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Rejection-Inversion to Generate Variatesfrom Monotone Discrete DistributionsW. H�ORMANN and G. DERFLINGERUniversity of Economics and Business Administration ViennaDepartment of Statistics, Augasse 2-6, A-1090 Vienna, Austriae-mail: whoer@statrix2.wu-wien.ac.atFor discrete distributions a variant of rejection from a continuous hat function is presented.The main advantage of the new method, called rejection-inversion, is that no extra uni-form random number to decide between acceptance and rejection is required which meansthat the expected number of uniform variates required is halved. Using rejection-inversionand a squeeze, a simple universal method for a large class of monotone discrete distri-butions is developed. It can be used to generate variates from the tails of most standarddiscrete distributions. Rejection-inversion applied to the Zipf (or zeta) distribution resultsin algorithms that are short and simple and at least twice as fast as the fastest methodssuggested in the literature.Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability andStatistics{random number generationGeneral Term: AlgorithmsAdditional Terms: Rejection method, Zipf distribution, tail of Poisson distribution, uni-versal algorithm, T-concave1. INTRODUCTIONIn random-variate generation literature (for good monographs see Devroye [1986]1



and Dagpunar [1988]) general methods for discrete distributions include two tablemethods (i.e. inversion by sequential or table-aided search and the alias method)and rejection from continuous or discrete dominating distributions. The advantagesof rejection compared with the others are that no tables are necessary, that themethod can cope with in�nite tails, and that the generation time is not a�ected bythe size of the domain of the distribution. On the other hand, rejection algorithmsare often quite slow because a continuous majorizing function (also called hat) doesnot �t so well and that there is little choice between discrete hats. The relativelylarge expected number of uniform random variates required (above two for anystandard rejection algorithm) is an additional drawback.When developing a fast generator for the Zipf distribution we found a generalprinciple, called rejection-inversion, that can improve the �t of the continuous hatof rejection algorithms. It can be applied to distributions with heavy tails. This isimportant because table methods are useless for this case and rejection-inversionhalves the expected number of uniform random numbers required to generate onediscrete variate, as no extra uniform random number to decide between acceptanceand rejection is necessary. This is possible as the regions of acceptance and rejectionare not separated by a horizontal line as in ordinary rejection algorithms but by avertical line. Technically, it is necessary that the hat function h(x) of the rejectionalgorithm has a known integral H(y) = � R1y h(x) dx and inverse integral H�1(y).For each integer k, let pk = P (X = k) whereX denotes the discrete random variablewe want to generate. Then Figure 1 shows the hat h and for an arbitrary point k,the probability pk (illustrated by the height of the thick line), the region of rejection(between k � 1=2 and xk), and the shaded region of acceptance (between xk andk + 1=2). The main idea can be sketched as follows:
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Algorithm Rejection-InversionRepeatGenerate a random variate X with density proportional to the hat h(x).Set K  bX + 1=2c.Until X � xK ;Return K.Section 2 presents the technical details of rejection-inversion for arbitrary con-vex hat functions; Section 3 discusses the choice of optimal hats for a large classof distributions whereas Section 4 proves the validity of the squeeze introduced inSection 2. After the theoretical development of the main ideas, given in Sections2 to 4, Sections 5 to 7, as an application of the theory, present descriptions andperformance characteristics of rejection-inversion algorithms for a large class of mo-notone discrete distributions (Section 5), for Poisson tails (Section 6) and for theZipf distribution (Section 7).2. REJECTION-INVERSIONTo generate random variates from a monotone discrete distribution with probabi-lities proportional to pk for k � m is of practical importance as this allows thegeneration from the tails of standard distributions. Using standard rejection from acontinuous hat h(x), it is suggested in the literature to choose the hat such that thehistogram of the discrete distribution is below h(x) i.e. pk � h(k � 1=2) with h(x)de�ned for x � m�1=2. As the evaluation of the probabilities pk is time consumingin most cases, the speed of the rejection algorithm is improved if we can �nd aneasy-to-compute squeeze sk with sk � pk for k � m. The standard rejection algo-rithm then works in the following way. The construct \While true do" here means3



