tables, which give cross classification rates: There is no case in which the
less rigorous test ZBin decides in favor of H0 and Z decides in favor of H1. Comparing rejection
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N LR(1) LR(2) Z ZBin ZBin H0, ZBin H0, ZBin H1, ZBin H1,
Z H0 Z H1 Z H0 Z H1

100 0.0700 0.0570 0.0370 0.0595 0.9405 0.000 0.0225 0.0370
300 0.0560 0.0565 0.0410 0.0525 0.9475 0.000 0.0115 0.0410
500 0.0665 0.0630 0.0355 0.0515 0.9485 0.000 0.0160 0.0355

1.000 0.0600 0.0560 0.0330 0.0570 0.9430 0.000 0.0240 0.0330
5.000 0.0435 0.0465 0.0340 0.0505 0.9495 0.000 0.0165 0.0340
10.000 0.0545 0.0545 0.0395 0.0590 0.9410 0.000 0.0195 0.0395
50.000 0.0665 0.0665 0.0380 0.0560 0.9440 0.000 0.0180 0.0380
500.000 0.0535 0.0505 0.0300 0.0445 0.9555 0.000 0.0145 0.0300

Table 3: Type I errors for test statistics, and cross classification rates - table size I = 5

N LR(1) LR(2) Z ZBin ZBin H0, ZBin H0, ZBin H1, ZBin H1,
Z H0 Z H1 Z H0 Z H1

100 0.0760 0.0655 0.0455 0.0455 0.9545 0.000 0.0000 0.0455
300 0.0585 0.0545 0.0425 0.0590 0.9410 0.000 0.0165 0.0425
500 0.0580 0.0610 0.0340 0.0465 0.9535 0.000 0.0125 0.0340

1.000 0.0500 0.0520 0.0405 0.0465 0.9535 0.000 0.0060 0.0405
5.000 0.0490 0.0480 0.0280 0.0430 0.9570 0.000 0.0150 0.0280
10.000 0.0495 0.0475 0.0355 0.0450 0.9550 0.000 0.0095 0.0355
50.000 0.0575 0.0540 0.0400 0.0520 0.9480 0.000 0.0120 0.0400
500.000 0.0550 0.0500 0.0325 0.0465 0.9535 0.000 0.0140 0.0325

Table 4: Type I errors for test statistics, and cross classification rates – table size I = 7

N LR(1) LR(2) Z ZBin ZBin H0, ZBin H0, ZBin H1, ZBin H1,
Z H0 Z H1 Z H0 Z H1

100 0.0655 0.0775 0.0495 0.0495 0.9505 0.000 0.0000 0.0495
300 0.0685 0.0625 0.0435 0.0435 0.9565 0.000 0.0000 0.0435
500 0.0630 0.0560 0.0440 0.0440 0.9560 0.000 0.0000 0.0440

1.000 0.0505 0.0475 0.0380 0.0510 0.9490 0.000 0.0130 0.0380
5.000 0.0540 0.0535 0.0445 0.0560 0.9440 0.000 0.0115 0.0445
10.000 0.0435 0.0460 0.0350 0.0425 0.9575 0.000 0.0075 0.0350
50.000 0.0485 0.0545 0.0405 0.0495 0.9505 0.000 0.0090 0.0405
500.000 0.0425 0.0470 0.0415 0.0565 0.9435 0.000 0.0150 0.0415

Table 5: Type I errors for test statistics, and cross classification rates – Table Size I = 9

rates of Z and ZBin over different table sizes, reveals a convergence tendency of both statistics.
Another simulation which covers table sizes up to I = 40 yields the results shown in Figure 5. In
the appendix, a proof is given that ZBin and Z coincide for I →∞.

5.2 Type II Error Behavior

Analyses of type II error rates is usually performed by systematically generating data with a
priori agreement structure, and determining the rate of wrong acceptance of H0 (H0 again assumes
random agreement). However, in this study we use the complementary measure, the rate of correct
rejection of H0, which corresponds to the power of the test statistics. Creating random contingency
tables which exhibit predefined degrees of agreement structure is somewhat more difficult. The
creation of agreement probability structures in this section is inspired by Brennan and Prediger’s
κn. In type II error simulations, the table size I, the sample size N, and the agreement structure
are varied systematically. While sample size and table size need no further explanation, the term
“agreement structure” or, in short, “agreement”, needs concrete specification. One possibility to
control for rating agreement is to adapt the sum of probabilities of the cells in which the two
decision making units agree exactly. Its minimum value, the case of random agreement, is 1/I;
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Figure 5: Type I error rates for Z (solid line) and Zbin (hashed line) for tables of increasing size

