WIRTSCHAFTS
UNIVERSITAT
WIEN VIENNA
UNIVERSITY OF
ECONOMICS
AND BUSINESS

EQUIS

CCREDITED

ePub"V Institutional Repository

Wolfgang Hérmann and Gerhard Derflinger

Rejection-Inversion to Generate Variates from Monotone Discrete
Distributions

Working Paper

Original Citation:

Hérmann, Wolfgang and Derflinger, Gerhard (1996) Rejection-Inversion to Generate Variates from
Monotone Discrete Distributions. Preprint Series / Department of Applied Statistics and Data
Processing, 15. Department of Statistics and Mathematics, Abt. f. Angewandte Statistik u.
Datenverarbeitung, WU Vienna University of Economics and Business, Vienna.

This version is available at: http://epub.wu.ac.at/1176/
Available in ePubWY: July 2006

ePub™Y| the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

http://epub.wu.ac.at/


https://core.ac.uk/display/11007222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epub.wu.ac.at/1176/
http://epub.wu.ac.at/

Rejection-Inversion to Generate
Variates from Monotone Discrete
Distributions

Wolfgang Hormann and Gerhard Derflinger

Department of Applied Statistics and Data Processing
Wirtschaftsuniversitat Wien

Preprint Series

Preprint 15
April 1996

http://statmath.wu-wien.ac.at/

WIRTSCHAETS
UNIVERSITAT

VEELN
<




Rejection-Inversion to Generate Variates

from Monotone Discrete Distributions

W. HORMANN and G. DERFLINGER
University of Economics and Business Administration Vienna
Department of Statistics, Augasse 2-6, A-1090 Vienna, Austria

e-mail: whoer@statrix2.wu-wien.ac.at

For discrete distributions a variant of rejection from a continuous hat function is presented.
The main advantage of the new method, called rejection-inversion, is that no extra uni-
form random number to decide between acceptance and rejection is required which means
that the expected number of uniform variates required is halved. Using rejection-inversion
and a squeeze, a simple universal method for a large class of monotone discrete distri-
butions is developed. It can be used to generate variates from the tails of most standard
discrete distributions. Rejection-inversion applied to the Zipf (or zeta) distribution results
in algorithms that are short and simple and at least twice as fast as the fastest methods

suggested in the literature.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and

Statistics random number generation

General Term: Algorithms

Additional Terms: Rejection method, Zipf distribution, tail of Poisson distribution, uni-

versal algorithm, T-concave

1. INTRODUCTION

In random-variate generation literature (for good monographs see Devroye [1986]



and Dagpunar [1988]) general methods for discrete distributions include two table
methods (i.e. inversion by sequential or table-aided search and the alias method)
and rejection from continuous or discrete dominating distributions. The advantages
of rejection compared with the others are that no tables are necessary, that the
method can cope with infinite tails, and that the generation time is not affected by
the size of the domain of the distribution. On the other hand, rejection algorithms
are often quite slow because a continuous majorizing function (also called hat) does
not fit so well and that there is little choice between discrete hats. The relatively
large expected number of uniform random variates required (above two for any
standard rejection algorithm) is an additional drawback.

When developing a fast generator for the Zipf distribution we found a general
principle, called rejection-inversion, that can improve the fit of the continuous hat
of rejection algorithms. It can be applied to distributions with heavy tails. This is
important because table methods are useless for this case and rejection-inversion
halves the expected number of uniform random numbers required to generate one
discrete variate, as no extra uniform random number to decide between acceptance
and rejection is necessary. This is possible as the regions of acceptance and rejection
are not separated by a horizontal line as in ordinary rejection algorithms but by a
vertical line. Technically, it is necessary that the hat function h(x) of the rejection
algorithm has a known integral H(y) = — fyoo h(z) dz and inverse integral H~!(y).
For each integer k, let p, = P(X = k) where X denotes the discrete random variable
we want to generate. Then Figure 1 shows the hat h and for an arbitrary point k,
the probability py (illustrated by the height of the thick line), the region of rejection
(between k — 1/2 and xy), and the shaded region of acceptance (between z; and

k + 1/2). The main idea can be sketched as follows:



ALGORITHM REJECTION-INVERSION

Repeat
Generate a random variate X with density proportional to the hat h(z).
Set K + | X +1/2].