that the indented set of instructions that follow is repeated inde�nitely often. Thestatement \return K" exits this loop and the algorithm then outputs the value K.Algorithm SR: Standard RejectionWhile true doGenerate a random variate X with density proportional to h;Generate a uniform random number U ;Set K  bX + 1=2c;If Uh(X) � sK then return K;else if Uh(X) � pK then return K.An important measure for the quality of the rejection algorithm is the expectednumber of iterations �. For the above algorithm we have� = R1m�1=2 h(x) dxP1m pk :The acceptance probability is 1=�.Rejection-inversion lowers � and halves the number of uniform random numbersrequired. We need a hat h(x) de�ned for x � m � 1=2 with R k+1=2k�1=2 h(x) dx � pkfor all k � m. It is obvious that an easy to check su�cient condition for this is hconvex and pk � h(k). Now we decide between acceptance and rejection by testingif the random variate X , which lies in the interval (k� 1=2; k+1=2), is left or rightof the point xk. This point, separating the region of acceptance (between xk andk + 1=2) from the region of rejection (between k � 1=2 and xk), can be computedeasily. It is only necessary to know H(x) = � R1x h(x) dx and the inverse functionH�1 (which is in any case necessary if we want to generate X by inversion). Fromthe equation Z k+1=2xk h(x) dx = H(k + 1=2)�H(xk) = pk4



we get xk = H�1(H(k + 1=2) � pk). This gives the acceptance condition X �H�1(H(k + 1=2)� pk).As m is the left end of the domain, it is possible for this point to make rejectionimpossible by just de�ning h(x) = 0 for x < xm. Because then we haveX = H�1(U)where U is uniformly distributed in the interval (H(xm); H(1) = 0), and theacceptance condition simpli�es to U � H(k + 1=2)� pk. Figure 1 shows the curveh(x), the region of acceptance with its probability represented by the shaded area,and the probability pk represented by the thick line. If we can �nd a ko such thatk � xk is non-decreasing for m � k � ko, then m� xm is a simple lower bound onk � xk for these values of k and can be used as a squeeze. It is also possible to usem+ 1� xm+1 as a (second) squeeze for k � xk if m + 1 � k � ko. For k = m it isnot a squeeze but this does not matter as rejection is impossible in this case. Theadvantage of the second squeeze is the better �t, but on the other hand it requiresadditional computations for the set-up. We use the second squeeze only for the Zipfdistribution. The details of the new algorithm are as follows. The choice of the hath(x) and its integral H(x) are discussed in Section 3.Algorithm RI: Rejection-Inversion[Set-up]Compute and store ym  H(m+ 1=2)� pm, xm  H�1(ym) and determine ko.[Generator]While true doGenerate a uniform random number U ;Set U  Uym;Set X  H�1(U);Set K  bX + 1=2c; 5



