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THE MAXIMAL HEIGHT OF SIMPLE RANDOM WALKS REVISITED

W. KATZENBEISSER and W. PANNY

University of Economics, Vienna

In a recent paper Katzenbeisser and Panny (1996) derived distributional re-
sults for a number of so called simple random walk statistics defined on a
simple random walk in the sense of Cox and Miller (1968) starting at zero and
leading to state 1 after n steps, where 1 is arbitrary, but fix. In the present
paper the random walk statistics D;i' = the one-sided maximum deviation
and Qn = the number of times where the maximum is achieved, are consid-
ered and distributional results are presented, when it is irrespective, where
the random walk terminates after n steps. Thus, the results can be seen as
generalizations of some well known results about (purely) binomial random
walk, given e.g. in Revesz (1990).

1. Introduction. Let X;, y = 1,2,..., be independent and identically distributed
random variables with

PX;j=1)=0o PX;=0=8 PX;=-1)=9,

where o + 3 + v = 1. Consider the random walk

k
St =S0+ Y X;, k=12,...,n with S,=¢,

=1

i.e. a simple random walk in the sense of Cox and Miller (1965) starting at Sp and leading
to £ after n steps. Confining to Sg = 0 actually constitutes no restriction at all. So this
assumption will be made in the sequel.

A number of random variables, so called simple random walk statistics can be defined on
this random walk; for a list of simple random walk statistics see e.g. Katzenbeisser and
Panny (19969, p.314f). Prominent random variables defined on such a simple random walk
are associated with the maximal one sided height achieved by it:

D} = the one-sided maximal height,
where D:: = maXg<k<n Sk, and

Q,,, = the number of times where the maximum is achieved.

The maximum is achieved, if S = Sg41 = Sg42 = ... = Sgtm = DT and Sk_1, Sk4m+1 <
D,'*,' , 0 < k< k+m < n. By definition, if S = DI the random walk starts with a
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maximum; accordingly, if S, = D' the random walk ends with a maximum. If there
should be one or more consecutive horizontal steps coinciding with the line y = D} (i.e.
m > (), this counts only as a single maximum. The following figure 1 shows a possible
sample path for a simple random walk with D} =3, Q,, =2, and S,, = 1.

Results concerning some joint- and conditional distributions of the random variables D
and Q,, are well known. The joint distribution P(D} = k,Q,, = r,S,, = £) as well as
the two-dimensional marginal distributions P(D} = k,S, = £) and P(Q,, =, S, = ¥),
¢ arbitrary but fixed, can be found in Katzenbeisser and Panny (1996) and Panny and
Katzenbeisser (1997). Also, the conditional distributions P(D;}' = k{S,, = £) and P(Q,, =
k|S, = £) can be obtained using results from Katzenbeisser and Panny (1996); especially
for S,, = 0, distributional properties of Df; |S,, = 0 are discussed in Katzenbeisser and
Panny (1984, 1986). Specializations for purely binomial random walks, i.e. random walks
witha =y =%, 8 =0, and S, = 0 are given in Dwass (1967) and Katzenbeisser and
Panny (1992, 1993).

The purpose of the present paper is to study the joint distribution P(D} =&, Q,, =), k >
0, r > 0, the marginal distributions P(D;} = k) and P(Q,, = r), and the corresponding
moments of D} and Q,,, irrespective where the simple random walk terminates after n
steps. Thus the results can be seen as generalizations of some well known results given
e.g. in Revesz (1990) for purely binomial random walks, ie.e random walks which moves
one unit up and to the right or one unit down and to the right with probability 1/2.

2. Technical prerequisites. In a recent paper, Panny and Katzenbeisser (1997) derived
the joint distribution P(D} = k,Q,, =, S, = £), which is given by

P(D} =%,Q,=rS8,=4{=
— k+r—1 N n; C!,/B,‘Y _ n; «a, /677 )] , (1)
P J’_Z)%pj(j)[(n+£—2k—2r—2j+2) p(n+£—2k—2r—2j

where p = a/v and so called generalized trinomial coefficients (GTC’s) are used. They
have generating function (av?+Bv+7)?, i.e.

(n; a, B,y

L ) = [v*)(av® +Bv+7)",
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and [v*]P(v) denotes the coefficient of v* in P(v). Properties of the GTC’s can be found
in Panny (1984), Katzenbeisser and Panny (1984, 1996), and Béhm (1993); a probabilistic

interpretation is given by
n; a, 3,y
P(S, =4¢)=
(S ) ( n+4 )

for all admissible ¢, i.e. the probability that an unrestricted simple random walk reaches
the state ¢ after n stepsand £ € {—-n,—n+1,...,n}.