Until X > zk;

Return K.

Section 2 presents the technical details of rejection-inversion for arbitrary con-
vex hat functions; Section 3 discusses the choice of optimal hats for a large class
of distributions whereas Section 4 proves the validity of the squeeze introduced in
Section 2. After the theoretical development of the main ideas, given in Sections
2 to 4, Sections 5 to 7, as an application of the theory, present descriptions and
performance characteristics of rejection-inversion algorithms for a large class of mo-
notone discrete distributions (Section 5), for Poisson tails (Section 6) and for the

Zipf distribution (Section 7).

2. REJECTION-INVERSION

To generate random variates from a monotone discrete distribution with probabi-
lities proportional to pg for k& > m is of practical importance as this allows the
generation from the tails of standard distributions. Using standard rejection from a
continuous hat h(z), it is suggested in the literature to choose the hat such that the
histogram of the discrete distribution is below h(x) i.e. pr < h(k — 1/2) with h(z)
defined for > m —1/2. As the evaluation of the probabilities py, is time consuming
in most cases, the speed of the rejection algorithm is improved if we can find an
easy-to-compute squeeze s, with sy < pg for & > m. The standard rejection algo-

rithm then works in the following way. The construct “While true do” here means



that the indented set of instructions that follow is repeated indefinitely often. The

statement “return K” exits this loop and the algorithm then outputs the value K.

ALGORITHM SR: Standard Rejection
While true do
Generate a random variate X with density proportional to h;
Generate a uniform random number U;
Set K «+ | X +1/2];
If Uh(X) < sk then return K

else if Uh(X) < pk then return K.

An important measure for the quality of the rejection algorithm is the expected
number of iterations a. For the above algorithm we have

>, h(z) dx

m—1/2

Zf: Dk

a =
The acceptance probability is 1/a.

Rejection-inversion lowers . and halves the number of uniform random numbers

required. We need a hat h(z) defined for z > m — 1/2 with fkkjll//; h

(z) dz > py
for all k& > m. It is obvious that an easy to check sufficient condition for this is A
convex and pg < h(k). Now we decide between acceptance and rejection by testing
if the random variate X, which lies in the interval (k —1/2,k+ 1/2), is left or right
of the point zx. This point, separating the region of acceptance (between x; and
k + 1/2) from the region of rejection (between k£ — 1/2 and zj,), can be computed
easily. It is only necessary to know H(z) = — f:c h(z) dz and the inverse function

H~! (which is in any case necessary if we want to generate X by inversion). From

the equation

k+1/2
/ h(ﬂ?)dl‘:H(kJ-‘-l/Z)*H(Ik):pk

Tk



we get zp, = H '(H(k + 1/2) — pi,). This gives the acceptance condition X >
HY(H(k+1/2) — py).

As m is the left end of the domain, it is possible for this point to make rejection
impossible by just defining h(z) = 0 for x < z,,,. Because then we have X = H~'(U)
where U is uniformly distributed in the interval (H(z,,), H(co) = 0), and the
acceptance condition simplifies to U > H(k + 1/2) — pi. Figure 1 shows the curve
h(z), the region of acceptance with its probability represented by the shaded area,
and the probability py represented by the thick line. If we can find a k, such that
k — xj, is non-decreasing for m < k < k,, then m — z,,, is a simple lower bound on
k — xj, for these values of k and can be used as a squeeze. It is also possible to use
m+1— x,41 as a (second) squeeze for k — xzp, if m +1 < k < k,. For k = m it is
not a squeeze but this does not matter as rejection is impossible in this case. The
advantage of the second squeeze is the better fit, but on the other hand it requires
additional computations for the set-up. We use the second squeeze only for the Zipf
distribution. The details of the new algorithm are as follows. The choice of the hat

h(z) and its integral H(x) are discussed in Section 3.

ALGORITHM RI: Rejection-Inversion
[Set-up]
Compute and store y, < H(m + 1/2) — pm, Tm < H 1 (yy) and determine k,.
[Generator]
While true do
Generate a uniform random number U;
Set U < Uym;
Set X « H-1(U);

Set K « | X +1/2];



If (K <k,and K — X <m — x,,) then return K;

Else if U > H(K + 1/2) — pk then return K.