If (K � ko and K �X � m� xm) then return K;Else if U � H(K + 1=2)� pK then return K.What are the performance characteristics of Algorithm RI? For �xed h, the ex-pected number of iterations � = pm + R1m+1=2 h(x) dxP1m pkis lower than for Algorithm SR as there is no rejection possible for m. In additionthe condition pk � h(k) allows a better �t for h than pk � h(k � 1=2). The mostimportant advantage of Algorithm RI is that the number of uniforms required forone iteration is one compared with two for Algorithm SR. This property is thereason why we suggest the name rejection-inversion for the new method. With nosqueeze, the numbers of evaluations of pk and of H�1 per iteration equal 1 forboth methods if the generation of X is done by inversion in Algorithm SR. ForAlgorithm RI one additional evaluation of H , and for Algorithm SR one of h arenecessary. These theoretical performance measures show that Algorithm RI canresult in simple and comparably fast generators as long as we can use the simplesqueeze and can �nd a class of convex hat functions with simple and invertibleintegrals H . Of practical importance is h(x) = a=(b + x)q with q > 1 (with thesimplest case q = 2). Considering the equivalent form ~a=(1 � ~bx=q)q , we can takethe limit as q !1 to get the hat h(x) = ~a exp(~bx). Table 1 contains the informationnecessary to use these functions as hat functions in Algorithm RI, only the choiceof (a; b) and the last two columns will be explained below.Table 1: Classes of hat functions
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q h(x) H(x) H�1(x) Tc c1 < q <1 a(b+x)q a=(�q+1)(b+x)q�1 �b+ � ax(1�q)�(1=(q�1)) �xc �1 < c < 02 a(b+x)2 �ab+x �b� ax �1=px �1=21 aebx aebx=b log(xb=a)=b log(x) 03. THE CHOICE OF AN OPTIMAL HATTo use Algorithm RI with one of the hat functions given in Table 1, it is necessaryto choose the parameters a and b. As this is easier in the case of continuous randomvariables with density f(x) we shall discuss this case �rst. The problem becomesmuch clearer if we use the transformations Tc, de�ned by Tc(x) = �xc for �1 <c < 0 and T0(x) = log(x), given in Table 1. For c = �1=q, Tc transforms thecorresponding hat function into a straight line. Therefore { in a transformed scale{ the hat function is a tangent line touching the transformed density Tc(f(x)) ina single point of contact. Choosing an arbitrary point of contact, h remains a hatfunction for f(x) as long as the transformed density Tc(f(x)) is concave. For a�xed c the class of all densities with this property is called Tc-concave and arediscussed in detail in H�ormann [1995]. To optimize the choice of a and b for a classof hat functions, it is then enough to optimize the choice of the point of contact.Surprisingly, it turns out that { although the transformations and corresponding hatfunctions are totally di�erent regarding their behavior at zero and towards in�nity{ the optimal point of contact does not depend on the choice of the transformationTc. Using this optimal point of contact, � is uniformly bounded for all distributionsthat are Tc-concave for an arbitrary but �xed c. We have the following:Theorem 1: Given a transformation Tc = �xc for �1 < c < 0 or T0 = log(x)with the corresponding hat function h(x) = a=(b + x)q with q = �1=c or h(x) =7



a exp(bx) for c = 0, and a monotone continuous Tc-concave density f(x) de�ned forx � m, which is twice di�erentiable with the possible exception of countably manyisolated jumps of f 0, the area below the hat (i.e. �) is minimized if the touchingpoint xo is chosen such thatf(xo)(xo �m) = maxx�m (f(x)(x �m)) (1)This means that we take the parameters a; b of h(x) such thath(xo) = f(xo) and h0(xo) = f(xo)m� xo (2)This implies that h0(xo) = f 0(xo) for the case that f 0(xo) exists.For all Tc-concave densities with the hat chosen according to (1) and (2) � isbounded by � � (1 + c)1=c for c < 0 and � � e for c = 0.Proof: In a �rst step we assume that f is twice di�erentiable. It is convenient towrite the hat function touching in the point x1 in the form: T�1c (g(x1)+ g0(x1)(x�x1)) where g(x) = Tc(f(x)). We start with Tc(x) = �xc and minimize the areabelow the hatA(x1) = Z 1m (�g(x1)� g0(x1)(x� x1))1=c dx = (�g(x1)� g0(x1)(m� x1))1=c+1(1=c+ 1)g0(x1) :Di�erentiation and some simpli�cation givedAdx1 = g00(x1)(�g(x1)� g0(x1)(m� x1))1=cg0(x1)2(1=c+ 1) [g(x1)� g0(x1)(m� x1)=c] :As g is concave it is clear that the fraction is always greater or equal 0. Di�erentiationof the part in square brackets yields g0(x1)(1=c+ 1)� g00(x1)(m� x1)=c � 0 whichshows that A has its global minimum at the point xo satisfying m � xo = cg(xo)g0(xo) .Substituting the de�nition of g givesm� xo = f(xo)f 0(xo) (3)8



