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Abstract

We consider the problem of predicting the direction of daily volatility changes in the Dow Jones
Industrial Average (DJIA). This is accomplished by quantizing a series of historic volatility changes
into a symbolic stream over 2 or 4 symbols. We compare predictive performance of the classical
�xed-order Markov models with that of a novel approach to variable memory length prediction
(called prediction fractal machine, or PFM) which is able to select very speci�c deep prediction
contexts (whenever there is a su�cient support for such contexts in the training data). We learn
that daily volatility changes of the DJIA only exhibit rather shallow �nite memory structure. On
the other hand, a careful selection of quantization cut values can strongly enhance predictive power
of symbolic schemes. Results on 12 non-overlapping epochs of the DJIA strongly suggest that
PFMs can outperform both traditional Markov models and (continuous-valued) GARCH models
in the task of predicting volatility one time-step ahead.

1 Introduction

Traditionally, option price forecasts are based on implied volatilities derived from an observed series
of option prices. The basic assumption behind this approach is that in e�cient capital markets with
constant volatility of asset returns, the volatility must be reected in option prices. Taking a di�erent
route, Noh, Engle and Kane [14] used a GARCH model [3] to predict the volatility of the rate of return
of an asset and then based their predictions of option prices on the GARCH-predicted volatilities. In
addition, the volatility change forecasts (volatility is going to increase or decrease) based on historical
returns can be interpreted as a buying or selling signal for a straddle. This enables one to implement
simple trading strategies to test the e�ciency of option markets (e.g. S&P 500 index [14], or German
Bund Future Options [5]). If the volatility decreases we go short (straddle is sold), if it increases we
take a long position (straddle is bought). In this respect, the quality of a volatility model can be
measured by the percentage of correctly predicted directions of volatility change from this period to
the next.

In our previous work on predicting the daily volatility of the Austrian stock market index ATX
[19], real-valued volatility models were evaluated by considering the squared daily returns the \true"
volatilities and comparing them with the model forecasts. In this paper, we take a symbolic dynamics
route. The time series of historic volatility changes is quantized into a symbolic sequence characterizing
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the original real-valued sequence only through a few distinct events (symbols) such as sharp increase,
small decrease, etc... Instead of modeling the original real valued trajectory, we look for a set of
grammatical and probabilistic constraints characterizing its symbolic counterpart.

There have not been many applications of symbolic methods to modeling �nancial time series.
Papageorgiou built predictive models to determine the direction of change in high frequency Swiss
franc/U.S. dollar exchange rate (XR) tick data [15] and studied the correlational structure of coupled
time series of daily XRs for �ve major currencies measured against the U.S. dollar [16]. In both cases
the real-valued XR returns were quantized into 9 symbols. Papageorgiou predicts the directions of
changes in Swiss franc/U.S. dollar XRs using a second order Markov model (MM) and analyses the
correlational structure in the �ve major XRs through a mixed memory MM [18]. Giles, Lawrence
and Tsoi [6] considered the same set of �ve major XRs and predicted the XR directional changes by
applying recurrent neural networks to symbolic streams obtained by quantizing the historic real-valued
directional change values using the self-organizing map [11].

Generally, it was found that discretization of �nancial time series can potentially e�ectively �lter
the data and reduce the noise. Even more importantly, the symbolic nature of the pre-processed data
enables one to interpret the predictive models as lists of clear (and often intuitively appealing) rules.
Yet, there are serious shortcomings in using such techniques:

� The determination of the number of quantization intervals (symbols) and their cut values is ad
hoc. No strongly supported explanation is given in [15, 16] why 9 symbols with their particular
quantization intervals were used. The authors of [6] use up to eight symbols with the cut values
determined by the self-organizing map without any attempt to set the quantization intervals to an
\optimal"1 con�guration. Kohavi and Sahami [10] warn that naive discretization of continuous
data can be potentially disastrous as critical information may be lost due to the formation of
inappropriate quantization boundaries. Indeed, discretization should be viewed as a form of
knowledge discovery revealing the critical values in the continuous domain.

� Due to (non)stationarity issues, it is a common practice to slide a window containing both
training and test sets through the available data thus substantially reducing the amount of
training data for model �tting. In such situations using many symbols can be potentionally
hazardous as the subsequence statistics is poorly determined. In fact, the results in [6] indicate
that the predictive model achieved the best performance with binary input streams.

� Due to training sequence length constraints and the size of used alphabets, the order of MMs is
usually set to 2 or 3, whereas only a small set of deeper prediction contexts may really be needed
to achieve a satisfactory performance. In case of recurrent neural networks one runs across the
well-known vanishing gradient e�ect [2] reducing the network memory capacity.