What are the performance characteristics of Algorithm RI? For fixed h, the ex-

pected number of iterations

Pm + f;cH/Q h(z) dx
o= =
> Dk

is lower than for Algorithm SR as there is no rejection possible for m. In addition
the condition pi, < h(k) allows a better fit for h than pr < h(k — 1/2). The most
important advantage of Algorithm RI is that the number of uniforms required for
one iteration is one compared with two for Algorithm SR. This property is the
reason why we suggest the name rejection-inversion for the new method. With no
squeeze, the numbers of evaluations of p; and of H~! per iteration equal 1 for
both methods if the generation of X is done by inversion in Algorithm SR. For
Algorithm RI one additional evaluation of H, and for Algorithm SR one of h are
necessary. These theoretical performance measures show that Algorithm RI can
result in simple and comparably fast generators as long as we can use the simple
squeeze and can find a class of convex hat functions with simple and invertible
integrals H. Of practical importance is h(z) = a/(b+ z)? with ¢ > 1 (with the
simplest case ¢ = 2). Considering the equivalent form a/(1 — bz/q)?, we can take
the limit as ¢ — oo to get the hat h(z) = @exp(bz). Table 1 contains the information
necessary to use these functions as hat functions in Algorithm RI, only the choice

of (a,b) and the last two columns will be explained below.

Table 1: Classes of hat functions



q h(zx) H(z) H () T. ¢

(1/(a—1))
a a/(—g+1) a c
1<q<OC (b+.t)‘7 W —b+ (w(lfq)) —X _1<C<0
2 - —_—— hoe 1E 12
% ae’®  aeb® /b log(xb/a)/b log(x) 0

3. THE CHOICE OF AN OPTIMAL HAT

To use Algorithm RI with one of the hat functions given in Table 1, it is necessary
to choose the parameters a and b. As this is easier in the case of continuous random
variables with density f(z) we shall discuss this case first. The problem becomes
much clearer if we use the transformations T¢, defined by T.(z) = —z¢ for —1 <
¢ < 0 and To(z) = log(z), given in Table 1. For ¢ = —1/q, T. transforms the
corresponding hat function into a straight line. Therefore — in a transformed scale
— the hat function is a tangent line touching the transformed density T.(f(z)) in
a single point of contact. Choosing an arbitrary point of contact, h remains a hat
function for f(z) as long as the transformed density 7.(f(z)) is concave. For a
fixed ¢ the class of all densities with this property is called T.-concave and are
discussed in detail in Hérmann [1995]. To optimize the choice of a and b for a class
of hat functions, it is then enough to optimize the choice of the point of contact.
Surprisingly, it turns out that — although the transformations and corresponding hat
functions are totally different regarding their behavior at zero and towards infinity

the optimal point of contact does not depend on the choice of the transformation
T.. Using this optimal point of contact, a is uniformly bounded for all distributions

that are T.-concave for an arbitrary but fixed c. We have the following:

THEOREM 1: Given a transformation T, = —z° for —1 < ¢ < 0 or Ty = log(z)

with the corresponding hat function h(z) = a/(b+ z)? with ¢ = —1/c or h(z) =



aexp(bz) for ¢ = 0, and a monotone continuous T.-concave density f(z) defined for
x > m, which is twice differentiable with the possible exception of countably many
isolated jumps of f', the area below the hat (i.e. @) is minimized if the touching

point x, is chosen such that

F(@) (s = m) = max (£(x) (x — m)) 1)

z>m

This means that we take the parameters a, b of h(z) such that

h(zo,) = f(z,) and K(z,) = f(wo) (2)

m — x,

This implies that h'(z,) = f'(z,) for the case that f'(x,) exists.

For all T.-concave densities with the hat chosen according to (1) and (2) « is

bounded by a < (1 + ¢)'/¢ for ¢ < 0 and a < e for ¢ = 0.

PROOF: In a first step we assume that f is twice differentiable. It is convenient to
write the hat function touching in the point z; in the form: 7' (g(z1) + ¢’ (z1)(z —
x1)) where g(z) = T.(f(x)). We start with T.(z) = —2° and minimize the area

below the hat

(—g(z1) — g'(z1)(m — z1))"/ct!
(1/c+1)g' (1) '

Alw) = [ (=gl = (1) = 20)) "V do =
Differentiation and some simplification give

dA (@) (=g(e1) — g'(er)(m — 21)1/*
dz o o2 (1/c+ 1)

[9(z1) — g'(z1)(m — z1)/c].