Considering the argument above together with di�erentiation of (x�m)f(x) showsthat (x � m)f(x) has for x � m one global maximum and thus (3) and (1) areequivalent.To compute the value of A(xo) it is best to substitute (3) into the formula forA which results in A(xo) = (1 + c)1=cf(xo)(xo �m). A simple consideration showsthat for any monotone density f(x)(x �m) � 1 which proves the bound of �.For Tc(x) = log(x) a similar computation results in the same condition for xo.For A(xo) we obtain A(xo) = limc!0(1 + c)1=cf(xo)(xo � m) = e f(xo)(xo � m),which completes the proof for twice di�erentiable f .If f 0 is discontinuous in isolated points, the choice of xo according to (1) followsfrom the above proof as any f is the limit of a uniformly convergent sequencefn of twice di�erentiable functions with optimal point of contact (xo)n. Obviouslyxo = limn!1(xo)n. Therefore (2) can be used to determine the parameters a andb. Using the sequence fn it is easily seen that the bound for the optimal � remainsvalid. 2Now we can return to our main topic: The generation of discrete random variates.First it is necessary to de�ne ~g(x) as the function which has as graph the polygonwith vertices (k; Tc(pk)). Then a discrete random variate is called Tc-concave if thispolygon ~g is concave. It is possible to apply the result of Theorem 1 to ~f = T�1c (~g)which is a continuous interpolation of the points (k; pk). Thus it is not di�cult toprove:Corollary 1: Given a transformation Tc = �xc for �1 < c < 0 or T0 = log(x)with the corresponding hat function h(x) = a=(b + x)q with q = �1=c or h(x) =a exp(bx) for c = 0, a discrete Tc-concave random variate with probabilities pk and9



the minimal Tc-concave continuous interpolation ~f (for the construction see thede�nition above), the area below the hat of Algorithm RI (i.e. �) is minimized ifthe touching point xo is chosen such that~f(xo) � (xo � (m+ 1=2)) = maxx�m+1=2 ~f(x) � (x � (m+ 1=2)): (4)This means that we take the parameters a; b of h(x) such thath(xo) = ~f(xo) and h0(xo) = ~f(xo)m+ 1=2� xo : (5)For all Tc-concave discrete distributions with h chosen according to (4) and (5) wehave: � � (1 + c)1=c for c < 0 and � � e for c = 0.Proof: As in Algorithm RI no rejection is possible for the case k = m we are onlyinterested in ~f(x) for x � m + 1=2. ~f is the in�mum over all possible continuous,monotone and Tc-concave interpolations of the pk. It is easy to see that ~f ful�llsthe conditions of Theorem 1 and that pm+ R1m+1=2 ~f(x) dx � 1. Applying Theorem1 thus completes the proof. 2Remark 1: Corollary 1 can be used in a simple way to determine the optimalhat function for a discrete distribution: First use a search procedure to determinethe point of contact ko such that pko(ko � (m+ 1=2)) = maxk(pk(k � (m+ 1=2))).This is simple, as the argument below (3) implies that pk(k � (m+ 1=2)) has onlyone local maximum. Then compute the optimal h0(ko) according to Corollary 1 andthe parameters a and b from the equations for h0(ko) and h(ko). As ko need notbe equal to xo it is necessary to test if h(ko � 1) � pko�1 (in this case xo is in theinterval (ko � 1; ko) and a and b must be chosen such that h connects the points(ko�1; pko�1) and (ko; pko)) or if h(ko+1) � pko+1 (in this case xo is in the interval(ko; ko + 1) and a and b must be chosen such that h connects the points (ko; pko)and (ko + 1; pko+1)). 10



Remark 2: It is obvious that, following the guidelines of Remark 1, the deter-mination of the optimal hat function can become very time consuming. Thereforethe following simple idea to �nd a hat very close to the optimal hat is of practicalimportance. Based on (2) in Theorem 1 the optimal point of contact for a conti-nuous distribution xo must have the property that f 0(xo) = f(xo)=(m � xo). Fordiscrete distributions it is therefore possible to �nd a point xo close to the optimalko if we take some natural continuous interpolation of the points (k; pk) and solvethe equation p(x+ 1)� p(x) = p(x)=(m� x) or equivalentlyp(x+ 1)p(x) = 1 + 1m� x :For discrete distributions where the pk have a simple recurrence the above equationcan be solved analytically (as is the case, e.g., for Poisson, binomial and hypergeo-metric tails) or by some numerical approximation. To �nd a hat close to optimalit is enough to compute this (possibly approximate) solution xo of the equationand to take ko = bxo + 1c. The hat h is then chosen such that h(ko) = pko andh(ko � 1) = pko�14. THE SQUEEZETo show the validity of the squeeze used in Algorithm RI we need the following:Theorem 2: Given a discrete distribution, which for a �xed c is Tc-concave, anda hat function h(x) = a=(b + x)q with q = �1=c or h(x) = a exp(bx) for c = 0touching the distribution in an arbitrary integer point ko we have:k � xk is non-decreasing for m � k � kowhere xk = H�1(H(k + 1=2)� pk) denotes the point that separates the region ofacceptance and rejection for the integer k.11