The result (1) was derived from a generating function (g.f.) ¢(k,r,¢;y) of P(DY =k, Q,, =
S, =1{),
$(k,r,ty)=> P(Df =k, Q,=r,8, =y",

n>0

which can be obtained by convoluting appropriate versions of a single basic g.f. s m ¢(y)
introduced by Panny (1984), and defined by

Upme(y) = Y p(h,m &)y, h,m >0,
n>0

where
p(hvm’E’n):P(_mS Sl Sha"'v"—mssn—l S h,—mSSn —_-ES h'SO———'O),

i.e. the probability that a particle obeying a simple random walk with (weak sense) ab-
sorbing barriers at —m and h reaches the state £ after n steps when it started from state 0:

pE o Bty [1-(pv 2ymt1- 5 1 (o)1 5
Y 1 - pv? 1 — (pv2)htm+2 ’

\Ijh,m,ﬂ(y) =

where again p = /7 and the substitution y = g(v) = v/(av?+Bv++) has been used. This
substitution is crucial because it considerably simplifies the original generating function
in terms of y; for further technical details ¢f. Katzenbeisser and Panny (1984). Once the
interesting generating function has been obtained one only has to extract the coefficient
of y™ in the g.f. Explicit expressions can be derived by an application of Cauchy’s integral
formula, e.g for p(h,m, ¢, n), we get

1 \I!h,m,e(y) d

p(h, m, £, n) = Gy yn+1 Y, (2)

where we only have to take the substitution y = g(v) = v/(av? + Bv + ) into account.
Since y = v/ + O(v?) as v — 0, and g(v) is analytic in a sufficiently small neighborhood
of 0, (2) remains valid also after substituting ¥ = g(v). Hence

plhm, ) = 5 § TemtlfO) gy,
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where
g'(v) _ 1-pv°

2 -1
oy = Vg (et 4 o+ )

This approach was successfully applied in Katzenbeisser and Panny (1996), where dis-
tributional properties for a number of simple random walk statistics have been derived.
Moreover, this approach will also prove useful in obtaining distributional results concerning
the random variables D} and Q,, considered in this paper. All results given in the sequel
are based on appropriately defined versions of the g.f. ¢(k,r,4;y) and an application of
Cauchy'’s integral formula.

3. Probability distributions. Starting point in deriving the joint- and the marginal
distributions of D} and Q,, is the g.f. ¢(k,r,¢;y) which is given by

2

1+ pv?

)r(cw2 + Bv +7) (00?)" lvl—g, (3)

1
k,r,8;y) = —
bl tiy) =~ (

cf. Katzenbeisser and Panny (1996, p.328), and y = g(v) = v/(av? + Bv + ). The joint
probability P(D;}} = &, Q,, =, S, = £) can now be derived by an application of Cauchy’s
integral formula, where we have to take the substitution into account; technically, this
means that

2
PD! =k Q,=rS,=4{=[v"] {pr+k_lvzr+2k—£_2 —(av® + Bu + 7)"} :

(1+ pv?)

For n, k,£,r we have the following obvious relations: (a) n >0, (b) 1 <, (¢) 0 <k, and
(d) £ > ¢. Furthermore we have (e) k + 2(r — 1) + kK — £ < n which is clear from the
following consideration, and can be see from figure 2: to achieve height k& for the first time
we have to move at least k steps upward and to achieve height k& additionally r — 1 times
there are further at lest 2(r — 1) steps required. Finally, to reach height £ from the r-th
visit of k there are additionally k — ¢ steps necessary.

k 2(r-1) k—¢
- ”  prm— -~ n prmee——

(0,0)

Moreover, from the relations above, we immediately get: from (c),(d),and (e) we find (b’)
r < %+ 1. From (b), (d), and (e) we have (c¢’) k < n, and finally, from (b),(c), and (e)
we get (d’) £ > —n. Moreover, if conditions (a)-(d) are fulfilled, than (e) is automatically
guaranteed: if (e) is satisfied ¢(k, r, £; y) yields the corresponding probabilities. However, if
condition (e) is not satisfied, the corresponding coefficients in the generating function are
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all zero: the lowest term in ¢(k,r,£;y) is pH*—1ymy?+2k==2 " and if (e) is not satisfied,
then k+2(r—1)+k—£ > n which implies that the corresponding coefficients are zero which
also can immediately be seen from formula (1). This observation is crucial for our approach,
because this property of the g.f. considerably simplifies the summation procedures which
are necessary to obtain the interesting marginal distributions as well as the moments.
Of course, the results could also be obtained by appropriately summation in formula (1).
However, we prefer to sum within the corresponding g.f. The advantage of this approach is
that the resulting formulae can easier be handled and the corresponding moment generating
functions and therefore the moments of the interesting random variables can immediately
be derived.