As g is concave it is clear that the fraction is always greater or equal 0. Differentiation

of the part in square brackets yields ¢'(z1)(1/c¢+ 1) — g"(z1)(m — x1)/c > 0 which

shows that A has its global minimum at the point x, satisfying m — x, = %.

Substituting the definition of g gives

3)

co



Considering the argument above together with differentiation of (z —m) f(z) shows
that (z — m)f(z) has for £ > m one global maximum and thus (3) and (1) are
equivalent.

To compute the value of A(z,) it is best to substitute (3) into the formula for
A which results in A(z,) = (14 ¢)'/¢f(z,)(z, —m). A simple consideration shows
that for any monotone density f(z)(z —m) < 1 which proves the bound of a.

For T.(xz) = log(x) a similar computation results in the same condition for z,.
For A(z,) we obtain A(z,) = lim._o(1 + ¢)"/¢f(zo)(xo — m) = e f(zo)(x, — m),

which completes the proof for twice differentiable f.

If f' is discontinuous in isolated points, the choice of x, according to (1) follows
from the above proof as any f is the limit of a uniformly convergent sequence
fn of twice differentiable functions with optimal point of contact (z,),. Obviously
Ty = lim, 00 (%) n. Therefore (2) can be used to determine the parameters a and
b. Using the sequence f), it is easily seen that the bound for the optimal a remains

valid. O

Now we can return to our main topic: The generation of discrete random variates.
First it is necessary to define g(z) as the function which has as graph the polygon
with vertices (k, T.(px)). Then a discrete random variate is called T,-concave if this
polygon g is concave. It is possible to apply the result of Theorem 1 to f= T.'(9)
which is a continuous interpolation of the points (k, pg). Thus it is not difficult to

prove:

COROLLARY 1: Given a transformation 7. = —z¢ for —1 < ¢ < 0 or Ty = log(z)
with the corresponding hat function h(z) = a/(b+ z)? with ¢ = —1/c or h(z) =

aexp(bz) for ¢ = 0, a discrete T.-concave random variate with probabilities p; and



the minimal T.-concave continuous interpolation f (for the construction see the
definition above), the area below the hat of Algorithm RI (i.e. ) is minimized if

the touching point z, is chosen such that

Flao) # (20— (m+1/2)) = _max (@) * (@ = (m +1/2). 4

This means that we take the parameters a, b of h(z) such that

f(z,)

hwo) = flao)  and W(zo) = =50 .

()

For all T,-concave discrete distributions with A chosen according to (4) and (5) we

have: a < (14 ¢)'/¢ for ¢ < 0 and a < e for ¢ = 0.

PRrROOF: As in Algorithm RI no rejection is possible for the case K = m we are only
interested in f(r) for x > m+1/2. f is the infimum over all possible continuous,
monotone and T,-concave interpolations of the py. It is easy to see that f fulfills
the conditions of Theorem 1 and that p,, + f;ilm f(z) dz < 1. Applying Theorem

1 thus completes the proof. O

REMARK 1: Corollary 1 can be used in a simple way to determine the optimal
hat function for a discrete distribution: First use a search procedure to determine
the point of contact k, such that px, (k, — (m + 1/2)) = maxy (pr(k — (m + 1/2))).
This is simple, as the argument below (3) implies that pr(k — (m + 1/2)) has only
one local maximum. Then compute the optimal h'(k,) according to Corollary 1 and
the parameters a and b from the equations for h'(k,) and h(k,). As k, need not
be equal to z, it is necessary to test if h(k, — 1) < pg._1 (in this case z, is in the
interval (k, — 1,k,) and a and b must be chosen such that h connects the points
(ko —1,pg,—1) and (ko,px,)) or if h(k,+1) < pg, 41 (in this case z, is in the interval
(ko, ko + 1) and a and b must be chosen such that h connects the points (ko, p,)