Proof: First we consider the special case that h(k) = pk for k � m:� = �(k) = k � xk is de�ned implicitly byZ k+1=2k�� h(u) du� h(k) = 0: (6)In a more complicated but equivalent form we can rewrite (6) as� Z k��k�1=2 Z h(k)0 dt du+ Z kk�� Z h(u)h(k) dt du� Z k+1=2k Z h(k)h(u) dt du = 0: (7)Di�erentiating (6) implicitly after k (which is no longer restricted to integer values)givesh(k � �)d�dk = �h(k + 1=2) + h(k � �) + h0(k) = Z k+1=2k�� �(u) du� �(k); (8)with �(k) = �h0(k) > 0. The right side of (8) can be rewritten analogously to theleft side of (6) ash(k � �)d�dk = � Z k��k�1=2 Z �(k)0 dt du+ Z kk�� Z �(u)�(k) dt du� Z k+1=2k Z �(k)�(u) dt du:The substitution t = �(h�1(s)) = �1=(h�1)0(s), dt = (�1=(h�1)0(s))0ds togetherwith the notation �(s) = (�1=(h�1)0(s))0 implies thatd�dk = 1h(k � �) "� Z k��k�1=2 Z h(k)0 �(s) ds du+ (9)Z kk�� Z h(u)h(k) �(s) ds du� Z k+1=2k Z h(k)h(u) �(s) ds du# :A standard calculation shows that �0(t) � 0 for all classes of hat functions of Table1. Thus it is easy to see that replacing �(s) by �(h(k)) in (9) gives a lower boundfor �0. Together with (7) we have �0 � 0 which completes the proof for the specialcase.For the general case we de�ne D(k) = h(k) � p(k) where p(k) is a continuous,di�erentiable interpolation of the points (k; pk), and have instead of (6)Z k+1=2k�� h(u) du� h(k) +D(k) = 0:12



Following the argumentation above we getd�dk = (9)� D0(k)h(k � �)which completes the proof as D0(k) � 0 for m � k � ko. 25. UNIVERSAL ALGORITHMSPutting together the results of Sections 2 to 4 it is now no problem to describe auniformly fast universal algorithm for the tail of a log-concave discrete distributionwith probabilities proportional to pk and modem. (p(x) denotes a simple continuousinterpolation of the points (k; pk)). For the functions needed for Algorithm RI wetake h(x) = a exp(bx), H(x) = a exp(bx)=b, H�1(x) = log(xb=a)=b. Remark 2 ofSection 3 is used to compute nearly optimal parameters a and b for the hat.Algorithm RILC: Rejection-Inversion for log-concave distributions[Set-up]Find an (approximate) solution xo for p(x+ 1)=p(x) = 1 + 1=(m� x).Compute ko  bxo + 1c, b log(pko)� log(pko�1), a pko exp(�bko),ym  a exp(b(m+ 1=2))=b� pm, xm  log(ymb=a)=b.[Generator]While true doGenerate a uniform random number U ;Set U  Uym;Set X  log(Ub=a)=b;Set K  bX + 1=2c;If (K � ko and K �X � m� xm) then return K;Else if U � a exp(b(K + 1=2))=b� pK then return K.13