We address these issues by

� transforming real-valued time series into symbolic sequences over 2 or 4 symbols. Quantization
into 4 symbols is done in an intuitively appealing parametric way.

� using variable memory length Markov models (VLMM) [17] instead of classical �xed-order MMs.
VLMMs deal with the familiar explosive increase in the number of MM free parameters (when
increasing the model order) by including predictive contexts of variable length with a deep
memory just where it is really needed.

Apte and Hong [1] address the issue of optimal alphabet size and cut values. They applied a
minimal rule generation system R-MINI to monthly S&P 500 data quantized by a special feature

1with respect to the performance measure
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discretization subsystem. However, the features were quantized prior to the rule generation process
without any reference to the �nal model's predictive behavior. The R-MINI rules are in disjunctive
normal form.

B�uhlmann [4] models the extreme events of return of the Dow Jones and volume of the NYSE
given their previous histories. The original return and volume series are quantized into streams over 3
ordinal categories (lower extreme, usual, upper extreme) that are used to �t a hierarchy of generalized
linear models viewed as sieve approximations to a �nite state Markov chain. The cut values for the 3
categories correspond to the 2.5% and 97.5% sample quantiles, so that the lower and upper extreme

categories describe extreme events with expected overall occurrence of about 5%. We adopt this
quantization strategy (in a slightly modi�ed form) in our experiments.

.

2 Prediction system

The main idea in building a variable memory length (VLMM) Markov model on a given input stream
S over an alphabet A = f1; 2; :::;Ag is to consider all predictive contexts2 w 2 Al, 1 � l � L, up to a
certain pre-speci�ed depth L and select only contexts v the predictive (empirical) distributions P (sjv),
s 2 A, of which di�er signi�cantly from those of their su�ces, e.g. include an extended context au,
a 2 A, u 2 Al, 1 � l � L�1, if the Kullback-Leibler divergence between the next-symbol distributions
for the candidate prediction contexts u and au, weighted by the prior (empirical) distribution of the
extended context au, exceeds a given threshold � [17]

P (au)
X
s2A

P (sjau) log
P (sjau)

P (sju)
� �: (1)

The parameters � and L are supplied by the modeler. We have shown [13] that constructing
VLMMs in this manner can be very troublesome. The construction parameters determine the VLMM
size only implicitly without any intuitive speci�c relation and often one has to spend a fair amount of
time when constructing a series of VLMMs of increasing size.

In an attempt to deal with this problem we introduced a novel class of predictive models, called
prediction fractal machines (PFMs) [13], similar in spirit to VLMMs, the construction of which is fast
and intuitive in the model size. Construction of PFMs starts by transforming the n-block structure of
the training sequence S = s1s2::: over A into a spatial structure of points in a unit hypercube, called
the chaos n-block representation of S. The n-blocks u = u1u2:::un 2 A

n are represented as points

u(x) = un(un�1(:::(u2(u1(x))):::)) = (un � un�1 � ::: � u2 � u1)(x); x 2 X; (2)

where X = [0; 1]N , N = dlog2Ae, and the maps 1; 2; :::;A,

i(x) = kx+ (1� k)ti; ti 2 f0; 1g
N ; ti 6= tj for i 6= j; (3)

act on X with a contraction coe�cient k 2 (0; 12 ]. For Y � X , u(Y ) = fu(x)j x 2 Y g.
Denote the center f12g

N of X by x�. The chaos n-block representation of S is a sequence of points

CBRn;k(S) =
n
Si+n�1
i (x�)

o
i�1

; (4)

containing a point w(x�) for each n-block Si+n�1
i = sisi+1:::si+n�1 = w in S. The map w! w(x�) is

one-to-one.

2To keep the construction procedure feasible it is common to consider only contexts with probability of occurrence
greater than some pre-determined threshold �.
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The chaos n-block representation of symbolic sequences is related to the chaos game representation
of DNA sequences introduced by Je�rey [9] and has many useful properties. We proved [12] that the
estimates of generalized R�enyi dimension spectra, quantifying the multifractal scaling properties of
CBRn;k(S), directly correspond to the estimates of the R�enyi entropy rate spectra measuring the
statistical structure in the sequence S. In particular, for in�nite sequences S, as the block length n

grows, the box-counting fractal dimension and the information dimension estimates on CBRn;k(S),
tend to the sequences' topological and metric entropies, respectively, scaled by (log 1

k
)�1.