The joint distribution P(D;} =k, Q,, = r). Summation in formula (3} over all admissi-
ble values of £, i.e. —n+2k+2(r —1) < £ < k, which can be extended to £ < k, and which
is justified by the considerations above, yields the g.f. ¢(k,r;y) for P(D} =k,Q,, =7):

Zcb(k,r,f;y):ZZP(D:: =k, Q, =75, =0y" =
£

£ n2>0

=> P(D} =k,Q, =r)y" = ¢(k, ;7).

n>0

Because Y, or = oF 7, for |[v| < 1, we have

2 r
ohrin) = S+ pu ) (1222 ) (= (@)

which is basic for all further considerations, and
P(D; =k,Q, =) = [y"18(k,7; ).

Picking out the coefficient of y™ by means of Cauchy’s integral formula (where we have to
take into account the substitution) yields the result. Technically, this means that

1—-pv?2 1
+ . N S r+k—1,2r+k—2 2 n
P(Dn —-k,Qn—T)——[’Un]{p v + (a'u +16'U+7) (1+pv2),-1_,v} *

Expanding in powers of v we get the following expression for P(D;} = k,Q,, = r):

P(D} =k,Q, =7)=

- T s, B,y n;a, B,y
()R] -
g i JXZ: A+2-2i— A-2i~j (%)
__ k-1 if T n;a, B, n;a, B, _ n; a, B,
= ;p(i)[(A+2—2i)+(A+lm2) P)Z(A 9 — ) )




where A = n — 2r — k. For the simple special cases, k=n,r=1,and k=0, r = n/2+1,
respectively, we get

P(D;— =naQn= 1) =pn(n;a,)8a’y) = o™,

0
P(Df =0,Q, =2 +1) = p? (”; e ”’) = (a2

The marginal distributions P(D} = k) and P(Q,, = r). Summation over all admis-
sible values of r, 1 <r < 1‘-—5-5 + 1, which again can be extended to r > 1, for fixed k in (4)

yields the g.f. ¢(k;y) for P(D} = k):

Z¢(kry YD P} =kQ,=r)y" =

r n>0

=) P(D} =k = o(k;y).

n>0

2

r
Because of }_ ., ( T-;%f) = pv?, we obtain

1
1 —-w

B(k;y) = %(azﬁ + Bu + 7)(pw)*

Extracting

071 { (e + o (o2

v

yields the following expression for P(D} = k):
s, B,y n;a, B3,
Pz -1 -5 [(F7PT) o, "0 )] -
jzzt:) n—k—j n—k—2-—3j (6)
= p*P(S,, < —k) — pF*1P(S, < -k - 2)

Alternatively, expression (6) can be rewritten as

P(D} = k) = o* [(nf’_ﬁé") + (:a P ) +(1 —p)Z (n f;,f_’_ﬁz’ij)} .

which yields for the simplest special case k = n:

P(D: — n) — pn (n; a(a)ﬂa 7) = a™.
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Similarly, summation over k > 0 for fixed r in (4) yields the g.f. ¢(r;y) for P(Q,, =r):

S dk,ry) =Y. S P(D} =k, Q, =r)y" =
k

kE n>0

=) P(Q,=7)y" = ¢(r;y).

n>0

Because 3,50 (pv)* = =55, we get for ¢(r;y)

1{ p? \", 1 1 1

Picking out the coefficient

p'r-—lv2r—2 9 1 — p’u2 1
n n

yields the expression for P(Q,, = r):

DT o Y e A e e Al n;a, B, n;a, B,
P(Qn=1r)=r Zp(z)z 1-p [(n—2r+2—2z~'—j)—"(n—2r-—2z‘—j)]’

i>0 §>0
(8)

which can be rewritten as

P(Q,=r)=p""" Zpi (—zr) X

i>0
wa 5 (9)
y &y 2, Y ] n;a, o,
1 .
(n—2r+2—2i) +;( +pj)(n~2r+2—2z'—j)
For the simplest special case, r = 5 + 1, and obviously n even, we get from (9)