and (ko + 1,pr,+1))-

10



REMARK 2: It is obvious that, following the guidelines of Remark 1, the deter-
mination of the optimal hat function can become very time consuming. Therefore
the following simple idea to find a hat very close to the optimal hat is of practical
importance. Based on (2) in Theorem 1 the optimal point of contact for a conti-
nuous distribution z, must have the property that f'(z,) = f(z,)/(m — z,). For
discrete distributions it is therefore possible to find a point z, close to the optimal
k, if we take some natural continuous interpolation of the points (k, p;) and solve
the equation p(z + 1) — p(z) = p(z)/(m — z) or equivalently

plz+1) 1
C TR

For discrete distributions where the p; have a simple recurrence the above equation
can be solved analytically (as is the case, e.g., for Poisson, binomial and hypergeo-
metric tails) or by some numerical approximation. To find a hat close to optimal
it is enough to compute this (possibly approximate) solution z, of the equation
and to take k, = |z, + 1]. The hat h is then chosen such that h(k,) = pg, and

h(ko - 1) = Pk,—1

4. THE SQUEEZE

To show the validity of the squeeze used in Algorithm RI we need the following;:
THEOREM 2: Given a discrete distribution, which for a fixed ¢ is T,.-concave, and

a hat function h(z) = a/(b+ z)? with ¢ = —1/c or h(z) = aexp(bz) for ¢ = 0

touching the distribution in an arbitrary integer point k, we have:
k — xy, is non-decreasing for m < k < k,

where x;, = H 1(H(k + 1/2) — pi) denotes the point that separates the region of

acceptance and rejection for the integer k.

11



PROOF: First we consider the special case that h(k) = py, for & > m:

o = o(k) = k — z is defined implicitly by

k+1/2
/k h(u) du — h(k) = 0. (6)

—0

In a more complicated but equivalent form we can rewrite (6) as

k- ph(k) ko ph(u) k+1/2  ph(k)
- / / dt du + / / dt du — / / dt du = 0. (7)
Jr—172Jo Jh—o Jh(k) Jr Jh(u)

Differentiating (6) implicitly after & (which is no longer restricted to integer values)
gives
o k+1/2
hk —0)— = —h(k+1/2)+ h(k — o) + W' (k) :/ d(u) du — ¢(k), (8)
k—o

with ¢(k) = —h'(k) > 0. The right side of (8) can be rewritten analogously to the

left side of (6) as

do k—o  ro(k) ko po(u) k+1/2 ro(k)
h(kfo)—:f/ / dtdu+/ / dtduf/ / dt du.
dk k—1/2Jo k—o J (k) k é(u)

The substitution t = ¢(h~1(s)) = —1/(h~1)'(s), dt = (=1/(h~1)'(s))'ds together

with the notation A(s) = (—1/(h~")'(s))’ implies that

- = o |= A(s) ds du+ 9
dk h(k — o) [ k—1/2 Jo ) (

~

ko ph(u) k+1/2  ph(k)
/ / A(s) ds du — / / A(s)dsdu| .
k—o Jh(k) k h(u)

A standard calculation shows that A'(¢) > 0 for all classes of hat functions of Table
1. Thus it is easy to see that replacing A(s) by A(h(k)) in (9) gives a lower bound
for o'. Together with (7) we have ¢’ > 0 which completes the proof for the special
case.

For the general case we define D(k) = h(k) — p(k) where p(k) is a continuous,

differentiable interpolation of the points (k, px), and have instead of (6)

k+1/2
/ h(u) du — h(k) + D(k) = 0.
k

—a

12



Following the argumentation above we get

do D' (k)
ax - 9= h(k — o)

which completes the proof as D'(k) < 0 for m < k < k,. O

5. UNIVERSAL ALGORITHMS

Putting together the results of Sections 2 to 4 it is now no problem to describe a
uniformly fast universal algorithm for the tail of a log-concave discrete distribution
with probabilities proportional to px and mode m. (p(x) denotes a simple continuous
interpolation of the points (k,px)). For the functions needed for Algorithm RI we
take h(z) = aexp(bz), H(z) = aexp(bx)/b, H '(x) = log(zb/a)/b. Remark 2 of

Section 3 is used to compute nearly optimal parameters a and b for the hat.