The chaos n-block representation codes the n-block su�x structure in the following sense [12]: if
v 2 A+ is a su�x of length jvj of a string u = rv, r; u 2 A+, then u(X) � v(X), where v(X) is an
N -dimensional hypercube of side length kjvj. Hence, the longer is the common su�x shared by two
n-blocks, the closer the n-blocks are mapped in the chaos n-block representation CBRn;k(S). On the
other hand, the Euclidean distance between points representing two n-blocks u; v, that have the same
pre�x of length n � 1 and di�er in the last symbol, is at least 1� k.

Suppose our model cannot have more thanM prediction contexts. A natural smoothness constraint
that L-blocks with long common su�ces are likely to produce similar continuations, whereas L-blocks
with di�erent su�ces may lead to di�erent future scenarios leads us to the idea that L-blocks (potential
predictive contexts of maximal depth) should factorize the set [S]L of allowed L-blocks in the training
sequence S into a set of M equivalence classes, such that blocks within each equivalence class share as
long a common su�x as possible. Recalling the su�x structure coding properties of the chaos L-block
representation CBRL;k(S) of the training sequence S, this corresponds to partitioning the CBRL;k(S)
into M subsets, each of diameter as small as possible. In practical terms, this means allocation of
points from CBRL;k(S) to M codebook vectors b1; :::; bM 2 X , such that the loss

E(S) =
X

w2[S]L

P (w) d2E(w(x�); c(w)) (5)

is minimal, where c(w) 2 fb1; :::; bMg is the codebook vector to which the point w(x�) is allocated,
and dE is the Euclidean distance.

The prediction probabilities in PFMs are determined by

P(sjbi) =
N(i; s)P

a2AN(i; a)
; s 2 A; (6)

where N(i; a) is the number of (L+ 1)-blocks wa, w 2 AL, a 2 A, in the training sequence, such that
the point w(x�) is allocated to the codebook vector bi.

Given a history w 2 AL of L symbols, the next symbol distribution provided by the PFM is
P(sjc(w)), with c(w) de�ned in (5).

3 Experiments

The time series fxtg of the Dow Jones Industrial Average (DJIA) from Feb. 1 1918 until Dec. 31 1997
(21620 measurements) was transformed into a time series of returns rt = log xt+1� log xt and divided
into 13 epochs (as shown in �gure 1) each containing 1663 values (spanning approximately 6 years).
The series fr2t+1� r2t g of di�erences between the successive squared returns is quantized with respect
to the direction of daily volatility change into a binary sequence fCtg

Ct =

(
1 (down); if r2t+1 � r2t < 0
2 (up); otherwise.

(7)
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Figure 1: Returns of the DJIA form Feb.1 1918 until Dec. 31 1997. The data is divided into 13 epochs
(dotted vertical lines). Each epoch is split into a training sequence and a test sequence (dashed vertical
lines).

Since within each epoch, downs (1s) and ups (2s) occur with approximately the same frequency,
sequences fDtg over 4 symbols are obtained by quantizing the series fr2t+1 � r2t g as follows:

Dt =

8>>><
>>>:

1 (extreme down); if r2t+1 � r2t < �1 < 0
2 (normal down); if �1 � r2t+1 � r2t < 0
3 (normal up); if 0 � r2t+1 � r2t < �2
4 (extreme up); if �2 � r2t+1 � r2t ;

(8)

where the parameters �1 and �2 correspond to Q percent and (100 � Q) percent sample quantiles,
respectively. So, the upper (lower) Q% of all daily volatility increases (decreases) in the sample are
considered extremal, and the lower (upper) (50 � Q)% of daily volatility increases (decreases) are
viewed as normal. In our experiments Q 2 f5; 10; 15; :::; 45g.

We performed two experiments. The �rst experiment identi�es the amount of detectable memory
in the daily volatility change process. In the second experiment we simulate a realistic setting, where
one is forced to split the available data into separate training and validation sets, the latter used for
selection of the most appropriate model size M and quantization quantile Q for the models trained
on the training set.

In [13] we have shown that our prediction fractal machines (PFMs) and variable memory length
Markov models (VLMM) outperform the classical �xed-order Markov models (MMs) on chaotic se-
quences with deep memory structure. In such cases it is bene�cial, instead of simply considering all
prediction contexts of certain length, to accept only a limited set of carefully selected long contexts.
On the other hand, a shallow memory structure in sequences reduces the advantage of using VLMMs
(or PFMs) instead of the classical MMs. In the experiments reported here, the length of the window
in constructing the chaos block representations of the training sequences was set to L = 20 and the
contraction factor is k = 1