P =5 +1) = (M%) — (@)t

4. Moments. The interesting moments can be derived using appropriately defined mo-
ment generating functions (mgf.). Starting point is again the generating function for

PD! =k,Q,=1):

1, 1 v \", .1
irin) = 2ot + Bo-+7) o (122 ) (i
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Multiplication of ¢(k,7;y) by e** and by e*” und summation over all admissible values for
k and 7, i.e. £k > 0 and r > 0, yields

G(t, s) ZZqS (k,r;y)etke™
= Z ZZP (D} =k, Q, =r)ekey"

n>20 k r
=D Mp; o, ()"
n>0

G(t, s) is therefore the generating function for the bivariate mgf. and [y"|G(¢, 3) is the joint
moment generating function Mp+ o (t,s) of (D, Q,,). The generating function G(t, s) is
given by

e’ 1 1
1—pv2(es—1)1—pvetl—v’

G(t,s) = %(avz + v +7)

and, technically, Mp+ 5 (¢,5) can be derived as

1 11— pv?
n 8 2 n
[v ]{e (av® + v+ ) QT p—"— p— }

Extracting the coefficient of v™ yields the bivariate mgf. of (D, Q,,):

Mp+ o (8:5) peth(e — 1)
120
(10)
t\7+1 n;a,/@97 ’n;a,ﬁ,’)’
g(l_(”e)ﬁ)[(nwzi—j)’”(n%—zwa‘)]'

The joint moment E(D} Q,,) can now be derived from (10) as %?M p* @, (s 8)|t=s=0 and
is given by

E(D- Qu) (1 _pp)z
J;(jp"ﬂ - G+1)p +1) [(nna_ﬂj 7) _ (:_aélﬂ#?)] | (11)

The mgf’s for the random variables D} and Q,, can be obtained by substituting s = 0
and t = 0, respectively in the bivariate mgf. (10).

The substitution s = 0 in (10) yields the mgf. M.+ (t) for D}:

Mp+(t) = 1= pet > (1= (pety*) [(n,na_,—ﬁj, 7) - P(:’j,zﬁ_’,;)] )

j=20



which, after expanding pe‘, can be rewritten as
n;a, B,y n;a, B,y
My )= 3 N3 (7)o () (12
1n>0 T §>0i=0
and the m-th moment of D, given by [%] Mp+(t), can immediately be seen from (12):
I)+nf)__§E::E:z [(n;avﬂ37) __p(?ﬁfhli’f)].
§>0 i=0 n—J n—2-7

Specializing on m = 1,2 we get for the first two moments of D;:

+\ +1 ] n;aaﬁa7 _ n;aaﬂa7
B0} = L Ll - G+ 0+ [ BT A | e
and
E(D}") = Z PP+ (25 +1) - D = G+ 1) + p+1] X

_ )3
(14)

n; o, B, n;a,ﬁ,v)
[( n - )""(n—z—j J

The substitution of ¢ = 0 in (10) yields the mgf. Mg_(s) of Q,:

1- +1 y Oy 2y y &, 2,
Mo, () = Tptte - ST (MR ) < BT ) s

i>0 j=0

The m~th moment of Q,, can now be derived as t;i_mmMQn (s)|s=o0 and can be written as

EQM) =Y/ ™03 850,

i>0 §>0

where
m

T I B GV W [

v>0

1—p3+1 na, B, n; o, B,y
5= 725 [ (57%) o[ 755 5))

Specializing on m = 1,2 we get for the first two moments of Q,,:

= 1=p [ (n;a, B, n; o, B,
B(Qn =D 1-p [( n—j )_pz(n_4_j)], (16)

J20

and
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and

2y _ l—pj+1 n;a9)6a7 n;a,,@,’y 2 n;avﬂafy 3 n;a,ﬁ,'y
m@=X T2 | () () e () (=)

320

5. Special Cases. In this section we will collect the pertaining results for two special

cases: (i) for the symmetric random walk, i.e. a simple random walk with @ = 7 and

therefore p = 1, and (ii) for the purely binomial random walk with @ = v = % and

g = 0. Obviously, all results given in this section can be obtained by specialization of the
corresponding results for the simple random walk.