ALGORITHM RILC: Rejection-Inversion for log-concave distributions
[Set-up]
Find an (approximate) solution z, for p(z + 1)/p(z) =14+ 1/(m — z).
Compute k, < |z, + 1|, b < log(pk,) — log(pk,—1), a < pr, exp(—bk,),
Ym < aexp(b(m +1/2)) /b — pm, Tm < log(ymb/a)/b.
[Generator]
While true do

Generate a uniform random number U;

Set U < Uym;

Set X « log(Ub/a)/b;

Set K «+ | X +1/2];

If (K <k, and K — X <m — x,,) then return K;

Else if U > aexp(b(K + 1/2))/b — pk then return K.

13



For the tail of an arbitrary discrete T.-concave distribution everything is very
similar but with h(z) = a/(b+2)?, H(z) = (a/(—q+1))/(b+2) ! and H!(2) =
—b+ (a/(z(1 - ¢)))"“") Due to the easy-to-compute forms of H and H~! the
algorithm executes fastest if we take ¢ = 2 which is possible if the distribution is at

least T_; /5-concave.

ALGORITHM RITC: Rejection-Inversion for T, -concave distributions
[Set-up]
Take a fixed ¢ with 1 < ¢ < —1/co.
Define H(z) = (a/(—q+1))/(b+2)"" and H~'(z) = =b+ (a/(x(1 — )"/ =)
as in-line functions or macros.
Find an (approximate) solution z, for p(z + 1)/p(z) =14+ 1/(m — z).
Compute ko < [, + 1], p ¢ (pr,—1/p,)"9, b (Blko — 1) — ko) /(1 — B),
a <+ Pr,(b+ k)Y Y — Hm +1/2) = D, T — H H(Ym)-
[Generator]
While true do

Generate a uniform random number U;

Set U + Uy;

Set X < H 1(U);

Set K «+ | X +1/2];

If (K <k, and K — X <m — x,,) then return K;

Else it U > H(K + 1/2) — pk then return K.

Using Algorithm RILC or RITC we can generate the tails of most of the classical
discrete distributions including the Poisson, binomial, hypergeometric and negative
binomial distributions which are all log-concave. Even more important is the fact

that heavy tails can be generated as well using Algorithm RITC with ¢ = 2 for

14



subquadratic tails and with ¢ < 2 for heavier ones. This is of practical importance as
for the modeling of the input distributions of simulation models the sub-exponential
tails of the classical discrete distributions are often too thin and little advice is given
in simulation literature how to generate random variates from discrete distributions
with thicker tails.

The two algorithms could also be used as the main building block of a program
that generates random variates from arbitrary discrete T.-concave distributions (for
a universal algorithm for discrete log-concave distributions see for example Hérmann
[1994]) as these distributions are unimodal and can thus be decomposed at the mode

into two monotone parts.

6. POISSON TAILS

We tested Algorithm RILC for the right tail of the Poisson distribution with mean

w1 and cut-off point m (i.e. X > m). The computation of z, reduces to the solution

of a quadratic equation: z, = (m + p)/2 +/(m — u)2/4 +m + 1. It is easy to see
that for the Poisson distribution a is bounded by the a for the positive standard
normal distribution, which is \/2e/m = 1.315.....

We know that comparative timings are only of limited evidence as they depend
heavily on the speed of the uniform generator used and on the implementation of
the evaluation of the py’s. Nevertheless, we include in Table 2 the comparison of
the speed of our C implementations of Algorithm RILC optimized for the tail of the
Poisson distribution (using a multiple recursive linear congruential generator with
module 23! — 1 as uniform generator) with the speed of a simple tail generation
method for the Poisson distribution using rejection from a geometric hat, which
was suggested by Dagpunar [1988] (p. 148). There the cut-off point is called m as

well. The execution times given in Table 2 are the averages from 10° calls to the

15



generator (the overhead of the measurement program was subtracted). The first
decimal place of the given numbers is meaningful but not necessarily correct.

We think that this comparison demonstrates the potential of the rejection-inversion
method. The good speed is due to the use of the squeeze, to the reduced number of
uniform variates required, and to the good fit of the nearly optimal hat computed
in the set-up. This set-up is slower than the set-up of Dagpunar’s algorithm but

still quite fast.