For the tail of an arbitrary discrete Tc-concave distribution everything is verysimilar but with h(x) = a=(b+ x)q , H(x) = (a=(�q+1))=(b+ x)q�1 and H�1(x) =�b+ (a=(x(1� q)))(1=(q�1)). Due to the easy-to-compute forms of H and H�1 thealgorithm executes fastest if we take q = 2 which is possible if the distribution is atleast T�1=2-concave.Algorithm RITC: Rejection-Inversion for Tco-concave distributions[Set-up]Take a �xed q with 1 < q � �1=c0.De�ne H(x) = (a=(�q +1))=(b+ x)q�1 and H�1(x) = �b+ (a=(x(1� q)))(1=(q�1))as in-line functions or macros.Find an (approximate) solution xo for p(x+ 1)=p(x) = 1 + 1=(m� x).Compute ko  bxo + 1c, ~p (pko�1=pko)1=q , b (~p(ko � 1)� ko)=(1� ~p),a pko(b+ ko)q , ym  H(m+ 1=2)� pm, xm  H�1(ym).[Generator]While true doGenerate a uniform random number U ;Set U  Uym;Set X  H�1(U);Set K  bX + 1=2c;If (K � ko and K �X � m� xm) then return K;Else if U � H(K + 1=2)� pK then return K.Using Algorithm RILC or RITC we can generate the tails of most of the classicaldiscrete distributions including the Poisson, binomial, hypergeometric and negativebinomial distributions which are all log-concave. Even more important is the factthat heavy tails can be generated as well using Algorithm RITC with q = 2 for14



subquadratic tails and with q < 2 for heavier ones. This is of practical importance asfor the modeling of the input distributions of simulation models the sub-exponentialtails of the classical discrete distributions are often too thin and little advice is givenin simulation literature how to generate random variates from discrete distributionswith thicker tails.The two algorithms could also be used as the main building block of a programthat generates random variates from arbitrary discrete Tc-concave distributions (fora universal algorithm for discrete log-concave distributions see for example H�ormann[1994]) as these distributions are unimodal and can thus be decomposed at the modeinto two monotone parts.6. POISSON TAILSWe tested Algorithm RILC for the right tail of the Poisson distribution with mean� and cut-o� point m (i.e. X � m). The computation of xo reduces to the solutionof a quadratic equation: xo = (m+ �)=2 +p(m� �)2=4 +m+ 1. It is easy to seethat for the Poisson distribution � is bounded by the � for the positive standardnormal distribution, which is p2e=� = 1:315 . . ..We know that comparative timings are only of limited evidence as they dependheavily on the speed of the uniform generator used and on the implementation ofthe evaluation of the pk's. Nevertheless, we include in Table 2 the comparison ofthe speed of our C implementations of Algorithm RILC optimized for the tail of thePoisson distribution (using a multiple recursive linear congruential generator withmodule 231 � 1 as uniform generator) with the speed of a simple tail generationmethod for the Poisson distribution using rejection from a geometric hat, whichwas suggested by Dagpunar [1988] (p. 148). There the cut-o� point is called m aswell. The execution times given in Table 2 are the averages from 106 calls to the15



generator (the overhead of the measurement program was subtracted). The �rstdecimal place of the given numbers is meaningful but not necessarily correct.We think that this comparison demonstrates the potential of the rejection-inversionmethod. The good speed is due to the use of the squeeze, to the reduced number ofuniform variates required, and to the good �t of the nearly optimal hat computedin the set-up. This set-up is slower than the set-up of Dagpunar's algorithm butstill quite fast.7. A NEW GENERATOR FOR THE ZIPF DISTRIBUTIONThe Zipf distribution { also called (Riemann) zeta or discrete Pareto distribution{ is frequently used in linguistics and other social sciences to model the numberof occurrences of certain events. (See Johnson et al. [1992], Dagpunar [1988], andreferences given there.) In simulation studies it could be well used to model the tailpart of discrete input distributions, at least to carry out a sensitivity analysis ofhow strongly the tail shape in
uences the simulation results. We will consider thetwo parameter generalization as de�ned in Dagpunar [1988] with the unnormalizedprobability function pk = 1(v + k)q (k = 0; 1; . . .);where q > 1, v > 0. It is clear that h(x) = 1=(v+x)q is a hat function that touchesat every integer and that the distribution is Tc-concave with respect to this hatfunction. Therefore Algorithm RI and the second version of the squeeze describedbefore the algorithm can be used. Theorem 2 implies that the squeeze is valid for allk � m+1 as 1 is a touching point as well. We include a formal description of ourZipf-generator as this facilitates its application. One practical problem can occurfor small values of q if the random number X generated by inversion is larger thanthe largest representable integer imax. Therefore X is not generated in the interval16