The Symmetric Random Walk. For the symmetric random walk we immediately
obtain from (5) for the joint probability PDf =kQ,=71)

_ ) —r n;a, 3, a n; o, B, a
P(D’T—k’Q"_T)—Z(i)[(A+2—2i)+(A+1_2i)]’ (18)

i>0

where again A = n — 2r — k. For the marginal distributions we get from (7) and (9),
respectively:

P(D} = k) = (”;n‘”ﬁ;o‘) + (:;_a;f_"’;) =P(S, = —k)+P(S, = -k—1), (19)

and

— — -r n;aaﬁ,a n, a,ﬂ,a
P(Qn——r)——;( ) [(n_2r+2~2i) +2z(n_2r+2_2i_j)] @)

j21

For the joint moment E(D; Q,) we obtain from (11)

oia-g (1) [04) (7)) e

j20

whereas the first two moments of D} and Q,, are given by

B} )= Y- 1)(" M),

i21 n—17 - 22)
ED;*) =Y [2iG -1+ 7)),
(D) J_};[J(J ) ]( " ] )
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EQ, )= (n; a;f ! a) +2(n;na’_ﬁ X a) +3(";na’_ﬂ ) a) +43° (Z_a?)ﬁ_c;) ,
j

E(Q,%)= ("; e “) +2 (”;n"’_ﬁl’ ‘“) +5 (";na_’_ﬁz’ a) +8 (”;n“j_ﬁé a) 10 (";n"’_ﬂ; 0‘)+

(23)
respectively, which follow immediately from formulae (13), (14), (16), and (17).

The purely binomial random walk. The results for the purely binomial random walk
can easily be obtained by specialization of the results for the symmetric random walk.
Technical prerequistes are the relation

(7227 -(2)

cf. Panny (1984), and the following formulae, which allow the simplification of some
expressions, cf. Riordan (1968, p.34):

| 2« 20 — 1
ZJ a-j) "\ a )
§20 J

2a+1 2 1 (25)
Z]( ):(2a+1)(a ) 220—1,0!:1,2, ’
jzo T @
and ) 0 .
ZJ(J—-]_)( a')=a22a“2 a( @~ ) , =23, ,
; o] a
3>0
. 2a0 + 1 2a0 +1 (26)
Zj(j—l)( ) =(a+2)22°’"1—(a+1)( )
=0 a—J o'
In the following we will collect the results for the purely binomial random walk:
n n—r
P(D: = k’ Qn = T) =2 (I-n—2r2—k:t2_]) ’ (27)

which follows from (18) and an application of Vandermonde’s convolution formula. For
D we obtain from (19)

P(D; =k)=2‘"(lﬁ;_,gj), (28)

cf. also Revesz (1990, Theorem 2.4, p. 14). Because of

i n—r
P(D:—r =T+k—2) =2 ( )(Ln—r—(r+k—2)J)a
2
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we get immediately the following relation
PD} =kQ,=r)=2""P(D}_, =r+k-2). (29)

For the joint moment we obtain after specializing of formula (21) and an application of

(25):
E(D;" Q) = { 2(n-(l;1+!g2n+3l Q—n (g)) , T even, (30)

(2n+5)27"(a21) —3, nodd.

For the the first two moments of D} we get after simplification of formula (22) and an
application of (25) and (26), respectively

(n+3)27"(%2)—%, n even,
B(D;) = { (n+ 12) 27" (a24) -f 3, n odd, (31)
and 9 (n+3)—-(n+3)27"(2), n even
+ - _g-_ b) y
E(D,) = { (n+ %) —(n+1)27" (1,_;_;) , n odd. (32)

For P(Q,, = r) we obtain from (20) and repeated applications of Vandermonde’s convolu-

tion formula
_ n-—r
P(Qn = ’I‘) =2 " Z (I-n-2r+2—z'_|) g (33)
Jj20 2

Using formula (28) it is easily seen that

P(Q,=r)=2"P(D]_, >r-2),

which was originally proved by Csaki, cf. Revesz (1990, p.157). For the special case r = 1
we obtain from (33)

P(Q, = 1) = z+27" ("%"1) n even,
| 3+27"(3:1),n odd.

Finally, for the first two moments of Q,, we get after specialization of (23)

9 _ 2(n+1) 9-n ( ) . neven,
( ) = n+2 2 (34)
" 2-2-27"(24), nodd,
2
e 2(n+1)(7n+20)
n 1 _ n
E(Q2) = 6 — iy 2 (%) , 7T even, )
n QT:313! 2—n(n 1), n odd.
2
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