its maximum value is one. In the simulation runs, the variable AGRATE, varied in equal intervals
between zero and one, is used to indicate degree of agreement. The sum of the agreement diagonal
probabilities pag is given by:

pag = 1/I + (1 − 1/I ) ∗AGRATE

Increasing AGRATE in equal steps yields corresponding intervals for pag . Given a specific interval,
a uniform random number is drawn. This number represents the sum of the probabilities in the
agreement diagonal. Specific cell probabilities for the agreement diagonal are then generated
by uniformly distributing the probability mass of the agreement diagonal over its cells. The
same procedure is carried out for the off-diagonal, that is, the disagreement cells. Thus, for
each combination of the controlled variables table size I, agreement interval of AGRATE, and
sample size N , the probability structures, and finally, samples are generated by drawing from a
multinomial distribution.
In this simulation study, AGRATE varies in 35 steps, 4 table sizes were chosen (3 x 3, 5 x 5, 7 x
7 and 9 x 9), and the sample size ranged from 100 up to 500.000, in unequal, increasing intervals.
The results of this simulation procedure are summarized in Figures 6 to 9.
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Figure 6: Simulation results for power of LR,Z and ZBin tests, table size I = 3
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Figure 7: Simulation results for power of LR,Z and ZBin tests, table size I = 5
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Figure 8: Simulation results for power of LR,Z and ZBin tests, table size I = 7
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Figure 9: Simulation results for power of LR,Z and ZBin tests, table size I = 9
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All simulation runs, including the ones with table sizes between 3 x 3 and 9 x 9, show similar
patterns: If the real agreement effect in the data is extremely small, e.g. AGRATE ∈ [0;1/35], LR
tests provide considerably higher power than ZBin or Z. Independent of table size I, ZBin and Z
show a severe lack of power in this case. The power of these measures increases only very slowly
as sample size increases. However, as soon as the effect of agreement becomes stronger, Z and
ZBin catch up very quickly, coincide and sometimes even outperform LR tests in terms of power.
When size I of the table is increased, the power of Z and ZBin is approximately the same. An
application example using a real data set is given in the next session.

6 Data Example

The following example uses the data from Table 2. We calculate the expected cell frequencies
for r̂a and κn as 129/9 = 14.33. As was reported above, raw agreement of the two psychiatrists
who provided the data in Table 2 is r̂a = 0.74. The standardized deviates, zij , that result
for the null model that is used for Brennan and Prediger’s κn and for the significance test of the
coefficient of raw agreement, are displayed in 6. The estimated expected frequencies for this model
are m̂ij = N

I2 = 129
32 = 14.33.

Psychiatrist 2:
Severity of Depression

1 2 3

Psychiatrist 1: 1 -0.88 -3.52 -3.79

Severity of Depression 2 -3.26 -2.99 -1.67

3 1.23 -2.99 17.87

Table 6: Standardized deviates for the null model for the data in table 1

Table 6 shows that the high rate of exact raw agreement is carried mostly by Cell 3 3. This
cell contains far more judgements than expected based on the null model. The other two diagonal
cells make negative contributions by containing fewer cases than expected.
We now employ first the probability pooler, Stouffer’s Z , and then the binomial test to determine
whether 74% agreement is better than chance agreement as determined by the null model. We
calculate Z = (-0.88 - 2.994 + 17.873)/

√
3 = 8.082. This value is larger than the critical z0.05 =

1.96, and we conclude that the portion of raw agreement is significantly better than 1/I = 0.333.
For the binomial test, we estimate p as 1/I = 0.333, and q = 0.667. Inserting yields the z -
approximation ZBin = (96 - 129(.333))/

√
(129·0.333·0.667) = 53/5.35 = 9.90. This value also

suggests rejecting the null hypothesis of agreement that is no better than 0.333.