(xm;1) but in the interval (xm; imax + 1=2) which means that U is uniformlydistributed over (H(xm); H(imax + 1=2)).Algorithm ZRI: (Zipf-distribution generated with rejection-inversion)[Set-up]Let q and v be the parameters of the Zipf distribution. Compute and store 1 � q,1=(1�q) and de�ne H(x) exp((1�q)�log(v+x))�(1=(1�q)) andH�1(x) �v+exp((1=(1� q)) � log((1� q) �x)) as in-line functions or macros. Compute and storeH(x0) H(1=2)�exp(log(v)�(�q)), s 1�H�1(H(3=2)�exp(log(v+1)�(�q)))and H(imax + 1=2).[Generator]While true doGenerate a uniform random number U ;Set U  H(imax + 1=2) + U � (H(x0)�H(imax + 1=2));Set X  H�1(U);Set K  bX + 1=2c;If (K �X � s) then return K;Else if (U � H(K + 1=2)� exp(� log(v +K) � q)) then return K.To evaluate the quality of Algorithm ZRI it is important to discuss the value of �and the expected number of operations necessary to generate one random numberfrom the Zipf distribution. We have:Theorem 3: The expected number �(q; v) of iterations for Algorithm ZRI isuniformly bounded for all values of q > 1 and of v > 0. The smallest upper boundis given by the maximum of the function�(t) = (1 + e�t=2=t)(1� e�t); t > 0:17



Remark: By numerical methods one �nds that �(t) takes its maximum value1.023775 at t = 2:111114. Therefore � < 1:023775 for all q > 1, v > 0.Proof: First we show thatlimv!0�(q; v) = 1; q > 1; (10)limv!1�(q; v) = 1; q > 1: (11)For (10) consider limv!0 �(q; v) = limv!0 1+vq R1v+1=2 x�q dx1+vq�(q;v+1) = 1:To show (11) we use R1v+1=2 x�q dx < �(q; v + 1=2) < �(q; v) twice:�(q; v) = 1 + R1v+1=2 x�q dx� �(q; v + 1)�(q; v) < 1 + 1vq�(q; v) << 1 + 1vq R1v+1=2 x�q dx = 1 + (q � 1)(v + 1=2)q�1vq :For v !1 the fraction converges towards zero which proves (11).Because of (10) and (11), for �xed q > 1 the function �(q; v), which is ob-viously continuous, must have a conditional maximum at a point v = vm(q):maxv �(q; v) = �(q; vm(q)). As �(q; v) is di�erentiable with respect to v we have@@v�(q; v)��v=vm(q) = 0: An easy calculation shows the equivalence of this conditionto �(q; vm(q)) = �(q + 1; vm(q)) which implies �(q; vm(q)) � �(q + 1; vm(q + 1)).Thus for any starting value the sequencemaxv �(q + k; v); k = 0; 1; 2; . . . ; (12)is monotone increasing.Now, using the inequalities exp(1=(1 + x)) < 1 + 1=x < exp(1=x), for x > 0,which can be easily veri�ed, we construct an upper bound of �:� = 1 + vq�1 �1 + 12v �1�qP1j=0 �1 + jv ��q < 1 + vq�1 exp� 1�q2v+1�P1j=0 exp ��jqv � == �1 + vq � 1 exp� 1� q2v + 1���1� exp��qv �� :18