7. A NEW GENERATOR FOR THE ZIPF DISTRIBUTION

The Zipf distribution — also called (Riemann) zeta or discrete Pareto distribution
— is frequently used in linguistics and other social sciences to model the number
of occurrences of certain events. (See Johnson et al. [1992], Dagpunar [1988], and
references given there.) In simulation studies it could be well used to model the tail
part of discrete input distributions, at least to carry out a sensitivity analysis of
how strongly the tail shape influences the simulation results. We will consider the
two parameter generalization as defined in Dagpunar [1988] with the unnormalized
probability function

(k=0,1,...),

1
P =01 k)

where ¢ > 1, v > 0. It is clear that h(x) = 1/(v+ x)? is a hat function that touches
at every integer and that the distribution is Ti.-concave with respect to this hat
function. Therefore Algorithm RI and the second version of the squeeze described
before the algorithm can be used. Theorem 2 implies that the squeeze is valid for all
k> m+1 as oo is a touching point as well. We include a formal description of our
Zipf-generator as this facilitates its application. One practical problem can occur
for small values of ¢ if the random number X generated by inversion is larger than

the largest representable integer 4,,4.. Therefore X is not generated in the interval

16



(Tm,00) but in the interval (,,imaes + 1/2) which means that U is uniformly

distributed over (H (), H (iymax + 1/2)).

AvrcoriTHM ZRI: (Zipf-distribution generated with rejection-inversion)
[Set-up]
Let ¢ and v be the parameters of the Zipf distribution. Compute and store 1 — g,
1/(1—¢q) and define H(z) + exp((1—q)*log(v+z))*(1/(1—¢q)) and H () + —v+
exp((1/(1—q)) *log((1 — q) *x)) as in-line functions or macros. Compute and store
H(zo) + H(1/2) —exp(log(v) *(—q)), s - 1— H ' (H(3/2) —exp(log(v+1) *(—q)))
and H (imeq +1/2).
[Generator]
While true do

Generate a uniform random number U;

Set U < H(imaz +1/2) + U * (H(z0) — H(imaz + 1/2));

Set X < H 1(U);

Set K «+ | X +1/2];

If (K — X < s) then return K;

Else if (U > H(K + 1/2) — exp(—log(v + K) % ¢)) then return K.

To evaluate the quality of Algorithm ZRI it is important to discuss the value of «
and the expected number of operations necessary to generate one random number

from the Zipf distribution. We have:

THEOREM 3: The expected number a(q,v) of iterations for Algorithm ZRI is
uniformly bounded for all values of ¢ > 1 and of v > 0. The smallest upper bound

is given by the maximum of the function
oty =(1+e2/)1—e?), t>0.
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REMARK: By numerical methods one finds that ¢(t) takes its maximum value

1.023775 at ¢t = 2.111114. Therefore o < 1.023775 for all ¢ > 1, v > 0.

PROOF: First we show that

lim a(q,v) =1, qg>1, (10)
v—0
UILH;O ag,v) =1, qg>1 (11)

q [*° —q
1+v fv+1/21 dx

14+v9¢(g,v+1) =1

For (10) consider lim,_,q a(q,v) = lim,_o

To show (11) we use .Lﬁ1/2 x4 dx < {(q,v+1/2) < ((g,v) twice:

fv(j1/2 7 9dr — ((q,v+1) 1
a(g,v) =1+ <14+ —F——K<
(@7) @) v C(q,0)
1 -1 +1/2)171
DU U E 1 U
4 vt1)2 T 9 dx v

For v — oo the fraction converges towards zero which proves (11).

Because of (10) and (11), for fixed ¢ > 1 the function a(g,v), which is ob-
viously continuous, must have a conditional maximum at a point v = wv,,(q):
max, a(q,v) = a(q,vm(q)). As a(q,v) is differentiable with respect to v we have
%a(q, V) ‘U:Um(q) = 0. An easy calculation shows the equivalence of this condition

to a(q,vm(q)) = a(q + 1,vm(g)) which implies a(g, vm(q)) < alq + 1,vm(g + 1)).

Thus for any starting value the sequence

maxa(q + k,v) k=0,1,2,..., (12)

is monotone increasing.