7 Summary and Discussion

In this article, we showed that significance tests can be devised for the coefficient of raw agreement
which, thus far, has only been used as a descriptive measure. The significance test is based on the
fact that Brennan and Prediger’s κn and ra are linearly dependent upon each other. Therefore,
the same base model can be employed to estimate expected cell frequencies. This base model is
the log-linear null model. The resulting expected cell frequencies serve as reference values, and can
be used to devise significance tests. Stouffer’s Z and the binomial test are proposed as significance
tests. Thus, the coefficient of raw agreement can be used for both, descriptive and test purposes.
Simulation studies showed that both test statistics perform well.
The comparison of Figures 6 to 9 shows an interesting characteristic of the present results. For
all tables and weak effects (AGRATE 0 - 1/35), the power of the two tests discussed here fails to
exceed 0.8, even when the sample size is as large as 5000. Even for effects of midrange magnitude,
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the tests approach p = 1 only slowly. Given weak effects, in larger tables, the power of the proposed
tests grows much faster than in smaller tables. This pattern is worth discussing because, for any
given sample size, the cell size in smaller tables is larger than in larger tables. The reason for the
lower power is the covariance structure discussed above. When tables are small, cells are more
dependent than in larger tables. In 3 x 3 tables, a third of the cells is located in the main diagonal.
In 9 x 9 tables, only 11% of the cells are in the main diagonal. The reduction in dependency is
reflected in the present results. Even when the cell size is smaller (larger tables; given sample
size), the tests display more power. Still, the two tests discussed here perform rather well even for
small tables.
One may wonder whether the two LR tests that were also used in the present simulations could be
recommended as significance tests for the measure of raw agreement. Two arguments prevent one
from making this recommendation. First, the LR(1) test used here uses a different base model than
appropriate for the measure of raw agreement. It uses the main effect model instead of the null
model. Second, and this argument applies to both LR tests, the tests are sensitive to deviations
from the base model that do not reflect rater agreement. It is easy to show that the LR(2) test
can indicate strong deviations from its base model even if there is zero rater agreement. In fact,
when ra = 0, the LR(2) test will signal deviations.
Because of this characteristic of the LR tests, the simulation results suggest superior power of the
LR tests over the Z and the binomial tests that may not exist. The Z and the binomial tests are
sensitive only to deviations caused by agreement beyond the degree proposed in the base model.
The LR test are also sensitive to deviations in other parts of the table.
The approach to a significance test for the coefficient of raw agreement proposed in this article
can be generalized in several ways. For example, raw agreement among three or more raters can
be studied. In addition, more complex base models can be considered, for example base models
with covariates.
The advantages of the coefficient of raw agreement over Cohen’s κ include that ra is not marginal-
dependent. It shares this characteristic with Brennan and Prediger’s κn [3] and Mart́ın and
Femia’s delta [15]. ra approximates the maximum value of 1 even if the marginal distribution is
very uneven. Now, that a significance test for ra exists, ra can be considered as a measure of rater
agreement that does not come with the interpretational problems of κ.
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[10] von Eye A, Sörensen S. Models of chance when measuring interrater agreement with kappa.
Biometrical Journal 1991; 33: 781-787.

[11] Stouffer SA, Suchman EA, DeVinney LC, Star SA, Williams RM Jr. The American soldier:
Adjustment during Army life (vol. 1). Princeton University Press: Princeton, NJ, 1949

[12] Darlington RB, Hayes AF. Combining independent p-values: Extensions of the Stouffer and
binomial models. Psychological Methods 2000; 5: 496 - 515.

[13] Strube MJ. Combining and comparing significance levels from nonindependent hypothesis
tests. Psychological Bulletin 1985; 97: 334 - 341.

[14] Agresti A. Categorical data analysis, 2nd ed., Wiley: New York, 2002

[15] Mart́ın AA, Femia MP. Delta: A new measure of agreement between two raters. British
Journal of Mathematical and Statistical Psychology 2004; 57: 1 - 19

17



A Appendix

The equivalence between Stouffer’s Z and the normal approximation Zbin of the binomial test for
a large number of rating categories I
As is well known, the binomial distribution can be approximated by the a normal distribution
when N is large. In this appendix, we show that Zbin and Z are equivalent if I is large. The idea
is to transform Z into Zbin. We use the statistics

Zbin =
∑

i mii − Np√
Np(1 − p)

and

Z =
1√
I

∑
i

mii − N / I2√
N / I2

if zii is inserted in Z . For the binomial test, the parameter p is estimated by 1/I . By applying this
assumption for the calculation of Stouffer’s Z , one obtains

Z =
√

p

[
1√
Np2

(∑
i

mii − Np

)]
Note that the last term Np follows from

∑
i

N
I2 = I N

I2 = Np.

For the denominator in the equation for Z , we obtain
√

Np2 = p
√

N, and, therefore,

Z =
√

p

p
√

N

(∑
i

mii − Np

)
=
∑

i mii − Np√
Np

This expression is similar to Zbin with the exception that, in the denominator, in Zbin, we find√
Np (1 − p) =

√
Np − Np2 compared to

√
Np in the Stouffer formula. Now, if I → ∞,

it follows that the binomial parameter p → 0. This implies that the denominators of both test
statistics are asymptotically equivalent. Since the difference between these two test statistics
concerns only the denominator, it follows that Z → Zbin for I → ∞. This result also shows that,
for small numbers of rating categories, the two test statistics produce different outcomes. In the
above example, the number of rater categories is 3, and the difference in the test statistics is about
1.8. The difference between the two statistics may not always be negligible (as it is in the above
example), in particular when the significance tests suggest contradictory statistical decisions.
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