We substitute v = (q � 1)=t and consider � as a function of q and t:�(q; t) <  1 + 1t exp �t2 + tq�1 !!�1� exp��t�1 + 1q � 1���Specifying this for the sequence (12) of the conditional maxima and taking the limitfor k !1 gives limk!1maxt �(q + k; t) � max�(t):It is evident that limt!1 �(t) = 1. That limt!0 �(t) = 1 can be easily shown. Thus,as �(t) is continuous, it is bounded. It follows that max�(t) is an upper bound of�. In order to prove that it is the smallest upper bound we considerlimq!1�(q; t) = limq!1 1 + 1t �1 + t2(q�1)�1�qP1j=0 �1 + jtq�1��q = 1 + exp(� t2 )=tP1j=0 exp(�jt) = �(t):This completes the proof of the theorem. 2The expected number of power operations (implemented with one call to exp andone to log) is well below 1.1 for all parameter combinations we tried, due to thegood �t of the squeeze. The theoretical properties (especially the very low �) andthe simple and short code show that Algorithm ZRI is really well suited for thegeneration of random variates from the Zipf distribution. This fact becomes evenmore apparent if we compare the performance of ZRI with algorithms suggestedin the literature. First, it is important to note that the two standard methods forthe generation of discrete random variates (inversion and the alias method) haveseveral disadvantages for the Zipf distribution. It is necessary for both methods tocompute the normalization constant which includes the evaluation of the �-functionwhich is time consuming and requires care. For small values of q both standardmethods are useless. As the tails of the distribution are too heavy the expectednumber of comparisons when using inversion by sequential search is unbounded forq � 2. For the alias method heavy-tailed distributions cause problems as the cut o�19



point where the tail probability is smaller than a threshold (e.g. 2�32 for uniformrandom number generators working with 32 bit integers) can be very large whichmeans that millions of probabilities must be computed and stored in a set-up step.For the Zipf distribution with v = 1 and q = 2 the cut o� point is about 2 � 109which shows that the alias method is out of question for low values of q.Table 2: Average execution times in �-secondstail of Poisson distribution with mean �� 10 100 1000 set-m 12 20 102 130 1010 1050 upDAGP 18.4 11.5 47.3 14.6 44.1 19.3 10RILC 11.6 8.8 15.7 10.4 15.9 12.5 30Zipf distributionq 1.1 2 10 set-v 1 10 1 10 1 10 upDAGP 18.8 14.6 31.2 13.8 36.6 21.9 3.3DEVR 21.4 - 16.8 - 13.8 - 1.0ZRI 7.2 7.1 7.0 6.9 6.6 7.1 32.1In the literature we found only two algorithms especially designed for the Zipf dis-tribution. One, by Devroye [1986], (with a better bound for � proved by Baringhaus[1989]) is based on rejection from a discrete hat and works for the case v = 1 only.The second, by Dagpunar [1988], is based on Algorithm SR. Both have a larger� than ZRI, need two uniform random numbers per iteration and use no squeeze.The code length of the three generators are about the same but Algorithm ZRI is{ depending on the parameter combinations { between two and four times fasterthan the algorithms suggested by Devroye [1986] and by Dagpunar [1988]. For the20



results of our timings see Table 2.For the case q = 1:1 the execution times are in
uenced by the fact that algo-rithms DAGP and DEVR reject values larger than imax. Additional timings showedthat the use of this rejection would slow down Algorithm ZRI by about ten percentfor the case q = 1:1.8. CONCLUSIONThe rejection-inversion method developed in this paper has several advantages overstandard rejection methods to generate discrete random variates. Especially im-portant is the fact that it requires only half of the uniform random numbers. Alsoconcerning simplicity and speed the presented algorithms for the Zipf distributionand for a large class of monotone discrete distributions compare well with the al-gorithms presented in literature. Rejection-inversion can be used to sample fromthe tails of classical discrete distributions and to generate variates from discretedistributions with heavy tails which is important as for these distributions the veryfast table methods cannot be used. Rejection-inversion can also be used to designuniversal algorithms for Tc-concave discrete distributions by applying the idea pre-sented in H�ormann [1995] to discrete distributions. The details of this developmentwill be given in a subsequent paper.Acknowledgement: The authors thank the referees and the area editor for theiruseful hints that substantially improved the presentation of the paper.REFERENCESBaringhaus, L. 1989. A note on a rejection method for generating random variates from thediscrete pareto distribution. Utilitas Mathematica 35, 65{66.Dagpunar, J. 1988. Principles of Random Variate Generation. Clarendon Press, Oxford.21
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