Now, using the inequalities exp(1/(1 + z)) < 1+ 1/z < exp(1/z), for z > 0,

which can be easily verified, we construct an upper bound of a:




We substitute v = (¢ — 1)/t and consider « as a function of ¢ and ¢:

o< (st (525)) (o (1 117)

Specifying this for the sequence (12) of the conditional maxima and taking the limit
for k — oo gives

lim maxa(g + k,t) < max ¢(t).
k—oo t

It is evident that lim; ,~ ¢(#) = 1. That lim; ¢ #(¢) = 1 can be easily shown. Thus,
as ¢(t) is continuous, it is bounded. It follows that max ¢(¢) is an upper bound of

a. In order to prove that it is the smallest upper bound we consider

1+l(1+—t )17(1 14+ ( f)/f
- exp(—1%)/t
lim a(g,t) = lim ! 2 D) = LA — =

g—o0 g—00 00 it \ ¢ OO: exp(—jt)
Z]‘:o (1 + q]Tl) Z] 0

b(t).

This completes the proof of the theorem. O

The expected number of power operations (implemented with one call to exp and
one to log) is well below 1.1 for all parameter combinations we tried, due to the
good fit of the squeeze. The theoretical properties (especially the very low a) and
the simple and short code show that Algorithm ZRI is really well suited for the
generation of random variates from the Zipf distribution. This fact becomes even
more apparent if we compare the performance of ZRI with algorithms suggested
in the literature. First, it is important to note that the two standard methods for
the generation of discrete random variates (inversion and the alias method) have
several disadvantages for the Zipf distribution. It is necessary for both methods to
compute the normalization constant which includes the evaluation of the {-function
which is time consuming and requires care. For small values of ¢ both standard
methods are useless. As the tails of the distribution are too heavy the expected
number of comparisons when using inversion by sequential search is unbounded for

q < 2. For the alias method heavy-tailed distributions cause problems as the cut off
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point where the tail probability is smaller than a threshold (e.g. 2732 for uniform
random number generators working with 32 bit integers) can be very large which
means that millions of probabilities must be computed and stored in a set-up step.
For the Zipf distribution with v = 1 and g = 2 the cut off point is about 2 - 10°

which shows that the alias method is out of question for low values of q.

Table 2: Average execution times in p-seconds

tail of Poisson distribution with mean pu

o 10 100 1000 set-

m 12 20 102 130 1010 1050 up

DAGP 184 11.5 473 146 44.1 193 10

RILC 11.6 88 157 104 159 125 30

Zipf distribution

q 1.1 2 10 set-

v 1 10 1 10 1 10 up

DAGP 188 146 31.2 138 36.6 219 3.3
DEVR 214 - 16.8 - 13.8 - 1.0

ZRI 7.2 7.1 7.0 6.9 6.6 71 321

In the literature we found only two algorithms especially designed for the Zipf dis-
tribution. One, by Devroye [1986], (with a better bound for a proved by Baringhaus
[1989]) is based on rejection from a discrete hat and works for the case v = 1 only.
The second, by Dagpunar [1988], is based on Algorithm SR. Both have a larger
a than ZRI, need two uniform random numbers per iteration and use no squeeze.
The code length of the three generators are about the same but Algorithm ZRI is
— depending on the parameter combinations — between two and four times faster

than the algorithms suggested by Devroye [1986] and by Dagpunar [1988]. For the
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results of our timings see Table 2.

For the case ¢ = 1.1 the execution times are influenced by the fact that algo-
rithms DAGP and DEVR reject values larger than 4,,,,. Additional timings showed
that the use of this rejection would slow down Algorithm ZRI by about ten percent

for the case ¢ = 1.1.

8. CONCLUSION

The rejection-inversion method developed in this paper has several advantages over
standard rejection methods to generate discrete random variates. Especially im-
portant is the fact that it requires only half of the uniform random numbers. Also
concerning simplicity and speed the presented algorithms for the Zipf distribution
and for a large class of monotone discrete distributions compare well with the al-
gorithms presented in literature. Rejection-inversion can be used to sample from
the tails of classical discrete distributions and to generate variates from discrete
distributions with heavy tails which is important as for these distributions the very
fast table methods cannot be used. Rejection-inversion can also be used to design
universal algorithms for T.-concave discrete distributions by applying the idea pre-
sented in Hérmann [1995] to discrete distributions. The details of this development

will be given in a subsequent paper.
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