2 .
In the �rst experiment, for each epoch, we split the data into a training sequence (the �rst 1100

symbols) and a test sequence (the rest of the epoch). The two sequences are quantized according
to the extremal event quantile Q (see (8)). Then, PFMs and MMs of increasing size are trained on
the training set and tested on the test set with respect to the percentage of correct guesses of the
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Figure 2: Performance of PFMs on the �rst DJIA data epoch measured by the percentage of correct
volatility direction predictions on out-of-sample data.

volatility change direction for the next day3. If the next symbol in the test set is 1 or 2 (3 or 4) and
the sum of conditional next symbol probabilities for 1 and 2 (3 and 4) given by a model is greater
than 0.5, the model guess is considered correct. Figures 2 and 3 show the performance of PFMs
and MMs, respectively, on the out-of-sample data in the �rst epoch. The 35% quantile Q for the
extremal events seems to work best for both models. PFMs achieve the best performance with very
few prediction contexts (up to 10). Further increase in the model size does not give any improvement
in the prediction performance. The performance of MMs improves up to a memory of order 3 and
then the MMs clearly over�t the training set (the performance on the test set deteriorates). Figures 4
and 5 suggest that similar observations can be made for the remaining 12 epochs. Depending on the
epoch, the optimal value for the quantile Q ranges from 15 to 40, and the best-performing MM order
varies from 1 to 3. In general, in accordance with intuition, more volatile epochs need deeper memory
and larger extreme events quantile Q.

It is interesting that PFMs do not identify deep dominant prediction contexts that would lead
to a highly superior performance (compared to MMs) as is, for example, the case with the chaotic
Feigenbaum sequence [13]. This supports the widely held belief [8] that noise is a dominant component
in �nancial data and that a direct use of techniques known from chaotic dynamics4 does not bring
any dramatic improvement in data description and predictability.

In the second experiment we take a more realistic view. If we were to use our models in a day-
to-day trading, we would need to decide (based on the historic data) what extreme event quantile Q
and model size to use for future predictions. The experimental setting from the �rst experiment is
slightly modi�ed in that the test sets from the �rst experiment are now validation sets on which we
select, using the models �tted on the training sets5, the optimal (model size,quantile Q) combination.
The selected models are then tested on test sets, which are in this case the �rst 600 symbols from the
next epoch.

The results are summarized in �gure 6. We also plot the performance of a simple 2 symbol
(�rst-order) reversal strategy (dotted line) predicting up whenever the previous move was down and
vice-versa. 4 symbol quantization schemes (solid line) yield consistently better performance than their
2 symbol counterparts (dashed line). Moreover, PFMs (squares) working under 4 symbol schemes

3Reported results for PFMs are average values across 10 vector quantization runs (K-means clustering) in the PFM
construction

4based on the assumption that there is no (or very little) noise a�ecting the dynamics of the system
5the training sets remain unchanged
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Figure 3: Performance of the classical MMs on the �rst DJIA data epoch measured by the percentage
of correct volatility direction predictions on out-of-sample data.

tend to have better performance than classical MMs (stars). The situation is reversed in the 2 symbol
case, where the validation strategy does not prevent PFMs from including a few over-specialized
contexts. PFMs rarely perform better than the reversal strategy. This is partially caused by the sample
distribution that varies from epoch to epoch. Regime shifts in data distribution can be dangerous for
potentially highly specialized models like PFMs or VLMMs. In real trading, the best strategy would
be to often re-estimate the predictive model as the new samples arrive.

We also tested the approaches presented in [14, 5] that use GARCH-based methods to model
the volatility of the returns and then plug the volatility change forecasts into trading strategies.
GARCH [3] and GJR [7] are among the most widely used (real-valued) models of volatility. Basic to
these models is the notion that the �nancial time series fxtg under study can be decomposed into
a predictable component �t and an unpredictable component et, which is assumed to be zero mean
Gaussian noise of �nite variance �2t : xt = �t + et. The models are thus characterized by time-varying
conditional variances �2t and are therefore well suited to explain volatility clusters. The conditional
mean is often modelled as a linear function of the previous value: �t = axt�1. For a GARCH(p; q)
model the conditional variance �2t is given by

�2t = �0 +
qX

i=1

�ie
2
t�i +

pX
i=1

�i�
2
t�i: (9)

The GJR model is an extension of the GARCH(1,1) model, and it incorporates also asymmetric e�ects:

�2t = �0 + �1e
2
t�1 + �2�t�1e

2
t�1 + �1�

2
t�1 (10)

where �t�1 = 1 if et�1 < 0 and �t�1 = 0 otherwise. GJR models are motivated by the fact that stock
returns are characterized by a leverage e�ect, i.e. volatility increases as returns for stocks decrease.
In each epoch, the GARCH(1,1), GARCH(2,2) and GJR models were �t to the training set in the
maximum likelihood framework. Following [19], the �tted models were evaluated by considering the
squared returns r2t the \true" volatility and comparing them with the forecasted volatility �2t . A
prediction is classi�ed correct if (�2t � r2t�1)(r

2
t � r2t�1) > 0. As with the symbolic models, based

on the validation set performance, we select a GARCH-based candidate and test it on the �rst 600
points from the following epoch. The results (dashed-dotted line with circles in �gure 6) indicate that,
compared with symbolic models, the GARCH-based models are more sensitive to shifts in probability
regimes of returns. The worst performances of these models (epochs 1, 6 and 12) correspond to cases
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Figure 4: Performance of PFMs on the DJIA data epochs 2{13. (upper-left to bottom-right).
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Figure 5: Performance of the classical MMs on the DJIA data epochs 2{13. (upper-left to bottom-
right).
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Figure 6: Prediction performance of the PFM (squares) and MM (stars) validation set candidates.
The performance is evaluated on the test set containing the �rst 600 points of the next epoch. Results
corresponding to 4 and 2 symbol quantization schemes are shown as solid and dashed lines, respectively.
The dotted line corresponds to the simple reversal strategy. Also shown is the performance of the
GARCH-based candidates (dashed-dotted line with circles).

where the training set distribution seem to di�er from that of the test set (the �rst 600 points in
the next period). We stress, however, that the GARCH-based models were evaluated with respect to
volatility change direction predictions, whereas they were trained with a di�erent perspective in mind
- to model the conditional distribution of returns, so that the training data are likely to be generated
from the model distribution. We included the GARCH experiment for a comparison with the previous
approaches to volatility change direction prediction using real-valued models.

In order to test the di�erences between the three major methods, we performed several signi�cance
tests. A t-test over the twelve percentage values indicated that the PFM is signi�cantly better than
both the MM (p < 0:05) and GARCH (p < 0:005). A Wilcoxon matched-pairs signed-ranks test
also revealed signi�cant di�erences between the PFM and MM (p < 0:05) and GARCH (p < 0:005),
respectively. Finally, we performed a McNemar test on the two pairs of classi�ers over the twelve
independent test sets separately. In eight of the ten test sets where PFM showed better classi�cation
performance than the GARCH models, the test indicated signi�cance. For the PFM vs. the MM, this
was the case in 4 out of 8 cases. For none of the test sets, either MM or GARCH was ever signi�cantly
better than the PFM. One must add, however, that for all three tests, some assumptions appear to
be at least mildly violated (non-Gaussian distributions, skewness of di�erences, possible dependencies
between observations).

4 Conclusion

We have investigated potential bene�ts of using ideas from symbolic dynamics in prediction of daily
volatility changes. The two key points of this contribution are

1. the use of a simple parametric scheme to �nd the best quantization cut values in a data-driven
fashion
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2. the use of Markov models with variable length contexts to test the amount of detectable memory
in the process.

Although the results from the signi�cance tests have to be taken with caution, the results strongly
suggest

� that there appears to indeed lie some potential in using a symbolic dynamics approach to volatil-
ity forecasting, in which continuous values are replaced by symbols through quantization, and

� that our novel prediction fractal machine can outperform more traditional Markov models in the
prediction task.

In addition, the results suggest that daily volatility changes of the DJIA only show rather shallow
�nite memory structure (both MM and PFM tended to be of depth 2 or 3). 4 symbol quantization
schemes, when the cut values are carefully selected, yield better performance than the 2 symbol schemes.
This (together with the fact that in 4 symbol schemes variable memory length models tend to slightly
outperform the classical MMs) suggests that there is a grammatical structure in the data to be grasped,
but one cannot use ad hoc quantization techniques.

Of course, implementation and evaluation of di�erent trading strategies using predictions of volatil-
ity changes given by various models would be highly desirable (this work has already been started).
We did not investigate quantization schemes using more than 4 symbols, since the space of possi-
ble quantization parametrizations would rapidly grow. It may be an interesting topic for the future
research, though. Also, in this study, we did not discard the rules with little predictive power, i.e.
rules that predict ups with only slightly higher probability than downs and vice-versa. Discarding
such rules would lead to no-trading situations as in [15]. We plan to continue our research in this
direction. Rules will be discarded according to a special discard parameter. The value of the discard
parameter should reect a balance between the number of rules we are willing to get rid of and the
number of trading steps we should perform in order to accumulate a pro�t. Trading strategies using
our predictive models will play a prominent role in this study.
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